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Abstract. In this article we show that the coordinates of a period
lattice generator of the n-th tensor power of the Carlitz module are
algebraically independent, if n is prime to the characteristic. The
main part of the paper, however, is devoted to a general construc-
tion for t-motives which we call prolongation, and which gives the
necessary background for our proof of the algebraic independence.
Another ingredient is a theorem which shows hypertranscendence for
the Anderson-Thakur function ω(t), i.e. that ω(t) and all its hyper-
derivatives with respect to t are algebraically independent.
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1 Introduction

Periods of t-modules play a central role in number theory in positive character-
istic, and questions about their algebraic independence are of major interest.
The most prominent period is the Carlitz period

π̃ = λθθ
∏

j≥1

(1− θ1−qj )−1 ∈ K∞(λθ),

where λθ ∈ K̄ is a (q − 1)-th root of −θ. Here, K = Fq(θ) is the rational
function field over the finite field Fq, K̄ its algebraic closure, and K∞ is the
completion of K with respect to the absolute value | · |∞ given by |θ|∞ = q.
The Carlitz period is the function field analog of the complex number 2πi,
and it was already proven by Wade in 1941 that π̃ is transcendental over K
(see [18]).
For proving algebraic independence of periods (and other “numbers” like zeta
values and logarithms) the ABP-criterion (cf. [2, Thm. 3.1.1]) and a conse-
quence of it - which is part of the proof of [16, Thm. 5.2.2] - turned out to
be very useful. To state this consequence, let C∞ denote the completion of
the algebraic closure of K∞, and C∞[[t]] the power series ring over C∞, as well
as T = C∞〈t〉 the subring consisting of those power series which converge on
the closed unit disc |t|∞ ≤ 1. Finally, let E be the subring of entire functions,
i.e. of those power series which converge for all t ∈ C∞ and whose coefficients
lie in a finite extension of K∞. On T we consider the inverse Frobenius twist
σ given by

σ(

∞∑

i=0

xit
i) =

∞∑

i=0

(xi)
1/qti,

which will be applied on matrices entry-wise.

Theorem 1.1. (See proof of [16, Thm. 5.2.2]) 1

Let Φ ∈ Matr×r(K̄[t]) be a matrix with determinant det(Φ) = c(t − θ)s for
some c ∈ K̄× and s ≥ 1. If Ψ ∈ GLr(T) ∩Matr×r(E) is a matrix such that

σ(Ψ) = ΨΦ,

then the transcendence degree of K̄(t)(Ψ) over K̄(t) is the same as the tran-
scendence degree of K̄(Ψ(θ)) over K̄.
Here, K̄(t)(Ψ) denotes the field extension of K̄(t) generated by the entries of
Ψ, and K̄(Ψ(θ)) denotes the field extension of K̄ generated by the entries of
Ψ(θ), the evaluation of the entries of Ψ at t = θ.

1Note that the difference equation in [16] is given as σ(Ψ) = ΦΨ from which our version
is obtained by transposing the matrices. We use this transposed version as it fits better to
our convention on notation (cf. Sect. 2.2).
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Actually, the matrix Φ occurs as a matrix which represents the σ-action on
a dual t-motive M with respect to some K̄[t]-basis of M, and Ψ is the corre-
sponding rigid analytic trivialization.
Using this statement, one can also reprove the transcendence of π̃ by using the
power series

Ω(t) = λ−q
θ

∏

j≥1

(1 −
t

θqj
) ∈ E.

This power series satisfies the difference equation σ(Ω) = Ω·(t−θ) and is indeed
the rigid analytic trivialization of the dual Carlitz motive C. The function Ω is
transcendental over K̄(t) - as it has infinitely many zeros - and

Ω(θ) = Ω|t=θ = λ−q
θ

∏

j≥1

(1 −
θ

θqj
) = −

1

θλθ

∏

j≥1

(1− θ1−qj ) = −
1

π̃
.

Hence by the criterion, π̃ is transcendental over K̄.
Several proofs on algebraic independence (see e.g. [9],[15],[16]) follow the strat-
egy to construct dual t-motives such that for the rigid analytic trivialization Ψ
of this module, the inverse of its specialization Ψ(θ)−1 has the desired values
as entries. Then one shows algebraic independence for the corresponding en-
tries of Ψ or Ψ−1 using different methods (like the Galois theoretical methods
developed in [16]) and deduces algebraic independence of the desired values.

The main theorem in the present paper is about the periods of the n-th tensor
power of the Carlitz module. The n-th tensor power E = C⊗n of the Carlitz
module is a uniformizable t-module of dimension n and rank 1. Hence, the
period lattice for E is an Fq[θ]-submodule of Lie(E)(C∞) ∼= Cn

∞ of rank 1, and
we will show the following.

Theorem 1.2. (see Thm. 8.1)
Let n ∈ N be prime to q, let C⊗n be the n-th tensor power of the Carlitz module
and let 




z1
...
zn




 ∈ C

n
∞

be a generator for the period lattice. Then z1, z2, . . . , zn are algebraically inde-
pendent over K̄.

The first step will be the definition of an appropriate dual t-motive such that
the specialization at t = θ of the inverse of the rigid analytic trivialization
contains such coordinates z1, . . . , zn. As this is a special case of a general
construction of new t-motives from old ones, we present this construction in
detail. Actually, the main part of the paper is devoted to this construction
which we call prolongation, due to its similarities to prolongations in differential
geometry.
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818 Andreas Maurischat

In Section 3, we start by defining the prolongations of (non-dual) t-motives,
since they are often defined over a smaller base field than the dual t-motives,
and we show various properties which transfer from the original t-motive to its
prolongation. We also give the explicit descriptions with matrices for abelian t-
motives. In Section 4, we transfer the definition of prolongation and the explicit
description to dual t-motives, and in Section 5, we transfer it to t-modules, too.

For the definition of prolongations, we make use of hyperdifferential operators
(also called iterative higher derivations) with respect to the variable t. These

are the family of C∞-linear maps (∂
(n)
t )n≥0 given by

∂
(n)
t

(
∞∑

i=i0

xit
i

)

=

∞∑

i=i0

(
i

n

)

xit
i−n

for Laurent series
∑∞

i=i0
xit

i ∈ C∞((t)), where
(
i
n

)
∈ Fp ⊂ Fq is the residue of

the usual binomial coefficient. One should think of the n-th hyperdifferential

operator ∂
(n)
t as 1

n! (d/dt)
n, although in characteristic p, we can’t divide by n!,

if n ≥ p. In characteristic zero, however, ∂
(n)
t would be exactly 1

n!(d/dt)
n.

As a warning to the reader, we would like to note that in the literature usually
the hyperdifferential operators with respect to θ ∈ K are used (e.g. in [5], [6],
[7]), and hence the operation on power series is by hyperdifferentiating the
coefficients. In this article, we will not use those hyperdifferential operators,
but exclusively the hyperdifferentiation by t.

In the proof of the main theorem, the Anderson-Thakur function ω(t) and its
hyperderivatives appear, as ω is related to Ω via

ω =
1

(t− θ)Ω
.

In Section 7, we show a property of ω which is of interest on its own, namely
we show

Theorem 1.3. (see Thm. 7.2) The Anderson-Thakur function ω(t) is hyper-

transcendental over K̄(t), i.e. the set {∂
(n)
t (ω) | n ≥ 0} is algebraically inde-

pendent over K̄(t).

This will be deduced from properties of specializations of ω and its hyperderiva-
tives at roots of unity which were investigated in [4] and [14]. This statement
has also been given in [17] whose proof uses different methods.
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2 Generalities

2.1 Base rings and operators

Let Fq be the finite field with q elements, and K a finite extension of the
rational function field Fq(θ) in the variable θ. We choose an extension to K
of the absolute value | · |∞ which is given on Fq(θ) by |θ|∞ = q. Furthermore,
K∞ ⊇ Fq((

1
θ )) denotes the completion of K at this infinite place, and C∞ the

completion of an algebraic closure of K∞. Furthermore, let K̄ be the algebraic
closure of K inside C∞.
All the commutative rings occuring will be subrings of the field of Laurent
series C∞((t)), like the polynomial rings K[t] and K̄[t], the power series ring
C∞[[t]] and the Tate algebra T = C∞〈t〉, i.e. the algebra of series which are
convergent for |t|∞ ≤ 1.
On C∞((t)) we have several operations which will induce operations on these
subrings.
First of all, there is the twisting τ : C∞((t)) → C∞((t)) given by

f τ :=

∞∑

i=i0

(xi)
qti

for f =
∑∞

i=i0
xit

i ∈ C∞((t)), and the inverse twisting σ : C∞((t)) → C∞((t))
given by

fσ :=

∞∑

i=i0

(xi)
1/qti

for f =
∑∞

i=i0
xit

i ∈ C∞((t)). While the twisting restricts to endomorphisms
on all subrings of C∞((t)) which occur in this paper, the inverse twisting is only
defined for perfect coefficient fields, in particular not on K[t], but on K̄[t].
On the Laurent series ring C∞((t)) we furthermore have an action of the hy-
perdifferential operators with respect to t, i.e. the sequence of C∞-linear maps

(∂
(n)
t )n≥0 given by

∂
(n)
t

(
∞∑

i=i0

xit
i

)

=

∞∑

i=i0

(
i

n

)

xit
i−n.

The image ∂
(n)
t (f) of some f ∈ C∞((t)) is called the n-th hyperderivative of f .

The hyperdifferential operators satisfy ∂
(0)
t (f) = f for all f ∈ C∞((t)),

∂
(n)
t (fg) =

n∑

i=0

∂
(i)
t (f)∂

(n−i)
t (g) for all f, g ∈ C∞((t)), n ∈ N

as well as

∂
(n)
t

(

∂
(m)
t (f)

)

=

(
n+m

n

)

∂
(n+m)
t (f) for all f ∈ C∞((t)), n,m ∈ N.
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It is not hard to verify that the subrings C∞[[t]], T, L[t], and L(t) (for any
subfield L of C∞) are stable under all the hyperdifferential operators. It is
also obvious that the hyperdifferential operators commute with the twistings τ
and σ.
Another way to obtain these hyperdifferential operators is to consider the C∞-
algebra map D : C∞[[t]] → C∞[[t]][[X ]]

f(t) 7→ f(t+X) =
∑

n≥0

fn(t)X
n

given by replacing the variable t in the power series expansion for f by t+X ,
expanding each (t+X)n using the binomial theorem, and rearranging to obtain
a power series in X . Then, one has

∂
(n)
t (f) = fn.

Since, ∂
(0)
t (f) = f for all f ∈ C∞[[t]], the homomorphism D can be extended to

a C∞-algebra map D : C∞((t)) → C∞((t))[[X ]], and we still have the identity

D(f) =
∑

n≥0

∂
(n)
t (f)Xn.

For more background on hyperdifferential operators (iterative higher deriva-
tions) see for example [13, §27]. 2

When we apply the twisting operators τ and σ as well as the hyperdifferential
operators to matrices it is meant that we apply them coefficient-wise.

We will frequently use the following family (in n ≥ 0) of homomorphisms of
C∞-algebras ρ[n] : C∞((t)) → Mat(n+1)×(n+1)(C∞((t))) defined by

ρ[n](f) :=









f ∂
(1)
t (f) · · · ∂

(n)
t (f)

0 f
. . .

...
...

. . .
. . . ∂

(1)
t (f)

0 · · · 0 f









, (1)

which already appears in [14]. This map arises from the homomorphism D by
evaluation of X at the (n+ 1)× (n+ 1) nilpotent matrix

N =












0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 · · · · · · · · · 0












.

2As already mentioned in the introduction, these hyperdifferential operators are not the
one commonly used for constructing t-modules.
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We will also apply ρ[n] to square matrices Θ ∈ Matr×r(C∞((t))). In that case,
ρ[n](Θ) is defined to be the block square matrix

ρ[n](Θ) :=












Θ ∂
(1)
t (Θ) ∂

(2)
t (Θ) · · · ∂

(n)
t (Θ)

0 Θ ∂
(1)
t (Θ)

. . .
...

...
. . .

. . .
. . . ∂

(2)
t (Θ)

...
. . . Θ ∂

(1)
t (Θ)

0 · · · · · · 0 Θ












(2)

in the ring of r(n + 1) × r(n + 1)-matrices. As mentioned before ∂
(1)
t (Θ) etc.

is the matrix where we apply the hyperdifferential operators entry-wise. It is
not hard to check that ρ[n] : Matr×r(C∞((t))) → Matr(n+1)×r(n+1)(C∞((t))) is
a ring homomorphism, too.
As the hyperdifferential operators commute with twisting, ρ[n] also commutes
with twisting.

2.2 Convention on notation

In the following sections, we will deal with t-modules, t-motives and dual t-
motives. We use the definitions of these terms as given in the survey article [8].
For the convenience of the reader, we repeat these definitions below, but refer
the reader to ibid. for more details. For recognizing the objects at first glance,
t-modules will be denoted by italic letters, like E, t-motives with serif-less
letters, like M, and dual t-motives in Fraktur font, like M.
Bases of finitely generated free modules (over some ring) will always be written
as row vectors e = (e1, . . . , er) such that one obtains the familiar identification
of the module with a module of column vectors by writing an arbitrary element
x =

∑r
i=1 xiei as

e ·






x1

...
xr




 .

A t-module (E,Φ) (or shortly, E) consists of an algebraic group E over K
which is isomorphic to Gd

a for some d > 0, and an Fq-algebra homomorphism

Φ : Fq[t] → Endgrp,Fq
(E) ∼= Matd×d(K{τ}),

with the additional property that Φ(t) − θ · idE induces a nilpotent endomor-
phism on Lie(E). In other terms, if one writes

Φ(t) = A0 +A1τ + . . .+ Asτ
s ∈ Matd×d(K{τ})

with respect to some isomorphism Endgrp,Fq
(E) ∼= Matd×d(K{τ}), then the

matrix A0 − θ · 1d ∈ Matd×d(K) is nilpotent.
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822 Andreas Maurischat

A t-motive M is a left K[t]{τ}-module which is free and finitely generated as
K{τ}-module, and such that

(t− θ)ℓ(M) ⊆ K[t] · τ(M)

for some ℓ ∈ N. A t-motive M is called abelian if it is also finitely generated as
K[t]-module in which case it is even free as K[t]-module. An abelian t-motive
M is called pure, if there exists a K[[1/t]]-lattice H inside M⊗K[t]K((1/t)) and
u, v ≥ 1 such that

tuH = K[[1/t]] · τvH.

The fraction w = u
v is called the weight of M.

Given an abelian t-motive M with K[t]-basis e = (e1, . . . , er), then there is
a matrix Θ ∈ Matr×r(K[t]) representing the τ -action on M with respect to
{e1, . . . , er}, i.e.

τ(ej) =

r∑

h=1

Θhjeh

for all j = 1, . . . , r. This will be written in matrix notation as

τ(e) = e ·Θ.

For an arbitrary element x =
∑r

i=1 xiei one therefore has

τ(x) = e ·Θ ·






x1

...
xr






τ

.

Writing the basis as a row vector instead of a column vector, as for example
in [16], causes the difference equations for the rigid analytic trivializations to
have a different form which we will review now. However, the usual form is
obtained by taking transposes of the matrices given here:
Given an abelian t-motive M with K[t]-basis e = (e1, . . . , er) and Θ ∈
Matr×r(K[t]) such that

τ(e) = e ·Θ,

a rigid analytic trivialization (if it exists) is a matrix Υ ∈ GLr(T) such
that τ(e ·Υ) = e ·Υ, i.e. such that

Θ ·Υτ = Υ.

If Υ exists, M is called rigid analytically trivial.
In [1], Anderson associated to a t-module E a t-motive E := Homgrp,Fq

(E,Ga)
with t-action given by composition with Φt ∈ Endgrp,Fq

(E) and left-K{τ}-
action given by composition with elements in K{τ} ∼= Endgrp,Fq

(Ga). A
t-module is then called abelian if the associated t-motive is abelian, and
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Anderson proved (cf. [1, Thm. 1]) that this correspondence induces an anti-
equivalence of categories between abelian t-modules and abelian t-motives.
However, the proof even shows that it induces an anti-equivalence of categories
between t-modules and t-motives.

A dual t-motive M is a left K̄[t]{σ}-module that is free and finitely generated
as K̄{σ}-module, and such that

(t− θ)ℓ(M) ⊆ σ(M)

for some ℓ ∈ N. A dual t-motive is called t-finite if it is also finitely generated
as K̄[t]-module in which case it is even free as K̄[t]-module.
For a t-finite dual t-motive M with K[t]-basis e = (e1, . . . , er) and Θ̃ ∈
Matr×r(K[t]) such that

σ(e) = e · Θ̃

a rigid analytic trivialization (if it exists) is a matrix Ψ ∈ GLr(T) such
that σ(e ·Ψ−1) = e ·Ψ−1, i.e. such that

Ψ · Θ̃ = Ψσ.

If Ψ exists, M is called rigid analytically trivial.
Similar, as for t-motives, Anderson associated to a t-module E over K̄ a
dual t-motive E := Homgrp,Fq

(Ga, E) with t-action given by composition with
Φt ∈ Endgrp,Fq

(E) and left-K{σ}-action given by composition with elements
in K{σ} ∼= K{τ}op ∼= Endgrp,Fq

(Ga)
op. Anderson showed (cf. [11]) that this

induces an equivalence of categories between t-modules over K̄ and t-motives.

3 Prolongations of t-motives

In this section, we introduce a construction of new t-motives from old ones
which we call prolongation. The construction is taken from [12] where pro-
longations of difference modules are described. We also show (see Theorems
3.4 and 3.6) that the prolongations inherit the properties of abelianness, rigid
analytic triviality as well as pureness from the original t-motive.

Definition 3.1. For a K[t]{τ}-moduleM and k ≥ 0, the k-th prolongation

of M is the K[t]-module ρkM which is generated by symbols Dim, for i =
0, . . . , k, m ∈ M, subject to the relations

1. Di(m1 +m2) = Dim1 +Dim2,

2. Di(a ·m) =
∑

i1+i2=i ∂
(i1)
t (a) ·Di2m,

for all m,m1,m2 ∈ M, a ∈ K[t] and i = 0, . . . , k. The semi-linear τ -action on
ρkM is given by

τ(a ·Dim) = aτ ·Di(τ(m)).

for a ∈ K[t], m ∈ M.
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824 Andreas Maurischat

One should think of Dim as being the formal i-th hyperderivative of the ele-
ment m.

Remark 3.2. It is not difficult to verify that the definition of the τ -action is
well-defined. Hence, the k-th prolongation ρkM is again a K[t]{τ}-module.
Furthermore, ρ0M is naturally isomorphic to M (via D0m 7→ m), and for 0 ≤
l < k the l-th prolongation ρlM naturally is a K[t]{τ}-submodule of ρkM. For
0 ≤ l < k, we even obtain a short exact sequence of K[t]{τ}-modules

0 −→ ρlM −→ ρkM
pr
−→ ρk−l−1M → 0

where pr(Dim) := Di−l−1m for i > l and allm ∈ M, as well as pr(Dim) := 0 for
i ≤ l and all m ∈ M. In particular, taking l = k−1 and using the identification
ρ0M ∼= M, we obtain the short exact sequence

0 −→ ρk−1M −→ ρkM −→ M → 0. (*)

Inductively, we see that ρkM is a (k + 1)-fold extension of M with itself.
From this description as a (k + 1)-fold extension of M with itself, we will be
able to transfer several additional properties of M to the prolongation ρkM (see
Theorem 3.4 and Theorem 3.6).

Lemma 3.3. As a K-vector space, the k-th prolongation ρkM is generated by
the symbols Dim, for i = 0, . . . , k, m ∈ M, subject to the relations

Di(x1m1 + x2m2) = x1 ·Dim1 + x2 ·Dim2

for all m1,m2 ∈ M, x1, x2 ∈ K and i = 0, . . . , k. The actions of t and τ are
described by

t ·Dim = Di(tm)−Di−1m

τ(Dim) = Di(τ(m))

for m ∈ M, i = 0, . . . , k where we set D−1m := 0.

Proof. Applying relation (2) above to a = t, leads to

Di(tm) = t ·Dim+ 1 ·Di−1m

for all m ∈ M. Hence, t ·Dim = Di(tm)−Di−1m.
This shows that K[t]-multiples of the Dim are in the K-span of all Di(m

′),
and therefore ρkM is generated by all Dim as a K-vector space.
Restricting relation (2) to a ∈ K, we obtain Di(a ·m) = a ·Dim for all a ∈ K
and m ∈ M. Hence, the relations above reduce to

Di(x1m1 + x2m2) = x1 ·Dim1 + x2 ·Dim2

for all m1,m2 ∈ M, x1, x2 ∈ K and i = 0, . . . , k.
The given actions are clear from the equation above and the definition of ρkM.
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Prolongations and Algebraic Independence 825

Theorem 3.4. Let M be a t-motive. Then the k-th prolongation ρkM is a
t-motive for all k ≥ 0.
If M is abelian, then so is ρkM.

Proof. By Remark 3.2, we have an exact sequence of K[t]{τ}-modules

0 −→ ρk−1M −→ ρkM −→ M → 0

using the identification ρ0M ∼= M (see Equation (*)). Hence, it follows by
induction on k that ρkM is free and finitely generated as K{τ}-module if M is.
Furthermore, if ℓ ∈ N is such that

(t− θ)ℓ(M) ⊆ K[t] · τ(M),

we obtain
(t− θ)ℓ(ρkM) ⊆ K[t] · τ(ρkM) + ρk−1M,

and hence, inductively,

(t− θ)ℓ·(k+1)(ρkM) ⊆ K[t] · τ(ρkM).

Therefore, ρkM is a t-motive.
If M is abelian, i.e. free and finitely generated as a K[t]-module, then ρkM is
free and finitely generated as a K[t]-module, since it is a (k+1)-fold extension
of copies of M.

Lemma 3.5. Let M be a t-motive, and b = (b1, . . . , bd) be a K{τ}-basis of M.
Then a K{τ}-basis of ρkM is given by

Db = (D0b1, . . . , D0bd, D1b1, . . . , D1bd, . . . , . . . , Dkb1, . . . , Dkbd).

Proof. From the short exact sequence (*) we see that a K{τ}-basis of ρkM
is given by the join of a K{τ}-basis of ρk−1M and the preimage of a basis
of M. As such a preimage is given by (Dkb1, . . . , Dkbd) the proof follows by
induction.

We are now going to explicitly describe the t-motive ρkM as K[t]-module with
τ -action in the abelian case, i.e. we give a basis as K[t]-module as well as a
matrix representation of the τ -action with respect to this K[t]-basis.

Assume that M is an abelian t-motive, and let e = (e1, . . . , er)
be a K[t]-basis of M. As in the previous lemma, from the
short exact sequence (*) in Remark 3.2 we obtain that De =
(D0e1, . . . , D0er, D1e1, . . . , D1er, . . . , . . . , Dke1, . . . , Dker) is a K[t]-basis of
ρkM.
Let Θ ∈ Matr×r(K[t]) be the matrix representing the τ -action on M with
respect to e = (e1, . . . , er), i.e.

τ(ej) =

r∑

h=1

Θhjeh
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for all j = 1, . . . , r, or in matrix notation

τ(e) = e ·Θ.

Then τ acts on Diej ∈ ρkM as

τ(Diej) = Di(τ(ej)) = Di(

r∑

h=1

Θhjeh) =

r∑

h=1

∑

i1+i2=i

∂
(i1)
t (Θhj) ·Di2eh.

In block matrix notation this reads as

τ(De) = De ·












Θ ∂
(1)
t (Θ) ∂

(2)
t (Θ) · · · ∂

(k)
t (Θ)

0 Θ ∂
(1)
t (Θ)

. . .
...

...
. . .

. . .
. . . ∂

(2)
t (Θ)

...
. . . Θ ∂

(1)
t (Θ)

0 · · · · · · 0 Θ












= De · ρ[k](Θ),

where we use the homomorphism ρ[k] defined in Equation (2).

Theorem 3.6. Let M be an abelian t-motive, k ≥ 0 and ρkM the k-th prolon-
gation of M.

1. If M is rigid analytically trivial, then ρkM is rigid analytically trivial.

2. If M is pure of weight w, then ρkM is pure of weight w.

Proof. Let M be given with respect to a basis e = (e1, . . . , er) by the τ -action

τ(e) = e ·Θ

for some Θ ∈ Matr×r(K[t]). Assume that M is rigid analytically trivial, and
that Υ ∈ GLr(T) is a rigid analytic trivialization of M, i.e. Υ satisfies the
difference equation

Υ = ΘΥτ .

Since twisting commutes with ρ[k] and ρ[k] is a ring homomorphism, we have

ρ[k](Θ)
(
ρ[k](Υ)

)τ
= ρ[k](ΘΥτ ) = ρ[k](Υ).

Since the τ -action on ρkM with respect to De from above is given by τ(De) =
De · ρ[k](Θ), this just means that ρ[k](Υ) ∈ GLr(k+1)(T) is a rigid analytic
trivialization of ρkM.
Assume that M is pure of weight w, and let H be a K[[1/t]]-lattice inside
M⊗K[t] K((1/t)) such that

tuH = K[[1/t]] · τvH

for appropriate u, v ≥ 1.
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After choosing a K[[1/t]]-basis b = (b1, . . . , br) of H , we have

τv(b) = b · tuA

for some A ∈ GLr(K[[1/t]]). By the explicit description of the τ -action on ρkM,
we therefore get

τv(Db) = Db · ρ[k](t
uA)

= Db · tu












A t−u∂
(1)
t (tuA) t−u∂

(2)
t (tuA) · · · t−u∂

(k)
t (tuA)

0 A t−u∂
(1)
t (tuA)

. . .
...

...
. . .

. . .
. . . t−u∂

(2)
t (tuA)

...
. . . A t−u∂

(1)
t (tuA)

0 · · · · · · 0 A












.

For Laurent series f =
∑∞

j=j0
xjt

−j in 1/t we have

∂
(n)
t (f) =

∞∑

j=j0

(
−j

n

)

xjt
−j−n.

In particular, for any power series f =
∑∞

j=0 xjt
−j ∈ K[[1/t]] and u ∈ Z,

t−u · ∂
(n)
t (tuf) = t−u · ∂

(n)
t





∞∑

j=0

xjt
−j+u



 = t−u ·

∞∑

j=0

(
−j + u

n

)

xjt
−j+u−n

=

∞∑

j=0

(
−j + u

n

)

xjt
−j−n ∈ t−nK[[1/t]] ⊆ K[[1/t]].

Hence, the block upper triangular matrix above has entries in K[[1/t]], and is
moreover invertible over K[[1/t]], as A is invertible. Hence, by choosing ρkH to
be the K[[1/t]]-lattice inside ρkM⊗K[t] K((1/t)) generated by Db we obtain

K[[1/t]] · τv(ρkH) = tuρkH.

Hence, ρkM is pure of weight u
v = w.

Remark 3.7. Starting with a Drinfeld module, the associated t-motive is
abelian, pure and rigid analytically trivial. Hence, by taking its prolonga-
tions we obtain new abelian, pure and rigid analytically trivial t-motives of
arbitrary dimension.

4 Prolongations of dual t-motives

Since we will use the dual t-motives in the proof in Section 8, we review the
construction and explicit descriptions in this case.
For the definition of a prolongation of a dual t-motive M we just transfer the
definition for the t-motives above.
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Definition 4.1. For a dual t-motive M over K̄[t] and k ≥ 0, the k-th pro-

longation of M is the K̄[t]-module ρkM which is generated by symbols Dim,
for i = 0, . . . , k, m ∈ M, subject to the relations

1. Di(m1 +m2) = Dim1 +Dim2,

2. Di(a ·m) =
∑

i1+i2=i ∂
(i1)
t (a) ·Di2m,

for all m,m1,m2 ∈ M, a ∈ K̄[t] and i = 0, . . . , k. The semi-linear σ-action on
ρkM is given by

σ(a ·Dim) = aσ ·Di(σ(m)).

for a ∈ K̄[t], m ∈ M.

We obtain similar explicit descriptions as for abelian t-motives.

Proposition 4.2. Let M be a t-finite dual t-motive with K̄[t]-basis e =
(e1, . . . , er) and Θ̃ ∈ Matr×r(K̄[t]) the matrix such that

σ(e) = e · Θ̃.

Then De = (D0e1, . . . , D0er, D1e1, . . . , D1er, . . . , . . . , Dke1, . . . , Dker) is a
K̄[t]-basis of ρkM and

σ(De) = De · ρ[k](Θ̃).

If M is rigid analytically trivial with rigid analytic trivialization Ψ, i.e. Ψσ =
Ψ · Θ̃, then ρkM is rigid analytically trivial and ρ[k](Ψ) is a rigid analytic
trivialization with respect to De.

Proof. The proof is along the same lines as for t-motives.

5 Prolongations of t-modules

Definition 5.1. Let (E,Φ) be a t-module, and E the corresponding t-motive.
Then we define the k-th prolongation (ρkE, ρkΦ) of (E,Φ) to be the t-module
associated to ρkE.

Theorem 5.2. Let (E,Φ) be a t-module of dimension d, and

Φt = A0 +A1τ + . . .+Asτ
s ∈ Matd×d(K{τ})

with repect to some isomorphism E ∼= Gd
a.

Then the k-th prolongation (ρkE, ρkΦ) of (E,Φ) is of dimension d(k + 1) and
(ρkΦ)t is given in block diagonal form as

(ρkΦ)t =












A0 0 · · · · · · 0

−1d
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1d A0












+ diag(A1)τ + . . .+ diag(As)τ
s,
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where 1d is the (d×d)-identity matrix, and diag(Ai) is the block diagonal matrix
with diagonal entries all equal to Ai for i = 1, . . . , s.

Proof. Let e = (e1, . . . , ed) be the basis of E corresponding to the isomorphism
E ∼= Gd

a, and hence the t-action is given by

t(e) = e · Φt.

Then a K{τ}-basis for the t-motive E is given by the dual basis e
∨ =

(e∨1 , . . . , e
∨
d ) and the t-action on E is given by

t(e∨) = e
∨ · Φtr

t .

By Lemma 3.5, a K{τ}-basis of ρkE is given by

De
∨ = (D0e

∨
1 , . . . , D0e

∨
d , D1e

∨
1 , . . . , D1e

∨
d , . . . , . . . , Dke

∨
1 , . . . , Dke

∨
d ),

and we have
t(Die

∨
j ) = Di(te

∨
j )−Di−1e

∨
j

for i = 0, . . . , k and j = 1, . . . , d, where we set D−1e
∨
j = 0. In block matrix

notation this is just

t(De
∨) = De

∨ ·












Φtr
t −1d 0 · · · 0

0 Φtr
t

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . −1d

0 · · · · · · 0 Φtr
t












.

This finally shows that ρkE is isomorphic to G
d(k+1)
a with basis De, the dual

basis of De
∨, and the t-action is given by

t(De) = De ·












Φt 0 · · · · · · 0

−1d Φt
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1d Φt












.

Hence,

(ρkΦ)t =












A0 0 · · · · · · 0

−1d
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1d A0












+ diag(A1)τ + . . .+ diag(As)τ
s.
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6 Prolongations of tensor powers of the Carlitz motive

In this section, we apply the constructions of prolongations to the tensor powers
of the Carlitz module, the Carlitz motive, as well as the dual Carlitz motive.
Let us first recall the (dual) Carlitz motive and its tensor powers. The Carlitz
module (C, φ) is given by C ∼= Ga and

φ : A → End(Ga,K) = K{τ}, f 7→ φf

given by φt = θ + τ . The Carlitz motive C = HomK(C,Ga) ∼= K{τ} is also
free of rank 1 as K[t]-module, and with respect to the basis element e = 1 ∈
K{τ} ∼= C the τ -action is given by τ(e) = e · (t− θ).
The n-th tensor power of the Carlitz motive C is the K[t]-module

C
⊗n = C⊗K[t] . . .⊗K[t] C

︸ ︷︷ ︸

n−times

with diagonal τ -action. I.e. on the canonical basis element e⊗n, we have

τ(e⊗n) = e⊗n · (t− θ)n.

Let ω ∈ T be the Anderson-Thakur function. Then a rigid analytic trivializa-
tion for C is given by 1

ω , since ω satisfies the difference equation ωτ = (t− θ)ω.

Hence, a rigid analytic trivialization for C⊗n is given by ω−n.

The dual Carlitz motive C is the K̄[t]-module of rank 1 with σ-action given by

σ(e) = e · (t− θ),

with respect to some basis element e ∈ C, and its n-th tensor power C⊗n has
σ-action given by

σ(e⊗n) = e⊗n · (t− θ)n.

The entire function Ω(t) := 1
(t−θ)ω(t) is a rigid analytic trivialization of the

Carlitz dual t-motive C, since

Ωσ =

(
1

ωτ

)σ

=
1

ω
= (t− θ)Ω.

Therefore, Ω(t)n is a rigid analytic trivialization for the n-th tensor power C⊗n.

Proposition 6.1. The k-th prolongation of the motive C
⊗n is the K[t]-module

ρk(C
⊗n) := K[t]k+1 with τ-action given by

τ








f0
f1
...
fk








=












t− θ 1 0 · · · 0

0 t− θ
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 · · · · · · 0 t− θ












n

·








f τ
0

f τ
1
...
f τ
k








.
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Its rigid analytic trivialization is given by

Υ = ρ[k](ω
−n) =









ω ∂
(1)
t (ω) · · · ∂

(k)
t (ω)

0 ω
. . .

...
...

. . .
. . . ∂

(1)
t (ω)

0 · · · 0 ω









−n

.

Proof. This follows from the general description in Section 3. One just has to
recognize that ρ[k](t− θ) is just the matrix












t− θ 1 0 · · · 0

0 t− θ
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 · · · · · · 0 t− θ












.

Proposition 6.2. The k-th prolongation of the dual motive C⊗n is the K̄[t]-
module ρk(C

⊗n) := K̄[t]k+1 with σ-action given by

σ








f0
f1
...
fk








=












t− θ 1 0 · · · 0

0 t− θ
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 1
0 · · · · · · 0 t− θ












n

·








fσ
0

fσ
1
...
fσ
k








.

Its rigid analytic trivialization is given by

Ψ = ρ[k](Ω
n) =












Ωn ∂
(1)
t (Ωn) ∂

(2)
t (Ωn) · · · ∂

(k)
t (Ωn)

0 Ωn ∂
(1)
t (Ωn)

. . .
...

...
. . .

. . .
. . . ∂

(2)
t (Ωn)

...
. . . Ωn ∂

(1)
t (Ωn)

0 · · · · · · 0 Ωn












.

For the description of the corresponding t-modules we restrict to the prolonga-
tions of the Carlitz module, and let the descriptions for the tensor powers as
an exercise for the reader.

Proposition 6.3. The k-th prolongation (ρkC, ρkφ) of the Carlitz module is
the t-module of dimension k + 1 with

ρkφ : Fq[t] → Mat(k+1)×(k+1)(K){τ}
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given by

(ρkφ)t =












θ 0 · · · · · · 0

−1 θ
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 θ












+ 1k+1 · τ.

Proof. This follows from the general description in Section 5.

7 Hypertranscendence of the Anderson-Thakur function

In this section, we show that the Anderson-Thakur function ω is hypertranscen-

dental, i.e. that ω and all its hyperderivatives ∂
(n)
t (ω) (n > 0) are algebraically

independent over the field K̄(t). This fact is also given by F. Pellarin in [17,
Prop. 27] by different methods.
We first recall a fact about the evaluations of the Anderson-Thakur function ω
and its hyperderivatives at roots of unity given in [4] and [14]. The evaluation

of ∂
(n)
t (ω) at t = ζ will be shortly denoted by ∂

(n)
t (ω) (ζ).

Moreover, in this section, K will denote the field Fq(θ).

Theorem 7.1. Let ζ ∈ F̄q, let p ∈ Fq[t] be the minimal polynomial of ζ, and
let d = deg(p) be its degree.
For n ≥ 0, the Carlitz pn+1-torsion extension of K(ζ) is generated by

∂
(n)
t (ω) (ζ), i.e.

K(ζ)(C[pn+1]) = K(ζ, ∂
(n)
t (ω) (ζ)).

The minimal polynomial of ω(ζ) over K(ζ) is given by

Xqd−1 − β(ζ) ∈ K(ζ)[X ],

where β(t) =
∏d−1

h=0(t− θq
h

) ∈ K[t] ⊆ T.

For n ≥ 1, the minimal polynomial of ∂
(n)
t (ω) (ζ) over K(ζ)(C[pn]) is given by

Xqd − β(ζ)X − ξn(ζ) ∈ K(ζ)(C[pn])[X ],

where

ξn(t) =

n∑

l=1

∂
(l)
t (β) · ∂

(n−l)
t (ω) ∈ T.

Proof. The first part is shown in [4, Thm. 3.3] where also the minimal poly-
nomials occur. The minimality of these polynomials, however, is shown in [14,
Thm. 3.8 & Rem. 3.9].

Theorem 7.2. The Anderson-Thakur function ω(t) is hypertranscendental

over K̄(t), i.e. the set {∂
(n)
t (ω) | n ≥ 0} is algebraically independent over K̄(t).
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Proof. Since K̄(t) is algebraic over K(t), it suffices to show algebraic in-
dependence over K(t). Now, assume for the contrary, that ω and its hy-
perderivatives satisfy some algebraic relation. Choose n minimal such that

ω, ∂
(1)
t (ω) , . . . , ∂

(n)
t (ω) are algebraically dependent, and choose a polynomial

0 6= F (X0, . . . , Xn) ∈ K(t)[X0, . . . , Xn] such that F (ω, ∂
(1)
t (ω) , . . . , ∂

(n)
t (ω)) =

0. Write F =
∑k

j=0 fjX
j
n with fj ∈ K(t)[X0, . . . , Xn−1] and fk 6= 0. After

rescaling we can even assume that the coefficients of the fj are polynomials in
t, i.e. fj ∈ K[t][X0, . . . , Xn−1].
As we have chosen n to be minimal, and as fk 6= 0, we also have

fk(ω, ∂
(1)
t (ω) , . . . , ∂

(n−1)
t (ω)) 6= 0 ∈ T.

Since every nonzero element of T has only finitely many zeros in the closed

unit disc, for almost all ζ ∈ F̄×
q we have: fk(ω, ∂

(1)
t (ω) , . . . , ∂

(n−1)
t (ω))|t=ζ 6=

0 ∈ C∞. Hence, for such ζ, ∂
(n)
t (ω) (ζ) is a root of the nonzero polynomial

k∑

j=0

fj(ω, ∂
(1)
t (ω) , . . . , ∂

(n−1)
t (ω))|t=ζX

j
n ∈ C∞[Xn]

of degree k.
By construction, the coefficients lie in K(C[pn])(ζ) where p ∈ Fq[t] is the
minimal polynomial of ζ over Fq. By the theorem above, the minimal polyno-

mial of ∂
(n)
t (ω) (ζ) over K(C[pn])(ζ) has degree qdeg(p) = #Fq(ζ) (resp. degree

qdeg(p) − 1 if n = 0).
Therefore, if we choose ζ such that #Fq(ζ)−1 > k, this leads to a contradiction.

8 Algebraic independence of periods

In this section, we prove our main theorem on the algebraic independence of
the periods.

Theorem 8.1. Let n ∈ N be prime to q, let C⊗n be the n-th tensor power of
the Carlitz module and let 




z1
...
zn




 ∈ C

n
∞

be a generator for the period lattice. Then z1, z2, . . . , zn are algebraically inde-
pendent over K̄.

Remark 8.2. As already noted in [3], if n is a power of the characteristic
p = char(Fq), then all but the last coordinate are 0. We will make a precise
statement in the case that p divides n at the end of this section.
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For proving the theorem, we first give a formula for these coordinates using
evaluations of hyperderivatives.

Lemma 8.3. Let the generator above be chosen such that zn = π̃n. Then the
coordinates z1, z2, . . . , zn fulfill the equalities

zi = (−1)n∂
(n−i)
t

(

(t− θ)nω(t)n
)

|t=θ,

i.e. zi is the (n− i)-th hyperderivative of the function (θ − t)nω(t)n evaluated
at t = θ.

Proof. As ω has a pole of order 1 at t = θ, ωn has a pole of order n. Building
on work of Anderson and Thakur [3, §2.5], we write ωn as a Laurent series in
(t− θ),

ωn =

∞∑

j=−n

cj(t− θ)j ∈ C∞((t− θ)).

Then the coordinates are explicitly given by

zi = (−1)nc−i

for i = 1, . . . , n (see [3, Cor. 2.5.8], and be aware that π̄ ibid. equals −π̃).
On the other hand, for any 0 ≤ k ≤ n:

∂
(k)
t

(

(t− θ)nω(t)n
)

= ∂
(k)
t





∞∑

j=−n

cj(t− θ)j+n





=

∞∑

j=k−n

cj

(
j + n

k

)

(t− θ)j+n−k.

Hence for i = 1, . . . , n:

(−1)n∂
(n−i)
t

(

(t− θ)nω(t)n
)

|t=θ = (−1)n
∞∑

j=−i

cj

(
j + n

n− i

)

(t− θ)j+i|t=θ

= (−1)nc−i = zi.

A second ingredient is a relation between hyperderivatives of functions and
hyperderivatives of powers of that function.

Lemma 8.4. Let 0 6= f ∈ C∞((t)), k ≥ 0 and let E be the field extension of K(t)

generated by the entries of ρ[k](f), i.e. generated by f, ∂
(1)
t (f) , . . . , ∂

(k)
t (f). For

n ∈ N prime to q, let F be the field extension of K(t) generated by the entries

of ρ[k](f
n), i.e. generated by fn, ∂

(1)
t (fn) , . . . , ∂

(k)
t (fn). Then E is generated

over F by f , and in particular, E is finite algebraic over F .
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Proof. We only have to show that ∂
(j)
t (f) ∈ F (f) for 1 ≤ j ≤ k. Let p =

char(Fq), and s ∈ N such that ps > k. Then for all j not divisible by ps, one

has ∂
(j)
t

(
fps)

= 0, since

D(fps

) = D(f)p
s

is a power series in Xps

. In particular, we have ∂
(j)
t

(
fps)

= 0 for all 1 ≤ j ≤ k,

and therefore ρ[k](f
ps

) is the scalar matrix with diagonal entries equal to fps

.
As n was prime to q, and hence prime to p, there are a, b ∈ Z such that
aps + bn = 1. Therefore,

ρ[k](f) = ρ[k](f
aps+bn) = ρ[k](f

ps

)a · ρ[k](f
n)b = (fps

)a · ρ[k](f
n)b

has entries in F (f).

Proof of Thm. 8.1. By Prop. 6.2, a rigid analytic trivialization of ρn−1(C
⊗n),

the (n− 1)-th prolongation of C⊗n, is given by the matrix

ρ[n−1](Ω
n) =












Ωn ∂
(1)
t (Ωn) ∂

(2)
t (Ωn) · · · ∂

(n−1)
t (Ωn)

0 Ωn ∂
(1)
t (Ωn)

. . .
...

...
. . .

. . .
. . . ∂

(2)
t (Ωn)

...
. . . Ωn ∂

(1)
t (Ωn)

0 · · · · · · 0 Ωn












.

Let F be the field generated by the entries of ρ[n−1](Ω
n) over K̄(t). As,

ρ[n−1](Ω
n) = ρ[n−1]

(
(t− θ)−nω(t)−n

)
=
(
ρ[n−1](t− θ)

)−n
·
(
ρ[n−1](ω

n)
)−1

and ρ[n−1](t − θ) ∈ GLn(K(t)), the field F is also generated over K̄(t) by
the entries of ρ[n−1](ω

n), and in particular is a subfield of finite index of the
field generated by the entries of ρ[n−1](ω), as shown in Lemma 8.4. Since ω
is hypertranscendental (see Theorem 7.2), the latter has transcendence degree
over K̄(t) equal to n. Hence, the field F has transcendence degree n over K̄(t).
Let L be the field extension of K̄ generated by the entries of ρ[n−1](Ω

n)|t=θ.
Then by the proof of [16, Thm. 5.2.2] (see Thm. 1.1), the transcendence degree
of L/K̄ is the same as the transcendence degree of F/K̄(t), i.e. equals n. On
the other hand, L is also generated as a field by the entries of the inverse of
ρ[n−1](Ω

n)|t=θ, and using Lemma 8.3, we get
(
ρ[n−1](Ω

n)|t=θ

)−1
=

(
ρ[n−1](Ω

n)−1
)
|t=θ = ρ[n−1](Ω

−n)|t=θ

= ρ[n−1]((t− θ)nωn)|t=θ

= (−1)n ·












zn zn−1 zn−2 · · · z1

0 zn zn−1
. . .

...
...

. . .
. . .

. . . zn−2

...
. . . zn zn−1

0 · · · · · · 0 zn












.
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Hence, z1, . . . , zn are algebraically independent over K̄.

In the case that the characteristic p divides n, we can also make a precise
statement on the algebraic independence.

Corollary 8.5. Let n ∈ N be arbitrary, let C⊗n be the n-th tensor power of
the Carlitz module and let 




z1
...
zn




 ∈ C

n
∞

be the generator for the period lattice with zn = π̃n. If ps is the exact power of p
dividing n, then zi 6= 0 precisely, when ps divides i, and all nonzero coordinates
are algebraically independent over K̄.

Proof. The hyperdifferential operators on C∞((t)) satisfy

∂
(i)
t

(

fps
)

=

{
0 if ps does not divide i

(

∂
(i/ps)
t (f)

)ps

if ps divides i,

for all f ∈ C∞((t)), as one readily sees by using the homomorphism D.
Applying this to f = Ωn/ps

, we see that the nonzero entries in ρ[n−1](Ω
n) are

the ∂
(i)
t (Ωn) with ps divides i and those are equal to

(

∂
(i/ps)
t

(
Ωn/ps)

)ps

.

By specializing the inverse of ρ[n−1](Ω
n) to t = θ as in the proof of Theorem

8.1, we see that the coordinates zi where p
s does not divide i are equal to zero,

and that the other coordinates are just the ps-powers of the coordinates of a
period lattice generator for the n/ps-th tensor power of the Carlitz module.
Hence, by Theorem 8.1, they are algebraically independent over K̄.
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