
Documenta Math. 895

Relative Homological Algebra via Truncations

Wojciech Chachólski, Amnon Neeman,

Wolfgang Pitsch, Jérôme Scherer
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Abstract. To do homological algebra with unbounded chain com-
plexes one needs to first find a way of constructing resolutions. Spal-
tenstein solved this problem for chain complexes of R-modules by
truncating further and further to the left, resolving the pieces, and
gluing back the partial resolutions. Our aim is to give a homotopy
theoretical interpretation of this procedure, which may be extended
to a relative setting. We work in an arbitrary abelian category A
and fix a class of “injective objects” I. We show that Spaltenstein’s
construction can be captured by a pair of adjoint functors between un-
bounded chain complexes and towers of non-positively graded ones.
This pair of adjoint functors forms what we call a Quillen pair and
the above process of truncations, partial resolutions, and gluing, gives
a meaningful way to resolve complexes in a relative setting up to a
split error term. In order to do homotopy theory, and in particular to
construct a well behaved relative derived category D(A; I), we need
more: the split error term must vanish. This is the case when I is
the class of all injective R-modules but not in general, not even for
certain classes of injectives modules over a Noetherian ring. The key
property is a relative analogue of Roos’s AB4*-n axiom for abelian
categories. Various concrete examples such as Gorenstein homological
algebra and purity are also discussed.
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Introduction

Our aim in this work is to present a framework to do relative homological
algebra. If homological algebra is understood as a means to study objects
and functors in abelian categories through invariants determined by projective
or injective resolutions, then relative homological algebra should give us more
flexibility in constructing resolutions, meaning we would like to be allowed to
use a priori any object as an injective. This idea goes back at least to Adamson
[1] for group cohomology and Chevalley-Eilenberg [8] for Lie algebra homology.
Both were then subsumed in a general theory by Hochschild [20]. The most
complete reference for the classical point of view is Eilenberg–Moore [12].
Analogously, in homotopy theory one would traditionally use spheres to “re-
solve spaces” by constructing a CW-approximation, but it has become very
common nowadays to replace them by some other spaces and do A-homotopy
theory, as developed for instance by Farjoun [15]. In fact, homotopical methods
have already been applied to do relative homological algebra. Christensen and
Hovey [9] show that, in many cases, one can equip the category of unbounded
chain complexes with a model category structure where the weak equivalences
reflect a choice of new projective objects. It is their work, and the relation-
ship to Spaltenstein’s explicit construction of a resolution for unbounded chain
complex [34], that motivated us originally. We wish to stress the point that,
for us, it is as important to have a constructive method to build relative reso-
lutions as to know that there exists a formal method to invert certain relative
quasi-isomorphisms (because there is a relative model structure or a relative
derived category for example).
More precisely we fix in an abelian category A a class I ⊂ A of objects, called
the relative injectives, that will play the role of usual injectives. This determines
in turn two classes of maps: a class of relative monomorphisms and a class of
relative quasi-isomorphisms. If I is the class of injective objects these reduce to
ordinary monomorphisms and ordinary quasi-isomorphisms. Denote by Ch(A)
the category of chain complexes over A and by WI the class of relative quasi-
isomorphisms. Our aim is to construct the localized category Ch(A)[WI ]

−1, in
particular we would like to find a way to resolve chain complexes.
Disregarding set-theoretical problems, one could formally add inverses of the
elements in WI to get D(A; I) = Ch(A)[WI ]

−1. With a little more care, for
instance using the theory of null systems, one can construct Ch(A)[WI ]

−1 by
the calculus of fractions and endow it with a natural triangulated structure; this
is done at the end of Section 1. It is unwise though to completely disregard set-
theoretic problems and Quillen devised in the late sixties the notion of a model
category, see [31], which provides a technique for overcoming this difficulty.
On the category of left bounded chain complexes Bousfield [4] showed how to
use Quillen’s machine to construct the relative derived categoryD≤0(A; I). An
elementary exposition of Bousfield’s relative model structure, including explicit
methods to construct factorizations (and hence resolutions), can be found in
Appendix A.
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Our objective is to extend this construction and the model structure to un-
bounded complexes, but this is a more delicate issue, even in the classical set-
ting, see Spaltenstein [34] or Serpé [33]. A relative model structure on Ch(A)
would be nice, but we cannot apply homotopical localization techniques in a
straightforward way since there is no obvious set of maps to invert. Anyway, we
need less. Therefore we introduce a more flexible framework, namely that of a
model approximation [7]. Our idea in this work is to approximate a complex by
the tower of its truncations, just as Spaltenstein did. For this we observe first
in Proposition 4.3 that a relative model structure on left bounded complexes
induces a model structure on towers of left bounded complexes. Diagrams of
model categories have been studied by Greenlees and Shipley [16] and play
an important role in equivariant stable homotopy theory, see for example [2].
Recent work of Harpaz and Prasma [19] proposes another viewpoint on such
diagrams and model structures.
Second, we package the relationship between unbounded chain complexes and
the category of towers Tow(A, I) equipped with the relative model structure
into what we call a Quillen pair. It consists of a pair of adjoint functors

tow : Ch(A) ⇄ Tow(A, I) : lim

where the “tower functor” associates to a complex the tower given by trun-
cating it further and further to the left, and the limit functor takes limits
degreewise, see Proposition 5.5. The left hand side is not a model category
but its homotopical features are reflected in the right hand side. To do ho-
motopy theory with unbounded chain complexes we need this Quillen pair to
form a model approximation, i.e. to verify some extra compatibility condition
of the adjoint pair with resolutions, see Definition 3.2. When this is the case
resolutions of complexes are provided by an explicit recipe. Thus we need to
understand when the Quillen pair is a model approximation. To solve this
difficulty we introduce in Section 6 a relative version of Roos axiom AB4*-n,
[32]. Our main result is the following.

Theorem 6.4 Let I be an injective class and assume that the abelian category
A satisfies axiom AB4*-I-n. Then the standard Quillen pair

tow : Ch(A) ⇄ Tow(A, I) : lim

is a model approximation.

This axiom is satisfied in particular for classes of injective modules over a Noe-
therian ring of finite Krull dimension. Here we only consider injective classes
of R-modules that are injective in the classical sense, which means that we do
relative homological algebra with less injectives than in the usual sense. Spal-
tenstein’s classical construction also works for this reason, see Corollary 6.5.

Theorem 7.4. Let R be a Noetherian ring of finite Krull dimension d, and
I an injective class of injective modules. Then the category of towers forms a
model approximation for Ch(R) equipped with I-equivalences.
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When the Krull dimension is infinite it depends on the chosen class of injec-
tives whether or not one can resolve unbounded complexes by truncation. For
Nagata’s ring [27] we show in Subsection 8.2 that some classes I satisfy axiom
AB4*-I-n, but we also construct in Theorem 8.4 an injective class I which
fails to yield a model approximation. Concretely this means that we exhibit an
unbounded complex which is not relatively quasi-isomorphic to the limit of the
(relative) injective resolutions of its truncations. Our methods rely on local co-
homology computations, see [22]. The failure of being a model approximation
is nevertheless rather well behaved, as we never lose any information about the
original complex:

Proposition 5.7 Let f : tow(X) → Y• be a weak equivalence in Tow(A, I)
and g : X → lim(Y•) be its adjoint. Then, for any W ∈ I, A(g,W ) induces a
split epimorphism on homology.

The failure of the standard Quillen pair to be a model approximation is closely
related to the “non-left completeness” of the derived category of some abelian
categories, observed by Neeman [29].

Acknowledgments. We would like to thank Michel van den Bergh for point-
ing out the relevance of axiom AB4* at a time when three authors were still
thinking that towers approximate unbounded chain complexes in any relative
setting. We are grateful to Bill Dwyer for clarifying a subtle point in one of his
old papers. The fourth author would like to thank the Mathematics depart-
ments at the Universitat Autónoma de Barcelona and the Australian National
University for providing terrific conditions for a sabbatical.

1. Chain complexes and relative weak equivalences

In this section we recall briefly the definition of an abelian category, introduce
the notion of an injective class, and study the relative weak equivalences that
arise in the category of chain complexes in an abelian category once an injective
class has been chosen.

1.1. Abelian categories. Throughout the paper we work with an abelian
category A, for example the category of left modules over a ring. By an abelian
catgory we mean a category with the following structure [17]:

(AB0) Additivity. The category A is additive: finite products and coprod-
ucts exist; there is a zero object (an object which is both initial and
terminal); given two objects X,Y ∈ A, the morphism set A(X,Y ) has
an abelian group structure with the zero given by the unique mor-
phism that factors through the zero object; the composition of maps is
a bilinear operation.

(AB1) Kernels and cokernels. Any morphism has a kernel and cokernel
as defined in [25].

(AB2) Every monomorphism is the kernel of its cokernel and every epimor-
phism is the cokernel of its kernel.

(AB3) Limits and colimits. Arbitrary limits and colimits exist in A.
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At first we do not ask for any further properties of products beyond their
existence, although later on we will make a crucial assumption. Grothendieck’s
axiom, which we will use, is:

(AB4*) A countable product of epimorphisms in A is an epimorphism.

Let R be a possibly non-commutative unitary ring. The category of left R-
modules, which we call simply R-modules and denote by R-Mod, is an abelian
category that satisfies axiom AB4*. However, if X is a topological space then
the category of sheaves of abelian groups on X , which is also an abelian cate-
gory, does not satisfy AB4* in general [17, Proposition 3.1.1].

1.2. Injective classes. Given an abelian category A we are interested in
understanding relative analogues of monomorphisms and injective objects in A.

Definition 1.1. Let I be a collection of objects in A. A morphism f : M → N
in A is said to be an I-monomorphism if f∗ : A(N,W ) → A(M,W ) is a
surjection of sets for any W ∈ I. We say that A has enough I-injectives if, for
any object M , there is an I-monomorphism M →W with W ∈ I.

Remark 1.2. It is clear that a composite of I-monomorphisms is also an I-
monomorphism. We say that a morphism f has a retraction if there exists
a morphism r such that rf = id. Any morphism that has a retraction is an
I-monomorphism for any collection I. Observe also that I-monomorphisms
are preserved under base change: if f : M → N is an I-monomorphism, then
so is its push-out along any morphism M → M ′, by the universal property
of a push-out. Similarly an arbitrary coproduct of I-monomorphisms is an I-
monomorphism. In general however limits and products of I-monomorphisms
may fail to be I-monomorphisms.

Given a class of objects I denote by I the class of retracts of arbitrary products
of elements of I. Since a morphism is an I-monomorphism if and only if it is
an I-monomorphism, without loss of generality we may assume that I is closed
under retracts and products so that I = I.

Definition 1.3. A collection of objects I in A is called an injective class if I
is closed under retracts and products and if A has enough I-injectives.

It should be pointed out that general products have considerably more retracts
than direct sums.

Example 1.4. The largest injective class I in A consists of all the objects in A.
Here I-monomorphisms are morphisms f : M → N that have retractions. It
is clear that there are enough I-injectives since for any object N the identity
IdN : N → N is an I-monomorphism.
Recall that an object W in an abelian category A is called injective if, for any
monomorphism f , A(f,W ) is an epimorphism. Assume that any object of A
admits a monomorphism into an injective object, which is the case for example
in the category of left R-modules. Then the collection I of injective objects in A
is an injective class and I-monomorphisms are the ordinary monomorphisms.
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The same holds for the category of OX -modules for a scheme X : any OX -
module is a submodule of an injective OX -module.

Adjoint functors allow us to construct new injective classes out of old ones, an
idea that goes back to Eilenberg-Moore [12, Theorem 2.1].

Proposition 1.5. Let l : B ⇆ A : r be a pair of functors between abelian
categories such that l is left adjoint to r. Let I be a collection of objects in A.

(1) A morphism f in B is an r(I)-monomorphism if and only if lf is an
I-monomorphism in A.

(2) If lM →W is an I-monomorphism in A, then its adjoint M → rW is
an r(I)-monomorphism in B.

(3) If there are enough I-injectives in A, then there are enough r(I)-
injectives in B.

(4) If I is an injective class in A, then the collection of retracts of objects
of the form r(W ), for W ∈ I, is an injective class in B.

Example 1.6. Tensor products. Assume now that S is a commutative
ring and S → R is a ring homomorphism whose image lies in the center of
R, hence turns R into an S-algebra. The forgetful functor R-Mod → S-Mod
is right adjoint to R ⊗S − : S-Mod → R-Mod. Thus, by Example 1.4 and
Proposition 1.5, both the collection of S-linear summands of R-modules and
the collection of S-linear summands of all injective R-modules form injective
classes of S-modules. A monomorphism relative to the first collection is a
homomorphism f for which f⊗SR is a split monomorphism. A monomorphism
relative to the second collection is an homomorphism f for which f ⊗S R is a
monomorphism.

Example 1.7. Schemes. Let f : X → Y be a morphism of schemes. The
functor f∗ : OY -Mod→ OX -Mod is left adjoint to f∗ : OX -Mod→ OY -Mod. It
follows that the two collections: OY -modules which are retracts of OY -modules
of the form f∗(N), for any OX -module N , and retracts of OY -modules of the
same form, but for all injective OX -module N , are injective classes in OY -Mod.

We wish to see to what extent objects in I behave like usual injective objects,
that is when it is possible to do homological algebra relative to the class I.
We therefore turn to the category Ch(A) of chain complexes over A and to its
homotopy category K(A).

1.3. Relative weak equivalences in Ch(A). In this work we mostly con-
sider homological complexes (i.e. differentials lower degree by one) in A:

X = (· · · → Xi
di−→ Xi−1 → · · · ). The category of such chain complexes in A is

denoted by Ch(A). We identify A with the full subcategory of Ch(A) of those
complexes concentrated in degree 0 and will use the topologist’s suspension
symbol ΣX for the shifted complex sometimes denoted by X [1].
The only examples of cohomological complexes that we consider are complexes
of abelian groups of the form A(X,W ) for some X ∈ Ch(A) and W ∈ A. As
usual, if Xk is in homological degree k ∈ Z, we put A(Xk,W ) in cohomological
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degree −k. The key definition for doing relative homological algebra is the
following.

Definition 1.8. Let k ∈ Z be an integer. A morphism f : X → Y in Ch(A)
is called a k-I-weak equivalence if and only if, for any W ∈ I, the induced
morphism of cochain complexes A(f,W ) : A(Y,W ) → A(X,W ) induces an
isomorphism in cohomology in degrees n ≥ −k and a monomorphism in degree
−k − 1. A morphism that is a k-I-weak equivalence for all k ∈ Z is called an
I-weak equivalence.

Definition 1.9. An object X in Ch(A) is called I-trivial when X → 0 is an
I-weak equivalence, i.e. when A(X,W ) is an acyclic complex of abelian groups
for all W ∈ I. It is called k-I-connected if X → 0 is a k-I-weak equivalence,
i.e., when A(X,W ) has trivial cohomology in degrees n ≥ −k for all W ∈ I.

Let us see what these definitions mean for the examples we introduced in the
previous subsection.

Example 1.10. We study first the case when I is the injective class of all
objects of A. For an object M ∈ A and an integer k denote by Dk(M) the
“disc” chain complex

· · · 0 // M
IdM

M // 0 // · · ·

where the two copies of M are in homological degrees k and k− 1 respectively.
Complexes of the form Dk(M) are prototypical examples of contractible com-
plexes.
A morphism of chain complexes f : X → Y is an I-weak equivalence if and
only if it is a homotopy equivalence. A chain complex is I-trivial if and only
if it is isomorphic to

⊕

iDki
(Mi) for some sequence of objects Mi ∈ A and

integers ki ∈ Z.

Example 1.11. Let us assume that classical injective objects form an injective
class, i.e. any object in A is a subobject of an injective object. As the functors
A(−,W ) are exact when W is injective, a morphism of complexes f : X → Y
in Ch(A) is an I-weak equivalence if and only if it is a quasi-isomorphism. A
chain complex is I-trivial if and only if it has trivial homology.

Example 1.12. Consider a pair of adjoint functors l : B ⇆ A : r be-
tween abelian categories and I an injective class in A. According to Proposi-
tion 1.5.(4), the collection J of retracts of objects of the form r(W ), for W ∈ I,
forms an injective class in B. By applying l and r degree-wise, we get an induced
pair of adjoint functors, denoted by the same symbols: l : Ch(B) ⇆ Ch(A) : r.
A morphism f : X → Y in Ch(B) is a J -weak equivalence if and only if
l(f) : l(X)→ l(Y ) is an I-weak equivalence in Ch(A).

Our next example is based on the classification of injective classes of injective
objects in a module category given in [6], to which we refer for more details.
Let us recall however that given an ideal I in R and an element r outside
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of I, then (I : r) denotes the ideal {s ∈ R | sr ∈ I}. This example will play an
important role in the final sections of this article.

Example 1.13. Let R be a commutative ring and L be a saturated set of ideals
in R. This means that L is a set of proper ideals of R closed under intersection
and the construction (I : r); moreover if an ideal J has the property that (J : r)
is contained in some ideal in L for any element r /∈ J , then J itself must belong
to L.
Consider the injective class E(L) that consists of retracts of products of injective
envelopes E(R/I) for I ∈ L. A morphism f : X → Y in Ch(R) is an E(L)-
weak equivalence if and only if Hom(Hn(f), E(R/I)) is a bijection for any n
and I ∈ L. This happens if and only if the annihilator of any element in either
Ker(Hn(f)) or Coker(Hn(f)) is not included in any ideal that belongs to L.

We denote the class of I-weak equivalences by WI or simply W if there is no
ambiguity for the choice of the ambient injective class I. Isomorphisms are
always I-weak equivalences and I-weak equivalences satisfy the “2 out of 3”
property, as the stronger “2 out of 6” property from [10, Definition 4.5] holds.

Lemma 1.14. The class WI of I-weak equivalences satisfies the 2 out of 6
property: given any three composable maps

X
u // Y

v // Z
w // T

if vu and wv are in W then so are u, v, w and wvu.

Proof. Fix an object W ∈ I. Then A(vu,W ) = A(u,W ) ◦ A(v,W ) is a
quasi-isomorphism, hence A(v,W ) induces an epimorphism in cohomology.
Similarly, from the fact that A(wv,W ) is a quasi-isomorphism we get that
A(v,W ) induces a monomorphism in cohomology, hence v belongs toW . Since
quasi-isomorphisms satisfy the “2 out of 3” property we get that A(u,W ) and
A(w,W ) are quasi-isomorphisms and v, w is in W . By closure under composi-
tion so is wvu. �

Here are some elementary properties of I-weak equivalences:

Proposition 1.15. Let I be an injective class in an abelian category A.

(1) A chain homotopy equivalence in Ch(A) is an I-weak equivalence.
(2) A morphism f : X → Y in Ch(A) is an I-weak equivalence if and only

if the cone Cone(f) is I-trivial.
(3) Coproducts of I-weak equivalences are I-weak equivalences.
(4) A contractible chain complex in Ch(A) is I-trivial.
(5) Coproducts of I-trivial complexes are I-trivial.
(6) A complex X is k-I-connected if and only if, for any i ≤ k, the mor-

phism di : Coker(di+1)→ Xi−1 is an I-monomorphism.
(7) A complex X is I-trivial if and only if di : Coker(di+1) → Xi−1 is an
I-monomorphism for any i.

(8) Let X be a complex such that, for all i, Coker(di+1) ∈ I. Then X is
I-trivial if and only if X is isomorphic to

⊕

Di(Wi).
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Proof. Point (1) is a consequence of the fact that A(−,W ) is an additive func-
tor.
(2) The cone of A(f,W ) : A(Y,W )→ A(X,W ) is isomorphic to the shift of the
complexA(Cone(f),W ), for anyW ∈ A. ThusA(f,W ) is a quasi-isomorphism
if and only if A(Cone(f),W ) is acyclic.
Point (3) is a consequence of two facts. First, A(−,W ) takes coproducts in
A into products of abelian groups. Second, products of quasi-isomorphisms of
chain complexes of abelian groups are quasi-isomorphisms.
Point (4) is a special instance of Point (1), and given (4), Point (5) is a special
case of Point (3).
(6) The kernel of A(di+1,W ) is A(Coker(di+1),W ). Thus the (−i)-th coho-
mology group of the complex A(X,W ) is trivial if and only if the morphism
A(Xi−1,W )→ A(Coker(di+1),W ) induced by di is an epimorphism. By defi-
nition this happens if and only if the morphism di : Coker(di+1)→ Xi−1 is an
I-monomorphism.
(7) This is a consequence of (6).
(8) If X can be expressed as a direct sum

⊕

Di(Wi), then X is contractible
and according to (4) it is I-trivial. Assume now that X is I-trivial. Define
Wi := Coker(di+1). According to (6), the morphism di : Coker(di+1)→ Xi−1 is
an I-monomorphism. As Coker(di+1) is assumed to belong to I, it follows that
the morphism di : Coker(di+1) → Xi−1 has a retraction. This retraction can
be used to define a morphism of chain complexes X → Di(Wi). By assembling
these morphisms together we get the desired isomorphism X →

⊕

Di(Wi). �

2. The relative derived category as a large category

Doing homological algebra relative to an injective class I amounts to invert-
ing the morphisms in W to form the relative derived category D(A; I) =
Ch(A)[W−1

I ]. The formalities of inverting a class of morphisms in a category
are well understood. But there is a problem that, without some extra struc-
ture, the resulting category turns out to be a large category in general, i.e.
with classes of morphisms between two objects instead of sets of morphisms.
This becomes an issue if one wants to further localize in this category or study
its quotients. Let us nevertheless put this set-theoretical issue aside for the
moment, and remind the reader of the classical construction of the relative de-
rived category D(A; I). In particular we recall that the classical results endow
D(A; I) with a canonical triangulated structure.
As chain homotopy equivalences are in particular I-equivalences the localiza-
tion functor Ch(A) → Ch(A)[W−1

I ], if it exists, factors through the canonical
localization functor Ch(A) → K(A), where K(A) is the homotopy category of
chain complexes. The category K(A) is a triangulated category, and we exploit
this fact and the theory of null systems, [23, Section 10.2], to construct the
relative derived category.

Documenta Mathematica 23 (2018) 895–937



904 W. Chachólski, A. Neeman, W. Pitsch, J. Scherer

Definition 2.1. Let T be a triangulated category and N be a class of objects
in T closed under isomorphisms. Then N is a null system if and only if the
following axioms are satisfied:

(N0) The zero object of T is in N .
(N1) For any X ∈ T , X ∈ N ⇔ ΣX ∈ N .

(N2) Given a triangle X
u // Y

v // Z
w // ΣX in T , if X,Z ∈ N

then Y ∈ N .

The main property of null systems is that it allows us to construct the Verdier
quotient T /N by a simple calculus of fractions (although recall that this quo-
tient may have proper classes of morphisms). For a proof of the following
proposition we refer the reader to [23].

Proposition 2.2. Given a triangulated category T and a null system N in T ,
let S(N ) denote the set of those arrows f : X → Y ∈ T that fit into a triangle:

X
f // Y // Z // ΣX

whith Z ∈ N . Then S(N ) admits a left and right calculus of fractions. In
particular:

(1) The localization T /N := T [S(N )−1] exists.
(2) Let us declare the isomorphs in T /N of images of triangles in T , via

the canonical quotient functor T → T /N , to be the triangles in T /N .
Then the category T /N becomes triangulated and the canonical quotient
functor is triangulated.

We apply this to our situation of interest, where we want to invert the relative
equivalences, i.e. kill the cones of WI-equivalences, which are I-trivial by
Proposition 1.15.(2).

Proposition 2.3. In K(A), the homotopy category of A with its standard
triangulated structure, the class WN of I-trivial objects forms a null system.

Proof. Axioms (N0) and (N1) hold by definition of I-triviality, see Defini-
tion 1.9.
(N2) Let W be an object in I ⊂ A. Let X // Y // Z // ΣX be
a triangle in K(A), with X,Z ∈ WN . Applying the functor A(−,W ) to the
triangle we deduce a triangle, in the homotopy category K(Ab) where Ab is
the abelian category of abelian groups,

A(ΣX,W ) // A(Z,W ) // A(Y,W ) // A(X,W )

Since A(Z,W ) and A(X,W ) are both acyclic so is A(Y,W ). �

From the general theory it follows that the class WI of I-equivalences admits
simple right and left calculuses of fractions. As a consequence we have:

Corollary 2.4. Let A be an abelian category, I a class of injective objects,
and WI the associated class of I-weak equivalences.
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(1) The localization Ch(A)[W−1
I ] =: D(A; I) exists and has a natural tri-

angulated category structure which is functorial with respect to inclu-
sions of classes of relative weak equivalences.

(2) The canonical functor K(A)→ D(A; I) is triangulated.
(3) The class WI is saturated: a map f ∈ K(A) is an isomorphism in

D(A; I) if and only if f ∈ WI.

Proof. The only non-immediate consequence from Proposition 2.2 is point (3),
which is a consequence of the “2 out of 6” property, Lemma 1.14, see [23, Prop.
7.1.20]. �

3. Model categories and model approximations

We now present our set-up for doing homotopical algebra. In homotopy the-
ory a convenient framework for localizing categories and constructing derived
functors is given by Quillen model categories; we use the term model category
as defined in [11]. There are however situations in which, either it is very hard
to construct a model structure, or one simply does not know whether such a
structure does exist. We will explain how to localize and construct right de-
rived functors in a more general context than model categories. We do not to
try to impose a model structure on a given category with weak equivalences
directly but rather use model categories to approximate the given category.
Let C be a category andW be a collection of morphisms in C which contains all
isomorphisms and satisfies the“2 out of 3” property: if f and g are composable
morphisms in C and 2 out of {f, g, gf} belong toW then so does the third. We
call elements of W weak equivalences and a pair (C,W) a category with weak
equivalences. The following definitions come from [7, 3.12].

Definition 3.1. A right Quillen pair for (C,W) is a model categoryM and a
pair of functors l : C ⇄M : r satisfying the following conditions:

(1) l is left adjoint to r;
(2) if f is a weak equivalence in C, then lf is a weak equivalence inM;
(3) if f is a weak equivalence between fibrant objects in M, then rf is a

weak equivalence in C.

Definition 3.2. We say that an object A in C is approximated by a right
Quillen pair l : C ⇄M : r if the following condition is satisfied:

(4) if lA→ X is a weak equivalence inM and X is fibrant, then its adjoint
A→ rX is a weak equivalence in C.

If all objects of C are approximated by l : C ⇄M : r, then this Quillen pair is
called a right model approximation of C.

Remark 3.3. For an object A to be approximated by a Quillen pair, we only
need the existence of some fibrant object X in the model category together
with a weak equivalence lA → X and such that the adjoint map is a weak
equivalence. Condition (4) is then automatically satisfied for any such fibrant
object. The reason is that any weak equivalence lA→ X ′ to a fibrant object X ′
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factors as an acyclic cofibration followed by an acyclic fibration lA
∼
→֒ X ′′

∼
։ X ′.

By the lifting axiom this means that lA → X factors through X ′′ so that
A → rX ′′ is a weak equivalence by the “2 out of 3” axiom. Finally so is
A→ rX ′ for the same reason.

Let us fix a right Quillen pair l : C ⇄M : r and choose a full subcategory D
of C with the following properties: all objects in D are approximated by the
Quillen pair and, for a weak equivalence f : X → Y , if one of X and Y belongs
to D then so does the other (D is closed under weak equivalences). We are going
to think of D as a category with weak equivalences given by the morphisms in
D that belong to W . Here are some fundamental properties of this category,
whose proofs extend those for model approximations in [7, Section 5]:

Proposition 3.4. (1) A morphism f in D is a weak equivalence if and
only if lf is a weak equivalence in M.

(2) The localization Ho(D) of D with respect to weak equivalences exists
and can be constructed as follows: objects of Ho(D) are the same as
objects of D and morHo(D)(X,Y ) = morHo(M)(lX, lY ).

(3) A morphism in D is a weak equivalence if and only if it induces an
isomorphism in Ho(D).

(4) The class of weak equivalences in D is closed under retracts.
(5) Let F : C → T be a functor. Assume that the composition Fr :M→ T

takes weak equivalences between fibrant objects in M to isomorphisms
in T . Then the right derived functor of the restriction F : D → T
exists and is given by A 7→ F (rX), where X is a fibrant replacement
of lA in M.

Proof. (1) Assume that lf : lA → lB is a weak equivalence in M. Choose a
weak equivalence lB → Y with fibrant target Y . By taking adjoints we form
the following commutative diagram in D:

A
f //

  ❇
❇❇

❇❇
❇❇

❇ B

��
rY

Since A and B belong to D, the morphisms A → rY and B → rY are weak
equivalences, as their adjoints are so. By the “two out of three” property, f is
then also a weak equivalence.
(2) Let α : D → T be a functor that sends weak equivalences to isomorphisms.
We prove that there is a unique functor β : Ho(D) → T for which the com-

position D → Ho(D)
β
−→ T equals α. On objects we have no choice, we define

β(A) := α(A).
Let A and B be objects in D. Since morHo(D)(A,B) = morHo(M)(lA, lB), a
morphism [f ] : A→ B in Ho(D) is given by a sequence of morphisms inM:

lA
a1−→ A1

a2←− A2
g
−→ B1

b
←− lB
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where a1 is a weak equivalence with fibrant target A1, a2 is a weak equivalence
with fibrant and cofibrant domain A2, and b is a weak equivalence with fibrant
target B1. By adjunction we get a sequence of morphisms in D:

A
a1−→ rA1

ra2←−− rA2
rg
−→ rB1

b
←− B

Note that a1, ra2, and b are weak equivalences. We define β([f ]) to be the
unique morphism in T for which the following diagram commutes:

α(A)
β([f ]) //

α(a1)

�� %%❏
❏❏

❏❏
❏❏

❏❏
α(B)

α(b)

��
α(rA1) α(rA2)

α(ra2)
oo

α(rg)
//

99ttttttttt
α(rB1)

Since α takes weak equivalences to isomorphisms such a morphism β([f ]) exists
and is unique. One can finally check that this process defines the desired functor
β : Ho(D)→ T .
(3) is a consequence of (1) and (2). Point (4) follows from (3).
(5) For any object A ∈ D let us fix a fibrant replacement lA→ RA inM. For
any morphism f : A→ B in D let us fix a morphism Rf : RA→ RB inM for
which the following diagram commutes:

lA
lf //

��

lB

��
RA

Rf // RB

Since Fr takes weak equivalences between fibrant objects to isomorphisms, the
association A 7→ F (rRA) and f 7→ F (rRf) defines a functor RF : D → T . We
claim that RF together with the natural transformation given by F (A→ rRA)
is the right derived functor of F : D → T . It is clear that RF takes weak
equivalences to isomorphisms. Let G : D → T be a functor that takes weak
equivalences to isomorphisms and let µ : F → G be a natural transformation.
For any A ∈ D define F (rRA) → G(A) to be the unique morphism that fits
into the following commutative diagram in T :

F (A)
µA //

��

G(A)

��
F (rRA)

µrRA //

99ssssssssss
G(rRA)

Such a morphism does exist since A → rRA is a weak equivalence and thus
G(A)→ G(rRA) is an isomorphism. �

Documenta Mathematica 23 (2018) 895–937



908 W. Chachólski, A. Neeman, W. Pitsch, J. Scherer

4. Towers

For a given category with weak equivalences (C,W) and a full subcategory D
our strategy is to construct a right Quillen pair l : C ⇄M : r which approx-
imates objects of D. We can then use this Quillen pair to localize D with
respect to weak equivalences and construct right derived functors as explained
in Proposition 3.4. For this strategy to work we need adequate examples of
model categories. The purpose of this section is to show how to assemble model
categories together to build new model categories that are suitable to approxi-
mate D. Such diagrams of model categories have appeared meanwhile in work
of Greenlees and Shipley, [16], see also Bergner’s construction of a homotopy
limit model category for a diagram of left Quillen functors, [3]. We include the
following definitions and results to fix notation and so as to be able to refer to
specific constructions in the next sections.
We start with a tower T of model categories consisting of a sequence of model
categories {Tn}n≥0 and a sequence of Quillen functors {l : Tn+1 ⇄ Tn : r}n≥0:
for any n, l is left adjoint to r and r preserves fibrations and acyclic fibrations.
The model categories in a tower T can be assembled to form its category of
towers.

Definition 4.1. The objects a• of the category of towers Tow(T ) are sequences
{an}n≥0 of objects an ∈ Tn together with a sequence of structure morphisms
{an+1 → r(an)}n≥0. The set of morphisms in Tow(T ) between a• and b•
consists of sequences of morphisms {fn : an → bn}n≥0 for which the following
squares commute:

an+1

fn+1

��

// r(an)

r(fn)

��
bn+1

// r(bn)

We write f• : a• → b• to denote the morphism {fn : an → bn}n≥0 in Tow(T ).

The following construction will be useful to describe a model structure on
Tow(T ). For a morphism f• : a• → b•, define p0 := b0 and, for n > 0, define:

pn := lim
(

bn → r(bn−1)
r(fn−1)
←−−−−− r(an−1)

)

Set α0 : a0 → p0 to be f0 and β0 : p0 → b0 to be the identity. For any n > 0,
let βn : pn → bn and αn : pn → r(an−1) be the projection from the inverse
limit onto the components bn, respectively r(an−1). Finally αn : an → pn is

Documenta Mathematica 23 (2018) 895–937



Relative Homological Algebra via Truncations 909

the unique morphism for which the following diagram commutes:

an

,,

��

αn

  ❆
❆❆

❆❆
❆❆

❆

pn
αn //

βn

��

r(an−1)

r(fi−1)

��
bn // r(bn−1)

The sequence {pn}n≥0 and the morphisms {pn+1
αn+1

−−−→ r(an)
r(αn)
−−−→ r(pn)}n≥0

defines an object p• in Tow(T ). Moreover {αn : an → pn}n≥0, respectively
{βn : pn → bn}n≥0, define morphisms α• : a• → p• and β• : p• → b• whose
composite is f•. For example, let ∗• be given by the sequence consisting of
the terminal objects {∗}n≥0 in Tn and f• : a• → ∗• be the unique morphism
in Tow(T ). Then p0 = ∗, and, for n > 0, pn = r(an−1). The morphism
αn : an → pn = r(an−1) is given by the structure morphism of a•.

Definition 4.2. A morphism {fn : an → bn}n≥0 in Tow(T ) is a weak equiva-
lence (respectively a cofibration) if, for any n ≥ 0, the morphism fn is a weak
equivalence (respectively a cofibration) in Tn. It is a fibration if αn : an → pn
is a fibration in Tn for any n ≥ 0.

For example the morphism a• → ∗• is a fibration if and only if a0 is fibrant in
T0 and the structure morphisms an → r(an−1) are fibrations in Tn for all n.
The following result is a particular case of the existence of the injective model
structure for diagrams of model categories, [16, Theorem 3.1]. We provide
some details of the proof as we will refer to the explicit construction of the
factorizations.

Proposition 4.3. The above choice of weak equivalences, cofibrations, and
fibrations equips Tow(T ) with a model category structure.

Proof. First, the category Tow(T ) is bicomplete, as limits and colimits are
formed “degree-wise”. The structural morphisms of the limit are the limits of
the structural morphisms since the functors r, as right adjoints, commute with
limits. For colimits, one considers the adjoints l(an+1)→ an of the structural
morphisms, and takes colimits l(colim(an+1)) ∼= colim l(an+1) → colim(an).
The adjoint morphisms colim(an+1)→ r(colim(an)) are precisely the structural
morphisms of the colimit.
The “2 out of 3” property (MC2) for weak equivalences and the fact that
retracts of weak equivalences (respectively cofibrations) are weak equivalences
(respectively cofibrations) follow immediately from the same properties for the
categories Tn. To prove axiom (MC3), notice that if {cn → dn}n≥0 is a retract
of a fibration {an → bn}n≥0, then c0 → d0 is a fibration in T0. Next consider
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the following commutative diagram for n > 0:

dn //

��

r(dn−1)

��

r(cn−1)oooo

��

qn

��

cnoo

��
bn //

��

r(bn−1)

��

r(an−1)oooo

��

lim ///o/o/o pn

��

anoooo

��
dn // r(dn−1) r(cn−1)oooo qn cnoo

where the penultimate column has been obtained by taking pull-backs. By the
retract property in Tn the morphism cn → qn is fibration, for any n > 0, and
therefore so is {cn → dn}n≥0 in Tow(T ).
Let us prove now the right and left lifting properties (MC4). Consider a com-
mutative diagram:

a•� _

∼

��

// c•

����
b• // d•

where the indicated arrows are respectively an acyclic cofibration and a fibra-
tion. In degree 0, a lift b0 → c0 is provided by the model structure on T0. We
construct the lift inductively. Take the solved lifting problem at level n and
complete with the structural maps to get the following commutative cube:

r(an) //

��

r(cn)

����

an+1

;;✇✇✇✇✇✇✇✇✇ //
� _

∼

��

cn+1

;;✇✇✇✇✇✇✇✇✇

��

r(bn) //

CC

r(dn)

bn+1

;;✇✇✇✇✇✇✇✇
// dn+1

;;✇✇✇✇✇✇✇✇

As above, denote by qn+1 the pull-back of dn+1 → r(dn) ← r(cn). By the
universal property of the pull-back there is a morphism bn+1 → qn+1 that
makes the resulting diagram commutative. Since by definition cn+1 → qn+1 is
a fibration, the lifting problem

an+1
//

� _

∼

��

cn+1

����
bn+1

// qn+1
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has a solution, which is the desired morphism. The proof for the right lifting
property for acyclic fibrations with respect to cofibrations is analogous.
Finally, to prove the factorization axiom (MC5), consider a morphism a• → b•.
The morphism a0 → b0 can be factored as an acyclic cofibration followed by a
fibration (respectively as a cofibration followed by an acyclic fibration) because
(MC5) holds in T0. We construct a factorization an+1 →֒ cn+1 ։ bn+1 by
induction on the degree. Consider the following commutative diagram:

an+1

��

//

""❋
❋❋

❋❋
❋❋

❋❋
r(an)

��
zn+1

//

||||①①
①①
①①
①①

r(cn)

����
bn+1

// r(bn)

where the right column is obtained by applying the functor r to the factorization
at level n and the bottom right square is a pull-back. Since both r and cobase-
change preserve (acyclic) fibrations, zn+1 → bn+1 is an (acyclic) fibration as
long as cn → bn is. It is now enough to factor an+1 → zn+1 in Tn+1 in the
desired way to obtain the factorization of an+1 → bn+1. �

Example 4.4. Let M be a model category. The constant sequence {M}n≥0

together with the sequence of identity functors {id :M⇄M : id}n≥0 forms a
tower of model categories. Its category of towers can be identified with the cat-
egory of functors Fun(Nop,M), where N is the poset whose objects are natural
numbers, N(n, l) = ∅ if n > l, and N(n, l) consists of one element if n ≤ l. The
model structure on Fun(Nop,M), given by Proposition 4.3, coincides with the
standard model structure on the functor category Fun(Nop,M) (see [7]). For
example, a functor F in Fun(Nop,M) is fibrant if the object F (0) is fibrant in
M and, for any n > 0, the morphism F (n)→ F (n− 1) is a fibration inM. A
morphism α : F → G is a cofibration in Fun(Nop,M) if it consists levelwise of
cofibrations inM.

5. A model approximation for relative homological algebra

In this section we construct a Quillen pair suitable for doing relative homolog-
ical algebra with unbounded chain complexes. The model category we propose
is a tower of categories of bounded chain complexes, each equipped with a rel-
ative model structure. Therefore we first define a model structure on bounded
chain complexes, then introduce the category of towers, and finally study the
associated Quillen pair.

5.1. Bounded chain complexes. Let n be an integer. The full subcategory
of Ch(A)≤n ⊂ Ch(A) consists of the chain complexes X such that Xi = 0 for
i > n. The inclusion functor in : Ch(A)≤n ⊂ Ch(A) has both a right and a left
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adjoint. The left adjoint is denoted by τn : Ch(A) → Ch(A)≤n and is called
truncation. Explicitly τn assigns to a complex X the truncated complex

τn(X) := (Coker(dn+1)
dn−→ Xn−1

dn−1

−−−→ Xn−2
dn−2

−−−→ · · · )

where in degree n we have τn(X)n = Coker(dn+1), and for i < n the formula is
τn(X)i = Xi. For a morphism f : X → Y in Ch(A) the map τn(f)n is induced
by fn, while for i < n we have τn(f)i = fi.
For any X ∈ Ch(A), the truncation morphism tn : X → inτn(X) is the unit
of the adjunction τn ⊣ in. Explicitly this morphism we will abusively write as
tn : X → τn(X) is the following chain map:

X

��

· · ·
dn+2 // Xn+1

��

dn+1 // Xn
dn //

q

��

Xn−1

dn−1 //

id

��

· · ·

τn(X) · · · // 0 // Coker(dn+1)
dn // Xn−1

dn−1 // · · ·

where q denotes the quotient morphism. With respect to the injective classes
we introduced in Definition 1.3, the key property of the truncation morphism
is the following.

Proposition 5.1. The truncation morphism tn : X → τn(X) is an n-I-weak
equivalence for any injective class I.

Proof. For any W ∈ I, the morphism A(tn,W ) is given by the following com-
mutative diagram:

0

��

A(Coker(dn+1),W )oo

��

A(Xn−1,W )oo

id

��

A(dn−1,W )oo

A(Xn+1,W ) A(Xn,W )
A(dn+1,W )oo A(Xn−1,W )

A(dn,W )oo A(dn−1,W )oo

Clearly A(tn,W ) induces an isomorphism on cohomology in degrees > −n.
Since the kernel of A(dn+1,W ) is given by A(Coker(dn+1),W ), A(tn,W ) in-
duces also an isomorphism on H−n. As H−n−1(A(τn(X),W )) = 0, A(tn,W )
induces a monomorphism on H−n−1. �

We begin by recalling a theorem of Bousfield [4, Section 4.4]. A proof may
also be found in the appendix, see Theorem A.16 – it is there both for the
reader’s convenience and because it gives an explicit construction of fibrant
replacements.

Theorem 5.2. Let I be an injective class. The following choice of weak equiva-
lences, cofibrations and fibrations endows Ch(A)≤n with a model category struc-
ture:

• f : X → Y is called an I-weak equivalence if f∗ : A(Y,W )→ A(X,W )
is a quasi-isomorphism of complexes of abelian groups for any W ∈ I.
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• f : X → Y is called an I-cofibration if fi : Xi → Yi is an I-
monomorphism for all i ≤ n.
• f : X → Y is called an I-fibration if fi : Xi → Yi has a section and its
kernel belongs to I for all i ≤ n. In particular X is I-fibrant if Xi ∈ I
for all i ≤ n.

Among other things this model structure gives, for an object A ∈ A seen as a
chain complex concentrated in degree zero, a fibrant replacement A→ I. This
turns out to be nothing else than a relative injective resolution for A. Here are
some basic properties of this model structure on Ch(A)≤n.

Proposition 5.3. (1) All objects in Ch(A)≤n are I-cofibrant.
(2) Let f : X → Y be an I-fibration. Then Ker(f) is fibrant and f is a

k-I-weak equivalence if and only if Ker(f) is k-I-connected.
(3) An I-fibration f : X → Y is an I-weak equivalence if and only if Ker(f)

is I-trivial. Moreover, if f is an acyclic I-fibration, then there is an
isomorphism α : Y ⊕Ker(f)→ X for which the following diagram com-
mutes:

Y ⊕Ker(f)
α //

pr

%%❏❏
❏❏

❏❏
❏❏

❏❏
X

f

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

Y

(4) An I-weak equivalence between I-fibrant chain complexes in Ch(A)≤n

is a homotopy equivalence.
(5) An I-fibrant object in Ch(A)≤n is I-trivial if and only if it is isomor-

phic to a complex of the form
⊕

i≤n Di(Wi), where disc complexes have
been defined in Example 1.10.

(6) Products of I-fibrant and I-trivial complexes are I-trivial.
(7) Assume that the following is a sequence of I-fibrations and I-weak

equivalences in Ch(A)≤n:

(· · ·X2
f2
−→ X1

f1
−→ X0)

Then, the projection morphism limi≥0Xi → Xk is an I-fibration and
an I-weak equivalence for any k ≥ 0.

Proof. (1) follows from the fact that, for any W ∈ A, the morphism 0→W is
an I-monomorphism.
(2): For any W , the following is an exact sequence of chain complexes of
abelian groups:

0→ A(Y,W )
A(f,W )
−−−−−→ A(X,W )→ A(Ker(f),W )→ 0 .

The first part of (3) follows from (2). If f : X → Y is an acyclic I-fibration, then
because all objects in Ch(A)≤n are I-cofibrant, there is a morphism s : Y → X
for which fs = idY . This implies the second part of (3).
(4): All objects in Ch(A)≤n are I-cofibrant, so an I-weak equivalence be-
tween I-fibrant objects is a homotopy equivalence in the I-model structure.
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But, the standard path object P (Z) (see A.5), is a very good path object for
any I-fibrant chain complex Z ∈ Ch(A)≤n (in the terminology used in [11],

which means that the factorization Z ⊂ P (Z)
π
−→ Z ⊕ Z consists in an acyclic

cofibration followed by a fibration). Hence, a homotopy equivalence in the
I-model structure on Ch(A)≤n is nothing but a homotopy equivalence.
(5): Assume that X is I-fibrant and I-trivial. According to Proposi-
tion 1.15.(8) we need to show that, for all i, Wi := Coker(di+1) belongs to I.
We do it by induction on i. For i = n, Coker(dn+1) = Xn belongs to I
since X is I-fibrant. Assume now that Wi+1 ∈ I. As di+1 : Wi+1 → Xi is
an I-monomorphism, it has a retraction. It follows that Xi = Wi+1 ⊕ Wi.
Consequently Wi, as a retract of a member of I, also belongs to I.
(6) is a consequence of (5), and (7) follows from (3) and (6). �

We will use the model categories Ch(A)≤n with their I-relative model structure
to approximate the category of unbounded chain complexes Ch(A) equipped
with the I-relative weak equivalences.

Proposition 5.4. (1) The following pair of functors is a right Quillen
pair:

τn : Ch(A) ⇄ Ch(A)≤n : in

(2) A chain complex X ∈ Ch(A) is approximated by the above right Quillen
pair if and only if A(X,W ) has trivial cohomology for i < −n and any
W ∈ I.

Proof. Both statements follow directly from the definitions and Proposition 5.1.
�

Our aim is to find other Quillen pairs for Ch(A) that approximate more un-
bounded chain complexes than just those with “bounded I-homology”. For
that we construct a suitable model category by assembling the categories
Ch(A)≤n into a tower. This is the content of the next subsection.

5.2. Towers of bounded chain complexes. For n ≥ k, the restriction of
τk : Ch(A) → Ch(A)≤k to the subcategory Ch(A)≤n ⊂ Ch(A) is denoted by
the same symbol τk : Ch(A)≤n → Ch(A)≤k (and is left adjoint to the inclusion
in : Ch(A)≤k ⊂ Ch(A)≤n). Moreover the canonical morphism X → τk(X)
can be expressed uniquely as the composite X → τn(X) → τk(X), of the
truncation morphism X → τn(X) for X and n, and the truncation morphism
τn(X)→ τk(X) = τk(τn(X)) for τn(X) and k.
Consider now the sequence of model categories {Ch(A)≤n}n≥0, with the model
structures given by Theorem 5.2. The functor in : Ch(A)≤n ⊂ Ch(A)≤n+1

takes (acyclic) fibrations to (acyclic) fibrations and hence the following is a
sequence of Quillen functors:

{τn : Ch(A)≤n+1 ⇄ Ch(A)≤n : in}n≥0

We will denote this tower of model categories by T (A, I) and use the symbol
Tow(A, I) to denote the category of towers in T (A, I).
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Let X• be an object in Tow(A, I). We can think about this object as a tower
of morphisms:

· · ·
t3−→ X2

t2−→ X1
t1−→ X0

in Ch(A) given by the structure morphisms of X•. Conversely, for any such
tower where Xn is a chain complex that belongs to Ch(A)≤n, we can define
an object X• in Tow(A, I) given by the sequence {Xn}n≥0 with the mor-
phisms {tn+1}n≥0 as its structure morphisms. In this way we can think about
Tow(A, I) as a full subcategory of the functor category Fun(Nop,Ch(A)).
To be very explicit, Tow(A, I) is the category of commutative diagrams in A
of the following form:

(1)

...

��

...

��

...

��

...

��

...

��

...

��
0 // X2,2

d2,2 //

t2,2

��

X2,1

d2,1 //

t2,1

��

X2,0

d2,0 //

t2,0

��

X2,−1

d2,−1 //

t2,−1

��

X2,−2

d2,−2 //

t2,−2

��

· · ·

0 // X1,1

d1,1 //

t1,1

��

X1,0

d1,0 //

t1,0

��

X1,−1

d1,−1 //

t1,−1

��

X1,−2

d1,−2 //

t1,−2

��

· · ·

0 // X0,0

d0,0 // X0,−1

d0,−1 // X0,−2

d0,−2 // · · ·

where, for any n ≥ 0 and i ≤ n , dn,i−1dn,i = 0, i.e., horizontal lines are chain
complexes.
We will always think about Tow(A, I) as a model category, with the model
structure given by Proposition 4.3. For example, if we think about X• as a

tower (· · ·
t3−→ X2

t2−→ X1
t1−→ X0), then X• is fibrant if and only if X0 is I-

fibrant in Ch(A)≤0 and, for any n ≥ 0, tn+1 : Xn+1 → Xn is an I-fibration in
Ch(A)≤n+1. If we think about X• as a commutative diagram as above, then
X• is fibrant if, for any i ≤ 0, the objects X0,i belongs to I, and, for any n > 0
and i ≤ n, tn,i has a section and its kernel belongs to I. Note also that since
all objects in Ch(A)≤n are cofibrant, then so are all objects in Tow(A, I).

5.3. Alternative description. Let us briefly outline another way of
describing the category Tow(A, I). Consider the constant sequence
{Ch(A)≤0}n≥0 equipped with the model structure given by Theorem 5.2
and the sequence of adjoint functors {τ : Ch(A)≤0 ⇄ Ch(A)≤0 : Σ

−1}n≥0,
where Σ−1 is the shift functor. It is clear that Σ−1 takes (acyclic) I-fibrations
in Ch(A)≤0 into (acyclic) I-fibrations in Ch(A)≤0. Let us denote this tower
of model categories by T .
Let X• be an object in Tow(T ). The structure morphisms of X• and the
differentials of the chain complexesXi can be assembled to form a commutative
diagram in A as in (1). This defines an isomorphism between the category of
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such commutative diagrams and the category of towers Tow(T ). It then follows
that Tow(T ) is also isomorphic to Tow(A, I).

5.4. A right Quillen pair for Ch(A). In this subsection we use the model
category Tow(A, I) described above to define a right Quillen pair for Ch(A)
that has potential to approximate more than complexes with bounded I-
homology (see Proposition 5.4). We define first a pair of adjoint functors
tow : Ch(A) ⇄ Tow(A, I) : lim.
Let X be an object in Ch(A). Define tow(X) to be the object in Tow(A, I)
given by the sequence {τn(X)}n≥0 where the structural morphisms are the
truncation morphisms {tn+1 : τn+1(X) → τn(X)}n≥0. Explicitly, tow(X) is
represented by the following commutative diagram in A:
(2)

...

��

...

��

...

��

...

��

...

��

...

��
τ2(X)

��

0 // Coker(d3)
d2 //

��

X1
d1 //

q

��

X0
d0 //

id

��

X−1

d−1 //

id

��

· · ·

τ1(X)

��

0 // Coker(d2)
d1 //

��

X0
d0 //

q

��

X−1

d−1 //

id

��

· · ·

τ0(X) 0 // Coker(d1)
d0 // X−1

d−1 // · · ·

where all q’s denote quotient morphisms. For a chain map f : X → Y , the
morphism tow(f) is given by the sequence of morphisms {τn(f)}n≥0.
We define next the limit functor lim : Tow(A, I)→ Ch(A) to be the restriction
of the standard limit functor defined on Fun(Nop,Ch(A)) to the full subcat-
egory Tow(A, I). Explicitly, let X• be an object in Tow(A, I) described by
a diagram of the form (1). Then lim(X•) is the chain complex obtained by
taking inverse limits in the vertical direction:

lim(X•)i := lim(· · ·
t3,i
−−→ X2,i

t2,i
−−→ X1,i

t1,i
−−→ X0,i)

and the differential di : lim(X•)i → lim(X•)i−1 is given by limn(dn,i). On
morphisms, the functor lim : Tow(A, I) → Ch(A) is defined in the analogous
way by taking the inverse limits in the vertical direction.

Proposition 5.5. The functors tow : Ch(A) ⇄ Tow(A, I) : lim form a right
Quillen pair for Ch(A) with I-weak equivalences as weak equivalences.

Proof. We need to verify that the three conditions in Definition 3.1 are fulfilled.
(1) We must show that the tower functor tow : Ch(A) → Tow(A, I) is left
adjoint to the limit functor lim : Tow(A, I)→ Ch(A).
Let Y be a chain complex in Ch(A) and X• be an object in Tow(A, I) given by

the tower (· · ·X2
t2−→ X1

t1−→ X0) of morphisms in Ch(A) with Xn ∈ Ch(A)≤n.
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Consider a morphism of chain complexes f : Y → lim(X•). Since lim(X•) is
the inverse limit of the tower X•, the morphism f corresponds to a sequence
of morphisms {fn : Y → Xn}n≥0 which are compatible with the structural
morphisms tn.
Since the chain complex Xn belongs to Ch(A)≤n, the morphism fn : Y → Xn

can be expressed in a unique way as a composition Y → τn(Y ) → Xn where
Y → τn(Y ) is the truncation morphism. The sequence {τn(Y ) → Xn}n≥0

describes a morphism tow(Y ) → X• in Tow(A, I). It is straightforward to
check that this procedure defines a natural bijection from the set of morphisms
between Y and lim(X•) in Ch(A) onto the set of morphisms between tow(Y )
and X• in Tow(A, I).

Condition (2) is a consequence of Proposition 5.4: If f : X → Y is an I-weak
equivalence in Ch(A), then tow(f) is a weak equivalence in Tow(A, I).

To prepare the proof of the third and last condition we show the following.

(2.5) Let K• ∈ Tow(A, I) be a fibrant object such that Kn is I-trivial in
Ch(A)≤n for any n ≥ 0. Then lim(K•) is I-trivial in Ch(A).
Since K• is fibrant in Tow(A, I), K0 is I-fibrant in Ch(A)≤0 and, for n > 0, the
structure morphism tn : Kn → Kn−1 is an I-fibration in Ch(A)≤n. As all Kn’s
are assumed to be I-trivial, the I-fibrations tn are also I-weak equivalences.
It then follows from Proposition 5.3.(3) that K• is isomorphic to the following
tower of chain complexes:

· · · →M0 ⊕M1 ⊕M2 ⊕M3
pr
−→M0 ⊕M1 ⊕M2

pr
−→M0 ⊕M1

pr
−→M0

where M0 := K0 and, for n > 0, Mn := Ker tn. Thus lim(K•) ∼=
∏

n≥0 Mn.

Because Mn is I-trivial and I-fibrant in Ch(A)≤n, Proposition 5.3.(4) implies
that Mn is isomorphic to

⊕

i≤n Di(Wn,i) for some sequence {Wn,i}i≤n of ob-

jects in I. Substituting this to the above product describing lim(K•) we get
the following isomorphisms:

lim(K•) ∼=
∏

n≥0

Mn =
∏

n≥0

⊕

i≤n

Di(Wn,i) =
∏

n≥0

∏

i≤n

Di(Wn,i) ∼=

∼=
∏

i

∏

i≤n

Di(Wn,i) ∼=
∏

i

Di(
∏

i≤n

Wn,i) ∼=
⊕

i

Di(
∏

i≤n

Wn,i)

It is now clear that lim(K•) is I-trivial. In fact lim(K•) is even homotopy
equivalent to the zero chain complex.

(3) Let f• : X• → Y• be a weak equivalence in Tow(A, I) between fibrant
objects. Then lim(f•) is an I-weak equivalence in Ch(A).
By Ken Brown’s Lemma (see [5, Factorization Lemma], or [11, Lemma 9.9] for
a more explicit treatment), it is enough to show the statement under the addi-
tional assumption that f• : X• → Y• is an I-fibration. Let us define K• to be
an object in Tow(A, I) given by the sequence {Ker(fn)}n≥0 with the structure
morphisms being the restrictions of the structure morphisms of X•. Since all
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objects in Ch(A)≤n are I-cofibrant, then so are all objects in Tow(A, I). It
follows that there is s• : Y• → X• for which f•s• = id. By applying the functor
lim, we then get the following split exact sequence in Ch(A):

0→ lim(K•)→ lim(X•)
lim(f•)
−−−−→ lim(Y•)→ 0

Since X• is isomorphic to K• ⊕ Y•, as a retract of a fibrant object X•, the ob-
ject K• is then also fibrant. Moreover, as fn is an I-equivalence in Ch(A)n≥,
the complex Kn is I-trivial in Ch(A)≤n for any n ≥ 0. We can then ap-
ply statement (2.5) to conclude that lim(K•) is an I-trivial chain complex in
Ch(A). The morphism lim(f•) : lim(X•) → lim(Y•) must be then an I-weak
equivalence (which is in fact a homotopy equivalence). �

Definition 5.6. The right Quillen pair tow : Ch(A) ⇄ Tow(A, I) : lim is
called the standard Quillen pair for Ch(A).

5.5. Complexes approximated by the standard Quillen pair. The key
task now is to find out which chain complexes are approximated by the standard
Quillen pair, i.e. we need to understand which complexes X have the following
property:

• If f : tow(X) → Y• is a weak equivalence in Tow(A, I), with fibrant
target Y•, then its adjoint g : X → lim(Y•) is an I-weak equivalence in
Ch(A).

Recall that if, for a chain complex X , the above statement is true for some
fibrant Y•, then it is true for any other.
Assume that f : tow(X) → Y• is a weak equivalence in Tow(A, I) (for now
even without the fibrancy assumption on Y•) and let g : X → lim(Y•) be its
adjoint. Fix an integer k ≥ 0 and consider the following commutative diagram
in Ch(A):

X
g //

��

lim(Y•)

��
τk(X)

fk // Yk

where lim(Y•) → Yk is the projection and X → τk(X) is the truncation mor-
phism, which, according to Proposition 5.1, is a k-I-weak equivalence. By
assumption fk is an I-weak equivalence so that the composite of g with the
projection lim(Y•)→ Yk is a k-I-weak equivalence.
As a consequence, the error in approximating a complex is always of a somewhat
tame nature. For any W ∈ I, A(g,W ) : A(lim(Y•),W ) → A(X,W ) must
induce a split epimorphism in cohomology in degrees i ≥ −k and this happens
for all k’s.

Proposition 5.7. Let f : tow(X) → Y• be a weak equivalence in Tow(A, I)
and g : X → lim(Y•) be its adjoint. Then, for any W ∈ I, A(g,W ) induces a
split epimorphism on homology. �
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6. A relative version of Roos’ axiom AB4*-n

In this section we show that under Roos’ axiom AB4*-n, see [32], every complex
is approximated by the standard Quillen pair. In fact we introduce a relative
version of this axiom and extend this result to provide a construction of relative
resolutions for unbounded chain complexes via towers of truncations.

Definition 6.1. LetA be an abelian category, I an injective class and n ≥ 0 an
integer. We say that the category A satisfies axiom AB4*-I-n if and only if, for
any countable family of objects (Aj)j∈J and any choice of relative resolutions
Aj → Ij , with Ij ∈ Ch(A)≤0, the product complex

∏

j∈J Ij is (−n − 1)-I-
connected.

Roos’ axiom AB4*-n is stated in terms of the derived functors of products,
namely that all infinite derived product functors Π(i)Cα vanish for i > n. Our
axiom involves countable products because we only need towers indexed by the
natural integers. Except for this our axioms are closely related.

Proposition 6.2. An abelian category A satisfies axiom AB4*-I-n for the
class I of all injective objects if and only if all derived countable product func-

tors
∏(i)

Aj vanish for i > n.

Proof. Given a countable family of objects (Aj)j∈J , let us choose injective
resolutions Aj → Ij , and form the product complex

∏

j∈J Ij . This complex is

(−n− 1)-I-connected if and only if it is (−n− 1)-connected since we deal here
with the class of all injectives. The higher homology of this complex computes

the derived functors of the countable product
∏(i)

Aj . They vanish for i > n
precisely when the complex is (−n− 1)-connected. �

Proposition 6.3. Let I be an injective class and assume that the abelian
category A satisfies axiom AB4*-I-n. Let K• be a fibrant tower in Tow(A, I)
such that, for any n, Kn is k-I-connected. Then the limit complex limK• is
(k − n− 1)-I-connected.

Proof. The kernel of the “one minus shift” map 1− t :
∏

Kn →
∏

Kn, defined
by (1− t)(xn) = (xn − tn+1(xn+1)), is limK•. Since K• is fibrant, the vertical
structure maps tn are degreewise split epimorphisms and we may choose, in
each degree, a splitting σ : Kn → Kn+1. We define then maps

∏

Kn → Km+1

for all m ≥ 0 by the formula

(x0, x1, x2, · · · ) 7→ −
m
∑

j=0

σm+1−j(xj)

which assemble to form a degreewise splitting s :
∏

Kn →
∏

Kn of 1− t. This
proves first that the sequence

0 // limK•
// ΠnKn

1−t // ΠnK•
// 0
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is exact, and second, that applying A(−,W ) for any W ∈ I to the previous
sequence gives an exact sequence of complexes, which is also split in each degree:

0 A(limK•,W )oo A(
∏

n Kn,W )oo A(
∏

n Kn,W )
1−t

oo 0oo

Therefore, any bound on the connectivity of A(
∏

n Kn,W ) is a bound on the
connectivity of A(limK•,W ). We will conclude the proof by showing that
k − n − 1 is such a bound. Observe now that, because each complex Km is
k-I-connected, the following sequence is exact:

A((Km)k+1,W ) A((Km)k,W )oo A((Km)k−1,W )oo . . .oo

Left exactness of the functor A(−,W ) shows that the kernel of the leftmost
arrow above is A((Km)k/(Km)k+1,W ). In particular, as the complex Km

is fibrant and k-connected, the truncated complex τk(Km) yields a (shifted)
relative I-resolution of the object (Km)k/(Km)k+1.
Hence, in computing in degree q < k − n − 1 the cohomology of the complex
A(

∏

Kn,W ) we are computing, under the axiom AB4*-I-n, the cohomology
in degree < −n of an acyclic complex. �

And finally we get our expected approximation:

Theorem 6.4. Let I be an injective class and assume that the abelian category
A satisfies axiom AB4*-I-n. Then the standard Quillen pair

tow : Ch(A) ⇄ Tow(A, I) : lim

is a model approximation.

Proof. In view of Proposition 5.5 it remains to show that to any fibrant re-
placement f : tow(X) → Y• corresponds an adjoint X → limY• that is an
I-weak equivalence. Let {tn+1 : Yn+1 → Yn}n≥0 be the structure morphisms
of Y• and, for any n ≥ k, let cn−k : Yn → Yk denote the composite

Yn

tn−k // Yn−1
tn−1 // · · ·

tk+1 // Yk

These morphisms fit into the following commutative square in Ch(A)≤n where
the top horizontal morphism is a truncation morphism:

τn(X) //

fn

��

τk(X)

fk

��
Yn

cn−k // Yk

By assumption, fn and fk are I-weak equivalences, and the top horizontal
arrow is a k-I-weak equivalence according to Proposition 5.1. It follows that
cn−k is a k-I-weak equivalence. Fibrancy of Y• implies that cn−k is also an
I-fibration in Ch(A)≤n. In particular, for n ≥ k, Kn := Ker(cn−k : Yn → Yk)
is k-I-connected (see Proposition 5.3.(2)). Set Kn := 0 for n < k, and define
tn+1 : Kn+1 → Kn to be the restriction of the structure morphism tn+1 :
Yn+1 → Yn, if n ≥ k, and the zero morphism, if n < k. In this way we have
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defined a fibrant object K• in Tow(A, I). We have moreover a degreewise split
exact sequence in Ch(A):

(3) 0 // lim(K•) // lim(Y•) // Yk
// 0

By Proposition 6.3, lim(K•) is (k−n−1)-I-connected, hence lim(Y•)→ Yk is a
(k−n−1)-I-equivalence. But the composite X = lim(τn(X))→ lim(Y•)→ Yk

is a k-I-weak equivalence, and it follows by the “2 out of 3” property that
X → lim(Y•) is a (k−n− 1)-I-weak equivalence. This is so for any value of k,
which concludes the proof. �

This explains also why Spaltenstein’s construction of resolutions via truncations
works in the absolute setting.

Corollary 6.5. Let R be a ring and I be the class of all injective R-modules.
The category of R-modules satisfies axiom AB4*-I-0. In particular the standard
Quillen pair

tow : Ch(R) ⇄ Tow(R, I) : lim

is a model approximation.

Proof. Relative connectivity for the class of all injective modules is connectivity
and the category of R-modules satisfies axiom AB4*, which is AB4*-0 as stated
in [32, Remark 1.2]. �

7. Example: Noetherian rings with finite Krull dimension

In this section R is a Noetherian ring and we focus on injective classes of injec-
tives, which were classified in [6]: they are in one-to-one correspondence with
the generization closed subsets of SpecR. We show that, under the additional
assumption that R is of finite Krull dimension, the standard Quillen pair is a
model approximation for all injective classes I of injectives.
We need some preparation before proving this theorem, and we refer to Appen-
dix B for elementary facts about local cohomology. The key ingredient is the
vanishing of the homology of an I-relative resolution above the Krull dimension
of the ring.

Lemma 7.1. Let R be a Noetherian ring, p ⊂ R a prime ideal of height d,
and I ∈ Ch(R)≤0 an injective resolution of a module M . The complex I(p),
obtained from I by keeping only the direct summands isomorphic to E(R/p),
has no homology in degrees < −d.

Proof. First form I ⊗ Rp, that is localize I at p to kill all the summands
of I isomorphic to E(R/q) with q 6⊂ p, see Lemma B.2. The subcomplex
Γp(I ⊗ Rp) is precisely what we obtain from I ⊗ Rp by excising summands
isomorphic to E(R/q) for q ( p, see Lemma B.5. Thus Γp(I ⊗ Rp) = I(p), in
the notation of the current lemma. The ring Rp is flat over R, hence I ⊗ Rp

is an injective resolution over Rp of the module M ⊗ Rp, and the cohomology
of I(p) = Γp(I ⊗ Rp) is the local cohomology of M ⊗ Rp at the maximal
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ideal pRp ⊂ Rp. The vanishing follows from Proposition B.7 and Remark B.8
because the Krull dimension of Rp is d. �

Proposition 7.2. Let R be a Noetherian ring of finite Krull dimension d, and
I an injective class of injective modules. For any module M and an I-relative
resolution I ∈ Ch(R)≤0, we have Hk(I) = 0 if k < −d− 1.

Proof. The injective class I corresponds to a generization closed subset S of
Spec(R) by [6, Corollary 3.1]. Let a be the length of the maximal chain of
prime ideals in the complement of S. If a = 0 then I consists of all injective
modules, so that Hk(I) = 0 for all k < 0.
Assume now that a ≥ 1 and we prove the proposition by induction on a. Con-
sider the set S′′ of minimal ideals pi in the complement of S; we know the
result is true for the injective class I ′ corresponding to the set S′ = S ∪ S′′.
We denote by I ′ the I ′-relative resolution of M . Replacing I by a homo-
topy equivalent complex if necessary, we obtain a degree-wise split short exact
sequence of chain complexes 0 → I ′′ → I ′ → I → 0, where I ′′ is a direct
sum of E(R/pi) with pi ∈ S′′. But there are no inclusions among the primes
pi ∈ S′ − S, hence I ′′ is the direct sum of the complexes I(pi) that we in-
troduced in Lemma 7.1. The proposition now follows from Lemma 7.1 and
the long exact sequence in homology induced by the short exact sequence of
complexes 0→ I ′′ → I ′ → I → 0. �

Next comes the last proposition we will use in the proof of our main theorem,
it measures the difference between the resolutions of a bounded complex and of
a truncation. Recall that I(X) denotes the fibrant replacement of the bounded
complex X in the I-relative model structure described in Theorem 5.2, i.e. an
I-relative injective resolution of X .

Proposition 7.3. Let R be a Noetherian ring of finite Krull dimension d,
and I an injective class of injective modules. Let X ∈ Ch(R)≤0 be a bounded
complex and τ1X its first truncation. Then the canonical morphism X → τ1X
induces isomorphisms in homology Hk(I(X)) → Hk(I(τ1X)) for any integer
k < −d− 1.

Proof. Let us replace X → τ1X by an I-fibration I(X) → I(τ1X) between
I-fibrant objects. The kernel K is a chain complex made of injective modules
in I, and forms therefore an I-fibrant replacement for H0(X), the kernel of the
canonical morphism.
From the previous proposition we know that Hk(K) = 0 if k < −d − 1. The
long exact sequence in homology finishes the proof. �

Theorem 7.4. Let R be a Noetherian ring with finite Krull dimension d, and
I an injective class of injective modules. Then the category of towers forms a
model approximation for Ch(R) equipped with I-equivalences.

Proof. To show that the Quillen pair is in fact a model approximation, we
must check that Condition (4) of Definition 3.1 holds, or equivalently that the

Documenta Mathematica 23 (2018) 895–937



Relative Homological Algebra via Truncations 923

canonical morphism lim I(towX)→ X is an I-equivalence for any unbounded
chain complex X . We have learned from Proposition 7.3 that the homology
of I(τnX) and I(τn−1X) only differ in degrees lying between n and n− d− 1.
This means that the homology of the I-fibrant replacement of the tower tow(X)
stabilizes. Therefore Hk(lim, I(towX)) ∼= Hk(I(τk+d+1X)). �

Remark 7.5. The above argument actually shows that the category of R-
modules satisfies axiom AB4*-I-(d + 1) when R has finite Krull dimension d,
and I is an injective class of injective R-modules. A product of relative injective
resolutions of certain R-modules is a special case of an inverse limit of a fibrant
tower as above.

8. Example: Nagata’s “bad Noetherian ring”

The objective of this section is to show that, even under the Noetherian as-
sumption, towers do not always approximate unbounded chain complexes. We
have seen in the previous section that no problems arise when the Krull di-
mension is finite. However, delicate and interesting issues arise when the Krull
dimension is infinite. We first recall an example of Noetherian ring with infinite
Krull dimension, constructed by Nagata in the appendix of [27].

Example 8.1. Let k be a field and consider the polynomial ring on countably
many variables A = k[x1, x2, . . . ]. Choose the following sequence of prime
ideals p2 = (x1, x2), p3 = (x3, x4, x5), p4 = (x6, x7, x8), etc. where the depth of
pi is precisely i. Take S to be the multiplicative set consisting of elements of A
which are not in any of the pi’s. The localized ring R = S−1A is Noetherian,
but of infinite Krull dimension. In fact its maximal ideals are mi = S−1pi, a
sequence of ideals of strictly increasing height.

8.1. A problematic class of injectives. In this subsection we choose the
specialization closed subset C of Spec(R) to consist of all the maximal ideals mi.
We will do relative homological algebra with respect to the injective class I of
injective R-modules, generated by the injective envelopes E(R/p) for all prime
ideals p /∈ C. We noticed earlier that the class of I-acyclic chain complexes is
a localizing subcategory of D(R). As it contains R/mi but not any other R/p,
we know from Neeman’s classification [28] that this localizing subcategory is
generated by all R/mi.

Lemma 8.2. Let I(R) be an I-injective resolution of R. Then H0(I(R)) ∼= R
and H1−i(I(R)) ∼= E(R/mi) for any i > 1.

Proof. Consider a minimal injective resolution R →֒ I0 = E(R) → I−1 → . . . .
By the description Matlis [26] gave of injective modules, each In is a direct sum
of modules of the form E(R/p) where p runs over prime ideals of R.
By Lemma B.3 we see that there is a subcomplex K of I made of all the
copies of E(R/mi), and we take I(R) = I/K. This is a fibrant replacement
for R in the relative model structure described in Theorem 5.2. Since the
homology of I is concentrated in degree 0, we see from the long exact sequence
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in homology for the short exact sequence of complexes K → I → I(R) that the
lower homology modules of I(R) are isomorphic to those of K up to a shift:
H1−k(I(R)) ∼= H−k(K) for k > 1. But K splits as a direct sum ⊕iΓmi

(I) by
Lemma B.3 and Definition B.4. Therefore

H−k(K) ∼= ⊕Hk
mi
(R) ∼= ⊕iH

k
mi
(Rmi

)

where the second isomorphism comes from Lemma B.5. The local ring Rmi

is regular, hence Gorenstein, of dimension i. Therefore the computation done
in [22, Theorem 11.26] yields that H1−i(I(R)) ∼= E(R/mi). It also shows here
that H0(I(R)) ∼= H0(I) ∼= R since all local cohomology modules are zero in
degree zero. �

Now we consider the unbounded chain complex X with Xn = R for all n
and zero differential. The zeroth truncation of X is the non-positively graded
complex with zero differential and where every module is R, in other words
this complex is ⊕i≤0Σ

iR. We know how to construct explicitly an I-relative
resolution for this bounded complex by the previous lemma: it is a direct sum
⊕i≤0Σ

iI(R).

Lemma 8.3. Let X be the unbounded complex ⊕iΣ
iR, let τ0X be its zeroth

truncation, and let I(τ0X) denote the I-relative resolution of the latter. We
have then H1−i(I(τ0X)) ∼= R⊕⊕2≤j≤iE(R/mj) for any i ≥ 1.

Proof. This is a direct consequence of the previous lemma. �

The unbounded complex X is the key player in our main counterexample.

Theorem 8.4. For Nagata’s ring R and the injective class I above, the category
of towers Tow(R, I) does not form a model approximation for Ch(R). More
precisely there exists a complex X which is not I-weakly equivalent to the limit
of the fibrant replacement of its truncation tower.

Proof. The complexX is the one we have constructed above, namely ⊕i∈ZΣ
iR.

Let us consider its tower approximation, which is, by definition, the limit Y
of the tower given by the I-relative resolution of the successive truncations
of X . From the previous lemma the nth level of this tower is ⊕i≤nΣ

iI(R)
and the structure maps are the projections. Therefore the limit is the product
∏

iΣ
iI(R). In particular we identify for any i

H1−i(Y ) ∼= R×
∏

j≥2

E(R/mj).

The homotopy fiber of the natural map X → Y is thus an unbounded complex
whose homology is

∏

j≥2 E(R/mj) in each degree. This complex cannot be

I-acyclic since the annihilator of the image of 1 via the (diagonal) composite
map

R→
∏

j

R→
∏

j

R/mj →
∏

j

E(R/mj)

is zero and this contradicts the description of I-acyclic complexes given in
Example 1.13. �
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8.2. Well behaved classes of injectives. Nagata’s ring, or other Noe-
therian rings of infinite Krull dimension, also have well behaved classes of in-
jective modules. Let us fix for example a maximal ideal m of height n. Since
the set of primes strictly contained in m is saturated by [6] we may consider
the injective class Im generated by {E(R/p) | p  m}.

Theorem 8.5. The category R-Mod satisfies axiom AB4*-Im-(n + 1), where
n is height m. In particular the category of towers Tow(R, Im) is a model
approximation for Ch(R).

Proof. Let X be an object in Ch(A)≤0, let I be an injective resolution for X ,
and let I(X) be the I–fibrant replacement of X obtained by excising all the
summands of I isomorphic to E(R/q) for q not strictly contained in m. We
have a short exact sequence of chain complexes 0 → K → I → I(X) → 0,
with K a complex of injectives all of which are direct sums of E(R/q) for q not
strictly contained in m. Since I(X) is a complex of m–local modules, tensoring
with Rm gives the exact sequence

0 // K ⊗Rm
// I ⊗Rm

// I(X) // 0.

The first complex is a complex of injectives, each of which is a direct sum of
injectives of the form E(R/m). Thus over the ring Rm, the complex I(X) can
be viewed as the fibrant replacement of I ⊗ Rm with respect to the injective
class of injectives I ′ = I ∩ Spec(Rm). But this reduces us to the case of
the noetherian local ring Rm which is of finite Krull dimension. Theorem 7.4
finishes the proof. �

9. Further examples

In this section we gather some other examples of relative homological algebra
settings that may be found across the literature and show how they tie back
to our framework.

9.1. Some Grothendieck categories studied by Roos. The original
work of Roos is precisely about finding a way to deal with the failure of axiom
AB4*. He provides a nice and elementary example of a Grothendieck category
that satisfies axiom AB4*-n but not AB4*-(n−1). This example is very close in
spirit to our study of injective classes of injectives for the category of modules
over a ring of finite Krull dimension in Section 7.

Proposition 9.1. [32, Theorem 1.15] The Grothendieck category Qcoh of qua-
sicoherent sheaves on the complement of the maximal ideal m of the spec-
trum of a local Noetherian ring R satisfies condition AB4*-n where n =
max(dim(R)− 1, 0), and no lower value of n is possible.

It turns out that injective classes of injectives on Grothendieck categories corre-
spond to the so called hereditary torsion theories. Building on this observation,
Virili recently investigated whether Roos’ axiom AB4*-n holds in localizations
of Grothendieck categories with respect to these hereditary torsion theories.
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The answer depends then on the Gabriel dimension of the localized category, a
generalization of the Krull dimension to Grothendieck categories due to Gabriel.
We refer to Virili’s paper [35] for the precise statements.

9.2. Pure injective classes. Purity is a vast subject, of which we will only
present the (very) thin part that is directly related to our framework. As
a general reference one could consult Prest [30], but let us recall the basic
definitions.
Let R be a ring, a morphism of R-modules f : M → N is said to be pure if
and only if for any R-module L, f ⊗ idL : M ⊗ L→ N ⊗ R is injective. Then
a pure-injective module (a.k.a. algebraically compact) is an R-module W such
that for any pure homomorphism f , the induced map Hom(f,W ) is surjective.
A product of pure-injectives is again pure-injective and module categories have
enough pure-injectives [30]. Thus, pure-injective modules form an injective
class as defined in Definition 1.3.
The following theorem shows that rings of small cardinality satisfy a very strong
version of the relative AB4* axiom with respect to the injective class of pure-
injectives: all objects are of finite pure-injective dimension.

Theorem 9.2 (Kielpinski-Simson[24], Gruson-Jensen[18]). Let R be a ring of
cardinality ℵt, with t ∈ N. Then the pure global dimension of R is ≤ t+ 1.

Applying this to our framework we obtain immediately the analogous result to
Theorem 7.4.

Corollary 9.3. Let R be a ring of cardinality ℵt with t ∈ N, and let PI
denote the class of pure-injective modules. Then the standard Quillen pair

tow : Ch(R) ⇄ Tow(R,PI) : lim

is a model approximation. �

9.3. Gorenstein homological algebra. This is again a vast and very ac-
tive research subject, for which we refer for instance to Enochs-Jenda [14] and
Holm [21].
Given a ring R an R-module E is said to be Gorenstein injective if there exists
an exact complex of injective modules

I• : · · · // I2 // I1 // I0 // I−1
// · · ·

such that for any injective module J the complex Hom(J, I•) is acyclic and
E = Ker(I0 → I−1). Denote the class of Gorenstein injective modules by GI.
We learn in [21, Theorem 2.6] that GI contains all injective modules, and that
it is closed under arbitrary products and under direct summands.
The existence of enough Gorenstein injectives (a.k.a. Gorenstein injective pre-
envelopes) for general modules is more problematic. Nevertheless Holm shows
in [21, Theorem 2.15] that any R-module of finite Gorenstein injective dimen-
sion admits a Gorenstein injective pre-envelope and thus a Gorenstein injective

Documenta Mathematica 23 (2018) 895–937



Relative Homological Algebra via Truncations 927

resolution in the sense of the present work (or “coproper right Gorenstein injec-
tive resolution” in Holm’s terminology). Enochs and López-Ramos prove also
in [13] that there are enough Gorenstein injectives in any Noetherian ring.

Proposition 9.4 ([13]). The class GI of Gorenstein injective modules is an
injective class for any Noetherian ring.

If we wish to ensure that there are enough Gorenstein injectives, it is therefore
enough to assume that all modules have finite Gorenstein injective dimension.
It would be interesting to have conditions ensuring that for a given ring the
relative version of axiom AB4*-n is satisfied, but for the moment we confine
ourselves to the stronger condition that there is a bound on the Gorenstein
injective dimension of all modules. By Enochs-Jenda [14] this characterizes
Gorenstein rings. As above we readily deduce the following proposition. The
(finite) dimension of the ring is the natural number n such that the category
of R-modules satisfies AB4*-GI-n.

Proposition 9.5. Let R be a Gorenstein ring. Then the standard Quillen pair

tow : Ch(R) ⇄ Tow(R,GI) : lim

is a model approximation. �

Appendix A. Relative homological algebra for left bounded

complexes

In this section we work in a fixed abelian category A, and we fix an injective
class I, as in Definition 1.3. In particular we assume that there are enough
relative injectives. To show that one can equip Ch≤0(A) with an I-relative
Quillen model structure we basically follow Quillen’s arguments in [31]. We will
use the terminology (I-cofibrations, I-weak equivalences, etc.) as introduced
in Theorem 5.2. Before going into the homotopical subtleties, let us recall a
couple of standard of constructions.

A.1. The cone construction. Let X be a chain complex in Ch≤0(A).
Define a complex CX as follows: CX0 = X−1 and CXn = Xn ⊕ Xn−1 for
any n < 0. The differential CX0 → CX−1 is (Id, d) and the lower ones
Xn ⊕Xn−1 → Xn−1 ⊕Xn−2 are given in matrix form by

[

d (−1)nId
0 d

]

There is a natural chain map X → CX given by the inclusion on the first
factor, except in degree zero where we use the differential.

Lemma A.2. The cone CX of any complex X ∈ Ch≤0(A) is acyclic. The chain
map X → CX is a split injection in strictly negative degrees, so in particular
an I-cofibration. �

A.3. The mapping cylinder. Let f : N → M be a morphism of left
bounded chain complexes. Denote by ∂ and d respectively the differentials
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of the complexes N and M . We define a new complex Cyl(f) as follows :
Cyl(f)0 = N0 ⊕M0 and Cyl(f)i = Ni ⊕Mi+1 ⊕Mi for i < 0.
The differentials are given as follows

Cyl(f)i =

��

Ni

∂

��

(−1)i−1f

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖ Mi+1

d

��

Mi

(−1)iId

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

d

��
Cyl(f)i−1 = Ni−1 Mi Mi−1

We have a level-wise split injectionN → Cyl(f) given by (Id, f) whose cofiber is
acyclic. The splitting is given by the projection on the first factor Cyl(f)→ N
(a chain map). We have also a level-wise split epimorphism Cyl(f)→M , given
by the projection on the last factor. This shows the following lemma.

Lemma A.4. The factorization N → Cyl(f) → M consists in a trivial I-
cofibration followed by a degreewise split epimorphism. �

A.5. Path object. The path object of X ∈ Ch≤0(A) is a chain complex
P(X) ∈ Ch≤0(A) where P(X)i := Xi ⊕ Xi ⊕ Xi+1 and the differential di :
P(X)i → P(X)i−1 is given by the matrix:

di =





di 0 0
0 di 0

(−1)i+1 (−1)i di+1





The projections P(X)i = Xi ⊕ Xi ⊕ Xi+1
pr
−→ Xi ⊕ Xi define a morphism

π : P(X)→ X⊕X and the diagonals (id, id, 0) : Xi → Xi⊕Xi⊕Xi+1 = P(X)i

define a morphism h : X → P(X). The factorization X
h
−→ P(X)

π
−→ X ⊕X ,

of the diagonal (id, id) : X → X ⊕ X , will be also called the standard path
object of X . The path object is a functorial construction and it commutes with
arbitrary products and coproducts.
Two morphisms f, g : X → Y in Ch≤0(A) are homotopic if there is a sequence
of morphisms si : Xi → Yi+1 such that fi − gi = di+1si + si−1di for any i.
This is equivalent to the existence of a morphism h : X → P(Y ) for which the

composition X
h
−→ P(Y )

π
−→ Y ⊕ Y is given by (f, g) : X → Y ⊕ Y . If f and g

are homotopic, then Hi(f) = Hi(g).

A.6. Factorization axioms. We need a few preliminary results to construct
the I-relative factorizations. The property of A having enough I-injectives can
be extended to the following property of Ch(A). We do not claim any functori-
ality in this statement, as there are many choices involved in the construction.

Lemma A.7. If A has enough I-injectives, then for any chain complex X in
Ch(A) there exists a map of chain complexes X → I such that Ii ∈ I and
Xi → Ii is an I-monomorphism for any i. Moreover we can choose I so that
Ii = 0 whenever Xi = 0.

Proof. For each i choose an I-monomorphism Zi(X) → Ji with Ji ∈ I and
let Xi → Qi be the base change of this I-monomorphism along the inclusion
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Zi(X) →֒ Xi. Choose next an I-monomorphism Qi → Ii with Ii ∈ I and
define Xi → Ii to be the composite I-monomorphism Xi → Qi → Ii. Finally,
consider the base change of Qi → Ii along Qi → Bi(X). This is summarized
in the following diagram with exact rows:

0 // Zi(X) //
��

��

Xi
//

��

��

Bi(X) // 0

0 // Ji // Qi
//

��

��

Bi(X) //
��

��

0

Ii // Ri
// 0.

To define the boundary map di : Ii → Ii−1, notice that since Bi(X)→ Ri is an
I-monomorphism and Ji−1 is in I, the composite Bi(X) →֒ Zi−1(X) → Ji−1

admits a factorization through Ri and we get a map Ri → Ji−1. Define di to
be the composite Ii → Ri → Ji−1 → Qi−1 → Ii−1. The composite didi+1 is
zero since it factors through Ji → Qi → Bi(X). �

Lemma A.8. For any object M ∈ Ch(A)≤0, the trivial map M → 0 can be

factored as a trivial cofibration followed by a fibration M
∼
→֒ RM ։ 0.

Proof. By Lemma A.7 we can find a degreewise I-monomorphism M → I0
where the complex I0 is made of I-injectives. Let K0 denote the cokernel of
this map and choose again a degreewise I-monomorphism K → I1. Repeating
the process we construct a map from M to a double complex I∗,∗ made of
I-injectives: I0 → I1 → I2 → . . . . As a direct sum of I-injectives is again an
I-injective the total complex Tot(I)m = ⊕q−p=mIp,q is fibrant. The induced
map M → Tot(I) = RM is level-wise the sum of the maps Mm → I0,m and
zero maps and thus is an I-monomorphism.
By construction, for any W ∈ I, the functor A(−,W ) transforms the sequence
Kp,q → Ip+1,q → Kp+1,q → 0 into an exact sequence. In particular, applying
A(−,W ) to the double complex Ip,q yields a double complex which is acyclic
in the p-direction. The spectral sequence of the complex A(Tot(I∗,∗),W ) =
Tot(A(I∗,∗,W )) collapses thus on one line, which shows that the induced map
M → RM is an I-equivalence. �

Lemma A.9. For any object M ∈ Ch(A)≤0, the trivial map M → 0 can be

factored as a cofibration followed by a trivial fibration M →֒ P
∼
։ 0.

Proof. First factor M → 0 as M →֒ RM ։ 0 by Lemma A.8. Then perform
the cone construction to get a chain map RM → C(RM) which is a cofibration
to an acyclic complex by Lemma A.2. Finally, P = C(RM) is degrewise a sum
of I-injectives, hence a fibrant object. �

We are now ready to prove the factorization axiom.
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Proposition A.10. Any map M → N can be factored as a cofibration followed
by an acyclic fibration.

Proof. First apply Lemma A.4 to get a factorization M
∼
→֒ Cyl(f)→ N , where

the map Cyl(f)→ N is a split epimorphism in each degree. Let K denote the

kernel of Cyl(f) → N and factor the trivial map K → 0 as K → P
∼
։ 0 by

Lemma A.9.
Perform now the cobase change of K → Cyl(f) along the cofibration K →֒ P ,
a situation we sum up in the following diagram:

K

##❋
❋❋

❋❋
❋❋

❋❋
� � // P

""❋
❋❋

❋❋
❋❋

❋❋

Cyl(f)
� � //

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
X

∼

�� ��❅
❅❅

❅❅
❅❅

❅

M
-



;;①①①①①①①① f // N

This yields a cofibration Cyl(f) →֒ X . The map X → N is induced by
Cyl(f) → N and the zero map P → N ; it is a split epimorphism since
Cyl(f)→ N is so. Moreover its kernel is the fibrant complex P by construction.
This complex is I-trivial so that X → N is a trivial I-fibration. �

Proposition A.11. Any map M → N can be factored as an acyclic cofibration
followed by a fibration.

Proof. As above, first apply Lemma A.4 to factor f : M
∼
→֒ Cyl(f) → N ,

where we point out that the first map is an acyclic cofibration. Consider now
the kernel K of Cyl(f) → N , and factor the map K → 0 as in Lemma A.8

K
∼
→֒ RK ։ 0. Perform next the cobase change of K → RK along the map

K → Cyl(f). Since cofibrations and weak equivalences are preserved under

cobase change we get an acyclic cofibration Cyl(f)
∼
→֒ X . We conclude just as

in Proposition A.10 that the induced map X → N is an I-fibration. �

A.12. Lifting axioms. We prove here the left lifting property for cofibra-
tions with respect to trivial fibrations, and then the right lifting property for
fibrations with respect to trivial cofibrations.

Lemma A.13. Let p : E → B be an acyclic fibration and denote by K its kernel.
Then E = K ⊕ B, p is the second projection and K splits as a direct sum of
complexes of the form 0 //W W //0 with W ∈ I.

Proof. As K is I-trivial and made of I-injectives it splits as a direct sum of
complexes of the form 0 //W W //0 with W ∈ I. Such complexes
are both projective and injective in the category of chain complexes, therefore
E splits as Kerp⊕ Im p = K ⊕B. �
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Proposition A.14. Let p : E
∼
։ B be an acyclic fibration and X →֒ Y a

cofibration. In any commutative square

X //
� _

��

E

∼
����

Y

>>

// B

there is a dotted arrow making both triangles commutative.

Proof. As E → B is an acyclic fibration, the problem reduces by Lemma A.13
to find a lift Y → K, where K is the kernel of E → B, and hence of the form
0 //K−i K−i

//0 with K−i ∈ I for any i ≤ 0. In the following
cube

X−i
//

��

##●
●●

●●
●●

●●
K−i

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

��

X−i−1

��

// K−i

��

Y−i
//

##●
●●

●●
●●

●●
0

""❊
❊❊

❊❊
❊❊

❊❊
❊

Y−i−1
//

;;

0

The lift h : Y−i−1 → K−i exists because the morphism X−i−1 → Y−i−1 is
an I-monomorphism and K−i ∈ I. Define Y−i → K−i as the composite

Y−i → Y−i−1
h
→ K−i. One easily checks that this gives a chain map Y → K

with the desired properties. �

Proposition A.15. Let p : E ։ B be a fibration and i : X
∼
→֒ Y a trivial

cofibration. In any commutative square

X //
� _

i ∼

��

E

p
����

Y

h

>>

ℓ
// B

there is a dotted arrow making both triangles commutative.

Proof. We define a lifting h : Y → E step by step. Let K be the kernel of the
chain map p. As p is a fibration, in each degree En = Bn ⊕Kn and pn is the
first projection. Denote by fn the composite Xn → Bn⊕Kn → Kn. To define
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the lift h we only need to extend the map fn : Xn → Kn along Xn → Yn:

Xn

fn //

��

Kn

Yn

∃kn

==

in such a way that the map h = (ℓ, k) is a chain map. For this we proceed by
induction on n. When n = 0, observe that, since K0 is I-injective and i is a
cofibration, we have a quasi-isomorphism of cochain complexes

0 Hom(X0,K0)oo Hom(X−1,K0)oo · · ·oo

0 Hom(Y0,K0)oo

i∗0

OO

Hom(Y−1,K0)oo

i∗
−1

OOOO

· · ·oo

In particular there exists ξ ∈ Hom(X−1,K0) and φ ∈ Hom(Y0,K0) such that
f0 + ξ∂X = i∗−1φ. Since X−1 → Y−1 is an I-monomorphism, there exists

ζ : Y−1 → K0 such that ξ factors through Y−1 as X−1 → Y−1
ζ
→ K0. Define

k0 : Y0 → K0 to be φ− ζ∂Y . The desired lift h : Y0 → B0 ⊕K0 is then l0 ⊕ k0.
For n ≤ −1, we assume that kn+1 has been constructed. The differential of the
complex E written according to the degree-wise splitting E = B ⊕K has the
form:

(

∂n+1
B 0

∆n+1 ∂n+1
K

)

: Bn+1 ⊕Kn+1 −→ Bn ⊕Kn

We also have a commutative diagram of solid arrows:

Xn+1

in+1

��

//

��☛☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛

Bn+1 ⊕Kn+1

��⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦

Yn+1

(ℓn+1,kn+1)
33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

��☛☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛

Xn
//

in

��

Bn ⊕Kn

Yn

(ℓn,kn)

55

Finally the trivial cofibration i induces as above a quasi-isomorphism of cochain
complexes:

Hom(Xn+1,Kn) Hom(Xn,Kn)oo Hom(Xn−1,Kn)oo

Hom(Yn+1,Kn)

i∗n+1

OO

Hom(Yn,Kn)oo

i∗n

OOOO

Hom(Yn−1,Kn)oo

i∗n−1

OOOO
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We are looking for a map kn that is firstly a chain map, and secondly extends fn.
This translates into the following equations:

(4) ∆n+1 ◦ ℓn+1 + ∂n+1
K kn+1 = kn ◦ ∂

n+1
Y

(5) kn ◦ in = fn

Observe that Equation (5) expresses an equality in Hom(Xn,Kn) while Equa-
tion (4) is an equality in Hom(Yn+1,Kn). Precompose the latter by in+1 :
Xn+1 → Yn+1, to get:

(6) ∆n+1 ◦ ℓn+1 ◦ in+1 + ∂n+1
K kn+1 ◦ in+1 = kn ◦ ∂

n+1
Y ◦ in+1

By commutativity of the back face of the commutative diagram above, the left
hand side of this equation is equal to

fn ◦ ∂
n+1
X

which is a trivial cocycle in Hom(Xn+1,Kn). Since i∗ is a quasi-isomorphism,
this implies that the left hand side of Equation (4) is a trivial cocycle in
Hom(Yn+1,Kn). In particular there is a map φn : Yn → Kn such that

∆n+1 ◦ ℓn+1 + ∂n+1
K kn+1 = φn ◦ ∂

n+1
Y

Since by construction fn ◦ ∂
n+1
X = φn ◦ ∂

n+1
Y ◦ in+1 = φn ◦ in ◦ ∂

n+1
X , there

is a map ζn−1 ∈ Hom(Xn−1,Kn) such that fn = φn ◦ in + ζn−1 ◦ ∂
n
X . By

surjectivity of i∗n−1 we may lift this map to ξn−1 ∈ Hom(Yn−1,Kn) such that
ξn−1 ◦ in−1 = ζn−1, and the map kn = φn + ξn−1 ◦ ∂n

Y is the one we are looking
for. �

Theorem A.16. Assume that A has enough I-injectives. Then the choice of I-
weak equivalences, I-cofibrations, and I-fibrations gives Ch≤0(A) the structure
of a model category.

Proof. The category Ch≤0(A) is clearly closed under both limits and colimits,
which proves (MC1). Since quasi-isomorphisms satisfy the “2 out of 3” property
so do I-weak equivalences, this is (MC2).
Let us prove (MC3). Retracts of epimorphisms and of quasi-isomorphisms
are epimorphisms and quasi-isomorphisms respectively, so I-cofibrations and
I-weak equivalences are preserved under retracts. As for I-fibrations, notice
that the retract of a map with a section also has a section. Moreover since
I = I is stable under retracts we conclude that the retract of an I-fibration is
again an I-fibration.
Finally, the factorization axiom (MC4) and the lifting axiom (MC5) have been
established in the preceding propositions. �

Appendix B. Elementary algebra for topologists

This appendix contains a few elementary and well-known facts about local-
ization, injective envelopes, and local cohomology; none of these is new but
we need it explicitly to describe relative resolutions in the case we restrict the
notion of injectives. For a prime ideal p, we denote by Mp the localization of
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an R-module M at p. The first lemma will allow us to reduce certain problems
to the case of a local ring, namelyRp.

Lemma B.1. An R-module M is zero if and only if Mp is zero for all prime
ideals p.

Proof. Let us assume that M is non-zero, but Mp = 0 for any prime ideal p.
We choose a non-zero element x ∈M and consider its annihilator. This ideal is
contained in a maximal ideal m and since Mm = 0, there must exist an element
r ∈ R \m such that rx = 0, a contradiction. �

A theorem of Matlis, [26], describes the injective modules as direct sums of
injective hulls E(R/p) of quotients of the ring by prime ideals. The following
two lemmas give some properties of these indecomposable injective modules.

Lemma B.2. If q ⊂ p, the module E(R/q) is p-local, and E(R/q)p = 0 other-
wise.

Proof. Assume q ⊂ p and fix r 6∈ p. The multiplication by r on E(R/q) is an
isomorphism, so E(R/q) is p-local. Assume now that q 6⊂ p. Then qm 6⊂ p

for any m ≥ 1. If x is any element of E(R/q), its annihilator is qm for some
positive integer m since E(R/q) is q-torsion. There exists thus an element
s ∈ qm which does not belong to p and such that sx = 0. Hence xp = 0. This
shows that E(R/q)p = 0. �

Lemma B.3. The R-module of homomorphisms HomR(E(R/p), E(R/q)) is
non-zero if and only if p ⊂ q.

Proof. Since E(R/q) is q-local by the previous lemma, any homomorphism
factors through the q-localization of E(R/p), which is zero unless p ⊂ q. This
proves one implication. In this case the quotient morphism R/p → q extends
to the injective envelopes showing the other implication. �

Let us now introduce local cohomology, a good reference for which is [22].

Definition B.4. Given an ideal p in R, the p-torsion of an R-module M is the
submodule Γp(M) of elements with annihilator pm for some positive integer m.
The local cohomology modules H∗

p (−) with support in p are the right derived
functors of Γp.

Explicitly, to compute the local cohomology of a module M , we construct an
injective resolution I• of M and compute Hj

p(M) = Hj(Γp(I•)). Our last
lemma helps us to understand how this p-torsion injective complex look like.

Lemma B.5. The p-torsion module Γp(E(R/q)) = E(R/q) if p ⊂ q and is zero
otherwise.

Proof. Again this follows from the fact that E(R/q) is q-torsion. �

Remark B.6. Let R be a local ring with maximal ideal m and let us consider
the generization closed subset of Spec(R) given by S = {q | q 6= m}. It yields
the injective class I generated by all injective envelopes E(R/q) with q 6= m
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see [6, Proposition 3.1]. Given a module M and an injective resolution I•, we
have a triangle in the derived category Γm(I•) → I• → W•, where W• is an
I-relative injective resolution of M . In particular Hk(W•) ∼= Hk+1

m (M) for
k ≥ 2.

Proposition B.7. Let R be a Noetherian ring and p be the radical of
(x1, . . . , xn). Then Hk

p (M) = 0 for any k > n and any module M .

Proof. Since the torsion functor does not see the difference between an ideal
and its radical, we can assume that p = (x1, . . . , xn). Then the local coho-
mology can be computed by means of the Čech complex ⊗iČ(xi, R)⊗M , [22,
Theorem 7.13]. Here Č(x,R) is the complex 0→ R→ Rx → 0 concentrated in
degrees 0 and 1. The Čech complex is thus concentrated in degrees ≤ n. �

Remark B.8. If R is a Noetherian local ring of dimension d, then the maximal
ideal can always be expressed as the radical of an ideal generated by n elements,
see [22, Theorem 1.17].
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