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Abstract. Consider the Tate twist τ ∈ H0,1(S0,0) in the mod 2
cohomology of the motivic sphere. After 2-completion, the motivic
Adams spectral sequence realizes this element as a map τ : S0,−1

GG A

S0,0, with cofiber Cτ . We show that this motivic 2-cell complex can
be endowed with a unique E∞ ring structure. Moreover, this pro-
motes the known isomorphism π∗,∗Cτ ∼= Ext∗,∗BP∗BP

(BP∗, BP∗) to an
isomorphism of rings which also preserves higher products.

We then consider the closed symmetric monoidal category of Cτ -
modules (CτMod,− ∧Cτ −) which lives in the kernel of Betti re-
alization. Given a motivic spectrum X , the Cτ -induced spectrum
X ∧ Cτ is usually better behaved and easier to understand than X
itself. We specifically illustrate this concept in the examples of the
mod 2 Eilenberg-Maclane spectrum HF2, the mod 2 Moore spectrum
S0,0/2 and the connective hermitian K-theory spectrum kq.
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1 Introduction

1.1 The Setting

The mod 2 cohomology of the motivic sphere spectrum S0,0 over SpecC was
computed by Voevodsky in [Voe03a], and is given by

HF2
∗,∗(S0,0) ∼= F2[τ ] where |τ | = (0, 1).

Denote the mod 2 motivic Steenrod algebra of operations [HF2, HF2]∗,∗ by A.
One can run the motivic Adams spectral sequence

ExtA(F2[τ ],F2[τ ]) =⇒ π∗,∗
(
(S0,0)∧2

)
,

as constructed in [Mor99], [DI10], [HKO]. Observe that the E2-page contains a
non-trivial element in Adams filtration 0, namely multiplication by τ on F2[τ ].
This is different from the topological Adams spectral sequence for S0, where
the only elements in Adams filtration 0 are the identity map and the zero map.
It is easy to see that this element survives to the E∞-page as it cannot be
involved with any differential for degree reasons. Therefore, it detects a map

S0,−1 τ
GG A (S0,0)∧2 ,

whose Hurewicz image is τ ∈ HF2∗,∗((S
0,0)∧2 ).

As we will explain in diagram (2.4), this map does not exist if we don’t 2-
complete the target. We will thus work 2-completed. Recall that 2-completion
is given by the E-Bousfield localization at either the Moore spectrum S0,0/2 or
the Eilenberg-Maclane spectrum HF2. In particular, the 2-completed sphere
LES

0,0 is also an E∞ ring spectrum and admits a good category of (2-
completed) modules. We will from now on work in the 2-completed category,
i.e., in modules over the 2-completed sphere. We will denote the 2-completed
sphere and the smash product in 2-completed spectra simply by S0,0 and −∧−.
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With this notation, the motivic Adams spectral sequence produces a non-trivial

map S0,−1
τ

GG A S0,0.
Recall that the Betti realization functor ReC goes from (here 2-completed)
motivic spectra SptC over SpecC to classical (2-completed) spectra Spt. This
functor is for example constructed in [DI10, 2.6], [PPR09, Appendix A.7] or
[Joa, Chapter 4], and is induced by taking C-points of the involved C-schemes.
It is a left adjoint, with right adjoint usually denoted Sing, and admits the
constant functor c as a section [Lev14]. The situation is summarized in the
diagram

SptC Spt.
ReC

Sing

c

The Betti realization functor ReC therefore induces a split-surjection

πs,w(S
0,0) G GAA πs(S

0),

with section induced by the constant functor c. Moreover, it sends the map

S0,−1
τ

GG A S0,0 to the identity S0
id

GG A S0, as shown in [DI10, Section 2.6].
Computationally, the Betti realization functor ReC can thus be interpreted
as sending the element τ to 1. For example, on the homotopy of the mod 2
Eilenberg-Maclane spectrum it induces the quotient map

π∗,∗(HF2) ∼= M2 G GAA π∗(HF2) ∼= F2,

which imposes the relation τ = 1. Observe that there is another surjection
M2 G GAA F2 with same source and target, namely the quotient map imposing
the relation τ = 0. One can thus ask if this map is also induced by a functor
between SptC and another homotopy theory. To answer this question, we are
led to study the homotopy theoretical analogue of the algebraic operation of
setting τ = 0, which is to take the cofiber of the map τ . Consider the cofiber
sequence

S0,−1 τ
GG A S0,0

GG A Cτ GG A S1,−1, (1.1)

where we denote the cofiber of the map τ by Cτ . This 2-cell complex already
appeared in [Isa], where it is studied via its motivic Adams-Novikov spectral
sequence. More precisely, it is proven that its Adams-Novikov spectral sequence
collapses at the E2-page with no possible hidden extensions. This provides a
surprising isomorphism

Ext∗,∗BP∗BP
(BP∗, BP∗) ∼= π∗,∗(Cτ), (1.2)

connecting two objects which are a priori unrelated. The left hand side is the
cohomology of the classical (non-motivic) Hopf algebroid (BP∗, BP∗BP ) and is
very important in chromatic homotopy theory. In particular, it is the E2-page
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of the Adams-Novikov spectral sequence for the topological sphere S0. Notice
that since it is the cohomology of a dga, namely the cobar complex associated
to (BP∗, BP∗BP ), it admits products and higher Massey products. All this
algebraic structure gets transferred to the motivic homotopy groups π∗,∗(Cτ),
formally endowing it with a (higher) ring structure. One can thus ask if this
algebraic ring structure can be lifted to a topological ring structure on Cτ . The
first goal of this paper is to answer this question, which we do in Section 3 by
the following results.

Theorem 1.1. There exists a unique E∞ ring structure on Cτ .

We now explain what we mean by a motivic E∞ ring spectrum, and refer to
Section 3.1 for more details. Since SptC is enriched over simplicial sets, one can
talk about algebras over operads in simplicial sets. In fact, operads in simplical
sets embedded in the motivic world are sometimes called constant operads. In
this paper, we say that a motivic spectrum admits an E∞ ring structure if it
admits an algebra structure over a constant E∞ operad, i.e., over any usual E∞

operad in simplicial sets. We warn the reader that similarly to the equivariant
case of [BH15], this notion of motivic E∞ ring spectra is probably not the same
as strictly commutative algebras in SptC.

There are two main tools involved in proving Theorem 1.1. We first use ele-
mentary techniques with triangulated categories to produce a unital, associa-
tive and commutative monoid in the homotopy category Ho(SptC). We then
rigidify this ring structure using Robinson’s E∞ obstruction theory [Rob03].
By tracing back to the origin of the isomorphism (1.2), we can now show that
the algebraic structure on π∗,∗(Cτ) does come from Cτ .

Proposition 1.2. The isomorphism (1.2)

π∗,∗(Cτ) ∼= Ext∗,∗BP∗BP
(BP∗, BP∗)

is an isomorphism of rings which sends Toda brackets in π∗,∗ to Massey prod-
ucts in Ext, and vice-versa.

Let’s point out that the additive version of this theorem was already exploited
by Isaksen in [Isa] to gain knowledge about the classical Adams-Novikov E2-
page. The idea is to compute π∗,∗(Cτ) in a range using its motivic Adams
spectral sequence and the knowledge of π∗,∗(S

0,0) in this range. Having a
multiplicative structure available improves the correspondence in an obvious
manner.

Having considered the cofiber of multiplication by τ , one can look at the less

severe quotients S
0,0

/τn =: Cτn of multiplication by τn. All together, these
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The Motivic Cofiber of τ 1081

spectra sit in a tower of spectra

Cτ Cτ2 Cτ3 Cτ4 · · · (S0,0)∧τ .

Σ0,−1Cτ Σ0,−2Cτ Σ0,−3Cτ

(1.3)
Observe that the completion map

S0,0 ≃
GG A (S0,0)∧τ

is a weak equivalence as it induces an isomorphism on homotopy groups. More
precisely, its fiber is given by the formula holimk S

0,−k, whose homotopy groups
can be computed using Milnor’s lim1 exact sequence

0 GG A lim
k

1πs+1,w(S
0,−k) GG A πs,w(holim

k
S0,−k) GG A lim

k
πs,w(S

0,−k) GG A 0.

In any fixed bigrading πs,w, both algebraic limits eventually become 0, as
proven by Morel’s vanishing result [Mor05], and can be seen explicitly in
[GI17, Figure 1]. This shows that the middle group is also zero, and thus
S0,0

GG A (S0,0)∧τ becomes a weak equivalence.
This show that the tower (1.3) reconstructs the sphere spectrum S0,0, and that
the spectrum Cτn gets closer and closer to S0,0 as n increases. This hints
to the fact that every Cτn should be an E∞ ring spectrum and similarly to
the natural reduction map Cτn GG A Cτn−1. Using similar techniques as in
Theorem 1.2, one can show that every spectrum Cτn is uniquely an A∞ ring
spectrum, and that it is homotopy commutative. Our method does not apply
to show that Cτn is E∞ for any n, as the necessary obstruction groups do not
vanish.
One can also consider the τ -Bockstein spectral sequence for S0,0, which is the
spectral sequence induced by applying π∗,∗ to the tower (1.3). Surprisingly,
this spectral sequence contains the same information as the motivic Adams-
Novikov spectral sequence computing π∗,∗(S

0,0). In fact, the E1-page of the τ -
Bockstein spectral sequence is isomorphic to the E2-page of the motivic Adams-
Novikov spectral sequence. Moreover, by [HKO11, Lemma 15], the motivic
Adams-Novikov spectral sequence has only odd differentials, which are all of
the form d2r+1(x) = τry. Such a differential corresponds to a dr differential of
the τ -Bockstein spectral sequence, giving a one-to-one correspondence between
the differentials of each spectral sequence. This implies that the E2r+2 page
of the motivic Adams-Novikov spectral sequence is isomorphic to the Er+1

page of the τ -Bockstein spectral sequence. Following the referee’s suggestion,
observe that this situation is exactly analogous to the situation in [Lev15],
since the τ -Bockstein spectral sequence is going twice as fast as the motivic
Adams-Novikov spectral sequence. We strongly believe that this isomorphism
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of spectral sequence can be made more precise by using Levine’s décalage’s
Theorem [Lev15, Proposition 4.3].

With an E∞ ring structure in hand, any good model for motivic spectra pro-
duces a closed symmetric monoidal category of Cτ -modules with the relative
smash product − ∧Cτ −, and a free-forget adjunction

SptC

−∧Cτ
GG A⊥
GD GG CτMod. (1.4)

The remainder of this paper is devoted to the task of better understanding the
category CτMod. In Lemma 5.1 we show that the Betti realization of any Cτ -
module is contractible, which means that the category of Cτ -modules lies in
the kernel of Betti realization. This does not mean that the motivic spectrum
Cτ does not have topological applications, as there are other bridges between
motivic and classical homotopy theory. Such a bridge is for example given by
Proposition 1.2, relating the homotopy groups of the motivic spectrum Cτ with
the cohomology of the Hopf algebroid (BP∗, BP∗BP ).
One strength of the category CτMod is that it is relatively easy to work with
Cτ -modules. One first observes this phenomenon during the process of proving
that Cτ admits an E∞ ring structure, with the many obstruction groups vanish-
ing for degree reasons. We observe a similar phenomenon with related motivic
spectra. For example, we can completely describe the ring spectra Cτ ∧ Cτ
and End(Cτ) by using elementary techniques. In joint work with Zhouli Xu
and Guozhen Wang [GWX], we provide an equivalence between some category
of (cellular) Cτ -modules and some category of derived BP∗BP -comodules. In
particular, this implies that the homotopy category of cellular Cτ -modules is
algebraic in the sense of [Sch10]. This is another reason why it feels easier
to manipulate motivic spectra living in CτMod, since algebraic categories are
usually better behaved than topological categories. For example, algebraic cat-
egories admit a D(Z)-enrichment which implies many pleasant properties. We
refer the reader to Remark 5.10 for a concrete such example, and to [Sch10] for
more details.
The category CτMod is the universal place in which the element τ has been
killed. The strength of this benign statement lies in the fact that many motivic
spectra naturally land in CτMod, since at some point we were led to mod out
by τ for one reason or another. For example, the relation τη4 = 0 ∈ π∗,∗
implies that the η-inverted sphere S0,0[η−1], computed in [GI15] and [AM],
lives in CτMod. More generally, one can show that any element x ∈ πs,w
with s 6= 0 admits a relation of the type τaxb = 0. In particular, inverting
any such non-nilpotent element x when a = 1 yields a spectrum that naturally
lives in CτMod. In particular, this phenomenon applies to the exotic Morava
K-theories K(wn) of [Ghe], detecting the motivic wn-periodicity introduced in
[And] by Michael Andrews and Haynes Miller.

We now describe the last Section of this paper, where we explicitly compute the
homotopy of some specific Cτ -modules induced through the adjunction (1.4).
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Given a spectrum X , we call the induced Cτ -module X ∧ Cτ a Cτ -induced
spectrum.
One of the first spectra to understand in CτMod is the Cτ -induced mod 2
Eilenberg-Maclane spectrum. This is the spectrum HF2 ∧ Cτ that we denote
by HF2, which we will treat as a cohomology theory. Given any Cτ -module
X one can consider the Cτ -linear mod 2 (co)homology of X defined by the
homotopy of the spectra

FCτ (X,HF2) and X ∧Cτ HF2.

Here FCτ (−,−) denotes the Cτ -linear function spectrum and −∧Cτ − denotes
the relative smash product in CτMod. Observe for example that since

X ∧Cτ HF2 = X ∧Cτ (HF2 ∧ Cτ) ≃ X ∧Cτ Cτ ∧HF2 ≃ X ∧HF2,

the Cτ -linear HF2-homology of X is isomorphic to the HF2-homology of the
underlying spectrum of X . Consider the Cτ -linear (Steenrod) algebra of HF2-
(co-)operations, given by the homotopy of the spectra

FCτ (HF2, HF2) and HF2 ∧Cτ HF2.

These are the relevant (co-)operations acting on the Cτ -linear (co)homology
of Cτ -modules, which we compute in Section 5.2. Recall that the dual mod 2
motivic Steenrod algebra over SpecC is given by

π∗,∗(HF2 ∧HF2) ∼= F2[τ ][ξ1, ξ2, . . . , τ0, τ1, . . .]
/
τ2i = τξi+1 .

See Section 2.2 for more details. The following computation follows easily.

Proposition 1.3. The Hopf algebra of Cτ-linear co-operations of HF2 is given
by

F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .).

One can also as usual consider HF2 as a (co)homology theory on SptC, and
define the HF2-homology and cohomology of any motivic spectrum X by the
homotopy of the spectra

F (X,HF2) and X ∧HF2.

The associated (co-)operations acting on the HF2-(co-)homology of any spec-
trum is given by the homotopy of the spectra

F (HF2, HF2) and HF2 ∧HF2.

We also compute these Hopf algebras in Section 5.2, in particular we get the
following.

Proposition 1.4. The Hopf algebra of co-operations of HF2 is given by

F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)⊗ E(βτ ).
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The extra co-operation βτ is primitive in the coalgebra structure. It is induced
by the τ -Bockstein corresponding to the composite

Cτ
p

GG A S1,−1 i
GG A Σ1,−1Cτ

of the projection of Cτ on its top cell S1,−1, followed by the inclusion as
its bottom cell. It also appears in the Hopf algebra of operations, where it
really deserves its name of τ -Bockstein. More precisely, the operation βτ in
cohomology is to τ as the usual Bockstein β = Sq1 is to the element 2. In
particular, it allows to reconstructHF2 via a motivic analogue of the Postnikov
tower that runs in the weight direction. At each stage, the layer is a copy
of HF2, and the boundary map composed with the k-invariant is given by
βτ . However, if one is only interested in studying Cτ -modules internally to
the category CτMod, this is a noisy element and one should use Cτ -linear
(co)homology.

Given a spectrumX ∈ SptC, the homotopy groups of the Cτ -induced spectrum
X∧Cτ are an extension of the τ -torsion and the residue mod τ of π∗,∗(X). Even
though this proves to be very complicated in general, one principle that appears
is the following. If all the obstructions to the spectrum X ∈ SptC possessing
some property or structure are τ -torsion, then the Cτ -induced spectrumX∧Cτ
posses the desired property or structure. Here are a few such examples that
we study in Section 5.

Start with the 2-completed motivic mod 2 Moore spectrum S0,0/2. The Toda
bracket 〈2, η, 2〉 ∋ τη2 is the obstruction to both endowing it with a left unital
multiplication, and to a v11-self map. In Theorem 5.9, we will prove the following
results about the Cτ -induced Moore spectrum, which we denote by S/(2, τ).

Theorem 1.5. The Cτ-induced motivic mod 2 Moore spectrum S/(2, τ) admits
a unique structure of an E∞ Cτ-algebra.

Proposition 1.6. The Cτ-induced motivic mod 2 Moore spectrum S/(2, τ)
admits a v11-self map

Σ2,1S/(2, τ)
v1

GG A S/(2, τ).

We also study the 2-completed connective1 algebraic and hermitian K-theory
spectra kgl and kq. Denote their Cτ -induced spectra by kgl := kgl ∧ Cτ
and kq := kq ∧ Cτ . The case of algebraic K-theory is very simple as both
its (co)homology and homotopy are τ -free. For the case of the connective
hermitian K-theory spectrum (constructed over SpecC in [IS11], where it is
denoted ko) we prove the following result.

Proposition 1.7. The Cτ-induced connective hermitian K-theory spectrum
kq has homotopy groups

π∗,∗(kq) ∼= Ẑ2[v
2
1 , η]

/
2η .

1in the sense of [IS11, Definiton 4.9 and 4.11].
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Recall that the homotopy of the motivic spectrum kq contains the 8-fold Bott
periodicity element v41 , but does not contain v

2
1 . One can compute the homo-

topy of kq and kq from their cohomology via the motivic May spectral sequence,
followed by the motivic Adams spectral sequence. In the case of kq, there is
a motivic May differential supported by v21 and with τ -torsion target. In the
case of kq, the τ -torsion target of this differential gets shifted. We then resolve
a hidden extension of this shifted element to show that it is in fact the period-
icity element v21 . More precisely, we show that this element is a square root of
the usual 8-fold Bott periodicity, making the Cτ -induced spectrum kq 4-fold
periodic. In chromatic motivic language, up to the v0-extensions this can be

rewritten as F2[v0, v
2
1 , w0]

/
v0w0 . The relation v0w0 = 0 is clear as it is already

present in π∗,∗(S
0,0), but this shows that v21 and w0 can coexist without any

relation between them.

1.2 The Choice of Prime p = 2

This paper is written in a p-completed setting, where we chose the prime p = 2.
However, the main results also apply to odd primes. In short, the HFp-based
motivic Adams spectral sequence produces the map

S0,−1 τ
GG A (S0,0)∧p ,

after p-completing the target for any prime p. Denote again its cofiber by Cτ ,
where the prime p does not appear in the notation. The isomorphism

Ext∗,∗BP∗BP
(BP∗, BP∗) ∼= π∗,∗(Cτ)

still holds for any prime, producing the same vanishing regions in the homotopy
of Cτ , and thus endowing Cτ with an E∞ ring structure.
For odd primes p, the motivic story is somehow easier since it is more closely
related to the classical story. In particular, in the case of odd primes, the
motivic Steenrod algebra (and its dual) are isomorphic as Hopf algebras to
the classical Steenrod algebra (and its dual), with an extra primitive formal
variable τ . This is not the case for p = 2, for example because of the relation
τ2i = τξi+1 in the dual motivic Steenrod algebra.

1.3 Organization

Section 2. This Section contains a brief summary of the motivic homotopy
theory needed in order to define the spectrum Cτ . This contains a recall of
the motivic category of spectra over SpecC, some functors relating SptC with
the topological category Spt, the mod 2 motivic cohomology, the structure of
the mod 2 motivic Steenrod algebra and its dual, and the motivic Adams spec-
tral sequence. After introducing the spectrum Cτ , we explain some vanishing
regions both in its homotopy groups π∗,∗(Cτ) and in the homotopy classes of
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self-maps [Cτ,Cτ ]∗,∗. These results will be mostly used to endow Cτ with an
E∞ ring structure.

Section 3. We first explain the notion of motivic A∞ and E∞ ring spectra
that we will use in this paper, and adapt Robinson’s obstruction theory [Rob03]
to the motivic setting. We then apply this obstruction theory to endow the
spectrum Cτ with an E∞ ring structure.

Section 4. In this Section we compute the homotopy types of the E∞ ring
spectrum Cτ ∧ Cτ and of the A∞ ring spectrum End(Cτ).

Section 5. This Section is about the symmetric monoidal category CτMod.
We start by showing some generalities on Cτ -modules. We then analyze more
precisely a few specific Cτ -induced spectra:

(1) We compute the Steenrod algebra of operations and co-operations on the
Cτ -induced mod 2 Eilenberg-Maclane spectrum HF2 ∧ Cτ .

(2) We show that the Cτ -induced mod 2 Moore spectrum S/(2, τ) admits a
unique E∞ structure as a Cτ -algebra, and that it admits a v11-self map.

(3) We compute the homotopy groups of the Cτ -induced connective algebraic
and hermitian K-theories kgl ∧ Cτ and kq ∧ Cτ . In particular, a hidden
extension shows that kq ∧Cτ contains a 4-fold periodicity by the element
v21 , which is the square root of the usual 8-fold Bott periodicity observed
in kq.

1.4 Acknowledgment

The author is grateful for contributions from Dan Isaksen, Nicolas Ricka, Pra-
sit Bhattacharya, Sean Tilson, Peter May, Mike Hill and Niko Naumann. We
would also like to thank the referee for useful corrections and interesting com-
ments, such as Remark 5.4 for example.

2 Notation and Background on Cτ

In this Section we give some brief background on motivic homotopy theory over
SpecC as well as properly introduce the spectrum Cτ . For a more detailed in-
troduction to motivic homotopy theory we refer the reader to [Mor05], [MV99].
Most of our notation agrees with and is taken from [Isa].

2.1 Motivic Spaces and Spectra over SpecC

Denote by SpcC the category of (pointed) motivic spaces over SpecC as de-
fined in [MV99]. This category is endowed with a well-behaved A1-invariant
homotopy theory, for example in the form of a closed symmetric monoidal,
proper, simplicial and cellular model structure. The paper [Pel11, Chapter 2]
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is a good source for a careful construction of these model structures. There is
a realization functor

SpcC

ReC
GGGG A Top,

from motivic spaces over SpecC to topological spaces called Betti realization.
This functor is for example constructed in [DI10, 2.6], [PPR09, Appendix A.7]
or [Joa, Chapter 4], and is induced by taking C-points of the involved C-
schemes. It is a strict symmetric monoidal left Quillen functor, whose right
adjoint is usually denoted by Sing. In the same spirit as equivariant homotopy
theory, motivic homotopy theory has two different types of spheres. We will
denote the 1-dimensional simplicial sphere by S1,0 ∈ SptC and the geometric
sphere Gm by S1,1 ∈ SptC. The first coordinate m in the notation Sm,n

indicates the topological dimension of the sphere, and it is not hard to see
that it Betti realizes to the topological sphere Sm. The second coordinate n
indicates the weight, or the Tate twist of the sphere Sm,n. Over SpecC, the
projective line P1 is a 2-dimensional topological sphere, whose homotopy type
is described by the equation

P1 ≃ S1,0 ∧ S1,1 ≃ S2,1. (2.1)

The category of motivic (P1-)spectra SptC over SpecC is constructed by stabi-
lizing with respect to the sphere P1, i.e., inverting the functor −∧P1. Observe
that equation (2.1) implies that this is equivalent to inverting smashing with
both fundamental spheres − ∧ S1,0 and − ∧ S1,1. This provides a bigraded
suspension functor that we denote by Σm,n = − ∧ Sm,n. Smashing with the
simplicial sphere Σ = Σ1,0 = − ∧ S1,0 corresponds to the shift functor of the
triangulated structure on the homotopy category. The category of motivic
spectra SptC also supports good model structures which are closed symmetric
monoidal with respect to the smash product −∧−, proper, simplicial and cellu-
lar. The paper [Pel11, Chapter 2] constructs these models in details. Moreover,
the realization and singular pair stabilizes to a Quillen adjunction2

SptC

ReC
GG A⊥
GD GG

Sing

Spt,

where the Betti functor ReC is strict symmetric monoidal, see for example
[PPR09, A.45].
Given two spectra X,Y ∈ SptC, the closed symmetric monoidal structure
provides a function motivic spectrum that we denote by F (X,Y ) ∈ SptC.
When X = Y , we will usually write End(X) = F (X,X). As usual, we will
denote the abelian group of homotopy classes of maps between X and Y by
[X,Y ]. When the source spectrum is a sphere X = Ss,w, the abelian group

πs,w(Y ) := [Ss,w, Y ]

2Since the Betti realization of P1 is the topological sphere P1(C) ≃ S2, taking C-points
lands in the category of S2-spectra, i.e., spectra with bonding maps S2

∧ Xn GG A Xn+1.
This is also a model for stable homotopy theory, see [Joa, Section 4.1] for more details.
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is called the homotopy group of Y in stem s and weight w. The relation between
the two is given by the usual adjunction between the smash product and the
function spectrum. After taking homotopy, this becomes the equation

πs,w(F (X,Y )) ∼= [Σs,wX,Y ].

2.2 The Motivic Adams Spectral Sequence and the Element τ

Denote by HZ Voevodsky’s motivic Eilenberg-Maclane spectrum representing
integral motivic cohomology on schemes [Voe98, Section 6.1]. Denote by HF2

the cofiber of multiplication by 2 on HZ, which sits in the cofiber sequence

HZ
·2

GGG A HZ GG A HF2.

The spectrum HF2 represents mod 2 motivic cohomology on schemes. The
coefficients of this spectrum were computed in [Voe03a] and are given by

HF2∗,∗(S
0,0) ∼= F2[τ ] for |τ | = (0,−1).

Dually, the motivic cohomology of a point is

HF2
∗,∗(S0,0) ∼= F2[τ ] for |τ | = (0, 1),

where we abuse notation and use the same symbol τ to denote the Tate twist
element in homology and its dual in cohomology. We use the same notation as
in [Isa] for the coefficients

M2 := HF2
∗,∗(S0,0) ∼= F2[τ ] and M2

∨ := HF2∗,∗(S
0,0) ∼= F2[τ ].

We write A for the mod 2 motivic Steenrod algebra, i.e., the ring of stable
cohomology operations on the motivic spectrum HF2. Its structure has been
computed by Voevodsky in [Voe03b], [Voe10] : it is the bigraded Hopf algebra
over M2 given by

A ∼= M2〈Sq
1, Sq2, . . .〉 /Adem relations .

Observe that as in topology, it is generated by the Steenrod squares Sqn with
the Adem relations between them. The Tate twist τ ∈ M2 has bidegree |τ | =
(0, 1), and the Steenrod squares have bidegrees |Sq2n| = (2n, n) and |Sq2n+1| =
(2n+1, n). Since we work at p = 2, the first square Sq1 = β is again the usual
Bockstein operation coming from the short exact sequence of abelian groups

0 GG A Z/2
·2

GG A Z/4 GG A Z/2 GG A 0.

The dual motivic Steenrod algebra

A∨ ∼= M2
∨[ξ1, ξ2, . . . , τ0, τ1, . . .]

/
τξi+1 = τ2i , (2.2)
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was also computed by Voevodsky in [Voe03b]. Because we are now in homology,
the Tate twist τ ∈ M2

∨ has bidegree |τ | = (0,−1). The ξi’s and τi’s have
bidegrees |ξi| = (2i+1 − 2, 2i − 1) and |τi| = (2i+1 − 1, 2i − 1). The coproduct
is given by the formulas

∆(ξn) =
∑

ξ2
k

n−k ⊗ ξk and ∆(τn) = τn ⊗ 1 +
∑

ξ2
k

n−k ⊗ τk.

One can now run the motivic Adams spectral sequence

ExtA(M2,M2) =⇒ π∗,∗((S
0,0)∧2 )

constructed in [Mor99], [DI10], [HKO], that converges to the homotopy groups
of the 2-completed motivic sphere (S0,0)∧2 . The A-module map

M2

·τ
GG A M2

is an element in Hom = Ext0 of Adams filtration 0 as τ is central in A. This
element survives to the E∞-page as it cannot be involved with any differential
for degree reasons. Therefore, it detects a map

S0,−1 τ
GG A (S0,0)∧2 , (2.3)

whose Hurewicz image is the element τ ∈ HF2∗,∗((S
0,0)∧2 ).

Unfortunately, the map of equation (2.3) does not lift to a map before 2-
completing the target. The situation can be summarized by the following
commutative diagram

S0,−1

HF2 (S0,0)∧2

HZ S0,0.

τ

∄

∃ τ

(2.4)

The top dotted arrow corresponds to the element (2.3) constructed by the
motivic Adams spectral sequence, and the non-existence of the bottom dot-
ted arrow shows that τ does not lift to a map S0,−1

GG A S0,0. In fact,
a map S0,−1

GG A HZ corresponds to a cohomology class in the group
H0,1

mot(SpecC;Z), which vanishes. Here is another argument kindly suggested
by the referee, to explain the existence of the map (2.3). This element comes
from the Tor spectral sequence for the 2-completed sphere, whenever there is
an infinitely 2-divisible element in the Milnor-Witt K-theory KMW

1 (SpecC),
i.e., when the base field has all 2-power roots of unity.
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It is crucial for us that this element τ exists in the homotopy groups of the mo-
tivic sphere spectrum, and thus acts on the homotopy of any motivic spectrum.
Recall that 2-completion is given by the E-Bousfield localization at either the
Moore spectrum S0,0/2 or the Eilenberg-Maclane spectrum HF2. In particu-
lar, the 2-completed sphere (S0,0)∧2 is also an E∞ ring spectrum and admits a
good category of (2-completed) modules. Denote temporarily its category of

modules by ŜptC. The ring map S0,0
GG A (S0,0)∧2 induces a forgetful functor

SptC ŜptC

from 2-completed motivic spectra to motivic spectra. As explained in [Pel11,
Section 2.8], this forgetful functor creates a symmetric monoidal model struc-

ture on ŜptC. Moreover, as indicated in the diagram

SptC ŜptC,

− ∧ (S0,0)∧2

F
(

(S0,0)∧2 , −
)

it is both a left and right Quillen functor via the usual adjunctions. It follows

that the forgetful functor preserves all categorical constructions in ŜptC, i.e.,
the underlying spectrum of any (co)limit is computed in the underlying cate-
gory of motivic spectra SptC. On finite spectra, 2-completing and smashing
with the 2-completed sphere (S0,0)∧2 are equivalent functors. In this paper,
we will only be concerned with finite spectra, and will from now on exclu-

sively work in ŜptC without further mention, and drop the completion symbol
from the notation. For example, we will denote this category by SptC, the
2-completed motivic sphere spectrum by S0,0, the smash product over the 2-
completed sphere by − ∧ −, . . . etc. With this notation, the motivic Adams
spectral sequence produces a non-trivial map

S0,−1 τ
GG A S0,0,

which we can see as being an element in the homotopy groups π0,−1(S
0,0).

2.3 The Spectrum Cτ and its Homotopy

Recall that we work in a 2-completed setting. Define the 2-cell complex Cτ by
the cofiber sequence

S0,−1 τ
GG A S0,0 i

GG A Cτ
p

GG A S1,−1, (2.5)

where i denotes the inclusion of its bottom cell and p is the projection on
its top cell. Recall from [DI10, Section 2.6] that the Betti realization functor
SptC GG A Spt sends the map τ to the identity id, as shown in the diagram

(
S0,−1 τ

GG A S0,0
)

[G GA

(
S0 id

GG A S0

)
.
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Moreover, it is a left Quillen functor and thus preserves cofiber sequences. This
implies that it sends Cτ to a contractible spectrum ∗ ∈ Top and thus that Cτ is
a purely motivic spectrum living in the kernel of Betti realization. Nonetheless,
the motivic spectrum Cτ has very tight connections to classical (non-motivic)
homotopy theory. Surprisingly, a computation of Hu-Kriz-Ormsby in [HKO11],
allows Isaksen in [Isa] to express the homotopy groups of this 2-cell complex
π∗,∗(Cτ) in terms of the classical Adams-Novikov spectral sequence. Denote
by Exts,tBP∗BP

(BP∗, BP∗) the E2-page of the classical (2-completed) Adams-

Novikov spectral sequence for the topological sphere S0, where as usual s is
the Adams filtration and t is the internal degree.

Proposition 2.1 ([Isa, Proposition 6.2.5]). The homotopy groups of Cτ are
given by

πs,w(Cτ) ∼= Ext2w−s,2w
BP∗BP

(BP∗, BP∗) for any s, w ∈ Z.

Remark 2.2. Proposition 2.1 is surprising as it is saying that the homotopy
groups of a motivic 2-cell complex, which are in principle as complicated to
compute as π∗,∗(S

0,0), are completely algebraic. More precisely, they are given
by the cohomology of the Hopf algebroid (BP∗, BP∗BP ), which is a very im-
portant object in classical chromatic homotopy theory. This bridge allows
computations to travel between the classical and the motivic world. See [Isa,
Chapter 5 and 6] for examples where motivic computations of π∗,∗(Cτ) are used
to deduce new information about the classical object Ext∗,∗BP∗BP

(BP∗, BP∗).

Remark 2.3. Since Ext∗,∗BP∗BP
(BP∗, BP∗) admits a natural ring structure,

the isomorphism of Proposition 2.1 induces an artificial ring structure on the
motivic homotopy groups π∗,∗(Cτ). The starting point of this project was
to ask if this induced ring structure of π∗,∗(Cτ) can be realized by a topo-
logical ring structure on the spectrum Cτ . Even further, the cohomology
groups Ext∗,∗BP∗BP

(BP∗, BP∗) admit higher structure (Massey products, alge-
braic squaring operations, . . . ) and one can hope that this is the shadow of a
highly structured ring multiplication on Cτ . We will prove in Section 3 that
Cτ supports an E∞ ring structure and that the isomorphism

π∗,∗(Cτ) ∼= Ext∗,∗BP∗BP
(BP∗, BP∗)

preserves higher products (Toda brackets in homotopy and Massey products in
algebra). In other words, the E2-page of the classical Adams-Novikov spectral
sequence can be realized with its higher structure as the homotopy of a motivic
spectrum.

The ring structure mentioned in Remark 2.3 will be constructed by obstruction
theory. To prepare the computations, we will now deduce some Corollaries of
Proposition 2.1 about π∗,∗(Cτ) and π∗,∗(End(Cτ)).

Corollary 2.4 ([GI17]). The group πs,w(Cτ) is zero when either w > s, or

w ≤ 1
2s, or s < 0, except that π0,0(Cτ) ∼= Ẑ2. This is sketched in Figure 1.

Documenta Mathematica 23 (2018) 1077–1127



1092 Bogdan Gheorghe

Proof. The vanishing regions in π∗,∗(Cτ) come from the vanishing regions of
Ext∗,∗BP∗BP

(BP∗, BP∗) via the isomorphism

πs,w(Cτ) ∼= Ext2w−s,2w
BP∗BP

(BP∗, BP∗)

of Proposition 2.1. The region w > s corresponds to the vanishing region above
the line t − s = s of slope 1 on the E2-page of the Adams-Novikov spectral
sequence, the region w ≤ 1

2s corresponds to the E2-page being 0 in negative
Adams filtation s ≤ 0, and finally s < 0 corresponds to E2-page being zero in
negative stems t− s < 0.

w

s

w = s

non-vanishing homotopy

w = 1
2s

zero

zero zero

zero

zero

Figure 1: Vanishing regions of the homotopy groups πs,w(Cτ).

Corollary 2.5. The group [Σs,wCτ,Cτ ] is zero if either w > s+2, or w ≤ 1
2s,

or s < −1, except that [Cτ,Cτ ] ∼= Ẑ2 in degree (0, 0). This is sketched in Figure
2.

Proof. Using the cofiber sequence

Ss,w
i

GG A Σs,wCτ
p

GG A Ss+1,w−1,

we get a long exact sequence

· · · GD GG [Ss,w, Cτ ]
i∗

GD GG [Σs,wCτ,Cτ ]
p∗

GD GG

[
Ss+1,w−1, Cτ

]
GD GG · · · ,

after mapping into Cτ . The result follows by noticing that the hypothesis of
this Corollary force both homotopy groups πs,w (Cτ) and πs+1,w−1 (Cτ) to be
0 by the previous Corollary 2.4.

Remark 2.6. This result is not sharp and one can slightly improve the non-
vanishing region by being careful about choosing which of the 3 conditions of
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w

s

w = s+ 2

non-vanishing region

w = 1
2s

zero

zero zero

zero

zero

Figure 2: Vanishing regions of the abelian group [Σs,wCτ,Cτ ].

Corollary 2.4 to use. For example, the group
[
Σ−1,0Cτ,Cτ

]
is zero as it sits in

a long exact sequence

· · · GD GG π−1,0 (Cτ)
i∗

GD GG

[
Σ−1,0Cτ,Cτ

] p∗

GD GG π0,−1 (Cτ) GD GG · · · ,

and both homotopy groups surrounding it are zero. However, none of the 3
conditions of Corollary 2.5 are satisfied for the pair (s, w) = (−1, 0) and thus
we cannot use it to deduce that

[
Σ−1,0Cτ,Cτ

]
is zero.

The vanishing of the following groups of homotopy classes of maps will often
be used in this document.

Corollary 2.7. The following groups of homotopy classes of maps are zero

(1)
[
Σ0,−1Cτ,Cτ

]
= 0,

(2)
[
Σ1,0Cτ,Cτ

]
= 0,

(3)
[
Σ1,−1Cτ,Cτ

]
= 0,

(4) [Σn,−nCτ,Cτ ] = 0 for any n ≥ 1.

3 The E∞ Ring Structure on Cτ

In this Section we construct the E∞ ring structure on the motivic spectrum
Cτ . We start by endowing Cτ with a homotopy unital, homotopy associative
and homotopy commutative multiplication using elementary techniques with
triangulated categories. The E∞ coherences of such a multiplication cannot be
constructed by hand via similar techniques and require some machinery. We
will use a version of Robinson’s obstruction theory from [Rob03], that we adapt
to the motivic setting in Section 3.1.
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3.1 Motivic A∞ and E∞ Operads and Obstruction Theory

Consider a simplicial symmetric monoidal model category presenting SptC,
with smash product − ∧ −3, and denote the simplicial mapping space by
Map(X,Y ). Given a motivic spectrum X , denote its endomorphism operad in
simplicial sets by End(X), where End(X)n is the simplicial set Map(X∧n, X).
If F (−,−) denotes the internal (motivic) function spectrum, then we recover

πn (End(X)m) ∼= πn,0 (F (X
∧m, X)) , (3.1)

only exploiting the weight zero homotopy groups of the function spectrum. Fix
an A∞ or E∞ operad Θ in simplicial sets. A Θ-algebra structure on a motivic
spectrum X is a map of operads

Θ GG A End(X).

Equivalently, one can see Θ as an operad in motivic spaces via the constant
functor and define a Θ-algebra via the motivic enrichment, which might seem
more natural and internal to motivic homotopy theory. Because of this reason,
classical (simplicial) operads transported into the motivic world are sometimes
called constant operads.
In this paper, we will produce A∞ and E∞ structures by obstruction theory.
The obstruction theory for A∞ algebras is well-known, for example [Ang08,
Theorem 3.1] (itself inspired by [Rob89]) exhibits an obstruction class in a
certain abelian group. In all our cases, we will show that all the relevant
abelian groups for the obstruction theory are zero. The obstruction theory for
E∞ algebras is less well-known. We will here briefly recap the work done in
[Rob03] and adapt it to our motivic situation.
We will consider the simplicial E∞ operad T defined in [Rob03, Section 5].
This operad is the product of a combinatorially defined cofibrant simplicial
operad with the Barratt-Eccles E∞ (simplicial) operad EΣ•. It inherits both
properties and is thus a cofibrant E∞ operad. The cofibrancy roughly means
that the operadic composition maps

Tn × Tm
◦i

GGG A Tm+n−1 (3.2)

are injective and that their images intersect in fairly small and regular sub-
complexes. We refer to [RW02, Section 1.5] for more details. The injectivity of
these maps is a key property that will be used for inductive arguments, since
a map out of Tm+n−1 is thus already determined on the image of all these
composition maps. The bar filtration on the Barrat-Eccles operad induces a
filtration on T , where the nth-filtration space of Tm is denoted by T n

m ⊆ Tm. In
particular T n

m = ∅ if n < 0. Consider now the diagonal filtration ∇•T which is
the sum of the bar filtration from the Barratt-Eccles operad and the filtration
by operadic subspaces. More precisely, the nth-graded piece ∇nT ⊂ T has

3For example Jardine’s model of motivic symmetric spectra [Jar00].

Documenta Mathematica 23 (2018) 1077–1127



The Motivic Cofiber of τ 1095

mth-space given by ∇nTm = T n−m
m . If m > n, then by definition we have

∇nTm = ∅. In particular, observe that ∇nT is not a suboperad as it does not
contain m-ary operations for m > n.
Robinson defines an n-stage for an E∞ structure on X to consist in a map
∇nT GG A End(X) satisfying some obvious coherences. More precisely, this is
the data of Σm-equivariant maps

T n−m
m GG A End(X)m

for 0 ≤ m ≤ n, which on their restricted domain of definition satisfy the
requirements for a morphism of operads. Since the operad T is non-unital and
thus T0 = T1 = ∅, we only need to specify these maps for 2 ≤ m ≤ n. From
the definition of the diagonal filtration one can identify that

• a 2-stage is the data of a map T 0
2 GG A End(X)2, i.e., specifying a map

µ : X ∧X GG A X ,

• a 3-stage is the data of a 2-stage with the extra structure of an associative
and commutative homotopy for the multiplication µ,

• a 4-stage is the data of a 3-stage with the extra structure of homotopies
for the well-known pentagonal and hexagonal axioms [ML63], as well as
a homotopy saying that the commutativity homotopy itself is homotopy
commutative,

• an ∞-stage are the coherences of an E∞ ring structure on X with multi-
plication µ.

An n-stage determines an (n − 1)-stage by restriction, and an (n − 1)-stage
determines an n-stage on the boundary ∂∇nT by injectivity of the composi-
tion maps of equation (3.2). We refer to [Rob03, Section 5.2] for more details.
Therefore, given an (n− 1)-stage, the data of an n-stage extending the under-
lying (n− 1)-stage consists precisely in the data of extensions

∂∇nTm ∇nTm

End(X)m

for every 0 ≤ m ≤ n. The cofibrancy of the operad T is used again to show
that for any m, the map

∂∇nTm �G A ∇nTm

is a principal Σm-equivariant cofibration, whose cofiber is a wedge of spheres
Sn+2 indexed over a set with free Σm-action. This allows us to formulate the
following result.

Proposition 3.1. Let X be a motivic spectrum with a given (n− 1)-stage for
an E∞ ring structure.
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(1) If the homotopy groups πn−3(End(X)m) are zero for every 2 ≤ m ≤ n, the
given (n− 1)-stage lifts to an n-stage.

(2) If in addition the homotopy groups πn−2(End(X)m) are zero for every
2 ≤ m ≤ n, the extension is (essentially) unique.

Proof. The fact that ∂∇nTm �G A ∇nTm is a principal cofibration allows us
to rotate it one step to the left, producing the unstable cofiber sequence of
simplicial sets

∨Sn−3
GG A ∂∇nTm �G A ∇nTm GG A ∨Sn−2.

An (n− 1)-stage produces a map ∂∇nTm GG A End(X)m, which extends as in
the diagram

∨Sn−3 ∂∇nTm ∇nTm ∨Sn−2

End(X)m

if and only if the relevant composite is zero in the abelian group

[
∨Sn−3, End(X)m

]
∼= ⊕πn−3(End(X)m).

Moreover, if
[
Sn−2, End(X)m

]
= 0 then the extension is unique up to homo-

topy.

By using equation (3.1) and the fact that a 3-stage is equivalent to a unital,
associative and commutative monoid in the homotopy category, we get the
following Corollary.

Corollary 3.2. Let X be a motivic spectrum with a map µ : X ∧X GG A X
that is homotopy unital, homotopy associative and homotopy commutative.

(1) If the homotopy groups πn−3,0(F (X
∧m, X)) are zero for every n ≥ 4 and

2 ≤ m ≤ n, then µ can be extended to an E∞ ring structure on X.

(2) If in addition the homotopy groups πn−2,0(F (X
∧m, X)) are zero for every

n ≥ 4 and 2 ≤ m ≤ n, then µ can be extended to an E∞ ring structure on
X in essentially a unique way.

Remark 3.3. These results are extracted from Robinson’s work in [Rob03],
even though they do not explicitly appear in this form in his paper. The
reason is because this is not a powerful result when applied to the topological
setting for the following reason. Fix a (topological) spectrum X ∈ Spt. To
apply this E∞ obstruction theory to X , its endomorphism operad End(X) has
to satisfy the conditions of Proposition 3.1, which require the homotopy groups
End(X)m to vanish for all n ≥ 4 and 2 ≤ m ≤ n. In particular, for any fixed m
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the space End(X)m needs to have vanishing homotopy groups in degrees n ≥ m.
The paper [Rob03] proceeds to study what happens during an extension of an
(n − 1)-stage to an n-stage if one allows to perturb underlying stages. This
reduces the size of the obstruction groups and gives a constraint between n and
m, reducing the number of obstruction groups to check. In our motivic setting
the obstructions live in the groups πn−3,0(End(X)m), which are only a small
fraction of all homotopy groups πs,w . Corollary 3.2 will be sufficient to prove
our result.

Remark 3.4. We should point out that, in analogy with the genuine G-
equivariant E∞ operads in [BH15] (called N∞ operads), there ought to be a
notion of motivic A∞ and E∞ operads. An algebra over such a motivic operad
would have a lot more structure than an algebra over a constant operad, such
as transfers upon changing the base scheme. In Jardine’s category of motivic
symmetric spectra [Jar00], a commutative algebra corresponds exactly to an
algebra over the constant E∞ operad as defined in this paper. For the purpose
of this paper, constant A∞ and E∞ operads suffice. We will therefore drop the
word ”constant” and refer to those just as A∞ and E∞ operads.

3.2 The Homotopy Ring Structure on Cτ

In this Section we construct a ring structure on Cτ up to homotopy. More
precisely, we show that Cτ is a unital, associative and commutative monoid in
the homotopy category Ho(SptC). Recall that this is a 3-stage in Robinson’s
obstruction theory, which can be seen as the initial input to start the obstruc-
tion theory. In this Section, we will exclusively work in the stable triangulated
category Ho(SptC), without further mentioning it.

Lemma 3.5. There exists a unique left unital multiplication

Cτ ∧ Cτ
µ

GG A Cτ.

Proof. The equation (2.5) gives an exact triangle

S0,−1 τ
GG A S0,0 i

GG A Cτ
p

GG A S1,−1,

where i denotes the inclusion of the bottom cell and p denotes the projection
on the top cell. By smashing it with − ∧ Cτ , we get another triangle

S0,−1 ∧Cτ
τ

GG A S0,0 ∧ Cτ
iL

GG A Cτ ∧ Cτ
pL

GG A S1,−1 ∧ Cτ,

where iL denotes a left unit and pL the projection on the top cell of the left
factor. Since the abelian group of maps [Σ0,−1Cτ,Cτ ] = 0 by Corollary 2.7, the
map τ ∈ [Σ0,−1Cτ,Cτ ] is zero on Cτ . This produces a left unital multiplication
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µ on Cτ as shown in the diagram

S0,−1 ∧Cτ S0,0 ∧ Cτ Cτ ∧ Cτ S1,−1 ∧ Cτ

Cτ.

τ iL pL

≃
∃ µ

Moreover, since
[
Σ1,−1Cτ,Cτ

]
= 0 by Corollary 2.7, there is no choice for such

a map which is unique.

Before studying the properties of this multiplication map µ, we show a funda-
mental equivalence that will be used throughout the document.

Lemma 3.6. There is a canonical isomorphism

Cτ ∧ Cτ ∼= Cτ ∨ Σ1,−1Cτ.

Proof. Recall that since [Σ0,−1Cτ,Cτ ] = 0, the map τ is zero on Cτ . The
exact triangle

S0,−1 ∧Cτ
τ

GG A S0,0 ∧ Cτ
iL

GG A Cτ ∧ Cτ
pL

GG A S1,−1 ∧ Cτ,

is thus split, giving both a retraction µ and a section s, as in the diagram

S0,−1 ∧Cτ S0,0 ∧ Cτ Cτ ∧ Cτ S1,−1 ∧ Cτ · · · .
τ = 0 iL pL τ = 0

∃! µ ∃! s

As it is the case for µ, the section s is unique since [Σ1,−1Cτ,Cτ ] = 0 by
Corollary 2.7. Moreover, the relation µ ◦ s ∼= 0 is forced since the composite
lives in the zero group [Σ1,−1Cτ,Cτ ] = 0. This gives a canonical identification

Cτ ∧ Cτ ∼= Cτ ∨ Σ1,−1Cτ,

via the inverse maps

Cτ ∧Cτ
(µ,pL)
GGGG A Cτ ∨ Σ1,−1Cτ and Cτ ∨ Σ1,−1Cτ

iL+s
GGGG A Cτ ∧Cτ.

Corollary 3.7. For any n ≥ 2, there is a canonical isomorphism

Cτ∧n ∼=

n−1∨

i=0

(
n− 1

i

)
Σi,−iCτ,

where we use
(
n−1
i

)
Σi,−iCτ to indicate a wedge sum of

(
n−1
i

)
terms of the

spectrum Σi,−iCτ .
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We will use the identification of Lemma 3.6 to show that µ endows Cτ with
a unital, associative and commutative monoid structure in Ho(SptC). We
first compute the relevant maps on Cτ ∨ Σ1,−1Cτ after composing with this
identification.

Lemma 3.8. After the canonical identification Cτ ∧ Cτ ∼= Cτ ∨ Σ1,−1Cτ of
Lemma 3.6

(1) the multiplication map Cτ ∧ Cτ
µ

GG A Cτ is given by the matrix

Cτ ∨ Σ1,−1Cτ
[ id 0 ]
GGG A Cτ,

i.e., by the canonical projection onto the first factor,

(2) the factor swap map Cτ ∧ Cτ
χ

GG A Cτ ∧ Cτ is given by the matrix

Cτ ∨ Σ1,−1Cτ

[

id 0
i◦p − id

]

GGGG A Cτ ∨Σ1,−1Cτ.

Proof.

(1) The composite

Cτ ∨ Σ1,−1Cτ
iL+s

GGGG A Cτ ∧ Cτ
µ

GG A Cτ

restricts to the identity on Cτ since µ is a retraction of iL, and to zero on
Σ1,−1Cτ since s ◦ µ = 0 by Lemma 3.6.

(2) We claim that the following diagram

Cτ ∧Cτ Cτ ∧ Cτ

Cτ ∨Σ1,−1Cτ Cτ ∨ Σ1,−1Cτ

χ

iL + s (µ, pL)[
id 0
i◦p − id

]

commutes. First observe that the top right entry is forced to be zero
since

[
Σ1,−1Cτ,Cτ

]
= 0 by Corollary 2.7. The bottom left entry can be

computed explicitly by a simple diagram chase. It is

S0,0 ∧Cτ
i∧id

GGGG A Cτ ∧ Cτ
χ

GGGG A Cτ ∧ Cτ
p∧id

GGGG A S1,−1 ∧ Cτ,

which is homotopic to the composite

S0,0 ∧ Cτ
χ

GG A Cτ ∧ S0,0 id∧i
GGGG A Cτ ∧ Cτ

p∧id
GGGG A S1,−1 ∧ Cτ.
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By commuting id∧i and p∧ id and using the canonical equivalences S0,0∧
Cτ = Cτ = Cτ ∧ S0,0 we can rewrite it as

Cτ
p

GG A S1,−1 i
GG A Σ1,−1Cτ.

For the diagonal entries, recall that [Cτ,Cτ ] ∼= Ẑ2 and that the matrix has
to be an involution since χ is. This forces the diagonal entries to be + id
and − id. One could conclude by arguing that the top left entry arises by
commuting Cτ with S0,0, and thus should be + id, while the bottom right
entry arises by commuting Cτ with S1,−1, and thus should be − id. More
precisely, consider the diagram

S0,0 ∧ S0,0 Cτ ∧ Cτ

S0,0 Cτ.

i ∧ i

∼= µ

i

By factoring the map i ∧ i as id∧i followed by iL = i ∧ id, and using that
µ ◦ iL = id, one sees that the diagram commutes up to the usual canonical
equivalences of smashing with S0,0. By factoring it the other way now, as
i ∧ id followed by id∧i, we get that µ ◦ (id∧i) = id. This shows that the
top left entry of the matrix is id. The bottom right entry is thus forced to
be − id since the matrix is an involution.

Proposition 3.9. The unique left unital multiplication map Cτ ∧Cτ
µ

GG A Cτ
turns Cτ into a unital, associative and commutative monoid in Ho(SptC).

Proof. Consider the diagram

Cτ ∧Cτ Cτ ∧ Cτ

Cτ Cτ,

Cτ ∨Σ1,−1Cτ Cτ ∨ Σ1,−1Cτ

iL

χ

µ

(µ, p ∧ id) iL + s

[
id 0
i◦p − id

]
[ id 0 ]

(3.3)

which is commutative by Lemma 3.8. Since µ is left unital and since p◦i = 0, the
dashed arrow is given by the canonical inclusion. It follows that the composite
µ ◦ χ ◦ iL is simply given by the matrix multiplication

[ id 0 ] ·
[

id 0
i◦p − id

]
· [ id0 ] = id .
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Since the right unit is given by χ◦ iL, this shows that µ is right unital. To show
that µ is commutative, we have to compute the composite

Cτ ∧Cτ
χ

GG A Cτ ∧ Cτ
µ

GG A Cτ.

We can again read it from diagram (3.3), where it is given by the matrix
multiplication

[ id 0 ] ·
[

id 0
i◦p − id

]
·
[ µ
p∧id

]
= µ,

showing that µ is commutative. To see that µ is associative, we will show that
the map

Cτ ∧ Cτ ∧ Cτ
µ◦(1∧µ−µ∧1)
GGGGGGGG A Cτ

is zero. By left and right unitatlity it restricts to zero on the subspectrum

(
S0,0 ∧ Cτ ∧ Cτ

)
∨
(
Cτ ∧ S0,0 ∧ Cτ

)
∨
(
Cτ ∧ Cτ ∧ S0,0

)
G֒G A Cτ ∧Cτ ∧Cτ.

(3.4)
By [Str99, Lemma 3.6], there is a bijection between maps Cτ∧Cτ∧Cτ GG A Cτ
that restrict to zero on the subspectrum of equation (3.4), and maps

S3,−3 = S1,−1 ∧ S1,−1 ∧ S1,−1
GG A Cτ.

Here S1,−1 appears because it is the cofiber of the unit map S0,0
GG A Cτ . By

Corollary 2.4, we have that π3,−3(Cτ) = 0, which shows that there is a unique
such map. Since the zero map Cτ ∧ Cτ ∧ Cτ GG A Cτ restricts to zero on
the subspectrum of equation (3.4), it is the unique such map. This shows that
µ ◦ (1 ∧ µ− µ ∧ 1) is zero, i.e., that µ is associative.

3.3 The E∞ Ring Structure on Cτ

In this Section, we will use Robinson’s obstruction theory from Section 3.1 to
construct the E∞ ring structure on Cτ . In the previous Section 3.2 we en-
dowed Cτ with a unital, associative and commutative monoid structure in the
the homotopy category Ho(SptC). Recall that this to a 3-stage in Robinson’s
obstruction theory. We will now use Corollary 3.2 to rigidify this multiplica-
tion to an E∞ ring structure in SptC. Although not needed for the E∞ ring
structure, as a warm-up, we first show in Proposition 3.10 that Cτ admits a
unique A∞ ring structure.

Proposition 3.10. The multiplication µ on Cτ can be uniquely extended to
an A∞ multiplication.

Proof. An A2 structure corresponds to unital homotopies (left and right), and
an A3 structure adds an associative homotopy. We constructed both structures
in Proposition 3.9. The A∞ obstruction theory originated in [Rob89] exhibits
obstruction classes to extend an An−1 structure to an An structure. In more

Documenta Mathematica 23 (2018) 1077–1127



1102 Bogdan Gheorghe

modern language, [Ang08, Theorem 3.1] exhibits the obstruction to go from
An−1 structure to an An structure as an element in the abelian group

[
Σn−3,0Sn,−n, Cτ

]
∼=

[
S2n−3,−n, Cτ

]
= π2n−3,−n(Cτ). (3.5)

Corollary 2.4 shows that these groups are zero for any n (we really just need
n ≥ 4), which shows that µ can be extended to an A∞ structure. Furthermore,
given that an An−1 structure extends to An structure, the possible extensions
are in bijection with the abelian group

[
Σn−2,0Sn,−n, Cτ

]
∼= π2n−2,−n(Cτ).

This group is also zero for any n, showing that µ can be uniquely extended to
an A∞ structure.

Remark 3.11. For the case n = 3, i.e., to endow Cτ with an A3 structure,
the obstruction group from equation (3.5) is π3,−3(Cτ). Observe that this is
the exact same group that appears in Proposition 3.9, where we show with
elementary techniques that Cτ admits an A3 structure.

Remark 3.12. Mahowald conjectured that no non-trivial topological 2-cell
complex posses an A∞ structure. There are 2 trivial cases to exclude which
are the cofiber of the zero map and the cofiber of the identity map, as shown
in the cofiber sequences

S0 0
GG A S0

GG A S1 ∨ S0 and S0 id
GG A S0

GG A ∗.

Since motivic spheres Betti realize to topological spheres, motivic 2-cell com-
plexes Betti realize to topological 2-cell complexes. Moreover, since we are using
simplicial (constant) operads, motivic algebras over An or En operads realize
to classical algebras over the same An or En operads. However, the fact that
Cτ admits an A∞ ring structure does not contradict Mahowald’s conjecture,

as the map S0,−1
τ

GG A S0,0 realizes to the identity map S0
id

GG A S0.

Theorem 3.13. The multiplication µ on Cτ can be uniquely extended to an
E∞ multiplication.

Proof. We showed in Proposition 3.9 that Cτ is a unital, associative and com-
mutative monoid in the homotopy category Ho(SptC). This corresponds to a
3-stage in Robinson’s obstruction theory. By Corollary 3.2, the obstructions of
extending this 3-stage to an E∞ ring structure live in

πn−3,0(F (Cτ
∧m, Cτ)) ∼=

[
Σn−3,0Cτ∧m, Cτ

]

for n ≥ 4 and 2 ≤ m ≤ n. Recall from Corollary 2.5 that [Σs,wCτ,Cτ ] has
in particular a vanishing region for s ≥ 0 and 2w ≤ s. We now show that all
obstruction groups live in this vanishing area. By the equivalence

[Cτ∧m, Cτ ] ∼=

m−1⊕

i=0

(
m− 1

i

)[
Σi,−iCτ,Cτ

]
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of Corollary 3.7, the homotopy groups πn−3,0(F (Cτ
∧m, Cτ)) are given by

[
Σn−3,0Cτ∧m, Cτ

]
∼=

m−1⊕

i=0

(
m− 1

i

)[
Σn−3+i,−iCτ,Cτ

]
.

In particular, all the obstructions live in groups of the form [Σs,wCτ,Cτ ] where
the s-coordinate satisfies

s = n− 3 + i ≥ 4− 3 + i ≥ 1

while the w-coordinate satisfies both

w = −i ≤ 0 and w = −i = n− s− 3 ≥ 1− s.

This corresponds to the region bounded by s ≥ 1 and 1 − s ≤ w ≤ s, which
lies entirely in the vanishing area described above. The situation is summa-
rized in Figure 3. Similarly, recall from Corollary 3.2 that the obstructions for
uniqueness of such an E∞ ring structure live in groups of the form

πn−2,0(F (Cτ
∧m, Cτ)) ∼=

[
Σn−2,0Cτ∧m, Cτ

]
.

A similar analysis shows that all obstruction groups again live in the vanishing
region, as described in Figure 3. This shows that Cτ admits a unique E∞ ring
structure.

w

s

w = s+ 2

no
n-
va
nis
hin

g
reg

ion

w = 1
2s

zero

zero zero

zero

Obstructions

for existence

w

s

w = s+ 2

no
n-
va
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hin

g
reg

ion

w = 1
2s

zero

zero zero

zero

Obstructions

for uniqueness

Figure 3: Chart of [Σs,wCτ,Cτ ] where all obstruction groups live in the van-
ishing region.

Corollary 3.14. There is an isomorphism of rings

π∗,∗(Cτ) ∼= Ext∗,∗BP∗BP
(BP∗, BP∗),

which sends Massey products in Ext to Toda brackets in π∗,∗, and vice-versa.
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Proof. Since Cτ is an E∞ ring spectrum, its motivic Adams-Novikov spectral
sequence is multiplicative and converges to an associated graded of the ring
π∗,∗(Cτ). Recall from Proposition 2.1 that the spectral sequence collapses at
E2 with no possible hidden extensions as a module over the spectral sequence
for S0,0. For the exact same reason, there are no possible hidden extensions as
a multiplicative spectral sequence. By the Moss convergence theorem [Mos70],
we get a highly structured bigraded isomorphism

ExtBPGL∗,∗BPGL(BPGL∗,∗, BPGL∗,∗/τ) ∼= π∗,∗(Cτ), (3.6)

between the E2-page and the output of the spectral sequence. More precisely,
Massey products computed in Ext converge to Toda brackets computed in
π∗,∗(Cτ).
Until the end of the proof, denote the motivic Brown-Peterson spectrum BPGL
by B. To finish the proof, we have to show that there is a highly structured
ring isomorphism

ExtB∗,∗B/τ (B∗,∗/τ,B∗,∗/τ) ∼= ExtB∗,∗B(B∗,∗, B∗,∗/τ).

These are Ext-groups computed in comodules and since the first variable is
projective (even free) over the base ring, both of those Ext terms can be com-
puted from their cobar complex [Rav86, Corollary A1.2.12]. Moreover, since
the cobar complex also controls the Massey products in the Ext-ring, this will
give an isomorphism preserving this structure. The cobar complex of the left
Ext-group is given by

B∗,∗/τ ⊗B∗,∗/τ B∗,∗B/τ ⊗B∗,∗/τ B∗,∗/τ GG A

B∗,∗/τ ⊗B∗,∗/τ B∗,∗B/τ ⊗B∗,∗/τ B∗,∗B/τ ⊗B∗,∗/τ B∗,∗/τ GG A · · · ,

while the cobar complex of the right term is given by

B∗,∗ ⊗B∗,∗
B∗,∗B ⊗B∗,∗

B∗,∗/τ GG A

B∗,∗ ⊗B∗,∗
B∗,∗B ⊗B∗,∗

B∗,∗B ⊗B∗,∗
B∗,∗/τ GG A · · · .

By iterating the ring isomorphism

B∗,∗/τ ⊗B∗,∗/τ B∗,∗B/τ ∼= B∗,∗ ⊗B∗,∗
B∗,∗/τ,

these cobar complexes are isomorphic as dga’s. By taking cohomology, we get
an isomorphism

ExtB∗,∗B(B∗,∗, B∗,∗/τ) ∼= ExtB∗,∗B/τ (B∗,∗/τ,B∗,∗/τ) (3.7)

that preserves Massey products. The trigraded ExtB∗,∗B/τ (B∗,∗/τ,B∗,∗/τ) is
really bigraded because of the relation t = 2w between the internal degree t
and the weight w. Therefore, when working mod τ , we can regrade everything
in sight by keeping the internal degree and forgetting the weight. With this
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convention, the degree of vn ∈ B∗/τ is the single number 2n+1 − 2 and thus
there is an isomorphism of Hopf algebroids B∗B/τ ∼= BP∗BP . This provides
the (higher) ring isomorphism

ExtB∗B/τ (B∗/τ,B∗/τ) ∼= ExtBP∗BP (BP∗, BP∗). (3.8)

By combining the isomorphisms of equation (3.6), (3.7) and (3.8), we get an
isomorphism

π∗,∗(Cτ) ∼= ExtBP∗BP (BP∗, BP∗)

of higher rings, that sends Toda brackets to Massey products and vice-versa.

4 (Co-)operations on Cτ

In this Section we describe the homotopy types of Cτ∧Cτ and End(Cτ) as ring
spectra. Understanding their homotopy types is crucial for the computation of
the Steenrod algebra of the spectrum HF2 ∧ Cτ in Section 5.2. Most proofs
are done by diagram chasing and identifying composites of maps.

4.1 The Spectrum Cτ ∧ Cτ

The E∞ ring structure on Cτ induces an E∞ ring structure on the smash
product Cτ ∧ Cτ via the multiplication

µCτ∧Cτ : (Cτ ∧ Cτ) ∧ (Cτ ∧ Cτ)
1∧χ∧1
GGGG A Cτ ∧ Cτ ∧ Cτ ∧ Cτ

µ∧µ
GGG A Cτ ∧ Cτ.

Here µ denotes the multiplication map on Cτ and χ denotes the factor swap
map. Recall from Lemma 3.6 that there is a canonical equivalence

Cτ ∧ Cτ ≃ Cτ ∨ Σ1,−1Cτ,

describing the additive homotopy type of Cτ ∧Cτ . The next lemma describes
its ring structure.

Lemma 4.1. Under the canonical vertical identifications given by

(Cτ ∧ Cτ) ∧ (Cτ ∧ Cτ) Cτ ∧ Cτ

(Cτ ∨ Σ1,−1Cτ) ∧ (Cτ ∨ Σ1,−1Cτ) Cτ ∨ Σ1,−1Cτ

(Cτ ∧ Cτ) ∨ (Σ1,−1Cτ ∧ Cτ) ∨ (Cτ ∧ Σ1,−1Cτ) ∨ (Σ1,−1Cτ ∧ Σ1,−1Cτ) Cτ ∨ Σ1,−1Cτ,

µCτ∧Cτ

≃ ≃

= =
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the multiplication on Cτ ∧ Cτ is given by the maps

Cτ ∧ Cτ
(µ,0)

GGGG A Cτ ∨ Σ1,−1Cτ

Σ1,−1Cτ ∧ Cτ
(0,µ)

GGGG A Cτ ∨ Σ1,−1Cτ

Cτ ∧ Σ1,−1Cτ
(0,µ)

GGGG A Cτ ∨ Σ1,−1Cτ

Σ1,−1Cτ ∧ Σ1,−1Cτ
(0,0)

GGGG A Cτ ∨ Σ1,−1Cτ.

Proof. These four maps are given by a simple diagram chase, where we only
have to be careful with the identifications. For simplicity, let’s denote the
sphere spectrum S0,0 by S, and ignore or denote by 1 some identity maps id
in the following diagrams. Recall the cofiber sequence

S0,−1 τ
GG A S0,0 i

GG A Cτ
p

GG A S1,−1

from equation (2.5). The first map Cτ ∧ Cτ GG A Cτ ∨ Σ1,−1Cτ corresponds
to the composite

(µ, p ∧ 1) ◦ (µ ∧ µ) ◦ (1 ∧ χ ∧ 1) ◦ (i ∧ i),

which is embedded in the commutative diagram

(Cτ ∧ Cτ) ∧ (Cτ ∧ Cτ) Cτ ∧ Cτ ∧Cτ ∧ Cτ Cτ ∧ Cτ Cτ ∨ Σ1,−1Cτ

(S ∧ Cτ) ∧ (S ∧Cτ) S ∧ S ∧ Cτ ∧ Cτ S ∧ Cτ ∧ Cτ.

1 ∧ χ ∧ 1 µ ∧ µ (µ, p ∧ 1)

i ∧ i i ∧ i i ∧ µ
≃ ≃

We can compute by the other path, where we use that the map

S ∧ Cτ ∧ Cτ
i∧µ

GGGG A Cτ ∧ Cτ

decomposes as

S ∧ Cτ ∧ Cτ
1∧µ

GGGG A S ∧ Cτ
i∧1

GGG A Cτ ∧ Cτ,

and by using that p ◦ i = 0 and µ ◦ (i ∧ 1) = id. For the second map, the
canonical splitting of Lemma 3.6 induces a splitting

Σ1,−1Cτ ∧ Cτ ≃ Σ1,−1Cτ ∨ Σ2,−2Cτ.

By Corollary 2.7 we have
[
Σ1,−1Cτ,Cτ

]
=

[
Σ2,−2Cτ,Cτ

]
= 0, and thus the

second map
Σ1,−1Cτ ∧ Cτ GG A Cτ ∨Σ1,−1Cτ

corestricts to zero on Cτ . To compute the other part, recall first from Lemma
3.6 that the map p ∧ 1 admits a canonical section s, as shown in the cofiber
sequence
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S0,−1 ∧Cτ S ∧ Cτ Cτ ∧Cτ S1,−1 ∧ Cτ · · · .
τ = 0 iL pL τ = 0

∃! µ ∃! s

The second map is the composite in the commutative diagram

(Cτ ∧ Cτ) ∧ (Cτ ∧ Cτ) Cτ ∧Cτ ∧ Cτ ∧ Cτ Cτ ∧ Cτ Σ1,−1Cτ

(S1,−1 ∧ Cτ) ∧ (S ∧ Cτ) Cτ ∧Cτ ∧ S ∧Cτ Cτ ∧ S ∧ Cτ ∧ Cτ.

1 ∧ χ ∧ 1 µ ∧ µ p ∧ 1

s ∧ (i ∧ 1) 1 ∧ µ

s ∧ (1 ∧ 1)

≃

i i

We again compute it by following the other path

(p ∧ 1) ◦ (1 ∧ µ) ◦ (s ∧ (1 ∧ 1)).

The result follows by noticing that the last two maps p∧ 1 and 1∧ µ commute
with each other, together with the fact that s is a section of p∧1. For the third
map, we can either do a similar diagram chase, or use the fact that Cτ ∧Cτ is
an E∞ ring spectrum, and so the third map is homotopic to the second map
we just computed. The last map is forced to be nullhomotopic since

Σ1,−1Cτ ∧ Σ1,−1Cτ ≃ Σ3,−3Cτ ∨ Σ2,−2Cτ

and there are no non-trivial maps to both Cτ and Σ1,−1Cτ by Corollary 2.5.

The additive splitting Cτ ∧ Cτ ≃ Cτ ∨ Σ1,−1Cτ gives the isomorphism

π∗,∗(Cτ ∧ Cτ) ∼= π∗,∗(Cτ) ⊕ βτ · π∗,∗(Cτ).

The class βτ has degree |βτ | = (1,−1), and is the unit element of the shifted
copy given by the composite

S1,−1 ≃ S1,−1 ∧ S0,0 1∧i
GGG A S1,−1 ∧ Cτ

s
GG A Cτ ∧ Cτ.

We call it βτ because it induces a τ -Bockstein operations in HF2 ∧ Cτ -
(co)homology, as we show in Propositions 5.5 and 5.6. Lemma 4.1 gives the
following multiplicative description of the homotopy groups π∗,∗(Cτ ∧ Cτ).

Corollary 4.2. The E∞ ring spectrum Cτ ∧ Cτ has homotopy ring

π∗,∗ (Cτ ∧ Cτ) ∼= π∗,∗ (Cτ) [βτ ]
/
β2
τ
,

where |βτ | = (1,−1).
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4.2 The Endomorphism Spectrum End(Cτ)

In this Section we explicitly describe the homotopy type of End(Cτ) as a ring
spectrum and give a presentation of its homotopy ring π∗,∗(End(Cτ)), in the
same way that we did for Cτ ∧ Cτ . However, the endomorphism spectrum
End(Cτ) is a little harder to understand than Cτ ∧ Cτ . First, it is only an
associative A∞ spectrum, whereas Cτ ∧ Cτ is E∞. Second, its multiplication
comes from composition of morphisms and has nothing to do with the fact that
Cτ is a ring object, whereas the multiplication on Cτ ∧Cτ is easy to describe
in terms of the multiplication of Cτ . Finally, it turns out that out of the eight
maps that assemble together to give the multiplication on End(Cτ), only three
are forced to be nullhomotopic for degree reasons, whereas five where forced to
be nullhomotopic for Cτ ∧Cτ .
An important tool that we use is Spanier-Whitehead duality, adapted to the
motivic setting from the categorical treatment in [LMSM86, Chapter 3]. We
briefly recall some notation and elementary results from both [LMSM86, Chap-
ter 3] and [Lur, Sections 4.6-7]. Consider two motivic spectra X and Y . If X is
dualizable, its Spanier-Whitehead dual is defined to be the motivic spectrum

DX := F (X,S0,0).

In particular, finite cell complexes are dualizable. For spheres, there is a canon-
ical identification

DSm,n = F (Sm,n, S0,0) ≃ F (S0,0, S−m,−n) ≃ S−m,−n. (4.1)

Given a map f : X GG A Y between dualizable motivic spectra, denote its
Spanier-Whitehead dual by

Df := F (f, S0,0) : DY GG A DX.

If X is dualizable, the smashing morphism F (X,S0,0)∧X
∧

GG A F (X,S0,0∧X)
is an equivalence, giving the equivalence

DX ∧X = F (X,S0,0) ∧X
≃

GG A F (X,S0,0 ∧X) = End(X). (4.2)

Denote the evaluation map that is adjoint to the identity map on F (X,S0,0)
by

DX ∧X = F (X,S0,0) ∧X
ev

GG A S0,0.

The endomorphism spectrum End(X) is always a motivic A∞ ring spectrum
with multiplication map given by the composite µEnd(X) in the diagram

End(X) ∧ End(X) End(X)

DX ∧X ∧DX ∧X DX ∧DX ∧X ∧X DX ∧ S0,0 ∧X.
1 ∧ χ ∧ 1 1 ∧ ev∧1

can. can.

µEnd(X)

(4.3)
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The spectrum Cτ is dualizable since it is a 2-cell complex. The A∞ ring
structure on End(Cτ) can thus be understood in terms of Spanier-Whitehead
duality. For this, we have to compute the homotopy type of the Spanier-

Whitehead dual DCτ and identify the evaluation map DCτ ∧ Cτ
ev

GG A S0,0.

Proposition 4.3. We have the following identifications.

(1) The Spanier-Whitehead dual of S0,−1
τ

GG A S0,0 is Dτ ≃ τ : S0,0
GG A S0,1.

(2) The Spanier-Whitehead dual of the cofiber sequence

S0,−1 τ
GG A S0,0 i

GG A Cτ
p

GG A S1,−1

is the cofiber sequence

S0,1 τ
GD GG S0,0

p
GD GG Σ−1,1Cτ

i
GD GG S−1,1.

In particular we have Di ≃ p and Dp ≃ i, and a canonical (up to homo-
topy) identification

DCτ ≃ Σ−1,1Cτ. (4.4)

Proof.

(1) Start with the map S0,−1
τ

GG A S0,0. The functor D = F (−, S0,0) and

the canonical identification of equation (4.1) gives a map S0,0
Dτ
GG A S0,1,

which by definition, sends 1 to τ on π0,0. Since it lives in the group[
S0,0, S0,1

]
∼= Ẑ2 generated by τ , we get that Dτ ≃ τ .

(2) Since the dualization functor D preserves cofiber sequences, we get the
cofiber sequence

DS0,−1 Dτ
GD GG DS0,0 Di

GD GG DCτ
Dp
GD GG DS1,−1.

To understand it, we use the canonical equivalences of equation (4.1) and
embed it in the diagram

DS0,−1 DS0,0 DCτ DS1,−1

S0,1 S0,0 Σ−1,1Cτ S−1,1.

Dτ Di Dp

τ p i
can. can. can.

By the 5-lemma, the map Σ−1,1Cτ GG A DCτ is an equivalence. Moreover,
given two such equivalences, their difference would factor trough the map
p and thus trough S0,0. It follows that this equivalence is canonical up to
homotopy, since by Corollary 2.4 we have

π0,0(DCτ) ∼= π0,0(Σ
−1,1Cτ) ∼= π1,−1(Cτ) = 0.
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Lemma 4.4. Up to a unit, the evaluation map DCτ ∧Cτ
ev

GG A S0,0 is given by
the commutative diagram

DCτ ∧ Cτ S0,0

Σ−1,1Cτ ∧ Cτ Σ−1,1Cτ.

ev

µ

p≃ can.

Proof. We compute the relevant abelian group of homotopy classes of maps[
DCτ ∧ Cτ, S0,0

]
. We have

[
DCτ ∧ Cτ, S0,0

]
∼=

[
Σ−1,1Cτ ∧Cτ, S0,0

]
by equation (4.4)

∼=
[
Σ−1,1Cτ ∨Cτ, S0,0

]
by Lemma 3.6

∼=
[
Σ−1,1Cτ, S0,0

]
⊕
[
Cτ, S0,0

]

∼=
[
S0,0, S0,0

]
⊕ 0 via Σ−1,1Cτ

p
GG A S

∼= Ẑ2

which is generated by the identity. This means that
[
DCτ ∧ Cτ, S0,0

]
is gen-

erated by the composite

DCτ ∧ Cτ ≃ Σ−1,1Cτ ∧ Cτ
µ

GGG A Σ−1,1Cτ
p

GG A S0,0.

On the other side, by adjunction we have an isomorphism

[DCτ,DCτ ] ∼=
[
DCτ ∧ Cτ, S0,0

]
,

which sends the identity map to the evaluation map (by definition of the eval-

uation map). This shows that ev is also one of the units in Ẑ2, finishing the
proof.

Lemma 4.5. Under the vertical identifications given by

End(Cτ) ∧ End(Cτ) End(Cτ)

(Σ−1,1Cτ ∨ Cτ) ∧ (Σ−1,1Cτ ∨ Cτ) Σ−1,1Cτ ∨ Cτ

(Σ−1,1Cτ ∧ Σ−1,1Cτ) ∨ (Σ−1,1Cτ ∧ Cτ) ∨ (Cτ ∧ Σ−1,1Cτ) ∨ (Cτ ∧ Cτ) Σ−1,1Cτ ∨ Cτ,

µEnd(Cτ)

≃ ≃

= =
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the multiplication on End(Cτ) is given (up to a unit) by the maps

Σ−1,1Cτ ∧ Σ−1,1Cτ
(p∧1,0)
GGGG A Σ−1,1Cτ ∨ Cτ

Σ−1,1Cτ ∧ Cτ
(µ,0)

GGGG A Σ−1,1Cτ ∨ Cτ

Cτ ∧ Σ−1,1Cτ
(µ,p∧1)
GGGG A Σ−1,1Cτ ∨ Cτ

Cτ ∧ Cτ
(0,µ)

GGGG A Σ−1,1Cτ ∨ Cτ.

Sketch of proof. This proof is by tedious diagram chases, and is in the spirit as
the proof of Lemma 4.1. We will now briefly sketch the steps in the proof. The
first part is to break End(Cτ) ∧ End(Cτ) in more manageable summands via
Spanier-Whitehead duality, and the necessary identifications are done in Propo-
sition 4.3. We then use the definition of the multiplication map on End(Cτ)
from diagram (4.3), as a composite of the factor swap map and the evalua-
tion map. The evaluation map was explicitly computed in Lemma 4.4. The
remainder of the proof consists on carefully identifying composites.

The additive splitting End(Cτ) ≃ Cτ ∨ Σ−1,1Cτ gives the isomorphism

π∗,∗(End(Cτ)) ∼= π∗,∗(Cτ) ⊕ βτ · π∗,∗(Cτ).

The class βτ has degree |βτ | = (−1, 1), and is the unit element of the shifted
copy given by the composite given by the composite

Cτ
p

GG A S1,−1 Σi
GG A Σ1,−1Cτ.

Lemma 4.5 gives the following multiplicative description of the homotopy
groups π∗,∗(End(Cτ)).

Corollary 4.6. The A∞ ring spectrum End(Cτ) has homotopy ring (up to a
unit) given by

π∗,∗ (End(Cτ)) ∼= π∗,∗ (Cτ) 〈βτ 〉

/
αβτ − (−1)|α|βτα = i ◦ p(α)
β2
τ = 0

where βτ is a non-commutative variable and α span the elements of π∗,∗(Cτ).

Remark 4.7. The canonical inclusion Cτ GG A End(Cτ) is a map of A∞ ring
spectra and on homotopy is the inclusion of π∗,∗(Cτ) onto the non-shifted
factor. We can also think of the ring π∗,∗(End(Cτ)) as being the abelian group

π∗,∗(End(Cτ)) ∼= π∗,∗(Cτ) ⊕ βτ · π∗,∗(Cτ)

with ring structure given by the following multiplication table (up to a unit)

α ◦ α′ = αα′

α ◦ βτα
′ = (−1)|α|βταα

′ + (i ◦ p(α))α′

βτα ◦ α′ = βταα
′

βτα ◦ βτα
′ = βτ (i ◦ p(α))α

′,
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where α, α′ ∈ π∗,∗(Cτ) and βτα, βτα
′ ∈ βτ · π∗,∗(Σ−1,1Cτ).

Remark 4.8. Since S0,0
i

GG A Cτ is the ring map which induces the π∗,∗(S
0,0)-

module structure on π∗,∗(Cτ), we have the compatibility formula

i(α)α′ = αα′ for α ∈ π∗,∗(S
0,0), α′ ∈ π∗,∗(Cτ).

The first multiplication uses the ring structure of Cτ while the second uses the
S0,0-module structure on Cτ . This simplifies some of the formulas of Corollary
4.6, for example by βτα◦βτα

′ = βτp(α)α
′ since p(α) is in the homotopy groups

of the motivic sphere.

5 Examples of Cτ-modules

Since the 2-cell complex Cτ is a (cofibrant) commutative ring spectrum, we can
use [Pel11, Section 2.8] to endow the category CτMod with a closed symmetric
monoidal model structure. The closed monoidal structure is given by the the
relative smash product −∧Cτ − and the internal function spectrum FCτ (−,−).
Moreover, the model structure is created by the forgetful functor, and is thus
part of the Quillen adjunction

SptC = S0,0Mod
−∧Cτ
GG A⊥
GD GG

U
CτMod. (5.1)

In this Section we will first give some elementary lemmas about the category

CτMod, and then study some important spectra that are induced up from
S0,0-modules by smashing with −∧Cτ . We call such a spectrum a Cτ-induced
spectrum.
We start with the Cτ -induced Eilenberg-Maclane spectrum HF2 ∧ Cτ which
has homotopy groups π∗,∗(HF2 ∧ Cτ) ∼= F2 in degree (0, 0). We will compute
its Steenrod algebra of operations (and its dual) as a Hopf algebra, both in
SptC and CτMod. This computation is used in future work [Ghe] to construct
Morava K-theories for the motivic wi periodic operators. The first operator w1

was introduced in [And]. We then show that the Cτ -induced Moore spectrum
S/(2, τ) admits a unique structure of an E∞ algebra over Cτ . We also observe
that it admits a v11-self map, whereas S0,0/2 only admits a v41-self map. Finally,
we compute the homology and homotopy of the Cτ -induced connective alge-
braic and hermitian K-theory spectra kgl and kq. Here again an interesting
phenomenon arises in hermitian K-theory: an obstruction is killed and we can
see the element v21 in the homotopy of kq ∧Cτ , whereas we only see its square
v41 in kq.

5.1 Elementary Results on Cτ-Modules

Let X be a (left) Cτ -module with action map φX : Cτ ∧X GG A X . The left
unitality condition says that the triangle in the diagram
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S0,−1 ∧X S0,0 ∧X Cτ ∧X S1,−1 ∧X

X

τ i p

≃
φX

commutes, i.e., that φX is a retraction of the unit. This produces a splitting

Cτ ∧X
(φX ,p)
GGGG A X ∨ Σ1,−1X (5.2)

up to homotopy, whose inverse map requires a choice of section of p. There is
however a canonical choice of section given by the composite

S1,−1 ∧ S0,0 ∧X
id∧i∧id
GGGG A S1,−1 ∧ Cτ ∧X

s∧id
GG A Cτ ∧Cτ ∧X

id∧φX

GGG A Cτ ∧X,

by using the canonical section s : Σ1,−1Cτ GG A Cτ ∧ Cτ from Lemma 3.6.
The Betti realization functor SptC GG A Spt naturally extends to CτMod by
composing with the forget functor

CτMod GG A SptC

ReC
GG A Spt.

Lemma 5.1. Every Cτ-module realizes to a contractible spectrum in Top.

Proof. Consider a spectrumX ∈ SptC endowed with a structure of Cτ -module.
Since the Betti realization functor is (strict) symmetric monoidal and sends Cτ
to a contractible spectrum, we have

ReC(Cτ ∧X) ≃ ReC(Cτ) ∧ ReC(X) ≃ ∗.

It follows that ReC(X) ≃ ∗ as X is a retract of Cτ ∧X by equation (5.2).

The next two elementary lemmas will often be used for studying Cτ -induced
spectra.

Lemma 5.2. Let X be a spectrum with τ-free homotopy (resp. homology)
groups, i.e., multiplication by τ is injective on π∗,∗(X) (resp. on HF2∗,∗(X)).
Then the homotopy (resp. homology) groups of the Cτ-induced spectrum X∧Cτ
are given by

π∗,∗(X ∧Cτ) ∼= π∗,∗(X) /τ (resp. HF2∗,∗(X ∧ Cτ) ∼= HF2∗,∗(X) /τ ).

Moreover if X is an E∞ ring spectrum, then this isomorphism is a ring iso-
morphism.

Proof. This follows by the long exact sequence induced from the cofiber se-
quence

Σ0,−1X
τ

GG A X
i

GG A Cτ ∧X
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since multiplication by τ is injective. Moreover, if X is an E∞ ring spectrum,
then the map

S0,0 ∧X
i∧id
GGG A Cτ ∧X

is a map of E∞ ring spectra as well.

Lemma 5.3. Let X be a spectrum with τ-free HF2-cohomology groups, i.e.,
multiplication by τ is injective on HF2

∗,∗(X). Then the cohomology groups of
the Cτ-induced spectrum X ∧Cτ are given by

HF2
∗,∗(X ∧ Cτ) ∼= HF2

∗,∗(Σ1,−1X) /τ .

Proof. Similarly to the proof of Lemma 5.2, this just follows by the long exact
sequence induced from the cofiber sequence

Cτ ∧X GG A Σ1,−1X
τ

GG A Σ1,0X

since multiplication by τ is injective.

5.2 The Cτ-Induced Eilenberg-Maclane Spectrum

Consider the Cτ -induced Eilenberg-Maclane spectrum

HF2 := HF2 ∧ Cτ,

which has homotopy π∗,∗(HF2) ∼= F2 concentrated in degree (0, 0) by Lemma
5.2. Unlike HF2, this spectrum detects both cells of Cτ since

HF2
∗,∗

(Cτ) ∼=





F2 if (∗, ∗) = (0, 0)

F2 if (∗, ∗) = (1,−1)

0 otherwise.

Remark 5.4. As pointed out by the referee, an important observation about
the spectrum HF2 is that it lives in the heart of Morel’s homotopy t-structure
[Mor04]. It is possible that this observation leads to a universal property of
HF2, which could also hold over other bases than SpecC, giving a way to
generalize the results of this paper over other bases.

Denote the HF2-Steenrod algebra of operations in HF2-cohomology by

A ∼= π−∗,−∗

(
F (HF2, HF2)

)
,

and its dual algebra of co-operations in HF2-homology by

A∨ ∼= π∗,∗
(
HF2 ∧HF2

)
.

The two main ingredients for these computations are our previous knowledge
of the HF2-Steenrod algebra A, which we recalled in Section 2.2, and the de-
scriptions of Cτ ∧Cτ and End(Cτ) from Section 4. Since τ ∈ M2 is an element
of the base ring, there is an induced Hopf algebra structure over M2/τ ∼= F2

on the quotients A /τ and A∨

/τ .
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Proposition 5.5. The dual HF2-Steenrod algebra A∨ has the following Hopf
algebra structure

A∨ ∼= A∨

/τ ⊗ E(βτ ) ∼= F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)⊗ E(βτ )

where βτ is a τ-Bockstein in degree (1,−1) which is primitive in the coalgebra
structure.

Proof. The dual HF2-Steenrod algebra is given by the homotopy groups of the
E∞ ring spectrum

HF2 ∧HF2 = HF2 ∧ Cτ ∧HF2 ∧ Cτ ≃ HF2 ∧HF2 ∧ Cτ ∧ Cτ.

Since π∗,∗(HF2) ∼= F2, the left and right units of the Hopf algebroid
π∗,∗

(
HF2 ∧HF2

)
are flat maps and they agree, turning it into a Hopf algebra.

If we smash the canonical equivalence Cτ ∧Cτ ≃ Cτ ∨Σ1,−1Cτ of Lemma 3.6
with HF2 ∧HF2, we get an additive splitting

HF2 ∧HF2 ≃ (HF2 ∧HF2 ∧ Cτ) ∨
(
Σ1,−1HF2 ∧HF2 ∧ Cτ

)
,

into two wedge summands that we can understand individually. Since the
dual Steenrod algebra A∨ is τ -free, Lemma 5.2 gives a ring description of the
homotopy

π∗,∗(HF2 ∧HF2 ∧Cτ) ∼= A∨

/τ ,

and thus the dual HF2-Steenrod algebra is a free module of rank 2 over A∨.
The first generator in degree (0, 0) is the unit given by the ring map

S0,0 i
GGG A HF2 ∧HF2.

The second generator in degree (1,−1) that we call βτ is given by the map

βτ : S
1,−1 i

GG A Σ1,−1Cτ
s

GG A Cτ ∧Cτ
i∧i
GG A HF2 ∧HF2,

where i denotes the inclusion of the bottom cell and s denotes the canonical
section of µ, as in Lemma 3.6. We choose the name βτ because its dual element
in the HF2-Steenrod algebra does behave like a τ -Bockstein in cohomology, as
we explain in Proposition 5.6. To finish the description of the ring structure
of A∨, we have to compute the product βτ · βτ which lands in degree (2,−2).
This product is the homotopy class of the composite

βτ · βτ : S
1,−1 ∧ S1,−1

βτ∧βτ

GGGG A HF2 ∧HF2 ∧HF2 ∧HF2

µ
GG A HF2 ∧HF2

which is nullhomotopic since µCτ ◦ s ≃ 0. This gives the ring structure as the
tensor products

A∨ ∼= A∨/τ ⊗ E(βτ ) ∼= F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)⊗ E(βτ ).
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For the coalgebra structure, the counit is forced as there is only a copy of F2

in degree (0, 0). It thus only remains to compute the coproduct. The ring map

HF2

i
GG A HF2

induces the following map of Hopf algebroids

A∨

ψ
GG A A∨ ∼= A∨/τ ⊗ E(βτ ) : a [G GA a⊗ 1,

which can be factored as reduction modulo τ and then inclusion into the −⊗ 1
factor. It follows that the coproduct ∆(a⊗ 1) can be computed by choosing a
pre-image a of a⊗1, computing the coproduct in A∨, and then pushing it back
via ψ. Since the coproduct formula on the ξi’s and τi’s in A∨ does not involve
any τ -multiples, the exact same formula holds for the coproduct of elements of
the form a⊗ 1 ∈ A∨. It only remains to compute the diagonal on the element
1 ⊗ βτ . We show in the next Proposition 5.6 that its dual is exterior in the
algebra structure of A, implying that 1⊗ βτ is primitive.

Proposition 5.6. The HF2-Steenrod algebra A has the following Hopf algebra
structure

A ∼= A /τ ⊗ E(βτ )

where βτ is a τ-Bockstein in degree (1,−1) which is primitive in the coalgebra
structure.

Proof. Since Cτ is dualizable we can rewrite

F (HF2, HF2) = F (HF2 ∧ Cτ,HF2 ∧ Cτ) ≃ F (HF2, HF2) ∧ Cτ ∧DCτ.

By the identification of Section 4.2 we further have

F (HF2, HF2) ≃ (F (HF2, HF2) ∧ Cτ) ∨
(
Σ−1,1F (HF2, HF2) ∧ Cτ

)
.

By Lemma 5.2 we get that A is a free A/τ -module of rank 2 with generators
given by the operations

id : HF2 GG A HF2 and βτ : HF2

p
GG A Σ1,−1HF2

i
GG A Σ1,−1HF2,

where p denotes the projection of Cτ on its top cell, while i denotes the inclu-
sion of it bottom cell. The definition of βτ explains why we call it a τ -Bockstein.
Since the Steenrod algebra is defined as negative homotopy groups of the endo-
morphism spectrum, the τ -Bockstein βτ is in degree (1,−1). This settles the
additive structure of A, and it remains to understand its Hopf algebra struc-
ture. Since A∨ is a Hopf algebra of finite type, we can dualize its structure
from Proposition 5.5 to get the desired Hopf algebra structure of A. Recall
that we did not yet finish the proof of Proposition 5.5, as we still have to show
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that βτ ∈ A∨ is primitive. This is equivalent to βτ ∈ A being exterior, which
is clear since it is the composite

βτ ◦βτ : HF2

p
GG A Σ1,−1HF2

i
GG A Σ1,−1HF2

p
GG A Σ1,−1HF2

i
GG A Σ1,−1HF2,

which is nullhomotopic as p ◦ i ≃ 0.

Remark 5.7 (Cτ -linear HF2-homology and cohomology). We can define the
Cτ -linear homology and cohomology of a Cτ -module X to be

HF2
Cτ

∗,∗(X) := π∗,∗(HF2∧CτX) and HF2
∗,∗

Cτ (X) := π−∗,−∗

(
FCτ (X,HF2)

)
.

The relevant HF2-Steenrod algebra of Cτ -linear operations and co-operations
are then

π−∗,−∗

(
FCτ (HF2, HF2)

)
and A∨ ∼= π∗,∗

(
HF2 ∧Cτ HF2

)
.

Their computation follows from Lemmas 5.2 and 5.3, and the result is the usual
motivic Steenrod algebra and its dual, modulo τ . The only difference with
the computations of Propositions 5.5 and 5.6 is that the Cτ -linear Steenrod
algebras do not contain the τ -Bockstein element βτ . In particular, the dual
Cτ -linear HF2-Steenrod algebra enjoys the nice formula

F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)

that is very reminiscent of the odd-primary classical Steenrod algebra.

5.3 The Cτ-Induced Moore Spectrum

Denote by S0/2 the mod 2 Moore spectrum in the usual category of topological
spectra Spt. Recall that the classical Toda bracket 〈2, η, 2〉 = η2 implies that
π2(S

0/2) ∼= Z/4. This shows that multiplication by 2 is not a nullhomotopic
map on S0/2, and thus that there is no possible filler in the diagram

S0 ∧ S0/2 S0 ∧ S0/2 S0/2 ∧ S0/2 Σ1S0/2

S0/2.

2

≃
∄ µ

This shows that there exists no left unital multiplication on S0/2.
Denote now the motivic mod 2 Moore spectrum by S0,0/2. Similarly, we can
compute the motivic homotopy group π2,0(S

0,0/2) ∼= Z/4 via the same argu-
ment. More precisely, the analoguous Toda bracket is 〈2, τη, 2〉 = τ2η2, where
η ∈ π1,1(S

0,0) and thus τη ∈ π1,0(S
0,0). This again implies that there is no left

unital multiplication on the Moore spectrum S0,0/2. Observe that this could
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also have been noticed by the fact that a left unital multiplication on S0,0/2
would induce one on S0/2 by Betti realization.
Denote the cofiber of multiplication by τ on S0,0/2 by S/(2, τ). This spectrum
does admit a left unital multiplication since

〈2, η, 2〉 = τη2 ≡ 0 modulo τ.

This does not imply that there is a ring structure on S/(2, τ) as this bracket
is just one possible obstruction (the obstruction to left unitality). In Theorem
5.9 we show that all obstructions are of this type and that S/(2, τ) admits the
structure of an E∞ algebra over Cτ .
Since cofibers in Cτ -modules can be computed in the underlying category of
motivic spectra, it follows that the cofiber of 2 on Cτ has underlying spectrum
S/(2, τ). Consider now S/(2, τ) as a Cτ -module, for example as constructed in
the category CτMod by the cofiber sequence

Cτ
2

GG A Cτ
i

GG A S/(2, τ)
p

GG A Σ1,0Cτ. (5.3)

To equip S/(2, τ) with an E∞ Cτ -algebra structure, we will proceed very sim-
ilarly as in Section 3, which we refer to for more details.

Proposition 5.8. There is a unique homotopy unital and homotopy commu-
tative Cτ-algebra structure on S/(2, τ).

Proof. The computation of [S/(2, τ), S/(2, τ)]Cτ
∼= Z/2 generated by the iden-

tity map shows that ·2 is nullhomotopic on S/(2, τ), providing a left unital
multiplication µ from diagram

Cτ ∧Cτ S/(2, τ) Cτ ∧Cτ S/(2, τ) S/(2, τ) ∧Cτ S/(2, τ) Σ1,0Cτ ∧Cτ S/(2, τ)

S/(2, τ).

2 iL pL

≃
∃ µ

The computation
[
Σ1,0Cτ ∧Cτ S/(2, τ), S/(2, τ)

]
Cτ

= 0 shows that there is a
unique left unital multiplication up to homotopy on S/(2, τ). As in Lemma
3.6, it also implies that there is a unique section s of pL, giving a canonical
additive splitting

S/(2, τ) ∧Cτ S/(2, τ) ≃ S/(2, τ) ∨Σ1,0S/(2, τ). (5.4)

The induced multiplication µ̃ after this identification is again just projection
onto the first factor, and the factor swap map χ is given by the following
diagram

S/(2, τ) ∧Cτ S/(2, τ) S/(2, τ) ∧Cτ S/(2, τ)

S/(2, τ) ∨ Σ1,0S/(2, τ) S/(2, τ) ∨ Σ1,0S/(2, τ).

χ

iL + s (µ, pL)[
1 0
i◦p 1

]

Documenta Mathematica 23 (2018) 1077–1127



The Motivic Cofiber of τ 1119

The matrix can be completely determined since [S/(2, τ), S/(2, τ)]Cτ
∼= Z/2.

By an easy matrix multiplication as in Proposition 3.9, this shows that µ is
right unital and homotopy commutative.

The next step is to show that this (unique) multiplication map µ on S/(2, τ)
can be extended to an E∞ multiplication. We proceed in the exact same way
as we did in Proposition 3.10 and Theorem 3.13.

Theorem 5.9. The Cτ-algebra structure on S/(2, τ) can be uniquely extended
to an E∞ structure.

Proof. We first extend it to an A∞ structure as in Proposition 3.10, with
obstructions living in the abelian group

[
Σn−3,0(Σ1,0Cτ)∧n, S/(2, τ)

]
Cτ

∼=
[
Σ2n−3,0Cτ∧n, S/(2, τ)

]
Cτ

for n ≥ 3. Here we used Σ1,0Cτ since it is the cofiber of the unit map Cτ
i

GG A

S/(2, τ). By using the decomposition formula for Cτ∧n from Corollary (3.7),
the obstructions live in the group

n⊕

i=0

(
n

i

)[
Σ2n−3+i,−iCτ, S/(2, τ)

]
Cτ
.

By the free-forget adjunction these groups are

π2n−3+i,−i(S/(2, τ)).

For n ≥ 3 and for any 0 ≤ i ≤ n this homotopy group is zero, making the
obstruction group zero and allowing µ to extend to an A∞ structure. Similarly
the obstructions for uniqueness live in zero groups, showing that S/(2, τ) admits
a unique A∞ algebra structure over Cτ .
The A3 structure gives an associative homotopy, and thus we now have a unital,
associative and commutative monoid in the homotopy category. This is a 3-
stage in Robinsin’s obstruction theory, so we can apply Corollary 3.2 to extend
it to an E∞ ring structure. The obstructions live in

[
Σn−3,0S/(2, τ)∧m, S/(2, τ)

]
Cτ

for n ≥ 4 and 2 ≤ m ≤ n, where the smash product is over Cτ . As in the
proof of Theorem 3.13, we first break the source in smaller pieces by recursively
using equation (5.4). It is then easy to show that all of those groups are zero
by using cofiber sequences in the first variable to reduce it to homotopy groups
of S/(2, τ). Similarly, the obstructions for uniqueness live in

[
Σn−2,0S/(2, τ)∧m, S/(2, τ)

]
Cτ

for n ≥ 4 and 2 ≤ m ≤ n. We show by the exact same method that all those
groups are zero, finishing the proof.
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Remark 5.10. The fact that multiplication by 2 is nullhomotopic on S/(2, τ) ≃
Cτ/2 is not so surprising, as Cτ is somehow of algebraic nature. In fact,
multiplication by n onX/n is always nullhomotopic in such algebraic categories,
as explained in [Sch10, Proposition 1].

Remark 5.11. The Toda bracket 〈2, η, 2〉 = η2 is also responsible for the non-
existence of a v11-self map on the topological Moore spectrum S0/2. This is
illustrated in the diagram

S2/2 S2 S2

S0/2 S1 S1.

i 2

p 2

η∃ η̃
∄

The map η̃ exists since 2η = 0, but there is no v11-self map as 2 · η̃ 6= 0. Motivi-
cally, the same diagram has the same problem because of the non-vanishing of
the bracket 〈2, η, 2〉 = τη2. However, in Cτ -modules this bracket vanishes and
the Cτ -induced Moore spectrum admits a v11-self map. The diagram

Σ2,1S/(2, τ) Σ2,1Cτ Σ2,1Cτ

S/(2, τ) Σ1,0Cτ Σ1,0Cτ

i 2

p 2

η∃ η̃
∃ v1

exhibits this v1-self map

Σ2,1S/(2, τ)
v1

GG A S/(2, τ).

More precisely, this follows since the computation
[
Σ2,1Cτ, S/(2, τ)

]
∼= Z/2

forces the relation 2 · η̃ ≃ 0.

5.4 The Cτ-Induced Algebraic and Hermitian K-Theory spectra

Consider the motivic algebraic K-theory spectrum KGL constructed in
[Voe98], which represents algebraic K-theory on smooth schemes. More pre-
cisely, given any smooth scheme X , the KGL-cohomology of its stabilization
Σ∞

+X computes the algebraic K-theory of the scheme X . Voevodsky con-
structed in [Voe02] its 0-effective cover kgl := f0(KGL). In the 2-completed
category, a model for kgl is also given by the connective cover kgl as described
in [IS11] over SpecC and in [NSØ15] over more general basis. It is shown in
[NSØ15] that both KGL and kgl admit a unique E∞ ring structure. Recall
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that we work in the 2-completed category, and we use kgl to denote the 2-
completed connective algebraic K-theory spectrum. Its coefficients and mod 2
homology of kgl over SpecC are computed in [IS11] and given by

π∗,∗(kgl) ∼= Ẑ2[τ, v1]

HF2∗,∗(kgl) ∼= F2[τ ][ξ1, ξ2, . . .][τ2, τ3, . . .]
/
τ2i = τξi+1 ,

where the element v1 is in degree (2, 1) and corresponds to the usual Bott
periodicity. Its homology is written as a subalgebra of the mod 2 homology of
HF2 recalled in equation (2.2).
Consider now the hermitian K-theory spectrum KQ defined in [Hor05] and
studied in [RØ16]. The paper [IS11] defines its connective cover kq over SpecC,
by taking appropriate C2-fixed points (although it is denoted by ko in that
paper). It also computes its coefficients and mod 2 homology

π∗,∗(kq) ∼= Ẑ2[τ, η, a, b]
/
2η, τη3, aη, a2 = 4b

HF2∗,∗(kq) ∼= F2[τ ][ξ
2
1 , ξ2, . . .][τ2, τ3, . . .]

/
τ2i = τξi+1 .

To explain the homotopy ring π∗,∗(kq), Figure 4 displays the E∞-page of the
motivic Adams spectral sequence computing π∗,∗(kq). The horizontal axis rep-
resents the stem, i.e., the s in πs,w(kq), while the vertical axis represents the
Adams filtration. As it is usually done with motivic charts, the weight w in

filtration

stem4 8

h0 h1

a = h0b20

a2

b = b220

means M2

means M2/τ ∼= F2

(stem, filtration, weight):

|τ | = (0, 0,−1)

h0 = 2 and |h0| = (0, 1, 0)

h1 = η and |h1| = (1, 1, 1)

|a| = (4, 3, 2)

|b| = (8, 4, 4)

Figure 4: The E∞-page of the Adams spectral sequence computing π∗,∗(kq).

πs,w(kq) is suppressed from the chart and one can imagine it on a third axis
perpendicular to the page.
In this Section we consider the Cτ -induced spectra that we denote by

kgl := kgl ∧ Cτ and kq := kq ∧ Cτ.

Both of them are Cτ -algebras, where kgl is an E∞ algebra as it is the smash
product of two E∞ rings.
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The case of algebraic K-theory kgl

The fact that both its homotopy and homology are τ -free makes the description
of kgl straightforward. Indeed, by Lemma 5.2 we immediately get

π∗,∗(kgl) ∼= Ẑ2[v1] and HF2∗,∗(kgl) ∼= F2[ξ1, ξ2, . . .]⊗ E(τ2, τ3, . . .).

The case of hermitian K-theory kq

Its homology is τ -free and so again we immediately get

HF2∗,∗(kq) ∼= F2[ξ
2
1 , ξ2, . . .]⊗ E(τ2, τ3, . . .).

Its homotopy is more interesting as it is not τ -free, and we will get contributions
both from the cokernel and kernel of multiplication by τ . Moreover, a surprising
fact occurs as there is a hidden extension which makes kq contain the periodicity
element v21 in its homotopy.

Proposition 5.12. The homotopy ring π∗,∗(kq) has the presentation

π∗,∗(kq) ∼= Ẑ2[η, v
2
1 ]
/
2η .

Proof. The usual cofiber sequence (2.5) for Cτ , smashed with kq gives the
cofiber sequence

Σ0,−1kq
τ

GG A kq
i

GG A kq
p

GG A Σ1,−1kq.

Since the homology HF2∗,∗

(
Σ0,−1kq

)
is τ -free, we ge the short exact sequence

0 GG A HF2∗,∗

(
Σ0,−1kq

) τ
GG A HF2∗,∗ (kq)

i
GG A HF2∗,∗

(
kq

)
GG A 0

in homology. For any motivic spectrum X , denote by Ext∗(X) the trigraded
term

Ext∗,∗,∗
A

∨
-comod

(HF2∗,∗(S
0,0), HF2∗,∗(X))

that represents the E2 page of the motivic Adams spectral sequence for X . We
use the indicated grading in Ext∗(X) to denote the homological degree in Ext,
i.e., the Adams filtration on the E2 page. From the above short exact sequence,
we get a long exact sequence in Ext-groups

· · ·
τ

GG A Ext∗(kq)
i∗

GG A Ext∗(kq)
p∗

GG A Ext∗+1(Σ0,−1kq)
τ

GG A · · · ,

i.e., a long exact sequence in E2 pages. This gives short exact sequences

0 GG A Ext∗(kq) /τ
i∗

GG A Ext∗(kq)
p∗

GG A τ Ext
∗+1(Σ0,−1kq) GG A 0,

Documenta Mathematica 23 (2018) 1077–1127



The Motivic Cofiber of τ 1123

where the left term is the cokernel of τ while the right term is the τ -torsion.
Since i is a ring map, the term Ext(kq)/τ includes as a subring of Ext(kq).
However, this cokernel can act non-trivially on the τ -torsion part, giving po-
tential extension problems to solve. Since the motivic Adams spectral sequence
for kq collapses at the E2 page with no hidden extensions, the term Ext(kq)
is given by the Figure 4 on page 1121. These two pieces assemble to give the
additive description of the E2 page of the motivic Adams spectral sequence
for kq as described in Figure 5. It still remains to solve the possible exten-

filtration

stem4 8

h0 h1

a

a2

b

h̃3
1

means M2/τ ∼= F2

(stem, filration, weight):

h0 = 2 and |h0| = (0, 1, 0)

h1 = η and |h1| = (1, 1, 1)

|a| = (4, 3, 2)

|b| = (8, 4, 4)

h̃3
1 = η̃3 and |h̃3

1| = (4, 2, 2)

Figure 5: The E2 page of the motivic Adams spectral sequence for kq as an
F2-vector space.

sion problems and possible Adams differentials. The only possible extension is

whether or not 2 · h̃31 = a, as indicated in Figure 5. Consider the Toda bracket
〈τ, η3, 2〉 as in the diagram

S3,2 S3,2 Σ0,−1kq kq

Σ−1,0kq

Σ−1,0kq,

2 η3

τ

p

i

η̃3

where we have that 2 · η̃3 ∈ i∗〈τ, η3, 2〉 by [Isa, Section 3.1.1]. We can compute
this bracket in the motivic May spectral sequence using May’s convergence
Theorem. See [May69] for the original reference, and [Isa, Theorem 2.2.3] for
an exposition of the motivic version. More precisely, we can compute it on the
motivic May E3-page via the differential d3(b20) = τh31 (since h0h1 is already
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zero). This bracket has no indeterminacy giving

〈τ, h31, h0〉 = {b20h0} .

Recall from Figure 4 that a = b20h0 giving that indeed, in π∗,∗(kq), there is

an extension 2 · h̃31 = a. This h0-extension appears as the round dotted line on
Figure 5. We now spell out the ring structure of this E2 page. First observe
that

4
(
h̃31

)2

=
(
2h̃31

)2

= a2 = 4b
2
,

and because there are no possible extensions in that column, we get that(
h̃31

)2

= b. The E2 page of the motivic Adams spectral sequence for kq has

therefore the ring presentation

E2
∼= F

[
h0, h1, h̃31

] /
h0h1 .

There are no possible Adams differentials on these 3 generators, and thus Figure
5 also represents the E∞ page of the Adams spectral sequence for kq. Except
the h0-towers, there are no possible hidden extensions, giving the multiplicative
description

π∗,∗(kq) ∼= Ẑ2[η, h̃31]
/
2η .

Finally, we show that h̃31 detects the element v21 . We can smash the cofiber
sequence

Σ1,1kq
η

GG A kq
i

GG A kgl

with Cτ to obtain the cofiber sequence

Σ1,1kq
η

GG A kq
i

GG A kgl.

Since i is a ring map, then so is the induced map i. The ring map i sends

the 8-fold Bott periodicity element b =
(
h̃31

)2

to the 8-fold Bott periodicity

element v41 , which forces h̃31 to be sent to v21 . The E2 page of kq has therefore
the ring presentation

π∗,∗(kq) ∼= Ẑ2[η, v
2
1 ]
/
2η .
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