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Abstract. Let K be a �nite extension of Qp of degree d and OK

its ring of integers; let Cp be the 
ompleted algebrai
 
losure of Qp.

The Fourier polynomials Pn : OK → Cp show that the topologi
al

algebra of all lo
ally analyti
 distributions µ : Cla(OK,Cp) → Cp is,

by µ 7→
∑
µ(Pn)X

n
, isomorphi
 to that of all power series in Cp[[X ]]

that 
onverge on the open unit dis
 of Cp.

Given a real number r ≥ d, we determine the power series that 
orre-

spond under this isomorphism to all distributions µ : Cr(OK,Cp) →
Cp that extend to all r-times di�erentiable fun
tions (as arisen in the

p-adi
 Langlands program): A fun
tion f : OK → Cp is r-times dif-

ferentiable if and only if f(x) =
∑
anPn(x) with |an|n

r/d → 0 as

n→∞.
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Introduction

Let Qp denote the p-adi
 numbers and Zp its ring of p-adi
 integers; let Cp

be the 
ompleted algebrai
 
losure of Qp and OCp
its ring of integers. Let

C0(Zp,Cp) be the Cp-Bana
h spa
e of 
ontinuous fun
tions f : Zp → Cp and

D0(Zp,Cp) its Cp-linear dual. Every 
ontinuous fun
tion f : Zp → OCp

an be

uniformly approximated by lo
ally 
onstant fun
tions fn ∈ OCp
[Zp/p

nZp] for
n ∈ N; that is, fn → f as n→∞ for the supremum norm. Dually,

D0(Zp,OCp
) ∼−→ OCp

[[Zp]]

is an isomorphism of topologi
al OCp
-algebras, where

• the multipli
ation on the left-hand side is the 
onvolution produ
t, and

• the right-hand side is the 
ompleted group algebra lim
←−n

OCp
[Z/pnZ] with

the proje
tive-limit topology.

The topologi
al group Zp is generated by a single element, say γ = 1, yielding

the Iwasawa isomorphism of topologi
al OCp
algebras

OCp
[[Zp]] ∼−→ OCp

[[X ]]

de�ned by γ + 1 7→ X . The 
omposed isomorphism

D0(Zp,OCp
) ∼−→ OCp

[[X ]]

µ 7→ µ
(
·
0

)
+ µ

(
·
1

)
X + µ

(
·
2

)
X2 + · · ·

sends a 
ontinuous linear map µ : C0(Zp,OCp
) → OCp

to the power series

whose 
oe�
ients are the values of µ on the Mahler polynomials, given by(
x
n

)
:= x(x − 1) · · · (x− n+ 1)/n!.

The Mahler polynomials

(
x
0

)
,

(
x
1

)
,

(
x
2

)
, . . . are an orthogonal basis of the Bana
h

spa
e C0(Zp,Cp); more generally, for ν in N, an orthogonal basis of all ν-times
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p-Adic Fourier Theory of Differentiable Functions 941

di�erentiable fun
tions: A fun
tion f : Zp → Cp is ν-times di�erentiable if and

only if its 
oe�
ients (an)n∈N ful�ll |an|n
ν → 0 as n→∞.

For a real number r ≥ 0, this di�erentiability 
ondition on the Mahler polyno-

mial 
oe�
ients underlaid in [BB10℄ the de�nition of a Cr-fun
tion f : Zp → Cp

for any r ∈ R≥0 by asking its Mahler 
oe�
ients (an)n∈N to obey |an|n
r → 0

as n→∞.

The notion of r-fold di�erentiability on Zp for a real r ≥ 0 emerged from the p-
adi
 Langlands 
orresponden
e for GL2(Qp) whi
h mat
hes unitary 
ontinuous

a
tions of GL2(Qp) on a, usually in�nite-dimensional, p-adi
 Bana
h spa
e V
with 
ontinuous a
tions of the absolute Galois group Gal(Qp/Q) of Qp on a 2-
dimensional p-adi
 ve
tor spa
e (see [Col14℄ as a starting point). Let us outline
the steps taken to 
onstru
t this 
orresponden
e in the prototypi
 
rystalline


ase (
f. [BB10℄):

1. The a
tion of GL2(Qp) on V is unitary if the norm of V is invariant under

the group a
tion; su
h a p-adi
 Bana
h spa
e V is 
onstru
ted as quotient

spa
e of r-times di�erentiable fun
tions (Cr-fun
tions for short) on two


opies of Zp for a real number r ≥ 0.

2. The 
ontinuous linear forms on all Cr-fun
tions on Zp embed by the

Ami
e transform (see [S
h99℄) into the ring A(B<1) of all power series
that 
onverge on the open unit dis
 B<1 of Cp. This transforms V into a

2-dimensional module D over A(B<1) on whi
h a 
hosen pair of matri
es

(ϕ,Γ) in GL2(Qp) a
ts 
ommutatively.

3. This a
tion of (ϕ,Γ) on D is by Fontaine's Theory of (ϕ,Γ)-modules

equivalent to an a
tion of Gal(Qp/Qp) on a 2-dimensional p-adi
 ve
tor
spa
e (see [FO14℄).

If K is a �nite extension of Qp then a p-adi
 Langlands 
orresponden
e for

GL2(K) yet has to be formulated. We �rst introdu
e r-fold di�erentiabil-

ity on the ring of integers OK of K. Re
ent ([Ber13℄) and up
oming work

([S
h13℄) indi
ates that above passage from the representation of GL2(Qp) to
that of Gal(Qp/Qp) is for GL2(K) best mimi
ked via Lubin-Tate Theory, used

in [ST01℄ to generalize the Ami
e transform on Zp to the Fourier transform

on OK: it identi�es the Cp-linear dual of the C
r
-fun
tions f : OK → Cp with

power series that 
onverge on B<1 by

µ 7→ µ(P0) + µ(P1)X ++µ(P2)X
2 + · · · ,

sending a 
ontinuous linear map µ : Cr(OK,Cp) → Cp to the power series

whose 
oe�
ients are the values of µ on 
ertain Fourier polynomials P0,

P1,. . . ((impli
itly de�ned in Se
tion 3). We 
hara
terize these power series and,

dually, all r-times di�erentiable fun
tions f : OK → Cp by their Fourier 
oe�-


ients :

Theorem (5.1'). Let d = [K : Qp] and r ≥ d. A fun
tion f : OK → Cp is

r-times di�erentiable if and only if f(x) =
∑

n∈N anPn(x) with |an|n
r/d → 0

as n→∞.
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942 Enno Nagel

Outline

In Se
tion 1 we de�ne r-fold di�erentiability on OK, as follows: We de
ompose

r = ν + ρ into an integer part ν in N and a fra
tional part ρ in [0, 1[. Then
ν-fold di�erentiability is de�ned by iterated divided di�eren
es and ρ-fold di�er-
entiability by a strengthened Hölder 
ontinuity 
ondition. A fun
tion is r-times

di�erentiable if its ν-th iterated divided di�eren
e is ρ-times di�erentiable.

In one variable, a fun
tion is r-times di�erentiable if and only if its Taylor

polynomial expansion 
onverges (Theorem 1.6).

This equivalen
e is in Se
tion 2 used to verify the Cau
hy-Riemann 
onditions

over K: A fun
tion f on OK is r-times di�erentiable as fun
tion of one variable

in K if and only if f is r-times di�erentiable as fun
tion of d = [K : Qp]
variables in Qp and the derivative of f is K-linear.

In Se
tion 3 we review Ami
e's and S
hneider and Teitelbaum's theories that

identify lo
ally analyti
 distributions (
ontinuous linear forms on all lo
ally

analyti
 fun
tions) with power series 
onverging on an open unit dis
. The

Ami
e transform gives an isomorphism T : Dla

Qp
(OK,Cp) ∼−→ A(Bd

<1) between
all lo
ally Qp-analyti
 distributions on OK = Zp⊕· · ·⊕Zp and all power series


onverging on the open polydis
 Bd
<1.

The Cau
hy-Riemann equations that ensure K-analyti
ity of su
h a distribu-

tion 
ut out an analyti
 variety R : ÔK →֒ Bd
<1. S
hneider and Teitelbaum


onstru
t via Lubin-Tate's Theory of formal OK-modules an analyti
 isomor-

phism F : B<1 /Cp
∼−→ ÔK. This yields the 
ommutative diagram

Dla

Qp
(OK,Cp)

��

∼

Ami
e

// A(Bd
<1)

F◦R

��
Dla

K
(OK,Cp)

∼ // A(B<1)

(∗)

where F ◦R denotes the homomorphism between rings of power series indu
ed

from R ◦ F .

In Se
tion 4 we study this diagram for Cr-distributions, the 
ontinuous linear

forms on all Cr-fun
tions. Let us denote by Ar
Qp

the image under the Ami
e

transform of the 
ontinuous dual Dr
Qp

(OK,Cp) of Cr(Zp ⊕ · · · ⊕ Zp,Cp). It

onsists of power series subje
t to a 
ertain boundedness 
ondition. We must


ompute the pullba
k Ar
K

:= F ◦R(Ar
Qp

) of Ar
Qp

under R ◦F : B<1
∼−→ ÔK →֒

Bd
<1. The restri
tion from all lo
ally analyti
 to all Cr-distributions turns the


ommutative diagram (∗) into

Dr
Qp

(OK,Cp)

��

∼

Ami
e

// Ar
Qp

F◦R

��
Dr

K
(OK,Cp)

∼ // Ar
K
.
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p-Adic Fourier Theory of Differentiable Functions 943

To 
ompute Ar
K
we show that the 
oe�
ient-wise boundedness 
ondition satis-

�ed by all power series f in Ar
Qp

is equivalent to a boundedness 
ondition on

the values of f on 
losed subvarieties whi
h exhaust ÔK, 
alled temperedness.

Temperedness translates well under the rigid isomorphism R ◦ F and allows

us to 
ompute Ar
K

= F ◦ R(Ar
Qp

) (where a te
hni
al key point is a uniform

bound on the operator norms of these rigid-analyti
 isomorphisms on all dis
s

of in
reasing radii below 1 in [BK16℄).

In the �nal Se
tion 5, we 
on
lude by S
hikhof duality (
f. [ST02℄) the Fourier


oe�
ients of Cr-fun
tions to obey the 
onvergen
e 
ondition of Theorem 5.1'.

Acknowledgements. I am indebted to Jean-François Dat, Vytas Pa²k	unas

and Tobias S
hmidt for independently bringing this problem up and giving

valuable remarks; to Pierre Colmez for 
orre
tions on an early draft; to Chris-

tian Kappen, visiting resear
her at the Instituto de Matemáti
a da UFAL, for

his 
ontributions towards rigid-analyti
 norm 
omparisons; to João Pedro dos

Santos for suggesting various 
lari�
ations; to the referees for their meti
ulous

proofreading.

1 Approaches to fractional differentiability

We de�ne r-fold di�erentiability for a real number r ≥ 0. For this, write r =
ν + ρ ≥ 0 with ν ∈ N and ρ ∈ [0, 1[. We �rst de�ne ν-fold di�erentiability

by iterated divided di�eren
es, then ρ-fold di�erentiability by a strengthened

Hölder-
ontinuity 
ondition. Finally a fun
tion is r-times di�erentiable if its

ν-th iterated divided di�eren
e is ρ-times di�erentiable.

Iterated linear differentials

The non-Ar
himedean di�erentiability 
ondition is more rigorous than the or-

dinary one to 
ompensate the absen
e of an analogue of the intermediate value

theorem over a non-Ar
himedean �eld, due to its total dis
onne
tedness:

Let V be a �nite-dimensionalK-ve
tor spa
e and X an open subset of V . Let E
be aK-Bana
h spa
e. The fun
tion f : X → E is di�erentiable at a inX if there

is a linear map A : V → E su
h that for every ǫ > 0 there is a neighborhood U
around a inside X where

‖f(x+ h)− f(x)−Ah‖ ≤ ǫ‖h‖ for all x+ h, x in U.

Cν-functions for a natural number ν

The following, equivalent, di�erentiability 
ondition requires a 
hoi
e of 
o-

ordinates on V , but 
an be iterated, that is, applied again to the obtained

di�erential to de�ne di�erentiability of higher orders. We �x a basis e1, . . . ,ed

of V and by this basis identify V with the d-fold dire
t sum K⊕ · · · ⊕K. Let

X be an open subset of V .
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944 Enno Nagel

Definition. The di�erential f ]1[(x+ h, x) of f at x+ h, x in X with h ∈ K∗d

is the K-linear map A : V → E determined by

A ·hkek = f(x+h1e1+ · · ·+hk−1ek−1 +hkek)− f(x+h1e1+ · · ·+hk−1ek−1)

for all k = 1, . . . , d. The fun
tion f is a C1-fun
tion if f ]1[
extends to a 
ontin-

uous fun
tion f [1] : X ×X → HomK(V,E).

Be
ause X is open, X ]1[ = {(x + h, x) ∈ X2 : h ∈ K∗d} is dense inside X [1]
,

and so f [1]
is uniquely determined by f .

Starting from this de�nition, we obtain a notion of ν-fold di�erentiability for

ν ≥ 0 as follows: Let f ∈ C1(X,E) and let us regard the fun
tion f [1]
: Its

domain X ×X is again in
luded in a �nite dimensional K-ve
tor spa
e V × V
with an ordered basis, and its 
odomain HomK(V,E) is again K-Bana
h spa
e.

So we 
an de�ne the iterated di�erential by the di�erential of f [1]
. That is, f

is twi
e di�erentiable if f [1]
exists and

f ]2[ = (f [1])]1[ : (X ×X)]1[ → HomK(V × V,HomK(V,E))

extends to a 
ontinuous fun
tion f [2]
on (X ×X)[1].

Definition. Let ν in N. The fun
tion f : X → E is a Cν+1
-fun
tion

• if f is a Cν -fun
tion, and

• if X = X [ν]
, V = V [ν]

, E = E[ν]
and f = f [ν]

then f]1[ extends to a


ontinuous fun
tion f[1] : X× X→ HomK(V×V,E).

Like f [1]
, also f [ν]

is uniquely determined by f .

Cρ-functions for ρ in [0, 1[

Let ρ in [0, 1[. Roughly, ρ-fold di�erentiability is stri
ter Hölder-
ontinuity. Let

X be a subset of a �nite-dimensional K-ve
tor spa
e V and let E be a non-

Ar
himedean K-Bana
h spa
e.

Definition 1.1. The fun
tion f : X → E is Cρ at a in V if for every ε > 0,
there is a neighborhood U around a inside V su
h that

‖f(x)− f(y)‖ ≤ ε · ‖x− y‖
ρ

for all x, y in X ∩ U.

The fun
tion f : X→ E is a Cρ-fun
tion if it is Cρ at every a in X.

The above 
ondition on a in V is nonvoid only if a is in the 
losure of X. This

is the 
ase, for example, when X is dense inside V.

The fra
tional divided di�eren
e |f ]ρ[| of f is de�ned by

|f ]ρ[|(x, y) := ‖f(x)− f(y)‖/‖x− y‖
ρ

for all distin
t x, y in X.

The fun
tion f : X → E is a Cρ-fun
tion if and only if |f ]ρ[| extends to a


ontinuous fun
tion |f [ρ]| on all of X × X that vanishes on the diagonal of

X × X. Be
ause X is open, the domain of |f ]ρ[| is dense inside X × X and f
determines |f [ρ]| uniquely. If X is 
ompa
t, then we 
an endow the K-ve
tor

spa
e of Cρ-fun
tions by the natural norm ‖f‖Cρ := max{‖f‖sup, ‖ |f
[ρ]| ‖sup}.
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p-Adic Fourier Theory of Differentiable Functions 945

Cr-functions for r ≥ 0

Let r = ν + ρ ≥ 0 with ν ∈ N and ρ ∈ [0, 1[. We de�ne r-fold di�erentiability

of a fun
tion f by requiring its ν-th iterated divided di�eren
e f ]ν[
to be Cρ

everywhere.

Definition 1.2. Let X be an open subset of V . The fun
tion f : X → E is a

Cr-fun
tion if f is a Cν-fun
tion and f [ν]
is a Cρ-fun
tion.

Let X be 
ompa
t. Be
ause f [n]
for n = 0, . . . , ν and |F [ρ]| for F = f [ν]

are

uniquely determined by f , the norm ‖·‖Cr on all Cr-fun
tions f : X → E given

by ‖f‖Cr := max{‖f [0]‖sup, . . . , ‖f
[ν−1]‖sup, ‖f

[ν]‖Cρ} is well-de�ned.

Iterated divided differences in one variable

The pre
eding de�nition is well suited for 
on
eptual questions like that about

base 
hange in Se
tion 2. For 
omputations, the textbook de�nition (see [S
h84,

Se
tion 26�.℄) is apter.

S
hikhof observed that the divided di�eren
e f ]1[
is a symmetri
 fun
tion; as

su
h, it is di�erentiable if and only if it is partially di�erentiability in its �rst


oordinate. This redu
es, with in
reasing degree of di�erentiability ν, the ex-

ponential growth in the number of variables of f ]ν[
to a linear growth in the

number of variables of a divided di�eren
e f>ν<
, that we de�ne below:

Definition. Let X be a subset of K and f : X → E. For ν ∈ N put

X<ν> = X{0,...,ν}
and X>ν< = {(x0, . . . , xν) : if i 6= j then xi 6= xj}.

The ν-th divided di�eren
e f>ν< : X>ν< → E of a fun
tion f : X → E is

indu
tively given by f>0< := f and for n ∈ N and (x0, . . . , xν) ∈ X
>ν<

by

f>ν<(x0, . . . , xν) :=
f>ν−1<(x0, x2, . . . , xν)− f

>ν−1<(x1, x2, . . . , xν)

x0 − x1
.

The following de�nition for ρ = 0 is given in [S
h84, Se
tion 29℄, where integral

di�erentiability (that is, for ν in N) is de�ned. That is, a fun
tion f is ν times

di�erentiable if f>ν<
extends to a 
ontinuous fun
tion on X<ν>

.

Definition 1.3. Fix r = ν + ρ ∈ R≥0. Let X be a subset of K and f : X → E.

• The fun
tion f is Cr (or r-times di�erentiable) at a point a ∈ X if

f>ν< : X>ν< → E is Cρ at ~a = (a, . . . , a) ∈ X<ν>
.

• The fun
tion f is a Cr-fun
tion (or an r-times di�erentiable fun
tion) if

f is Cr at all a in X . Let Cr(X,E) denote all Cr-fun
tions f : X → E.

Note that this di�erentiability 
ondition is, even for higher orders, given point-

wise. If a is an a

umulation point then the valueDνf(a) to whi
h f>ν<
extends

at ~a, the derivative of f at a, is uniquely determined. If f (ν)
is the ν-fold

ordinary derivative of f then ν! Dνf = f (ν)
([S
h84, Theorem 29.5℄).
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946 Enno Nagel

Let X 
ontain no isolated point. Then f is a Cr-fun
tion if and only if f>ν<

extends to a unique Cρ-fun
tion f<ν> : X<ν> → E ([Nag11, Proposition 2.5℄).

Every r-times di�erentiable fun
tion is (by [Nag11, Lemma 2.3℄) in parti
ular

s-times di�erentiable for every nonnegative s ≤ r. Then
e, if X is 
ompa
t

without isolated points, then we 
an endow the K-ve
tor spa
e of Cr-fun
tions
with the norm

‖f‖Cr := max{‖f [0]‖sup, . . . , ‖f
[ν−1]‖sup, ‖f

[ν]‖Cρ}.

This norm is equivalent to that of De�nition 1.2 by [Nag16, Proposition A.2℄.

Taylor Polynomials

We give a di�erentiability 
ondition of only two arguments by Taylor polyno-

mials (whereas that by iterated linear di�erentials respe
tively iterated divided

di�eren
es have an exponential respe
tively linear growth in the number of

variables for in
reasing degree of di�erentiability ν).
Let V be a normed K-ve
tor spa
e. Let Symn

K
(V,E) be all 
ontinuous sym-

metri
 K-multilinear maps M : V × · · · × V → E of n variables. These form a

non-Ar
himedean K-Bana
h spa
e by the operator norm

‖M‖ = sup{‖M(x)‖ : x ∈ V n
with ‖x‖ ≤ 1}

whi
h is the supremum of M on the unit ball of V × · · · × V with respe
t to

the produ
t norm ‖v1, . . . , vn‖ = max{‖v1‖, . . . , ‖vn‖}.

Definition

The following de�nition generalizes that of onefold di�erentiability at the be-

ginning of Se
tion 1 to a higher di�erentiability degree r ≥ 0.

Definition 1.4. Let X be an open subset of V . The fun
tion f : X → E is

a Cr
T

-fun
tion if there are fun
tions Dnf : X → Symn(V,E) for n = 0, 1, . . . , ν
and R

vf : X ×X → E su
h that

f(x+ h) =
∑

n=0,...,ν

Dnf(x)(h, . . . , h) + R

νf(x+ h, x)

and for every a in X and ε > 0, there is a neighborhood U around a inside X
su
h that

‖Rνf(x+ h, x)‖ ≤ ε‖h‖
r

for all x+ h, x in U .

The norm

Let Cr
T

(X,E) be the K-ve
tor spa
e of all Cr
T

fun
tions f : X → E. By [Nag16,

Corollary 2.5℄ the fun
tions D0f,D1f, . . . ,Dνf are uniquely determined and

di�erentiable of degree r, r − 1, . . . , ρ. Hen
e
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p-Adic Fourier Theory of Differentiable Functions 947

1. in parti
ular, the fun
tions D0f,D1f, . . . ,Dνf are 
ontinuous, and

2. the remainder R

νf of the Taylor polynomial up to degree ν 
onverges as

in De�nition 1.4 if and only if the fun
tion ∆rf , de�ned by

∆rf(x, y) = ‖Rνf(x, y)‖/‖x− y‖
r

for all distin
t x, y in X,

extends to a 
ontinuous fun
tion |∆rf | : X ×X → R≥0 that vanishes on

the diagonal.

Thus if X is a 
ompa
t open subset of V then there is a well-de�ned norm ‖·‖Cr
T

on Cr
T

(X,E) given by ‖f‖Cr
T

:= max{‖D0f‖sup, . . . , ‖D
νf‖sup}∪{‖ |∆

rf | ‖sup}.

Necessity

Every r-times di�erentiable fun
tion 
an be lo
ally approximated by its Taylor

polynomial expansion up to degree ν:

Proposition 1.5 ([Nag16, Corollary 3.6℄). We have Cr(X,E) ⊆ Cr
T

(X,E) and
if X is a 
ompa
t open subset of V then the in
lusion Cr(X,E) →֒ Cr

T

(X,E) is
a monomorphism of normed ve
tor spa
es.

Sufficiency in one variable

For a fun
tion f of one variable (and also of many variables in Qp by [Nag16,

Se
tion 3℄) the 
onvergen
e 
ondition on the rest term of its Taylor polynomial

of degree ν is su�
ient for the r-fold di�erentiability of f .

Theorem 1.6 ([Nag11, Lemma 2.27, Corollary 2.25 and 2.32℄). Let X be an

open subset of E and f : X → E. Then f : X → E is a Cr-fun
tion if and only

if there are fun
tions D0f,D1f, . . . ,Dνf : X → E and R

νf : X ×X → E su
h

that

f(x+ y) = D0f(x) + D1f(x)y + · · ·+Dνf(x)yν + R

νf(x+ y, x)

and for every a in X and ε > 0 exists a neighborhood U around a inside X
where

|Rνf(x+ y, x)| ≤ ε|y|
r

for all x+ y, x ∈ Uε.

Remark. De Ieso de�nes in [DI13℄ an r-times di�erentiable fun
tion over the

unit ball of a �nite extension F of Qp via a Taylor polynomial expansion by

the �eld embeddings of F into its normal 
losure. His normed spa
e of Cr-
fun
tions equals by [Nag16, Theorem 4.7℄ that of CrQp

-fun
tions as de�ned next

(in Se
tion 2).
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2 Cauchy-Riemann equations

The di�erentiability 
ondition on a fun
tion f depends on the �eld of de�nition

K of the ve
tor spa
e that embra
es its domain and 
odomain. The bigger

the base �eld K, the more restri
tive the 
ondition on the derivative of f to


ommute with the s
alar multipli
ation in K, and so the more restri
tive the

di�erentiability 
ondition on f . To emphasize this dependen
y on the base �eld

K, let a Cr
K
-fun
tion for r ≥ 1 denote an r-times di�erentiable fun
tion whose

domain and 
odomain have �eld of de�nition K.

Let L be a non-Ar
himedean �eld and K a �nite extension of L. Let X be

an open subset of K, let E be a Bana
h spa
e over K and f : X → E. We

show that if f is a Cr
L
-fun
tion and additionally all its di�erentials 
ommute

with the s
alar multipli
ation in K then f is a Cr
K
-fun
tion (in analogy to R

and its unique algebrai
 extension C where these additional 
onditions on the

di�erentials are 
alled the Cau
hy-Riemann 
onditions).

Let V be a K-ve
tor spa
e. We embed K into the L-ve
tor spa
e EndL(V ) of
all L-linear endomorphisms over V by λ 7→ λ·. An L-multilinear map Φ: V ×
· · · × V → E is K-multilinear if Φ(. . . , λ·, . . .) = λ · Φ for every λ ∈ K. Let

Multn
L
(V,E) denote all L-multilinear maps of n variables in V that take values

in E.

Proposition 2.1. Let f : X → E be a Cr
L
-fun
tion. If for every x in X the

maps D1f(x), . . . ,Dνf(x) are K-multilinear, then f is a Cr
K
-fun
tion.

Proof: Let us assume f ∈ Cr
L
(X,E) and Dnf(x) ∈Multn

K
(K,E) for n = 0,. . . ,ν.

By Proposition 1.5

f(x+ h) =
∑

i=0,...,ν

Dif(x)(h, . . . , h) + R

νf(x+ h, x) for all x+ h, x ∈ X,

su
h that for every a ∈ X and ε > 0 there is a neighborhood U around a where

|Rνf(x+ h, x)| ≤ ε|h|
r

for all x, y ∈ U.

Let us write h ∈ K as h = h1e1 + · · ·+ hded with {e1 = 1, e2, . . . , ed} a basis of
the L-ve
tor spa
e K. For i = 0, . . . , ν, by K-multilinearity of Dif ,

Dif(x)(h, . . . , h) =
∑

j1,...,ji∈{1,...,d}

Dif(x)(1, . . . , 1)hj1 · · ·hji · ej1 · · · eji

= Dif(x)(1, . . . , 1)(h1e1 + · · ·+ hded)
i

Putting Di
K
f(x) = Dif(x)(1, . . . , 1), we therefore 
on
lude that there are fun
-

tions D0
K
f, . . . ,Dν

K
f : X → E and R

νf : X ×X → E su
h that

f(x+ h) =
∑

i=0,...,ν

Di
K
f(x)hi + R

νf(x+ h, x) for all x+ h, x ∈ X,
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and for every a ∈ X and ε > 0 exists a neighborhood U around a inside X
where

|Rνf(x+ h, x)| ≤ ε|h|
r

for all x+ h, x ∈ U.

This 
onvergen
e 
ondition on the remainder of the Taylor expansion of f up

to degree ν is by Theorem 1.6 above equivalent to f ∈ Cr
K
(X,E). �

Lemma 2.2. Let f : X → L be a Cr
L
-fun
tion. Given x in X, if D1f(x) is

K-linear, then D2f(x), . . . ,Dνf(x) are K-multilinear.

Proof: Let λ in K. We assume that λ · D1f(x) = D1f(x) ◦ λ where on the

right-hand side we regard λ as L-linear endomorphism over K.

Let n = 2, . . . , ν. Be
ause Dnf(x) ∈ Multn
L
(K,E) is symmetri
, it su�
es to

show that Dnf(x) is K-linear in the last argument, that is,

Dnf(x)(. . . , λ·) = λ ·Dnf(x).

By our assumption D1f : X → HomL(K,E) and by K-linearity of the di�eren-

tial D1 : C1(X,E)→ C0(X,HomL(K,E))

Dnf(x)(·, . . . , ·, λ·) = Dn−1(D1f(λ·))(x)

= (Dn−1(λ ·D1f))(x) = λ ·Dn−1(D1f)(x) = λ ·Dnf(x).�

Corollary 2.3. Let f ∈ Cr
L
(X,E) and D1f(x) ∈ HomK(K,E) for all x ∈ X.

Then f ∈ Cr
K
(X,E).

Proof: By Proposition 2.1 and Lemma 2.2. �

3 The Fourier basis

Let us �rst explain the Ami
e transform on Zp, followed by the Fourier trans-

form as its analogue on a �nite extension O of Zp.

The Amice transform

Let C0(Zp,OCp
) denote all 
ontinuous fun
tions f : Zp → OCp

and

let D0(Zp,OCp
) be its topologi
al dual of all 
ontinuous linear maps

µ : C0(Zp,OCp
)→ OCp

.

Every 
ontinuous fun
tion f : Zp → OCp
is uniformly approximated by lo
ally


onstant fun
tions fn in OCp
[Z/pnZ]; dually, the natural map

D0(Zp,OCp
) ∼−→ OCp

[[Zp]]

is an isomorphism of topologi
al OCp
-algebras, where

• the left-hand side is equipped with the 
onvolution produ
t and the topol-

ogy of point-wise 
onvergen
e, and
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• the right-hand side is the 
ompleted group algebra lim
←−
OCp

[Z/pnZ] with
the proje
tive-limit topology.

The topologi
al group Zp is generated by a single element, say γ = 1, yielding

the Iwasawa isomorphism of topologi
al algebras

OCp
[[Zp]] ∼−→ OCp

[[X ]]

de�ned by γ 7→ 1 +X . The 
omposed isomorphism

D0(Zp,OCp
) ∼−→ OCp

[[X ]]

µ 7→ µ
(
·
0

)
+ µ

(
·
1

)
X + µ

(
·
2

)
X2 + · · ·

sends a 
ontinuous linear map µ : C0(Zp,OCp
)→ OCp

to the power series whose


oe�
ients are its values µ(
(
·
0

)
), µ(

(
·
1

)
), . . . on the Mahler polynomials, given by(

x
n

)
:= x(x − 1) · · · (x− n+ 1)/n!.

We apply this isomorphism to all lo
ally analyti
 fun
tions, that is, fun
tions

that are lo
ally given by a 
onvergent power series (of, possibly, many variables):

Let K be a �nite extension of Qp of degree d and O its ring of integers. Let

ClaQp
(O,Cp) be the Fré
het spa
e of all Qp-lo
ally analyti
 fun
tions f : O →

Cp, that is, fun
tions that are lo
ally given by a 
onvergent power series of

d variables on an open subset of O = Zp ⊕ · · · ⊕ Zp. The multivariate Ami
e

transform ([Ami64, Corollaire 10.3.(a)℄) is the isomorphism of topologi
al Cp-

algebras

T : Dla

Qp
(O,Cp) ∼−→ A(Bd

<1)

µ 7→
∑
µ
(
·
n

)
Xn

between all 
ontinuous linear maps µ : ClaQp
(O,Cp) → Cp and all power series

of d variables over Cp that 
onverge on the open unit dis
 Bd
<1 of C

d
p; here and

hen
eforth for x = (x1, . . . , xd) and n = (n1, . . . , nd) we denote

(
x

n

)
:=

(
x1

n1

)
· · ·

(
xd

nd

)
and x

n := xn1 · · ·xnd .

To 
on
lude, by evaluation on the Mahler polynomials, the 
ontinuous linear

forms

• on C0(Zp,Cp) 
orrespond to all power series that are bounded, and

• on Cla(Zp,Cp) 
orrespond to all power series that 
onverge on B<1.

The Fourier transform

Let K be a �nite extension of Qp of degree d and O its ring of integers. The

Fourier polynomials P0, P1, . . . parallel the Mahler polynomials

(
·
0

)
,
(
·
1

)
, . . . by
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the Fourier isomorphism of topologi
al algebras Dla

K
(O,Cp) ∼−→ A(B<1) be-

tween all distributions, 
ontinuous linear maps µ : Cla(O,Cp) → Cp on all lo-


ally analyti
 fun
tions f : O → Cp, and all power series that 
onverge on the

open unit dis
 B<1 of Cp. Let

I = kerDla

Qp
(O,Cp)→ D

la

K
(O,Cp)

be the kernel of the 
ontinuous linear map that restri
ts a distribution from

all Qp-lo
ally analyti
 to all K-lo
ally analyti
 fun
tions f : O → Cp. Let J :=
T (I) be its image under the Ami
e transform. By the Hahn-Bana
h Theorem

([PGS10, Theorem 4.2.4℄) the indu
ed quotient map of the Ami
e transform

T : Dla

K
(O,Cp) ∼−→ A(Bd

<1)/J

is an isomorphism. The main result Theorem 3.6 of [ST01℄ establishes the

rigid-analyti
 S
hneider-Teitelbaum isomorphism F : B<1 → Ô between a�-

noid algebras

F : A(Bd
<1)/J

∼−→ A(B<1)

(where in op. 
it. (F,F) is denoted by (κ, κ∗)). The Fourier transform F ◦ T
is obtained by 
omposing the Ami
e transform with the S
hneider-Teitelbaum

isomorphism, yielding the isomorphism of topologi
al Cp-algebras

Dla

K
(O,Cp) ∼−→ A(B<1)

µ 7→
∑
µ(Pn)X

n

given by evaluation on the Fourier polynomials P0, P1, . . . (denoted by P0(Ω·),
P1(Ω·) in [ST01℄). To de�ne P0, P1, . . .,

1. we parametrize the set Ô of all lo
ally K-analyti
 
hara
ters κ : O → C∗
p

by the open unit dis
 B<1, and

2. obtain by restri
tion from Cla(O,Cp) onto Ô (and this parametrization)

an inje
tive map

Dla

K
(O,Cp)→ { all f : B<1 → Cp},

whose image is by the Ami
e transform shown to 
onsist of all analyti


fun
tions on B<1.

The character variety

We will des
ribe the S
hneider-Teitelbaum isomorphism, point-wise, as rigid-

analyti
 map between the variety Ô of all K-analyti
 
hara
ters and the open

unit dis
 B<1 obtained from Lubin-Tate Theory. Via the Ami
e transform, it

will impli
itly de�ne the Fourier polynomials P0, P1, P2 . . .
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Let Ẑd
p be the set of all Qp-analyti
 
hara
ters χ : Z

d
p → C∗

p parametrized by

Bd
<1

∼−→ Ẑd
p

z 7→ χz := [x 7→ (1 + z)x :=
∑(

x

n

)
zn]

(see [S
h99, Se
tion 2℄). We have T (µ)(z) = µ(χz)

Let Ô be the set of all K-analyti
 
hara
ters κ : O → C∗
p. We will de�ne an

analogous rigid-analyti
 parametrization

F : B<1
∼−→ Ô

z 7→ κz : O → C∗
p

so that F ◦ T (µ)(z) = µ(κz). This 
hara
ter κz will be de�ned as 
omposition

of an orbit map on a formal group with a translated group homomorphism.

Formal O-modules

A formal group G is a 
ommutative one-dimensional formal group law over O,
that is, a power series G(X,Y ) in O[[X,Y ]] su
h that

• (asso
iativity) G(X,G(Y, Z)) = G(G(X,Y ), Z),

• (
ommutativity) G(X,Y ) = G(Y,X), and

• (identity element) G(X,Y ) ≡ X + Y+ summands of higher degree.

An endomorphism of a formal group G is a power series g(X) in O[[X ]] su
h
that

g(G(X,Y )) = G(g(X), g(Y )).

A formal O-module is a formal group G together with a ring homomorphism

O → End(G).
Let G

m

and G
a

be the multipli
ative and additive formal group (over Z) given

by the group laws G(X,Y ) = XY +X + Y and G(X,Y ) = X + Y . Let us add
a subs
ript (su
h as OCp

, Qp or Cp) to indi
ate the base extension of a formal

group (to OCp
,Qp or Cp).

Every formal group G is by its logarithm logG : GQ
∼−→ G

a

|Q isomorphi
 to the

additive formal group overQ. Let exp: G
a

|Q→ Gm |Q be the exponential map.

(See [Lan78, Chapter 8℄ for the de�nition of either map and a more thorough

dis
ussion of formal groups, in parti
ular formal O-modules.)

Let T ′(G) = Hom(GOCp
,G

m

|OCp
) be all formal group homomorphisms between

GOCp
and G

m

|OCp
. Every t′ : GOCp

→ G
m

|OCp
in T ′(G) de
omposes over Cp as

t′ : GCp

logG
−→ G

a

|Cp
Ω′·
−→ G

a

|Cp
exp
−→ G

m

|Cp (3.1)

for some Ω′
in OCp

. Consequently T ′(G) is a free OCp
-module of rank one.
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To every uniformizer π in O 
orresponds (after base extension to the 
ompletion

of the maximally unrami�ed extension of O) a (unique) formal O-module Gπ
([LT65℄). For example, p in Zp 
orresponds to G

m

.

Let us hen
eforth �x a uniformizer π in O, the formal O-module G that 
or-

responds to π and a generator t′0 of T ′(G) (and its 
orresponding s
alar Ω in

OCp
).

Orbits under formal group actions

We now re
all how B<1 parametrizes all lo
allyK-analyti
 C∗
p-valued 
hara
ters

on O ([ST01, Se
tion 3℄): The power series over O that de�nes a formal group

law (su
h as G or G
m

) 
onverges on B<1 and turns B<1 into a group that we

denote by the formal group law (su
h as G or G
m

). Given a in O, let [a] in
End(G) be the formal O-a
tion of a on G.
We atta
h to z ∈ G = B<1 its orbit map oz : O → G given by a 7→ [a]z. Then

O
oz→ G

t′0→ G
m

·+1
→ C∗

p

a 7→ [a]z 7→ t′0([a]z) 7→ t′0([a]z) + 1

is a lo
ally K-analyti
 
hara
ter κz : O → C∗
p (where · + 1 translates between

the neutral elements 0 and 1 of G
m

and C∗
p). The obtained map

F : B<1
∼−→ Ô

z 7→ κz

is a bije
tion between B<1 and the set Ô of all K-analyti
 
hara
ters on O with

values in Cp ([ST01, Proposition 3.1℄).

We re
all that Ô is 
ut out of Ẑd
p by the Cau
hy-Riemann equations ([ST01,

Lemma 1.1℄) and is the rigid-analyti
 subvariety of Bd
<1 of vanishing ideal J ;

the S
hneider-Teitelbaum isomorphism is a rigid-analyti
 group homomorphism

between G and Ô.

The Fourier basis

Expressed in power series, Equation (3.1) says

ft′
0
(Z) = exp(Ω logG(Z)) (3.2)

where ft′
0
(Z) is the formal power series that de�nes t′0. Let Pm(Y ) in K[Y ]

(denoted by Pn(Ω·) in [ST01℄) be the polynomial de�ned by the formal power

series expansion

exp(Y logG(Z)) =
∑

Pn(Y )Zn.

Let f(X) =
∑

n≥0 anX
n
in A(B<1) and let µ : Cla(O,Cp) → Cp be its image

under F ◦ T . Then µ(Pn) = 1/n!(dnf/ dXn)(0) = an ([ST01, Lemma 4.6.9℄).
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4 Differentiability as boundedness over the open unit disc

Let us �x a real number r ≥ 0. In this Se
tion 4 we 
hara
terize the Cr-
distributions, that is, the 
ontinuous linear maps µ : Cr(O,Cp) → Cp, by a

bound on their values on the Fourier polynomials P0, P1, . . .

Strategy

Cauchy-Riemann equations

Let L = Qp (and K as before a �nite extension of L). If f is an r-times

di�erentiable fun
tion over L, then f is r-times di�erentiable overK if and only

if f satis�es the Cau
hy-Riemann equations (by Corollary 2.3) and likewise if f
is a lo
ally analyti
 fun
tion (by [ST01, Lemma 1.1℄). We obtain a 
ommutative

diagram of restri
tion maps

Dla

L
(O,Cp) // Dla

K
(O,Cp)

Dr
L
(O,Cp)

OO

// Dr
K
(O,Cp).

OO

(4.1)

where we 
laim that

(i) the arrows pointing upwards are inje
tions, and

(ii) those pointing rightwards surje
tions (whi
h indu
e isometries for the

quotient norms).

Ad (i): The set of all lo
ally polynomial (in parti
ular all lo
ally analyti
) fun
-

tions is by [Nag11, Proposition 3.30℄ dense inside Cr(O,Cp); dually, the
restri
tion map

Dr(O,Cp)→ D
la(O,Cp)

µ 7→ µ
↾Cla(O,Cp)

over all 
ontinuous linear maps µ : Cr(O,Cp)→ Cp is inje
tive. Be
ause

this holds for Cr-fun
tions over an arbitrary non-Ar
himedean �eld, su
h

as L or K, and of an arbitrary number of variables, su
h as [K : L], we
obtain inje
tivity of both, left and right, arrows.

Ad (ii): This follows from the Hahn-Bana
h Theorem for non-Ar
himedean lo
ally


onvex ve
tor spa
es of 
ountable type ([PGS10, Theorem 4.2.4℄).

The Amice transform

The Ami
e transform T turns the 
ommutative diagram (4.1) between distri-

bution spa
es into one between spa
es of formal power series subje
t to 
ertain
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onvergen
e 
onditions:

A(Bd
<1) // A(Bd

<1)/J

Ar
L

OO

// Ar
L
/J ∩ Ar

L
,

OO

where J = T (I) is the image of the ideal generated by the Cau
hy-Riemann

equations and Ar
L
= Dr

L
(O,Cp).

The Schneider-Teitelbaum isomorphism

The main result Theorem 3.6 of [ST01℄ is a rigid-analyti
 isomorphism, the

S
hneider-Teitelbaum isomorphism,

(F,F) : (B<1,A(B<1)) ∼−→ (Ô,A(Bd
<1)/J)

between the variety Ô of all K-analyti
 
hara
ters and the open unit dis
 B<1.

We put

Ar
K

:= F(Ar
L
/J ∩ Ar

L
).

The Cr-functions under the Fourier transform

The following 
ommutative diagram re
olle
ts all homomorphisms that have

�gured in our above dis
ussion:

Dla

K

∼ // Dla

L
/I

∼ // A(Bd
<1)/J

∼ // A(B<1)

Dla

L

^^❂
❂
❂
❂
❂
❂
❂

;;✈✈✈✈✈✈✈✈✈
∼ // A(Bd

<1)

99sssssssss

Dr
K

∼ //

OO

Dr
L
/I ∩ Dr

L

OO

∼ // Ar
L
/J ∩ Ar

L

OO

∼ // Ar
K

OO

Dr
L

OO

__❄
❄
❄
❄
❄
❄
❄

::✉✉✉✉✉✉✉✉✉
∼ // Ar

L

99rrrrrrrrrrr

OO

Our aim is to des
ribe Dr
K
(O,Cp), all 
ontinuous linear maps µ : Cr(O,Cp)→

Cp, by their values µ(P0), µ(P1), . . . on the Fourier polynomials. These values

are the 
oe�
ients of the power series in Ar
K
, the image of Dr

K
(O,Cp) under

the isomorphism given by the bottom rear arrows.

To prove

Ar
K

=

{
∑

n∈N

anX
n : {|an|/n

r/d} is bounded

}
(4.2)
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(that is, Corollary 4.8), we take three steps, ea
h 
arried out in its proper

subse
tion:

1. Be
ause above diagram 
ommutes, Ar
K

is the image of Ar
L

under the

epimorphism

A(Bd
<1) ։ A(B

d
<1)/J = A(Ô) ∼−→ A(B<1).

Given a power series in A(Bd
<1), show that it is in Ar

L
if and only if it is

tempered, that is, its values over Bd
<1 are bounded in a pres
ribed manner.

2. Apply the S
hneider-Teitelbaum isomorphism F : Ô ∼−→ B<1 to this tem-

peredness 
ondition that singles out Ar
L
/J ∩ Ar

L
from A(Bd

<1)/J .

3. Show that the (temperedness) 
ondition on the values over B<1 ob-

tained under the S
hneider-Teitelbaum isomorphism is equivalent to the


oe�
ient-wise boundedness 
ondition (4.2).

Differentiability as analytical temperedness

We des
ribe the power series in Ar
L
/J∩Ar

L
by a bound on their values on larger

and larger 
losed dis
s inside the open unit dis
. For this we �rst des
ribe the

distributions in Dr
K
(O,Cp) by their values on lo
ally analyti
 fun
tions, and

afterwards apply the Ami
e transform.

For a sub�eld F of Cp let v : F
∗ → Q be the additive valuation standardized by

v(p) = 1, and |x| = p−v(x)
for x in F∗

. A ball of radius δ > 0 of F is a subset

of F ea
h two of whose elements x and y ful�ll |x− y| ≤ δ.

Definition. For a �eld F in-between L and K and n in N, put

Cn−an

F
(O,Cp) :=

{all f : O → Cp that are F-analyti
 on every ball of radius p−n}

These n-analyti
 fun
tions form a Cp-Bana
h spa
e for the natural norm that

restri
ts to the analyti
 norm on every neighborhood of radius p−n
. Let

Dn−an

F
(O,Cp) := {all 
ontinuous Cp-linear µ : C

n−an

F
(O,Cp)→ Cp}

be its 
ontinuous dual. These n-analyti
 distributions form a Cp-Bana
h spa
e

for the operator norm.

Given a �eld F in-between L and K (su
h as L or K), a natural number n
and an ideal I of Dla

F
(O,Cp) (su
h as that generated by the Cau
hy-Riemann

equations), we will denote the ideal of Dn−an

F
(O,Cp) that is generated by the

image of I under Dla

F
(O,Cp)→ D

n−an

F
(O,Cp) likewise by I.

The Ami
e transform turns the n-analyti
 distributions into formal power series

that 
onverge on a 
losed dis
 of radius ρ < 1:
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Definition. Let Bd
≤ρ be the 
losed polydis
 of radius ρ > 0 of Cd

p. Put

A(Bd
≤ρ) := {all power series over Cp of d variables that 
onverge on Bd

≤ρ}.

Then A(Bd
≤ρ) is a Cp-Bana
h algebra for the norm ‖·‖ρ de�ned by

‖
∑

i∈Nd

aiX
i1
1 · · ·X

id
d ‖ρ := sup{|ai|ρ

i1+···+id : i ∈ Nd}.

Given d in N, a radius δ > 0 and an ideal J of A(Bd
<1) (su
h as that generated

by the Cau
hy-Riemann equations), we will denote the ideal of A(Bd
≤δ) that is

generated by the image of J under A(Bd
<1)→ A(B

d
≤δ) likewise by J .

For an a�noid algebra A, let A◦
be its 
losed unit ball under the Gauss residue

norm; that is, if A = T/J is the quotient of the Tate algebra T by the ideal J
then

A◦ := {all a ∈ A su
h that for every ε > 0

there is t in a+ J with ‖t‖ ≤ 1 + ε}

Fix on
e for all a sequen
e λ1, λ2, . . . in Cp su
h that {[v(λ1)+ · · ·+ v(λh)]/rh :
h ∈ N} is bounded. (For example, if r in Q then, for some λ in Cp with v(λ) = r,
�x the 
onstant sequen
e λ, λ, . . .) Then for a sequen
e of in
reasing radii (δh)
below 1 and d in N, let

· · · → A(Bd
≤δh+1

)→ A(Bd
≤δh)→ · · · → A(B

d
≤δ1)

be the transition maps de�ned by f 7→ λh · f|Bd
≤δh

for every h in N.

Proposition 4.1 (Temperedness under the Ami
e Transform). Let (ρh) be

the sequen
e of in
reasing radii below 1 de�ned by ρ0 := p−1/(p−1) < 1 and

ρh := ρ1/p
h(p−1)

. Then the natural map

Ar
L
/J ∩ Ar

L
∼−→ lim
←−
h∈N

(A(Bd
≤ρh

)/J)◦ ⊗OCp
Cp (4.3)

is an isomorphism of Cp-Bana
h spa
es.

Proof: The map (4.3) is on the very right of the 
ommutative diagram

lim
←−

(Dn−an

K
)◦ ⊗ Cp

// lim
←−

(Dn−an

L
/I)◦ ⊗ Cp

// lim
←−

(A(Bd
≤ρn

)/J)◦ ⊗ Cp

Dr
K

//

OO

Dr
L
/I ∩ Dr

L

OO

// Ar
L
/J ∩ Ar

L

(4.3)

OO

where
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• in the left-hand re
tangle both arrows pointing rightwards are the natural

quotient isomorphisms,

• in the right-hand re
tangle those are given by the Ami
e transform, and

• all arrows pointing upwards are given by the natural in
lusion maps.

To prove that (4.3) is an isomorphism, it su�
es by 
ommutativity of the

diagram to prove that all other arrows in the 
ommutative diagram given by

the right-hand re
tangle are isomorphisms:

1. The bottom-right arrow Dr
L
/I ∩Dr

L
→ Ar

L
/J ∩Ar

L
is an isomorphism as

quotient map of the Ami
e isomorphism (and be
ause Ar
K
is by de�nition

the image of Dr
L
under the Ami
e isomorphism).

2. The top-right arrow lim
←−
Dn−an

L
(O,Cp)/I → lim

←−
A(Bd

≤ρn
)/J◦ ⊗ Cp is an

isomorphism by [Nag15, Lemma 7.1℄, whi
h is a suitably formulated ver-

sion of the (multivariate) Ami
e Theorem.

3. It rests to show that the middle arrow

Dr
L
(O,Cp)/I ∩ D

r
L
(O,Cp)→ lim

←−
(Dn−an

L
(O,Cp)/I)

◦ ⊗ Cp

is an isomorphism. For this it su�
es by 
ommutativity of the diagram

to prove that all other arrows in the 
ommutative diagram given by the

left-hand re
tangle are isomorphisms:

3.1. The top-left arrow lim
←−
Dn−an

K
(O,Cp) → lim

←−
Dn−an

L
(O,Cp)/I is

an isomorphism be
ause all Dn−an

K
(O,Cp) → Dn−an

L
(O,Cp)/I

are isometri
 isomorphisms by the ultrametri
 Hahn-Bana
h theo-

rem [PGS10, Theorem 4.2.4℄ for normed spa
es of 
ountable type;

and

3.2. the bottom-left arrow Dr
K
(O,Cp) → D

r
L
(O,Cp)/I ∩ D

r
L
(O,Cp) is

likewise an isomorphism by the ultra-metri
 Hahn-Bana
h Theorem.

3.3. The left arrow Dr
K
(O,Cp) → lim

←−
Dn−an

K
(O,Cp)

◦ ⊗ Cp is an isomor-

phism by [Nag15, Corollary 6.1℄, whi
h expresses the Cr-norm by

the lo
ally analyti
 ones. �

Temperedness under the Schneider-Teitelbaum isomorphism

We transfer by the S
hneider-Teitelbaum isomorphism the isomorphism (4.3)

from Ar
L
/J ∩ Ar

L
in Proposition 4.1 to Ar

K
. In 
oordinates, the S
hneider-

Teitelbaum isomorphism F : B<1 → Ô (inside (1, . . . , 1) + Bd
<1) is given by

z 7→ (1 + fe1t′0(z), . . . , 1 + fedt′0(z)),

where
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• e1, . . . , ed is a basis of OK over Zp,

• t′0 is the generator of the O-module Hom(GOCp
,G

m

|OCp
) �xed in Se
-

tion 3, and

• ft′ for t
′
in Hom(GOCp

,G
m

|OCp
) denotes its de�ning power series (as in

(3.2)).

The restri
tions Fh of F onto 
losed dis
s of 
ertain radii ζh < 1, to be spe
i�ed
below, are given by the same power series.

Lemma 4.2. Fix two sequen
es (σh) and (ςh) of in
reasing radii below 1 given

by

• σ0 := p−1/(p−1)−1/e
and σh := σ

1/ph

0 ,

• ς0 := p−q/e(q−1)
and ςh := ς

1/pdh

0

and let (Fh) with
Fh : A(B

d
≤σh

)/J ∼−→ A(B≤ςh)

be the 
ompatible family of isomorphisms between a�noid algebras given

by [ST01, Theorem 3.6℄. Then the natural map

Ar
K

∼−→ lim
←−
h∈N

Fh(A(B
d
≤σh

)/J)◦ ⊗OCp
Cp.

is an isomorphism of Cp-Bana
h spa
es.

Proof: Let (ρh) be the sequen
e of in
reasing radii below 1 given by ρ0 :=

p−1/(p−1)
and ρh := ρ1/p

h(p−1)
. By Proposition 4.1 the natural map

Ar
L
/J ∩ Ar

L
∼−→ lim
←−
h∈N

(A(Bd
≤ρh

)/J)◦ ⊗OCp
Cp.

is an isomorphism of Cp-Bana
h spa
es. If δ′0 and δ′′0 are two positive numbers

< 1 then the sequen
es (δ′h) and (δ′′h) given by δh := δ
1/ph

0 are 
o�nal. This


on
lusion applies in parti
ular to δ′0 := ρ0 and δ′′0 := σ0. Thus

lim
←−
h∈N

(A(Bd
≤ρh

)/J)◦ ⊗OCp
Cp

∼−→ lim
←−
h∈N

(A(Bd
≤σh

)/J)◦ ⊗OCp
Cp.

We apply the 
ompatible sequen
e of S
hneider-Teitelbaum isomorphisms (Fh)
to the 
ompatible sequen
e of maps that indu
es this isomorphism of proje
tive

limits. Be
ause the transition maps are in parti
ular inje
tive, we 
on
lude by

left exa
tness of the proje
tive-limit fun
tor

Ar
K

= F(Ar
L
/J ∩Ar

L
) ∼−→ lim

←−
h∈N

Fh(A(B
d
≤σh

)/J)◦ ⊗OCp
Cp.

�
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We �x on
e for all the sequen
e of in
reasing radii (σh) below 1 given

by σ0 := p−1/(p−1)−1/e
and σh := σ

1/ph

0 . To make the inverse limit

lim
←−
Fh(A(B

d
≤σh

)/J)◦ ⊗OCp
Cp expli
it, we de�ne two OCp

-Bana
h modules Ah

and Ch, that is, 
losed unit balls of Cp-Bana
h spa
es, su
h that

Ah →֒ Fh(A(B
d
≤σh

)/J)◦ →֒ Ch. (4.4)

Lemma 4.3 (De�nition of Ch in (4.4)). Let (σh)h∈N and (ςh)h∈N be the se-

quen
es of in
reasing radii de�ned in Lemma 4.2. Then the isomorphism of

a�noid algebras

Fh : A(B
d
≤σh

)/J ∼−→ A(B≤ςh)

de�ned in [ST01, Theorem 3.6℄ restri
ts to a monomorphism of OCp
-Bana
h

modules

Fh : (A(B
d
≤σh

)/J)◦ →֒ A(B≤ςh)
◦.

Proof: Let f̄ in A(Bd
≤σh

)/J . Be
ause

1. by the maximum prin
iple on the 
losed unit dis
, the supremum norm

is equal to the Gauss norm,

2. every isomorphism of a�noid algebras is an isometry of Bana
h spa
es

for the a�noid supremum norms, and

3. the supremum norm is bounded above by the Gauss residue norm,

we obtain

‖Fh(f̄)‖ςh = ‖Fh(f̄)‖ςh,sup = ‖f̄‖σh,sup
≤ ‖f̄‖σh

,

and 
on
lude the 
laimed in
lusion of unit balls. �

Lemma 4.4 (De�nition of Ah in (4.4)). Let (ρh)h∈N and (ςh)h∈N be the se-

quen
es of radii de�ned in Proposition 4.1 and Lemma 4.2. Put

A′(B≤ςh) := {all f in Cp[[X ]] su
h that

f =
∑

aiX
i
and |ai|iς

i
h → 0 as i→∞}

together with its natural norm

‖
∑

i∈N

aiX
i‖

′
ςh

:= sup{|ai|iς
i
h : i ∈ N}.

Then A′(B≤ςh) is a Cp-Bana
h spa
e and the sequen
e of inverses of the rigid-

analyti
 isomorphisms F0, F1, . . . given in [ST01, Theorem 3.6℄ indu
es a se-

quen
e of monomorphisms of OCp
-Bana
h modules

F−1
h : A′(B≤ςh)

◦ →֒ (A(Bd
≤ρh

)/J)◦

with operator norm at most ch := c0p
−h

(where c0 := |γ̄(0)|pp/(p−1)+1/(e(q−1))

and the 
onstant γ̄(0) is de�ned in [BK16, Se
tion 1℄).
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Proof: Let T h
L
: Dh−an

L
(Zp,Cp) →֒ A(B≤ρh

) for h ∈ N be the 
ompatible family

of Ami
e transforms. Be
ause im T h
L
⊇ A(B≤ρh+1

), there is an inverse map

A(B≤ρh+1
) →֒ Dh−an

L
(Zp,Cp)

of uniform operator norm C = pp/(p−1)
independent of h (see [Nag15, Lemma

3.2℄); a

ordingly there are maps T h
K

: Dh−an

K
(O,Cp) →֒ A(B≤ρh

)/J together

with their inverses. By [BK16, Corollary 4.4℄ the map

(F ◦ T h
K
)−1 : A′(B≤ςh) →֒ Dh−an

K
(O,Cp) (∗)

is a monomorphism of Cp-Bana
h spa
es with operator norm at most c = c0p
−h

where c0 as de�ned above (and F = Fi for su�
iently small i).
Let us show that the Ami
e transform

T h
K
: Dh−an

K
(O,Cp) →֒ A(B

d
≤ρh

)/J (∗∗)

is norm-nonin
reasing. First the map

T h
L
: Dh−an

L
(Zp,Cp) →֒ A(B≤ρh

).

is norm-nonin
reasing: On the right-hand side, by the maximum prin
iple,

the supremum norm is equal to the Gauss norm. The 
hara
ter χz : x 7→
xz =

∑
n∈N z

n
(
x
n

)
is h-analyti
 if z is in B≤ρh

. Then
e the restri
tion from

all h-analyti
 fun
tions to all h-analyti
 
hara
ters is inje
tive and norm-

nonin
reasing. By the ultrametri
 Hahn-Bana
h Theorem ([PGS10, Theorem

4.2.4℄), the surje
tion Dh−an

L
(O,Cp) ։ D

h−an

K
(O,Cp) indu
es an isometry for

the quotient-norm on the right-hand side. Let I be its kernel. We 
on
lude that

T h
K

de
omposes into the two norm-nonin
reasing monomorphisms

Dh−an

K
(O,Cp) ∼−→ Dh−an

L
(O,Cp)/I →֒ A(B

d
≤ρh

)/J.

�

Corollary 4.5 (Temperedness under the Fourier Transform). Let (ςh)h∈N be

the sequen
e of radii de�ned in Lemma 4.2. The natural maps

lim
←−
h

p−hA′(B≤ςh)
◦ ⊗OCp

Cp →֒ Ar
K
→֒ lim
←−
h

A(B≤ςh)
◦ ⊗OCp

Cp (4.5)

are monomorphisms of Cp-Bana
h spa
es.

Proof: The natural map

Ar
K

∼−→ lim
←−
h∈N

Fh(A(B
d
≤σh

)/J)◦ ⊗OCp
Cp.

is by Lemma 4.2 an isomorphism of Cp-Bana
h spa
es. We use it to prove that:
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• The left-hand map in (4.5) is a monomorphism: By Lemma 4.4, if λ0 in

Cp satis�es v(λ0) = v(γ̄(0))+p/(p−1)+1/e(q−1) then the natural map

λ0 · p
−hA′(B≤ςh)

◦ →֒ Fh(A(B
d
≤ρh

)/J)◦

is a monomorphism of OCp
-Bana
h modules. Thus if h0 in N satis�es

σ0 ≤ ρh0
then the natural map

λ0 · p
−(h+h0)A′(B≤ςh+h0

)◦ →֒ Fh(A(B
d
≤ρh+h0

)/J)◦ →֒ Fh(A(B
d
≤σh

)/J)◦.

is a monomorphism of OCp
-Bana
h modules; thus, as proje
tive limit of

all these maps running over h in N, the left-hand map in (4.5) is by


o�nality a monomorphism as well.

• The right-hand map in (4.5) is a monomorphism: By Lemma 4.3 the

natural map

Fh(A(B
d
≤σh

)/J)◦ →֒ A(B≤ςh)
◦.

is a monomorphism; thus, as proje
tive limit of all these maps running

over h in N, the left-hand map in (4.5) is a monomorphism as well. �

Temperedness as coefficient-wise convergence

We show that the temperedness 
ondition of Corollary 4.5 on a power series

f in Ar
K

that bounds the values of f on the open unit dis
 is equivalent to a


ondition that bounds the 
oe�
ients of f .
An unbounded norm on a ve
tor spa
e V is a map ‖·‖ : V → R≥0 ∪ {∞}
that satis�es all axioms of a norm (with the 
onventions for every c ≥ 0 that

∞ ≥ c, ∞ + c = ∞ + c = ∞ and c · ∞ = ∞ · c = ∞ if c 6= 0, respe
tively
0 · ∞ = ∞ · 0 = 0). Every unbounded norm restri
ts to a norm over its set of

bounded elements given by {v ∈ V : ‖v‖ <∞}. Two unbounded norms ‖·‖′ and
‖·‖

′′
on V are equivalent if they have the same set of bounded elements V bd

and equivalent restri
ted norms on V bd

.

Lemma 4.6 (Adaption of [Col03, Lemme V.3.19℄). For ρ < 1 and s ≥ 0, let
‖·‖ρ,s be the unbounded norm on Cp[[X ]] given by

‖
∑

k∈N

akX
k‖ρ,s := sup{|a0|} ∪ {|ak|ρ

k/ks : k = 1, 2, . . .}.

Let (ρn) be the sequen
e of in
reasing radii below 1 given by ρn = ρ1/p
n

< 1.
Then the unbounded norms

‖f‖′ = sup{p−nr‖f‖ρn,s
: n ∈ N}

and

‖f‖
′′
= sup{|a0|} ∪ {|ak|/k

r+s : k = 1, 2, . . .}

on Cp[[X ]] are equivalent.
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Proof: Let us �x f =
∑
akX

k
. We show that there is C > 1, independent of

f , su
h that

‖f‖′′ ≤ C · ‖f‖′ (∗)

Put v′ := ‖f‖
′
= sup{p−nr‖f‖ρn,s

: n ∈ N}. For every k and n,

|ak|ρ
k
n/k

s ≤ v′pnr.

This inequality is in parti
ular true for n = ⌊logp k⌋ where logp · := log ·/ log p.
Be
ause n ≤ logp k

|ak| ≤ v
′pnrksρ−k

n ≤ v′kr+sp−k logp ρn .

By de�nition of ρn and be
ause logp k − 1 ≤ n,

− logp ρn = logp(1/ρ)/p
n ≤ logp(1/ρ)/p

logp k−1.

Together

|ak| ≤ v
′kr+splogp(1/ρ)(k/p

logp k−1) ≤ v′kr+s(1/ρ)p.

We 
on
lude that if C := (1/ρ)p then (∗) holds.

Conversely we show that there is C > 1, independent of f , su
h that

‖f‖′ ≤ C · ‖f‖′′. (∗∗)

Let u > 0 and 0 < a < 1. The fun
tion x 7→ xuax on R>0 has its maximum

at −u/ log a with value e−u(−u/ loga)u (and if u = 0 then at 0 with value 1).
Hen
e, if u = r and a = ρn then

‖f‖ρn,s
= sup{|a0|} ∪ {|ak|ρ

k
n/k

s : k = 1, 2, . . .}

≤ sup
(
{|a0|} ∪ {|ak|/k

r+s : k = 1, 2, . . .}
)
e−r(−r/ log ρn)

r

= ‖f‖
′′
pnr [r/ (e log 1/ρ)]

r

where the last equality holds by de�nition of ‖·‖
′′
and ρn.

We 
on
lude that, putting C := [r/ (e log 1/ρ)]
r
,we have p−nr‖f‖ρn,s

≤ C ·‖f‖
′′

for every n in N. Therefore (∗∗) holds. �

Let hen
eforth r ≥ d. For su
h r ≥ d, we 
ompute the middle term of the

in
lusion 
hain (4.5) in Corollary 4.5:

Lemma 4.7. Let ‖·‖ be the unbounded norm on Cp[[X ]] de�ned by

‖
∑

k∈N

akX
k‖ := sup{|a0|} ∪ {|ak|/k

r/d : k = 1, 2, . . .}.

If r ≥ d, then, in the notation of Corollary 4.5,

lim
←−
h

p−hA′(B≤ςh)
◦⊗OCp

Cp = {f ∈ Cp[[X ]] : ‖f‖ <∞} = lim
←−
h

A(B≤ςh)
◦⊗OCp

Cp.
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Proof: We have to show that the unbounded norms ‖·‖
′
and ‖·‖

′′
on Cp[[X ]]

given by

‖f‖′ = sup{p−n(r−1)‖f‖ςn,1 : n ∈ N} and ‖f‖′′ = sup{p−nr‖f‖ςn : n ∈ N}

are equivalent to ‖·‖. Let r ≥ 0 and s ∈ R. For r′ := r/d and ς ′h := ς
1/ph

0 ,

{p−hr‖·‖ςh,s : h ∈ N} = {p−hdr′‖·‖ς′
hd

,s : h ∈ N} = {p−hr′‖·‖ς′h ,s : h ∈ dN}.

Therefore, be
ause ‖·‖ς′h ,s is monotone in h, the unbounded norms

sup{p−hr‖·‖ςh,s : h ∈ N} and sup{p−hr′‖·‖ς′h ,s : h ∈ N}.

are equivalent. We 
on
lude that

• ‖·‖′ is equivalent to ‖·‖ by Lemma 4.6 for ς0, r/d− 1 and s = 1, and

• ‖·‖
′′
is equivalent to ‖·‖ by Lemma 4.6 for ς0, r/d and s = 0. �

Re
all the Fourier transform F ◦ T de�ned in Se
tion 3, the isomorphism of

topologi
al Cp-algebras given by 
omposition of the (quotient map of the) Am-

i
e transform T and the S
hneider-Teitelbaum isomorphism F , given by

F ◦ T : Dla

K
(O,Cp) ∼−→ A(B<1)

µ 7→ µ(P0) + µ(P1)X + µ(P2)X
2 + · · ·

where P0, P1, . . . are the Fourier polynomials (denoted by P0(Ω·), P1(Ω·),
. . . in [ST01℄).

Corollary 4.8. If r ≥ d, then the map

Dr
K
(O,Cp) ∼−→ {all

∑
anX

n
in Cp[[X ]] with {|an|/n

r/d} bounded }

µ 7→ µ(P0) + µ(P1)X + µ(P2)X
2 + · · ·

is an isomorphism of Cp-Bana
h spa
es (where the right-hand side is equipped

with its natural norm ‖
∑

n∈N anX
n‖ := max{|a0|}∪{|an|/n

r/d : n = 1, 2, . . .}).

Proof: The map is by [ST01, Lemma 4.6.9℄ the restri
tion of the isomorphism

of Cp-Fré
het algebras

Dla

K
(O,Cp) ∼−→ A(B<1)

to Dr
K
(O,Cp). Its image is Ar

K
and by Lemma 4.7 the Cp-Bana
h spa
e Ar

K
is

equal to the right-hand side. �

Remark 4.9. This isomorphism holds by [ST01, Corollary 3.7 �.℄ over every


omplete sub�eld E of Cp that in
ludes K and 
ontains the trans
endent num-

ber Ω (of Equation (3.1)). If E does not ne
essarily 
ontain Ω then, by the

des
ent 
ondition of [ST01, Corollary 3.8℄, still Dr
K
(O,E) is given by

Dr
K
(O,E) ∼−→{all

∑
anX

n
in Cp[[X ]] with {|an|/n

r/d} bounded

and σ(an) = τ(σ)n · an for all n ∈ N and σ ∈ GE}
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where GE = Gal(Ē/E) is the absolute Galois group of E and τ : GE → O
∗
is

the 
hara
ter that de�nes the Galois a
tion on Hom(G,Gm) ∼= O.

5 Dualizing

For s ≥ 0 put 


s
0(N,Cp) := {(an)n∈N : |an|n

s → 0}. It is a Cp-Bana
h spa
e for

the natural norm ‖(an)‖ = max{|an|n
s : n ∈ N}.

Theorem 5.1. Let P0, P1, . . . denote the Fourier polynomials. If r ≥ d, then
the map




r/d(N,Cp) ∼−→ Cr
K
(O,Cp)

(an) 7→
∑

n∈N

anPn.

is an isomorphism of topologi
al K-ve
tor spa
es.

Proof: For s ≥ 0, let 
sb(N,Cp) = HomCp
(
s(N,Cp),Cp) be the 
ontinuous dual

of 


s
0(N,Cp); it is expli
itly given by




s
b(N,Cp) = {(an)n∈N : {|an|/n

s : n ∈ N} bounded }

with its natural supremum norm. As topologi
alK-ve
tor spa
e Ar
K
is identi
al

to 


r/d
b (N,Cp).

Consider the homomorphism of topologi
al K-ve
tor spa
es given by

φ : 


r/d
0 (N,Cp)→ C

r
K
(O,Cp)

(an)n∈N 7→
∑

anPn.

It is well-de�ned, that is,

∑
anPn 
onverges in Cr

K
(O,Cp), be
ause by [S
h02,

Lemma 9.9℄ for every n in N the norm ‖·‖Cr is equivalent to its double dual

norm whose values on P0, P1, . . . are given by Corollary 4.8; for this, note that

the homomorphism

ψ : Dr
K
(O,Cp) → 


r/d
0 (N,Cp)

µ 7→ µ ◦ φ.

dual to φ sends µ to the sequen
e µ(P0), µ(P1), . . . That is, ψ is the isomor-

phism given in Corollary 4.8. This isomorphism holds for the strong topology

of uniform 
onvergen
e; 
onsequently, for the bounded weak topology.

We 
on
lude by S
hikhof duality ([ST02, Theorem 1.2℄) that φ is an isomor-

phism of topologi
al K-ve
tor spa
es. In parti
ular f in Cr
K
(O,Cp) if and only

if f(x) =
∑

n∈N anPn(x) for all x ∈ OF with |an|n
r/d → 0 as n→∞. �

Remark (dual to Remark 4.9). This isomorphism holds for every 
omplete sub-

�eld E of Cp that in
ludes K and 
ontains Ω. If E does not ne
essarily 
ontain

Documenta Mathematica 23 (2018) 939–967
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Ω then Cr
K
(O,E) is given by all fun
tions f : O → Cp of the form

f(x) =
∑

n∈N

anPn(x) with |an|n
r/d → 0 as n→∞

su
h that σ(an) = τ(σ)n · an for all n ∈ N and σ ∈ Gal(Ē/E).
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