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Abstract. The purpose of this work is to study the notion of bi-
variant theory introduced by Fulton and MacPherson in the context
of motivic stable homotopy theory, and more generally in the broader
framework of the Grothendieck six functors formalism. We introduce
several kinds of bivariant theories associated with a suitable ring spec-
trum, and we construct a system of orientations (called fundamental
classes) for global complete intersection morphisms between arbitrary
schemes. These fundamental classes satisfy all the expected proper-
ties from classical intersection theory and lead to Gysin morphisms,
Riemann-Roch formulas as well as duality statements, valid for gen-
eral schemes, including singular ones and without need of a base field.
Applications are numerous, ranging from classical theories (Betti ho-
mology) to generalized theories (algebraic K-theory, algebraic cobor-
dism) and more abstractly to étale sheaves (torsion and ℓ-adic) and
mixed motives.
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Introduction

Genealogy of ideas. As this work comes after a long line of ideas about
cohomology, may be it is worthwhile to draw the following genealogical tree of
mathematicians and concepts.
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Borel-Moore homology (1960)
Grothendieck (ICM 1957)

K-theory, GRR formula, duality
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Grothendieck, 6 functors formalism
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Bloch-Ogus axioms (1974)
Fulton-MacPherson,

bivariant theories (1981)

So our starting point is the bivariant formalism of Fulton and MacPherson
([FM81]), which appears in one of the ending point of the above tree. The
ambition of this formalism is to unify homology and cohomology into a single
theory. More than that: it was slowly observed that Poincaré duality gives a
wrong-way functoriality of singular cohomology. The study of this phenomena,
which was later discovered to occur also in homology, was developed from
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many perspectives all along the century. The striking success of the bivariant
formalism is to explain all these works by the construction of an element,
generically called orientation by Fulton and MacPherson, of a suitable bivariant
group.
In fact, this theory can be seen as a culminating point of the classical the-
ory of characteristic classes. A brilliant illustration is given by Fulton and
MacPherson’s interpretation of each of the known Riemann-Roch formulas as
a comparison between two given orientations. Let us now detail these general
principles from our point of view, based on motivic homotopy theory.

Motivic homotopy theory. Our previous works on Gysin morphisms
([Dég08, Dég14b]) naturally lead to the bivariant language. As we will see,
it allows to treat both the fundamental class of an algebraic cycle and the
cobordism class of a projective morphism within a single framework. But it
was only when the six functors formalism was fully available in motivic homo-
topy theory, after the work of Ayoub ([Ayo07a]), that we became aware of a
plain incorporation of bivariant theories into motivic homotopy theory.
One can already trace back this fact in the work of Fulton and MacPherson
as one of their examples of a bivariant theory, in the étale setting, already
uses the six functors formalism. In this work we go further, showing that any
representable cohomology in A1-homotopy admits a canonical extension to a
bivariant theory. Basically, it applies to any known cohomology theory (in
algebraic geometry) which is homotopy invariant.
This result is obtained as a by-product of Morel-Voevodsky’s motivic homo-
topy theory, but more generally, we use the axioms of Ayoub-Voevodsky’s cross
functors, fundamentally developed by Ayoub in [Ayo07a]. This theory was am-
plified later by Cisinski and the author in [CD12b] as a general axiomatic of
Grothendieck’ six functors formalism. Such an axiomatic theory, called a trian-
gulated motivic category, is in the first place a triangulated category T fibred
over a fixed suitable category of schemes S and equipped with the classical six
operations, f∗, f∗, f!, f

!,⊗,Hom. There are many concrete realizations of this
formalism in the literature so we will only recall here the specific axioms added
by Ayoub and Voevodsky:

• A1-homotopy.– for any scheme X in S , p : A1
X → X being the projection

of the affine line, the adjunction map 1→ p∗p
∗ is an isomorphism;

• P1-stability.– for any scheme X in S , p : P1
X → X being the projection

of the projective line and s : X → P1
X the infinite-section, the functor

s!p∗ is an equivalence of categories.

Recall the first property corresponds to the contractibility of the affine line
and the second one to the invertibility of the Tate twist.1 Note already that

1While the first property is often remembered, the second one was slightly overlooked at
the beginning of the theory but appears to be fundamental in the establishment of the six
functors formalism.
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this axiomatic is satisfied in the étale setting (torsion and ℓ-adic coefficients).
Besides, thanks to the work of the motivic homotopy community, there are now
many examples of such triangulated categories.2

Absolute ring spectra and bivariant theories. From classical and
motivic homotopy theories, we retain the notion of a ring spectrum but use a
version adapted to our theoretical context. An absolute ring T -spectrum will
be a cartesian section of the category of commutative monoids in T , seen as
a fibered category over S ; concretely, the data of a commutative monoid ES
of the monoidal category T (S) for any scheme S in S , with suitable base
change isomorphisms f∗(ES)

∼
−→ ET associated with any morphism f : T → S

in S (see Definition 1.1.1).3 Our main observation is that to such an object
is associated not only the classical cohomology theory but also a bigraded
bivariant theory: to a separated morphism f : X → S of finite type and
integers (n,m) ∈ Z2, one associates the abelian group:

EBMn,m
(
X

f
−→ S

)
= HomT (S)(f!(1X)(n)[m],ES)
︸ ︷︷ ︸

(∗)

≃ HomT (S)(1X(n)[m], f !ES)
︸ ︷︷ ︸

(∗∗)

It usually does not lead to confusions to denote these groups EBMn,m(X/S). Now
the word bivariant roughly means the following two fundamental properties:

• Functoriality.– the group EBMn,m(X/S) is covariant in X with respect to
proper S-morphisms and covariant in S with respect to any morphism;

• Product.– given Y/X and X/S, there exists a product:

EBMn,m(Y/X)⊗ EBMs,t (X/S)→ EBMn+s,m+t(Y/S).

Of course, these two structures satisfy various properties; we refer the reader
to Section 1.2 for a complete description.4

Several paths lead naturally to our definition. First, our initial motivation
comes from the case where f = i : Z → S is a closed immersion. In this
case, from the localization triangle attached to i by the six functors formal-
ism, one realizes that the abelian group EBM∗∗ (Z/X) is nothing else than the
E-cohomology group of X with support in Z, which naturally receives the re-
fined fundamental classes we had built earlier ([Dég13, 2.3.1]). Secondly, when

2Stable homotopy, mixed motives, modules over ring spectra such as K-theory, algebraic
cobordism. These examples will appear naturally in the course of the text; see Example 1.1.2
in the first place.

3The terminology is inspired by the terminology used by Beilinson in his formulation of
the Beilinson’s conjectures. In particular, the various absolute cohomologies considered by
Beilinson are representable by absolute spectra in our sense, with S being the category of
all (noetherian, finite dimensional) schemes, or that of schemes over a field (for example in
the case of Deligne cohomology).

4Note also that we get a particular instance of what Fulton and MacPherson call a bivari-
ant theory. However, in algebraic geometry, this instance is the most common one.

Documenta Mathematica 23 (2018) 997–1076



Bivariant theories motivic 1001

T (X) = Db
c(Xét,Λ), Λ = Z/ℓnZ,Zℓ or Qℓ, for ℓ a prime invertible on X , and

EX = ΛX is the constant sheaf, formulas (∗) and (∗∗) agree with that consid-
ered by Fulton and MacPherson in [FM81, 7.4.1] for defining a bivariant étale
theory. Finally, when S = Spec(k) is the spectrum of a field and EX = 1X ,
formula (∗∗) gives an interpretation of EBM∗∗ (X/k) as the cohomology with co-
efficients in the object f !(1k), which is Grothendieck’s formula for the dualizing
complex.5 In other words, EBM∗∗ (X/k) is the analogue of Borel-Moore homology
defined in [BM60].6 This last example justifies our notation: the letters “BM”
stands for Borel-Moore and we use the terminology Borel-Moore homology for
the bivariant theory EBM∗∗ .
Besides, we can define other bivariant theories from the absolute ring spectrum
E. In fact, we remark that one can attach to E four theories: cohomology as
usual, Borel-Moore homology defined by the above formula (∗∗), but also coho-
mology with compact support and (plain) homology. The two later theories are
in fact bivariant theories: they can be defined not only for k-schemes but for
any morphism of schemes (in S ). We refer the reader to Definition 1.3.2 but
one can also guess the formulas: they are the variants of formula (∗∗) obtained
from the various possibility of combining the functors f∗, f!, f

∗, f !. Note our
main result, which will be stated just below, will give new structures for each
of the four theories.

Orientations and fundamental classes. The key idea of this work is
that one can recast previously known constructions of Gysin morphisms, based
on the orientation theory of motivic ring spectra, in the bivariant framework
provided by formula (∗). Recall for the sake of notations that an orientation c
of an absolute ring T -spectrum E is roughly a family of classes cS in E2,1(P∞

S ),
cohomology of the infinite projective space, for schemes S in S , satisfying
suitable conditions (see Definition 2.2.2 for the precise formulation).
One can attach to the orientation c a complete formalism of Chern classes, and
even Chern classes with supports (see Proposition 2.2.6 and 2.4.2). Our main
result is the following construction of characteristic classes of morphisms, whose
main advantage against previous constructions is that it works for singular
schemes and without a base field.

Theorem 1 (see Theorem 2.5.3). Consider an absolute ring T -spectrum E

with a given orientation c.
Then for any global complete intersection7 morphism f : X → S of relative
dimension d, there exists a class η̄f in EBM2d,d(X/S), called the fundamental
class of f associated with (E, c), with the following properties:

5Recall the object f !(1k) is indeed a dualizing object in T (X) if T is Q-linear (see
[CD12b]) or under suitable assumptions of resolution of singularities (see [Ayo07a]).

6In fact we prove in Example 1.3.3(3) that when T is Morel-Voevodsky’s stable homotopy
category and E is the spectrum representing Betti cohomology, this abelian group is precisely
Borel-Moore homology – the twists in that case do not change the group up to isomorphism.

7We say f is a global complete intersection if it admits a factorization f = p ◦ i where p
is smooth separated of finite type and i is a regular closed immersion;
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1. Normalization.– If f = i : D → X is the immersion of a regular divisor
then η̄i = cD1 (O(−D)) (where O(−D) is the dual of the invertible sheaf
parametrizing i; see Example 2.4.7).

2. Associativity.– For any composable morphisms Y
g
−→ X

f
−→ S, η̄f◦g =

η̄g . η̄f .

3. Base change.– Given a morphism p : T → S which is transversal to the
map f , then p∗(η̄f ) = η̄f×ST

(see Example 3.1.2).

4. Excess intersection.– Given a morphism p : T → S such that the base
change f ×S T is a local complete intersection, p∗(η̄f ) = e(ξ). η̄f×ST

(the
class e(ξ) stands for the Euler class of the excess intersection bundle, as
in Fulton’s classical formula for Chow groups; see Proposition 3.1.1).

5. Ramification formula.– Let p : Y → X be a dominant morphism of
normal schemes, i : D → X be the immersion of a regular divisor,
(Ej)j=1,...,r the family of irreducible components of p−1(D) and mj the
ramification index8 of f along Ej. Then one has:

p∗(η̄X(D)) = [m1]F . η̄Y (E1) +F . . .+F [mr]F . η̄Y (Er);

here ([m]F .−) stands for the power series corresponding to the m-th self
addition in the sense of the formal group law F attached with the orien-
tation c (see Corollary 3.1.6).

6. Duality.– When f : X → S is smooth or is the section of a smooth
morphism, the multiplication map:

EBM∗∗ (Y/X)→ EBM∗∗ (Y/S), y 7→ y. η̄f

is an isomorphism (see Remark 2.5.4).

Before discussing uniqueness statements of our construction, let us explain the
existence part. As mentioned before the statement of the theorem, we use
previous methods of construction of Gysin maps. The first one, in the case
where f is a regular closed immersion, is a construction whose motivic homo-
topy formulation is due to Navarro (cf. [Nav16]), based on a method of Gabber
(cf. [ILO14, chap. 7]) who treated the case of étale cohomology.9 The second
method, for a smooth quasi-projective morphism f , is given as a corollary of
Ayoub’s fundamental work on the six functors formalism in motivic homotopy
(cf. [Ayo07a]). Actually, the fundamental class η̄f is essentially induced by

8or, in other words, the intersection multiplicity of Ej in the pullback of D along p, see
[Ful98, 4.3.7]; note the integer mj is nothing else than the ramification index in the classical
sense of the extension OY,Ej

/OX,D of discrete valuation rings;
9The generalization of the method of Gabber to motivic homotopy is non trivial because

the Chern classes associated to an oriented ring spectrum are in general non additive: c1(L⊗

L′) 6= c1(L) + c1(L′). See Prop. 2.2.6.
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Bivariant theories motivic 1003

the purity isomorphism associated with f by the six functors formalism (see
Paragraph 2.3.10 for the actual construction).
After realizing that these two methods can actually be formulated in the bi-
variant language, the main point in the proof of the preceding theorem is to
show that “they glue”. This can be expressed in a simple equation that we let
the reader discover in the key lemma 2.5.1.
From the description of our construction, the uniqueness of the family of classes
η̄f is clear: they are the unique formalism that extends the fundamental classes
obtained respectively from Navarro’s and Ayoub’s methods. A more satisfac-
tory statement is obtained if one restricts to quasi-projective local complete in-
tersection morphisms f : then the family of fundamental classes η̄f is uniquely
characterized by properties (1), (2), (3), (4) and (6). Actually, we can even
replace (4) by the particular case where p is a blow-up: see Theorem 2.6.1.

Riemann-Roch formulas. According to Fulton and MacPherson, one of
the motivations for developing bivariant theory was the aim to synthesize sev-
eral Riemann-Roch formulas (respectively by Grothendieck, by Baum, Fulton
and MacPherson, and by Verdier; see [FM81, section 0.1]). The underlying
principle is that the classical Chern character corresponds in fact to a natu-
ral transformation of bivariant theories, suitably compatible with the struc-
ture of a bivariant theory (called a Grothendieck transformation in [FM81]).
Then the general Riemann-Roch formula essentially comes from the effect of a
Grothendieck transformation to a given theory of fundamental classes, as the
one given in the above theorem.
The same goal has mainly contributed to our choice of framework. Indeed we
show how to produce Grothendieck transformations by considering a suitable
functor ϕ∗ : T → T ′ — more precisely a premotivic adjunction of motivic
triangulated categories in the sense of [CD12b] — an absolute ring T -spectrum
E (resp. T ′-spectrum F) and a morphism of absolute ring T ′-spectra:

φ : ϕ∗(E)→ F;

see Definition 1.1.4 for details. It is clear from our choice of definition that
there is an induced Grothendieck transformation:

φ∗ : EBM∗∗ (X/S)→ FBM∗∗ (X/S).

Then we can prove the following general Riemann-Roch theorem.

Theorem 2 (see Theorem 3.2.6). Consider a morphism (ϕ∗, φ) as above and
respective orientations c of E and d of F.
Then there exists a canonical Todd class morphism:

Tdφ : K0(X)→ F00(X)×

from the Grothendieck group of vector bundles on X to the group of units of F-
cohomology classes on X with degree (0, 0), natural in X and such that for any
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global complete intersection morphism f : X → S with virtual tangent bundle
τf , the following relation holds:

φ∗(η̄cf ) = Tdφ(τf ). η̄df

where η̄cf (resp. η̄df ) is the fundamental class associated with f and (E, c) (resp.
(F, d)) in the above theorem.

At this point of the theory, the proof is straightforward and actually essentially
works as the original proof of Grothendieck. But the beauty of our theorem is
that it contains all previously known Riemann-Roch formulas as a particular
case. We will illustrate this by the concrete applications to come.

Gysin morphisms. Let us quit the realm of general principles now and show
the new results that our theory brings. As devised by Fulton and MacPherson,
the interest of fundamental classes10 is that they induce wrong-way morphisms
in cohomology, and in fact as we remarked in this paper, in the four theories
associated to E above. We generically call these morphisms Gysin morphisms.
Here are our main examples of applications.

• Étale cohomology (resp. Borel-Moore étale homology) with coefficients in
a ring Λ is covariant with respect to proper global complete intersection
morphisms (resp. contravariant with respect to global complete intersec-
tion morphisms) f : X → S provided Λ is a torsion ring with exponent
invertible on S or Λ = Rℓ, Qℓ where Rℓ is a complete discrete valuation
ring over Zℓ, Qℓ = Frac(Rℓ) and we assume ℓ invertible on S (see re-
spectively Examples 3.3.4 and 3.3.6). This was previously only known
for regular closed immersions by [ILO14, chap. 7] or for flat proper mor-
phisms by [SGA4, XVIII, 2.9].

• Higher Chow groups are contravariant with respect to global complete in-
tersection morphisms f : X → S provided the residue fields of S have all
the same characteristic exponent, say p, and we invert p (see Example
3.3.6). Besides the trivial case of flat morphisms, only the case where X
and S are smooth was known.

• Integral motivic cohomology in the sense of Spitzweck (cf. [Spi13]) —
which implies the case of rational motivic cohomology as defined in
[CD12b] — is covariant with respect to proper global complete intersection
morphisms (see Example 3.3.4). The case of projective morphisms be-
tween regular schemes (resp. any scheme) was obtained in [Dég13] (resp.
[Nav16]).

• Betti homology of complex schemes and its analogue étale homology with
coefficients in a ring Λ as above (not to be mistaken with Borel-Moore
étale homology) are contravariant with respect to proper global complete

10Recall they call them “orientations”.
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intersection morphisms. This example uses a construction due to A. Khan
(see Paragraph 3.3.13).

The general constructions of these Gysin type morphisms are given in Definition
3.3.2 and Paragraph 3.3.13. Note that more than a mere existence theorem we
also obtain, as a consequence of the properties of fundamental classes stated in
the preceding theorem, all the expected properties of these Gysin morphisms
(see Section 3.3). This also includes Grothendieck-Riemann-Roch formulas for
Gysin morphisms (see in particular Proposition 3.3.11). Maybe it is worth to
formulate in this introduction the following new formula, analogue to Verdier’s
Riemann-Roch formula for homology.

Theorem 3 (See Example 3.3.12). Let k be a field.
Let f : Y → X be a global complete intersection morphisms of k-schemes of
finite type. Then we get the following commutative diagram:

Gn(X)
f∗

//

chX

��

Gn(Y )

chY

��⊕

i∈Z CHi(X,n)Q
Td(τf ).f

∗

//⊕
i∈Z CHi(Y, n)Q

where ch is a Chern character isomorphism, Td is the Todd class in rational
motivic cohomology (which is acting on higher Chow groups), the upper (resp.
lower) map f∗ is the Gysin morphism associated with f on Thomason’s G-
theory, or equivalently Quillen’s K’-theory (resp. higher Chow groups).

Note this theorem makes use of a recent result of Jin (cf. [Jin18]) about the
representability of G-theory.

Comparison with previous works in motivic homotopy theory.

Orientation theory in motivic homotopy theory has been developed from two
different points of view.
In the first point of view, one works with suitable axioms on certain functors,
contravariant (cohomology theories) or covariant (homology theories). Among
the axioms are the homotopy invariance property and a suitable orientation
property (analogue to the one considered here). Then one deduces properties
and constructions from the axioms, among which the construction of Gysin
morphisms. This is the approach of Panin ([Pan03, Pan04, Pan09]) on the one
hand and Morel and Levine ([LM07]) on the other hand. Note the axiomatic of
Panin is cohomological while that of Morel and Levine is homological. Besides,
Morel and Levine construct the universal oriented (Borel-Moore) homology
theory, the algebraic cobordism. Both axiomatic are considered for schemes
over a given base field.11

11More recently, this kind of axiomatic as well as the universal property of algebraic cobor-
dism, has been extended to the framework of derived algebraic geometry by Lowrey and
Schürg in [LS16].
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In the second point of view, one studies oriented ring spectra in the motivic sta-
ble homotopy category, following the classical approach of Adams in algebraic
topology. This was suggested by Voevodsky, and first worked out by Vezzosi
([Vez01]) and independently Borghesi ([Bor03]). The construction of Gysin
morphisms in this context was done in [Dég08] (see also [Dég02, 8.3, 8.4]). The
construction of loc. cit. works other an arbitrary base and is internal: for ex-
ample, it gives Gysin morphisms on the level of Voevodsky motives and allows
one to get duality for motives of smooth projective schemes over an arbitrary
base ([Dég08, 5.23]), a result that previously uses resolution of singularity (see
[VSF00, chap. 5, 4.3.2]). It was later generalized in the works of the author
([Dég14b]) and then in the work of Navarro ([Nav16]).

The two approaches are closely related. On the one hand, the results of Panin,
and Levine-Morel, can be applied to the corresponding functor associated with
a ring spectrum, giving back Gysin morphisms obtained from the second point
of view. They are therefore more general, though most of the known homotopy
invariant cohomology (homology) theories in algebraic geometry are known to
be representable in the motivic stable homotopy category. A notable exception
is the algebraic cobordism of Lowrey and Schürg, a version of Levine-Morel’s
algebraic cobordism defined even over a field of positive characteristic. In this
later case, the corresponding cohomology theory is not known to be repre-
sentable. On the other hand, the methods used for oriented ring spectra can
be adapted to the (cohomological) functorial point of view: see [Dég14b, §6].
Besides the methods are stronger as they produce Gysin morphisms internally,
for example on motives or on modules over an oriented ring spectrum.

Compared to these previous works, the contribution of this work is two-fold.
Firstly, we associate to any ring spectrum a canonical bivariant theory, called
here the Borel-Moore homology — as well as variants with compact support.
Secondly, when the ring spectrum is oriented, we associate a system of funda-
mental classes in the corresponding bivariant theory to a suitable class of local
complete intersection morphisms, and we show this construction recovers all the
previously known Gysin morphisms, both in cohomology and in Borel-Moore
homology — it also gives Gysin morphisms for the compactly supported ver-
sions. These new Gysin maps are defined for more theories and/or for a larger
class of morphisms than before.12

Note finally that the consideration of bivariant theories in motivic homotopy
theory, from the functorial point of view, was also considered by Yokura in
[Yok09]. We note here that the bivariant theories associated with an oriented
ring spectrum defined in this work (Definition 1.2.2) do satisfies the axioms
of [Yok09]. Several definitions of a bivariant algebraic cobordism theory, cor-
responding to Levine and Morel algebraic cobordism, have been introduced
in the literature (see [GK15, Sar15, Yok17]). A comparison of our definition

12In Panin’s work, it was defined in cohomology for projective morphisms between smooth
schemes over a field. In Levine’s work, it was defined in Borel-Moore homology for smooth
morphisms between quasi-projective schemes over a field. In Navarro’s work, it was defined
in cohomology for projective local complete intersection morphisms.
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in the case of the ring spectrum MGL (see Example 1.2.10) with the defini-
tions of these authors, when restricting to fields of characteristic 0 and to the
graded parts (2n, n), is an interesting problem (based on the representability
of algebraic cobordism in characteristic 0 proved by Levine in [Lev09]).

Further applications and future works. Almost by definition of the
bivariant theory EBM∗∗ , there is a categorical incarnation of the fundamental
class associated with a global complete intersection morphism f : X → S in the
above Theorem 1, closer to the spirit of Grothendieck six functors formalism;
it corresponds to a map:

η̃f : EX(d)[2d]→ f !(ES),

where d is the relative dimension of f . In the end of this paper, we study
conditions under which this map is an isomorphism.13 In brief, this will always
be the case when f is an S-morphism between smooth S-schemes, and in gen-
eral, it is related to the absolute purity property. Let us also indicate that this
property implies several duality statements, in the style of Bloch-Ogus duality
giving us finally the link of our work with the last ending point of the historical
tree on page 998. We refer the reader to Section 4 for details.

Our main motivation for developing a general theory of fundamental classes,
without base field, is the following theorem which we state here using the
definitions of [BD17] and [Ros96]:

Theorem. Let S be a base scheme with a dimension function δ and consider
further the following assumptions:

• S is any noetherian finite dimensional scheme and Λ is a Q-algebra;

• S is a scheme defined over a field of characteristic exponent p and Λ is
a Z[1/p]-algebra.

Then for any motive M in the heart of the δ-homotopy t-structure of DM(S,Λ),
the functor Ĥδ

0 (M) defined in [BD17] admits a canonical structure, functorial
in M , of a cycle module over S in the sense of Rost [Ros96].

Indeed, the Gysin morphisms (resp. fundamental classes) constructed here
are the essential tool to obtain the corestriction and residue operations of the
structure of a cycle module. This work is in progress, and is part of a general
strategy to prove an original conjecture of Ayoub (see [Dég14a]). More gen-
erally, this theorem will help us to analyze the Leray-type spectral sequence
derived from the δ-homotopy t-structure of [BD17].
Let us finally mention that the techniques of this paper will be exploited in
a future work ([DJK18]) whose aim is to define Gysin morphisms in motivic
stable homotopy, without requiring the orientation used throughout the present
paper. This result is motivated and supported by the fundamental work of
Morel which analyses the structure of A1-homotopy groups ([Mor12]).

13Note this condition is stronger than the property of being strong, as defined in [FM81];
see Definition 2.1.6.
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Outline of the paper

As a general guideline for the reader, let us mention that Section 1 contains
the main definitions and notations used in the paper as well as the examples.
We advise the reader to use this section as a reference part. The main part
of this work is Section 2 which contains our main results while Section 3 deals
with applications.
Let us review the content in more detail. In section 1.1, we settle our framework
by introducing absolute ring T -spectra as explained in the above introduction,
as well as morphisms between them. In the style of algebraic topology, we
also consider modules over ring spectra. Then (section 1.2), we associate to
an absolute ring T -spectrum its canonical bivariant theory, called Borel-Moore
homology as explained in the introduction and show various of its basic prop-
erties — note that a variant of the theory is explained for modules over ring
spectra. Finally (section 1.3), we define the other bivariant theories associated
to absolute ring spectra, cohomology with compact support and homology.
Examples are given throughout Section 1.

Our main theorem is developed in Section 2. In sections 2.1 and 2.2, we recall
the basic theories of orientations for bivariant theories, called here fundamental
classes, and that of orientation for ring spectra, modelled on algebraic topology
and giving the first characteristic classes (Chern class and Thom classes). In
sections 2.3 and 2.4, we settled the particular cases of fundamental classes that
will be used in our main theorem, respectively the case of smooth morphisms
and that of regular closed immersions. Our main result (Theorem 1 above)
is proved in section 2.5. Section 2.6 deals with finer uniqueness results when
restricted to quasi-projective morphisms.
Then Sections 3 and 4 gives applications and properties of the fundamental
classes obtained in Section 2. Sections 3.1 and 3.2 are concerned with the main
properties of fundamental classes such as behavior with respects to pullbacks
and compatibility with morphisms of ring spectra. Sections 3.3 applies the
theory to the construction of Gysin morphisms with an emphasis on concrete
examples. Finally in Section 4, we treat the questions of purity (or equivalently
absolute purity following the classical terminology of the étale formalism) and
its relation with duality statements. Again, many examples where purity, and
therefore duality, holds are given all along.

Notations and conventions

All schemes in this paper are assumed to be noetherian of finite dimension.14

We will say that an S-scheme X , or equivalently its structure morphism, is
quasi-projective (resp. projective) if it admits an S-embedding (resp. a closed

14Note however that one could work with arbitrary quasi-compact and quasi-separated
schemes. Indeed, the stable homotopy category SH (S) and its six operations, which provides
many of our examples, has been recently extended in [Hoy15b, Appendix C] or [Kha16] to
the case S quasi-compact and quasi-separated.
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S-embedding) into PnS for a suitable integer n;15

We will also fix a class of morphisms, called gci16 such that the following
properties hold:

• any gci morphism admits a factorization into a regular closed immersion
followed by a smooth morphism.

• gci morphisms are stable under base change.

• For any composable gci morphisms f and g, one can find a commutative
diagram:

Z
g //

k ((◗◗
◗◗◗

◗◗ Y
g //

i ((◗◗
◗◗◗

◗◗ X

Q

l ((◗◗
◗◗◗

◗◗
q

66♠♠♠♠♠♠♠
P

p

66♠♠♠♠♠♠♠

R
r

66♠♠♠♠♠♠♠

such that i, k, l are regular closed immersions and p, q, r are smooth
morphisms.

The main example of such a class is provided by quasi-projective local complete
intersection morphisms. One can also fix some base scheme S, restrict to S-
schemes which admits an embedding into a smooth S-scheme and work with
local complete intersection S-morphisms of such S-schemes.
For short, we will use the term s-morphism for separated morphism.
Given a closed (resp. regular closed) subscheme Z of a scheme X , we will
denote by BZX (resp. NZX) the blow-up (resp. normal bundle) of Z in X .
In the whole text, S stands for a sub-category of the category of (noetherian
finite dimensional) schemes such that:

• S is closed under finite sums and pullback along morphisms of finite
type.

• For any scheme S in S , any quasi-projective (resp. smooth) S-scheme
belongs to S .

The main examples we have in mind are either the category of all schemes or
the category of F -schemes for a prime field F .

We will use the axiomatic of Grothendieck six functors formalism and more
specifically the richer axioms of motivic triangulated categories introduced in
[CD12b].17 All motivic triangulated categories introduced here will be assumed
to be defined over the above fixed category S .

15For example, if one works with quasi-projective schemes over a noetherian affine scheme
(or more generally a noetherian scheme which admits an ample line bundle), then a morphism
is proper if and only if it is projective with our convention — use [EGA2, Cor. 5.3.3].

16A short for global complete intersection.
17Recall this axiomatic amounts, up to some minor changes, to the axioms of crossed

functors of Ayoub-Voevodsky, [Ayo07a].
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From Section 2.2 to the end of the paper, we will make for simplification the
assumption that all motivic triangulated categories T are equipped with a
premotivic adjunction:

τ∗ : SH ⇆ T : τ∗

where SH is Morel-Voevodsky’s stable homotopy category. In fact, this as-
sumption occurs in satisfied in all our main examples and is justified by a
suitable universal property (see Remark 1.1.7).

When we will consider the codimension of a regular closed immersion Z → X ,
the rank of a virtual vector bundle over X or the relative dimension of a gci
morphism X → Y , we will understand it as a Zariski locally constant function
d : X → Z. In other words, d is a function which to a connected component
Xi of X associates an integer di ∈ Z. To such a function d and to any motivic
triangulated category T , we can associate a twist −(d) (resp. shift −[d]) on
the triangulated category T (X) by taking twist −(di) (resp. shift [di]) over the
component T (Xi). In that way, we avoid to artificially assume codimensions,
ranks or relative dimensions are constant.

Thanks
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finish this work.

1 Absolute spectra and associated bivariant theories

1.1 Definition of absolute spectra

The following notion is a simple extension of [Dég14b, 1.2.1].

Definition 1.1.1. An absolute spectrum over S is a pair (T ,E) where T is a
triangulated motivic category over S and E is a cartesian section of the fibered
category T i.e. the data:

• for any scheme S in S , of an object ES of T (S),

• for any morphism f : T → S, of an isomorphism τf : f∗(ES) → ET ,
called base change isomorphism,
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and we require that base change isomorphisms are compatible with composition
in f as usual. We will also say that E is an absolute T -spectrum and sometimes
just absolute spectrum when this does not lead to confusion.
A ring structure on (T ,E) will be on each ES such that the base change
isomorphisms are isomorphisms of monoids. We will say E is an absolute ring
T -spectrum.
Given a triangulated motivic category T , the pair (T ,1) where 1 is the carte-
sian section corresponding to the unit 1S for all schemes S will be called the
canonical absolute T -spectrum. It obviously admits a ring structure. We will
sometime denote it by HT .

When T is a Λ-linear category, we will also say absolute Λ-spectrum.

Example 1.1.2. 1. Let S be the category of Z[P−1]-schemes for a set
of primes P . Assume Λ = Z/nZ for n a product of primes in P , or
Λ = Zℓ,Qℓ and P = {ℓ}. Then we get the étale absolute Λ-spectrum as
the canonical absolute spectrum associated with the motivic triangulated
category S 7→ Db

c(Sét,Λ) — the bounded derived category of Λ-sheaves
on the small étale site of S (cf. [SGA4], [Eke90]).

Let now S be the category of all schemes.

2. Let Λ be a Q-algebra. The motivic (Eilenberg-MacLane) absolute Λ-
spectrum HΛ can be defined as the canonical absolute spectrum asso-
ciated with one of the equivalent version of the triangulated category
of rational motives (see [CD12b]). Following a notation of Riou, when
Λ = Q, this ring spectrum is sometimes denoted by HB and called the
Beilinson motivic ring spectrum.18

3. Let Λ be any ring. The étale motivic absolute Λ-spectrum HétΛ can be
defined as the canonical absolute spectrum associated with the triangu-
lated motivic category of h-motives of Voevodsky (see [CD15]). When 2
is invertible in Λ, one can also use the étale-local A1-derived category as
defined in [Ayo07b].

When Λ = Zℓ (resp. Qℓ) the ring of ℓ-adic integers (resp. rational inte-
gers), we will adopt the usual abuse of notations and denote by HétΛ the
canonical absolute spectrum associated with the homotopy ℓ-completion
(resp. rational part of the homotopy l-completion) of the triangulated
motivic category of h-motives of Voevodsky (see [CD15, 7.2.1]).

4. Let SH be Morel-Voevodsky’s stable homotopy category. Then an ab-
solute spectrum E in the sense of [Dég14b] is an absolute spectrum of the
form (SH ,E). This includes in particular the following absolute spectra:

• algebraic cobordism MGL,

18According to [CD12b, 14.2.14], it represents, over regular schemes, rational motivic co-
homology as first defined by Beilinson in terms of rational Quillen K-theory.
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• Weibel K-theory KGL,

• when Λ is a localization of Z, motivic cohomology HΛ with Λ-
coefficients as defined by Spitzweck (cf. [Spi13]).

We refer the reader to [Dég14b, Ex. 1.2.3 (4,5)] for more details.

When S is the category of S-schemes for a given scheme S, and T = SH ,
any spectrum (resp. ring spectrum) ES of SH (S) gives rise to an absolute
spectrum (resp. ring spectrum) (T ,E) by putting for any f : T → S, ET =
f∗(ES). This gives the following classical examples of absolute ring spectra
over S-schemes:

5. S = Spec(k) for a field k, any mixed Weil cohomology E over k, in the
sense of [CD12a];

6. S = Spec(K) for a p-adic field K, the syntomic cohomology with coeffi-
cients in K (cf. [DN15]);

7. S = Spec(V ) for a complete discrete valuation ring V , the rigid syntomic
cohomology, with coefficients in K (cf. [DM15]).

Remark 1.1.3. It is not absolutely clear from the literature that the bounded
derived category of mixed Hodge modules as defined by Saito satisfies the
complete set of axioms of a motivic triangulated category. However, the faithful
reader can then consider the associated absolute ring spectrum, an object that
should be called the Deligne absolute ring spectrum.19

Recall that an adjunction of motivic triangulated categories (or equivalently a
premotivic adjunction) is a functor

ϕ∗ : T → T
′

of triangulated categories such that ϕ∗
S : T (S) → T ′(S) is monoidal and

commutes with pullback functors (see [CD12b, 1.4.2]). In particular, given
a cartesian section E of T , we get a cartesian section F := ϕ∗(E) of T ′ by
putting FS = ϕ∗

S(ES).

Definition 1.1.4. A morphism of absolute spectra

(ϕ, φ) : (T ,E)→ (T ′,F)

is a premotivic adjunction ϕ∗ : T → T ′ together with a morphism of carte-
sian sections φ : ϕ∗(E) → F, i.e. a family of morphisms φS : ϕ∗(ES) → FS
compatible with the base change isomorphisms.
A morphism of absolute ring spectra is a pair (ϕ, φ) as above such that for any
scheme S in S , φS is a morphism of commutative monoids. In that case, we
also say that F is an E-algebra.

19A short for: the absolute ring spectrum representing Deligne cohomology.
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Obviously, these morphisms can be composed. Moreover, we will say that (ϕ, φ)
is an isomorphism if ϕ∗ is fully faithful and for all schemes S in S , φS is an
isomorphism. Finally we will say that the isomorphism (ϕ, φ) is strong if the
functor ϕ∗ commutes with f ! for any s-morphism f between excellent schemes.

Remark 1.1.5. Note that it usually happens that a motivic triangulated cat-
egory T admits a distinguished motivic triangulated subcategory Tc of con-
structible objects (see [CD12b, Def. 4.2.1]). According to our definitions, the
absolute spectrum associated with T is then canonically isomorphic to that
associated with Tc because for any scheme S, 1S is constructible, thus belongs
to Tc. It frequently happens that the corresponding isomorphism is strong (see
for example [CD12b, 4.2.28], [CD16, 6.2.14], [CD15, 6.4]).

Example 1.1.6. 1. It follows from the previous remark and the rigidity the-
orems of [Ayo14, CD15] that when S is the category of Z[P−1]-schemes
for a set of primes P and Λ = Z/nZ where n is a product of primes in P ,
the étale absolute Λ-spectrum and the étale motivic absolute Λ-spectrum
are isomorphic.

2. Any adjunction of motivic triangulated categories ϕ∗ : T → T ′ trivially
induces a morphism of absolute ring spectra

(ϕ, Id) : HT → HT ′

because by definition, ϕ∗
S is monoidal.

This immediately gives several examples of morphisms of absolute spec-
tra:

• when S is the category of all schemes, for a prime ℓ, we get

HQ→ HétQℓ

associated to the étale realization functor ρℓ : DMQ → DMh(−,Qℓ)
defined in [CD16, 7.2.24].

• when S is the category of k-schemes for a field k of characteristic
p, we get

HZ[1/p]→ HétZℓ

associated to the integral étale realization functors

ρℓ : DMcdh(−,Z[1/p])→ D(−ét,Zℓ)

defined in [CD15, Rem. 9.6].

3. Following Riou, we have the Chern character:

ch : KGLQ
≃
−→
⊕

i∈Z

HQ(i)[2i],

which is an isomorphism of absolute ring SH -spectra (cf. [Dég14b,
5.3.3]).
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Remark 1.1.7. The triangulated motivic category SH is almost initial. In fact,
as soon as a triangulated motivic category is the homotopy category of a com-
binatorial model stable category, there exists an essentially unique premotivic
adjunction20:

ν∗ : SH ⇆ T : ν∗

In this case, for any scheme S, we get a ring spectrum21 HT
S := ν∗(1S) in

SH (S) which represents the cohomology associated with the canonical abso-
lute T -spectrum. The collection HT

S indexed by schemes S in S define a
section of the fibered category SH as for any morphism f : T → S, we have
natural maps:

τT

f : f∗(HT

S ) = f∗ν∗(1S)→ ν∗(f∗
1S) ≃ ν∗(1S) = HT

S

compatible with the monoid structure. In general, these maps are not isomor-
phisms i.e. HT does not form an absolute SH -spectrum.
Note however that τT

f is an isomorphism when the functor ϕ∗ commutes with
pullback functors f∗. Most of the examples given in 1.1.2 will go into this case
except for one example, that of the (motivic) étale Λ-spectrum for Λ = Zℓ,Qℓ.
In fact, in this case we do not know whether the right adjoint of the ℓ-adic
realization functor commutes with f∗. This latter case justifies the generality
chosen in this paper.

Definition 1.1.8. Let (E,T ) be an absolute ring spectrum.
A module over (E,T ) will be an absolute spectrum (F,T ) and for any scheme
S in S an associative and unital action

φS : ES ⊗ FS → FS

which is compatible with the structural base change isomorphisms.
Given a premotivic adjunction ϕ∗ : T → T ′, the cartesian section ϕ∗(E) is
again an absolute ring T ′-spectrum. A ϕ-module over (E,T ) will be a module
over (ϕ∗(E),T ).

In both cases, when the context is clear, we will simply say F is an E-module.

Remark 1.1.9. Obvious examples of modules over an absolute ring spectrum E

are given by E-algebras, defined in 1.1.1. We will see many examples of that
kind in Paragraph 2.2.12.

1.2 Associated bivariant theory

1.2.1. We now give the basic definitions of bivariant theories suitable to our
needs, taken with some small variants from [FM81].
Let us fix FS the subcategory of the category of arrows in S whose objects are
the s-morphisms and maps are cartesian squares. Usually, an object f : X → S

20The same result holds in the framework of ∞-category according to [Rob15, 1.2].
21Indeed, recall that ν∗, as the right adjoint of a monoidal functor, is weakly monoidal.
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of FS will be denoted by X/S when no confusion can arise. Similarly, a
morphism ∆:

Y //

�� ∆
⇒

X

��
T

f
// S

will be indicated by the map f : T → S. Let A be the category of bigraded
abelian groups with morphisms the homogeneous ones of degree (0, 0).

A bivariant theory without products 22 will be a contravariant functor

E : FS → A , X/S 7→ E∗∗(X/S)

which is also a covariant functor in X with respect to proper morphisms of
S-schemes, and satisfies the following projection formula: for any cartesian
squares

Y ′ //

p′ ��

Y
p��

X ′ //

��

X

��
S′ f // S,

and any element x ∈ E∗∗(X/S) one has: f∗p∗(x) = p′∗f
∗(x), as soon as all the

maps exist. The structural map f∗ : E∗∗(X/S)→ E∗∗(X ′/S′) will be referred
to as the base change map associated with f .

Given any absolute spectrum (T ,E), any s-morphism p : X → S and any pair
(n,m) ∈ Z2, we put:

EBMn,m(X/S) := HomT (X)(1X(m)[n], p!(ES)).

The functoriality of p! then allows us to defines a contravariant functor from
FS to bigraded abelian groups and the base change map is given by the
pullback functor f∗ for a given morphism f : T → S. The covariance with
respect to a proper S-morphism f : Y → X can be defined using the map:

EX
ad(f∗,f∗)
−−−−−−→ f∗f

∗(EX) ≃ f∗(EY ) ≃ f!(EY ).

where ad(f∗, f∗) is the unit of the relevant adjunction, the first isomorphism
uses the structural isomorphism of the absolute spectrum E and the last iso-
morphism follows from the fact f is proper (see [CD12a, 2.4.50(2)]).

It is now a formal exercise to check the axioms of a bivariant theory without
products are fulfilled for the bifunctor EBM∗∗ .

22Products will be introduced in the second part of this introduction. Apart from the
absence of products, this notion corresponds to a bivariant theory as in [FM81] where inde-
pendent squares are cartesian squares and confined maps are proper morphisms.
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Definition 1.2.2. Under the assumptions above, the bifunctor EBM∗∗ will be
called the Borel-Moore homology23 associated with the absolute spectrum E.
When E = HT is the canonical absolute ring spectrum associated with T , we
will denote the corresponding Borel-Moore homology by HBM

n,m (X/S,T ).

Recall that one associates to a bivariant theory a cohomology theory; in our
case, we have:

En,m(X) = EBM−n,−m

(

X
1X−−→ X

)

= HomT (X)

(
1X ,EX(m)[n]

)

which is the usual formula for the cohomology represented by the spectrum
EX .

1.2.3. According to the six functors formalism, for any étale s-morphism f :
X → S, we have a canonical isomorphism of functors pf : f ! ≃ f∗ (cf. for
example [CD12b, 2.4.50(3)]). Therefore, we also get a canonical isomorphism:

EBMn,m(X/S) ≃ E−n,−m(X).

As the isomorphism pf is compatible with composition (see Proposition 2.3.9),
we obtain that EBMn,m(X/S) is functorial in X with respect to étale morphisms.
Recall now a classical terminology in motivic homotopy theory. We say a
cartesian square:

Y ′ k //

v ��

X ′

u��
Y

i // X,

(1.2.3.a)

is Nisnevich (resp. cdh) distinguished if i is an open (resp. closed) immersion, u
is an étale (resp. proper) morphism and the induced map (X ′−Y ′)→ (X−Y )
on the underlying reduced subschemes is an isomorphism.
Now, the following properties are direct consequences of the Grothendieck six
functors formalism.

Proposition 1.2.4. Let E be an absolute spectrum. The following properties
hold:

1. Homotopy invariance.– For any vector bundle p : E → S, and any s-
scheme X/S, the base change map:

p∗ : EBMn,m(X/S)→ EBMn,m(X ×S E/E)

is an isomorphism.

23This terminology extends the classical terminology in motivic homotopy theory, usually
applied in the case where S is the spectrum of a field. Note that we will see other bivariant
theories associated with E, so we have chosen to use that terminology following the tradition
of our field.
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2. Étale invariance.– Given any s-schemes X/T/S such that u : T → S is
étale, there exists a canonical isomorphism:

u∗ : EBM∗∗ (X/S)
∼
−→ EBM∗∗ (X/T )

which is natural with respect to base change in S and the covariance in
X/T for proper morphisms.

3. Localization.– For and s-scheme X/S and any closed immersion i : Z →
X with complementary open immersion j : U → X, there exists a canon-
ical localization long exact sequence of the form:

EBMn,m(Z/S)
i∗−→ EBMn,m(X/S)

j∗

−→ EBMn,m(U/S)
∂i−→ EBMn−1,m(Z/S)

which is natural with respect to the contravariance in S, the contravari-
ance in X/S for étale morphisms and the covariance in X/S for proper
morphisms.

4. Descent property.– for any square (1.2.3.a) of s-schemes over S which is
either Nisnevich or cdh distinguished, there exists a canonical long exact
sequence:

EBMn,m(X/S)
i∗+u∗

−−−−→ EBMn,m(Y/S)⊕ EBMn,m(X ′/S)
v∗−k∗
−−−−→ EBMn,m(Y ′/S)

−−−−→ EBMn−1,m(X/S)

natural with respect to the contravariance in S, the contravariance in X/S
for étale morphisms and the covariance in X/S for proper morphisms.

The proof is again an exercise using the properties of the motivic triangulated
category T . More precisely: (1) follows from the homotopy property, (2) from
the isomorphism pf : f ! ≃ f∗ for an étale s-morphism f : T → S, (3) from
the localization property (and for the functoriality, from the uniqueness of the
boundary operator at the triangulated level, see [CD12b, 2.3.3]), (4) from the
Nisnevich and cdh descent properties of T (see [CD12b, 3.3.4 and 3.3.10]).

Remark 1.2.5. An important remark for this work is the fact that the Borel-
Moore homology associated with an absolute spectrum E, restricted to the
subcategory of FS whose objects are closed immersions, coincides with the
cohomology with support and coefficients in E. Indeed, this can be seen from
the localization property in the case of a closed immersion i : Z → S. And in
fact, using the definition of cohomology with support introduced in [Dég14b,
1.2.5], we get an equality:

EBMn,m(i : Z → S) = E
−n,−m
Z (X).

This explains why the properties used in op. cit. are exactly the same as the
ones of bivariant theories (a fact the author became aware after writing op.
cit.).
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1.2.6. The Borel-Moore homology associated with an absolute spectrum is func-
torial: given a morphism (ϕ, φ) : (T ,E)→ (T ′, F ) of absolute spectra, and an
s-morphism p : X → S, we define (ϕ, φ)∗ — often simply denoted by φ∗:

EBMn,m(X/S) = HomT (X)(f!(1X)(m)[n],ES)

ϕ∗

−−→HomT ′(X)(ϕ
∗f!(1X)(m)[n], ϕ∗ES)

≃HomT ′(X)(f!(1
′
X)(m)[n], ϕ∗ES)

φ∗
−−−→HomT ′(X)(f!(1

′
X)(m)[n],FS) = FBMn,m(X/S)

where the isomorphism comes from the exchange isomorphism

ϕ∗f!
∼
−→ f!ϕ

∗

associated with the premotivic adjunction (ϕ∗, ϕ∗) (cf. [CD12b, 2.4.53]).
It is not difficult (using the compatibility of the various exchange transforma-
tions involved) to prove (ϕ, φ)∗ is compatible with the base change maps, the
covariant functoriality in X/S with respect to proper maps and the contravari-
ant functoriality in X/S with respect to étale maps. In a word, (ϕ, φ)∗ is a
natural transformation of bivariant theories without products.
Note moreover that (ϕ, φ)∗ is compatible with composition of morphisms of ab-
solute spectra and an isomorphism of absolute spectra induces an isomorphism
of bivariant theories.
Interesting examples will be given later, after the consideration of products.

Remark 1.2.7. Consider the setting of Remark 1.1.7. Assume in addition that
the section HT is cartesian. Then one gets a morphism of absolute ring spectra
(cf. Definition 1.1.4) (HT , SH ) → (1,T ) as for any scheme S, we have
morphisms of monoids:

τ∗(HT

S ) = τ∗(τ∗(1S))
ad′(τ∗,τ∗)
−−−−−−→ 1S .

Note this morphism is not an isomorphism in the sense of 1.1.4. However, the
map induced on Borel-Moore homologies of an s-morphism f : X → S

(HT )BM∗∗ (X/S)→ HBM
∗∗ (X/S,T )

is an isomorphism as the functor ϕ∗ commutes with direct images f! (see
[CD12b, 2.4.53]).

1.2.8. Recall now that a bivariant theory E in the sense of Fulton and MacPher-
son24 is a bivariant theory without products as introduced in 1.2.1 such that
for any s-schemes Y → X → S, there is given a product:

En,m(Y/X)⊗ Es,t(X/S)→ En+s,m+t(Y/S), (y, x) 7→ y.x

satisfying the following axioms:

24More precisely, when independent squares are cartesian squares, confined map are proper
morphisms and the category of values is that of bigraded abelian groups;
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• Associativity.– given s-morphisms Z/Y/X/S, for any triple (z, y, x), we
have:

(z.y).x = z.(y.x).

• Compatibility with pullbacks.– Given s-morphisms Y/X/S and a mor-
phism f : S′ → S inducing g : X ′ → X after pullback along X/S, for any
pair (y, x), we have: f∗(y.x) = g∗(y).f∗(x).

• Compatibility with pushforwards.– Given s-morphisms Z
f
−→ Y → X → S

such that f is proper, for any pair (z, y), one has: f∗(z.y) = f∗(z).y.

• Projection formula (second).– Given a cartesian square of s-schemes over
S:

Y ′ g //

��

Y

��
X ′ f // X // S,

such that f is proper, for any pair (y, x), one has: g∗(f∗(y).x′) = y.f∗(x′).

Consider now an absolute ring spectrum (T ,E). Then one can define a product
of the above form on the associated Borel-Moore homology defined in 1.2.2.

Consider indeed s-morphisms Y
f
−→ X

p
−→ S and classes

y : 1Y (m)[n]→ f !(EX), x : 1X(s)[t]→ p!(ES).

Let us first recall that one gets a canonical pairing25

Ex!∗⊗ : p∗(M)⊗ p!(N)→ p!(M ⊗N) (1.2.8.a)

obtained by adjunction from the following map:

p!(p
∗(M)⊗ p!(N))

∼
−→M ⊗ p!p

!(N)
1⊗ad′(p!,p

!)
−−−−−−−−→M ⊗N.

Then one associates to x:

x̃ : EX(s)[t]
1EX⊗x
−−−−→ EX ⊗ p

!(ES) ≃ p∗(ES)⊗ p!(ES)
Ex∗!

⊗

−−−→ p!(ES ⊗ ES)

p!(µ)
−−−→ p!(ES)

where the map µ is the multiplication map of the ring spectrum ES . Then, one
defines the product as the following composite map:

y.x : 1Y (m+ s)[n+ t]
y(s)[t]
−−−−→ f !(EX)(s)(t]

f !(x̃)
−−−→ f !p!(ES) = (pf)!(ES).

This is now a lengthy exercise to prove that the axioms stated previously are
satisfied for the product just defined and the bifunctor EBM∗∗ . We refer the
reader to [Dég14b, proof of 1.2.10] for details26.

25This is classical: see also [SGA4.5, IV, 1.2.3].
26the corresponding axioms are proved in loc. cit. when confined maps are closed immer-

sions (see Remark 1.2.5). In fact the proof does not change when confined maps are only
assumed to be proper rather than being closed immersions.
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Remark 1.2.9. 1. Products on bivariant theories obviously induce products
on the associated cohomology theory. In the case of the bivariant theory
of the above definition these induced products are nothing else than the
usual cup-products.

2. If one considers the case Y = X , the product of the preceding paragraph
gives an action of the cohomology of X on the Borel-Moore homology of
X/S.

3. We have seen in Remark 1.2.5 that cohomology with support is a partic-
ular instance of Borel-Moore homology. In fact, the product introduced
in [Dég14b, 1.2.8] for cohomology with supports coincides with the one
defined here restricted to Borel-Moore homology of closed immersions.
This is obvious as the formulas in each case are exactly the same.

Example 1.2.10. From the examples of 1.1.2, we get respectively the Borel-
Moore motivic Λ-homology, the Borel-Moore étale motivic Λ-homology, the
Borel-Moore homotopy invariant K-theory and the Borel-Moore algebraic cobor-
dism:

HBM∗∗ (X/S,Λ),HBM,ét
∗∗ (X/S,Λ),KGL

BM
∗∗ (X/S),MGL

BM
∗∗ (X/S).

1. The Borel-Moore motivic homology HBM∗∗ (X/S,Λ) could also be called
bivariant higher Chow groups. In fact, it follows from [CD15, 8.13] that
for any s-scheme X/k where k is a field of characteristic exponent p, one
has a canonical isomorphism:

ϕ : HBMn,m(X/k,Z[1/p])
∼
−→ CHm(X,n− 2m)[1/p]

where the right-hand side is the relevant Bloch’s higher Chow group.27

2. It follows from 1.1.6(1) that when S is the category of Z[P−1]-schemes
and Λ = Z/nZ with n a product of primes in P , the Borel-Moore étale
motivic Λ-homology Hét

∗∗(X/S,Λ) coincides with the bivariant étale the-
ory with Λ-coefficients as considered in [FM81, 7.4].

3. Recall that the absolute ring spectrum KGL satisfies Bott periodicity.
In particular, we get a canonical isomorphism:

KGL
BM
n,m(X/S) ≃ KGL

BM
n+2,m+1(X/S).

In particular, the double indexing is superfluous and we sometime con-
sider bivariant K-theory as Z-graded according to the formula:

KGL
BM
n,m(X/S) ≃ KGL

BM
n−2m(X/S).

27In fact, the assumption that X is equidimensional in loc. cit. can be avoided as follows:
coming back to the proof of Voevodsky in [VSF00, chap. 5, 4.2.9], one sees that in any case
the map ϕ exists — it is induced by and inclusion of groups of cycles. Therefore, to prove
it is an isomorphism, we reduce to the equidimensional case by noetherian induction, as the
map ϕ is compatible with the localization sequence (see the proof of loc. cit.).
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In general, this bivariant K-theory does not coincide with the bivariant
K-theory Kalg of [FM81, 1.1]. Indeed the theory of loc. cit. does not
satisfy the homotopy property (Prop. 1.2.4) when considering non regular
schemes (as algebraic K-theory).

Note however that according to [Jin18], one gets a canonical isomorphism:

KGL
BM
n (X/S) ≃ Gn(X)

for a quasi-projective morphism f : X → S with S regular, where G∗

is Thomason’s G-theory, or equivalently Quillen’s K’-theory as we work
with noetherian schemes (see [TT90, 3.13]). The isomorphism of Jin is
functorial with respect to proper covariance and étale contravariance.

Remark 1.2.11. In general, there should exist a natural transformation of bi-
variant theories:

Kalg,n(X → S)→ KGL
BM
n (X/S)

which extends the known natural transformations on associated cohomologies
and which is compatible with the Chern character with values in the motivic
bivariant rational theory (see below).

1.2.12. Let (ϕ, φ) : (T ,E)→ (T ′,F) be a morphism of ring spectra (Definition
1.1.4). Then one checks that the associated natural transformation of bivariant
theories defined in Paragraph 1.2.6

φ∗ : EBMn,m(X/S)→ FBMn,m(X/S)

is compatible with the product structures on each Borel-Moore homology
(Paragraph 1.2.8).28 So in fact, φ∗ is a Grothendieck transformation in the
sense of [FM81, I. 1.2].

Note that this natural transformation then formally induces a natural trans-
formation on cohomology theories, compatible with cup-products:

φ∗ : En,m(X)→ Fn,m(X),

as usual. This construction gives many interesting examples.

Example 1.2.13. 1. Let ℓ be a prime number. Assume one of the following
settings:

• S is the category of all schemes, Λ = Q, Λℓ = Qℓ;

• S is the category of schemes over a prime field F with characteristic
exponent p such that ℓ 6= p, Λ = Z[1/p] and Λℓ = Zℓ.

28This comes again as the exchange transformations involved in the functoriality and in
the products are compatible.
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Then, one gets from Example 1.1.6(2) a natural transformation of bivari-
ant theories:

HBM∗∗ (X/S,Λ)
∼
−−→ HBM,ét

∗∗ (X/S,Λℓ)

whose associated natural transformation on cohomology is the (higher)
cycle class map in étale ℓ-adic cohomology.

2. Assume S is the category of all schemes. Then one gets from 1.1.6(3) a
higher bivariant Chern character:

chn : KGL
BM
n (X/S)Q

∼
−−→

⊕

i∈Z

HBM2i+n,i(X/S,Q)

which is in fact a Grothendieck transformation in the sense of [FM81,
I, 1.2]. From [Dég14b, 5.3.3], it coincides with Gillet’s higher Chern
character on the associated cohomology theories. Therefore, it extends
Fulton and MacPherson Chern character [FM81, II. 1.5], denoted in loc.
cit. by τ .

Suppose S is a regular scheme and X/S is an s-scheme. Given the result
of Jin (Remark 1.2.11) and Riou ([Rio10]), one gets Adams operations
ψi on Thomason’s G-theory Gn(X) and the above isomorphism identifies
HBM2i+n,i(X/S,Q) with the eigenvector space of Gn(X)Q for the eigenvalue

ri of ψi, r 6= 0 being a fixed integer.

Finally, when S = Spec(k) is the spectrum of a field, from Example
1.2.10(2) the above higher Chern character can be written as an isomor-
phism:

chn : Gn(X)Q
∼
−→
⊕

i∈Z

CHi(X,n)⊗Q

for any s-scheme X/k.
More examples will be given in the section dealing with orientations.

Remark 1.2.14. Let us observe finally that the product structure on the Borel-
Moore homology associated with an absolute ring spectrum (E,T ) can be
extended to the setting of modules over ring spectra. Indeed, given a premotivic
adjunction ϕ∗ : T → T ′ and a ϕ-module F over (E,T ) with structural maps
φS as in Definition 1.1.8, we get a product:

EBMn,m(Y/X)⊗ FBMs,t (X/S)→ FBMn+s,m+t(Y/S), (y, x) 7→ y.x,

using the construction of Paragraph 1.2.8. Let us be more explicit. First
we remark that we have a Grothendieck transformation from the Borel-Moore
homology represented by (E,T ) to that represented by (ϕ∗(E),T ′), according
to 1.2.12. Thus, we can replace E by ϕ∗(E) to describe the above product. In
other words, we can assume T = T ′, ϕ∗ = Id. Then, given classes:

y : 1Y (m)[n]→ f !(EX), x : 1X(t)[s]→ p!(FS)
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one associates to x the following map:

x̃ : EX(t)[s]
1EX⊗x
−−−−→ EX ⊗ p

!(FS) ≃ p∗(ES)⊗ p!(FS)
Ex∗!

⊗

−−−→ p!(ES ⊗ FS)

p!(νS)
−−−−→ p!(FS)

using the pairing (1.2.8.a) and the structural map νS of the module FS over
ES . Then one defines the product as the following composite map:

y.x : 1Y (m+ t)[n+ s]
y(t)[s]
−−−−→ f !(EX)(t)[s] ≃ f !(EX(t)[s])

f !(x̃)
−−−→ f !p!(ES) = (pf)!(FS).

Similarly, we also define a right action:

FBMn,m(Y/X)⊗ EBMs,t (X/S)→ FBMn+s,m+t(Y/S).

It is straightforward to check these two products satisfy the associativity, com-
patibility with pullbacks and pushforwards, and projection formula like the
products in bivariant theories (cf. Paragraph 1.2.8).

1.3 Proper support

1.3.1. Let (E,T ) be an absolute spectrum and p : X → S be an s-morphism.
The six functors formalism gives us two other theories which depend on X/S
as follows:

En,mc (X/S) = HomT (S)

(
1S , p!(EX)(m)[n]

)
,

En,m(X/S) = HomT (S)

(
1S(m)[n], p!p

!(EX)
)
.

Using the same techniques as in Paragraph 1.2.1, one gets the following func-
toriality:

• En,mc (X/S) is contravariant in X/S with respect to cartesian squares,
contravariant in X with respect to proper S-morphisms and covariant in
X with respect to étale S-morphisms;

• En,m(X/S) is contravariant in X/S with respect to cartesian squares,
covariant in X with respect to all S-morphisms and contravariant in X
with respect to finite S-morphisms.

So in each cases, E∗∗
c and E∗∗ are contravariant functors from the category

FS (see 1.2.1) to the category of bigraded abelian groups. In fact, they are
bivariant theories without products where independent squares are the carte-
sian squares and confined maps are respectively the proper morphisms and the
étale morphisms.
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Definition 1.3.2. Given the notations above, the functor E∗∗
c (resp. E∗∗) will

be called the cohomology with compact support (resp. homology) associated
with E.

Example 1.3.3. These notions were classically considered when the base S is
the spectrum of a field k. Let p be the characteristic exponent of k.

1. When E is the absolute Λ-spectrum of étale cohomology as in 1.1.2(1),
our formulas for X/k gives the classical étale cohomology with support.

2. More generally, when E is the spectrum associated with a mixed Weil
theory over k as in 1.1.2(5), one recovers the classical notion of the corre-
sponding cohomology with compact support (eg. Betti, De Rham, rigid).
See also Corollary 1.3.5.

3. When k = C (or more generally, one has a given embedding of k into C),
and E = HB is the spectrum representing Betti cohomology with integral
coefficients,29 one gets an isomorphism:

(HB)n,m(X/k) = Hsing
n (X(C),Z)

which is canonical if m = 0 and only depends on the choice of a trivial-
ization of H1,1

B (Gm) if m > 0.

Indeed, one obtains using Grothendieck-Verdier duality for the triangu-
lated motivic category D(−,Z) that when p : X → k is the canonical
projection, the complex

p!p
!(1k)

is the dual of the complex p∗p
∗(1k) which is quasi-isomorphic to

Csing∗ (X(C)) by definition. So the result follows from the classical defi-
nition of singular homology.30

4. When E is the absolute motivic Z[1/p]-spectrum, it follows from [CD15,
8.7] that for any s-schemeX/k and any integer n ∈ Z, one gets a canonical
isomorphism:

Hn,0(X/k,Z[1/p]) ≃ HSus
n (X)[1/p]

where the left-hand side is the homology in the above sense associated
with the motivic absolute spectrum HΛ and the right hand side is Suslin
homology (cf. [SV96]).31

Let us collect some properties of these two new types of bivariant theories.

29Either as the one obtained through the corresponding Mixed Weil theory or as the
canonical spectrum associated with the motivic triangulated category X 7→ D(X(C), Z) of
[Ayo10, section 1]. For the fact these two versions give the same answer, see [CD12a, 17.1.7].

30One could also use Corollary 1.3.5 to conclude here.
31Note that though Suslin homology is defined for s-morphisms X/S, it does not seem that

the above identification extends to cases where S is of positive dimension.
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Proposition 1.3.4. Let E be an absolute spectrum. The following properties
hold:

1. Homotopy invariance.– For any s-scheme X/S and any vector bundle
p : E → X, the push-forward map in bivariant homology:

p∗ : E∗∗(E/S)→ E∗∗(X/S)

is an isomorphism.

2. Proper invariance.– Given any s-schemes X/T/S such that T/S is proper,
there exists a canonical isomorphism:

E∗∗
c (X/S)

∼
−→ E∗∗

c (X/T )

which is natural with respect to the functorialities of compactly supported
cohomology (cf. 1.3.1).

3. Comparison.– For any s-scheme X/S one has natural transformations:

En,mc (X/S)→ En,m(X),

En,m(X/S)→ EBMn,m(X/S)

which are isomorphisms when X/S is proper.

4. Localization.– For any s-scheme X/S and any closed immersion i : Z →
X with complementary open immersion j : U → X, there exists a canon-
ical localization long exact sequence of the form:

En,mc (U/S)
j∗
−→ En,mc (X/S)

i∗

−→ En,mc (Z/S) −→ En+1,m
c (U/S)

which is natural with respect to the functorialities of compactly supported
cohomology (cf. 1.3.1).

Property (1) follows from the homotopy invariance of the category T , which
implies that the adjunction map p!p

! → 1 is an isomorphism. Property (2) and
(3) follows from the existence, for p : X → S, of the natural transformation of
functors

αp : p! → p∗

which is an isomorphism when p is proper. Property (4) is a direct translation

of the existence of the localization triangle j!j
∗ → 1→ i!i

∗ +1
−−→.

The following corollary justifies our terminology.

Corollary 1.3.5. Consider an S-scheme X with an open S-immersion j :
X → X̄ such that X̄ is proper over S. Let X∞ be the reduced complement of
j, i : X∞ → X̄ the corresponding immersion.
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Then one has canonical long exact sequences:

En−1,m(X̄)
i∗

−→ En−1,m(X∞)→ En,mc (X/S)→ En,m(X̄)
i∗

−→ En,m(X∞),

En,m(X∞/S)
i∗−→ En,m(X̄/S)→ EBMn,m(X/S)→ En−1,m(X∞/S)

i∗−→ En−1,m(X̄/S).

Indeed, the first long exact sequence is obtained from points (3) and (4) of the
preceding proposition and the second one from Proposition 1.2.4(4) and point
(3) of the previous proposition.

Remark 1.3.6. 1. The first long exact sequence gives us the usual way to
get compactly supported cohomology out of a compactification, which
can also be interpreted as a canonical isomorphism:

En,mc (X/S) ≃ En,m(X̄,X∞)

where the right-hand side is the cohomology of the pair (X̄,X∞) (as clas-
sically considered in algebraic topology). The second long exact sequence
is less usual and gives a way to get back Borel-Moore homology from ho-
mology. In fact, it gives us an interpretation of Borel-Moore homology
as the compactly supported theory associated with homology.

2. Homology and cohomology with compact support also admit descent long
exact sequences with respect to Nisnevich and cdh distinguished squares
as in 1.2.4(4). We leave the formulation to the reader.

1.3.7. Assume finally that (E,T ) has a ring structure.

Then one can define a product, for s-morphisms Y
f
−→ X

p
−→ S,

En,mc (Y/X)⊗ Es,tc (X/S)→ En+s,m+t
c (Y/S), (y, x) 7→ y.x,

so that the functor E∗∗
c becomes a bivariant theory in the sense of Fulton and

MacPherson (cf. 1.2.8). Indeed, given classes

y : 1X(m)[n]→ f!(EY ), x : 1S(t)[s]→ p!(ES)

we define

y′ : EX(t)[s]
1EX⊗y
−−−−→ EX⊗f!(EY )

PF
−−→ f!(f

∗EX⊗EY ) ≃ f!(EY ⊗EY )
µ
−→ f!(EY )

(where PF stands for projection formula) and then

y.x : 1S(m+ t)[n+ s]
x
−→ p!(ES)(t)[s] ≃ p!(ES(t)[s])

p!(y
′)

−−−→ p!f!(EY ) = (pf)!(EY ).

Again the formulas required for the product of a bivariant theory (cf. 1.2.8)
follow from the six functors formalism.
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Such a product does not exist on the bivariant theory without products E∗∗

defined above. Instead, one can define an exterior product:

E∗∗(X/S)⊗ E∗∗(Y/S)→ E∗∗(X ×S Y/S).

using the following pairing:

p!p
!(ES)⊗ q!q

!(ES)
PF
−−→ p!

(
p!(ES)⊗ p∗q!q

!(ES)
) BC
−−→ p!

(
p!(ES)⊗ q′!p

′∗q!(ES)
)

PF
−−→ p!q

′
!

(
q′∗p!(ES)⊗ p′∗q!(ES)

)

≃ a!
(
q′∗p!(ES)⊗ p′∗q!(ES)

)

Ex∗!

−−−→ a!
(
q′∗p!(ES)⊗ q′!p∗(ES)

) (1.2.8.a)
−−−−−→ a!a!(ES ⊗ ES)

µ
−→ a!a!(ES)

(where BC stands for base change formula) for a cartesian square of s-
morphisms

X ×S Y p′ //

q′ ��
a
❖❖

❖

''❖❖
❖❖❖

Y

q
��

X p // S.

One can check this product is associative, compatible with pushforwards and
base changes (we will not use these properties).
In a more original way, one can define the following cap-product, pairing of
bivariant theories:

E∗∗
c (X/S)⊗ EBM∗∗ (X/S)→ E∗∗(X/S), (a, b) 7→ a ∩ b (1.3.7.a)

which, using the preceding notations, is induced by the following pairing of
functors:

p∗p
!(ES)⊗ p!p

∗(ES)
PF
−−→ p!

(
p∗p∗p

∗(ES)⊗ p∗(ES)
)

ad′(p∗,p∗)
−−−−−−→ p!

(
p∗(ES)⊗ p∗(ES)

)

(1.2.8.a)
−−−−−→ p!p

!(ES ⊗ ES)
µ
−→ p!p

!(ES).

Remark 1.3.8. Our definition of cap-product is an extension of the classical
definition of cap-product, between cohomology and homology, as defined for
classical spectra ([Ada64, III, §9]). In fact, when S is the spectrum of a field
k and X/k is projective, it also coincides with the cap-product appearing in
Bloch-Ogus axioms [BO74].

2 Fundamental classes

2.1 Abstract fundamental classes

Let us recall the following basic definitions from [FM81].
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Definition 2.1.1. Let E be an absolute ring spectrum and f : X → S be an
s-morphism.
An orientation for the morphism f with coefficients in EBM∗∗ will be the choice
of an element ηf ∈ EBM∗∗ (X/S) in the bivariant theory associated with E (Def.
1.2.2).
Given a locally constant function d : X → Z, with values d(i) on the connected
components Xi of X , for i ∈ I, we will say that ηf has dimension d if it belongs
to the group:

⊕

i∈I

EBM2d(i),d(i)(Xi/S).

Accordingly, we introduce the following notation for any T -spectrum F over
X :

F(d)[2d] =
⊕

i∈I

F|Xi(d(i))[2d(i)].

Then one defines an orientation of degree d as a map:

ηf : EX(d)[2d]→ f !ES .

Remark 2.1.2. The word orientation in the context of the previous definition
has been chosen by Fulton and MacPherson in [FM81]. We will also use the
terminology fundamental class for such an orientation when it is part of a
coherent system of orientations: see Definition 2.1.9. In our main example,
the choice of an orientation in the sense of A1-homotopy theory (see Definition
2.2.2) will indeed canonically determine such a coherent system.

Example 2.1.3. Consider any absolute ring spectrum E. Then any étale s-
morphism f : X → S admits a canonical orientation η̄f of degree 0. Take:

η̄f : 1X
ηX
−−→ EX

τ−1
f
−−→ f∗(ES)

p
−1
f
−−→ f !(ES) (2.1.3.a)

where ηX is the unit of the ring spectrum ES , τf is the base change isomorphism
(Def. 1.1.1) and pf is the purity isomorphism of the six functors formalism (see
1.2.3).

Remark 2.1.4. As the previous example is a basic piece of our main result,
Theorem 2.5.3, we recall the definition of the isomorphism pf of the above
example. We consider the pullback square:

X
δ //

■■
■■

■■
■■

■■
■■

■■
■■

X ×S X
f ′′

//

f ′

��

X

f
��

X f // S

where δ is the diagonal immersion, which is both open and closed according to
our assumptions on f (étale and separated). Then we define pf as follows:

f∗ ≃ δ!f ′′!f∗ Ex!∗

−−−→ δ!f ′∗f ! (1)
−−→ δ∗f ′∗f ! ≃ f !.
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To get the isomorphism (1), we come back to the construction of exceptional
functors following Deligne (see [CD12b, 2.2]). Indeed, as δ is an open immer-
sion, we get a canonical identification δ! ≃ δ♯ of functors so that we get a
canonical isomorphism δ! ≃ δ∗ of their respective right adjoints as required.

2.1.5. Consider an absolute ring spectrum E, and an orientation ηf of an s-
morphism f : X → S.
Given an s-scheme Y/X and using the product of the Borel-Moore E-homology,
one can associate to ηf a map:

δ(Y/X, ηf ) : EBM∗∗ (Y/X)→ EBM∗∗ (Y/S), y 7→ y.ηf .

Note that going back to the definition of this product (Par. 1.2.8), this map
can be described up to shift and twist as the composition on the left with the
following morphism of T (X):

η̃f : EX(∗)[∗]
1EX⊗ηf
−−−−−→ EX ⊗ f

!(ES) ≃ f∗(ES)⊗ f !(ES)

Ex∗!
⊗

−−−−−→ f !(ES ⊗ ES)
µ
−→ f !(ES).

(2.1.5.a)

Definition 2.1.6. Consider the above assumptions. One says that the orien-
tation ηf is

• strong if for any s-scheme Y/X , the map δ(Y/X, ηf ) is an isomorphism.

• universally strong if the morphism η̃f is an isomorphism in T (X).

As remarked in [FM81], a strong orientation of X/S is unique up to multipli-
cation by an invertible element in E0,0(X). The notion of universally strong
is new, as it makes sense only in our context. Obviously, universally strong
implies strong according to Paragraph 2.1.5.

Remark 2.1.7. Consider the notations of the above definition.

1. The property of being universally strong for an orientation ηf as above
implies that for any smooth morphism p : T → S, the orientation p∗(ηf )
of f ×S T is strong — this motivates the name. We will see more impli-
cations of this property in Section 4.

2. The data of the orientation η̄f is equivalent to the data of the map η̃f as
the map η̄f is equal to the following composite:

1X(∗)[∗]
ηX
−−→ EX(∗)[∗]

η̃f
−→ f !ES

where ηX is the unit of the ring spectrum EX .

Example 2.1.8. Consider the notations of the previous definition and assume
that f is étale as in Example 2.1.3.
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It follows from point (2) of the preceding remark that the map η̃f associated
with the orientation η̄f of the latter example is equal to the following composite
morphism:

η̃f : EX
τ−1
f
−−→ f∗(ES)

p
−1
f
−−→ f !(ES),

using the notations of the example. Thus, η̃f is an isomorphism: the canonical
orientation ηf of an étale morphism f is universally strong.

Definition 2.1.9. Given a class C of morphisms of schemes closed under
composition, a system of fundamental classes for C with coefficients in E will
be the datum for any f ∈ C of an orientation ηC

f such that for any composable

maps Y
g
−→ X

f
−→ S in C one has the relation:

ηC

g .η
C

f = ηC

f◦g

using the product of the bivariant theory EBM∗∗ . This relation will be referred
to as the associativity formula.

Recall the aim of this paper is to construct a system of fundamental classes for
a class of morphisms as large as achievable under the minimal possible choices.

2.2 Global orientations

2.2.1. Recall from our convention that we assume from now on that any motivic
triangulated category T is equipped with a premotivic adjunction:

τ∗ : SH → T .

Consider an absolute ring T -spectrum E. Let us fix a scheme S in S . Then
τ∗(ES) is a motivic ring spectrum and for any smooth scheme X/S, for any
pair (n,m) ∈ Z2, one gets an isomorphism:

HomSH (S)(Σ
∞X+, τ∗(ES)(m)[n])

∼
−→ HomT (S)(τ

∗(Σ∞X+),ES(m)[n])

≃ HomT (S)(f♯(1X),ES(m)[n]) ≃ En,m(X)

In other words, the ring spectrum τ∗(ES) in SH (S) represents the cohomol-
ogy E∗∗ restricted to smooth S-schemes and the above isomorphism is also
compatible with cup-products.32

Therefore, one can apply all the definitions and results of orientation theory of
motivic homotopy theory for which we refer to [Dég14b]. In the remainder of
this section, we recall these results, applied more specifically to our situation.
As usual Ẽ∗∗ denotes the reduced cohomology with coefficients in E. As, by
definition, MS(P1

S) = 1S ⊕ 1S(1)[2] and because 1S(1) is ⊗-invertible, we get
a canonical isomorphism:

Ẽ2,1(P1
S)

ψ
−→ E0,0(S)

32Beware however that τ∗(ES) for various schemes S only gives a section of SH , not
necessarily a cartesian one.
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where P1
S is pointed by ∞. Therefore, the unit ηS of the ring spectrum E

induces a canonical cohomology class σE
S = ψ−1(ηS) ∈ Ẽ2,1(P1

S) — classically
called the stability class.
As in [Dég14b, Def. 2.1.2], we let P∞

S be the colimit, in the category of Nisnevich
sheaves of sets over the category of smooth S-schemes, of the inclusions PnS →
Pn+1
S by means of the first coordinates.

Definition 2.2.2. Consider the above notations. An orientation of the abso-
lute ring T -spectrum E will be the datum, for any scheme S in S , of a class
cS ∈ Ẽ2,1(P∞

S ) such that:

• the restriction of cS to P1
S equals the stability class σE

S defined above;

• for any morphism f : T → S, one has: f∗(cS) = cT .

For short, we will say that (E, c) is an absolute oriented ring T -spectrum (or
simply spectrum).
A morphism of absolute oriented ring spectra (T ,E, c) → (T ′,F, d) will be a
morphism of absolute ring spectra (Def. 1.1.4) (ϕ, ψ) such that for any scheme
S, the map induced on cohomology

ψ∗ : Ẽ2,1(P∞
S )→ F̃2,1(P∞

S )

sends cS to dS .

Remark 2.2.3. We will show later (Example 2.3.7) that an orientation of the
ring spectrum ES does correspond to a family of orientations of the associated
Borel-Moore homology in the sense of Definition 2.1.1.

Example 2.2.4. Each of the absolute ring spectra of Example 1.1.2 admits a
canonical orientation; see [Dég14b, 2.1.4].

2.2.5. Consider the previous assumptions and notations. Recall one can build
out of the orientation c a complete theory of characteristic classes. The first
building block is the first Chern class which follows rightly from the class c,
seen as a morphism. Indeed, from [Dég14b, 2.1.8]:

c1 : Pic(S)→ HomH (S)(S+,P
∞
S )

Σ∞

−−→ HomSH (S)(Σ
∞S+,Σ

∞P∞
S )

τ∗

−→ HomT (S)(1S ,Ms(P
∞
S ))

(cS)∗
−−−→ HomT (S)(1S ,ES(1)[2]) = E2,1(S),

— H (S) is Morel and Voevodsky’s pointed unstable homotopy category.
One then deduces from [Dég14b, 2.1.13] that the cohomology theory E∗∗ satis-
fies the classical projective bundle formula, which will be freely used in the rest
of the text. Further, one gets higher Chern classes (see [Dég14b, Def. 2.1.16])
satisfying the following properties:
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Proposition 2.2.6. Considering the above notations and a given base scheme
X in S , the following assertions hold:

1. For any vector bundle E over X, there exist Chern classes ci(E) ∈
E2i,i(X) uniquely defined by the formula:

n∑

i=0

p∗(ci(E)).
(
− c1(λ)

)n−i
= 0, (2.2.6.a)

c0(E) = 1 and ci(E) = 0 for i /∈ [0, n]. As usual, we define the total
Chern class in the polynomial ring E∗∗(X)[t]:

ct(E) =
∑

i

ci(E).ti.

2. Chern classes are nilpotent, compatible with pullbacks in X, invariant un-
der isomorphisms of vector bundles and satisfy the Whitney sum formula:
for any vector bundles E, F over X,

ct(E ⊕ F ) = ct(E).ct(F ).

3. There exists a (commutative) formal group law FX(x, y) with coefficients
in the ring E∗∗(X) such that for any line bundles L1, L2 over X, the
following relation holds:

c1(L1 ⊗ L2) = FX
(
c1(L1), c1(L2)

)
∈ E2,1(X),

— which is well-defined as the cohomology class c1(Li) is nilpotent. More-
over, for any morphism f : Y → X, one gets the relation: f∗(FX(x, y)) =
FY (x, y), in other words, the morphism of rings f∗ : E∗∗(X) → E∗∗(Y )
induces a morphism of formal group laws.

This is the content of [Dég14b, 2.1.17, 2.1.22].

Remark 2.2.7. Consider a morphism of oriented ring spectra:

(ϕ, ψ) : (T ,E, c)→ (T ′,F, d)

as in Definition 2.2.2, and ψ∗ : E∗∗(X) → F∗∗(X) the map induced in coho-
mology. Let us denote by cn(E) (resp. dn(E)) the n-th Chern class in E∗∗(X)
(resp. F∗∗(X)) associated with a vector bundle E/X using the previous propo-
sition. It follows from the construction of Chern classes and the fact ψ∗ respects
the orientation that we get the relation:

ψ∗(cn(E)) = dn(E).

Before going down the path of characteristic classes, let us recall that, according
to Morel, the existence of an orientation on an absolute ring spectrum implies
the associated cohomology is graded commutative. Actually, this property
holds for the associated bivariant theory in the following terms.
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Proposition 2.2.8. Let (E, c) be an absolute oriented ring T -spectrum. Then
for any cartesian square of s-morphisms

Y //

��

X
p��

T
f
// S,

and any pair (x, t) ∈ EBMn,i (X/S)× EBMm,j (T/S), the following relation holds in

EBMn+m,i+j(Y/S):

p∗(t).x = (−1)nmf∗(x).t.

Proof. For cohomology with support, this was proved in [Dég14b, 2.1.15]. The
proof here is essentially the same. Recall that M(Gm,S) = 1S ⊕ 1S(1)[1]. The
map permuting the factors of Gm×Gm therefore induces an endomorphism of
1S(1)[1] which after desuspension and untwisting gives an element33

ǫ ∈ EndT (S)(1S) = H0,0(S,T ).

Formally, we get (under the assumptions of the proposition) the following re-
lation:

f∗(t).x = (−1)nm−ijǫij .p∗(x).t (2.2.8.a)

where the multiplication by (−1)nm−ijǫij is seen via the action of E0,0(S) on
EBM∗∗ (X,S) — see Remark 1.2.9(2). Therefore, we are done as ǫ = −1 in
E0,0(S). Indeed, according to relation (2.2.8.a) applied with Y = X = T = S,
(n, i) = (m, j) = (2, 1), we have c2 = −ǫ.c2 ∈ E4,2(P2) and the projective
bundle theorem for E∗∗ thus concludes.

2.2.9. Suppose given a motivic triangulated category T . Recall that given a
vector bundle p : E → X with zero section s, one defines the Thom space
attached with E/X as:

MTh(E/X) := p♯s∗(1X).

This is also the image under the right adjoint τ∗ : SH (X) → T (X) of the
classical Thom space E/E −X . Given an absolute T -spectrum E, we define
the E-cohomology of the Thom space of E as:

En,m(Th(E)) = HomT (X)(MTh(E),EX(m)[n]).

Note that by adjunction, one immediately gets an isomorphism:

En,m(Th(E))
α∗

s−−→ E
n,m
X (E) = EBM−n,−m(X

s
−→ E) (2.2.9.a)

33In fact, this element is the image of Morel’s element ǫ ∈ π0(S0

S
) by the functor τ∗ :

SH (S) → T (S), justifying our notation.
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where the map αs : s! → s∗ is the canonical isomorphism obtained from the six
functors formalism, as s is proper. Finally, one gets the classical short exact
sequence:

0→ En,m(Th(E))
∂
−→ En,m(P(E ⊕ 1))

ν∗

−→ En,m(P(E))→ 0 (2.2.9.b)

where ν : P(E)→ P(E⊕ 1) is the canonical immersion of the projective bundle
associated with E/X into its projective completion — cf. the construction of
[Dég14b, 2.2.1].

Proposition 2.2.10. Let (E, c) be an absolute oriented ring T -spectrum and
E/X be a vector bundle of rank r.
One defines the Thom class of E in E2r,r(P(E ⊕ 1)) as:

t(E) =

r∑

i=0

p∗(ci(E)).
(
− c1(λ)

)r−i
. (2.2.10.a)

Then t(E) induces a unique class t̄(E) ∈ E2r,r(Th(E)), called the refined Thom
class, such that ∂ (̄t(E)) = t(E).
Moreover, E∗∗(Th(E)) is a free graded E∗∗(X)-module of rank 1 with base
t̄(E). In other words, the sequence (2.2.9.b) is split and we get a canonical
isomorphism:

τE : E∗∗(X)→ E∗∗(Th(E)), x 7→ x. t̄(E). (2.2.10.b)

For the proof, see [Dég14b, 2.2.1, 2.2.2]. The preceding isomorphism is tradi-
tionally called the Thom isomorphism associated with the vector bundle E/X .
It follows from Remark 2.2.7 that morphisms of oriented absolute ring spectra
respect Thom classes as well as refined Thom classes.

Remark 2.2.11. Note that the proposition makes sense even when the rank of
E/X is not constant. Indeed, in any case, the rank is locally constant on X , i.e.
constant over each connected component Xi of X and we just take direct sums
of the Thom classes restricted to each connected component, in the canonical
decomposition:

E∗∗(Th(E)) =
⊕

i

E∗∗
(
Th
(
E|Xi

))
.

2.2.12. The natural functor τ∗ : SH (S) → T (S) is monoidal. In particular,
we get a canonical absolute ring T -spectrum τ∗(MGL), the avatar of algebraic
cobordism in T . Note that by definition, it satisfies the following formula for
any base scheme S:

τ∗(MGLS) = hocolimn≥0 MThS(γn)(−n)[−2n]

where γn is the tautological vector bundle on the infinite Grassmannian of n-
planes over S. Note that, by adjunction, a structure of a τ∗(MGLS)-module
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(resp. τ∗(MGLS)-algebra) over a T -spectrum ES is the same thing as a struc-
ture of MGLS-module (resp. MGLS-algebra) over τ∗(ES). Thus, according to
[Vez01, 4.3] (see also [Dég14b, 2.2.6]), there is a bijection between the following
sets:

1. the orientations c on E as defined in 2.2.2;

2. the structures of an MGL-algebra on E as defined in 1.1.4.

In particular, the class c induces a unique morphism of absolute ring spectra:

(τ, φc) : MGL→ E.

This morphism induces a natural transformation of cohomology theories, com-
patible with cup-products (see 1.2.12):

φc∗ : MGL
n,m(X)→ En,m(X)

which by definition satisfies the property that τc∗ (cMGL) = c in Ẽ2,1(P∞
S ). In

other words, (τ, φc) is a morphism of oriented ring spectra.
This fact suggest the following definition.

Definition 2.2.13. A weak orientation of an absolute T -spectrum E is a
structure of a τ -module over the absolute ring spectrum MGL — in short, an
MGL-module structure.

Remark 2.2.14. 1. Typically, an MGL-module E will not possess Chern
classes or Thom classes but will possess a structural action of the ones
which naturally exists for MGL. As we will see below, this is enough
to obtain Gysin morphisms and duality results for the cohomology rep-
resented by E.

2. When E is an absolute ring spectrum, the difference between a weak ori-
entation and an orientation is the one between an MGL-module structure
and an MGL-algebra structure.

Remark 2.2.15. In this example, we consider one of the following assumptions
on a given ring of coefficients Λ:

• the category of schemes S can be arbitrary and Λ = Q;

• the category S is a subcategory of the category of k-schemes for a field
k of characteristic exponent p and Λ = Z[1/p].

We denote by HΛ the motivic (Eilenberg-MacLane) absolute spectrum with
coefficients in Λ (Example 1.1.2). Then given an absolute oriented ring T -
spectrum (E, c) which is Λ-linear and whose associated formal group law is
additive, there exists a unique morphism of absolute ring spectra

(τ, φ̃c) : HΛ→ E
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such that φ̃c(cHΛ) = x.
Indeed, in the first case, this follows from [Dég14b, Th. 14.2.6], and in the
second case from Hoyois-Hopkins-Morel Theorem (see [Hoy15a]). See [Dég14b,
5.3.1, 5.3.9] for more details.

2.2.16. Consider again the setting of Paragraph 2.2.9. Recall from [Dég14b,
2.4.18] that the association E 7→ MTh(E) can be uniquely extended to a
monoidal functor:

MTh : K(X)→ Pic(T ,⊗)

where K(X) is the Picard groupoid of virtual vector bundles over X ([Del87,
4.12]) and Pic(T ,⊗) that of ⊗-invertible objects of T (X), morphisms being
isomorphisms. Actually, this extension follows from the fact that for any short
exact sequence of vector bundles over X :

0→ E′ → E → E′′ → 0 (σ)

there exists a canonical isomorphism:

ǫσ : MTh(E′)⊗MTh(E′′)→ MTh(E) (2.2.16.a)

and the isomorphisms of this form satisfy the coherence conditions of [Del87,
4.3].
Then the definition of the refined Thom class can be extended to Thom spaces
of virtual vector bundles using the following lemma (see [Dég14b, 2.4.7]).

Lemma 2.2.17. Consider as above an exact sequence (σ) of vector bundles over
a scheme X. Then the following relation holds in E∗∗(Th(E)):

t̄(E/X) = t̄(E′/X). t̄(E/E′)

using the product E∗∗
X (E′) ⊗ E∗∗

E′(E) → E∗∗
X (E) of the corresponding bivariant

theories.

2.2.18. Consider an arbitrary vector bundle E/X . Then we obviously get a
perfect pairing of E∗∗(X)-modules:

E∗∗(Th(E)) ⊗ E∗∗(Th(−E))→ E∗∗(X), (a, b) 7→ a⊗X b.

We let t̄(−E) be the unique element of E∗∗(Th(−E)) such that t̄(E)⊗X t̄(−E) =
1 so that t̄(−E) is a basis of the E∗∗(X)-module E∗∗(Th(−E)).
Let now v be a virtual vector bundle over X . Then we deduce from the preced-
ing lemma that for any X-vector bundles E and E′ such that v = [E] − [E′],
the class

t̄(v) = t̄(E)⊗X t̄(−E′)

is independent of the choice of E and E’.

Definition 2.2.19. Consider the notations above. We define the Thom class
of the virtual vector bundle v over X as the element t̄(v) ∈ E∗∗(Th(v)) defined
by the preceding relation.
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Recall t̄(v) is a basis of E∗∗(Th(v)) as an E∗∗(X)-module. In other words, the
map:

τv : E∗∗(X)→ E∗∗(Th(v)), x 7→ x. t̄(v). (2.2.19.a)

is an isomorphism, again called the Thom isomorphism associated with the
virtual vector bundle v. Besides, the preceding lemma shows we have the
relation:

t̄(v + v′) = t̄(v)⊗X t̄(v′) (2.2.19.b)

in E∗∗(Th(v + v′)).

2.2.20. Consider again the setting of Paragraph 2.2.9. According to the projec-
tion formulas of the motivic triangulated category T , one gets an isomorphism
of functors in M , object of T (X),

p♯s∗(M) = p♯s∗(1S ⊗ s
∗p∗M) ≃ p♯s∗(1S)⊗M = MThS(E)⊗M. (2.2.20.a)

Therefore, p♯s∗ is an equivalence of categories with quasi-inverse:

M 7→ s!p∗(M) = MThS(−E)⊗M. (2.2.20.b)

The following proposition is a reinforcement of Proposition 2.2.10.

Proposition 2.2.21. Let (E, c) be an absolute oriented T -spectrum.
Then for a vector bundle E/X with zero section s, the refined Thom class t̄(E),

seen as an element η̄s of EBM∗∗ (X
s
−→ E) through the identification (2.2.9.a), is

a universally strong orientation of s, with degree equal to the rank r of E/X.
Moreover, these orientations form a system of fundamental classes with respect
to the class of morphisms made by the zero sections of vector bundles (over
schemes in S ).

Proof. Let us consider the following map:

p′E : MTh(E)⊗ EX
t̄(E)⊗1
−−−−→ EX ⊗ EX(r)[2r]

µ
−→ EX(r)[2r]

where µ is the multiplication map of the ring spectrum EX . It follows formally
from this construction that the map

En,m(Th(−E)) = HomT (X) (MTh(−E),E(m)[n])

≃ HomT (X) (1X ,MTh(E)⊗ E(m)[n])

(p′
E)∗

−−−−−→ HomT (X)(1X ,E(m+ r)[n + 2r]) = En+2r,m+r(X)

induced by p′E after applying the functor HomT (X)(1X ,−(∗)[∗]) is equal to the
inverse of the Thom isomorphism (2.2.19.a). Because Thom classes are stable
under pullbacks, we further deduce that for any smooth morphism f : Y →
X , the map induced after applying the functor HomT (X)(MX(Y ),−(m)[n])
is equal to the inverse of the Thom isomorphism associated with the virtual
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vector bundle (−f−1(E)) over Y . As the objects MX(Y )(−m) for Y/X smooth
and m ∈ Z form a family of generators for the triangulated category T (X)
(according to our conventions on motivic triangulated categories), we deduce
that p′E is an isomorphism.
Now, one can check going back to definitions that the following isomorphism:

EX = s!p∗(MTh(E)⊗ EX)
s!p∗(p′

E)
−−−−−→ s!p∗(EX(r)[2r]) ≃ s!(EX)(r)[2r]

is equal to the map η̃s(r)[2r] associated to η̄s as in (2.1.5.a). This implies the
first claim.
Then the second claim is exactly Lemma 2.2.17.

Remark 2.2.22. We will remember from the above proof that, in the condition
of the proposition, given any virtual vector bundle v over X with virtual rank
r, the following map:

p′v : MTh(v)⊗ EX
t̄(v)⊗1
−−−−→ EX ⊗ EX(r)[2r]

µ
−→ EX(r)[2r] (2.2.22.a)

is an isomorphism — this follows from the case where v = [E] explicitly treated
in the proof, relation (2.2.19.b) and the fact t̄(0) = 1. This map obviously
represents the Thom isomorphism (2.2.19.b) so we will also call it the Thom
isomorphism when no confusion can arise.

2.3 The smooth case

2.3.1. Let T be a triangulated motivic category with, according to our con-
ventions, a premotivic adjunction τ∗ : SH → T .
As usual we call closed S-pair any pair of S-schemes (X,Z) such that X/S is
smooth and Z is a closed immersion. One defines the motive of X with support
in Z as:

MS(X/X − Z) := p♯i∗(1Z)

where p is the structural morphism of X/S, i the immersion of Z in X . Alter-
natively, one can equivalently put:

MS(X/X − Z) := τ∗(Σ∞X/X − Z)

where X/X − Z is the quotient computed in the category pointed Nisnevich
sheaves of sets over the category of smooth S-schemes, seen as an object of the
pointed A1-homotopy category over S.
A particular example that we have already seen is given for a vector bundle
E/X , with X/S smooth. We then put:

MThS(E) := MS(E/E −X)

extending the definition of Paragraph 2.2.9 — for which we had X = S.
These objects satisfy a classical formalism which has been summarized in
[Dég08, 2.1]. In particular, they are covariant in the closed S-pair (X,Z)
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— recall morphisms of closed pairs are given by commutative squares which
are topologically cartesian34; one says such a morphism is cartesian if the cor-
responding square is cartesian.

Given a closed S-pair (X,Z), we define the associated deformation space as:

DZX := BZ×{0}(A1
X)−BZX.

Let us put D = DZX for the rest of the discussion. This deformation space
contains as a closed subscheme the scheme A1

Z ≃ BZ(A1
Z). It is flat over A1 and

the fiber of the closed pair (D,A1
Z) over 1 (resp. 0) is (X,Z) (resp. (NZX,Z)).

Therefore one gets cartesian morphisms of closed S-pairs:

(X,Z)
d1−→ (D,A1

Z)
d0←− (NZX,Z). (2.3.1.a)

Theorem 2.3.2 (Morel-Voevodsky). Consider a closed S-pair (X,Z) such that
Z/S is smooth.
Then the induced maps

MS(X/X − Z)
d1∗−−→MS(D/D − A1

Z)
d0∗←−−M ThS(NZX)

are isomorphisms in T (S).

The proof is well-known — see for example [CD12b, Th. 2.4.35].

Definition 2.3.3. Under the assumptions of the previous theorem, we define
the purity isomorphism associated with (X,Z) as the composite isomorphism:

p(X,Z) : MS(X/X − Z)
d1∗−−→MS(D/D − A1

Z)
d−1
0∗−−→M ThS(NZX).

2.3.4. We can derive a functorial version of the preceding purity isomorphism.
Consider for simplicity the case of a closed immersion i : S → X which admits
a smooth retraction p : X → S. We deduce from the preceding construction
the following isomorphism functorial in a given object E of T (S):

pp,i : p♯i∗(E) = p♯i∗(1⊗ s∗p∗E)
∼
−−→MS(X/X − S)⊗ E

p(X,Z)
−−−−−→ MThS(NSX)⊗ E,

where p is the structural map of X/S, and the first isomorphism is given
by the projection formulas associated with i∗ and p♯. As the T -spectrum
MThS(NSX) is ⊗-invertible, we deduce that the functor p♯s∗ is an equiva-
lence of categories. Then by adjunction, we get a dual isomorphism:

p′p,i : i!p∗(E)→ MThS(−NSX)⊗ E (2.3.4.a)

34i.e. cartesian on the underlying topological spaces.
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using the notation of Paragraph 2.2.16. Note by the way this map can be
written as the following composite of isomorphisms:

p
′
p,i : i!p∗(E)

∼
−→ Hom(MS(X/X − S),E)

(
p
−1
(X,Z)

)∗

−−−−−−→Hom(MThS(NSX),E)

≃ MThS(−NSX)⊗ E

(2.3.4.b)

Consider now an absolute oriented spectrum (T ,E, c). Let n be the function
on S which measures the local codimension of S in X . It is locally constant as
i is a regular closed immersion — as it admits a smooth retraction. Then we
deduce from the previous purity isomorphism and from the Thom isomorphism
(2.2.22.a) the following one:

η̃i : ES(n)[2n]
(p′

−NSX )−1

−−−−−−−→ MTh(−NSX)⊗ ES
(p′

p,i)
−1

−−−−−→ i!p∗(ES) ≃ i!(EX).

As explained in Remark 2.1.7(2), we can associate to this isomorphism the
following orientation:

η̄i : 1S(n)[2n]→ ES(n)[2n]
η̃i−→ i!(EX)

which is therefore universally strong.

Proposition 2.3.5. Consider the above notations and assumptions. The uni-
versally strong orientations η̄i constructed above form a system of fundamental
classes (Definition 2.1.9) with coefficients in E for closed immersions which
admit a smooth retraction.

Indeed, all what remains to be proved is the associativity formula. This follows
from the use of the double deformation space and the associativity formula for
Thom classes (Proposition 2.2.21). The reader can consult [Dég14b, 2.4.9] for
details.

Remark 2.3.6. 1. Note the same result could have been derived replacing
closed immersions which admits a smooth retraction by closed immersions
between smooth schemes over some fixed base. We will derive this case
later from our more general results.

2. We will need the following normalization property of the fundamental
classes constructed above. In the assumptions of the proposition, we
consider the deformation diagram (2.3.1.a):

S //

i ��

A1
S

ν��

S
s��

oo

X
d1 // D NSX.

d0oo
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It induces pullback morphisms on Borel-Moore homology:

EBM∗∗ (i : S → X)
d∗1←−−− EBM∗∗ (ν : A1

S → D)
d∗0−−−→EBM∗∗ (s : S → NSX)

≃ E∗∗(Th(NSX))

which are isomorphisms according to Theorem 2.3.2.

It rightly follows from the above construction that one has the relation:

d∗0(d∗1)−1(η̄i) = t̄(NSX).

This relation implies that the system of fundamental classes of the pre-
ceding proposition, restricted to zero sections of vector bundles, coincides
with that of Proposition 2.2.21: indeed, when X/S is a vector bundle,
one obtains that D is isomorphic to A1

X , NSX is isomorphic to X and
the maps d0 and d1 corresponds respectively to the zero and unit sections
of A1

X through these isomorphisms.

Example 2.3.7. Fixing a base scheme S, one can interpret the global orien-
tation c = cS ∈ E2,1(P∞

S ) as a sequence of classes cn ∈ E2,1(PnS), n > 0. Let

us consider the immersion: Pn−1
S

νn−1
S−−−→ PnS of the hyperplane at infinity (say

Pn−1
S × {∞}). Then the canonical exact sequence:

0→ E
2,1

P
n−1
S

(PnS)→ E2,1(PnS)
j∗

−→ E2,1(PnS − Pn−1
S ) ≃ E2,1(S)→ 0

is split exact and the class cn uniquely lifts to a class c̄n in

E
2,1

P
n−1
S

(PnS) ≃ EBM−2,−1(Pn−1
S

νn−1
S−−−→ PnS);

So the family (cn)n>0 corresponds to a family of orientations for the closed
immersions νn−1

S .
According to the previous remark, we get the equality:

η̄νn−1
S

= cP
n−1

1 (OPn(−1)) = c̄n,

using the notations of Definition 2.4.2 in the the middle term. In fact one can
interpret an orientation of the ring spectrum ES as a family of orientations of
the immersions ν∞n satisfying suitable conditions.

2.3.8. Let us recall how the homotopy purity theorem of Morel and Voevodsky
(stated above as Theorem 2.3.2) is used according to the method of Ayoub to
define the relative purity isomorphism of the six functors formalism.
Consider now an arbitrary smooth s-morphism f : X → S. We look at the
following diagram:

X

❊❊
❊❊

❊❊
❊❊

❊❊
❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊

δ // X ×S X
f2 //

f1

��

∆

X

f

��
X

f
// S
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where the square ∆ is cartesian and δ is the diagonal immersion. Let Tf
be the tangent bundle of X/S, that is the normal bundle of the immersion
δ. Interpreting the construction of Ayoub (see also [CD12b, 2.4.39]), we then
introduce the following natural transformation:

pf : f∗ ≃ δ!f !
2f

∗ Ex!∗(∆)
−−−−−−→ δ!f∗

1 f
!

p
′
f1,δ

−−−−→ MThX(−Tf )⊗ f !. (2.3.8.a)

By adjunction, one gets a natural transformation:

p
′
f : f♯ → f!

(
MThX(Tf)⊗−

)
. (2.3.8.b)

Then one deduces from the axioms of motivic triangulated categories that pf

and p′f are isomorphisms, simply called the purity isomorphisms associated

with f .35 Besides, we will use the following functoriality result satisfied by
these purity isomorphisms.

Proposition 2.3.9 (Ayoub). Consider smooth s-morphisms Y
g
−→ X

f
−→ S with

respective tangent bundles Tg and Tf . Then the following diagram of natural
transformations is commutative:

MThY (Tg)⊗ g
∗
(
MThX(Tf )⊗ f∗

) pg .pf //

∼ ��

g! ◦ f !

MThY (Tg)⊗MThX(g−1Tf)⊗ g∗f∗

ǫσ ��
MThY (Tfg)⊗ g

∗f∗

MThY (Tfg)⊗ (fg)∗
pfg // (fg)!

where the first isomorphism comes from the fact that g∗ is monoidal and Thom
spaces are compatible with base change while the isomorphism ǫσ stands for
(2.2.16.a) associated with the exact sequence of vector bundles:

0→ Tg → Tfg → g−1(Tf )→ 0. (σ)

For the proof, we refer the reader to [Ayo07a, 1.7.3] in the quasi-projective
case – actually Ayoub proves the assertion for the right adjoints but this is
obviously equivalent to our statement. Then the general case is reduced to
the quasi-projective one using the localization property of motivic triangulated
categories.

2.3.10. It is now easy to deduce from the preceding results canonical new ori-
entations for our bivariant theories using the method of Paragraph 2.3.4.

35This is one of the main results of [Ayo07a], though it was proved there only in the
quasi-projective case. The extension to the general case was first made in [CD12b, 2.4.26].
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Let us fix again an absolute oriented ring T -spectrum (E, c). Given a smooth
morphism f : X → S of relative dimension d (seen as a locally constant function
on X), we define the following isomorphism:

η̃f : EX(d)[2d]
(p′

Tf
)−1

−−−−−→ MTh(Tf )⊗ EX ≃ MTh(Tf )⊗ f∗(ES)
(pf )

−1

−−−−→ f !(ES)

where p′Tf
is the Thom isomorphism (2.2.22.a) associated with the tangent

bundle Tf of f and pf is Ayoub’s purity isomorphism (2.3.8.a).
Following Remark 2.1.7(2), we then define the following orientation of f :

η̄f : 1S(d)[2d]→ ES(d)[2d]
η̃f
−→ f !(EX).

Combining this construction together with the preceding proposition, we have
obtained:

Proposition 2.3.11. The universally strong orientations η̄f constructed above
form a system of fundamental classes (Definition 2.1.9) with coefficients in E

for smooth s-morphisms.

Remark 2.3.12. 1. As the relative dimension d of a smooth s-morphism f :
Y → X is equal to the rank of its tangent bundle, the fundamental class
η̄f has degree d in the sense of Definition 2.1.9.

2. It obviously follows from the constructions of Paragraphs 2.1.4 and 2.3.8
that the orientations constructed here for arbitrary smooth s-morphisms
extend the definition given in Example 2.1.8 for étale s-morphisms.

3. For future reference, we will recall the following characterization of the
orientation η̄f ∈ EBM∗∗ (X/S) constructed above. We have:

ηf = p′∗f (̄t(−Tf))

where the map p′∗f is induced by the isomorphism (2.3.8.b) as follows:

E∗∗(Th(−Tf )) ≃ Hom(f♯(MTh(−Tf )),ES)

p
′∗
f
−−→ Hom(f!(1X),ES) = EBM∗∗ (X/S)

(2.3.12.a)

— here Hom are understood with their natural Z2-graduation.

Let us finally note the following lemma for later use.

Lemma 2.3.13. Consider the notations of the previous proposition together with
a cartesian square:

Y
q //

g �� Θ

X
f��

T
p
// S

such that f is a smooth s-morphism. Then the following relation holds in
EBM∗∗ (Y/T ): p∗(η̄f ) = η̄g.
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Proof. We reduce to prove the analogous fact for the isomorphism constructed
in 2.3.10. Coming back to definitions (see in particular (2.3.8.a) and (2.3.4.b)),
one reduces to prove the following diagram of natural transformations is com-
mutative:

q∗f∗ ∼ //

(1)

q∗ Hom(M(X2/X2 −∆X), f !) //

∼
��

(2)

q∗(MTh(−Tf)⊗ f !) //

∼
��

(3)

q∗f !((d))

Hom(q∗M(X2/X2 −∆X), q∗f !)

Hom(φ,ψ)
��

q∗ MTh(−Tf)⊗ q∗f !

φ′⊗ψ
��

q∗f !((d))

ψ
��

g∗q∗
∼ // Hom(M(Y 2/Y 2 −∆Y ), g!p∗) // MTh(−Tg)⊗ g

!p∗ // g!p∗((d))

where:

• d means the relative dimension of f which we can assume to be constant,
and which is equal to the relative dimension of g, and we have denoted
−((d)) the twist −(d)[2d].

• ψ stands for the reciprocal isomorphism of the exchange transformation:
Ex!∗ : g!p∗ → q∗f ! associated with the square Θ — which is an isomor-
phism as f is smooth;

• we have put X2 = X ×S X and Y 2 = Y ×T Y = X ×S X ×S T ; φ is the
isomorphism associated with the cartesian squares:

Y
δY //

q
��

Y 2

q×q��

g1 // Y

q
��

X
δX

// X2

f1

// X

where f1 (resp. g1) stands for the projection on the first factor.

• φ′ is the isomorphism induced by the identification q−1(Tf ) ≃ Tg —
which also expresses that the square Θ is transversal.

Then, diagram (1) is commutative as it is made of exchange transformations,
diagram (2) is commutative has the deformation diagram (2.3.1.a) is functorial
with respect to cartesian morphisms of closed pairs — applied to the cartesian
square (*) — and diagram (3) is commutative as the Thom class (2.2.10.a) is
stable under pullbacks.

2.4 The regular closed immersion case according to Navarro

2.4.1. Let us now recall the construction of Navarro of a system of fun-
damental classes for regular closed immersions which extends the one con-
structed in Proposition 2.3.5. The construction can be safely transported to
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our generalized context as we assume the existence of a premotivic adjunction
τ∗ : SH → T .

Given a closed pair (X,Z), U = X−Z the open complement, we recall that the
relative Picard group Pic(X,Z) is the group of isomorphisms classes of pairs
(L, u) where L is a line bundle on X and u : L|U → A1

U a trivialization of L
over U .

As remarked by Navarro ([Nav16, Rem. 3.8]), one deduces from a classical
result of Morel and Voevodsky that there is a natural bijection:

ǫX,Z : Pic(X,Z)
∼
−→ [X/U,P∞

X ]

where the right hand-side stands for the unstable A1-homotopy classes of
pointed maps over X . Thus, one obtains Chern classes with support as in
[Nav16, 1.4].

Definition 2.4.2. Let (E, c) be an absolute oriented ring T -spectrum.

Then, given any closed pair (X,Z) with open complement U , one defines the
first Chern class map with support and coefficients in E as the following com-
posite:

cZ1 : Pic(X,Z)
ǫX,Z
−−−→ [X/U,P∞

X ]→ HomSH (X)(Σ
∞X/U,Σ∞P∞

S )

τ∗

−→ HomT (X)

(
M(X/X − Z),M(P∞

X )
)

(cX)∗
−−−−→ HomT (X)(M(X/X − Z),EX(1)[2]) = E

2,1
Z (X).

These Chern classes satisfy the following properties (see [Nav16, 1.39, 1.40]):

Proposition 2.4.3. Consider the notations of the above definition.

1. Given any cartesian morphism (Y, T ) → (X,Z) of closed pairs and any
element (L, u) ∈ Pic(X,Z), one has: f∗cZ1 (L, u) = cT1

(
f−1(L), f−1(u)

)
.

2. For any (L, u) ∈ Pic(X,Z), the cohomology class cZ1 (L) is nilpotent in
the ring E∗∗

Z (X).

3. Let FX be the formal group law associated with the orientation cX of
EX . Then, given any classes (L1, u1), (L2, u2) in Pic(X,Z), one has the
following relation in E

2,1
Z (X):

cZ1 (L1 ⊗ L2, u1 ⊗ u2) = FX
(
cZ1 (L1, u1), cZ1 (L2, u2)

)
,

using the E∗∗(X)-module structure on E∗∗
Z (X) and point (2).

The second tool needed in the method of Navarro is the following version of
the blow-up formula for oriented theories (see [Nav16, 2.6]).
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Proposition 2.4.4. Consider an absolute oriented ring T -spectrum (E, c).
Let (X,Z) be a closed pair of codimension n, B be the blow up of X in Z and
consider the following cartesian square:

P
k //

q
��

B
p
��

Z
i // X.

Then the following sequence is split exact:

0→ E∗∗
Z (X)

p∗

−→ E∗∗
P (B)

k∗
−→ E∗∗(P )/E∗∗(X)→ 0.

Letting OP (−1) (resp. OB(−1)) be the canonical line bundle over P (resp. B),
and putting c = c1(O(−1)) (resp. b = cP1 (OB(−1))), a section is given by the
following E∗∗(X)-linear morphism:

s : E∗∗(P )/E∗∗(X) ≃
(
⊕n−1
i=1 E∗∗(X).ci

)
→ E∗∗

P (B), ci 7→ bi.

2.4.5. Consider again the assumption and notations of the preceding proposi-
tion. We can now explain the construction of Navarro [Nav16, 2.7].
One defines a canonical class in E

2n,n
P (B) (where n is seen as a locally constant

function on P ) as follows:

η̄′i := −

(
n−1∑

i=0

q∗(ci(NZX)).(−c)n−i

)

.b

where we have used the E∗∗(P )-module structure on E∗∗
P (B). Then, accord-

ing to the projective bundle theorem for P = P(NZX), one deduces that
k∗(η̄′i) = cn(NZX) so that this class is zero in the quotient E∗∗(P )/E∗∗(X).
Therefore, according to the preceding proposition, there exists a unique class
η̄i ∈ E

2n,n
Z (X) such that:

p∗ η̄i = η̄′i .

This will be called the orientation of i associated with the orientation c of the
ring spectrum E.
According to Navarro’s work, we get the following result.

Proposition 2.4.6. The orientations η̄i constructed above form a system of
fundamental classes with coefficients in E for regular closed immersions.
Besides, this system coincides with that of Proposition 2.3.5 when restricted to
the closed immersions which admit a smooth retraction.

To prove the first assertion, we need to prove the associativity formula; this is
[Nav16, Th. 2.14]. The second assertion follows from the compatibility of η̄i
with respect to base change along transversal squares ([Nav16, 2.12]) and from
the fact the orientation defined above coincides with the refined Thom class
when i is the zero section of a vector bundle ([Nav16, 2.19]).
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Example 2.4.7. Consider the notations of the previous proposition.

1. Let i : D → X be the immersion of a regular divisor in a scheme X . We
let O(−D) be the line bundle on X corresponding to the inverse of the
ideal sheaf of Z in X (following the convention of [EGA4, 21.2.8.1]). The
sheaf O(−D) has support in D and admits a canonical trivialization s
over X − D. As blowing-up a divisor does not do anything, it follows
from the previous construction that we have the relation:

η̄i = cD1
(
O(−D), s

)
.

2. Let i : Z → X be a regular closed immersion of codimension n. Recall
we have a base change map:

i∗ : E∗∗
Z (X) = EBM∗∗ (Z/X)→ EBM∗∗ (Z/Z) = E∗∗(Z),

— equivalently, the map forgetting the support.

Then, from the construction of Paragraph 2.4.5, we deduce the relation:

i∗(η̄i) = cn(NZX).

2.5 The global complete intersection case

We are finally ready for the main theorem of this work. We have so far con-
structed several systems of fundamental classes and we now show how to glue
them. The main result in order to do so is the following lemma.

Lemma 2.5.1. Consider an absolute oriented ring spectrum (E, c). Let f : X →
S be a smooth s-morphism and s : S → X a section of f .
Then using the notations of Propositions 2.3.5 and 2.3.11, the following relation
holds in E00(X):

η̄s . η̄f = 1.

Proof. Let V = NS(X) be the normal bundle of S in X . By construction of the
deformation space, we get a commutative diagram made of cartesian squares:

S

s1 ��

s // X

d1��

f // S
s1��

A1
S

// DS(X)
f̃ // A1

S

S

s0

OO

σ // V

d0

OO

p // S

s0

OO

where the two left columns are made by the deformation diagram (2.3.1.a) as-
sociated with the closed pair (X,Z), the morphism p is the canonical projection
of V/S and f̃ is given by the composite map DS(X)→ DS(S) ≃ A1

S . An easy

check shows that f̃ is smooth.
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According to A1-homotopy invariance, the pullbacks s∗0, s
∗
1 : E∗∗(A1

S)→ E∗∗(S)
are the same isomorphism. The orientations of the form ηf for f smooth are
stable under pullbacks (Lemma 2.3.13) so that applying Remark 2.3.6, we are
reduced to prove the relation

η̄σ . η̄p = 1.

In other words, we can assumeX = V is a vector bundle over S, s = σ is its zero
section and f = p its canonical projection. We have seen in Remark 2.3.6 that
ησ coincides with the refined Thom class of V/S, via the canonical isomorphism
(2.2.9.a). Similarly, from Remark 2.3.12(3), the orientation η̄f is induced by the
Thom class of the S-vector bundle Tp = p−1E via the isomorphism (2.3.12.a).
As we obviously have: t̄(V ) · t̄(−V ) = 1, we are reduced to prove the following
lemma:

Lemma 2.5.2. Given a vector bundle V/S with zero section σ and canonical
projection p, the following diagram is commutative:

EBM∗∗ (S/V )⊗ EBM∗∗ (V/S)
µ̄

--❬❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬

α∗
σ⊗p

′∗
p

��
E∗∗(S)

E∗∗(MTh(V ))⊗ E∗∗(MTh(−V ))
µ

11❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝

where µ is the product on cohomology, µ̄ is the product of bivariant theory,
while α∗

σ (resp. p′∗p ) is induced by the isomorphism ασ : σ! → σ∗ as σ is proper
(resp. the purity isomorphism (2.3.8.a)).

In the proof of this lemma, we will restrict ourselves to classes of degree (0, 0). It
will healthily simplify notations and the proof for other degrees is the same. Let
us thus consider the following maps, corresponding to Borel-Moore homology
classes:

y : σ!(1S)→ EV , v : p!(1V )→ ES .

The commutativity of the preceding diagram then amounts to prove the fol-
lowing relation:

µ̄(y ⊗ v) = µ
(
α∗
σ(y)⊗ p′∗p (v)

)
,

so we put: ỹ = α∗
σ(y) and ṽ = p′∗p (v). Then the preceding relation can be
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translated into the commutativity of the following diagram of isomorphisms:

p!σ!(1S)
p!(y) // p!(EV )

∼// ES ⊗ p!(1S)
1⊗v // ES ⊗ ES

µE

��✺
✺✺

✺✺
✺✺

✺✺
✺

p♯
(
σ!(1S)⊗MTh(−Tp)

)

Ex⊗

♯��

p
′
p

OO

1S

ǫp,σ

22

can

((

(1) (2)p♯σ!(1S)⊗MTh(−V )
ασ��

ES

p♯σ∗(1S)⊗MTh(−V )

MTh(V )⊗MTh(−V )
ỹ⊗ṽ // ES ⊗ ES ,

µE

DD✠✠✠✠✠✠✠✠✠✠

where:

• the morphism labeled ǫp,σ stands for the inverse of the canonical isomor-
phism Id = (p ◦ σ)! → p!σ! coming from the fact f 7→ f! corresponds to a
2-functor;

• the map labeled Ex⊗♯ is the exchange isomorphism corresponding to the
projection formula for f♯ (cf. [CD12b, §1.1.24]) — using the identification
MTh(−Tp) = p∗MTh(−V );

• the map labeled can follows from the definition of the Thom space of the
virtual bundle (−V ).

The commutativity of part (2) follows directly from the definition of ỹ and
ṽ. Thus, we only need to show the commutativity of part (1) of the above
diagram.

After taking tensor product with MTh(V ), the diagram (1) can be simplified
as follows:

p!σ!(1S)⊗MTh(V )
Ex⊗

! // p!(σ!(1)⊗ p∗ MTh(V ))

MTh(V )

ǫp,σ
44❤❤❤❤❤❤❤❤❤❤❤❤❤

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬❬❬❬
❬❬❬❬❬❬❬❬

❬❬❬❬❬❬❬❬
❬❬❬❬❬❬

(1′) p♯σ!(1S)

p
′
p

OO

ασ
��

p♯σ∗(1S),

where the arrow Ex⊗! stands for the exchange isomorphism of the projection
formula for p! (see [CD12b, 2.2.12]).

Let us first summarize the geometric situation in the following commutative
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diagram of schemes:

S
σ // V

δ
''

p

��

σ′ //

Θ

W
p′ //

p′′

��
∆

V

p

��
S

σ
// V

p
// S,

where each square is cartesian and δ denotes the obvious diagonal embedding.
The map p′′ : W = V ×S V → V is the projection on the second factor and
in particular, we get: σ′(v) = (v, p(v)). Note finally that σ is an equalizer of
(δ, σ′).
Then coming back to the definition of the purity isomorphism p′p (cf. Paragraph
2.3.8), diagram (1′) can be divided as follows:

p!σ!(1)⊗MTh(V )
Ex⊗

! // p!(σ!(1)⊗ p∗ MTh(V ))

p!p
′
♯σ

′
!σ!(1)

44✐✐✐✐✐✐

MTh(V )

ǫp,σ

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

p♯p
′′
! σ

′
!σ!(1)

Ex♯!

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
(1′′) p!p

′
♯δ!σ!(1)

pδ

OO

p♯p
′′
! δ!σ!(1)

Ex♯!

OO

ǫ

jj❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

p♯σ∗(1) p♯σ!(1S),

p
′
p

OO

ασ

oo

ǫδ,σjj❯❯❯❯❯❯

where pδ is (induced by) the purity isomorphism associated with the closed
immersion δ (Definition 2.3.3), the map labeled Ex♯! stands for the obvious
exchange isomorphism associated with the cartesian square ∆, and ǫ is the
isomorphism coming from the fact f 7→ f! corresponds to a 2-functor and the
relation δ ◦ σ = σ′ ◦ σ.
In this diagram, the commutativity of the right-hand side follows by definition
of p′p and the commutativity of the left-hand side follows from the definition of
the involved exchange isomorphisms and the fact αf : f! → f∗ corresponds to
a morphism of 2-functors. The geometry is hidden in the commutativity of the
diagram labeled (1′′).
We can divide again (1′′) as follows:

p♯p
′′
! σ

′
!σ!(1)

Ex♯! // p!p′♯σ
′
!σ!(1)

(1′′′)

p!p
′
♯σ

′
!σ!(1)

p♯p
′′
! δ!σ!(1)

Ex♯! //

ǫ

OO

p!p
′
♯δ!σ!(1)

ǫ

OO

p!p
′
♯δ!σ!(1)

pδ

OO
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The commutativity of the left-hand square follows from the naturality of the
exchange isomorphism, it remains part (1′′′). We can certainly erase the functor
p! in each edge of this diagram. Then the right-most vertical map can be
expressed as follows:

M(W/W − δ(V ))⊗ σ!(1)
pδ
−→ MTh(Nδ/V )⊗ σ!(1)

and the commutativity of diagram (1′′′) means that this map is the identity.
Using once again the projection formula for σ, this map can be expressed as
follows:

σ!σ
∗
(
M(W/W − δ(V ))

) σ!σ
∗(pδ)

−−−−−−−→ σ!σ
∗ MTh(Nδ/V ).

So we are reduced to show that σ∗(pδ) is the identity map through the obvious
identifications:

σ∗M(W/W − δ(V )) = M(V/V − S) = σ∗ MTh(Nδ/V ).

This is an easy geometric fact: let us consider the deformation diagram for the
closed immersion δ : V →W :

V //

��

A1
V

��

V

��

oo

W // Dδ Nδ.oo

Note that the closed immersion δ and σ′ are transversal — i.e. the square Θ
is transversal. In other words, σ∗(Nδ) = Nσ = V as a vector bundle over S.
In particular, the pullback of the preceding diagram of V -schemes along the
immersion σ : S → V is the following one:

S //

��

A1
S

��

S

��

oo

V // A1
V V.oo

where we have used the identifications σ∗(Dδ) = Dσ = A1
V ; the last identifi-

cation is justified by the fact σ is the zero section of a vector bundle. In this
diagram, the vertical maps are the unit and zero sections of the affine lines
involved. Therefore, by homotopy invariance, we get that σ∗(pδ) is identified
to the identity map as required.

We are now ready to state our main theorem.

Theorem 2.5.3. Let (E, c) be an absolute oriented ring T -spectrum.
There exists a unique system of fundamental classes η̄f ∈ EBM∗∗ (X/S) for gci
morphisms f with coefficients in E such that, in addition to the associativity
property, one has:

1. If f is a smooth morphism, η̄f coincides with the fundamental class de-
fined in Proposition 2.3.11.
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2. If i : Z → X is a regular closed immersion, η̄i coincides with the funda-
mental class defined in 2.4.6.

If d is the relative dimension of f , seen as a Zariski local function on X, the
class ηf has dimension d (Definition 2.1.1).

Proof. Because any gci morphism p : X → S admits a factorization

X
i
−→ P

f
−→ S

where f is smooth and i is a regular closed immersion, we have to prove that
the class η̄i · η̄f is independent of the factorization.
To prove this, we are reduced by usual arguments (see for example [Dég08, proof
of 5.11]) and the help of Lemma 2.3.13 to show the associativity property:

η̄g · η̄f = η̄fg

in the following three cases:

(a) f and g are smooth morphisms;

(b) f and g are regular closed immersions;

(c) g is a smooth morphism and f is a section of g.

Case (a) follows from Proposition 2.3.11, case (b) from Proposition 2.4.6 and
case (c) from the preceding lemma. Then the associativity formula in the
general case follows using standard arguments (see for example [Dég08, proof
of 5.14]) from (a), (b) and (c).
The last assertion follows as the degree of η̄i (resp. η̄p) is the opposite of the
codimension n of i (resp. the dimension r of p) and we have: d = r − n.

Remark 2.5.4. When f is a smooth morphism, it follows from Proposition
2.3.11 that η̄f is universally strong (Definition 2.1.6). When f = s is the
section of a smooth s-morphism, property (2) in the above theorem and the last
assertion of Proposition 2.4.6 shows that the class η̄s constructed in the above
theorem coincides with that of Proposition 2.3.5. Therefore η̄s is universally
strong according to loc. cit. This remark will be amplified in Section 4.

Definition 2.5.5. Given the assumptions of the previous proposition, for any
gci morphism f : X → S, we call η̄f the fundamental class of f associated with
the orientation c of the absolute ring spectrum E.
In case f = i : Z → X is a regular closed immersion, we will also use the
notation:

η̄X(Z) := η̄i

seen as an element of E2c,c
Z (X) where c is the codimension of i — as a locally

constant function on Z.
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This fundamental class only depends upon the choice of the (global) orientation
c of E. If there is a possible confusion about the chosen orientation, we write
η̄cf instead of η̄f .
We often find another notion of fundamental class in the literature that we
introduce now for completeness.

Definition 2.5.6. Let (E, c) be an absolute oriented ring spectrum and f :
Y → X be a proper gci morphism. We define the fundamental class of f in
E-cohomology, denoted by ηf , as the image of η̄f by the map:

EBM∗∗ (Y/X)
f!
−−→ EBM∗∗ (X/X) = E∗∗(X).

We will give more details on these classes in section 3.3.

2.6 The quasi-projective lci case

We end this section by presenting an alternative method to build fundamental
classes, when restricting to quasi-projective lci morphism. This is based on the
following uniqueness result.

Theorem 2.6.1. Let (E, c) be an absolute oriented T -spectrum.
Then a family of orientations η̄f ∈ EBM∗∗ (X/S) attached to quasi-projective lci
morphisms f : X → S is uniquely characterized by the following properties:

1. If j : U → X is an open immersion, η̄j is equal to the following composite:

1X
η
−→ EX ≃ j

∗(EU ) = j!(EU )

where η is the unit of the ring spectrum EX .

2. If s is the zero section of a line bundle L/S, one has: η̄s = cZ1 (L) (nota-
tion of Definition 2.4.2).

3. If p is the projection map of PnS/S, η̄p is given by the construction
(2.3.8.a).

4. Given any composable pair of morphism (f, g), one has the relation
η̄f . η̄g = η̄g◦f whenever f and g are immersions, or f is the projection
of PnS/S and g is an immersion.

5. Let i : Z → X be a regular closed immersion and f : X ′ → X a morphism
transversal to i. Put k = f−1(i). Then the following relation holds:
f∗ η̄i = η̄k.

6. Consider the blow-up square of a closed immersion i of codimension n,

E
k //

��

B
p��

Z
i // X

the following relation holds: p∗ η̄i = cn−1(NZX). η̄k.
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Proof. Let us prove the uniqueness of η̄f for a quasi-projective lci morphism
f . The map f admits a factorization f = pji where p is the projection of PnS
for a suitable integer n ≥ 0, j is an open immersion and i a closed immersion.
According to property (4), we reduce the case of f to that of p, j or i. The
case of j follows from (1), and that of p follows from (3).

So we are reduced to the case of a regular closed immersion i : Z → X .
According to property (6) and its notations, we are reduced to the case of the
regular closed immersion k. In other words, we can assume i has codimension
1.

Then Z corresponds to an effective Cartier divisor in X , and therefore to a
line bundle L/X with a canonical section s : X → L such that the following
diagram is cartesian:

Z
i //

��
X
s��

X
s0 // L

where s0 is the zero-section of the line bundle L/X . According to relation (5),
we get: s∗ η̄s0 = η̄i. This uniquely characterize η̄i because η̄s0 is prescribed by
relation (2).

2.6.2. In fact, it is possible to show the existence of fundamental classes in the
quasi-projective lci case by using the constructions in the preceding proof and
the techniques of [Dég08] (see more specifically [Dég08, Sec. 5]). This gives an
alternate method where the construction of Ayoub 2.3.8 is avoided.

The interest of this method is that, instead of using the axiomatic of triangu-
lated motivic categories, one can directly work with a given bivariant theory
satisfying suitable axioms: in fact, the properties stated in Proposition 1.2.4.
Then one can recover the construction of a system of fundamental classes for
quasi-projective lci morphisms and proves the properties that we will see in the
forthcoming section.

3 Intersection and generalized Riemann-Roch formulas

3.1 Base change formula

In all this section, we will fix once and for all an absolute oriented ring T -
spectrum (E, c). We first state the following extension of the classical excess
intersection formula.

Proposition 3.1.1 (Excess of intersection formula). Consider a cartesian
square

Y
g //

q �� ∆

T
p��

X
f

// S
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of schemes such that f , g are gci. Let τf ∈ K0(X) (resp. τg ∈ K0(Y )) be the
virtual tangent bundle of f (resp. g). We put ξ = p∗(τf )− τg as an element of
K0(Y ),36 and let e(ξ) be the top Chern class of ξ in E∗∗(Y ). Then the following
formula holds in EBM∗∗ (Y/T ):

p∗(η̄f ) = e(ξ) · η̄g .

In fact, we can consider a factorization of f into a regular closed immersion
i and a smooth morphism p. Because of property (3) of Theorem 2.5.3, we
are reduced to the case f = i, regular closed immersion, or f = p, smooth
morphism. The first case is [Nav16, Cor. 2.12] while the second case was
proved in Lemma 2.3.13.

Example 3.1.2. Of course, an interesting case is obtained when the square ∆
is transversal, i.e. ξ = 0: it shows, as expected, that fundamental classes are
stable by pullback along transversal morphisms.37

3.1.3. Fundamental classes in the case of closed immersions give an incarnation
of intersection theory. Let us consider the enlightening case of divisors. In fact
one can extend slightly the notion of fundamental classes from effective Cartier
divisors to that of pseudo-divisors as defined by Fulton [Ful98, 2.2.1]

Definition 3.1.4. Let D = (L, Z, s) be a pseudo-divisor on a scheme X . We
define the fundamental class of D in X with coefficients in (E, c) as:

η̄X(D) := cZ1 (L, s) ∈ E
2,1
Z (X).

The following properties of these extended fundamental classes immediately
follows from Proposition 2.4.3.

Proposition 3.1.5. Let X be a scheme.

1. For any pseudo-divisor D on X with support Z, the class η̄(D) is nilpotent
in the ring E∗∗

Z (X).

2. Let (D1, ..., Dr) be pseudo-divisors on X with support in a subscheme
Z ⊂ X and (n1, ..., nr) ∈ Zr an r-uple/ One has the following relations
in the ring E∗∗

Z (X):

η̄(n1.D1 + . . .+ nr.Dr) = [n1]F . η̄(D1) +F . . .+F [nr]F . η̄(Dr)

where +F (resp. [n]F for an integer n ∈ Z) means the addition (resp.
n-th self addition) for the formal group law with coefficients in E∗∗(X)
associated with the orientation c (Proposition 2.2.6).

36The element ξ is called the excess intersection bundle associated with the square ∆;
37To be clear: a morphism of schemes p : T → S is transversal to a gci morphism f : X → S

if g = f ×S T is gci and p∗(τf ) = τg as elements of K0(X ×S T ).
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3. Let f : Y → X be any morphism of schemes. Then for any pseudo-divisor
D with support Z, T = f−1(Z), on has in E∗∗

T (Y ):

f∗(η̄X(D)) = η̄Y (f∗(D))

where f∗ on the right-hand side is the pullback of pseudo-divisors as de-
fined in [Ful98, 2.2.2].

In particular, it is worth to derive the following corollary which describes more
precisely the pullback operation on fundamental classes associated with divi-
sors.

Corollary 3.1.6. Let X be a normal scheme.

1. For any Cartier divisor D on X, one has the relation

η̄X(D) = [n1]F . η̄X(D1) +F . . .+F [nr]F . η̄X(Dr)

in E
2,1
Z (X),where Z in the support of D, (Di)i the family of irreducible

components of Z and ni is the multiplicity of D at Di.
38

2. Let f : Y → X be a dominant morphism of normal schemes. Then the
pullback divisor E = f−1(D) is defined, as a Cartier divisor, and if one
denotes (Ej)j=1,...,r the family of irreducible components of the support
T of E, and mj the intersection multiplicity of Ej in the pullback of D
along f ( i.e. the multiplicity of Ej in the Cartier divisor E), one has the

relation in E
2,1
T (Y ):

f∗(η̄X(D)) = [m1]F . η̄Y (E1) +F . . .+F [mr]F . η̄Y (Er).

3.2 Riemann-Roch formulas

3.2.1. We now show that we can derive from our theory many generalized
Riemann-Roch formulas in the sense of Fulton and MacPherson’s bivariant
theories ([FM81, I.1.4]). This is based on the construction of Todd classes. Let
us fix a morphism of absolute ring spectra

(ϕ, φ) : (T ,E)→ (T ′,F)

as in Definition 1.1.4.
Suppose c (resp. d) is an orientation of the ring spectrum E (resp. F). Given
a base scheme S, we obtain following Paragraph 1.2.12 a morphism of graded
rings:

φ
P∞
S

∗ : E∗∗(P∞
S )→ F∗∗(P∞

S )

38In case D is effective, this is the geometric multiplicity of D, seen as a regular closed
subscheme of X, at the generic point of Di.
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— induced by the Grothendieck transformation of loc. cit. According to the
projective bundle theorem satisfied by the oriented ring spectra (ES , cS) and
(FS , dS), this corresponds to a morphism of rings:

E∗∗(S)[[u]]→ F∗∗(S)[[t]]

and we denote by Ψφ(t) the image of u by this map. In other words, the formal
power series Ψφ(t) is characterized by the relation:

φ
P∞
S

∗ (c) = Ψφ(d). (3.2.1.a)

Note that the restriction of φ
P∞
S

∗ (c) to P0
S (resp. P1

S) is 0 (resp. 1) because c is
an orientation and ϕ is a morphism of ring spectra. Thus we can write Ψφ(t)
as:

Ψφ(t) = t+
∑

i>1

αSi .t
i

where αSi ∈ F2−2i,1−i(S). In particular, the power series Ψφ(t)/t is invertible.
We next consider the commutative monoid M(S) generated by the isomor-
phism classes of vector bundles over S modulo the relations [E] = [E′] + [E′′]
coming from exact sequences

0→ E′ → E → E′′ → 0.

ThenM is a presheaf of monoids on the category S whose associated presheaf
of abelian groups is the functor K0.
Note that F00(S), equipped with the cup-product, is a commutative monoid.
We will denote by F00×(S) the group made by its invertible elements.

Proposition 3.2.2. There exists a unique natural transformation of presheaves
of monoids over the category S

Tdφ :M→ F00

such that for any line bundle L over a scheme S,

Tdφ(L) =
t

Ψφ(t)
.d1(L). (3.2.2.a)

Moreover, it induces a natural transformation of presheaves of abelian groups:

Tdφ : K0 → F00×.

The proof is straightforward using the splitting principles (see [Dég14b, 4.1.2]).

Remark 3.2.3. According to the construction of the first Chern classes for the
oriented ring spectra (E, c) and (F, d) together with Relations (3.2.1.a) and
(3.2.2.a), we get for any line bundle L/S the following identity in F2,1(S):

ϕS
(
c1(L)

)
= Tdϕ(−L)∪d1(L). (3.2.3.a)
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Definition 3.2.4. Consider the context and notations of the previous propo-
sition.
Given any virtual vector bundle v over a scheme S, the element Tdφ(v) ∈
F00(S) is called the Todd class of v over S associated with the morphism of
ring spectra (ϕ, φ).

The main property of Todd classes is the following formula.

Lemma 3.2.5. Consider the above notations and assumptions.
Then for any smooth S-scheme X and any virtual vector bundle v over X, the
following relation holds in F∗∗(Th(v)):

φ∗

(

t̄
E
(v)
)

= Tdφ(−v). t̄
F
(v)

where t̄(v) denotes the Thom class associated with v (see Definition 2.2.19).

Proof. Recall that for any virtual bundles v and v′ over X (see Paragraph
2.2.18), the tensor product in T (S) gives a pairing

⊗X : E∗∗(Th(v)) ⊗X E∗∗(Th(v′))→ E∗∗(Th(v + v′))

and similarly for F∗∗. It follows from definitions that the natural transformation
of cohomology theories φ∗ : E∗∗ → F∗∗ is compatible with this product.
Moreover, we have the relations:

t̄(v + v′) = t̄(v)⊗X t̄(v′),

Tdφ(v + v′) = Tdφ(v) + Tdφ(v′).

Therefore, by definition of the Thom class of a virtual bundle (see 2.2.19), it
is sufficient to check the relation of the proposition when v = [E] is the class
of a vector bundle over X . Besides, using again the preceding relations and
the splitting principle, one reduces to the case of a line bundle L. But then, in
the cohomology of the projective completion L̄ of L/X , we have the following
relation

t(L) = c1(ξL)

where ξL is the universal quotient bundle. Thus, the desired relation follows
from relation (3.2.3.a) and the fact Tdφ(ξL) = Tdφ(L).

We can now derive the generalized Riemann-Roch formula.

Theorem 3.2.6. Let (T ,E, c) and (T ′,F, d) be absolute oriented ring spectra
together with a morphism of ring spectra:

(ϕ, φ) : (T ,E)→ (T ′,F).

Using the notations of the Definitions 2.5.5 and 3.2.4, for any gci morphism
f : X → S with virtual tangent bundle τf , one has the following relation:

φ∗(η̄Ef ) = Tdφ(τf ). η̄Ff .
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Proof. As f is gci and because of the associativity property of our system of
fundamental classes, we are reduced to the cases where f = i is a regular closed
immersion and f is a smooth morphism.
In the first case, we can use the deformation diagram (2.3.1.a) and the fact
fundamental classes are stable by transversal base change to reduce to the case
of the zero section s = f of a vector bundle E/X . Then we recall that the
fundamental class ηs coincides with the Thom class associated with E so that
the preceding lemma concludes.
In the second case, we come back to the construction of Paragraph 2.3.10, and
more precisely Remark 2.3.12(3). It is clear that the map φ∗ is compatible with
the isomorphisms (2.3.12.a), compute either in T or in T ′, as they are all build
using exchange transformations. So we are reduced again to the case where the
fundamental class is t̄(−Tf), which follows from the preceding lemma.

Example 3.2.7. Let us fix a gci morphism f : X → S

1. Given an absolute ring spectrum E, we have seen in Paragraph 2.2.12
that the data of an orientation c on E is equivalent to that of a morphism
of ring spectra

φ : MGL→ E

such that φ∗(cMGL) = c, where cMGL is the canonical orientation of
MGL. In that case, the previous theorem gives us the relation:

φ∗(η̄MGL

f ) = η̄Ef .

In other words, the fundamental classes η̄f are all induced by the one
defined in algebraic cobordism.

2. Next we can apply the previous formula to the morphisms of absolute
ring spectra of Example 1.1.6(2). Let us fix a prime ℓ and consider the
two following cases:

• S is the category of all schemes, Λ = Q, Λℓ = Qℓ;

• S is the category of k-schemes for a field k if characteristic p 6= ℓ,
Λ = Z, Λℓ = Zℓ;

Then according to loc. cit., we get a morphism of absolute ring spectra:

ρℓ : HΛ→ HétΛℓ,

corresponding to the higher étale cycle class. As the formal group laws
associated with the canonical orientations on each spectra are additive,
the morphism of formal group law associated with the induced morphism
ρℓ : H∗∗(−,Λ) → H∗∗

ét (−,Λ) is the identity. Therefore, the Todd class
associated with φ is constant equal to 1 and we get:

ρℓ(η̄f ) = η̄étf .
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3. Consider the Chern character

ch : KGL −→
⊕

i∈Z

HQ(i)[2i],

of Example 1.1.6(3). As explained in [Dég14b, 5.3.3], the formal group
law associated with the canonical orientation of KGL is multiplicative:
FKGL(x, y) = x + y − β.xy where β is the Bott element in algebraic K-
theory and the formal group law on rational motivic cohomology is the
additive formal group law. As β is sent to 1 by the Chern character,
the morphism of formal group law associated with φ is necessarily the
exponential one, t 7→ 1 − exp(−t). Therefore, we get the Todd class
associated with cht defined on a line bundle L/X as:

Td(L) =
c1(L)

1− exp(−c1(L))
.

Recall this formula makes sense as c1(L) is nilpotent in the motivic coho-
mology ring H

∗∗
B

(X) (recall the notation of Example 1.1.2(2)). So in fact
the transformation Td is the usual Todd class in motivic cohomology,
and we have obtained the following generalized Riemann-Roch formula:

ch(η̄KGL

f ) = Td(τf ). η̄HQ
f .

This generalizes the original formula of Fulton and MacPherson (cf.
[FM81, II, 1.4]).

For more examples, we refer the reader to [Dég14b, §5].

3.3 Gysin morphisms

3.3.1. Recall that a weakly oriented (Definition 2.2.13) absolute T -spectrum
E is a τ -module over the ring spectrum MGL where τ∗ : SH → T is the
premotivic adjunction fixed according to our convention.
Recall from Remark 1.2.14 that we get in particular an action:

MGL
BM
n,m(Y/X)⊗ EBMs,t (X/S)→ EBMn+s,m+t(Y/S).

Then Theorem 2.5.3 induces the following constructions.

Definition 3.3.2. Consider the above notation. Then for any gci morphism f :
Y → X , with relative dimension d and fundamental class η̄f ∈MGL

BM
2d,d(Y/X),

we define the following Gysin morphisms :

• if f is a morphism of s-schemes over a base S, one gets a pullback

f∗ : EBM∗∗ (X/S)→ EBM∗∗ (Y/S), x 7→ η̄f .x

homogeneous of degree (2d, d);
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• if f is proper, one gets a pushforward

f∗ : E∗∗(Y ) = EBM∗∗ (Y/Y )
. η̄f
−−→ EBM∗∗ (Y/X)

f!
−→ EBM∗∗ (X/X) = E∗∗(X)

homogeneous of degree (−2d,−d).

According to this definition, and the fact we have in fact constructed in Theo-
rem 2.5.3 a system of fundamental classes, which includes in particular the com-
patibility with composition (Definition 2.1.9), we immediately get that these
Gysin morphisms are compatible with composition.

Remark 3.3.3. 1. When we consider the stronger case of an absolute ori-
ented ring spectrum E in the sense of Definition 2.2.2, in the preced-
ing definition, one can consider η̄f as the fundamental class associated

with f in EBM2d,d(X/S) and only use the product of the bivariant theory

EBM∗∗ . In fact, the two definitions coincide because of the Grothendieck-
Riemann-Roch formula below (Proposition 3.3.11) and the fact the mor-
phism φ : MGL → E of ring spectra corresponding to the chosen orien-
tation c sends the canonical orientation of MGL to c.

2. Gysin morphisms, in the case of the Borel-Moore homology associated
with an absolute oriented ring T -spectrum (E, c), extends the one already
obtained with respect to étale morphism in Paragraph 1.2.3. This rightly
follows from the construction of the fundamental class in the case of étale
morphisms.

Example 3.3.4. We can use the construction of the preceding definition in the
case of all the ring spectra of Example 1.1.2 (according to Example 2.2.4). This
gives back the Gysin morphisms on representable cohomologies as constructed
in [Nav16], and notably covariant functoriality of Spitzweck integral motivic
cohomology (cf. Ex. 1.1.2(4)) with respect to any gci proper morphism of
schemes.
The important new case we get out of our theory is given when Λ is any
ring (resp. Λ = Zℓ,Qℓ) and HétΛ is the étale motivic absolute Λ-spectrum
(resp. ℓ-completed étale motivic absolute spectrum, integral or rational) as in
Example 1.1.2(3). The Gysin morphisms obtained here, for the corresponding
cohomology and any gci proper morphism of schemes, cannot be deduced from
Navarro’s result (as explained in the end of Remark 1.1.7).
When Λ is a torsion ring, this gives covariant functoriality for the classical étale
cohomology with Λ-coefficients, for any gci proper morphism. This was known
for flat proper morphisms by [SGA4, XVII, 2.13] and for proper morphisms
between regular schemes by [Dég14b, 6.2.1].

Remark 3.3.5. The only class of morphisms containing both flat morphisms and
local complete morphisms is the class of morphisms of finite Tor dimension.39

39Recall: a morphism of schemes f : Y → X is of finite Tor dimension if OY is a module
of finite Tor dimension over f−1(OX).
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This seems to be the largest class of morphisms for which fundamental classes
an exceptional functoriality can exist. Indeed, we have the example of Quillen’s
higher algebraic G-theory: it is contravariant with respect to such morphisms
as follows from [Qui10, §7, 2.5]. Unfortunately, our method is powerless to
treat this generality.

Example 3.3.6. Another set of examples is obtained in the case of Borel-Moore
homology. So applying Example 1.2.10, we get contravariant functoriality with
respect to gci morphisms of S-schemes, of the following theories:

• Bloch’s higher Chow groups, when S is the spectrum of a field. This
was previously known only for morphisms of smooth schemes according
to constructions of Bloch and Levine.

• for Borel-Moore étale homology, both in the case S is the spectrum of a
field (classically considered) and in the case S is an arbitrary scheme.

• Note also that according to Example 1.2.10(3), we get contravariance of
Thomason’s G-theory, or equivalently, Quillen K’-theory with respect to
any gci morphism of s-schemes over a regular base. This contravariance
coincides with the classical one but we will not check that here.40

The properties of fundamental classes obtained in the beginning of this section
immediately translate to properties of Gysin morphisms.

Proposition 3.3.7. Let E be a weakly oriented absolute T -spectrum (Defini-
tion 2.2.13). Consider a cartesian square of S-schemes:

Y ′ g //

q
�� ∆

X ′

p
��

Y
f
// X.

such that f is gci and let ξ ∈ K0(X ′) be the excess intersection bundle (see
3.1.1), e = rk(ξ). Then the following formulas hold:

• If p is proper, for any x′ ∈ EBM∗∗ (X ′/S), one has: f∗p∗(x′) =
q∗(ce(ξ).f

∗(x′)) in EBM∗∗ (Y/S).

• If f is proper, for any y ∈ E∗∗(Y ), one has: p∗f∗(y) = g∗(ce(ξ).q
∗(y)) in

E∗∗(X ′).

Assume moreover that E is an absolute oriented ring T -spectrum. Then, if
f : Y → X is gci and proper, for any pair (x, y) ∈ E∗∗(X)× E∗∗(Y ), one gets
the classical projection formula:

f∗(f∗(x).y) = x.f∗(y).
40In the quasi projective, one can directly use the analogue of Theorem 2.6.1 for Gysin

morphisms. The general case requires identifying Borel-Moore homology with coefficients in
KGL with a suitable bivariant version of G-theory.
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Given Definition 3.3.2, the first two assertions are mere consequences of 3.1.1
as follows from the properties of bivariant theories together with the commu-
tativity property of the product on MGL (see Proposition 2.2.8). The last
assertion easily follows from the second projection formula of the axioms of
bivariant theories (as recalled in Paragraph 1.2.8).

Remark 3.3.8. Other projection formulas can be obtained, for products with
respect to bivariant theories and for modules over absolute oriented ring spec-
tra. In each case, the formulation is straightforward, as well as their proof so
we left them to the reader.

3.3.9. Consider an absolute oriented ring T -spectrum (E, c) and a proper gci
morphism f : X → S. Applying the above definition, we get a Gysin morphism
f∗ : E∗∗(X) → E∗∗(S). The fundamental class in cohomology defined in 2.5.6
is simply: ηf = f∗(1) where 1 is the unit of the ring E∗∗(X).
This is the classical definition, and we can derive from the properties of f∗
several properties of fundamental classes. As an illustration, we note that the
preceding projection formula (and the graded commutativity of cup-product)
immediately gives the following abstract degree formula:

f∗f
∗(x) = ηf .x.

Moreover, one can compute ηf in many cases (see [Dég14b, 2.4.6, 3.2.12, 5.2.7]).
Let us give an interesting example when f is finite.

Proposition 3.3.10. Let f : X → S be a finite lci morphism such that there
exists a factorization:

X
i
−→ P1

S

p
−→ S

where p is the projection of the projective line over S and i is a closed immer-
sion. Let d be the Euler characteristic of the perfect complex Rf∗(OX) over
S, seen as a locally constant function on S, and L be the line bundle on P1

S

corresponding to the immersion i.
Then the invertible sheaf L(d) can be written L(d) = p∗(L0) where L0 is a line
bundle on S and the following formula holds in E00(S):

ηf = d+ (d− 1).a11.c1(L0) + a12.c1(L0)2 + a13.c1(L0)3 + . . .

where aij are the coefficients of the formal group law associated with the orien-
tation c of E over S.

In particular, if the formal group law of E is additive, or if L0/S is trivial, we
get the usual degree formula:

f∗f
∗(x) = d.x.

Proof. Let λ = O(−1) be the canonical line bundle on P1
S . According to our

assumptions on f , we get an isomorphism:

L = p−1(L0)(−d) = λ⊗,d ⊗ p−1(L0)
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where L0/S is the line bundle expected in the first assertion of the previous
statement. In particular, if we denote by F (x, y) the formal group law associ-
ated with (E, c) over S, and put x = c1(λ), y = p∗c1(L0), one gets:

i∗(1) = c1(L) = [d]F .x+F y = (d.x) +F y = (d.x) + y + (d.x).
∑

i>0

a1i.y
i,

using the fact xi = 0 if i > 1.
Because p is the projection of a projective line one obtains the following explicit
formulas (see [Dég08, 5.31]):

p∗(x) = 1, p∗(1) = −a11.

Therefore, as y = p∗(y0) where y0 = c1(L0), one obtains:

ηf = p∗(i∗(1)) = y0.p∗(1)
︸ ︷︷ ︸

=−a11

+ d.
∑

i≥0

a1iy
i
0

Similarly one gets the following Grothendieck-Riemann-Roch formulas from
the generalized Riemann-Roch formula of Theorem 3.2.6.

Proposition 3.3.11. Consider the assumptions of Theorem 3.2.6.
Then for any gci morphism f : Y → X of s-schemes over S with tangent bundle
τf , the following diagrams are commutative:

EBM∗∗ (X/S)
f∗

//

φ∗

��

EBM∗∗ (Y/S)

φ∗

��

E∗∗(Y )
f∗ //

φ∗

��

E∗∗(X)

φ∗

��
FBM∗∗ (X/S)

Tdφ(τf ).f
∗

// FBM∗∗ (Y/S) F∗∗(Y )
f∗[Tdφ(τf ).] // F∗∗(X)

where in the square on the right-hand side we assume in addition f is proper.

Again this follows easily from Theorem 3.2.6 and Definition 3.3.2 given the
properties of bivariant theories together with Proposition 2.2.8 for the commu-
tativity of the product on MGL.

Example 3.3.12. Our main examples are given by the morphisms of ring spec-
tra of Example 1.1.6, as already exploited in Example 3.2.7.

1. Assume we are in one of the following cases:

• S is the category of all schemes, Λ = Q, Λℓ = Qℓ;

• S is the category of k-schemes for a field k if characteristic p 6= ℓ,
Λ = Z, Λℓ = Zℓ;
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Then we obtain that the natural transformations induced by the ℓ-adic
realization functor gives natural transformations on cohomologies and
Borel-Moore homologies that are compatible with Gysin morphisms.

Note in particular that in the second case, we get that the higher cycle
class, from higher Chow groups to Borel-Moore étale homology of any
k-scheme is compatible with Gysin functoriality (here, pullbacks).

2. The Chern character as in 3.2.7(3) gives the usual Grothendieck-
Riemann-Roch formula from homotopy invariant K-theory to motivic
cohomology of [Nav16]. But we also get a Riemann-Roch formula for
bivariant theories relative to any base scheme.

Let us be more specific in the case where the base scheme is a field k.
Then the Chern character of Example 1.1.6, applied to bivariant theories
with respect to the s-morphism X → Spec(k), gives an isomorphism:

ch : Gn(X)→
⊕

i∈Z

CHi(Y, n)Q

in view of point (1) and (3) of Example 1.2.10. Considering the Todd class
functor Td as defined in Example 3.2.7(3), with coefficients in rational
motivic cohomology, we get for any gci morphism f : Y → X of separated
k-schemes of finite type the following commutative diagram:

Gn(X)
f∗

//

chX

��

Gn(Y )

chY

��⊕

i∈Z CHi(X,n)Q
Tdφ(τf ).f

∗

//⊕
i∈Z CHi(Y, n)Q.

3.3.13. In the case of an absolute oriented ring T -spectrum (E, c), the Gysin
morphisms can also be obtained very easily using the six functors formalism.
Indeed, consider a commutative diagram:

Y

q %%❑❑
❑❑

❑
f // X

pyysss
ss

S

where f is gci of relative dimension d and p, q are s-morphisms. By adjunction,
one obtains from the map (2.1.5.a) associated with the fundamental class of f
with coefficients in E (Definition 2.5.5) the following map:

η̃′f : f!(EY )(d)[2d]→ EX

When f is proper, we deduce the following trace map, well known in the case
of étale coefficients:

trf : f∗f
∗(EX)(d)[2d] ≃ f∗(EY ) ≃ f!(EY )

η̃′f
−→ EX .
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It is clear that this trace map corresponds to the Gysin morphism associated
with f in cohomology.
Let us go back to the case where f is an arbitrary gci morphism fitting into
the above commutative diagram. Then, by applying the functor p! to η̃′f , we
get a canonical map:

q!(EY )(d)[2d] = p!f!(EY )(d)[2d]
p!(η̃

′
f )

−−−−→ p!(EX)

which induces a covariant functoriality on cohomology with compact supports:

f∗ : E∗∗
c (Y/S)→ E∗∗

c (X/S),

morphisms of degree (2d, d). This functoriality extends the one we had already
seen with respect to étale morphisms in Paragraph 1.3.1.
Finally, if we assume again that f is proper we get the following construction
that was found by Adeel Khan (see also [EHK+17]). From the fundamental
class of f , we get by adjunction a map:

η̄′f : f!(1Y )(d)[2d]→ EX .

We deduce the following composite map:

f!f
∗p!(ES)(d)[2d] ≃ f!

(
1S ⊗ f

∗p!(ES)
)
(d)[2d]

∼
−−→
(1)

f!
(
1S)⊗ p!(ES)(d)[2d]

η̄′f ⊗p!(ES)
−−−−−−−→ EX ⊗ p

!(ES) ≃ p∗(ES)⊗ p!(ES)

Ex!∗
⊗

−−−→ p!(ES ⊗ ES)
µ
−→ p!(ES),

where (1) is given by the projection formula, Ex!∗⊗ by the pairing (1.2.8.a) and
µ is the product of the ring spectrum ES . Using the adjunctions (f!, f

!) and
(f∗, f∗) and applying the functor p!, we get:

p!p
!(ES)(d)[2d]→ p!f∗f

!p!(ES) ≃ p!f!f
!p!(ES) = q!q

!(ES),

where we have used the fact f is proper. This immediately gives the expected
contravariant functoriality:

f∗ : E∗∗(X/S)→ E∗∗(Y/S)

which is a morphism of degree (−2d,−d). This functoriality extends the one
already mentioned in Paragraph 1.3.1 in the case where f is a finite morphism.

Remark 3.3.14. Therefore one has obtained exceptional functorialities for all
the four theories associated with an absolute oriented ring spectrum (E, c).
Besides, it is clear that the excess intersection formula (Prop. 3.3.7) and the
Riemann-Roch formula (Prop. 3.3.11) extends to formulas involving cohomol-
ogy with compact support and homology. We leave the formulation to the
reader not to overburden this paper.
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Example 3.3.15. Again, one deduces notable examples from 1.3.3. This gives
covariance with respect to gci morphisms of k-schemes of all the classical co-
homology with compact supports which corresponds to a Mixed Weil theory.
We also obtain the contravariance with respect to proper gci morphisms of
complex schemes for the integral Betti homology. Surprisingly, this result seems
new.

4 Absolute purity and duality

4.1 Purity for closed pairs

4.1.1. We will say that a closed pair (X,Z) is regular if the corresponding
immersion Z → X is regular. Then, in the deformation diagram (2.3.1.a)

Z //

i ��

A1
Z

ν��

Z
s��

oo

X
d1 // DZX NZX,

d0oo
(4.1.1.a)

the closed immersion ν is also regular.
The next definition is an obvious extension of [Dég14b, 1.3.2].

Definition 4.1.2. Let E be an absolute T -spectrum and (X,Z) be a regular
closed pair.

1. We say that (X,Z) is E-pure if the morphisms

E∗∗
Z (X) = E∗∗(X,Z)

d∗1←− E∗∗(DZX,A
1
Z)

d∗0−→E∗∗(NZX,Z)

= E∗∗(Th(NZX))

induced by the deformation diagram (2.3.1.a) are isomorphisms.

2. We say that (X,Z) is universally E-pure if for all smooth morphism
Y → X , the closed pair (Y, Y ×X Z) is E-pure.

Example 4.1.3. It follows directly from Morel-Voevodsky’s purity theorem
(see Th. 2.3.2) that any closed pair (X,Z) of smooth schemes over some base
S is universally E-pure.

We can link this definition with Fulton-MacPherson’s theory of strong orien-
tations (Def. 2.1.6) as follows.

Proposition 4.1.4. Let (E, c) be an absolute oriented ring T -spectrum and
(X,Z) be a regular closed pair. Consider the notations of diagram (4.1.1.a).
Then the following conditions are equivalent:

(i) The closed pair (X,Z) is E-pure.

(ii) The orientations η̄i and η̄ν , associated with the orientation c in Definition
2.5.5, are strong.
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Proof. The proof can be summarized in the commutativity of the following
diagram:

E∗∗(Z)

. η̄i ��

E∗∗(A1
Z)

. η̄ν ��

s∗1

∼
oo s∗0

∼
// E∗∗(Z)

. t̄(NZX)∼
��

E∗∗
Z (X) E∗∗

A1
Z

(DZX)
d∗1oo d∗0 // E∗∗(Th(NZX))

The diagram is commutative according to the stability of fundamental classes
with respect to transversal pullbacks (Example 3.1.2) and the fact η̄s = t̄(NZX)
(Remark 2.3.6). In this diagram, all arrows indicated with a symbol ∼ are
obviously isomorphisms. Condition (i) (resp. (ii)) says that the maps d∗0 and
d∗1 (resp. (. η̄i) and (. η̄ν)) are isomorphisms. Thus the equivalence stated in
this proposition obviously follows .

4.1.5. To formulate stronger purity results, we now fix a full sub-category S0

of S stable under the following operations:

• For any scheme S in S0, any smooth S-scheme belongs to S0.

• For any regular closed immersion Z → S in S0, the schemes NZX and
BZX belong to S0.

The main examples we have in mind are the category Reg of regular schemes
(in S ) and the category SmS of smooth S-schemes for a scheme S in S .
Following again [Dég14b, 1.3.2], we introduce the following useful definition.

Definition 4.1.6. Let E be an absolute T -spectrum.

1. We say that E is S0-pure if for any regular closed pair (X,Z) such that
X and Z belongs to S0, (X,Z) is E-pure.

2. We say that T is S0-pure if the unit cartesian section 1 of the fibered
category T is S0-pure.

Finally, we will simply say absolutely pure for Reg-pure.

Remark 4.1.7. The last definition already appears in [CD16, A.2.9] — in loc.
cit. one says T satisfies the absolute purity property.

Example 4.1.8. 1. From Example 4.1.3, all absolute T -spectra E, as well
as all motivic triangulated categories T , are SmS-pure for any scheme
S (even a singular one).

2. Let k be a perfect field whose spectrum is in S . Assume that E-
cohomology with support is compatible with projective limit in the fol-
lowing sense: for any essentially affine projective system of closed k-pairs
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(Xα, Zα)α∈A whose projective limit (X,Z) is still in S , the canonical
map:

lim
−→

α∈Aop

(
E
n,m
Zα

(Xα)
)
→ E

n,m
Z (X)

is an isomorphism. This happens in particular if T is continuous in the
sense of [CD12b, 4.3.2].

Then one can deduce from Popescu’s theorem that any regular k-pair
(X,Z) in Reg is E-pure. In other words, E is (Reg /k)-pure (see [Dég14b,
1.3.4(2)]). This fact concerns in particular the spectra of points (5) and
(6) in Example 1.1.2.

Moreover, one deduces that any continuous motivic triangulated category
T is (Reg /k)-pure. This includes modules over a mixed Weil theory,
DMcdh(−,Z[1/p]) where p is the characteristic of k (see [CD15, ex. 5.11]
for the continuity statement).

Example 4.1.9. The following absolute spectra (Example 1.1.6) are absolutely
pure:

1. The homotopy invariant K-theory spectrum KGL (see [CD12a, 13.6.3]);

2. given any Q-algebra Λ, the motivic ring spectrum HΛ (see [CD16, 5.6.2
and 5.2.2]);

3. the rationalization MGL ⊗ Q of algebraic cobordism (this follows from
the preceding example and [NSOsr09, 10.5]);

4. Given any ring Λ, the étale motivic ring spectrum HétΛ (see [CD16,
5.6.2]).41

Example 4.1.10. The ring spectra of the previous examples all corresponds
to the following (non-exhaustive) list of absolutely pure motivic triangulated
categories:

1. the category KGL- mod of KGL-modules (see [CD12a, §13.3]);

2. DMB, DMh(−,Λ) where Λ is a Q-algebra (see [CD12a, CD15]);

3. Db
c((−)ét,Λ) where Λ = Z/ℓn, Zℓ, Qℓ and S is the category of Z[1/ℓ]-

schemes;

4. the category of (MGL⊗Q)-modules (see [CD12a, §13.3]);

5. DMh(−,Λ) where Λ is any ring (see [CD16, §5]);

6. for any prime ℓ, the ℓ-completed category DMh(−,Λ) where Λ = Zℓ,Qℓ
(see [CD16, §7.2]).

41Recall the case where Λ is a torsion ring, or Λ = Zℓ,Qℓ, follows directly from Thomason’s
purity theorem ([Tho84]).
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4.2 Dualities

4.2.1. Recall that given an oriented ring T -spectrum (E, c), we have associated
to a gci morphism f : X → S with relative dimension d the fundamental class
η̄f (Definition 2.5.5) and equivalently — equation (2.1.5.a) — a morphism:

η̃f : ES(d)[2d]→ f !(EX).

Recall we say the orientation η̄f is universally strong when η̃f is an isomorphism
(Definition 2.1.6).

Proposition 4.2.2. Consider the preceding notations and a subcategory S0 ⊂
S as in Definition 4.1.6. Then the following conditions are equivalent:

(i) E is S0-pure;

(ii) for any regular closed immersion i in S0, η̄i is a strong orientation;

(ii’) for any gci morphism f in S0, η̄f is a strong orientation.

This is obvious given definitions and Proposition 4.1.4.
As a corollary, we get the following various formulations of duality statements.

Corollary 4.2.3. Let (E, c) be an absolute oriented ring T -spectrum which
is S0-pure, following the notations of the previous proposition. Let f : X → S
be a gci s-morphism of relative dimension d and Y/X be an arbitrary s-scheme.
Then the following maps are isomorphisms:

δf : En,i(X)→ EBM2d−n,d−i(X/S), x 7→ x. η̄f , (4.2.3.a)

δf : EBMn,i (Y/X)→ EBM2d+n,d+i(Y/S), y 7→ y. η̄f , (4.2.3.b)

δcf : En,ic (X/S)→ E2d−n,d−i(X/S), x 7→ x ∩ η̄f (4.2.3.c)

where the first two maps are defined using the product of Borel-Moore homology
and the last one using the cap-product (1.3.7.a).

Recall that these duality isomorphisms occur in particular whenever X/S is a
smooth s-scheme (Example 4.1.8(1)).

Example 4.2.4. 1. As a notable particular case of isomorphism (4.2.3.b),
we get the formulation of duality with support due to Bloch and Ogus
([BO74]). Assume Z = Y → X is a closed immersion, S = Spec(k) and
X is smooth over k. Then the duality isomorphism (4.2.3.b) has the form:

E
n,i
Z (X) ≃ EBM2d−n,d−i(Z/k).

As an example, we get the following identification, when p is the charac-
teristic exponent of k:

Hn
Z(X,Z[1/p]) ≃ CHd−i(Z, 2i− n)[1/p]

where the left-hand side is Voevodsky motivic cohomology of X with
support in Z and the right-hand side is Bloch’s higher Chow group (see
Example 1.2.10(1)).
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2. In the extension of the preceding case, assume X and S are regular
schemes and Z = Y ⊂ X is a closed subscheme. Then the duality
isomorphism in the case of the absolutely pure spectrum KGL gives the
classical duality with support isomorphism (see [Sou85]):

KZ
2i−n(X) ≃ KGL

n,i
Z (X) ≃ KGL

BM
2d−n,d−i(Z/S) ≃ K ′

2i−n(Z).

3. Let X/S be a smooth proper scheme. Then, the four theories defined in
this paper coincide through isomorphisms pictured as follows:

En,i(X)
δf

∼
//

∼
��

EBM2d−n,d−i(X/S)

∼
��

En,ic (X/S)
δcf

∼
// E2d−n,d−i(X/S)

4. An interesting application of the duality isomorphisms obtained above is
the following identification, for a regular s-scheme X over a field k, of
dimension d:

Hsing
n (X)[1/p] ≃ Hn,0(X/k,Z[1/p])

(δcX/k)
−1

−−−−−−→ H2d−n,d−n
c (X,Z[1/p])

where the left-hand side is Suslin homology and the right-hand side is
motivic cohomology with compact support. This isomorphism was only
known for smooth k-schemes when k is a perfect field and under the
resolution of singularities assumption (see [VSF00, chap. 5, Th. 4.3.7]).

Remark 4.2.5. An immediate corollary of the duality isomorphisms (4.2.3.a)
and (4.2.3.c) is the existence of certain Gysin morphisms for the four theories.
More precisely, under the assumptions of the previous corollary, given a scheme
S in S0, we obtain Gysin maps for all S-morphisms f : Y → X in S0 such
that in addition Y/S and X/S are gci.
In case f is gci, it follows from the definitions that the Gysin morphisms ob-
tained as in Definition 3.3.2 and Paragraph 3.3.13 coincides with the Gysin
morphisms obtained respectively from the isomorphisms (4.2.3.a) and (4.2.3.c).
On the other hand, the morphism f can also simply be a local complete inter-
section morphism, so the Gysin morphisms obtained in this way are slightly
more general.

We end-up this paper with the following Riemann-Roch-like statement, involv-
ing the previous duality isomorphisms and directly following from the general
Riemann-Roch Theorem 3.2.6.

Theorem 4.2.6. Consider a subcategory S0 ⊂ S as in Definition 4.1.6, (E, c)
and (F, d) absolute oriented S0-pure ring spectra. We adopt the notations of
the previous Corollary. Consider in addition a morphism of ring spectra:

(ϕ, φ) : (T ,E)→ (T ′,F)

Documenta Mathematica 23 (2018) 997–1076



1072 Frédéric Déglise

and Tdφ : K0 → F00× the associated Todd class transformation (Definition
3.2.4).
Then, given an arbitrary gci morphism f : X → S with virtual tangent bundle
τf and relative dimension d, for any s-scheme Y/X, the following diagrams are
commutative:

En,i(Y/X) ∼

δf //

φ∗

��

EBM2d−n,d−i(Y/S)

φ∗

��
En,i(Y/X)

δf (−.Tdφ(τf ))

∼
// EBM2d−n,d−i(Y/S),

En,ic (X)
δcf

∼
//

φ∗

��

EBM2d−n,d−i(X/S)

φ∗

��
En,ic (X)

Tdφ(τf ).δ
c
f

∼
// EBM2d−n,d−i(X/S).

The proof is obvious from the formulas in Corollary 4.2.3 and Theorem 3.2.6.

Remark 4.2.7. 1. This theorem has to be compared with [FM81, I.7.2.2].

2. As indicated to us by Henri Gillet, one immediately deduces from this
theorem the Grothendieck-Riemann-Roch formulas for the Gysin mor-
phisms obtained using duality as in Remark 4.2.5.
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[Sou85] Christophe Soulé, Opérations en K-théorie algébrique, Canad. J.
Math. 37 (1985), no. 3, 488–550.

[Spi13] M. Spitzweck, A commutative P1-spectrum representing motivic co-
homology over Dedekind domains, arXiv:1207.4078v3, 2013.

[SV96] A. Suslin and V. Voevodsky, Singular homology of abstract algebraic
varieties, Invent. Math. 123 (1996), no. 1, 61–94.

[Tho84] R. W. Thomason, Absolute cohomological purity, Bull. Soc. Math.
France 112 (1984), no. 3, 397–406.

[TT90] R. W. Thomason and T. Trobaugh, Higher algebraic K-theory of
schemes and of derived categories, The Grothendieck Festschrift,
Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA,
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IMB (UMR5584)
9 avenue Alain Savary,
21078 Dijon Cedex, France
frederic.deglise@u-bourgogne.fr

Documenta Mathematica 23 (2018) 997–1076


