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Abstract. Grothendie
k proved that any �nite epimorphism of

noetherian s
hemes fa
tors into a �nite sequen
e of e�e
tive epimor-

phisms. We de�ne the 
omplexity of a �at groupoid R ⇒ X with

�nite stabilizer to be the length of the 
anoni
al sequen
e of the �nite

map R → X ×X/R X , where X/R is the Keel�Mori geometri
 quo-

tient. For groupoids of 
omplexity at most 1, we prove a theorem of

des
ent along the quotient X → X/R and a theorem on the existen
e

of the quotient of a groupoid by a normal subgroupoid. We expe
t

that the 
omplexity 
ould play an important role in the �ner study of

quotients by groupoids.
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1 Introduction

Motivation. Let X be a s
heme endowed with an a
tion of a group s
heme

G su
h that there exists a quotient π : X → Y = X/G. Consider the 
ategory
C(X) of ve
tor bundles on X . In this paper, we give new examples where one


an 
hara
terize the G-linearized bundles on X that des
end to bundles on Y ,
and similarly for other �bered 
ategories C. More pre
isely, let C(G,X) be the

ategory of ve
tor bundles endowed with a G-linearization. Let C(G,X)′ be
the sub
ategory of G-linearized bundles for whi
h the a
tion of the stabilizers

of geometri
 points is trivial. It is not hard to see that for any ve
tor bundle
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G ∈ C(Y ), the pullba
k F = π∗G is naturally an obje
t of C(G,X)′. The

question is:

Let G × X → X be a group s
heme a
tion as above, with quotient π : X →
Y = X/G. When is the pullba
k π∗ : C(Y )→ C(G,X)′ an equivalen
e?

The 
orre
t framework for this type of question is that of algebrai
 spa
es

(whi
h generalize s
hemes) and groupoids (whi
h generalize group a
tions).

That this is so was demonstrated twenty years ago by Keel and Mori who set-

tled the question of existen
e of quotients for a
tions with �nite stabilizer in the

paper [KM97℄. The main point is that groupoids allow redu
tion and dévis-

sage in a mu
h more �exible way than group a
tions. Moreover, groupoids

in
lude examples of interest like foliations in 
hara
teristi
 p, and insepara-

ble equivalen
e relations as in work of Rudakov and Shafarevi
h [RS76℄ and

Ekedahl [Ek88℄, whi
h we will return to in the end of this introdu
tion. We

emphasize that our results are equally interesting in the restri
ted 
ase of group

a
tions. So in the sequel we let

(1) R ⇒ X be a �at lo
ally �nitely presented groupoid of algebrai
 spa
es,

(2) C→ AlgSp be a 
ategory �bered over the 
ategory of algebrai
 spa
es,

(3) C(R,X) be the 
ategory of obje
ts of C(X) equipped with R-linearizations
(see 4.1 for a pre
ise de�nition), and

(4) C(R,X)′ ⊂ C(R,X) be the full sub
ategory of obje
ts with trivial geomet-

ri
 stabilizer a
tions.

Sin
e R-linearized obje
ts on X are the same as obje
ts on the algebrai
 sta
k

X = [X/R], the language of sta
ks is an alternative whi
h is also used on that

matter.

Known results. When X → Y is a tame quotient, whi
h means that the

geometri
 stabilizers of R ⇒ X are linearly redu
tive �nite group s
hemes,

and C is either the 
ategory of line bundles, or �nite étale 
overs, or torsors

under a �xed linearly redu
tive �nite group s
heme, Olsson showed that π∗ :
C(Y ) → C(G,X)′ is an equivalen
e [Ol12, Props. 6.1, 6.2, 6.4℄. When X → Y
is a good quotient and C is the 
ategory of ve
tor bundles, Alper showed that

π∗
is an equivalen
e [Al13, Thm. 10.3℄. Results for good quotients and other


ategories C will be presented in an up
oming paper by the se
ond author.

The complexity. We wish to �nd examples that go beyond these 
ases, e.g.,

wild a
tions in 
hara
teristi
 p. In this new setting the map π∗ : C(Y ) →
C(G,X)′ fails to be an isomorphism in general; e.g. if C is the 
ategory of

line bundles and X = Spec(k[ǫ]/(ǫ2)) with trivial a
tion of G = Z/pZ, the
G-line bundle L generated by a se
tion x with a
tion x 7→ (1 + ǫ)x is not

trivial. For this, we introdu
e a new invariant of �at groupoids whi
h we 
all

the 
omplexity. (This is not to be 
onfused with the 
omplexity as de�ned by

Vinberg [Vi86℄ in another 
ontext, namely the minimal 
odimension of a Borel
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orbit in a variety a
ted on by a 
onne
ted redu
tive group.) We �x our attention

on the morphism jY : R → X ×Y X whi
h is �nite and surje
tive when the

groupoid has �nite inertia. The 
omplexity of the groupoid is 
ontrolled by the

epimorphi
ity properties of this map. In order to quantify this, we use a result

of Grothendie
k to the e�e
t that a �nite epimorphism of noetherian s
hemes

fa
tors as a �nite sequen
e of e�e
tive epimorphisms. We prove in 2.3.2 that

there is a 
anoni
al su
h sequen
e, and we de�ne the 
omplexity of R ⇒ X as

the length of the 
anoni
al sequen
e of jY .

Main new results. The 
omplexity is equal to 0 when jY is an isomorphism,

whi
h means that the groupoid a
ts freely; in this 
ase most questions involving

R ⇒ X are easily answered. The next 
ase in di�
ulty is the 
ase of 
omplexity

1. In order to obtain results in this 
ase, we introdu
e the stabilizer Σ of

R ⇒ X , whi
h is the preimage of the diagonal under R → X ×X . It re�nes

the information given by the 
olle
tion of stabilizers of geometri
 points in

that it a

ounts for higher rami�
ation. We let C(R,X)Σ ⊂ C(R,X)′ be the

sub
ategory of R-linearized obje
ts for whi
h the a
tion of Σ is trivial. In our

main result we have to assume that the quotient map is �at; the payo� is that

we 
an handle very general 
ategories C.

Theorem 4.2.3. Let R ⇒ X be a �at, lo
ally �nitely presented groupoid

spa
e with �nite stabilizer Σ→ X and 
omplexity at most 1. Assume that the

quotient π : X → Y = X/R is �at (resp. �at and lo
ally of �nite presentation).

Let C→ AlgSp be a sta
k in 
ategories for the fpq
 topology (resp. for the fppf

topology).

(1) If the sheaves of homomorphisms HomC(F,G) have diagonals whi
h are

representable by algebrai
 spa
es, then the pullba
k fun
tor π∗ : C(Y ) →
C(R,X)Σ is fully faithful.

(2) If the sheaves of isomorphisms IsomC(F,G) are representable by algebrai


spa
es, then the pullba
k fun
tor π∗ : C(Y ) → C(R,X)Σ is essentially surje
-

tive.

In parti
ular if C is a sta
k in groupoids with representable diagonal, the fun
tor

π∗
is an equivalen
e.

This applies to sta
ks whose diagonal has some representability properties. The

next theorem applies to a sta
k whi
h does not enjoy su
h a property.

Theorem 4.2.5. Let C → AlgSp be the fppf sta
k in 
ategories whose obje
ts

over X are �at morphisms of algebrai
 spa
es X ′ → X. Let R ⇒ X be a

�at, lo
ally �nitely presented groupoid spa
e with �nite stabilizer Σ → X and


omplexity at most 1. Assume that the quotient π : X → Y = X/R is �at and

lo
ally of �nite presentation. Then the fun
tor π∗ : C(Y ) → C(R,X)Σ is an

equivalen
e.
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We give examples of groupoids satisfying the assumptions of these theorems

in se
tion 3.3. These in
lude groupoids a
ting on smooth s
hemes in su
h a

way that the stabilizers are symmetri
 groups a
ting by permutation of lo
al


oordinates. Other examples are given by groupoids a
ting on 
urves in pos-

itive 
hara
teristi
; this is espe
ially interesting in 
hara
teristi
 2. The two

theorems above 
an fail when π is not �at and the stabilizer groups are not

tame, see se
tion 4.5. We do not know if the assumption that the 
omplexity

is at most one is ne
essary.

We give an appli
ation to the existen
e of quotients of groupoids by normal

subgroupoids. This is interesting when applying dévissage arguments, as for

instan
e in [KM97, � 7℄. This question is also natural from the point of view of

understanding the internal stru
ture of the 
ategory of groupoids. The basi


observation is this: if R ⇒ X is a groupoid P ⊂ R ⇒ X is a normal �at

subgroupoid, the a
tions of P on R by pre
omposition and post
omposition

are free, but the simultaneous a
tion of P × P is not free. For groupoids

R = G×X given by group a
tions, it is nevertheless easy to make G/H a
t on

X/H , providing a quotient groupoidG/H×X/H ⇒ X/H . However for general

groupoids, 
onstru
ting a 
omposition law on the quotient P\R/P making it

a groupoid a
ting on X/P is mu
h more 
ompli
ated. In se
tion 4.3 we review

some 
ases where this is possible. For subgroupoids of 
omplexity 1 with �at

quotient, we obtain a satisfying answer.

Theorem 4.3.1. Let R ⇒ X be a �at, lo
ally �nitely presented groupoid

of algebrai
 spa
es. Let P ⇒ X be a �at, lo
ally �nitely presented normal

subgroupoid of R with �nite stabilizer ΣP → X and 
omplexity at most 1.
Assume that the quotient X → Y = X/P is �at and lo
ally �nitely presented.

Then there is a quotient groupoid Q ⇒ Y whi
h is �at and lo
ally �nitely

presented, with Q = P\R/P . Moreover, the morphisms R→ Q and R×XR→
Q×Y Q are �at and lo
ally �nitely presented.

Directions of further work. The natural question now is to extend these

results to the 
ase of groupoids of 
omplexity 2. This would most likely shed

some light on the 
ase of arbitrary 
omplexity. For the moment, we have no idea

of what the 
orre
t substitute for C(R,X)Σ should be in the general 
ontext.

The appli
ation we envision for these results is to the study of �nite �at 
overs

of algebrai
 varieties, typi
ally over a �eld k of 
hara
teristi
 p. More pre
isely,

we expe
t our theorems to be useful for understanding how purely inseparable

morphisms of algebrai
 k-varieties f : V →W 
an be fa
torized. An important

instan
e is when f is an iterate of the Frobenius morphism of V . We note that

when V is smooth, f will be �at. Thus the assumption of �atness of the

quotient map in our results is not too annoying; we give some more 
omment

on this point in Remark 4.2.4.

Organization of the article. As we said already, we work in the setting

of groupoids in algebrai
 spa
es. (The relevan
e of this 
hoi
e in questions of

quotients in Algebrai
 Geometry is well explained in the paper [Li05℄ whi
h
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we re
ommend as an ex
ellent 
ontextual reading.) This leads us to start in

se
tion 2 with some preparations on �nite epimorphisms of spa
es. In par-

ti
ular, we give su�
ient 
onditions for an epimorphism of algebrai
 spa
es

to be e�e
tive, and we prove a pre
ise form of Grothendie
k's fa
torization of

�nite epimorphisms into �nite e�e
tive epimorphisms. In se
tion 3 we re
all

the basi
 vo
abulary of groupoids, we de�ne the 
omplexity, and we present

several examples. Finally in se
tion 4 we prove the main results of the paper,

presented above.

Acknowledgements. This arti
le is derived from the third author's Ph.D.

thesis. We thank user27920 on MathOver�ow for help in the proof of Proposi-

tion 2.3.2 before we learned this is in [SGA6℄. We thank Alessandro Chiodo for

dis
ussions related to Theorem 4.2.3. We thank Cédri
 Bonnafé for his interest

and for dis
ussions around a
tions of groups generated by re�e
tions.

2 Finite epimorphisms

This se
tion of preliminary nature 
ontains material on �nite epimorphisms

of algebrai
 spa
es. The notion of epimorphism turns out to be a little more

subtle in the 
ategory of algebrai
 spa
es than its 
ounterpart in the 
ategory of

s
hemes, due to the la
k of the lo
ally ringed spa
e des
ription. The same is true

for the notion of e�e
tive epimorphism. In order to have a better understanding

of the situation, we will give some manageable 
onditions that ensure that a

map of algebrai
 spa
es is an epimorphism, or an e�e
tive epimorphism. The

main result is Theorem 2.2.5, but for the 
onvenien
e of the reader we will

indi
ate here its main 
onsequen
e needed in the sequel. We o

asionally write

q
qs for quasi-
ompa
t and quasi-separated. Re
all the following two statements

in the easy s
heme 
ase:

2.0.1 Proposition. Let f : S′ → S be a q
qs surje
tive morphism of s
hemes.

Write A(S′) = f∗OS′
. Then the following are equivalent:

(1) f is s
hemati
ally dominant, that is, A(S)→ A(S′) is inje
tive;

(2) f is an epimorphism in the 
ategory of s
hemes.

2.0.2 Proposition. Let f : S′ → S be a q
qs submersive morphism of

s
hemes. Write S′′ = S′ ×S S
′
. Then the following are equivalent:

(1) A(S)→ A(S′) ⇒ A(S′′) is exa
t;

(2) f is an e�e
tive epimorphism in the 
ategory of s
hemes.

The main results we shall need are the following:

2.0.3 Proposition. (Lemma 2.1.5) Let f : S′ → S be a q
qs morphism of

algebrai
 spa
es whi
h is submersive after every étale base 
hange on S. Then
the following are equivalent:
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(1) f is s
hemati
ally dominant, that is, A(S)→ A(S′) is inje
tive;

(2) f is an epimorphism in the 
ategory of algebrai
 spa
es.

2.0.4 Proposition. (Lemma 2.2.3 + Corollary 2.2.8) Let f : S′ → S be an

integral morphism of algebrai
 spa
es. Then the following are equivalent:

(1) A(S)→ A(S′) ⇒ A(S′′) is exa
t;

(2) f is an e�e
tive epimorphism in the 
ategory of algebrai
 spa
es.

Under these equivalent 
onditions, f is a uniform e�e
tive epimorphism.

Finally we prove Grothendie
k's fa
torization of a �nite epimorphism into a

�nite sequen
e of �nite e�e
tive epimorphisms, Proposition 2.3.2, pla
ing our-

selves in a slightly more general 
ontext and giving some useful 
omplements.

2.1 Epimorphisms

First we re
all an easy 
hara
terization of epimorphisms of s
hemes.

2.1.1 Lemma. Let f : S′ → S be a morphism of s
hemes. The following


onditions are equivalent:

(1) f is an epimorphism (of s
hemes).

(2) f does not fa
tor through an open or 
losed subs
heme Z ( S.

(3) f does not fa
tor through a subs
heme Z ( S.

Proof : (1) ⇒ (2). Assume that f fa
tors through a subs
heme Z ( S whi
h

is either open or 
losed. Let X = S ∐Z S be the ringed spa
e obtained by

gluing two 
opies of S along their 
ommon 
opy of Z. If Z is open then X is a

s
heme by ordinary topologi
al gluing, and if Z is 
losed then X is a s
heme by

Ferrand [Fe03, Thm. 7.1℄ or [SP, Tag 0B7M℄. Let u, v : S → X be the 
anoni
al

maps. We have u 6= v and uf = vf , so f is not an epimorphism.

(2) ⇒ (3) Immediate be
ause a subs
heme is a 
losed subs
heme of an open

subs
heme.

(3) ⇒ (1). Let X be a s
heme and let u, v : S → X be morphisms su
h that

uf = vf . Let Z be the preimage of the diagonal ∆ : X → X ×X by the map

(u, v) : S → X × X . Sin
e ∆ is an immersion, then Z is a subs
heme of S.
Sin
e f fa
tors through Z, by (3) it follows that Z = S. This shows that (u, v)
fa
tors through the diagonal, that is u = v.

Re
all that an algebrai
 spa
e is 
alled lo
ally separated if its diagonal is an

immersion. Clearly the lemma and its proof show that an epimorphism of

s
hemes is also an epimorphism in the 
ategory of lo
ally separated algebrai


spa
es. However, it may fail to be an epimorphism in the 
ategory of all

algebrai
 spa
es, even if it is surje
tive and s
hemati
ally dominant. Here is a


ounter-example.
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2.1.2 Example. Let k be a �eld of 
hara
teristi
 6= 2. Consider the s
heme

S = Spec(k[x, y]/(x2 − y2))

with 
losed subs
heme Y = V (x − y) and open 
omplement U = D(x − y) =
S \Y . Let S′ = Y ∐U . Then the 
anoni
al map f : S′ → S is a surje
tion to a

redu
ed s
heme, hen
e an epimorphism of s
hemes by the lemma above. The

map j : S′ → S ⊂ A1
k × A1

k de�nes an étale equivalen
e relation on A1
k. We

let π : A1
k → X be the quotient algebrai
 spa
e. By 
onstru
tion, the pullba
k

of the diagonal X ⊂ X × X to A1
k × A1

k is S′
. Let u, v : S → A1

k → X be

the maps indu
ed by the two proje
tions pr1, pr2 : S → A1
k. These maps are

distin
t, sin
e otherwise (u, v) would fa
tor through the diagonal of X , whi
h

would mean that (p1, p2) : S → A1
k ×A1

k fa
tors through S′
, whi
h it does not.

However uf = vf , hen
e f is not an epimorphism of algebrai
 spa
es.

In the appli
ations that we have in mind, it is 
umbersome to 
he
k that the

algebrai
 spa
es involved satisfy some separation 
ondition. Be
ause of this,

we spend some e�ort on obtaining 
riteria for epimorphisms in the 
ategory

of all algebrai
 spa
es. In order to put 2.1.1 in perspe
tive, it is useful to

have the 
onstru
tion of gluing along 
losed subs
hemes available for algebrai


spa
es. This is originally due to Raoult [Ra74℄. Variants appear in [Ar70,

Thm. 6.1℄, [Ry11, Thm. A.4℄, [CLO12, Thm. 2.2.2℄, [TT16, Thm. 5.3.1℄. In all

these sour
es, the hypotheses allow one of the maps f, g of the gluing diagram

to be �nite or at least a�ne and usually some noetherian-like assumptions are

present. It is known to most people that these assumptions are not essential

at least when both maps f, g are 
losed immersions; we give a statement with

the main input for the proof 
oming from [SP℄.

2.1.3 Lemma. Let i1 : Y →֒ X1 and i2 : Y →֒ X2 be 
losed immersions of

algebrai
 spa
es. Then, there exists a pushout W = X1 ∐Y X2 in the 
ategory

of algebrai
 spa
es:

Y
i2 //

i1

��

X2

b

��

X1
a // W.

Moreover, the diagram is a 
artesian square; the maps a, b are 
losed im-

mersions; the pushout is topologi
al, i.e., its underlying topologi
al spa
e is

|X1| ∐|Y | |X2|; and there is a short exa
t sequen
e

0 −→ OW −→ a∗OX1 ⊕ b∗OX2 −→ c∗OY −→ 0

of sheaves on the small étale site of W .

Proof : We will redu
e to the known 
ase of s
hemes. For this we will use

the following 
lassi
al extension result for étale maps: if U,E,E′
are disjoint
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unions of a�ne s
hemes (hen
eforth to be 
alled sums of a�nes for brevity)

and E →֒ U is a 
losed immersion, and E′ → E is an étale morphism, then

there exists a sum of a�nes U ′
and an étale morphism U ′ → U su
h that

E′ ≃ U ′ ×U E. The proof 
an be found for example in [SP, Tag 04D1℄. Note

that if E′ → E is surje
tive, we may 
hoose U ′ → U surje
tive by adding to U ′

the sum of a�nes in a Zariski 
overing of U \E.
For ea
h i = 1, 2 let πi : Ui → Xi be an étale surje
tive map where Ui is a sum

of a�nes. Let Ei = Ui ×Xi
Y . Then E1 ×Y E2 is étale surje
tive over E1 and

E2. Let E
′
be the sum of a�nes given by a Zariski 
overing of E1 ×Y E2. By

the fa
t quoted above, for ea
h i = 1, 2 there exists U ′
i → Ui étale surje
tive

whose restri
tion to Ei is isomorphi
 to E′
. In this way, repla
ing Ui by U

′
i we

see that we 
an assume that E1 ≃ E2. Now for i = 1, 2 let Ri = Ui ×Xi
Ui

with its two proje
tions si, ti : Ri → Ui. Let Fi be the preimage of Y in Ri.

Sin
e πisi = πiti, this is isomorphi
 to the preimage of Ei under any of the

maps si or ti. The isomorphism E1 ≃ E2 indu
es a 
ompatible isomorphism

F1 ≃ F2; in the sequel we view these isomorphisms as identi�
ations so we

write E = E1 = E2 and F = F1 = F2.

By the s
heme 
ase the pushouts U := U1 ∐E U2 and R := R1 ∐F R2 make

sense as s
hemes. Using the pushout property for R we see that the maps

s ∐ s, t ∐ t : R1 ∐ R2 → U1 ∐ U2 indu
e maps whi
h for simpli
ity we again

denote s, t : R → U . They are 
learly surje
tive. We 
laim that moreover

they are étale. This is a lo
al property and is proved in [SP, Tag 08KQ℄. Let

W = U /R be the quotient algebrai
 spa
e. Che
king that W is the pushout is

formal, and obtaining the additional properties is easy by taking an atlas.

We obtain at least a ne
essary 
ondition.

2.1.4 Lemma. An epimorphism of algebrai
 spa
es does not fa
tor through a

lo
ally 
losed subspa
e Z ( S.

Proof : Same proof as 2.1.1 using Lemma 2.1.3 instead of [Fe03, Thm. 7.1℄.

We now present two simple examples of epimorphisms of algebrai
 spa
es. The

�rst one improves [Ry10, Prop. 7.2℄ where it is assumed that f is a submersion

after every base 
hange.

2.1.5 Lemma. Let f : S′ → S be a morphism of algebrai
 spa
es whi
h is

s
hemati
ally dominant, and submersive after every étale base 
hange on S.
Then f is an epimorphism of algebrai
 spa
es, and remains an epimorphism

after every étale base 
hange.

Proof : The assumptions are stable by étale base 
hange, hen
e it is enough to

prove that f is an epimorphism. Let X be an algebrai
 spa
e and let u, v : S →
X be morphisms su
h that uf = vf . Let Z be the preimage of the diagonal

∆ : X → X ×X by the map (u, v) : S → X ×X . Sin
e ∆ is a representable

Documenta Mathematica 23 (2018) 1157–1196
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monomorphism of spa
es whi
h is lo
ally of �nite type, see [SP, Tag 02X4℄, the

map g : Z → S has the same properties. By the assumption on u, v the map f
fa
tors through Z. This shows that g is a submersive monomorphism, hen
e a

homeomorphism. By the assumption on f , this remains true after every étale

base 
hange on S. Then [EGAIV.4, Cor. 18.12.4℄, whose proof uses only étale

base 
hanges, shows that g is �nite. Thus g is a 
losed immersion whi
h is

s
hemati
ally dominant, hen
e an isomorphism. Hen
e u = v, and f is an

epimorphism of spa
es.

2.1.6 Lemma. Let S = Spec(A) be a noetherian lo
al s
heme and let Sn =
Spec(A/mn+1) be the n-th thi
kening of the 
losed point. Then f :

∐

n>0 Sn →
S is an epimorphism of algebrai
 spa
es.

Proof : Sin
e f fa
tors through the maximal-adi
 
ompletion of S whi
h is

fpq
 over S, it is enough to assume that S is 
omplete. Let u, v : S → X be

su
h that uf = vf , and Z as in the proof of 2.1.5. Sin
e S is henselian we 
an

write Z = Z0 ∐ Z1 where Z0 is �nite over S and 
ontains the unique 
losed

point above the 
losed point of S. By assumption Z0 → S is an isomorphism

over every Sn. Using Nakayama, we �nd that Z0 → S is a 
losed immersion.

Sin
e S is noetherian, this implies that Z0 → S is an isomorphism.

2.1.7 Remarks. The noetherian assumption is of 
ourse 
ru
ial, sin
e other-

wise we may e.g. have m = mn
for all n > 1.

2.2 Effective epimorphisms

2.2.1 Definition. We say that f : S′ → S is an e�e
tive epimorphism of

algebrai
 spa
es if the diagram S′ ×S S
′ ⇒ S′ → S is exa
t, that is, if for all

algebrai
 spa
es X we have an exa
t diagram of sets:

Hom(S,X)→ Hom(S′, X) ⇒ Hom(S′ ×S S
′, X).

Another way to say it is that S is the 
ategori
al quotient of S′
by the groupoid

S′ ×S S
′ ⇒ S′

.

2.2.2 Example. An fpq
 
overing of algebrai
 spa
es is an e�e
tive epimor-

phism of algebrai
 spa
es [SP, Tag 04P2℄.

If f : X → S is a morphism, we write AS(X) = f∗OX or simply A(X) = f∗OX

if the base S is 
lear from 
ontext. For instan
e A(S) = OS . Also let us write

S′′ = S′ ×S S
′
.

2.2.3 Lemma. Let f : S′ → S be a quasi-
ompa
t and quasi-separated mor-

phism of algebrai
 spa
es. Assume that f is an e�e
tive epimorphism. Then

the sequen
e A(S)→ A(S′) ⇒ A(S′′) is exa
t.
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Proof : Let us simplify the notations by setting A∗ = A(S∗) for ∗ ∈ {∅,′ ,′′ }.
Let I be the kernel of A → A′

and let B be the kernel of the pair of arrows

A′ ⇒ A′′
. We must prove that A → B is an isomorphism. Sin
e f is quasi-


ompa
t and quasi-separated, the sheaves A, A′
, A′′

are quasi-
oherent hen
e

the sheaves I, B are also quasi-
oherent. A

ording to Lemma 2.1.4 we have

I = 0. Let us write T = SpecS(B). We have inje
tive sheaf morphisms OS =
A → B → A′

and 
orresponding s
heme morphisms g : S′ → T , h : T → S
satisfying f = hg. Let p1, p2 : S′′ → S′

be the proje
tions. Sin
e gp1 = gp2
and f is e�e
tive, there is a morphism e : S → T su
h that g = ef = ehg. As
the sheaf map g♯ : B→ A′

is inje
tive, this implies that e♯ : B→ A is a se
tion

of the map h♯ : A→ B whi
h therefore is an isomorphism.

Lemma 2.2.3 shows that under the q
qs assumption, it is ne
essary for an

e�e
tive epimorphism of algebrai
 spa
es to give rise to an exa
t sequen
e of

OS-modules A(S)→ A(S′) ⇒ A(S′′). For the 
onverse, in the world of s
hemes

things are quite simple: a submersion with the above exa
t sequen
e property

is an e�e
tive epimorphism, see [SGA1, Exp. VIII, Prop. 5.1℄.

In the world of algebrai
 spa
es things are a bit more subtle, and our purpose

in the rest of this subse
tion is to strengthen slightly the submersion property

so as to salvage the result. We re
all that to say that f : S′ → S is a morphism

of e�e
tive des
ent for étale algebrai
 spa
es means that for any two étale

S-algebrai
 spa
es X,Y the diagram

HomS(X,Y )→ HomS′(X ′, Y ′) ⇒ HomS′′(X ′′, Y ′′)

is exa
t, and that for every étale S′
-algebrai
 spa
e X ′

, every des
ent datum

on X ′
with respe
t to S′ → S is e�e
tive.

2.2.4 Lemma. Let f : S′ → S be a morphism of algebrai
 spa
es. The property

for f to be a morphism of e�e
tive des
ent for étale algebrai
 spa
es is lo
al on

the sour
e and target for the étale topology. Expli
itly,

(1) if T → S is étale surje
tive, T ′ = T×SS
′
, and fT : T ′ → T is the pullba
k

of f , then f is a morphism of e�e
tive des
ent for étale algebrai
 spa
es

if and only if fT is so; and

(2) if g : S′′ → S′
is étale surje
tive, then f is a morphism of e�e
tive des
ent

for étale algebrai
 spa
es if and only if fg is so.

Proof : (1) In one dire
tion, assume f : S′ → S is a morphism of e�e
tive

des
ent for étale algebrai
 spa
es, and let T → S be an étale base 
hange. Let

T ′ = T ×S S
′
and T ′′ = T ′ ×T T

′ = T ×S S
′′
. We prove that fT : T ′ → T

des
ends morphisms. Let X,Y be two étale T -algebrai
 spa
es. We prove that

the diagram

HomT (X,Y )→ HomT ′(X ′, Y ′) ⇒ HomT ′′(X ′′, Y ′′) (⋆)
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is exa
t. Note that X → T → S is étale and similarly for the other algebrai


spa
es. Sin
e f des
ends morphisms between étale spa
es, we obtain an exa
t

diagram

HomS(X,Y )→ HomS′(X ′, Y ′) ⇒ HomS′′(X ′′, Y ′′).

Inje
tivity of the �rst map of (⋆) now follows from the inje
tivity of the maps

HomT (X,Y ) → HomS(X,Y ) and HomS(X,Y ) → HomS(X
′, Y ′). Let u′ :

X ′ → Y ′
be a T ′

-morphism su
h that its pullba
ks under the maps T ′′ ⇒ T ′


oin
ide. The se
ond exa
t sequen
e provides an S-morphism u : X → Y .
Moreover if a : X → T , b : Y → T are the stru
ture morphisms, we see that

a and bu be
ome equal when pulled ba
k to S′
, hen
e they are equal. This

shows that u is in fa
t a map of T -algebrai
 spa
es. Finally we prove e�e
tive

des
ent for obje
ts. Let X ′ → T ′
be an étale algebrai
 spa
e with a des
ent

datum with respe
t to T ′ → T . Then X ′ → T ′ → S′
is étale and moreover the

des
ent datum 
an be viewed as a des
ent datum with respe
t to S′ → S. By
the assumption on f there exists an étale morphism X → S whose pullba
k

under S′ → S is X ′
. Moreover the map X ′ → T ′

des
ends to an S-map X → T
and the 
onstru
tion of X is �nished.

The other dire
tion is a spe
ial 
ase of [Gi64, Thm. 10.8℄ but for the 
onvenien
e

of the reader we give the argument here. Let T → S be étale surje
tive and

assume that the base 
hange fT : T ′ → T is of e�e
tive des
ent for étale

algebrai
 spa
es. We prove des
ent of morphisms for f . Let X,Y be étale

spa
es over S, let X ′, Y ′
be the pullba
ks to S′

, and let u′ : X ′ → Y ′
be an

S′
-morphism whose pullba
ks via the two maps S′ ×S S

′ ⇒ S′

oin
ide. Then

the map u′T obtained by the base 
hange T ′ → S′
has 
oin
iding pullba
ks via

the two maps T ′ ×T T
′ ⇒ T ′

. Sin
e fT des
ends morphisms, u′T des
ends to a

T -map uT : XT → YT . Let us introdu
e some notation:

T ′ ×S′ T ′
q1

//

q2
//

fT×ST

��

T ′ //

fT

��

S′

f

��

T ×S T
p1

//

p2

// T // S.

From the �rst part, we know that fT×ST is a morphism of (e�e
tive) des
ent.

From the equality q∗1u
′
T = q∗2u

′
T we thus dedu
e that p∗1uT = p∗2uT . By des
ent

along the étale map T → S, we obtain a unique S-map u : X → Y that

des
ends u′. Now we prove e�e
tive des
ent for obje
ts. Let X ′ → S′
be

an étale morphism equipped with a des
ent datum for S′/S. The pullba
k

X ′
T → T ′

has a des
ent datum for T ′/T . By assumption it des
ends to XT →
T . The 
anoni
al isomorphism q∗1X

′
T → q∗2X

′
T des
ends to an isomorphism

ψ : p∗1XT → p∗2XT sin
e fT×ST is a morphism of des
ent. Using that fT×ST×ST

is a morphism of des
ent, one 
he
ks that ψ is a des
ent datum on XT for the

étale 
overing T → S and by e�e
tive des
ent, it des
ends to a unique X → S
as desired.

(2) This is a spe
ial 
ase of [Gi64, Props. 10.10 and 10.11℄.
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The next theorem is our main result on e�e
tive epimorphisms of algebrai


spa
es. In the world of s
hemes, a q
qs submersion su
h that A(S)→ A(S′) ⇒
A(S′′) is exa
t is an e�e
tive epimorphism. In the world of algebrai
 spa
es, we

reinfor
e these 
onditions slightly in order to suitably allow étale lo
alization

and des
ent.

2.2.5 Theorem. Let f : S′ → S be a morphism of algebrai
 spa
es. Assume

that:

(1) f is a q
qs submersion and remains so after every étale base 
hange,

(2) the diagram of OS-modules A(S)→ A(S′) ⇒ A(S′′) is exa
t,

(3) f is a morphism of e�e
tive des
ent for étale algebrai
 spa
es.

Then f is an e�e
tive epimorphism of algebrai
 spa
es and remains so after

any étale base 
hange.

Proof : By Lemma 2.2.4, all three assumptions are stable by étale base 
hange

on S. Therefore it is su�
ient to prove that f is an e�e
tive epimorphism of

algebrai
 spa
es, i.e., for all algebrai
 spa
es X , the diagram X(S)→ X(S′) ⇒
X(S′′) is exa
t. Note that after Lemma 2.1.5 we know that f is an epimorphism

after every étale base 
hange, whi
h settles inje
tivity on the left. It remains to

prove that if α′ : S′ → X satis�es α′ pr1 = α′ pr2 then there exists α : S → X
su
h that α′ = αf .

We prove that the question is Zariski-lo
al on X . Let (Xi) be a 
overing of

X by open subspa
es and let S′
i = (α′)−1(Xi). Then S′

i is saturated, that

is S′
i = f−1(f(S′

i)). Sin
e f is a submersion by (1), then S′
i des
ends to an

open subspa
e Si ⊂ S. If for ea
h i there exists αi : Si → Xi ⊂ X su
h that

α′
|S′

i
= αif|S′

i
then by uniqueness the morphisms αi glue to give a solution

α : S → X .

We prove that the question has a positive answer when X is a s
heme. In-

deed, we 
an 
over X by open a�ne subs
hemes and then by the pre
ed-

ing step we 
an redu
e to the 
ase where X = Spec(A) is a�ne. Sin
e

Hom(T, Spec(A)) = Hom(A,Γ(T,OT )) for all algebrai
 spa
es T (see [SP,

Tag 05Z0℄), the question redu
es to a 
onstru
tion of ring homomorphisms

and then the 
on
lusion 
omes from assumption (2).

Now letX be an arbitrary algebrai
 spa
e. Let π : Y → X be an étale surje
tive

morphism where Y is a s
heme. Let U ′ = Y ×X S′
whi
h is étale surje
tive

over S′
, and U ′′ = Y ×X S′′

. The assumption α′ pr1 = α′ pr2 implies that U ′


arries a des
ent datum. By assumption (3) it des
ends to an étale algebrai


spa
e U → S. Also let β′ : U ′ → Y be the pullba
k of α′
. Let R = U ×S U
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and R′ = U ′ ×S′ U ′
.

R′

t′

��

s′

��

// R

t

��

s

��

U ′′ //
//

c

��

U ′ //

d
��

β′

77U
β

//❴❴❴

��

Y

π

��

S′′ //
// S′ //

α′

77S X

We know β′ pr1 = β′ pr2 : U ′′ → Y . Sin
e U ′ → U satis�es again all the

assumptions (1)�(3) and the statement holds when the test spa
e Y is a s
heme,

we obtain a morphism β : U → Y . We 
laim that πβ : U → X is R-invariant.
Sin
e R′ → R is an étale pullba
k of f : S′ → S, it is an epimorphism. Hen
e

it is enough to prove that the 
ompositions R′ → R ⇒ U → X are equal.

This follows be
ause they equal to α′ds′ = α′dt′. Thus πβ indu
es a morphism

α : S → X and we are done.

Colle
ting some results on morphisms of e�e
tive des
ent for étale maps in the

literature, we �nd the following spe
ial 
ases.

2.2.6 Corollary. Let f : S′ → S be a surje
tive morphism of algebrai


spa
es whi
h is either :

(i) integral,

(ii) proper,

(iii) universally open and lo
ally of �nite presentation,

(iv) universally submersive and of �nite presentation with S lo
ally

noetherian.

Then if the sequen
e of modules A(S) → A(S′) ⇒ A(S′′) is exa
t, the map f
is an e�e
tive epimorphism of algebrai
 spa
es and remains so after any �at

base 
hange.

Proof : In ea
h 
ase the assumptions are stable under base 
hange, ex
ept

possibly in 
ase (iv). To deal with this, we use the notion of a subtrusive mor-

phism from [Ry10℄ and we repla
e (iv) with the more general (iv)' : universally

subtrusive and of �nite presentation. That this is indeed more general than (iv)

follows from [Ry10, Cor. 2.10℄, with the advantage that (iv)' is stable under

base 
hange. It follows that it is enough to prove that f is an e�e
tive epi-

morphism of algebrai
 spa
es. For this we apply Theorem 2.2.5. In ea
h 
ase


onditions (1) and (2) hold and it remains to see that f is of e�e
tive des
ent

for étale algebrai
 spa
es. Sin
e by Lemma 2.2.4 this property is étale-lo
al on

sour
e and target, by taking étale atlases of S and S′
one redu
es to the 
ase
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where f is a map of s
hemes. Then the 
laim is [SGA4.2, Exp. VIII, Thm. 9.4℄

in 
ases (i)�(ii) and [Ry13, Thm. A.2℄ in 
ases (iii)�(iv)'.

2.2.7 Remark. Assume that f satis�es one of the 
onditions (i)�(iv). Then

the property �f is an e�e
tive epimorphism� is fpq
-lo
al on S be
ause exa
t-

ness of a sequen
e of quasi-
oherent modules is an fpq
-lo
al 
ondition.

For ease of future referen
e, we single out the following parti
ular 
ase of 2.2.6.

Re
all that an (e�e
tive) epimorphism is uniform if it remains an (e�e
tive)

epimorphism after all �at base 
hanges.

2.2.8 Corollary. Let f : S′ → S be an integral morphism of algebrai
 spa
es

su
h that the sequen
e A(S)→ A(S′) ⇒ A(S′′) is exa
t. Then f is a uniform

e�e
tive epimorphism of algebrai
 spa
es. �

2.2.9 Examples. Here are some su�
ient 
onditions for a morphism f :
Spec(A′)→ Spec(A) de�ned by a �nite ring extension A ⊂ A′

to be an e�e
tive

epimorphism.

(1) f is faithfully �at (faithfully �at des
ent).

(2) f is the quotient of a �at groupoid (by the quotient property).

(3) f is unrami�ed with �ber-degree at most 2. Indeed, by the stru
ture of

unrami�ed morphisms, étale-lo
ally on the target the morphism f has the form

Spec(A/I) ∐ Spec(A/J) → Spec(A). Hen
e we may assume that A′ = A/I ×
A/J with I∩J = 0, so that A′⊗AA

′ = (A/I)× (A/I+J)× (A/I+J)× (A/J).
To say that a′ = (a1, a2) ∈ A

′
has equal images in A′⊗AA

′
means that a1 ≡ a2

mod I + J , hen
e a1 + i = a2 + j for some i ∈ I, j ∈ J . Thus a′ ∈ A.

(4) Levelt [Le65℄ 
ontains some more examples. For instan
e if A ⊂ A′
is a lo
al

in
lusion of lo
al rings with trivial residue �eld extension and no intermediate

subring then f is e�e
tive [Le65, Chap. IV, Lem. 4℄. If for some maximal ideal

m ⊂ A we have A′/A ≃ A/m as A-modules, then f is e�e
tive [Le65, Chap. IV,

Lem. 7℄.

(5) f is weakly normal, e.g., A and A′
are integral domains, f is generi
ally

étale and A is weakly normal [Ry10, Lem. B.5℄.

Here is a non-example showing that d = 2 is required in (3) above.

2.2.10 Example. Let A = k[x, y]/
(

xy(y−x)
)

andA′ = A/(x)×A/(y)×A/(y−
x). Then f : Spec(A′) → Spec(A) is �nite and unrami�ed of �ber-degree at

most 3 but not an e�e
tive epimorphism. Indeed, A′⊗AA
′ = A′×k6 is redu
ed

so the equalizer of the two maps A′ → A′ ⊗A A′
is the weak subintegral 
lo-

sure [Ry10, Lem. B.5℄ whi
h is isomorphi
 to B = k[u, v, w]/(u, v)(u,w)(v, w).
Expli
itly, we have inje
tive maps A → B and B → A′

where x 7→ u + v,
y 7→ u+ w and u 7→ (0, 0, x), v 7→ (0, x, 0), w 7→ (y, 0, 0).
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2.3 The canonical factorization

The main result of this se
tion gives a 
anoni
al fa
torization of a �nite epimor-

phism as a 
omposition of �nitely many �nite e�e
tive epimorphisms. It is �rst

stated in [Gr59, A.2.b℄ and then used to study the fun
tor of subgroups of mul-

tipli
ative type of a group s
heme [SGA3.2, Exp. XV, just before Lem. 3.7℄ and

the relative representability of the Pi
ard fun
tor [SGA6, Exp. XII, Lem. 2.6℄.

A proof appears in the latter referen
e. With an eye towards the study of

groupoids of higher 
omplexity, we provide additional properties of the 
anon-

i
al fa
torization : uniqueness, 
ompatibility with �at base 
hange, and min-

imality of its length. For the 
onvenien
e of the reader, we provide 
omplete

proofs.

2.3.1 Definitions. Let f : T → S be an epimorphism of algebrai
 spa
es.

(1) An f -sequen
e is a sequen
e T = T0 → T1 → T2 → . . . of epimorphisms

of S-spa
es su
h that for ea
h i > 0, if Ti → Ti+1 is an isomorphism then

Ti+1 → Ti+2 is an isomorphism.

(2) The length of an f -sequen
e as above is the smallest n ∈ N∪{∞} su
h that

Tn → Tn+1 is an isomorphism, i.e., the number of non-isomorphi
 arrows of the

sequen
e. If an f -sequen
e has �nite length n and Tn → S is an isomorphism,

we say that it is �nite and separated or that it is a fa
torization.

(3) Assume that f is a�ne. The 
anoni
al sequen
e of f is the f -sequen
e
T = T0 → T1 → T2 → . . . given by Ti = SpecS(Ai) where A0 := f∗OT and

Ai+1 := ker(Ai ⇒ Ai ⊗OS
Ai) for all i > 0.

2.3.2 Proposition. Let f : T → S be an integral epimorphism of algebrai


spa
es.

(1) The 
anoni
al sequen
e T = T0 → T1 → T2 → . . . is 
hara
terized by the

properties :

(i) for ea
h i, the morphism Ti → S is integral and the morphism Ti →
Ti+1 is an integral e�e
tive epimorphism;

(ii) for ea
h i the 
anoni
al morphism Ti ×Ti+1 Ti → Ti ×S Ti is an

isomorphism.

(2) The formation of the 
anoni
al sequen
e is 
ompatible with �at base 
hange

and lo
al for the �at topology on S. More pre
isely, let S′ → S be a faithfully

�at morphism of s
hemes. Let T = (T0 → T1 → T2 → . . . ) be a sequen
e of

morphisms of S-s
hemes and let T ′ = (T ′
0 → T ′

1 → T ′
2 → . . . ) be the sequen
e

obtained by the base 
hange S′ → S. Then T is the 
anoni
al sequen
e of

T → S if and only if T ′
is the 
anoni
al sequen
e of T ′ → S′

.

(3) The 
anoni
al sequen
e has length 0 if and only if f is an isomorphism,

and length at most 1 if and only if f is an e�e
tive epimorphism.
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(4) The 
anoni
al sequen
e is terminal among f -sequen
es, a�ne over S,
whose fa
tors are e�e
tive epimorphisms, i.e., for ea
h su
h sequen
e T =
T ′
0 → T ′

1 → T ′
2 → . . . there are maps T ′

i → Ti making a 
ommutative diagram:

T ′
0

//

idT

��

T ′
1

//

��

T ′
2

//

��

. . .

T0 // T1 // T2 // . . .

(5) When S is noetherian and f is �nite, the morphisms Ti → Ti+1 are �nite

and the 
anoni
al sequen
e is �nite and separated, i.e., a fa
torization. It

has minimal length among all �nite separated f -sequen
es whose fa
tors are

e�e
tive epimorphisms.

All 
laims ex
ept (5) are a
tually quite formal.

Proof : (1) Write A := OS and A0 := f∗OT . Sin
e Ai ⊂ A0, the morphisms

Ti = SpecS Ai → S and Ti → Ti+1 are integral. The surje
tive morphism

Ai⊗AAi → Ai⊗Ai+1 Ai has kernel generated by the lo
al se
tions a⊗1−1⊗a
for lo
al se
tions a ∈ Ai+1. By the de�nition of Ai+1, it follows that this map

is an isomorphism hen
e (ii) is satis�ed. Therefore we have an exa
t diagram

Ai+1 → Ai ⇒ Ai ⊗Ai+1 Ai. By Corollary 2.2.8, this means that Ti → Ti+1 is

an e�e
tive epimorphism, hen
e (i) is satis�ed. Conversely, if a fa
torization

T = T ′
0 → T ′

1 → T ′
2 → . . . satis�es (ii) then A′

i ⊗A A′
i → A′

i ⊗A′

i+1
A′

i is an

isomorphism, and if moreover (i) is satis�ed then A′
i+1 = ker(Ai ⇒ Ai⊗OS

Ai).
Thus we see that the given sequen
e is the 
anoni
al one.

(2) This follows be
ause the formation of kernels of morphisms of quasi-
oherent

sheaves 
ommutes with �at base 
hange and is lo
al for the �at topology on

the base.

(3) This follows from the de�nitions.

(4) By indu
tion, assume that there is a diagram of length i:

T ′
0

//

idT

��

T ′
1

//

��

. . . // T ′
i−1

//

��

T ′
i

��

T0 // T1 // . . . // Ti−1
// Ti.

Then be
ause T ′
i → T ′

i+1 is e�e
tive, we have a 
ontainment Ai+1 = ker(Ai ⇒

Ai ⊗A Ai) ⊂ ker(A′
i ⇒ A′

i ⊗A′

i+1
A′

i) = A′
i+1. This gives a map T ′

i+1 → Ti+1

and a diagram of length i+ 1.

(5) First, assume that the 
anoni
al sequen
e has �nite length, so there exists

n > 0 su
h that An+1 = An. Then we have an isomorphism An ⊗A An →
An ⊗An+1 An ≃ An. This means that Tn → S is a monomorphism. Being

dominant and �nite, it must be an isomorphism hen
e the sequen
e is sepa-

rated. Now we prove that the 
anoni
al sequen
e has �nite length. Sin
e S
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is noetherian, this property is étale-lo
al on S. Moreover the formation of Ai


ommutes with restri
tion to an open subs
heme and with passage to the stalks

on étale lo
al rings. If for some point s ∈ S the sequen
e of stalks (Ai,s)i>0

is stationary, then the isomorphism As → An,s extends in a neighborhood of

s. Thus we may assume that S is lo
al with 
losed point s. In parti
ular, we

may assume that S (lo
al or not) has �nite dimension d. We now argue by

indu
tion on d. If d = 0, the rings Ai have �nite length and the sequen
e Ai is

stationary. If d > 0, the open U = S \ {s} has dimension < d so by indu
tion

the sequen
e Ai is stationary after restri
tion to U . By the same argument as

before, we then know that for all big enough i the morphism A → Ai is an

isomorphism away from s. It follows that the quotient OS-module Ai/A has

�nite length. Thus Ai/A is stationary, and hen
e also Ai.

Now 
onsider a �nite separated sequen
e T = T ′
0 → T ′

1 → · · · → T ′
m = S of

length m whose fa
tors are e�e
tive epimorphisms. We have a diagram:

T ′
0

//

idT

��

T ′
1

//

��

. . . // T ′
m−1

//

��

T ′
m

��

S

T0 // T1 // . . . // Tm−1
// Tm // S.

We obtain OS ⊂ Am ⊂ A′
m = OS. Thus Tm → S is an isomorphism, so the


anoni
al sequen
e has length at most m.

2.3.3 Example. Let k be a �eld and S the a�ne 
uspidal k-
urve with equa-

tion y3 = x4. We shall see that the 
anoni
al sequen
e of the normalization

map f : T → S has length n = 2, as follows :

T T1 S

A1
k

spatial

singularity

y
2 = xz

z
2 = x

2
y

yz = x
3

planar


uspidal

singularity

y
3 = x

4

We have S = Spec(A) and T = Spec(B) with A = k[x, y]/(y3 − x4) and

B = k[t], the morphism A → B being given by x = t3 and y = t4. In other

words A ≃ k[t3, t4] →֒ k[t]. We 
an write :

B ⊗A B =
k[t1, t2]

(t31 − t
3
2, t

4
1 − t

4
2)

and the two arrows B ⇒ B ⊗A B map t to t1 and t2 respe
tively. The ring

B1 = ker(B ⇒ B ⊗A B) 
ontains A as well as the element t5, sin
e t51 =
t1t

4
2 = t1t2t

3
1 = t41t2 = t52. Therefore B 
ontains k[t3, t4, t5]. If we noti
e
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that the annihilator of t1 − t2 in B ⊗A B is generated by t21 + t1t2 + t22 and

(t1+ t2)(t
2
1+ t

2
2), we see that B1 does not 
ontain elements of the form at+ bt2.

This proves that B1 = k[t3, t4, t5]. Letting z = t5 we get the presentation :

B1 =
k[x, y, z]

(y2 − xz, z2 − x2y, yz − x3)
.

In parti
ular B1 is a free k[x]-module with basis {1, y, z}. We now prove that

A = ker(B1 ⇒ B1 ⊗A B1). We write :

B1 ⊗A B1 = k[x, y, z1, z2]/I

with I = (y2 − xz1, z
2
1 − x2y, yz1 − x3, x(z1 − z2), y(z1 − z2), z

2
1 − z

2
2). The

two arrows B1 ⇒ B1 ⊗A B1 map z to z1 and z2 respe
tively. Let P = a(x) +
b(x)y + c(x)z be an element of B1 su
h that P (x, y, z1) = P (x, y, z2), i.e.,
c(x)z1 = c(x)z2. In view of the stru
ture of the annihilator of z1 − z2 inside

B1 ⊗AB1, this implies that x divides c(x), hen
e P ∈ k[x, y, xz] = k[x, y] = A,
as announ
ed.

3 The category of groupoids

In this se
tion we brie�y re
all some de�nitions and notations on groupoids

(� 3.1) and we de�ne the 
omplexity of a �at groupoid with �nite stabilizer

whose jY : R→ X ×Y X map is s
hemati
ally dominant (� 3.2).

3.1 The vocabulary of groupoids

Good referen
es for this material are Keel�Mori [KM97℄ and Rydh [Ry13℄. We

�x a base algebrai
 spa
e S, and produ
ts are �bered over S. We use the

vo
abulary of the fun
tor of points: a T -point of an algebrai
 spa
e X over S
is a morphism x : T → X with values in some S-s
heme T . We often write

x ∈ X(T ).

3.1.1 Groupoids. We work with groupoids in S-algebrai
 spa
es, also 
alled

groupoid spa
es or simply groupoids. A groupoid is given by �ve morphisms of

algebrai
 S-spa
es s, t : R → X , c : R ×s,X,t R → X , e : X → R, i : R → R
subje
t to the 
onditions that X(T ) is the set of obje
ts and R(T ) is the set

of arrows of a small 
ategory, fun
torially in T . The maps s, t, c, e, i are 
alled
sour
e, target, 
omposition, unit (or identity), and inversion. The points of

R×s,X,tR are 
alled pairs of 
omposable arrows. Usually we denote a groupoid

simply by s, t : R ⇒ X and we 
all j the map j = (t, s) : R→ X×X . Typi
ally

a T -point of X will be denoted x while a T -point of R will be denoted with a

Greek letter like α. We sometimes write 1x or simply 1 instead of e(x). We

o

asionally write α : x → y if x = s(α) and y = t(α). With our 
hoi
es of c

and j, note that it is more natural to pi
ture T -points of R as arrows y
α
←− x

going from right to left.
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3.1.2 Actions. For instan
e, an S-group spa
e G a
ting on an algebrai
 spa
e

X gives rise to a groupoid s, t : G ×X ⇒ X where s is the se
ond proje
tion

and t is the a
tion. In the general setting one may shape one's intuition by

thinking of a groupoid as a spa
e R a
ting on a spa
e X . If α : x → y is an

arrow, there is a 
orresponding a
tion-like notation α(x) := t(α) = y. In these

terms, the a
tion is trivial if and only if s = t and the maps c, e, i make R→ X
into an X-group spa
e.

3.1.3 Stabilizers. If R ⇒ X is a groupoid, then its stabilizer is the X-group

spa
e StabR = j−1(∆X) where ∆X ⊂ X×X is the diagonal. This is the largest

subgroupoid of R whi
h is a group spa
e, or also, the largest subgroupoid a
ting

trivially.

3.1.4 Subgroupoids. A subgroupoid is a sub-algebrai
 spa
e P ⊂ R that is

stable under 
omposition and inversion, and 
ontains the unit se
tion e(X).
(Topologists 
all this a wide subgroupoid be
ause they also allow subgroupoids

P ⇒ Y whose base is an arbitrary possibly empty subspa
e Y ⊂ X . By sub-

algebrai
 spa
e, we here mean a subfun
tor that is an algebrai
 spa
e, that

is, a monomorphism P → R of algebrai
 spa
es.) A subgroupoid is 
alled

normal if for any α ∈ P (T ) and ϕ ∈ R(T ) we have ϕαϕ−1 ∈ P (T ) whenever

omposability holds. In detail, if ϕ : x → y, then 
omposability means that

α ∈ StabP,x(T ) and then we have ϕαϕ−1 ∈ StabP,y(T ). In parti
ular the


ondition that P be normal in R depends only on the stabilizer StabP . Any

subgroupoid 
ontaining StabR is normal; in parti
ular if StabR is trivial then

all subgroupoids are normal.

3.1.5 Morphisms, kernels. A morphism of groupoids from R ⇒ X to R′ ⇒

X ′
is a morphism of S-spa
es f : R → R′

su
h that f(αβ) = f(α)f(β) for

all 
omposable arrows α, β ∈ R(T ). We also use the notation f : (R,X) →
(R′, X ′). Su
h a morphism f has various automati
 
ompatibilities with the

maps s, t, e, i. For instan
e, f maps identities to identities. Moreover there is

an indu
ed morphism on obje
ts s′ ◦ f ◦ e = t′ ◦ f ◦ e : X → X ′
whi
h we also

write f for simpli
ity. Thus, notationally for an arrow α : x→ y in R we obtain

an arrow f(α) : f(x) → f(y) in R′
. The kernel of a morphism f : R → R′

is

the preimage of the unit se
tion e′ : X ′ → R′
. It is a normal subgroupoid of R.

3.1.6 Invariant morphisms. Let R ⇒ X be a groupoid and let P be a

subgroupoid. Then P a
ts on R in various natural ways. The a
tion by pre-


omposition is a groupoid R ×(s,t) P ⇒ R, and the a
tion by post
omposition

is a groupoid P ×(s,t) R ⇒ R. The stabilizers of both a
tions are trivial.

The simultaneous a
tion, to be 
alled by pre-post-
omposition, is a groupoid

P ×(s,t) R ×(s,t) P ⇒ R. We have an isomorphism StabP×(s,t)R×(s,t)P
∼−→

StabP ×(s,t)R given by (ϕ, α, ψ) 7−→ (ϕ, α). This implies that the morphism

of groupoids f : P ×(s,t) R ×(s,t) P −→ R, f(ϕ, α, ψ) = ϕ whose underly-

ing morphism on obje
ts is f = t : R → X is �xed point re�e
ting, in the

sense of [KM97, 2.2℄. Now let us 
onsider moreover a morphism of groupoids
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f : R → R′
. Then the following four assertions are rewordings of one and

the same property : (i) P ⊂ ker(f), (ii) f is invariant by the left P -a
tion on

R, (iii) f is invariant by the right P -a
tion on R, (iv) f is invariant by the

pre-post-
omposition P -a
tion on R. If this property holds, we say that f is

P -invariant.

3.1.7 Quotients. Let R ⇒ X be a groupoid and P ⊂ R a subgroupoid. A


ategori
al quotient of R by P is a morphism of groupoids π : R→ Q whi
h is

P -invariant and is universal among invariant morphisms R→ R′
.

In De�nition 3.1.7 we simplify the dis
ussion by restri
ting to 
ategori
al quo-

tients; other notions of quotients are re
alled in 3.2 below. To shed light on the

de�nition, note that by the universal property there is a morphism P → ker(π)
but 
ontrary to what happens in the 
ategory of groups, it is not at all 
lear if

this is an isomorphism (and we do not think it is the 
ase in general). We will

not pursue this question in this arti
le.

3.2 The complexity

Whereas we introdu
ed basi
 notions internal to the 
ategory of groupoids,

in order to de�ne the 
omplexity we 
ome ba
k to the 
ategories of s
hemes

and algebrai
 spa
es. Re
all that if s, t : R ⇒ X is a groupoid spa
e, then a

morphism f : X → X ′
is 
alled R-invariant if fs = ft. We will not repeat

here the various de�nitions related to quotients be
ause they re
eive a 
lear

presentation in [KM97, � 1℄ and [Ry13, � 2℄. We 
ontent ourselves with saying

that a morphism X → Y is a 
ategori
al quotient if it is initial among R-
invariant morphisms X → X ′

, a geometri
 quotient if it is a submersion and

OY is identi�ed with the sheaf of R-invariant se
tions of OX , and a quotient of

one of these types is uniform it its formation 
ommutes with �at base 
hange.

We re
all the statement of the fundamental Keel�Mori theorem from [KM97℄,

[Ry13℄ as well as the 
ase with trivial stabilizer from [Ar74℄.

3.2.1 Theorem. Let S be an algebrai
 spa
e and let R ⇒ X be a �at, lo
ally

�nitely presented S-groupoid spa
e with �nite stabilizer.

(1) There is a uniform geometri
 and 
ategori
al quotient X → X/R = Y su
h

that the map jY : R → X ×Y X is �nite and surje
tive. Moreover X → Y is

universally open.

(2) The spa
e Y → S is separated (resp. quasi-separated) if and only if jS :
R → X ×S X is �nite (resp. quasi-
ompa
t). It is lo
ally of �nite type if S is

lo
ally noetherian and X → S is lo
ally of �nite type.

(3) If the stabilizer is trivial, then Y is the fppf quotient sheaf of X by R, X →
Y is �at lo
ally �nitely presented, jY is an isomorphism, and the formation of

Y 
ommutes with arbitrary base 
hanges Y ′ → Y .

When R ⇒ X is �nite and lo
ally free, it is known moreover that X → Y is

integral.
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3.2.2 Remarks. (1) The map jY : R → X ×Y X need not be s
hemati
ally

dominant, in parti
ular it need not be an epimorphism. Here is an example.

Let X = Spec(k[x]/(x2)) with a
tion of µn = Spec(k[z]/(zn − 1)) by multipli-


ation then Y = X/R = Spec(k). We have X×Y X = Spec(k[x1, x2]/(x
2
1, x

2
2)).

The morphism jY : R → X ×Y X is given by the map of k-algebras
k[x1, x2]/(x

2
1, x

2
2) → k[x, z]/(x2, zn − 1) su
h that x1 7→ x and x2 7→ zx. The

element x1x2 is not zero and it is mapped to zx2 = 0.

(2) The map X → X/R need not be of �nite type even when R ⇒ X is

�nite lo
ally free. For example if X = Spec(k[t1, t2, . . . ]) with a
tion of µn

by z.ti = zti then X/R is the spe
trum of the ring of polynomials all whose

homogeneous 
omponents have degree a multiple of n.

In the rest of the text, we will fo
us on �at groupoids su
h that the morphism

jY : R → X ×Y X is an epimorphism. This o

urs for instan
e when X → Y
is �at and there is a s
hemati
ally dense open subs
heme X0 ⊂ X where the

a
tion is free. One way to measure further the good behavior of these groupoids

is furnished by Proposition 2.3.2 and leads to the following notion.

3.2.3 Definition. Let R ⇒ X be a �at, lo
ally �nitely presented groupoid

spa
e with �nite stabilizer. We say that R ⇒ X has 
omplexity n if the map

jY : R→ X ×Y X is an epimorphism and the length of its 
anoni
al sequen
e

is n.

3.2.4 Remarks. (1) The groupoid R ⇒ X has 
omplexity 0 if and only if it is

free. It has 
omplexity at most 1 if and only if jY is an e�e
tive epimorphism.

(2) If jY is an epimorphism, then, by Proposition 2.3.2(5), a su�
ient 
ondition

for a groupoid to have �nite 
omplexity is that X is of �nite type over a �xed

noetherian base s
heme.

(3) Levelt's results [Le65℄, see Example 2.2.9(4), hint that �nite lo
ally free

groupoids with isolated �xed points of stabilizer degree at most 2 (e.g., an

a
tion of a group s
heme of order 2 with isolated �xed points) should have


omplexity at most 1. We shall see examples of this in the next se
tion.

3.3 Examples

Be
ause the formation of the 
anoni
al sequen
e is lo
al on the base for the

�at topology (Proposition 2.3.2(2)), the 
omputation of the 
omplexity 
an be

done lo
ally. It follows that 
omputations in this se
tion provide results also for

groupoids whi
h are group a
tions only lo
ally for the �at topology, or lo
ally

after passage to a 
ompleted lo
al ring. This applies for instan
e to quotients

of surfa
es by p-
losed ve
tor �elds, studied by many people in the last 40 years

(Rudakov�Shafarevi
h, Russell, Ekedahl, Katsura�Takeda, Hirokado...).

We start with examples valid in any 
hara
teristi
.

3.3.1 Proposition. Let X = An
S be a�ne n-spa
e over a s
heme S. Let G

be the symmetri
 group on n letters, a
ting by permutation of the 
oordinates
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of X. Then the quotient map π : X → Y = X/G is �nite lo
ally free of rank

n! and the groupoid G×X ⇒ X has 
omplexity 1.

Proof : First we set the notations. We may assume S = Spec(R) a�ne. Then

X = Spec(B) where B = R[x1, . . . , xn] is a polynomial ring in n variables, and

Y = Spec(A) where A = BG
is the ring of invariants. Let Sk(X1, . . . , Xn) be

the symmetri
 fun
tion of degree k in X1, . . . , Xn and sk = Sk(x1, . . . , xn) ∈ A.
By the Main Theorem on symmetri
 fun
tions, we haveA = R[s1, . . . , sn] whi
h
is a ring of polynomials in the variables si, moreover

B ≃
A[x1, . . . , xn]

(S1(xi)− s1, . . . , Sn(xi)− sn)

and therefore

B ⊗A B ≃
B[X1, . . . , Xn]

(S1(Xi)− s1, . . . , Sn(Xi)− sn)

is B-free of rank n! with basis the set of monomials

B = {Xd1
1 . . .Xdn

n ; 0 6 di < i, ∀i}.

The map j : G×X → X ×Y X 
orresponds to the map of B-algebras whi
h is

given by evaluation on (x1, . . . , xn) and its permutations:

ev :
B[X1, . . . , Xn]

(S1(Xi)− s1, . . . , Sn(Xi)− sn)
−→

∏

σ∈Sn

B

P 7−→ (P (xσ(1), . . . , xσ(n)))σ∈Sn
.

The stabilizer Σ→ X of the groupoid has fun
tion ring:

B[Σ] =
∏

τ∈Sn

B

(x1 − xτ(1), . . . , xn − xτ(n))
.

The two maps pr2, d : Σ ×X (G × X) ⇒ G × X 
orrespond to the maps of

B-algebras

α, β :
∏

σ∈Sn

B −→
∏

σ,τ∈Sn

B

(x1 − xτ(1), . . . , xn − xτ(n))

de�ned by α(Q)σ,τ = Qσ and β(Q)σ,τ = Qτσ for all Q = (Qσ)σ∈Sn
.

Sin
e the a
tion of G on X is not free, the 
omplexity of the groupoid is not 0.

Hen
e what remains to be proved is that ev is inje
tive and im(ev) = ker(α−β).
In order to des
ribe the image of ev let us introdu
e some more notation.

Let E be the set of pairs of integers (i, j) with 1 6 i < j 6 n. Let V =
V (x1, . . . , xn) =

∏

(i,j)∈E(xj − xi) be the Vandermonde determinant of the xi.

To ea
h subset F ⊂ E we atta
h a monomial µ(F ) =
∏

(i,j)∈F Xj . For example
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if n = 4 and F = {(1, 3), (2, 4), (3, 4)} then µ(F ) = X3X
2
4 . Obviously the map

µ : P(E) → B is surje
tive and if M = µ(F ) then deg(M) = card(F ). Now

for ea
h basis monomialM ∈ B we de�ne a B-linear form ϕM :
∏

σ∈Sn
B → B

by

Q = (Qσ)σ∈Sn
7−→ ϕM (Q) =

∑

σ

ε(σ)

(

∑

F⊂E
µ(F )=M

∏

(i,j)∈E−F

xσ(i)

)

Qσ.

(Here ε(σ) is the sign of the permutation σ.) We let ϕ :
∏

σ∈Sn
B →

∏

M∈B
B

be the map with 
omponents ϕM and we use the same letter to denote the map

with values in

∏

M∈B
B/V B obtained by redu
tion mod V . We 
laim that the

following sequen
e is exa
t:

0 −→
B[X1, . . . , Xn]

(S1(Xi)− s1, . . . , Sn(Xi)− sn)

ev
−→

∏

σ∈Sn

B
ϕ
−→

∏

M∈B

B/V B.

In order to prove this we introdu
e suitable Lagrange interpolation polynomi-

als whi
h allow us to invert the map ev after the base 
hange B → B[1/V ].
Pre
isely, we set:

Lσ(X1, . . . , Xn) =
ε(σ)

V

∏

(i,j)∈E

(Xj − xσ(i)).

We have degXi
(Lσ) < i for all i = 1, . . . , n. Thus, after inverting V , the

polynomial Lσ lies in the submodule ⊕M∈BR ·M ⊂ B[X1, . . . , Xn] whi
h as we

said earlier maps isomorphi
ally onto B[X1, . . . , Xn]/(S1(Xi)−s1, . . . , Sn(Xi)−
sn). Moreover one sees that Lσ(xτ(1), . . . , xτ(n)) = δσ,τ (Krone
ker δ). From

these remarks follows that the inverse to ev⊗ idB[1/V ] is given by interpolation,

that is:

int(Q) =
∑

σ∈Sn

QσLσ.

From this, sin
e V is a nonzerodivisor in B, the inje
tivity of ev follows. By

expanding one �nds:

int(Q) =
1

V

∑

σ∈Sn

ε(σ)Qσ

∏

(i,j)∈E

(Xj − xσ(i))

=
1

V

∑

σ∈Sn

ε(σ)Qσ

∑

F⊂E

(−1)card(E−F ) ·
∏

(i,j)∈E−F

xσ(i) · µ(F )

=
1

V

∑

σ∈Sn

ε(σ)Qσ

∑

M∈B

∑

F⊂E
µ(F )=M

(−1)
n(n−1)

2 −deg(M)
∏

(i,j)∈E−F

xσ(i) ·M

=
1

V

∑

M∈B

(−1)
n(n−1)

2 −deg(M)ϕM (Q) ·M.
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Sin
e Q = (ev⊗ idB[1/V ])(int(Q)), we see that Q lies in the image of ev if and

only if the 
omponents of int(Q) on the basis ve
tors M ∈ B lie in B. This

means pre
isely that ϕM (Q) is divisible by V for all M ∈ B, whi
h proves the

exa
tness of the sequen
e.

We 
an now 
on
lude. It is 
lear that im(ev) ⊂ ker(α − β). In order to prove

the reverse in
lusion let Q = (Qσ)σ∈Sn
lie in the equalizer of α and β, that is:

Qτσ ≡ Qσ mod (x1 − xτ(1), . . . , xn − xτ(n)), for all σ, τ ∈ Sn.

We want to prove that ϕM (Q) is divisible by V for all M ∈ B. It is enough

to prove that ϕM (Q) is divisible by xv − xu for all (u, v) ∈ E. Consider the

transposition τ = (u, v). Then Sn is partitioned into n!/2 pairs {σ, τσ} and it

is enough to prove that for ea
h σ the sum

ε(σ)

(

∑

F⊂E
µ(F )=M

∏

(i,j)∈E−F

xσ(i)

)

Qσ + ε(τσ)

(

∑

F⊂E
µ(F )=M

∏

(i,j)∈E−F

xτσ(i)

)

Qτσ

is divisible by xv−xu. This is 
lear, be
ause modulo xv−xu we have Qτσ ≡ Qσ

by the assumption on Q and xτσ(i) ≡ xσ(i) by the de�nition of τ .

3.3.2 Remark. More generally, we 
an ask if the 
omplexity is at most 1 for

a �nite 
onstant group G a
ting on a smooth s
heme X in su
h a way that the

pointwise stabilizers Gx are generated by re�e
tions, in the sense that there is a

system of lo
al 
oordinates su
h that Gx is generated by linear automorphisms

of order 2.

Here is another example in arbitrary 
hara
teristi
.

3.3.3 Lemma. Let R be a ring. Let n > 2 be an integer. Let X = A1
R be

the a�ne line over R, with the a
tion of G = µn,R given by G × X → X,

(z, x) 7→ zx. Then the groupoid G×X ⇒ X has 
omplexity 1 if n = 2 and at

least 2 otherwise. If n = 3, the 
omplexity is equal to 2.

Proof : We have X = Spec(B) and Y = X/G = Spec(A) with B = R[x], A =
R[y] and y = xn. Let C∞ = B⊗AB = B[X ]/(Xn−xn) and C0 = B[z]/(zn−1).
The question is about the �nite morphism of B-algebras ρ : C∞ → C0 with

ρ(X) = zx. Note that ρ identi�es C∞ with the sub-B-algebra of B[z]/(zn− 1)
generated by zx. We have C0 ⊗C∞

C0 = B[z1, z2]/(z
n
1 − 1, zn2 − 1, x(z1 − z2))

with the maps α, β : C0 → C0 ⊗C∞
C0 given by α(z) = z1 and β(z) = z2. Let

C1 ⊂ C0 be the equalizer of these maps, this is the sub-B-algebra generated by

the elements yi := zix for i = 1, . . . , n− 1. If n = 2 we have C∞ = C1, so the


omplexity is 1. If n > 3 we have z2x ∈ C1\C∞ and the 
omplexity is at least 2.

In general C1 has a fairly 
ompli
ated stru
ture. We leave it to the reader to


he
k that for n = 3 we have C1 = B[y1, y2]/(y
3
1 − x

3, y1y2 − x
2, y22 − xy1) and

that the map C∞ → C1 is e�e
tive.
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Finally an example in 
hara
teristi
 p.

3.3.4 Lemma. Let R be a ring of 
hara
teristi
 p > 0. Let X = A1
R be

the a�ne line over R, with the a
tion of G = αp,R given by G × X → X,

(a, x) 7→ x
1+ax . Then the groupoid G ×X ⇒ X has 
omplexity 1 if p = 2 and

at least 2 otherwise.

Proof : We have X = Spec(B) and Y = X/G = Spec(A) with B = R[x],
A = R[y] and y = xp. The question is about exa
tness of the sequen
e of

B-algebras:
B[X]

Xp−xp

ρ
// B[a]

ap

α //

β
//

B[a1,a2]
ap
1 ,a

p
2,x

2(a1−a2)

with ρ(X) = x
1+ax , α(a) = a1, β(a) = a2. In order to �nd the image of ρ we


ompute in the lo
alizations with respe
t to x. Sin
e ρ is inje
tive we write X
for ρ(X). From X = x

1+ax we get a = X−1 − x−1
so if Q(a) =

∑p−1
i=0 Qia

i
is

the image of some P under ρ then we have:

P (X) = Q(X−1 − x−1)

=

p−1
∑

i=0

(−1)ix−iQi +

p−1
∑

j=1





p−1
∑

i=j

(−1)i−j

(

i

j

)

x−p−i+jQi



Xp−j.

We �nd that the image of ρ is the set of Q su
h that xp−1
divides

∑p−1
i=1 (−1)

ixp−1−iQi and x2p−1−j
divides

∑p−1
i=j (−1)

i
(

i
j

)

xp−1−iQi for all j =

1, . . . , p − 1. This may be rewritten as the set of Q su
h that xi+1
divides Qi

for all i = 1, . . . , p− 1 (say Qi = xi+1Ri for some Ri ∈ B) and x
p−1−j

divides

∑p−1
i=j (−1)

i
(

i
j

)

Ri for all j = 1, . . . , p − 1. On the other hand, the equalizer of

α and β is the set of Q su
h that x2 divides Qi for all i = 1, . . . , p− 1. These
sets are equal if and only if p = 2.

4 Main theorems

After the work of the previous se
tions, we are ready to give an answer to the

des
ent question from the introdu
tion, for groupoids of 
omplexity at most 1.
It applies to the obje
ts of a sta
k whose isomorphism sheaves are representable:

see Theorem 4.2.3.

4.1 Equivariant objects

4.1.1 Definition. Let s, t : R ⇒ X be a groupoid and c, pr1, pr2 :
R×s,X,tR→ R the 
omposition and proje
tions. Let C→ AlgSp be a 
ategory

�bered over the 
ategory of algebrai
 spa
es and let F ∈ C(X) be an obje
t.

An R-linearization on F is an isomorphism φ : s∗F ∼−→ t∗F satisfying the 
o-


y
le 
ondition c∗φ = (pr∗1 φ) ◦ (pr
∗
2 φ), meaning that the following triangle is


ommutative :
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(s pr2)
∗F = (sc)∗F (tc)∗F = (t pr1)

∗F

(t pr2)
∗F = (s pr1)

∗F.

c∗φ

pr∗2 φ pr∗1 φ

An R-equivariant obje
t of C over X is an obje
t F ∈ C(X) together with an

R-linearization. We write C(R,X) for the 
ategory of R-equivariant obje
ts.

4.1.2 Example. Let R ⇒ X be a groupoid as above and let π : X → Y
be an R-invariant morphism, i.e., πs = πt. Then for any obje
t G ∈ C(Y ),
the pullba
k F = π∗G is endowed with a 
anoni
al R-linearization φ : s∗F =
s∗π∗G ≃ (πs)∗G = (πt)∗G ≃ t∗π∗G = t∗F.

We re
all the notion of a square, whi
h is 
losely related to that of R-equivariant
obje
t.

4.1.3 Definition. A morphism of groupoids f : (R′, X ′) → (R,X) is 
alled
a square or 
artesian when the 
ommutative diagram

R′ //

f

��

X ′

f

��

R // X

is 
artesian, if we take for horizontal maps either both sour
e maps, or both

target maps.

To illustrate these de�nitions, take for C the 
ategory of algebrai
 spa
es over

algebrai
 spa
es. For (X ′ → X) ∈ C(X), the following lemma makes it 
lear

that an R-linearization on X ′
is the same as a lift of the R-a
tion to X ′

.

4.1.4 Lemma. Let s, t : R ⇒ X be a groupoid. Let (f : X ′ → X,φ :
s∗X ′ ∼−→ t∗X ′) be an R-equivariant X-spa
e. Complete X ′

to a quintuple

(R′, X ′, s′, t′, c′) as follows :

(1) R′ = s∗X ′ = R ×s,X,f X
′
whose T -points are pairs (α, x′) with α ∈ R(T )

and x′ ∈ X ′(T ),

(2) s′ = pr2 : R′ → X ′
,

(3) t′ = pr2 ◦φ : R×s,X,f X
′ −→ R×t,X,f X

′ −→ X ′
,

(4) c′ : R′ ×s′,X′,t′ R
′ −→ R′

de�ned on T -points by c′
(

(α, x′), (β, y′)
)

=
(αβ, y′).
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Then (R′, X ′, s′, t′, c′) is a groupoid and the morphism (R′, X ′)→ (R,X) is a
square morphism of groupoids.

Conversely, a square morphism of groupoids (R′, X ′) → (R,X) gives an R-
equivariant X-spa
e (X ′ → X, s∗X ′ ∼−→ R′ ∼−→ t∗X ′).

Proof : This is [SP, Tag 0APC℄.

4.2 Descent along the quotient

Let s, t : R ⇒ X be a �at lo
ally �nitely presented groupoid. In this se
tion we

are interested in the problem of des
ending obje
ts of a 
ategory C �bered over

the 
ategory of algebrai
 spa
es along the quotient map π : X → X/R = Y .
We know that for any obje
t G ∈ C(Y ), the pullba
k F = π∗G is endowed

with a 
anoni
al R-linearization (example 4.1.2). Conversely, if F ∈ C(X) then
the datum of an R-linearization allows to des
end F to an obje
t based on

[X/R], the quotient as an algebrai
 sta
k, but is not enough to des
end F to

an obje
t of C(Y ) in general. Let C(R,X) be the 
ategory of R-equivariant
obje
ts (F, φ). Des
ent Theory as formulated by Grothendie
k seeks to 
har-

a
terize the essential image of the pullba
k fun
tor π∗ : C(Y ) → C(R,X).
When C is the 
ategory of étale morphisms of spa
es, and without additional


onditions on R ⇒ X → Y , Keel and Mori [KM97, Lem. 6.3℄, Kollár [Ko97,

� 2℄, Rydh [Ry13, � 3℄ obtain su
h a 
hara
terization in terms of �xed-point

re�e
ting R-equivariant obje
ts. In a di�erent dire
tion, we shall prove that

if R ⇒ X has 
omplexity at most 1 and �at quotient X → Y , there is a ni
e

des
ription of the image of π∗
for very general sta
ks C.

4.2.1 Definition. Let Σ = StabR be the stabilizer of the groupoid, let a :
Σ→ R be the in
lusion, and put b = sa = ta. We denote by C(R,X)Σ the full

sub
ategory of C(R,X) 
onsisting of R-equivariant obje
ts (F, φ) su
h that the

a
tion of Σ is trivial, meaning that the following map is the identity:

b∗F ≃ a∗s∗F
a∗φ
−−−→ a∗t∗F ≃ b∗F.

To dispel the dryness of the formalism of groupoids, we emphasize that if C

is the 
ategory of s
hemes or algebrai
 spa
es, and if the groupoid is given by

the a
tion of a group G, then a G × X-linearization on some X ′ ∈ C(X) is

equivalent to a lift of the a
tion of G to X ′
and the a
tion of Σ is trivial in the

above sense if and only if it is trivial in the usual sense.

4.2.2 Lemma. The fun
tor π∗ : C(Y )→ C(R,X) takes values in C(R,X)Σ.

Proof : We have to show that the 
anoni
al R-linearization of a pullba
k

F = π∗G be
omes trivial when restri
ted to Σ. Re
all from [Gr59, A.1℄ or [SP,

Tag 003N℄, that in a �bered 
ategory, there are isomorphisms (fg)∗ ∼−→ g∗f∗
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between pullba
k fun
tors, and 
ommutative squares giving 
ompatibility for

triple 
ompositions :

(fgh)∗ //

��

(gh)∗f∗

��

h∗(fg)∗ // h∗g∗f∗.

We write the two squares pi
turing su
h 
ompatibility for the two 
ompositions

πsa : Σ → Y and πta : Σ → Y , taking advantage of the fa
t that πs = πt in
order to glue them on one side:

(sa)∗π∗

��

id

((

(πsa)∗ = (πta)∗oo //

��

(ta)∗π∗

��

a∗s∗π∗

a∗φ

66a∗(πs)∗ = a∗(πt)∗oo // a∗t∗π∗.

Sin
e sa = ta we see that the top row is the identity. The 
ommutativity of

the exterior diagram is exa
tly the 
laim we want to prove.

4.2.3 Theorem. Let R ⇒ X be a �at, lo
ally �nitely presented groupoid

spa
e with �nite stabilizer Σ→ X and 
omplexity at most 1. Assume that the

quotient π : X → Y = X/R is �at (resp. �at and lo
ally of �nite presentation).

Let C→ AlgSp be a sta
k in 
ategories for the fpq
 topology (resp. for the fppf

topology).

(1) If the sheaves of homomorphisms HomC(F,G) have diagonals whi
h are

representable by algebrai
 spa
es, then the pullba
k fun
tor π∗ : C(Y ) →
C(R,X)Σ is fully faithful.

(2) If the sheaves of isomorphisms IsomC(F,G) are representable by algebrai


spa
es, then the pullba
k fun
tor π∗ : C(Y ) → C(R,X)Σ is essentially surje
-

tive.

In parti
ular if C is a sta
k in groupoids with representable diagonal, the fun
tor

π∗
is an equivalen
e.

In Se
tion 3.3 many examples were given that satisfy the assumptions of the

Theorem.
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4.2.4 Remark. This result is not really an alternative to faithfully �at de-

s
ent, but rather a re�nement of it. Indeed, faithfully �at des
ent does provide

an answer to the question of the image of π∗
: it is the parti
ular 
ase of our

theorem for the �at groupoid R1 := X ×Y X ⇒ X whose stabilizer is triv-

ial. The 
ategory C(R1, X) 
omprises obje
ts with des
ent data, the latter

being isomorphisms on produ
ts X ×Y X with 
onditions on triple produ
ts

X ×Y X ×Y X . However, it is often the 
ase in 
on
rete geometri
 situations

that there is a natural a
tion of a group or groupoid R 6= R1 su
h that it is

mu
h easier to handle R-equivariant obje
ts. In these situations, the fun
tor

of points of the quotient Y = X/R is usually hard to des
ribe, as well as the

square and the 
ube of X over Y , making C(R1, X) less 
onvenient.

Proof : The assumptions on C and π imply that e�e
tive des
ent along π
holds in C ; in the fpq
 
ase note that π is an fpq
 
overing sin
e it is open

(3.2.1) and faithfully �at, see e.g. Vistoli [Vi05, Prop. 2.35℄. Sin
e the map

jY : R→ X ×Y X will 
ome up repeatedly, we write simply j := jY .

(1) Let G1,G2 ∈ C(Y ) and let (F1, φ1), (F2, φ2) ∈ C(R,X)Σ be their pullba
ks.

We must prove that the map:

HomC(Y )(G1,G2) −→ HomC(R,X)Σ
(

(F1, φ1), (F2, φ2)
)

is bije
tive. Inje
tivity is a 
onsequen
e of the fa
t that π : X → Y is a 
overing

for the topology for whi
h C is a sta
k, and the fa
t that HomC(Y )(G1,G2) is a
separated presheaf. For surje
tivity let f : (F1, φ1)→ (F2, φ2) be a morphism.

Let π1, π2 : X ×Y X → X be the proje
tions. By des
ent it is enough to prove

that π∗
1f = π∗

2f . By 
onstru
tion φi is the identity of q∗Gi for i = 1, 2, where
q = πs = πt. Therefore s∗f = t∗f . Write H := HomC(Y )(G1,G2). We have a


ommutative diagram:

R
j

//

��

X ×Y X

d

��

H
∆ // H ×Y H

where d := (π∗
1f, π

∗
2f). Sin
e the diagonal ∆ is assumed to be representable,

the �ber produ
t

P := H ×(∆,d) X ×Y X

is representable and the map j fa
tors through a map k : P → X ×Y X . Sin
e

the groupoid has 
omplexity at most 1, the map j is an e�e
tive epimorphism.

It follows by formal arguments that k has the same property. Sin
e k is a

pullba
k of the diagonal, it is also a monomorphism. Thus, k is an isomorphism,

and therefore π∗
1f = π∗

2f .

(2) Let (F, φ) ∈ C(R,X)Σ be an R-equivariant obje
t. Given that R×X×Y X R
is isomorphi
 to Σ×(s,t)R via the map (ϕ, ψ) 7→ (ϕψ−1, ψ), the exa
t sequen
e
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for the e�e
tive epimorphism j is:

Σ×(s,t) R
d //

pr2
// R

j
// X ×Y X.

Here d is the 
omposition Σ×(s,t) R
a×id

// R×(s,t) R
c // R . It follows that

for all X ×Y X-algebrai
 spa
es I, we have an exa
t diagram of sets:

Hom(X ×Y X, I)
j∗

// Hom(R, I)
d∗

//

pr∗2

// Hom(Σ×(s,t) R, I).

Let π1, π2 : X×YX → X be the proje
tions, and let I = IsomX×Y X(π∗
2F, π

∗
1F).

This is an algebrai
 spa
e by assumption, so from the above we obtain an exa
t

diagram of sets:

IsomX×Y X(π∗
2F, π

∗
1F)

j∗
// IsomR(s

∗F, t∗F)
d∗

//

pr∗2

// IsomΣ×R(pr
∗
2 s

∗F, pr∗2 t
∗F).

Here we use the identi�
ations d∗s∗F ≃ (sd)∗F = (s pr2)
∗F ≃ pr∗2 s

∗F whi
h

need no further 
omment, and the similar identi�
ations with s repla
ed by t
whi
h require the observation that td = t pr2 sin
e sour
e and target agree

on the stabilizer. Now 
onsider the 
o
y
le 
ondition c∗φ = pr∗1 φ ◦ pr
∗
2 φ on

R ×(s,t) R satis�ed by the R-linearization φ : s∗F → t∗F. Then after pullba
k

along a × id : Σ ×(s,t) R → R ×(s,t) R, and sin
e the stabilizer a
ts trivially

on F, this be
omes:

d∗φ = (a pr1)
∗φ ◦ pr∗2 φ = pr∗2 φ.

Therefore by exa
tness of the diagram of Isom sets, φ des
ends to an isomor-

phism ψ : π∗
2F

∼−→ π∗
1F. To 
on
lude, we use des
ent along the map π : X → Y .

For ψ to be a des
ent datum with respe
t to X → Y , it need only satisfy the

usual gluing 
ondition:

(⋆) π∗
13ψ = π∗

12ψ ◦ π
∗
23ψ

where πij : X ×Y X ×Y X → X ×Y X are the proje
tions. In order to prove

that this indeed holds, we 
onsider the 
ommutative diagram:

R×s,X,t R
j×j

//

��

pr1,pr2,c

�� ��

X ×Y X ×Y X

π12,π23,π13

���� ��

R
j

// X ×Y X.

On pulling ba
k the relation (⋆) by j× j we obtain the relation c∗φ = (pr∗1 φ) ◦
(pr∗2 φ) whi
h holds by assumption. Sin
e X → Y is �at, the morphism j× j is
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�nite, surje
tive and s
hemati
ally dominant, hen
e an epimorphism. Therefore

Condition (⋆) holds, hen
e by des
ent F is the pullba
k of an obje
t G ∈
C(Y ).

4.2.5 Theorem. Let C→ AlgSp be one of the following sta
ks in 
ategories:

(1) C1 = Flat, the fppf sta
k whose obje
ts over X are �at morphisms of

algebrai
 spa
es X ′ → X.

(2) C2 = Flatqa, the fpq
 sta
k whose obje
ts over X are quasi-a�ne �at mor-

phisms of algebrai
 spa
es X ′ → X.

Let R ⇒ X be a �at, lo
ally �nitely presented groupoid spa
e with �nite

stabilizer Σ → X and 
omplexity at most 1. Assume that the quotient

π : X → Y = X/R is �at and lo
ally of �nite presentation if C = C1, and

�at if C = C2. Then the fun
tor π∗ : C(Y )→ C(R,X)Σ is an equivalen
e.

Re
all that an obje
t (X ′ → X) ∈ C(X) is equivalent to a �at square morphism

of groupoids (R′, X ′)→ (R,X) (Lemma 4.1.4) and when (X ′ → X) = π∗(Y ′ →
Y ), then Y ′ = X ′/R′

. The essential surje
tivity of π∗

an thus be rephrased as:

the natural morphism X ′ → (X ′/R′)×Y X is an isomorphism, and X ′/R′ → Y
is �at.

Proof : Here the 
onditions on the representability of the diagonal of C fail

to hold, so we need di�erent arguments. In order to prove full faithfulness let

W1,W2 be obje
ts of C(Y ) and (V1, φ1), (V2, φ2) the pullba
ks to X . We prove

bije
tivity of the map:

HomC(Y )(W1,W2) −→ HomC(R,X)Σ
(

(V1, φ1), (V2, φ2)
)

.

Sin
e HomY (W1,W2) is a sheaf in the fpq
 topology (this does not use �atness

of Wi → Y ), inje
tivity goes as in 4.2.3. For the surje
tivity part let f :
(V1, φ1) → (V2, φ2) be a morphism, so s∗f = t∗f . Sin
e HomY (W1,W2) is a
sheaf, it is enough to prove that π∗

1f = π∗
2f . We have 
ommutative diagrams:

V1 ×X R
j∗π∗

i f //

��

V2 ×X R

��

V1 ×X (X ×Y X)
π∗

i f // V2 ×X (X ×Y X)

for i = 1, 2. From s∗f = t∗f it follows that j∗π∗
1f = j∗π∗

2f . Sin
e the

left verti
al map is the pullba
k of j along the �at map V1 → X , it is an

epimorphism. It then follows that π∗
1f = π∗

2f .
In order to show essential surje
tivity let (V, φ) ∈ C(R,X)Σ. Let Vi = π∗

i V be

the pullba
ks of V → X along the proje
tions π1, π2 : X ×Y X → X . When
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pulling ba
k j along the �at morphism h : V1 → X×Y X , it remains an e�e
tive

epimorphism.

h∗(Σ×(s,t) R)
//
//

��

�

j∗V1 //

��

�

V1

h

��

Σ×(s,t) R
//
// R

j
// X ×Y X.

The morphism j∗V1 = s∗V
φ
−→ t∗V = j∗V2 −→ V2 is h∗(Σ×(s,t) R)-invariant,

so by e�e
tivity we obtain a unique morphism ψ : V1 → V2. Similarly we

obtain a unique morphism χ : V2 → V1. We 
laim that ψ and χ are inverse

isomorphisms. Sin
e j is a uniform epimorphism, in order to prove that the

X ×Y X-morphism ψ ◦ χ is the identity it is enough to do it after pullba
k

along j. In this 
ase it is 
lear sin
e j∗ψ = φ and j∗χ = φ−1
. Similarly we

prove that χ ◦ ψ is the identity. One shows as in the end of the proof of 4.2.3

that the isomorphism ψ : π∗
1V

∼−→ π∗
2V is a des
ent datum for V with respe
t

to π : X → Y . The assumptions of the theorem imply that e�e
tive des
ent

along π holds in C so V des
ends to a unique �at morphism W → Y .

4.3 Quotient by a subgroupoid

In this se
tion we 
ome to the quotient question from the introdu
tion, i.e., the


onstru
tion of a quotient of a groupoid by a normal subgroupoid. Let us �rst

review some known 
ases where this 
onstru
tion is possible.

(1) If R ⇒ X is given by the a
tion of a group spa
e G and P ⇒ X is given

by a �at normal subgroup H . In this 
ase the quotient groupoid Q⇒ Y is the

a
tion of G/H on X/H . More generally the quotient exists when R ⇒ X is a

lo
al group a
tion (i.e., it is given by a group a
tion, fppf lo
ally on X/R) and
P is a �at lo
al normal subgroup a
tion.

(2) If R ⇒ X is �nite lo
ally free and P is a normal open and 
losed sub-

groupoid; this is the Bootstrap Theorem of [KM97, 7.8℄.

(3) If P is in
luded in the stabilizer; this is the pro
ess of rigidi�
ation

of [ACV03, �5.1℄ and [AOV08, �A℄.

With suitable �atness assumptions, we shall provide another 
ase in a di�erent

dire
tion: the quotient exists when P has 
omplexity at most 1. We emphasize

that the existen
e of the quotients Y = X/P and Q = P\R/P appearing in

the statement is granted by 3.2.1.

4.3.1 Theorem. Let R ⇒ X be a �at, lo
ally �nitely presented groupoid

of algebrai
 spa
es. Let P ⇒ X be a �at, lo
ally �nitely presented normal

subgroupoid of R with �nite stabilizer ΣP → X and 
omplexity at most 1.
Assume that the quotient X → Y = X/P is �at and lo
ally �nitely presented.
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Then there is a quotient groupoid Q ⇒ Y whi
h is �at and lo
ally �nitely

presented, with Q = P\R/P . Moreover, the morphisms R→ Q and R×XR→
Q×Y Q are �at and lo
ally �nitely presented.

The rest of this subse
tion is devoted to the proof. We denote by s, t : R⇒ X
and σ, τ : P ⇒ X the sour
e and target maps of the groupoids, and by ρ : R→
Q and π : X → Y the quotient maps.

Step 1. There exist �at lo
ally �nitely presented maps s̄, t̄ : Q ⇒ Y and


ommutative squares:

R
s,t

//

ρ

��

X

π

��

Q
s̄,t̄

// Y

and ρ is �at. To prove this we start with the a
tion of P on R by post-


omposition. This a
tion is free so there is a �at, lo
ally �nitely presented

quotient morphism ρpost : R → P\R where P\R is an algebrai
 spa
e. Sin
e

s : R → X is invariant by the a
tion of P , there is an indu
ed faithfully �at

lo
ally �nitely presented morphism s′ : P\R → X . The map R ×(s,σ) P → R,
(α, ϕ) 7→ αϕ−1

is equivariant for the a
tion of P on the R-fa
tors by post
om-

position. Using that the formation of the quotient ρpost : R→ P\R 
ommutes

with the �at base 
hange σ : P → X , we dedu
e that there is an indu
ed

map (P\R) ×(s′,σ) P → P\R. In this way we obtain a P -linearization on the

X-obje
t P\R, as follows:

σ∗(P\R) = (P\R)×(s′,σ) P
∼−→ τ∗(P\R) = (P\R)×(s′,τ) P.

(α, ϕ) 7−→ (αϕ−1, ϕ)

We 
laim that be
ause P is normal, the restri
tion of this P -linearization to

the stabilizer ΣP is trivial. In order to 
he
k this, we take advantage of the fa
t

that the spa
e P\R is equal to the fppf quotient sheaf so lo
ally (P\R)(T ) =
P (T )\R(T ). If ϕ ∈ ΣP (T ) and α ∈ R(T ), we have ψ := αϕ−1α−1 ∈ ΣP (T ) and
hen
e αϕ−1 = ψα in R(T ) whi
h is equal to α in (P\R)(T ). This proves our

laim. It follows from 
ase (1) of Theorem 4.2.5 that s′ : P\R → X des
ends

to a faithfully �at lo
ally �nitely presented map s̄ : Q1 → Y .
Similarly, 
onsidering the a
tion of P on R by pre
omposition, we obtain a �at,

lo
ally �nitely presented quotient morphism ρpre : R→ R/P , and a �at lo
ally

�nitely presented morphism t′ : R/P → X indu
ed by t. The latter supports

a P -linearization with trivial stabilizer a
tion and des
ends to a faithfully �at

lo
ally �nitely presented map t̄ : Q2 → Y .
Sin
e the formation of the quotient X → Y 
ommutes with �at base 
hange,

we see that Q1 is the quotient of P\R by P a
ting by post
omposition and

that Q2 is the quotient of R/P by P a
ting by pre
omposition. Both quotients

are isomorphi
 sin
e they enjoy the same universal property as Q = P\R/P .
So Q = Q1 = Q2 
anoni
ally and we obtain maps s̄, t̄ : Q ⇒ Y . In this way
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we obtain also that ρ : R → Q is �at, being the 
omposition of the �at map

ρpost : R→ P\R and of the morphism P\R→ Q whi
h is a base 
hange of the

�at map X → Y . We have thus produ
ed the 
ommutative diagrams

R
ρpost

//

ρ
!!
❇

❇

❇

❇

❇

❇

❇

❇

❇

P\R
s′ //

π′

��

�

X

π

��

Q
s̄

// Y

R
ρpre

//

ρ
!!
❇

❇

❇

❇

❇

❇

❇

❇

❇

R/P
t′ //

π′

��

�

X

π

��

Q
t̄

// Y

in whi
h all maps are �at.

Step 2. There exists a �at lo
ally �nitely presented map c̄ : Q×Y Q→ Q and

a 
ommutative square:

R ×X R
c //

ρ×ρ

��

R

ρ

��

Q×Y Q
c̄ // Q

where ρ × ρ is �at. To prove this, note that there are three 
ommuting a
-

tions of R on R ×X R: pre-
omposition (α, β, γ) : (α, β) → (α, βγ), post-

omposition (γ, α, β) : (α, β) → (γα, β) and middle-
omposition (α, γ, β) :
(α, β) → (αγ, γ−1β). The joint a
tion of any two of these are free. The 
om-

position c is equivariant with pre- and post-
omposition and invariant under

middle-
omposition.

Taking the quotient by post-
omposition under P , we obtain a �at morphism

c′ : (P\R)×(s′,t)R→ P\R. Sin
e s′ : P\R→ X is the pull-ba
k of s̄ : Q→ Y ,
we 
an identify the sour
e of c′ with Q ×s̄,πt R. Middle-
omposition then

be
omes post-
omposition on the se
ond fa
tor so c′ fa
tors into two �at maps

Q×s̄,πt R

c′

++
// Q×s̄,t̄π′ P\R

c′′
// P\R.

The map c′′ �ts into the diagram

Q×s̄,t̄π′ P\R

s′ pr2

''c′′ //

��

P\R
s′ //

��

�

X

π

��

Q×Y Q

s̄ pr2

55
c̄ // Q

s̄ // Y

where the outer square also is 
artesian, so c′′ des
ends to a �at map c̄ as

indi
ated in the diagram (Theorem 4.2.5). The map ρ× ρ : R×X R→ Q×Y Q
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is �at, being the 
omposition of the �at map R×XR→ Q×s̄,t̄π′ P\R (quotient

map of the free middle-post-
omposition) and the pull-ba
k of the �at map π.

Step 3. Con
lusion. It is easy to 
onstru
t the maps ē : Y → Q and ı̄ : Q→ Q
�tting in 
ommutative diagrams:

X
e //

π

��

R

ρ

��

Y
ē // Q

R
i //

ρ

��

R

ρ

��

Q
ı̄ // Q.

We skip the details. From the fa
t that ρ : R→ Q and ρ×ρ : R×XR→ Q×Y Q
are epimorphisms of algebrai
 spa
es, it follows formally that the maps s̄, t̄, c̄, ē, ı̄
are unique, that they give Q ⇒ Y the stru
ture of a groupoid, and that the

map ρ : R → Q is a morphism of groupoids. Finally we 
an prove that the

groupoid Q ⇒ Y is a quotient of R ⇒ X by P . Let f : (R,X) → (R′, X ′) be
a morphism of groupoids su
h that P ⊂ ker(f). Then the map f : R → R′

is invariant by the pre-post-
omposition of P on R, hen
e it fa
tors through a

map Q → R′
. Similarly the map f : X → X ′

is invariant by the a
tion of P
hen
e it fa
tors through a map Y → X ′

. That (Q, Y )→ (R′, X ′) is a morphism

of groupoids follows again from the fa
t that ρ and ρ× ρ are epimorphisms.

4.4 Stacky interpretations

Let R ⇒ X be a �at lo
ally �nitely presented groupoid in algebrai
 spa
es and

let C→ AlgSp be a sta
k for the fppf topology. Then the 
ategory C(R,X) of
R-equivariant obje
t is equivalent with the 
ategory of morphisms [X/R]→ C

between sta
ks. A morphism ϕ : [X/R] → C 
orresponds to an obje
t with

trivial Σ-a
tion if and only if the following equivalent 
onditions hold

(1) For every algebrai
 spa
e T , obje
t x ∈ [X/R](T ), and automorphism

τ ∈ Aut(x), the image ϕ(τ) is the identity on ϕ(x).

(2) The indu
ed morphism of inertia sta
ks Iϕ : I[X/R] → IC is trivial, i.e.,

fa
tors through C.

(3) The morphism ϕ fa
tors, up to equivalen
e, through the fppf-shea��
ation

[X/R]→ π0([X/R]).

If R ⇒ X has �nite inertia, then the 
oarse spa
e [X/R] → X/R fa
tors

through the fppf sheaf quotient π0[X/R] = (X/R)fppf and π0[X/R]→ X/R is

an isomorphism if the a
tion is free. Theorem 4.2.3 thus says that the fun
tor

Hom(X/R,C)→ Hom(π0[X/R],C)

is an equivalen
e of 
ategories if R ⇒ X has 
omplexity at most 1, X → X/R
is �at, and under 
ertain assumptions on C, e.g., if C is a sta
k in groupoids

with representable diagonal.
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In the setting of Theorem 4.2.5, the 
ategory C(R,X) is equivalent to the


ategory of �at morphisms of algebrai
 sta
ks X′ → X = [X/R] that are repre-
sentable by algebrai
 spa
es. The sub
ategory C(R,X)Σ 
onsists of stabilizer-

preserving morphisms, i.e., those su
h that the indu
ed morphism of inertia

sta
ks IX′ → (IX)×X X′
is an isomorphism. Theorem 4.2.5 thus says that the


ategory of �at morphisms Y ′ → Y = X/R is equivalent to the 
ategory of �at

stabilizer-preserving representable morphisms of algebrai
 sta
ks X′ → X.

4.4.1 Remark. It 
an be proved that 
ase (2) of Theorem 4.2.5 holds for

arbitrary �at morphisms X ′ → X . Indeed, let X′ → X be the 
orresponding

stabilizer-preserving representable morphism of algebrai
 sta
ks. Then X′
also

has �nite stabilizer and a 
oarse moduli spa
e Y ′ = X ′/R′
. It is enough to

show that the diagram

X′ //

��

X

��

Y ′ // Y

is 
artesian. This 
an be 
he
ked étale-lo
ally on Y ′
and Y , so we 
an assume

that Y and Y ′
are a�ne. After further étale lo
alization on Y , we 
an assume

that X = [X/R] where X → X is �nite: this follows from the proof of the Keel�

Mori theorem [Ry13, Thm. 6.12℄. Sin
e X′ → X is representable, we obtain a

�nite presentation X ′ → X′
where X ′ = X×XX′

. It follows that X ′
and X are

a�ne sin
e X ′ → Y ′
and X → Y are a�ne [Ry13, Thm. 5.3℄. Thus X ′ → X

is a�ne and 
ase (2) of Theorem 4.2.5 applies.

Finally, Theorem 4.3.1 
an be des
ribed as follows using sta
ks. We have a

lo
ally �nitely presented �at morphism [X/P ] → [X/R]. This gives rise to a

groupoid

[X/P ]×[X/R] [X/P ]
//
// [X/P ]

with quotient [X/R]. That P ⊂ R is a normal subgroupoid implies that the

morphisms of the groupoid above are stabilizer-preserving. We 
an also make

the identi�
ation [X/P ]×[X/R] [X/P ] = [P\R/P ]. By Theorem 4.2.5, we thus

obtain a 
artesian diagram

[P\R/P ] //
//

��

�

[X/P ] //

��

�

[X/R]

��

Q =P\R/P //
// X/P // [(X/P )/Q]

where the horizontal morphisms are �at and lo
ally of �nite presentation and

the verti
al morphisms are (relative) 
oarse moduli spa
es.
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4.5 A non-flat counter-example

We give an example that shows that Theorems 4.2.3 and 4.2.5 do not hold

when π : X → Y is not �at. The 
ounter-example satis�es:

(1) X is an a�ne 1-dimensional s
heme in 
hara
teristi
 p with an a
tion of

G = Z/pZ but π : X → Y = X/G is not �at.

(2) There is a torsion equivariant line bundle L ∈ PicGp (X)Σ that does not


ome from Pic(Y ). In parti
ular, Theorem 4.2.3 fails for the algebrai
 sta
ks

C = Pic = BGm and C = Picp = Bµp.

(3) There is a smooth morphism X ′ → X that is not the pull-ba
k of a smooth

morphism Y ′ → Y . In parti
ular, Theorem 4.2.5 fails even for smooth mor-

phisms.

Let k be a �eld of 
hara
teristi
 p. Let X = Spec k[ǫ, x]/(ǫ2) and let Z/pZ a
t

via t.(ǫ, x) = (ǫ, x+ tǫ). Then Y = Spec k[ǫ, xp, ǫx, ǫx2, . . . , ǫxp−1].
Consider the following Z/pZ-equivariant line bundle L on X : as a line bundle

it is trivial L = OX · e and it has the a
tion t.e = (1 + tǫ)e.
The stabilizer a
ts trivially on this line bundle. Indeed, the stabilizer Σ of X is

given by the 
losed subs
heme tǫ = 0 of (Z/pZ)×X = Spec k[t, ǫ, x]/(tp− t, ǫ2).
The line bundle is not in the image of π∗ : QCoh(Y ) → QCohG(X). Indeed,

sin
e π∗
has the right adjoint (π∗−)

G
, it is enough to verify that the 
ounit

π∗(π∗L )G → L is not an isomorphism. But an easy 
al
ulation gives that

π∗(π∗L )G = (ǫ) ·L ( L .

In terms of algebrai
 sta
ks, the line bundle L 
orresponds to the morphism

[X/(Z/pZ)]→ B(Z/pZ)S
Bϕ
−−→ Bµp → BGm,

where S = Spec k[ǫ]/(ǫ2) and ϕ : (Z/pZ)S → µp is the group homomor-

phism given by t 7→ (1 + ǫ)t = 1 + tǫ. Here the map between inertia sta
ks

I[X/(Z/pZ)]→ IB(Z/pZ)S → IBµp is indu
ed by

k[λ]/(λp − 1) −→ k[ǫ, t]/(ǫ2, tp − t) −→ k[ǫ, x, t]/(ǫ2, tp − t, tǫ)
λ 7−→ 1 + tǫ 7−→ 1

so it fa
tors through Bµp.

The line bundle 
orresponds to the smooth stabilizer-preserving G-equivariant
morphism X ′ = Spec k[ǫ, x, y]/(ǫ2) where the G-a
tion is t.(ǫ, x, y) = (ǫ, x +
tǫ, y + tǫy). This is not the pull-ba
k of the morphism Y ′ = X ′/G → Y =
X/G. Indeed, a similar 
al
ulation as for the line bundle gives that Y ′ =
Spec k[ǫ, xp, yp, ǫxiyj ].
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