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Abstract. We provide an explicit expression for the Pleijel constant
for the planar disk and some of its sectors, as well as forN -dimensional
rectangles. In particular, the Pleijel constant for the disk is equal to
0.4613019 . . . Also, we characterize the Pleijel constant for some rings
and annular sectors in terms of asymptotic behavior of zeros of certain
cross-products of Bessel functions.
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1 Introduction and main results

Let Ω ⊂ R
N be a bounded domain with the boundary ∂Ω, N ≥ 2. Consider

the eigenvalue problem
{

−∆u = λu in Ω,

u = 0 on ∂Ω,
(1.1)

and denote by {λn}n∈N the sequence of the corresponding eigenvalues,

0 < λ1 < λ2 ≤ · · · ≤ λn → ∞ as n→ ∞.

For any eigenfunction ϕn associated with λn, let µ(ϕn) be a number of
nodal domains of ϕn, that is, a number of connected components of Ω \
{x ∈ Ω : ϕn(x) = 0}. Courant’s nodal domain theorem [11] asserts that
µ(ϕn) ≤ n for any n ∈ N. This result was refined by Pleijel for N = 2
and then extended by Bérard & Meyer to the general N ≥ 2 as follows.

1The author wishes to thank Bernard Helffer for a stimulating discussion and helpful
remarks. This research has been supported by the Grant Agency of the Czech Republic,
project 18-03253S, and by the project LO1506 of the Czech Ministry of Education, Youth
and Sports.
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Theorem 1.1 ([24, Section 5] and [3, Theorem II.7]). Let jN
2
−1,1 be the first

zero of the Bessel function JN
2
−1. Then

Pl(Ω) := lim sup
n→∞

µ(ϕn)

n
≤ γ(N) :=

2N−2N2 Γ
(

N
2

)2

jNN
2
−1,1

< 1.

In particular, if N = 2, then

Pl(Ω) ≤ 4

j20,1
= 0.6916602 . . . (1.2)

We will call Pl(Ω) the Pleijel constant for Ω. Note that the function N 7→
γ(N) is strictly decreasing and lim

N→∞

γ(N+1)
γ(N) = 2

e , see Helffer & Sundqvist [17,

Theorem 5.1 and Remark 5.4].
In recent years, properties of the Pleijel constant and, more in general, the nodal
domains statistics started to be intensively studied with both mathematical
and physical accents. For instance, in the work of Blum et al [4], it has been

revealed that the distribution of the values µ(ϕn)
n crucially depends on the shape

of the domain according to the underlying classical billiard dynamics - with
either integrable or chaotic motion, see also Aronovitch et al [1], Gnutzmann
& Lois [14], and references therein. Moreover, properties of the support of

the limiting distribution function of µ(ϕn)
n are closely related with those of the

Pleijel constant.
It was pointed out by Polterovich [25] and then rigorously developed by Bougain
[7] and Steinerberger [26] that the upper bound 4

j2
0,1

for Pl(Ω) in (1.2) is not

sharp. Furthermore, Polterovich conjectured that the optimal upper bound for
N = 2 should be

Pl(Ω) ≤ 2

π
= 0.6366197 . . .

If this upper estimate holds true, then its optimality follows from the consid-

eration of any rectangle R(a, b) = (0, a) × (0, b) with irrational ratio a2

b2 , see
Helffer & Hoffmann-Ostenhof [16, Proposition 5.1].
We start by extending [16, Proposition 5.1] to the general N -dimensional case
as follows (cf. [14, Section 4.2]).

Proposition 1.2. Let R(a1, . . . , aN ) = (0, a1)×· · ·× (0, aN) be a N -orthotope

such that
a2
i

a2
j

is irrational for any i 6= j. Then

Pl(R(a1, . . . , aN )) = ρ(N) :=
2NΓ

(

N
2 + 1

)

π
N
2 N

N
2

.

Moreover, the function N 7→ ρ(N) is strictly decreasing and lim
N→∞

ρ(N+1)
ρ(N) =

√

2
πe .
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It is clear that ρ(N) < γ(N) for any N ≥ 2 by the same reasoning as in [25,
Remark 2.5]. Furthermore, by analogy with the conjecture of Polterovich [25],
one can ask whether the estimate Pl(Ω) ≤ ρ(N) is valid for any Ω ⊂ R

N and
N ≥ 2.

Note that the “irrational” rectangles discussed above are the most simple do-
mains whose Pleijel’s constant can be worked out explicitly. However, to the
best of our knowledge, the exact value of the Pleijel constant has not been
known for any other domains2, and the question of finding of such domains
was proposed by Bonnaillie-Noël et al [5, Section 6.1]. Furthermore, numerical
experiments (see, e.g., [4, 1, 14]) demonstrate relatively slow convergence of the

ratio µ(ϕn)
n as n→ ∞. Thus, theoretical results in this direction are needed.

The aim of the present note is to obtain the explicit expression for the Pleijel
constant for the planar disk. Our main result is the following.

Theorem 1.3. Let B := {x ∈ R
2 : |x| < 1}. Then

Pl(B) = 8 sup
x>0

{

x (cos θ(x))
2
}

= 0.4613019 . . . ,

where θ = θ(x) is the solution of the transcendental equation

tan θ − θ = πx, θ ∈
(

0,
π

2

)

.

Note that the value of Pl(B) is in the good correspondence with the numerical
simulation of Blum et al [4, Fig. 1]. We also refer the reader to Han et al [15]
where the sharp estimates for the length of the nodal set of eigenfunctions of
(1.1) on B are obtained.
Consider now the circular sector with the angle α ∈ (0, 2π] defined as

Σα :=
{

(̺ cosϑ, ̺ sinϑ) : ̺ ∈ (0, 1), ϑ ∈
(

−α
2
,
α

2

)}

.

Theorem 1.4. Let α be such that any eigenvalue of (1.1) on Σα has the multi-
plicity 1. Then Pl(Σα) = Pl(B). In particular, the assumption on α is satisfied
if α = π/m, m ∈ N.

Remark 1.5. There exists α ∈ (0, 2π) such that there is an eigenvalue of (1.1)
on Σα whose multiplicity is at least 2, see Bonnaillie-Noël & Léna [6, Section
2.3]. In general, the question about the multiplicity 1 for eigenvalues of (1.1)
on Σα is equivalent to the following: Find assumptions on α ∈ (0, 2π] which
guarantee that the Bessel functions Jν1 π

α
and Jν2 π

α
have no common positive

zeros for any ν1, ν2 ∈ N. This question is reminiscent of Bourget’s hypothesis
[27, p. 484].

Finally, we characterize the Pleijel constant for rings and annular sectors. First,
consider the ring (annulus) Ar := {x ∈ R

2 : r < |x| < 1}, r ∈ (0, 1).

2 For the quantum harmonic oscillator −∆+
∑

N

i=1
a2
i
x2

i
with rationally independent ai’s,

Charron [8] proved that the Pleijel constant is equal to N !/NN , cf. [14, Section 4.1].
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Proposition 1.6. Let r be such that any eigenvalue of (1.1) on Ar has the
multiplicity at most 2. Then

Pl(Ar) =
8

1− r2
sup
x>0

{

x lim sup
k→∞

k2

a2kx,k

}

,

where akx,k is the k-th positive zero of the cross-product of Bessel functions
Jkx(rz)Ykx(z)− Jkx(z)Ykx(rz).

Consider now the annular sector with the inner radius r ∈ (0, 1) and the angle
α ∈ (0, 2π] defined as

Σα
r :=

{

(̺ cosϑ, ̺ sinϑ) : ̺ ∈ (r, 1), ϑ ∈
(

−α
2
,
α

2

)}

.

Proposition 1.7. Let r and α be such that any eigenvalue of (1.1) on Σα
r has

the multiplicity 1. Then Pl(Σα
r ) = Pl(Ar).

Remark 1.8. It seems that, by now, the asymptotic behavior of akx,x as k → ∞
is not studied as comprehensively as whose of jkx,k ([13, 12]), which obstructs
us to obtain an explicit expression for Pl(Ar) in the spirit of Theorem 1.3. We
expect that the following asymptotics should be valid:

Pl(Ar) → Pl(B) as r → 0; Pl(Ar) → ρ(2) =
2

π
as r → 1.

Let us note that there exist parameters r and α for which the assumptions of
Propositions 1.6 and 1.7 do not hold.

Lemma 1.9. There exists r (and α) such that there is an eigenvalue of (1.1)
on Ar (on Σα

r ) whose multiplicity is at least 3 (at least 2), see Fig. 1.

But it should be also emphasized that we do not know whether the sets of
admissible parameters for Propositions 1.6 and 1.7 are non-empty.

2 Proofs

The structure of all the proofs consists of three main steps. First, we character-
ize eigenvalues and eigenfunctions of (1.1) explicitly as multi-indexed sets, due
to the “separable” nature of the considered domains. Then, after reordering
the set of eigenvalues into the increasing sequence {λn}n∈N, we apply the Weyl
law (see, e.g., Ivrii [18]) to express the labeling n in terms of the correspond-
ing eigenvalue λn for sufficiently large n. Finally, we elaborate the obtained
expression for Pl(Ω) up to the desired form.
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2.1 Proof of Proposition 1.2

Let N ≥ 2 and let R(a1, . . . , aN ) = (0, a1) × · · · × (0, aN ) be a N -orthotope

such that the ratio
a2
i

a2
j

is irrational for any i 6= j. By separation of variables,

any eigenvalue of (1.1) on R(a1, . . . , aN) is given by

λm1,...,mN
=
π2m2

1

a21
+ · · ·+ π2m2

N

a2N
, m1, . . . ,mN ∈ N,

with the associated eigenfunction

ϕm1,...,mN
= sin

πm1x

a1
· · · sin πmNx

aN
.

Evidently, µ(ϕm1,...,mN
) = m1 · · ·mN .

Since
a2
i

a2
j

is irrational for any i 6= j, all eigenvalues are simple (have the multi-

plicity 1). Therefore, no other eigenfunctions occur, and if we put λm1,...,mN
’s

in the increasing order as λ1 ≤ . . . λn ≤ . . . , then for any n there exists a
unique N -tuple (m1,n, . . . ,mN,n) such that λn = λm1,n,...,mN,n

. Since the ex-
plicit relation between n and (m1,n, . . . ,mN,n) is not clear, we use the Weyl
law which states that

n = (2π)−N ωN |R(a1, . . . , aN )|λN/2
n + o(λN/2

n ),

where ωN is the volume of the unit ball in R
N and |R(a1, . . . , aN )| is the volume

of R(a1, . . . , aN ). Thus, we get

n =
ωN a1 · · ·aN

2N

(

m2
1,n

a21
+ · · ·+

m2
N,n

a2N

)N/2

+ o(λN/2
n ).

Substituting this expression into the definition of the Pleijel constant and omit-
ting, for simplicity, the subindex n in mi,n, we obtain

Pl(R(a1, . . . , aN )) =
2N

ωN
lim sup

m1+···+mN→∞

m1

a1
· · · mN

aN

(

m2
1

a2
1

+ · · ·+ m2
N

a2
N

)N/2
.

Applying the inequality between arithmetic and geometric means, we deduce
that

Pl(R(a1, . . . , aN )) ≤ 2N

ωNN
N
2

.

On the other hand, taking a sequence of N -tuples {(m1,k, . . . ,mN,k)}k∈N ⊂ N
N

such that lim
k→∞

mi,k

k = ai for each i = 1, . . . , N , we get

Pl(R(a1, . . . , aN )) ≥ 2N

ωNN
N
2

,
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and hence the equality holds. Since ωN = π
N
2

Γ(N
2
+1)

, we conclude that

Pl(R(a1, . . . , aN)) = ρ(N) :=
2N Γ

(

N
2 + 1

)

π
N
2 N

N
2

.

Let us show now that ρ(N+1)
ρ(N) < 1 for any N ≥ 2. We have

ρ(N + 1)

ρ(N)
=

2N
N
2 Γ
(

N
2 + 1

2 + 1
)

π
1
2 (N + 1)

N+1

2 Γ
(

N
2 + 1

)
. (2.1)

Applying Gautschi’s-type inequality Γ(x+1) <
(

x+ 1
2

)
1
2 Γ
(

x+ 1
2

)

which holds
for all x > 0 (see Kershaw [19, (1.3)]), we have

Γ

(

N

2
+

1

2
+ 1

)

<

(

N + 2

2

)1/2

Γ

(

N

2
+ 1

)

.

Substituting this inequality into (2.1) and estimating N
N
2 < (N + 1)

N
2 , we

obtain
ρ(N + 1)

ρ(N)
<

(

2(N + 2)

π(N + 1)

)1/2

< 1

for any N ≥ 2, that is, the function N 7→ ρ(N) is strictly decreasing.

Finally, we show that lim
N→∞

ρ(N+1)
ρ(N) =

√

2
πe . Let us rewrite (2.1) as

ρ(N + 1)

ρ(N)
=

2
1
2

π
1
2

(

1 +
1

N

)−
N
2 (N + 2)

1
2

(N + 1)
1
2

Γ
(

N
2 + 1

2 + 1
)

Γ
(

N
2 + 1

) (

N
2 + 1

)
1
2

.

Then, noting that lim
x→∞

Γ(x+1)

Γ(x+ 1
2 )(x+

1
2 )

1
2

= 1 (see, e.g., [19, (2.3)]) and

lim
N→∞

(

1 + 1
N

)−
N
2 = e−

1
2 , we get the desired result.

2.2 Proof of Theorem 1.3

Consider the unit planar disk B = {x ∈ R
2 : |x| < 1}. It is well-known that,

by separation of variables, there exists a basis of eigenfunctions of (1.1) on B
expressed (up to rotation) in polar coordinates (̺, ϑ) as

ϕν,k(̺, ϑ) = Jν(jν,k̺) cos(νϑ), ν ∈ N ∪ {0}, k ∈ N,

and λν,k = j2ν,k is the eigenvalue associated with ϕν,k. Here jν,k stands for the
k-th positive zero of the Bessel function Jν . Any eigenvalue λ0,k has the multi-
plicity 1 (and ϕ0,k is radial), while any other eigenvalue has the multiplicity 2
(and corresponding eigenfunctions are nonradial, one is a rotation of another).
These facts follow from the validity of Bourget’s hypothesis, which asserts that
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Jν and Jν+m do not have common positive zeros for any natural m, see [27,
p. 484].
Clearly, µ(ϕ0,k) = k and µ(ϕν,k) = 2νk for ν ∈ N. Below, for brevity, we
combine both cases by writing µ(ϕν,k) = (2ν + σ(ν))k, where σ(0) = 1 and
σ(ν) = 0 for ν ∈ N.
Let us put λν,k’s in the increasing order as λ1 ≤ · · · ≤ λn ≤ . . . . Since we are
interested in the behavior as n → ∞ and the explicit relation between (ν, k)
and n is not known, we use the Weyl law to get

n = λn
|B|2
4π2

+ o(λn) =
λn
4

+ o(λn).

Hence, noting that for any λn there exists a unique pair (νn, kn) such that
λn = λνn,kn

= j2νn,kn
, we obtain

n =
j2νn,kn

4
+ o(j2νn,kn

).

Substituting this relation to the definition of Pl(B), we deduce that

Pl(B) = lim sup
n→∞

4(2νn + σ(νn))kn
j2νn,kn

.

Extracting a subsequence which delivers the value Pl(B), omitting (for sim-
plicity) the subindex for (νn, kn), and noting that n → ∞ iff ν + k → ∞, we
obtain

Pl(B) = lim
ν+k→∞

4(2ν + σ(ν))k

j2ν,k
.

All we need now is to study the behavior of jν,k as ν + k → ∞. We will use
the inequality of McCann [22, Corollary, p. 102] which states that

jν,k >

(

ν2 + π2

(

k − 1

4

)2
)1/2

for any ν ≥ 0 and k ∈ N. (2.2)

Note first that the sequence of ϕ0,k’s cannot be a maximizing sequence for
Pl(B) since otherwise the inequality (2.2) implies j0,k > π(k − 1) and hence

Pl(B) = lim
k→∞

4k

j20,k
≤ lim

k→∞

4k

π2(k − 1)2
= 0, (2.3)

but we will see later that Pl(B) > 0. Thus, we may assume that ν > 0, which
yields µ(ϕν,k) = 2νk and

Pl(B) = lim
ν+k→∞

8νk

j2ν,k
. (2.4)
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Estimating now (2.2) from below as jν,k > ν and as jν,k >
πk
2 , we deduce that

Pl(B) ≤ lim
ν+k→∞

min

{

8k

ν
,
32ν

π2k
.

}

(2.5)

As we already mentioned, it will be shown later that Pl(B) > 0. Using this
inequality, we conclude from (2.5) that both ν and k tend to infinity, and there
exist A1, A2 > 0 such that

A1ν < k < A2ν for all sufficiently large ν ∈ N.

Recalling that (ν, k) is a maximizing subsequence for Pl(B), we can select a
sub-subsequence (which is hence also a maximizing subsequence for Pl(B)) still
denoted by (ν, k), such that

lim
ν→∞

k

ν
= x0 ∈ [A1, A2]. (2.6)

That is, we have k = ν x0 + o(ν) for all large ν ∈ N.
Let us now use the result of Elbert & Laforgia [13] (see [12, Section 1.5] for the
precise statement employed in (2.7)) which states that

lim
ν→∞

jν,νx
ν

=
1

cos θ(x)
, x > 0, (2.7)

where θ = θ(x) is the solution of the (transcendental) equation

tan θ − θ = πx, θ ∈
(

0,
π

2

)

. (2.8)

Combining (2.4), (2.6), and (2.7), we see that Pl(B) = 8x0 (cos θ(x0))
2, and

x0 have to satisfy

Pl(B) = 8x0 (cos θ(x0))
2
= 8 sup

x>0

{

x (cos θ(x))
2
}

> 0. (2.9)

Most likely, (2.8) and hence (2.9) cannot be resolved in closed forms. However,
one can convince himself that the left-hand side of (2.8) is strictly increasing

in
(

0, π2
)

and the function x (cos θ(x))
2
for x > 0 attains its unique maximum,

and hence the unique root of (2.8) and the value of Pl(B) can be found with
arbitrary precision via the standard numerical methods. In particular, using
the build-in methods of Mathematica, we obtain

Pl(B) = 0.4613019 . . . and x0 = lim
ν→∞

k

ν
= 0.3710096 . . .

Remark 2.1. Mathematica’s code for finding Pl(B) via (2.9) can look like
that:
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T[x_?NumericQ] := y /. FindRoot[Tan[y] - y == Pi*x, {y, Pi/4}];

FindMaximum[8*x*(Cos[T[x]])^2, {x, 0.37}]

Remark 2.2. Consideration of the sequence of radial eigenfunctions of (1.1)
on B reveals (see (2.3)) that

lim inf
n→∞

µ(ϕn)

n
= 0.

Remark 2.3. If we consider the Neumann eigenvalues instead of the Dirichlet
ones, then the result of Theorem 1.3 remains valid. Indeed, Neumann eigen-
functions are expressed as

φν,k(̺, ϑ) = Jν(j
′

ν,k̺) cos(νϑ), ν ∈ N ∪ {0}, k ∈ N,

where j′ν,k is the k-th positive zero of the derivative J ′

ν of the Bessel function Jν .

Moreover, λν,k = (j′ν,k)
2 is the associated eigenvalue. (Note that λ = 0 is an

additional eigenvalue corresponding to the constant eigenfunction.) According
to the result of Ashu [2, Theorem 3.2] (see also a generalization obtained by
Helffer & Sundqvist [17, Lemma 2.5]), J ′

ν and J ′

ν+m have no common zeros for
any m ∈ N. Thus, the multiplicity of λ0,k is 1, and the multiplicity of any other
eigenvalue is 2. Note that the Weyl law is still valid for the Neumann case (see,
e.g., Ivrii [18]). Moreover, j0,k < j′0,k < j0,k+1 for k ≥ 1, and jν,k−1 < j′ν,k <
jν,k for ν > 0 and k ≥ 2. These inequalities imply that φ0,k (φν,k for ν > 1) is,
in fact, a restriction to B of the Dirichlet eigenfunction ϕ0,k+1 (ϕν,k for ν > 1)
defined on a slightly bigger ball BR. Hence, µ(φ0,k) = k+1 and µ(φν,k) = 2νk
for ν ∈ N. Arguing now as in the proof of Theorem 1.3 and estimating j′ν,k
from both sides as above, we obtain the desired result.
Note that the Pleijel theorem (Theorem 1.1) for the Neumann eigenvalues was
proved by Polterovich [25] for N = 2 and piecewise real analytic domains, and
by Léna [21] for N ≥ 2 and C1,1-smooth domains.

2.3 Proof of Theorem 1.4

Consider the circular sector of a unit disk

Σα =
{

(̺ cosϑ, ̺ sinϑ) : ̺ ∈ (0, 1), ϑ ∈
(

−α
2
,
α

2

)}

, α ∈ (0, 2π].

By separation of variables, it can be shown (see, e.g., [6, Proposition 2.1]) that
there is a basis of eigenfunctions of (1.1) on Σα of the form

ϕα
ν,k(̺, ϑ) = Jν π

α

(

jν π
α
,k̺
)

sin

(

νπ

(

ϑ

α
+

1

2

))

, ν, k ∈ N,

with the associated eigenvalues λν,k = j2ν π
α
,k. Evidently, µ(ϕα

ν,k) = νk. We

assume that α is chosen in such a way that each λν,k has the multiplicity 1,
that is, no other eigenfunctions occur.
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The proof of the claim follows the same lines as the proof of Theorem 1.3. Let
us present the arguments sketchily. Since |Σα| = α

2 , the Weyl law implies

n = λn
|Σα||B|
4π2

+ o(λn) =
λnα

8π
+ o(λn) =

j2νn π
α
,kn
α

8π
+ o(j2νn π

α
,kn

),

and hence, for a maximizing subsequence,

Pl(Σα) = lim
ν+k→∞

8πνk

j2ν π
α
,kα

= lim
τ+k→∞

8τk

j2τ,k
,

where τ = ν π
α . Applying the inequality (2.2), we deduce that, under the

assumption Pl(Σα) > 0, it holds k = τ x0 + o(τ) for some x0 > 0 and all
sufficiently large τ ∈ N. Using now (2.7), we finally obtain

Pl(Σα) = 8x0 (cos θ(x0))
2
= 8 sup

x>0

{

x (cos θ(x))
2
}

> 0.

Thus, we see that Pl(Σα) = Pl(B) for any admissible α ∈ (0, 2π]. However,
the value of lim

ν→∞

k
ν depends on α as follows:

lim
ν→∞

k

ν
=
π

α
lim
ν→∞

k

τ
=
πx0
α

=
1.165561 . . .

α
.

Finally, let us note that if α = π/m for m ∈ N, then any eigenvalue of (1.1)
on Σα has the multiplicity 1. This fact trivially follows from the validity of
Bourget’s hypothesis [27, p. 484], since Jν π

α
= Jνm, that is, we have the Bessel

function of an integer order for any ν ∈ N.

2.4 Proof of Proposition 1.6

Consider the ring Ar = {x ∈ R
2 : r < |x| < 1}. Separating the variables, it is

not hard to find a set of eigenfunctions (up to rotation) of (1.1) on Ar in the
form

ψν,k(̺, ϑ) = (Jν(aν,k̺)Yν(aν,k)− Jν(aν,k)Yν(aν,k̺)) cos(νϑ), (2.10)

where ν ∈ N ∪ {0}, k ∈ N, and λν,k = a2ν,k is the eigenvalue associated with
ψν,k. Here aν,k is the k-th positive zero of the following cross-product of Bessel
functions of the first and second kind:

Jν(rz)Yν(z)− Jν(z)Yν(rz). (2.11)

That is,
Jν(raν,k)Yν(aν,k)− Jν(aν,k)Yν(raν,k) = 0.

It is possible to show that the set of ψν,k’s forms an orthogonal basis of L2(Ar).
Any eigenvalue λ0,k has the multiplicity at least 1 and any other eigenvalue has

Documenta Mathematica 23 (2018) 799–813



On Exact Pleijel’s Constant for Some Domains 809

the multiplicity at least 2. Moreover, µ(ψ0,k) = k and µ(ψν,k) = 2νk for ν ∈ N.
As in the proof of Theorem 1.3, we will write µ(ψν,k) = (2ν + σ(ν))k, where
σ(0) = 1 and σ(ν) = 0 for ν ∈ N.
Assume that the multiplicity of any eigenvalue is at most 2. As a consequence,
we see that any eigenfunction of (1.1) on Ar is of the form (2.10), up to scaling.
Putting λν,k in the increasing order as λ1 ≤ . . . λn ≤ . . . , noting that |Ar| =
π(1 − r2), and applying the Weyl law, we get

n = λn
|B||Ar|
4π2

+ o(λn) = λn
1− r2

4
+ o(λn) = a2νn,kn

1− r2

4
+ o(a2νn,kn

).

Therefore, passing to a maximizing subsequence and omitting the subindex for
(νn, kn), we deduce that

Pl(Ar) = lim
ν+k→∞

4(2ν + σ(ν))k

a2ν,k(1− r2)
.

Let us note that the inequality (2.2) from [22, Corollary, p. 102] used in the
proof of Theorem 1.3 is, in fact, a consequence of the inequality [22, (10),
p. 102] for aν,k:

(aν,k
ν

)2

≥
(a0,k
ν

)2

+ 1.

If, for the maximizing sequence of Pl(Ar), k is bounded, then we can find
C > 0 such that a0,k > Ck for all k. Otherwise, if k → ∞, then we use the
following approximation of a0,k of McMahon [23, (24), p. 29] (see also Cochran
[9, Theorem, p. 583]):

a0,k =
πk

1− r
+ O

(

1

k

)

. (2.12)

Therefore, in both cases, we have the existence of C > 0 such that

a2ν,k ≥ Ck2 + ν2 for all admissible ν, k ∈ N. (2.13)

Assume first that Pl(Ar) > 0. Then the case ν = 0 can be discarded via (2.12),
which implies that ν > 0 and µ(ψν,k) = 2νk. Estimating (2.13) as a2ν,k ≥ Ck2

and as a2ν,k ≥ ν2, we obtain

Pl(Ar) ≤
8

1− r2
lim

ν+k→∞

min

{

k

ν
,
ν

Ck

}

.

Since Pl(Ar) > 0, we conclude that both ν and k tend to infinity, and there
exist A1, A2 > 0 such that

A1k < ν < A2k for all sufficiently large k ∈ N.

Therefore, up to a subsequence, we have ν = k x0 + o(k) for some x0 > 0 and
all large k ∈ N. Thus,

Pl(Ar) =
8

1− r2
sup
x>0

{

x lim sup
k→∞

k2

a2kx,k

}

. (2.14)
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Assume now that Pl(Ar) = 0. Then the expression on the right-hand side of
(2.14) provides a lower bound for Pl(Ar), which again implies that the equality
(2.14) is satisfied.

Corollary 2.4. Combining the upper estimate (1.2) (which is strict by [7, 26])
with the expression (2.14), we obtain the following lower bound for the k-th
positive zero of the cross-product of Bessel functions (2.11) of order kx, x > 0:

akx,k >

√
2j0,1k√
1− r2

+ o(k) >
3.4 k√
1− r2

+ o(k)

2.5 Proof of Proposition 1.7

Consider the annular sector

Σα
r =

{

(̺ cosϑ, ̺ sinϑ) : ̺ ∈ (r, 1), ϑ ∈
(

−α
2
,
α

2

)}

, r ∈ (0, 1), α ∈ (0, 2π].

By separation of variables, it can be derived that there is a basis of eigenfunc-
tions of (1.1) on Σα

r of the form

ψα
ν,k(̺, ϑ) =

(

Jν π
α
(aν π

α
,k̺)Yν π

α
(aν π

α
,k)− Jν π

α
(aν π

α
,k)Yν π

α
(aν π

α
,k̺)

)

· sin
(

νπ

(

ϑ

α
+

1

2

))

for ν, k ∈ N, with the associated eigenvalues λν,k = a2ν π
α
,k. Here aν π

α
,k is the k-

th positive zero of the cross-product of Bessel functions (2.11) of order ν π
α . It is

not hard to see that µ(ψα
ν,k) = νk, and any eigenvalue λν,k has the multiplicity

at least 1.
Assuming that each λν,k has the multiplicity exactly 1, we argue in much the
same way as in the proof of Theorem 1.6 (and Theorem 1.4) to conclude that

Pl(Σα
r ) = Pl(Ar) =

8

1− r2
sup
x>0

{

x lim sup
k→∞

k2

a2kx,k

}

.

2.6 Proof of Lemma 1.9

Note that any zero aν,k(r) of the cross-product of Bessel functions (2.11) of
order ν is a continuous (in fact, analytic) function with respect to r > 0,
see Cochran [10, Theorem 1]. Here r > 0 stands for the inner radius of the
ring Ar. Then, the numerical computations show that a0,2(0.01) ≈ 6.0109 and
a3,1(0.01) ≈ 6.3801, while a0,2(0.1) ≈ 6.8575 and a3,1(0.1) ≈ 6.3804. Therefore,
by continuity, there exists r0 ∈ (0.01, 0.1) such that a3,1(r0) = a0,2(r0), which
implies that the eigenvalue λ = λ3,1 = λ0,2 has the multiplicity at least 3.
(According to the numerical computations, r0 ≈ 0.044951 and λ ≈ 40.7064;
see Fig. 1.) Actually, this fact was observed already by Kline [20, Fig. 1]. The
claim for annular sectors can be obtained either by the same method as above
or by the arguments of [6, Section 2.3].
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C1 = 1, C2 = 0 C1 = 1, C2 = 0.5 C1 = 0.5, C2 = 1 C1 = 0, C2 = 1

Figure 1: Eigenfunctions C1ψ3,1 + C2ψ0,2 of (1.1) on Ar0 with r0 ≈ 0.044951
associated with λ = λ3,1 = λ0,2.
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