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ABSTRACT. Let K be a finite extension of Q, of degree d and Ok
its ring of integers; let C, be the completed algebraic closure of Q.
The Fourier polynomials P,: Ox — C, show that the topological
algebra, of all locally analytic distributions p: C'*(Ox, C,) — C, is,
by 1 — Y u(P,)X™, isomorphic to that of all power series in C,[[X]]
that converge on the open unit disc of C,.

Given a real number r > d, we determine the power series that corre-
spond under this isomorphism to all distributions u: C"(Ok,C,) —
C, that extend to all rtimes differentiable functions (as arisen in the
p-adic Langlands program): A function f: Ox — C, is r-times dif-
ferentiable if and only if f(z) = 3 a,P,(x) with |a,|n’/? — 0 as
n — oo.
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INTRODUCTION

Let @, denote the p-adic numbers and Z, its ring of p-adic integers; let C,
be the completed algebraic closure of @, and Oc, its ring of integers. Let
CO(ZP,(CP) be the Cp-Banach space of continuous functions f: Z, — C, and
D%(Z,,C,) its Cy-linear dual. Every continuous function f: Z, — Oc, can be
uniformly approximated by locally constant functions f,, € Oc,[Z,/p"Z,) for
n € N; that is, f,, = f as n — oo for the supremum norm. Dually,

D°(Zp, Oc,) = O, [[Zy]
is an isomorphism of topological Oc, -algebras, where
e the multiplication on the left-hand side is the convolution product, and

e the right-hand side is the completed group algebra ]gln Oc, |Z/p"Z] with
the projective-limit topology.

The topological group Z, is generated by a single element, say v = 1, yielding
the Iwasawa isomorphism of topological Oc, algebras

Oc, [[Zp]] = Oc, [[X]]
defined by v+ 1 +— X. The composed isomorphism

D°(Z,, Oc,) = Oc, [ X]]
e (o) + ()X +p() X2+

sends a continuous linear map p: CO(ZP,OCP) — Oc, to the power series
whose coefficients are the values of pu on the Mahler polynomials, given by
(B)=a(@—1)---(x—n+1)/nl.

The Mahler polynomials (g), (f), (g), ...are an orthogonal basis of the Banach
space C° (Z,,C,); more generally, for v in N, an orthogonal basis of all v-times
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p-ADIC FOURIER THEORY OF DIFFERENTIABLE FUNCTIONS 941

differentiable functions: A function f: Z, — C, is v-times differentiable if and
only if its coefficients (ap )nen fulfill |a,|n” — 0 as n — oc.

For a real number r > 0, this differentiability condition on the Mahler polyno-
mial coefficients underlaid in [BB10] the definition of a C"-function f: Z, — C,
for any r € R>( by asking its Mahler coefficients (a,)nen to obey |a,|n"™ — 0
as n — oo.

The notion of r-fold differentiability on Z, for a real > 0 emerged from the p-
adic Langlands correspondence for GL2(Q),) which matches unitary continuous
actions of GL2(Q,) on a, usually infinite-dimensional, p-adic Banach space V
with continuous actions of the absolute Galois group Gal(Q,/Q) of @, on a 2-
dimensional p-adic vector space (see [Coll4] as a starting point). Let us outline
the steps taken to construct this correspondence in the prototypic crystalline
case (cf. [BB10]):

1. The action of GL2(Q,) on V is unitary if the norm of V' is invariant under
the group action; such a p-adic Banach space V is constructed as quotient
space of r-times differentiable functions (C"-functions for short) on two
copies of Z, for a real number r > 0.

2. The continuous linear forms on all C"-functions on Z, embed by the
Amice transform (see [Sch99]) into the ring A(B.;) of all power series
that converge on the open unit disc B; of C,. This transforms V" into a
2-dimensional module D over A(B<1) on which a chosen pair of matrices
(p,T) in GL2(Q,) acts commutatively.

3. This action of (¢,I') on D is by Fontaine’s Theory of (p,I')-modules
equivalent to an action of Gal(Q,/Q,) on a 2-dimensional p-adic vector
space (see [FO14]).

If K is a finite extension of @@, then a p-adic Langlands correspondence for
GL2(K) yet has to be formulated. We first introduce r-fold differentiabil-
ity on the ring of integers Ok of K. Recent ([Ber13]) and upcoming work
([Sch13]) indicates that above passage from the representation of GL2(Q,) to
that of Gal(Q,/Q,) is for GL2(K) best mimicked via Lubin-Tate Theory, used
in [STO1] to generalize the Amice transform on Z, to the Fourier transform
on Ok: it identifies the C,-linear dual of the C"-functions f: Ox — C, with
power series that converge on B.; by

= w(Po) 4+ p(P)X + +pu(P) X2+ -

sending a continuous linear map p: C"(Ok,C,) — C, to the power series
whose coefficients are the values of p on certain Fourier polynomials Py,
Py,...((implicitly defined in Section 3). We characterize these power series and,
dually, all r-times differentiable functions f: Ox — C,, by their Fourier coeffi-
cients:

THEOREM (5.1"). Let d = K : Qp and r > d. A function f: Ox — C, is
r-times differentiable if and only if f(x) = >, cyanPn(z) with |an|n"/® — 0
as n — 00.
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OUTLINE

In Section 1 we define r-fold differentiability on Ok, as follows: We decompose
r = v + p into an integer part v in N and a fractional part p in [0,1[. Then
v-fold differentiability is defined by iterated divided differences and p-fold differ-
entiability by a strengthened Holder continuity condition. A function is r-times
differentiable if its v-th iterated divided difference is p-times differentiable.

In one variable, a function is r-times differentiable if and only if its Taylor
polynomial expansion converges (Theorem 1.6).

This equivalence is in Section 2 used to verify the Cauchy-Riemann conditions
over K: A function f on Ok is r-times differentiable as function of one variable
in K if and only if f is r-times differentiable as function of d = [K : Q]
variables in Q, and the derivative of f is K-linear.

In Section 3 we review Amice’s and Schneider and Teitelbaum’s theories that
identify locally analytic distributions (continuous linear forms on all locally
analytic functions) with power series converging on an open unit disc. The
Amice transform gives an isomorphism 7 : D}Q?p (Ok,Cp) = A(BL,) between
all locally Qp-analytic distributions on Ok = Z, ® - - - @ Z,, and all power series
converging on the open polydisc B‘il.

The Cauchy-Riemann equations that ensure K-analyticity of such a distribu-
tion cut out an analytic variety R: Og — Bil. Schneider and Teitelbaum
construct via Lubin-Tate’s Theory of formal Ok-modules an analytic isomor-
phism F': B« /C, = Ok. This yields the commutative diagram

D3, (Ok, Cp) 5z A(BLy)

Amice

\L l]—'oR (*)
Dk (Ok,Cp) ——= A(B<1)

where F o R denotes the homomorphism between rings of power series induced
from Ro F.

In Section 4 we study this diagram for C"-distributions, the continuous linear
forms on all C"-functions. Let us denote by A@p the image under the Amice

transform of the continuous dual Dy (Ok,Cp) of C'(Zp ® -+ & Zp,Cp). It
consists of power series subject to a certain boundedness condition. We must
compute the pullback A := Fo R(A@p) of A@p under RoF: B.; == Ok —
Bil. The restriction from all locally analytic to all C"-distributions turns the
commutative diagram (x) into

ID&P (OK’ (Cp) Amice @P

l lm

Dk (Ok, Cp) —— Ak
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p-ADIC FOURIER THEORY OF DIFFERENTIABLE FUNCTIONS 943

To compute Ay we show that the coefficient-wise boundedness condition satis-
fied by all power series f in A@p is equivalent to a boundedness condition on

the values of f on closed subvarieties which exhaust @K, called temperedness.
Temperedness translates well under the rigid isomorphism R o F' and allows
us to compute Ax = F o R(Ap ) (where a technical key point is a uniform
bound on the operator norms of these rigid-analytic isomorphisms on all discs
of increasing radii below 1 in [BK16]).

In the final Section 5, we conclude by Schikhof duality (cf. [ST02]) the Fourier
coefficients of C"-functions to obey the convergence condition of Theorem 5.1°.

ACKNOWLEDGEMENTS. I am indebted to Jean-Francois Dat, Vytas Pagkunas
and Tobias Schmidt for independently bringing this problem up and giving
valuable remarks; to Pierre Colmez for corrections on an early draft; to Chris-
tian Kappen, visiting researcher at the Instituto de Matemética da UFAL, for
his contributions towards rigid-analytic norm comparisons; to Joao Pedro dos
Santos for suggesting various clarifications; to the referees for their meticulous
proofreading.

1 APPROACHES TO FRACTIONAL DIFFERENTIABILITY

We define r-fold differentiability for a real number r» > 0. For this, write r =
v+p >0 with v € Nand p € [0,1]. We first define v-fold differentiability
by iterated divided differences, then p-fold differentiability by a strengthened
Holder-continuity condition. Finally a function is r-times differentiable if its
v-th iterated divided difference is p-times differentiable.

ITERATED LINEAR DIFFERENTIALS

The non-Archimedean differentiability condition is more rigorous than the or-
dinary one to compensate the absence of an analogue of the intermediate value
theorem over a non-Archimedean field, due to its total disconnectedness:

Let V be a finite-dimensional K-vector space and X an open subset of V. Let E
be a K-Banach space. The function f: X — E is differentiable at a in X if there
is a linear map A: V — E such that for every e > 0 there is a neighborhood U
around a inside X where

If(x+h)— f(x) — Ah|| < €||h]| forall z+ h,zin U.

C”-FUNCTIONS FOR A NATURAL NUMBER v

The following, equivalent, differentiability condition requires a choice of co-
ordinates on V', but can be iterated, that is, applied again to the obtained
differential to define differentiability of higher orders. We fix a basis ey, ... ,eq
of V and by this basis identify V' with the d-fold direct sum K& --- @ K. Let
X be an open subset of V.
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944 ENNO NAGEL

DEFINITION. The differential f'l(z + h,z) of f at z + h,z in X with h € K*¢
is the K-linear map A: V' — E determined by

A-hper = f(x+hie;+---+hy_1ex_1+hrex) — f(x+hieg+---+hr_1er_1)
for all k= 1,...,d. The function f is a C'-function if f1*[ extends to a contin-
uous function fI: X x X — Homgk (V, E).

Because X is open, X!l = {(z + h,z) € X2 : h € K*?} is dense inside X[,
and so f[U is uniquely determined by f.

Starting from this definition, we obtain a notion of v-fold differentiability for
v > 0 as follows: Let f € C'(X,E) and let us regard the function f[: Tts
domain X x X is again included in a finite dimensional K-vector space V x V
with an ordered basis, and its codomain Homk (V, E) is again K-Banach space.

So we can define the iterated differential by the differential of f[II. That is, f
is twice differentiable if f!!) exists and

2= (FHIL (X x X)) — Homk (V' x V, Homg (V, E))
extends to a continuous function f[? on (X x X ).
DEFINITION. Let v in N. The function f: X — E is a " -function
e if f is a C”-function, and
oif X = XM, ¥ =Vl ¢ = EM and §f = f* then 'l extends to a
continuous function fl!l: X x X — Homgk (U x U, €).

Like 1, also ! is uniquely determined by f.

C’-FUNCTIONS FOR p IN [0, 1]

Let p in [0, 1]. Roughly, p-fold differentiability is stricter Holder-continuity. Let
X be a subset of a finite-dimensional K-vector space U and let & be a non-
Archimedean K-Banach space.

DEFINITION 1.1. The function f: X — ¢ is C” at a in % if for every € > 0,
there is a neighborhood U around a inside U such that

If() = f)l <e-lla—yl|” forallz,yinXNU.
The function f: X — & is a C”-function if it is C* at every a in X.

The above condition on a in U is nonvoid only if a is in the closure of X. This
is the case, for example, when X is dense inside .
The fractional divided difference |f*l| of f is defined by

|FP (@, y) = | f(z) — f@)|l/|z —yl|” for all distinct 2,y in X.

The function f: X — € is a C’-function if and only if |f/?[| extends to a
continuous function |f”l| on all of X x X that vanishes on the diagonal of
X x X. Because X is open, the domain of |f]’”[| is dense inside X x X and f
determines |f [”]| uniquely. If X is compact, then we can endow the K-vector
space of C’-functions by the natural norm || f[l¢, = max{||f{lqp, | /%] llgup -
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p-ADIC FOURIER THEORY OF DIFFERENTIABLE FUNCTIONS 945

C"-FUNCTIONS FOR r > 0

Let r = v+ p > 0 with v € N and p € [0,1[. We define r-fold differentiability
of a function f by requiring its v-th iterated divided difference f*l to be C”
everywhere.

DEFINITION 1.2. Let X be an open subset of V. The function f: X — E is a
C"-function if f is a C"-function and f[* is a C”-function.

Let X be compact. Because f[™ for n = 0,...,v and |FI?| for F = £l are
uniquely determined by f, the norm ||-||. on all C"-functions f: X — E given
by || fller := max{l[fO g s IFY Mgy 1]l } is well-defined.

ITERATED DIVIDED DIFFERENCES IN ONE VARIABLE

The preceding definition is well suited for conceptual questions like that about
base change in Section 2. For computations, the textbook definition (see [Sch84,
Section 26ff.]) is apter.

Schikhof observed that the divided difference fI'l is a symmetric function; as
such, it is differentiable if and only if it is partially differentiability in its first
coordinate. This reduces, with increasing degree of differentiability v, the ex-
ponential growth in the number of variables of f*[ to a linear growth in the
number of variables of a divided difference f~¥<, that we define below:

DEFINITION. Let X be a subset of K and f: X — E. For v € N put
X<> = X0 and X7V ={(20,...,3,) : if i # j then ; # 2;}.

The v-th divided difference f77<: X>¥< — E of a function f: X — E is
inductively given by f>°<:= f and for n € N and (xy,...,7,) € X>¥< by

_ Py (o, oy oy x) — VTN (2, w0, ., 1)

7 (xo,...,2,) ¢
o — 1

The following definition for p = 0 is given in [Sch84, Section 29|, where integral
differentiability (that is, for v in N) is defined. That is, a function f is v times
differentiable if f>”< extends to a continuous function on X <"~

DEFINITION 1.3. Fix r = v+ p € R>g. Let X be a subset of K and f: X — E.

e The function f is C" (or r-times differentiable) at a point a € X if
<X S EBisCPatd= (a,...,a) € X<

e The function f is a C"-function (or an r-times differentiable function) if
fisC" at all @ in X. Let C"(X, E) denote all C"-functions f: X — E.

Note that this differentiability condition is, even for higher orders, given point-
wise. If a is an accumulation point then the value D” f(a) to which f~¥< extends
at @, the derivative of f at a, is uniquely determined. If f(*) is the v-fold
ordinary derivative of f then v! DY f = f(*) ([Sch84, Theorem 29.5]).
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946 ENNO NAGEL

Let X contain no isolated point. Then f is a C"-function if and only if f>¥<
extends to a unique C’-function f<*>: X<¥> — E ([Nagll, Proposition 2.5|).
Every r-times differentiable function is (by [Nagll, Lemma 2.3]) in particular
s-times differentiable for every nonnegative s < r. Thence, if X is compact
without isolated points, then we can endow the K-vector space of C"-functions
with the norm

1 £ller = max{||F lgups -+ 15l qups 17l 3

This norm is equivalent to that of Definition 1.2 by [Nagl6, Proposition A.2].

TAYLOR POLYNOMIALS

We give a differentiability condition of only two arguments by Taylor polyno-
mials (whereas that by iterated linear differentials respectively iterated divided
differences have an exponential respectively linear growth in the number of
variables for increasing degree of differentiability v).

Let V' be a normed K-vector space. Let Symg (V,E) be all continuous sym-
metric K-multilinear maps M: V x --- x V — E of n variables. These form a
non-Archimedean K-Banach space by the operator norm

M| = sup{[[M(z)[| : € V" with [[z]| <1}

which is the supremum of M on the unit ball of V' x --- x V with respect to
the product norm ||vy,...,v,|| = max{[|v1]|,...,||lv.ll}-

DEFINITION

The following definition generalizes that of onefold differentiability at the be-
ginning of Section 1 to a higher differentiability degree r > 0.

DEFINITION 1.4. Let X be an open subset of V. The function f: X — E is
a C'p-function if there are functions D" f: X — Sym"(V,E) forn =0,1,...,v
and R"f: X x X — E such that

fw+h)= > D"f(x)(h,...,h) +R"f(z +h,z)
n=0,...,v

and for every a in X and € > 0, there is a neighborhood U around a inside X
such that
IR”f(x + h,z)|| <ellh]|” forall z+h,zin U.

THE NORM

Let C7 (X, E) be the K-vector space of all Ct functions f: X — E. By [Nagl6,
Corollary 2.5] the functions DYf, D'f,..., D" f are uniquely determined and
differentiable of degree r, r — 1, ..., p. Hence
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1. in particular, the functions D°f, D' f,..., D¥f are continuous, and

2. the remainder R” f of the Taylor polynomial up to degree v converges as
in Definition 1.4 if and only if the function A" f, defined by

A" f(x,y) = R f (@, p)ll/llz — y|” for all distinct 2,y in X,

extends to a continuous function |A” f|: X x X — R>( that vanishes on
the diagonal.

Thus if X is a compact open subset of V' then there is a well-defined norm ||- ”cg
on Cr(X, E) given by || fll¢; := max{|[D°flgpr- - D" fllgup } ULITAT 1 g}

NECESSITY

Every r-times differentiable function can be locally approximated by its Taylor
polynomial expansion up to degree v:

ProPOSITION 1.5 ([Nagl6, Corollary 3.6]). We have C"(X,E) C C1(X,E) and
if X is a compact open subset of V' then the inclusion C"(X,E) — CT(X,E) is
a monomorphism of normed vector spaces.

SUFFICIENCY IN ONE VARIABLE

For a function f of one variable (and also of many variables in Q, by [Nagl6,
Section 3]) the convergence condition on the rest term of its Taylor polynomial
of degree v is sufficient for the r-fold differentiability of f.

THEOREM 1.6 ([Nagll, Lemma 2.27, Corollary 2.25 and 2.32]). Let X be an
open subset of E and f: X — E. Then f: X — E is a C"-function if and only
if there are functions D°f Df ... D'f: X - Eand R"f: X x X — E such
that

fle+y)=Df(x) + D' f(a)y +--- + D" f(a)y” + R" f(z +y,2)

and for every a in X and € > 0 exists a neighborhood U around a inside X
where

RYf(x +y, )| < elyl” for all z+y,x € U..

Remark. De Ieso defines in [DI13] an r-times differentiable function over the
unit ball of a finite extension F of @, via a Taylor polynomial expansion by
the field embeddings of F into its normal closure. His normed space of C"-
functions equals by [Nagl6, Theorem 4.7] that of C@p -functions as defined next
(in Section 2).
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2 CAUCHY-RIEMANN EQUATIONS

The differentiability condition on a function f depends on the field of definition
K of the vector space that embraces its domain and codomain. The bigger
the base field K, the more restrictive the condition on the derivative of f to
commute with the scalar multiplication in K, and so the more restrictive the
differentiability condition on f. To emphasize this dependency on the base field
K, let a Ck-function for r > 1 denote an r-times differentiable function whose
domain and codomain have field of definition K.
Let L be a non-Archimedean field and K a finite extension of L. Let X be
an open subset of K, let E be a Banach space over K and f: X — E. We
show that if f is a Cy-function and additionally all its differentials commute
with the scalar multiplication in K then f is a Ck-function (in analogy to R
and its unique algebraic extension C where these additional conditions on the
differentials are called the Cauchy-Riemann conditions).
Let V be a K-vector space. We embed K into the L-vector space Endyr, (V') of
all L-linear endomorphisms over V' by A — A-. An L-multilinear map ®: V' x
- x V = E is K-multilinear if ®(...,A-,...) = A ® for every A € K. Let
Multy (V, E) denote all L-multilinear maps of n variables in V' that take values
in E.

PROPOSITION 2.1. Let f: X — E be a Cy,-function. If for every = in X the
maps D f(z),...,D"f(z) are K-multilinear, then f is a Cy-function.

Proof: Let us assume f € Cp,(X,E) and D" f(z) € Multi (K, E) forn =0,... .
By Proposition 1.5

flwt+h)y= > D'f@)(h,....h) + R f(z+h,x) forall z+h,xe X,

such that for every a € X and € > 0 there is a neighborhood U around a where
R f(z 4+ h,z)| <elh|” forall z,y € U.

Let us write h € K as h = hye; + -+ -+ hgeq with {e1 =1, ea,...,e4} a basis of
the L-vector space K. For i = 0, ..., v, by K-multilinearity of D*f,

Dif(x)(h,..., h) = > Dif(z)(1,...,)hy, ---hj, -ej, - €5,

=D'f(z)(1,...,1)(h1er + - + hgeq)’

Putting Di f(z) = D' f(x)(1,...,1), we therefore conclude that there are func-
tions D% f,...,Di% f: X - E and R”f: X x X — E such that

flx+h)= Z Dicf(x)h' + R f(x + h,x) forallz+h,z € X,

1=0,...,v
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p-ADIC FOURIER THEORY OF DIFFERENTIABLE FUNCTIONS 949

and for every a € X and € > 0 exists a neighborhood U around a inside X
where
[R"f(x + h,x)| <elh|" forall z+ h,z € U.

This convergence condition on the remainder of the Taylor expansion of f up
to degree v is by Theorem 1.6 above equivalent to f € C (X, E). |

LEMMA 2.2. Let f: X — L be a Cf-function. Given z in X, if D f(x) is
K-linear, then D2 f(z),...,D" f(x) are K-multilinear.

Proof: Let A in K. We assume that \ - D!f(z) = D!f(z) o A where on the
right-hand side we regard A as L-linear endomorphism over K.

Let n = 2,...,v. Because D" f(z) € Mult] (K, E) is symmetric, it suffices to
show that D" f(x) is K-linear in the last argument, that is,

D" f(z)(...,\') = A- D" f(x).

By our assumption D! f: X — Homy, (K, E) and by K-linearity of the differen-
tial D': CY(X,E) — C°(X, Homy (K, E))

D" f(2)(-,..., -, A) = D" (D} F(A)) (@)
— (D"'(A\-D'f))(x) = A-D" (D' f)(«) = A- D" f(x). O

COROLLARY 2.3. Let f € C{(X,E) and D' f(x) € Homk (K, E) for all z € X.
Then f € Cx(X,E).

Proof: By Proposition 2.1 and Lemma 2.2. |

3 THE FOURIER BASIS

Let us first explain the Amice transform on Z,, followed by the Fourier trans-
form as its analogue on a finite extension O of Z,,.
THE AMICE TRANSFORM

Let C°(Zp,Oc,) denote all continuous functions f: Z, — O¢, and
let DO(ZP,O(CP) be its topological dual of all continuous linear maps
p: C%(Zy, Oc,) — O, .

Every continuous function f: Z, — Oc, is uniformly approximated by locally
constant functions f,, in O¢, [Z/p"Z]; dually, the natural map

DO(ZIM OCp) - OCp [[Z;D]]
is an isomorphism of topological Oc, -algebras, where

e the left-hand side is equipped with the convolution product and the topol-
ogy of point-wise convergence, and
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950 ENNO NAGEL

e the right-hand side is the completed group algebra lim Oc, [Z/p"Z] with
the projective-limit topology.

The topological group Z, is generated by a single element, say v = 1, yielding
the Iwasawa isomorphism of topological algebras

Oc, [[Zp]] == Oc, [[X]]
defined by v +— 1+ X. The composed isomorphism

D°(Zp, Oc,) = Oc, [ X]]
e (o) + ()X +p() X2+

sends a continuous linear map p: CO(ZP, Oc,) —+ Oc, to the power series whose
coefficients are its values 1u((;)), #((;)), - - - on the Mahler polynomials, given by
() =a(@—1)---(x—n+1)/nl.

We apply this isomorphism to all locally analytic functions, that is, functions
that are locally given by a convergent power series (of, possibly, many variables):
Let K be a finite extension of Q, of degree d and O its ring of integers. Let
CBP (O,C,) be the Fréchet space of all Q,-locally analytic functions f: O —
C,, that is, functions that are locally given by a convergent power series of
d variables on an open subset of O = Z, @ - - - ® Z,,. The multivariate Amice
transform ([Ami64, Corollaire 10.3.(a)]) is the isomorphism of topological C,,-
algebras

T D}Q%p(o,cp) =5 ABL))
pr () X"

between all continuous linear maps p: CBP(O,CP) — C, and all power series

of d variables over C, that converge on the open unit disc Bi1 of (Cg; here and
henceforth for @ = (z1,...,z4) and n = (nq1,...,n4) we denote

()= ()

To conclude, by evaluation on the Mahler polynomials, the continuous linear
forms

(“) and x"™:=g"...g"d,
nd

e on CO(ZP, C,) correspond to all power series that are bounded, and
e On Cla(Zp, C,) correspond to all power series that converge on B..

THE FOURIER TRANSFORM

Let K be a finite extension of Q, of degree d and O its ring of integers. The
Fourier polynomials Py, P1, ... parallel the Mahler polynomials (;), (;),--. by
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the Fourier isomorphism of topological algebras D (O, C,) = A(B<1) be-
tween all distributions, continuous linear maps u: C*(0,C,) — C, on all lo-
cally analytic functions f: O — C,, and all power series that converge on the
open unit disc B« of C,. Let

I =kerDg (0,C,) — Dg(O,C,)

be the kernel of the continuous linear map that restricts a distribution from
all Q,-locally analytic to all K-locally analytic functions f: O — C,. Let J :=
T (I) be its image under the Amice transform. By the Hahn-Banach Theorem
([PGS10, Theorem 4.2.4]) the induced quotient map of the Amice transform

T: DR(0,C,) = ABL,)/J

is an isomorphism. The main result Theorem 3.6 of [STO01] establishes the
rigid-analytic Schneider-Teitelbaum isomorphism F: B.y — O between affi-
noid algebras

F: ABL)/T = AB<)

(where in op. cit. (F,F) is denoted by (k,x*)). The Fourier transform F o T
is obtained by composing the Amice transform with the Schneider-Teitelbaum
isomorphism, yielding the isomorphism of topological C,-algebras
DE(0,Cp) = A(B<y)
s X (P X"

given by evaluation on the Fourier polynomials Py, P, ... (denoted by Py(2-),
Py (£2) in [STO1]). To define Py, Py, ...,

1. we parametrize the set O of all locally K-analytic characters k: O — Cj
by the open unit disc B.1, and

2. obtain by restriction from C'*(O,C,) onto O (and this parametrization)
an injective map

DE(0,C,) — { all f: By — Cpl,
whose image is by the Amice transform shown to consist of all analytic
functions on B.1.

THE CHARACTER VARIETY

We will describe the Schneider-Teitelbaum isomorphism, point-wise, as rigid-
analytic map between the variety O of all K-analytic characters and the open
unit disc B<; obtained from Lubin-Tate Theory. Via the Amice transform, it
will implicitly define the Fourier polynomials Py, P, Ps ...
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Let Zg be the set of all Qp-analytic characters x: Zg — C}, parametrized by

d ., 7d
S

z Xz =T (1+2)% =3 (2)2"]

n

(see [Sch99, Section 2]). We have T (u)(z) = p(xz)
Let O be the set of all K-analytic characters k: O — C;. We will define an
analogous rigid-analytic parametrization

F: B =50
2k O — C

so that F o T (u)(z) = (k). This character &, will be defined as composition
of an orbit map on a formal group with a translated group homomorphism.

ForMAL O-MODULES

A formal group G is a commutative one-dimensional formal group law over O,
that is, a power series G(X,Y) in O[[X, Y]] such that

o (associativity) G(X,G(Y,Z2)) =G(G(X,Y),2),
e (commutativity) G(X,Y) = G(Y,X), and
e (identity element) G(X,Y)= X + Y+ summands of higher degree.

An endomorphism of a formal group G is a power series g(X) in O[[X]] such
that

9(G(X,Y)) = G(9(X), g(Y))-

A formal O-module is a formal group G together with a ring homomorphism
O — End(G).

Let Gy and G, be the multiplicative and additive formal group (over Z) given
by the group laws G(X,Y) = XY + X +Y and G(X,Y) = X + Y. Let us add
a subscript (such as Oc,, Q, or C,) to indicate the base extension of a formal
group (to Oc,,Q, or C,).

Every formal group G is by its logarithm logg: Go == G,|Q isomorphic to the
additive formal group over Q. Let exp: G, |Q — G, |Q be the exponential map.
(See [Lan78, Chapter 8| for the definition of either map and a more thorough
discussion of formal groups, in particular formal O-modules.)

Let 7"(G) = Hom(Go., , Gm |Oc, ) be all formal group homomorphisms between
Go, and Gm |Oc,. Every t': Go. — Gm |Oc,, in T'(G) decomposes over C, as

t: G, 228 Ga|Cp L5 Ga |Cp 2B G [C, (3.1)
for some € in Oc,. Consequently 7"(G) is a free Oc, -module of rank one.
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To every uniformizer 7 in O corresponds (after base extension to the completion
of the maximally unramified extension of O) a (unique) formal O-module G,
(JLT65]). For example, p in Z, corresponds t0 Gm.

Let us henceforth fix a uniformizer 7 in O, the formal O-module G that cor-
responds to m and a generator ¢, of 7'(G) (and its corresponding scalar € in
Oc,).

ORBITS UNDER FORMAL GROUP ACTIONS

We now recall how B<; parametrizes all locally K-analytic Cj-valued characters
on O ([STO1, Section 3]): The power series over O that defines a formal group
law (such as G or G,,) converges on B.; and turns B into a group that we
denote by the formal group law (such as G or Gy,). Given a in O, let [a] in
End(G) be the formal O-action of a on G.

We attach to z € G = By its orbit map o,: O — G given by a — [a]z. Then

0% ¢ 4 ¢
a — [a)z —

C
to

Tk

—~~

[a]z) +1

is a locally K-analytic character x,: O — C} (where - + 1 translates between
the neutral elements 0 and 1 of G,, and (C;;). The obtained map

F: B =0

Z > Ky

is a bijection between B and the set O of all K-analytic characters on O with
values in C, ([ST01, Proposition 3.1]).

We recall that O is cut out of ig by the Cauchy-Riemann equations ([STO1,
Lemma 1.1]) and is the rigid-analytic subvariety of Bil of vanishing ideal J;

the Schneider-Teitelbaum isomorphism is a rigid-analytic group homomorphism
between G and O.

THE FOURIER BASIS

Expressed in power series, Equation (3.1) says

fi; (Z) = exp(tlogg(2)) (3.2)

where fy (Z) is the formal power series that defines t;. Let P, (Y) in K[Y]
(denoted by P, (£2-) in [ST01]) be the polynomial defined by the formal power
series expansion

exp(Y logg(Z)) =Y Pu(Y)Z".

Let f(X)=>_,50aX" in A(B<1) and let p: C*(0,C,) — C, be its image
under F o 7. Then u(P,) = 1/n!(d"f/dX™)(0) = a, ([STO1, Lemma 4.6.9]).
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4  DIFFERENTIABILITY AS BOUNDEDNESS OVER THE OPEN UNIT DISC

Let us fix a real number » > 0. In this Section 4 we characterize the C"-
distributions, that is, the continuous linear maps p: C"(0,C,) — C,, by a
bound on their values on the Fourier polynomials Py, Py, ...

STRATEGY

CAUCHY-RIEMANN EQUATIONS

Let L = Q, (and K as before a finite extension of L). If f is an r-times
differentiable function over L, then f is r-times differentiable over K if and only
if f satisfies the Cauchy-Riemann equations (by Corollary 2.3) and likewise if f
is a locally analytic function (by [ST01, Lemma 1.1]). We obtain a commutative
diagram of restriction maps

IDEL(O’ (Cp) - IDII%(Oa (Cp)

T

£(Oa (Cp) - ID;((O’ (Cp)-
where we claim that

(i) the arrows pointing upwards are injections, and

(ii) those pointing rightwards surjections (which induce isometries for the
quotient norms).

Ad (i): The set of all locally polynomial (in particular all locally analytic) func-
tions is by [Nagll, Proposition 3.30] dense inside C"(O, C,); dually, the
restriction map

D"(0,C,) — D*(0,C,)
e 0.¢y)

over all continuous linear maps p: C"(O,C,) — C,, is injective. Because
this holds for C"-functions over an arbitrary non-Archimedean field, such
as L or K, and of an arbitrary number of variables, such as [K : L], we
obtain injectivity of both, left and right, arrows.

Ad (ii): This follows from the Hahn-Banach Theorem for non-Archimedean locally
convex vector spaces of countable type ([PGS10, Theorem 4.2.4]).

THE AMICE TRANSFORM

The Amice transform 7 turns the commutative diagram (4.1) between distri-
bution spaces into one between spaces of formal power series subject to certain
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convergence conditions:

A(Biﬁ —>A(Bi1)/t]

! |

A — A} /TN AL,
where J = T(I) is the image of the ideal generated by the Cauchy-Riemann
equations and A}, = Dy,(0,C,).
THE SCHNEIDER-TEITELBAUM ISOMORPHISM

The main result Theorem 3.6 of [ST01] is a rigid-analytic isomorphism, the
Schneider-Teitelbaum isomorphism,

(F,F): (B<1, A(B<1)) == (0, A(BL)/J)

between the variety O of all K-analytic characters and the open unit disc B1.
We put
k = F(AL/J N AL).

THE C"-FUNCTIONS UNDER THE FOURIER TRANSFORM

The following commutative diagram recollects all homomorphisms that have
figured in our above discussion:

DR ~—— DI ~ = A(BL))/J = ABLy)
D, | ~ A(BL,)
Dk =~ D} /INDg Tw AY )TN A, —=— A%

Dy

Ay,

Our aim is to describe D (O, C,), all continuous linear maps p: C"(O,Cp) —
C,, by their values p(Fp), u(P1),... on the Fourier polynomials. These values
are the coefficients of the power series in A}, the image of Dy (O, C,) under
the isomorphism given by the bottom rear arrows.

To prove

ro= {Z anX™: {|an|/nr/d} is bounded } (4.2)

neN
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(that is, Corollary 4.8), we take three steps, each carried out in its proper
subsection:

1. Because above diagram commutes, Af is the image of A] under the
epimorphism

A(Bil) - A(Bil)/*] = A(@) = A(B<1).

Given a power series in A(B%,), show that it is in Aj, if and only if it is
tempered, that is, its values over Bil are bounded in a prescribed manner.

2. Apply the Schneider-Teitelbaum isomorphism F': O = B to this tem-
peredness condition that singles out A}, /.J N A}, from A(B%,)/J.

3. Show that the (temperedness) condition on the values over By ob-
tained under the Schneider-Teitelbaum isomorphism is equivalent to the
coefficient-wise boundedness condition (4.2).

DIFFERENTIABILITY AS ANALYTICAL TEMPEREDNESS

We describe the power series in A} /JNAJ, by a bound on their values on larger
and larger closed discs inside the open unit disc. For this we first describe the
distributions in D (O, C,) by their values on locally analytic functions, and
afterwards apply the Amice transform.

For a subfield F of C, let v: F* — Q be the additive valuation standardized by
v(p) = 1, and |z| = p~¥® for 2 in F*. A ball of radius § > 0 of F is a subset
of F each two of whose elements = and y fulfill |« — y| < 4.

DEFINITION. For a field F in-between L and K and n in N, put

Cy (0,C,) ==
{all f: O — C, that are F-analytic on every ball of radius p~"}

These n-analytic functions form a C,-Banach space for the natural norm that
restricts to the analytic norm on every neighborhood of radius p~". Let

Dy (0, C,) := {all continuous Cp-linear p: Cz *"(0,Cp) — Cp}

be its continuous dual. These n-analytic distributions form a C,-Banach space
for the operator norm.

Given a field F in-between L and K (such as L or K), a natural number n
and an ideal T of D (O, C,) (such as that generated by the Cauchy-Riemann
equations), we will denote the ideal of DE *"(O, C,) that is generated by the
image of I under D (0, C,) — DE (0, C,) likewise by I.

The Amice transform turns the n-analytic distributions into formal power series
that converge on a closed disc of radius p < 1:
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DEFINITION. Let Bép be the closed polydisc of radius p > 0 of (Cg. Put
A(B% ,) = {all power series over C,, of d variables that converge on B% ot

Then A(B‘ép) is a Cp-Banach algebra for the norm ||-|| ; defined by

I Z a; X X;d”p := sup{|ai|p T 1 e N,
€N

Given d in N, a radius 6 > 0 and an ideal J of A(B%,) (such as that generated
by the Cauchy-Riemann equations), we will denote the ideal of A(B‘é 5) that is
generated by the image of J under A(B%;) — A(B‘éé) likewise by J.

For an affinoid algebra A, let A° be its closed unit ball under the Gauss residue
norm; that is, if A =T/J is the quotient of the Tate algebra T' by the ideal J
then

A° :={all a € A such that for every ¢ >0

there is ¢ in a + J with ||¢t]] < 1+ ¢}
Fix once for all a sequence A1, Aq, ... in C, such that {{[v(A1)+---+v(Ap)]/rh:
h € N} is bounded. (For example, if  in Q then, for some X in C, with v(X) = r,

fix the constant sequence A, J,...) Then for a sequence of increasing radii (dy,)
below 1 and d in N, let

= ABL;, ) = ABLs) = o ABL;)
be the transition maps defined by f +— Ap - f, B for every h in N.
=°h

PROPOSITION 4.1 (Temperedness under the Amice Transform). Let (pp) be
the sequence of increasing radii below 1 defined by po = p~/®P=1) < 1 and
pn = p /P =1 Then the natural map

i./J N AL =5 lim(ABL,)/J)° ®o., Cp (4.3)

Nz

is an isomorphism of C,-Banach spaces.

Proof: The map (4.3) is on the very right of the commutative diagram

lim(Di*")° ® C, —— lim(Dy " /1)° & €, —— lim(A(BL, )/J)° ® C,
(4.3)

r DI JIND} — AT /] O AL

where
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e in the left-hand rectangle both arrows pointing rightwards are the natural
quotient isomorphisms,

e in the right-hand rectangle those are given by the Amice transform, and
e all arrows pointing upwards are given by the natural inclusion maps.

To prove that (4.3) is an isomorphism, it suffices by commutativity of the
diagram to prove that all other arrows in the commutative diagram given by
the right-hand rectangle are isomorphisms:

1. The bottom-right arrow Dy, /I N Dy, — A} /J N Af is an isomorphism as
quotient map of the Amice isomorphism (and because A} is by definition
the image of D}, under the Amice isomorphism).

2. The top-right arrow lim Dy~ *"(0,C,)/I — @A(B%pn)/Jo ® C, is an
isomorphism by [Nagl5, Lemma 7.1], which is a suitably formulated ver-
sion of the (multivariate) Amice Theorem.

3. It rests to show that the middle arrow
D1(0,Cp)/INDL(0,Cp) — Lim(Dp=**(O0,C,)/1)° @ Cy

is an isomorphism. For this it suffices by commutativity of the diagram
to prove that all other arrows in the commutative diagram given by the
left-hand rectangle are isomorphisms:

3.1. The top-left arrow lim Dy *"(0,Cp) — Im Dy *(0,C,)/I is
an isomorphism because all Dy *"(0,C,) — D; *"(0,C,)/I
are isometric isomorphisms by the ultrametric Hahn-Banach theo-
rem [PGS10, Theorem 4.2.4] for normed spaces of countable type;
and

3.2. the bottom-left arrow Dy (0,C,) — DL(0,C,)/I N DL(0,C,) is
likewise an isomorphism by the ultra-metric Hahn-Banach Theorem.

3.3. The left arrow Dg(O,C,) — @D?{M(O,CP)O ® C, is an isomor-
phism by [Naglh, Corollary 6.1], which expresses the C"-norm by
the locally analytic ones. O

TEMPEREDNESS UNDER THE SCHNEIDER-TEITELBAUM ISOMORPHISM

We transfer by the Schneider-Teitelbaum isomorphism the isomorphism (4.3)
from A} /J N Aj in Proposition 4.1 to Af. In coordinates, the Schneider-
Teitelbaum isomorphism F: B.; — O (inside (1,...,1) + B%,) is given by

Z (1 + felt/o(z), ey 1 + fedt{)(z)),

where
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® ¢1,...,€q is a basis of Ok over Zy,

e t; is the generator of the O-module Hom(Go, ,Gm |Oc,) fixed in Sec-
tion 3, and

e fu for t' in Hom(Go,, ,Gm |Oc,) denotes its defining power series (as in
(3.2)).

The restrictions Fj, of F' onto closed discs of certain radii {;, < 1, to be specified
below, are given by the same power series.

LEMMA 4.2. Fiz two sequences (op,) and (p) of increasing radii below 1 given
by

h
o gp:=p Ve=D=1e gnd g}, = O’é/p ,

dh
o G :=p VD) and g, :=)/"

and let (Fy) with
Fut ABL,,)/ ] = A(B<g,)

be the compatible family of isomorphisms between affinoid algebras given
by [STO01, Theorem 3.6]. Then the natural map

Ak = lim Fi(A(BL,,)/J)° @o., Cp.
heN

is an isomorphism of C,-Banach spaces.

Proof: Let (pn) be the sequence of increasing radii below 1 given by pg :=
p~V/®=1) and py, = p!/P" =1 By Proposition 4.1 the natural map

Ap /TN A7, = lim(ABL,,)/T)° 0., Cp.

Nz

is an isomorphism of C,-Banach spaces. If §; and Jj are two positive numbers

h
< 1 then the sequences (¢;) and (&}) given by d; = 63/’9 are cofinal. This
conclusion applies in particular to d; := po and & := oo. Thus

lim (A(BL,,)/J)° ©o., Cp = lm(A(BL,,)/J)° @o., C,.
heN heN

We apply the compatible sequence of Schneider-Teitelbaum isomorphisms (Fp,)
to the compatible sequence of maps that induces this isomorphism of projective
limits. Because the transition maps are in particular injective, we conclude by
left exactness of the projective-limit functor

Ak = F(AL/JNAL) th <Uh )/J)° ®oc, Cp.
heN
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We fix once for all the sequence of increasing radii (op) below 1 given

by o9 = p-Y/®-D-Ve and o, = oé/ph. To make the inverse limit
1'&1}“]1(./4( <gh)/J) ®o., Cp explicit, we define two Oc, -Banach modules Ay,
and C}, that is, closed unit balls of C,-Banach spaces, such that

Ah‘—>.7:h( ( <Gh)/J) ‘—>Ch. (4.4)

LEMMA 4.3 (Definition of Cp, in (4.4)). Let (on)nen and (sn)nen be the se-
quences of increasing radii defined in Lemma 4.2. Then the isomorphism of
affinoid algebras

Fnt ABL,,)/J =+ A(B<q,)

defined in [ST01, Theorem 3.6] restricts to a monomorphism of Oc,-Banach
modules

Fi: (ABL,,)/J)° = A(Bzq, ).
Proof: Let f in A(B <ah)/J. Because

1. by the maximum principle on the closed unit disc, the supremum norm
is equal to the Gauss norm,

2. every isomorphism of affinoid algebras is an isometry of Banach spaces
for the affinoid supremum norms, and

3. the supremum norm is bounded above by the Gauss residue norm,

we obtain ~ - ~ ~
1Fr (D, = IF(Dle, sup = 1f oy sup < N f 1o,
and conclude the claimed inclusion of unit balls. O

LEMMA 4.4 (Definition of Ay, in (4.4)). Let (pn)nen and (sp)nen be the se-
quences of radii defined in Proposition 4.1 and Lemma 4.2. Put

A'(B<g,) :=={all f in C,[[X]] such that
f= ZaiXi and |a;|is), — 0 as i — oo}

together with its natural norm

||Z aiXngh := sup{|a;|is) : i € N}.
ieN

Then A'(B<,) is a C,-Banach space and the sequence of inverses of the rigid-
analytic isomorphisms Fy, Fy, ... given in [ST01, Theorem 3.6] induces a se-
quence of monomorphisms of Oc,-Banach modules

Fi ' A(Bzq,)” = (A(BL,,)/J)°

with operator norm at most cy, := cop™ " (where ¢ := |5(0)|p?/ (P~1+1/(e(a=1))
and the constant 5(0) is defined in [BK16, Section 1]).
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Proof: Let T{*: Dy ~*"(Z,,C,) < A(B<,,) for h € N be the compatible family
of Amice transforms. Because im 7" O A(B<,, ,), there is an inverse map

A(ngthl ) — Dﬁ_an (ZP’ (CP)

of uniform operator norm C = p?/*=1) independent of h (see [Nagl5, Lemma
3.2]); accordingly there are maps T3¢ : Dy *"(O,C,) — A(B<,,)/J together
with their inverses. By [BK16, Corollary 4.4] the map

(Fo TI}E)_l: A/(BSCh) — D}Il(_an(oa(cp) (*)

is a monomorphism of C,-Banach spaces with operator norm at most ¢ = cop™"
where ¢g as defined above (and F = F; for sufficiently small 7).

Let us show that the Amice transform

T+ D *(0.Cp) = A(BL,,)/J ()

<pn

is norm-nonincreasing. First the map
h . h—
Ti' s DL (2, Cp) = A(Bg,, )

is norm-nonincreasing: On the right-hand side, by the maximum principle,
the supremum norm is equal to the Gauss norm. The character y,: x +—
* = % ony2"(7) is h-analytic if z is in B<,,. Thence the restriction from
all h-analytic functions to all h-analytic characters is injective and norm-
nonincreasing. By the ultrametric Hahn-Banach Theorem ([PGS10, Theorem
4.2.4]), the surjection D}~*"(0,C,) — Dy *(0,C,) induces an isometry for
the quotient-norm on the right-hand side. Let I be its kernel. We conclude that
T decomposes into the two norm-nonincreasing monomorphisms

D *"(0,C,) = D (0, C,) /T — A(BL,, )/
]

COROLLARY 4.5 (Temperedness under the Fourier Transform). Let (sp)nen be
the sequence of radii defined in Lemma 4.2. The natural maps

limp™" A'(B<g,)® ®o, Cp = Ak = lim A(B<q,)° ®o,, Cp (4.5)
h h

are monomorphisms of C,-Banach spaces.

Proof: The natural map

A = lim Fy(ABL,,)/)° ®o., Cp.
heN

is by Lemma 4.2 an isomorphism of C,-Banach spaces. We use it to prove that:
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e The left-hand map in (4.5) is a monomorphism: By Lemma 4.4, if A\ in
C,, satisfies v(Ag) = v(7(0))+p/(p—1)+1/e(¢—1) then the natural map
X p A (Beg,)® < Fu(ABL,,)/J)°

<pn
is a monomorphism of Oc, -Banach modules. Thus if hy in N satisfies
0o < pp, then the natural map

Ao p” MO A Bz, )° > Ful(ABE,,,, )/)° = FulABL,,)/J)°".

<Ph+hg

is a monomorphism of Oc,-Banach modules; thus, as projective limit of
all these maps running over h in N, the left-hand map in (4.5) is by
cofinality a monomorphism as well.

e The right-hand map in (4.5) is a monomorphism: By Lemma 4.3 the
natural map

Fi(ABL,,)/T)° = A(Bz,)".

<on

is a monomorphism; thus, as projective limit of all these maps running
over h in N; the left-hand map in (4.5) is a monomorphism as well. O

TEMPEREDNESS AS COEFFICIENT-WISE CONVERGENCE

We show that the temperedness condition of Corollary 4.5 on a power series
f in A} that bounds the values of f on the open unit disc is equivalent to a
condition that bounds the coefficients of f.

An unbounded norm on a vector space V is a map [|||: V — Rsg U {oo}
that satisfies all axioms of a norm (with the conventions for every ¢ > 0 that
00 >c,00ot+tec=00+c=o00and c-o00=00-c= o0 if ¢ # 0, respectively
0-00 =o00-0=0). Every unbounded norm restricts to a norm over its set of
bounded elements given by {v € V : ||| < co}. Two unbounded norms ||-||" and
|-|” on V are equivalent if they have the same set of bounded elements V4
and equivalent restricted norms on V9.

LEMMA 4.6 (Adaption of [Col03, Lemme V.3.19]). For p < 1 and s > 0, let

[[l ,,s be the unbounded norm on C,[[X]] given by

||Z aka||p7s :=sup{|ao|} U {Jar|p" /K 1 k=1,2,...}.
keN

Let (pn) be the sequence of increasing radii below 1 given by p, = PPt < 1.
Then the unbounded norms

1A = sup{p™" 1111, , i n € N}

and
1 T+S
IF1I" = sup{laol} U {|ar|/E"" 1k =1,2,...}

on C,[[X]] are equivalent.
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Proof: Let us fix f = Y a, X*. We show that there is C > 1, independent of
f, such that
I£1" < C-lIfIl (%)

Put v = ||f||' = sup{p~""[|f|,, s : » € N}. For every k and n,

laxloh /k* < o'
This inequality is in particular true for n = |log, k| where log,, - := log -/ logp.
Because n < log, k

|ak:| S ,Ulpnrksp;k S ,Ulkr-i-sp—k:logp pn

By definition of p,, and because log, k —1 < n,

—log, pn = log,(1/p)/p" <log,(1/p)/p' %" 1.

Together
|ak| < v/kr+splogp(1/p)(k/plogp k=1y < v/kr+5(1/p)p.

We conclude that if C':= (1/p)? then (x) holds.

Conversely we show that there is C' > 1, independent of f, such that
I < c- A" (%)

Let w > 0 and 0 < a < 1. The function & — z"a® on R.( has its maximum
at —u/loga with value e *(—u/loga)" (and if v = 0 then at 0 with value 1).
Hence, if u = r and a = p,, then

1£1l,,.s = sup{laol} U {larlph/k* + k =1,2,...}
< sup ({lao|} U {|an|/k""* 1k =1,2,...})e " (—r/log p,)"
= IF1"p"" [r/ (elog1/p))"
where the last equality holds by definition of ||-||"” and p,,.

We conclude that, putting C := [r/ (elog 1/p)]",we have p~""|| ||, . < eN(Fal
for every n in N. Therefore (xx) holds. g

Let henceforth r > d. For such r > d, we compute the middle term of the
inclusion chain (4.5) in Corollary 4.5:

LEMMA 4.7. Let ||-|| be the unbounded norm on C,[[X]] defined by

||Z ap X" = sup{lao|} U {|ax|/k"/* : k=1,2,...}.
keN

If r > d, then, in the notation of Corollary 4.5,

limp~"A'(B<g, ) ®oc, Cp = {f € Cyl[X]] : [If| < o0} =1im A(B<,)*®or, Cp-
h h
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Proof: We have to show that the unbounded norms ||-||" and ||-||” on C,[[X]]
given by

IFI" = sup{p~" "V fll, 1 :n €N} and [|If]|" = sup{p~""||f], :n € N}

h
are equivalent to ||-||. Let » > 0 and s € R. For v/ :=r/d and ¢'* := gé/p ,
7 g b € Ny = {07 |1y b€ N} = {p™ |1, : B € aN.
Therefore, because -], , is monotone in A, the unbounded norms
sup{p™""|lll, , *h €N} and  sup{p~""||-|, , : h € N},

are equivalent. We conclude that

e ||-||" is equivalent to |-|| by Lemma 4.6 for 5, 7/d — 1 and s = 1, and

e ||-|" is equivalent to ||-|| by Lemma 4.6 for ¢y, r/d and s = 0. O

Recall the Fourier transform F o 7 defined in Section 3, the isomorphism of
topological Cp-algebras given by composition of the (quotient map of the) Am-
ice transform 7 and the Schneider-Teitelbaum isomorphism F, given by

FoT: DE(0,C,) = AB<y)
g p(Po) + p(P)X + p(Po) X2 + - --

where Py, Pp,... are the Fourier polynomials (denoted by Py(€2:), Pi (),
...in [STO1]).

COROLLARY 4.8. Ifr > d, then the map
Dk (0,Cp,) == {all ZanX" in Cp[[X]] with {|a,|/n™/?} bounded }
s p(Po) + p(P)X + p(Pa) X2 + - -

is an isomorphism of C,-Banach spaces (where the right-hand side is equipped
with its natural norm ||3",, oy an X" := max{|ao|} U{|a,|/n"/?:n=1,2,...}).
Proof: The map is by [ST01, Lemma 4.6.9] the restriction of the isomorphism
of C,-Fréchet algebras

DE(0,Cp) = A(B<y)
to Dk (0O, Cp). Its image is A, and by Lemma 4.7 the C,-Banach space A} is
equal to the right-hand side. |

Remark 4.9. This isomorphism holds by [ST01, Corollary 3.7 ff.] over every
complete subfield E of C, that includes K and contains the transcendent num-
ber Q (of Equation (3.1)). If E does not necessarily contain {2 then, by the
descent condition of [ST01, Corollary 3.8], still Dk (O, E) is given by

Dk (O,E) = {all ZanX" in C,[[X]] with {|a,|/n"/?} bounded

and o(a,) =7(0)" - a,, for alln € Nand 0 € Gg}
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where Gg = Gal(E/E) is the absolute Galois group of E and 7: Gg — O* is
the character that defines the Galois action on Hom(G,G,,) = O.

5 DUuALIZING

For s > 0 put ¢§(N,C,) := {(an)nen: |an|n® — 0}. It is a Cp-Banach space for
the natural norm ||(a,)| = max{|a,|n®:n € N}.

THEOREM 5.1. Let Py, Py, ...denote the Fourier polynomials. If r > d, then
the map

/N, C,) == Cx (0, C,)
(an) — Z anPy,.

neN
is an isomorphism of topological K-vector spaces.

Proof: For s > 0, let ¢;(N,C,) = Homg, (c*(N, C,), C,) be the continuous dual
of ¢§(N,C,); it is explicitly given by

(N, Cp) = {(an)nen : {lan|/n® : n € N} bounded }

with its natural supremum norm. As topological K-vector space A is identical
to cz/d(N, Cp).
Consider the homomorphism of topological K-vector spaces given by

¢: /N, C,) = Ci(0,C,)
(an)neN — Z anby,.

It is well-defined, that is, > a, P, converges in Cxk (O, C,), because by [Sch02,
Lemma 9.9] for every n in N the norm ||-||,- is equivalent to its double dual
norm whose values on Py, P, ... are given by Corollary 4.8; for this, note that
the homomorphism

Y DR(0,C,) = /YN, Cp)
W = o o.

dual to ¢ sends p to the sequence u(Pp), u(P1),... That is, ¢ is the isomor-
phism given in Corollary 4.8. This isomorphism holds for the strong topology
of uniform convergence; consequently, for the bounded weak topology.

We conclude by Schikhof duality ([ST02, Theorem 1.2]) that ¢ is an isomor-
phism of topological K-vector spaces. In particular f in C (O, C,) if and only
if f(z) =) ,cnanPn(x) for all x € O with lan|n"/4 — 0 as n — occ. O

Remark (dual to Remark 4.9). This isomorphism holds for every complete sub-
field E of C, that includes K and contains 2. If E does not necessarily contain
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Q then C (O, E) is given by all functions f: O — C, of the form

f(z) = Z anPy(z) with |a,|n"/? =0 as n— oo
neN

such that o(a,) = 7(0)" - a, for all n € N and o € Gal(E/E).
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