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Abstract. Grothendiek proved that any �nite epimorphism of

noetherian shemes fators into a �nite sequene of e�etive epimor-

phisms. We de�ne the omplexity of a �at groupoid R ⇒ X with

�nite stabilizer to be the length of the anonial sequene of the �nite

map R → X ×X/R X , where X/R is the Keel�Mori geometri quo-

tient. For groupoids of omplexity at most 1, we prove a theorem of

desent along the quotient X → X/R and a theorem on the existene

of the quotient of a groupoid by a normal subgroupoid. We expet

that the omplexity ould play an important role in the �ner study of

quotients by groupoids.
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1 Introduction

Motivation. Let X be a sheme endowed with an ation of a group sheme

G suh that there exists a quotient π : X → Y = X/G. Consider the ategory
C(X) of vetor bundles on X . In this paper, we give new examples where one

an haraterize the G-linearized bundles on X that desend to bundles on Y ,
and similarly for other �bered ategories C. More preisely, let C(G,X) be the
ategory of vetor bundles endowed with a G-linearization. Let C(G,X)′ be
the subategory of G-linearized bundles for whih the ation of the stabilizers

of geometri points is trivial. It is not hard to see that for any vetor bundle
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G ∈ C(Y ), the pullbak F = π∗G is naturally an objet of C(G,X)′. The

question is:

Let G × X → X be a group sheme ation as above, with quotient π : X →
Y = X/G. When is the pullbak π∗ : C(Y )→ C(G,X)′ an equivalene?

The orret framework for this type of question is that of algebrai spaes

(whih generalize shemes) and groupoids (whih generalize group ations).

That this is so was demonstrated twenty years ago by Keel and Mori who set-

tled the question of existene of quotients for ations with �nite stabilizer in the

paper [KM97℄. The main point is that groupoids allow redution and dévis-

sage in a muh more �exible way than group ations. Moreover, groupoids

inlude examples of interest like foliations in harateristi p, and insepara-

ble equivalene relations as in work of Rudakov and Shafarevih [RS76℄ and

Ekedahl [Ek88℄, whih we will return to in the end of this introdution. We

emphasize that our results are equally interesting in the restrited ase of group

ations. So in the sequel we let

(1) R ⇒ X be a �at loally �nitely presented groupoid of algebrai spaes,

(2) C→ AlgSp be a ategory �bered over the ategory of algebrai spaes,

(3) C(R,X) be the ategory of objets of C(X) equipped with R-linearizations
(see 4.1 for a preise de�nition), and

(4) C(R,X)′ ⊂ C(R,X) be the full subategory of objets with trivial geomet-

ri stabilizer ations.

Sine R-linearized objets on X are the same as objets on the algebrai stak

X = [X/R], the language of staks is an alternative whih is also used on that

matter.

Known results. When X → Y is a tame quotient, whih means that the

geometri stabilizers of R ⇒ X are linearly redutive �nite group shemes,

and C is either the ategory of line bundles, or �nite étale overs, or torsors

under a �xed linearly redutive �nite group sheme, Olsson showed that π∗ :
C(Y ) → C(G,X)′ is an equivalene [Ol12, Props. 6.1, 6.2, 6.4℄. When X → Y
is a good quotient and C is the ategory of vetor bundles, Alper showed that

π∗
is an equivalene [Al13, Thm. 10.3℄. Results for good quotients and other

ategories C will be presented in an upoming paper by the seond author.

The complexity. We wish to �nd examples that go beyond these ases, e.g.,

wild ations in harateristi p. In this new setting the map π∗ : C(Y ) →
C(G,X)′ fails to be an isomorphism in general; e.g. if C is the ategory of

line bundles and X = Spec(k[ǫ]/(ǫ2)) with trivial ation of G = Z/pZ, the
G-line bundle L generated by a setion x with ation x 7→ (1 + ǫ)x is not

trivial. For this, we introdue a new invariant of �at groupoids whih we all

the omplexity. (This is not to be onfused with the omplexity as de�ned by

Vinberg [Vi86℄ in another ontext, namely the minimal odimension of a Borel
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orbit in a variety ated on by a onneted redutive group.) We �x our attention

on the morphism jY : R → X ×Y X whih is �nite and surjetive when the

groupoid has �nite inertia. The omplexity of the groupoid is ontrolled by the

epimorphiity properties of this map. In order to quantify this, we use a result

of Grothendiek to the e�et that a �nite epimorphism of noetherian shemes

fators as a �nite sequene of e�etive epimorphisms. We prove in 2.3.2 that

there is a anonial suh sequene, and we de�ne the omplexity of R ⇒ X as

the length of the anonial sequene of jY .

Main new results. The omplexity is equal to 0 when jY is an isomorphism,

whih means that the groupoid ats freely; in this ase most questions involving

R ⇒ X are easily answered. The next ase in di�ulty is the ase of omplexity

1. In order to obtain results in this ase, we introdue the stabilizer Σ of

R ⇒ X , whih is the preimage of the diagonal under R → X ×X . It re�nes

the information given by the olletion of stabilizers of geometri points in

that it aounts for higher rami�ation. We let C(R,X)Σ ⊂ C(R,X)′ be the

subategory of R-linearized objets for whih the ation of Σ is trivial. In our

main result we have to assume that the quotient map is �at; the payo� is that

we an handle very general ategories C.

Theorem 4.2.3. Let R ⇒ X be a �at, loally �nitely presented groupoid

spae with �nite stabilizer Σ→ X and omplexity at most 1. Assume that the

quotient π : X → Y = X/R is �at (resp. �at and loally of �nite presentation).

Let C→ AlgSp be a stak in ategories for the fpq topology (resp. for the fppf

topology).

(1) If the sheaves of homomorphisms HomC(F,G) have diagonals whih are

representable by algebrai spaes, then the pullbak funtor π∗ : C(Y ) →
C(R,X)Σ is fully faithful.

(2) If the sheaves of isomorphisms IsomC(F,G) are representable by algebrai

spaes, then the pullbak funtor π∗ : C(Y ) → C(R,X)Σ is essentially surje-

tive.

In partiular if C is a stak in groupoids with representable diagonal, the funtor

π∗
is an equivalene.

This applies to staks whose diagonal has some representability properties. The

next theorem applies to a stak whih does not enjoy suh a property.

Theorem 4.2.5. Let C → AlgSp be the fppf stak in ategories whose objets

over X are �at morphisms of algebrai spaes X ′ → X. Let R ⇒ X be a

�at, loally �nitely presented groupoid spae with �nite stabilizer Σ → X and

omplexity at most 1. Assume that the quotient π : X → Y = X/R is �at and

loally of �nite presentation. Then the funtor π∗ : C(Y ) → C(R,X)Σ is an

equivalene.
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We give examples of groupoids satisfying the assumptions of these theorems

in setion 3.3. These inlude groupoids ating on smooth shemes in suh a

way that the stabilizers are symmetri groups ating by permutation of loal

oordinates. Other examples are given by groupoids ating on urves in pos-

itive harateristi; this is espeially interesting in harateristi 2. The two

theorems above an fail when π is not �at and the stabilizer groups are not

tame, see setion 4.5. We do not know if the assumption that the omplexity

is at most one is neessary.

We give an appliation to the existene of quotients of groupoids by normal

subgroupoids. This is interesting when applying dévissage arguments, as for

instane in [KM97, � 7℄. This question is also natural from the point of view of

understanding the internal struture of the ategory of groupoids. The basi

observation is this: if R ⇒ X is a groupoid P ⊂ R ⇒ X is a normal �at

subgroupoid, the ations of P on R by preomposition and postomposition

are free, but the simultaneous ation of P × P is not free. For groupoids

R = G×X given by group ations, it is nevertheless easy to make G/H at on

X/H , providing a quotient groupoidG/H×X/H ⇒ X/H . However for general

groupoids, onstruting a omposition law on the quotient P\R/P making it

a groupoid ating on X/P is muh more ompliated. In setion 4.3 we review

some ases where this is possible. For subgroupoids of omplexity 1 with �at

quotient, we obtain a satisfying answer.

Theorem 4.3.1. Let R ⇒ X be a �at, loally �nitely presented groupoid

of algebrai spaes. Let P ⇒ X be a �at, loally �nitely presented normal

subgroupoid of R with �nite stabilizer ΣP → X and omplexity at most 1.
Assume that the quotient X → Y = X/P is �at and loally �nitely presented.

Then there is a quotient groupoid Q ⇒ Y whih is �at and loally �nitely

presented, with Q = P\R/P . Moreover, the morphisms R→ Q and R×XR→
Q×Y Q are �at and loally �nitely presented.

Directions of further work. The natural question now is to extend these

results to the ase of groupoids of omplexity 2. This would most likely shed

some light on the ase of arbitrary omplexity. For the moment, we have no idea

of what the orret substitute for C(R,X)Σ should be in the general ontext.

The appliation we envision for these results is to the study of �nite �at overs

of algebrai varieties, typially over a �eld k of harateristi p. More preisely,

we expet our theorems to be useful for understanding how purely inseparable

morphisms of algebrai k-varieties f : V →W an be fatorized. An important

instane is when f is an iterate of the Frobenius morphism of V . We note that

when V is smooth, f will be �at. Thus the assumption of �atness of the

quotient map in our results is not too annoying; we give some more omment

on this point in Remark 4.2.4.

Organization of the article. As we said already, we work in the setting

of groupoids in algebrai spaes. (The relevane of this hoie in questions of

quotients in Algebrai Geometry is well explained in the paper [Li05℄ whih
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we reommend as an exellent ontextual reading.) This leads us to start in

setion 2 with some preparations on �nite epimorphisms of spaes. In par-

tiular, we give su�ient onditions for an epimorphism of algebrai spaes

to be e�etive, and we prove a preise form of Grothendiek's fatorization of

�nite epimorphisms into �nite e�etive epimorphisms. In setion 3 we reall

the basi voabulary of groupoids, we de�ne the omplexity, and we present

several examples. Finally in setion 4 we prove the main results of the paper,

presented above.
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2 Finite epimorphisms

This setion of preliminary nature ontains material on �nite epimorphisms

of algebrai spaes. The notion of epimorphism turns out to be a little more

subtle in the ategory of algebrai spaes than its ounterpart in the ategory of

shemes, due to the lak of the loally ringed spae desription. The same is true

for the notion of e�etive epimorphism. In order to have a better understanding

of the situation, we will give some manageable onditions that ensure that a

map of algebrai spaes is an epimorphism, or an e�etive epimorphism. The

main result is Theorem 2.2.5, but for the onveniene of the reader we will

indiate here its main onsequene needed in the sequel. We oasionally write

qqs for quasi-ompat and quasi-separated. Reall the following two statements

in the easy sheme ase:

2.0.1 Proposition. Let f : S′ → S be a qqs surjetive morphism of shemes.

Write A(S′) = f∗OS′
. Then the following are equivalent:

(1) f is shematially dominant, that is, A(S)→ A(S′) is injetive;

(2) f is an epimorphism in the ategory of shemes.

2.0.2 Proposition. Let f : S′ → S be a qqs submersive morphism of

shemes. Write S′′ = S′ ×S S
′
. Then the following are equivalent:

(1) A(S)→ A(S′) ⇒ A(S′′) is exat;

(2) f is an e�etive epimorphism in the ategory of shemes.

The main results we shall need are the following:

2.0.3 Proposition. (Lemma 2.1.5) Let f : S′ → S be a qqs morphism of

algebrai spaes whih is submersive after every étale base hange on S. Then
the following are equivalent:
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(1) f is shematially dominant, that is, A(S)→ A(S′) is injetive;

(2) f is an epimorphism in the ategory of algebrai spaes.

2.0.4 Proposition. (Lemma 2.2.3 + Corollary 2.2.8) Let f : S′ → S be an

integral morphism of algebrai spaes. Then the following are equivalent:

(1) A(S)→ A(S′) ⇒ A(S′′) is exat;

(2) f is an e�etive epimorphism in the ategory of algebrai spaes.

Under these equivalent onditions, f is a uniform e�etive epimorphism.

Finally we prove Grothendiek's fatorization of a �nite epimorphism into a

�nite sequene of �nite e�etive epimorphisms, Proposition 2.3.2, plaing our-

selves in a slightly more general ontext and giving some useful omplements.

2.1 Epimorphisms

First we reall an easy haraterization of epimorphisms of shemes.

2.1.1 Lemma. Let f : S′ → S be a morphism of shemes. The following

onditions are equivalent:

(1) f is an epimorphism (of shemes).

(2) f does not fator through an open or losed subsheme Z ( S.

(3) f does not fator through a subsheme Z ( S.

Proof : (1) ⇒ (2). Assume that f fators through a subsheme Z ( S whih

is either open or losed. Let X = S ∐Z S be the ringed spae obtained by

gluing two opies of S along their ommon opy of Z. If Z is open then X is a

sheme by ordinary topologial gluing, and if Z is losed then X is a sheme by

Ferrand [Fe03, Thm. 7.1℄ or [SP, Tag 0B7M℄. Let u, v : S → X be the anonial

maps. We have u 6= v and uf = vf , so f is not an epimorphism.

(2) ⇒ (3) Immediate beause a subsheme is a losed subsheme of an open

subsheme.

(3) ⇒ (1). Let X be a sheme and let u, v : S → X be morphisms suh that

uf = vf . Let Z be the preimage of the diagonal ∆ : X → X ×X by the map

(u, v) : S → X × X . Sine ∆ is an immersion, then Z is a subsheme of S.
Sine f fators through Z, by (3) it follows that Z = S. This shows that (u, v)
fators through the diagonal, that is u = v.

Reall that an algebrai spae is alled loally separated if its diagonal is an

immersion. Clearly the lemma and its proof show that an epimorphism of

shemes is also an epimorphism in the ategory of loally separated algebrai

spaes. However, it may fail to be an epimorphism in the ategory of all

algebrai spaes, even if it is surjetive and shematially dominant. Here is a

ounter-example.
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2.1.2 Example. Let k be a �eld of harateristi 6= 2. Consider the sheme

S = Spec(k[x, y]/(x2 − y2))

with losed subsheme Y = V (x − y) and open omplement U = D(x − y) =
S \Y . Let S′ = Y ∐U . Then the anonial map f : S′ → S is a surjetion to a

redued sheme, hene an epimorphism of shemes by the lemma above. The

map j : S′ → S ⊂ A1
k × A1

k de�nes an étale equivalene relation on A1
k. We

let π : A1
k → X be the quotient algebrai spae. By onstrution, the pullbak

of the diagonal X ⊂ X × X to A1
k × A1

k is S′
. Let u, v : S → A1

k → X be

the maps indued by the two projetions pr1, pr2 : S → A1
k. These maps are

distint, sine otherwise (u, v) would fator through the diagonal of X , whih

would mean that (p1, p2) : S → A1
k ×A1

k fators through S′
, whih it does not.

However uf = vf , hene f is not an epimorphism of algebrai spaes.

In the appliations that we have in mind, it is umbersome to hek that the

algebrai spaes involved satisfy some separation ondition. Beause of this,

we spend some e�ort on obtaining riteria for epimorphisms in the ategory

of all algebrai spaes. In order to put 2.1.1 in perspetive, it is useful to

have the onstrution of gluing along losed subshemes available for algebrai

spaes. This is originally due to Raoult [Ra74℄. Variants appear in [Ar70,

Thm. 6.1℄, [Ry11, Thm. A.4℄, [CLO12, Thm. 2.2.2℄, [TT16, Thm. 5.3.1℄. In all

these soures, the hypotheses allow one of the maps f, g of the gluing diagram

to be �nite or at least a�ne and usually some noetherian-like assumptions are

present. It is known to most people that these assumptions are not essential

at least when both maps f, g are losed immersions; we give a statement with

the main input for the proof oming from [SP℄.

2.1.3 Lemma. Let i1 : Y →֒ X1 and i2 : Y →֒ X2 be losed immersions of

algebrai spaes. Then, there exists a pushout W = X1 ∐Y X2 in the ategory

of algebrai spaes:

Y
i2 //

i1

��

X2

b

��

X1
a // W.

Moreover, the diagram is a artesian square; the maps a, b are losed im-

mersions; the pushout is topologial, i.e., its underlying topologial spae is

|X1| ∐|Y | |X2|; and there is a short exat sequene

0 −→ OW −→ a∗OX1 ⊕ b∗OX2 −→ c∗OY −→ 0

of sheaves on the small étale site of W .

Proof : We will redue to the known ase of shemes. For this we will use

the following lassial extension result for étale maps: if U,E,E′
are disjoint
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unions of a�ne shemes (heneforth to be alled sums of a�nes for brevity)

and E →֒ U is a losed immersion, and E′ → E is an étale morphism, then

there exists a sum of a�nes U ′
and an étale morphism U ′ → U suh that

E′ ≃ U ′ ×U E. The proof an be found for example in [SP, Tag 04D1℄. Note

that if E′ → E is surjetive, we may hoose U ′ → U surjetive by adding to U ′

the sum of a�nes in a Zariski overing of U \E.
For eah i = 1, 2 let πi : Ui → Xi be an étale surjetive map where Ui is a sum

of a�nes. Let Ei = Ui ×Xi
Y . Then E1 ×Y E2 is étale surjetive over E1 and

E2. Let E
′
be the sum of a�nes given by a Zariski overing of E1 ×Y E2. By

the fat quoted above, for eah i = 1, 2 there exists U ′
i → Ui étale surjetive

whose restrition to Ei is isomorphi to E′
. In this way, replaing Ui by U

′
i we

see that we an assume that E1 ≃ E2. Now for i = 1, 2 let Ri = Ui ×Xi
Ui

with its two projetions si, ti : Ri → Ui. Let Fi be the preimage of Y in Ri.

Sine πisi = πiti, this is isomorphi to the preimage of Ei under any of the

maps si or ti. The isomorphism E1 ≃ E2 indues a ompatible isomorphism

F1 ≃ F2; in the sequel we view these isomorphisms as identi�ations so we

write E = E1 = E2 and F = F1 = F2.

By the sheme ase the pushouts U := U1 ∐E U2 and R := R1 ∐F R2 make

sense as shemes. Using the pushout property for R we see that the maps

s ∐ s, t ∐ t : R1 ∐ R2 → U1 ∐ U2 indue maps whih for simpliity we again

denote s, t : R → U . They are learly surjetive. We laim that moreover

they are étale. This is a loal property and is proved in [SP, Tag 08KQ℄. Let

W = U /R be the quotient algebrai spae. Cheking that W is the pushout is

formal, and obtaining the additional properties is easy by taking an atlas.

We obtain at least a neessary ondition.

2.1.4 Lemma. An epimorphism of algebrai spaes does not fator through a

loally losed subspae Z ( S.

Proof : Same proof as 2.1.1 using Lemma 2.1.3 instead of [Fe03, Thm. 7.1℄.

We now present two simple examples of epimorphisms of algebrai spaes. The

�rst one improves [Ry10, Prop. 7.2℄ where it is assumed that f is a submersion

after every base hange.

2.1.5 Lemma. Let f : S′ → S be a morphism of algebrai spaes whih is

shematially dominant, and submersive after every étale base hange on S.
Then f is an epimorphism of algebrai spaes, and remains an epimorphism

after every étale base hange.

Proof : The assumptions are stable by étale base hange, hene it is enough to

prove that f is an epimorphism. Let X be an algebrai spae and let u, v : S →
X be morphisms suh that uf = vf . Let Z be the preimage of the diagonal

∆ : X → X ×X by the map (u, v) : S → X ×X . Sine ∆ is a representable
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monomorphism of spaes whih is loally of �nite type, see [SP, Tag 02X4℄, the

map g : Z → S has the same properties. By the assumption on u, v the map f
fators through Z. This shows that g is a submersive monomorphism, hene a

homeomorphism. By the assumption on f , this remains true after every étale

base hange on S. Then [EGAIV.4, Cor. 18.12.4℄, whose proof uses only étale

base hanges, shows that g is �nite. Thus g is a losed immersion whih is

shematially dominant, hene an isomorphism. Hene u = v, and f is an

epimorphism of spaes.

2.1.6 Lemma. Let S = Spec(A) be a noetherian loal sheme and let Sn =
Spec(A/mn+1) be the n-th thikening of the losed point. Then f :

∐

n>0 Sn →
S is an epimorphism of algebrai spaes.

Proof : Sine f fators through the maximal-adi ompletion of S whih is

fpq over S, it is enough to assume that S is omplete. Let u, v : S → X be

suh that uf = vf , and Z as in the proof of 2.1.5. Sine S is henselian we an

write Z = Z0 ∐ Z1 where Z0 is �nite over S and ontains the unique losed

point above the losed point of S. By assumption Z0 → S is an isomorphism

over every Sn. Using Nakayama, we �nd that Z0 → S is a losed immersion.

Sine S is noetherian, this implies that Z0 → S is an isomorphism.

2.1.7 Remarks. The noetherian assumption is of ourse ruial, sine other-

wise we may e.g. have m = mn
for all n > 1.

2.2 Effective epimorphisms

2.2.1 Definition. We say that f : S′ → S is an e�etive epimorphism of

algebrai spaes if the diagram S′ ×S S
′ ⇒ S′ → S is exat, that is, if for all

algebrai spaes X we have an exat diagram of sets:

Hom(S,X)→ Hom(S′, X) ⇒ Hom(S′ ×S S
′, X).

Another way to say it is that S is the ategorial quotient of S′
by the groupoid

S′ ×S S
′ ⇒ S′

.

2.2.2 Example. An fpq overing of algebrai spaes is an e�etive epimor-

phism of algebrai spaes [SP, Tag 04P2℄.

If f : X → S is a morphism, we write AS(X) = f∗OX or simply A(X) = f∗OX

if the base S is lear from ontext. For instane A(S) = OS . Also let us write

S′′ = S′ ×S S
′
.

2.2.3 Lemma. Let f : S′ → S be a quasi-ompat and quasi-separated mor-

phism of algebrai spaes. Assume that f is an e�etive epimorphism. Then

the sequene A(S)→ A(S′) ⇒ A(S′′) is exat.
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Proof : Let us simplify the notations by setting A∗ = A(S∗) for ∗ ∈ {∅,′ ,′′ }.
Let I be the kernel of A → A′

and let B be the kernel of the pair of arrows

A′ ⇒ A′′
. We must prove that A → B is an isomorphism. Sine f is quasi-

ompat and quasi-separated, the sheaves A, A′
, A′′

are quasi-oherent hene

the sheaves I, B are also quasi-oherent. Aording to Lemma 2.1.4 we have

I = 0. Let us write T = SpecS(B). We have injetive sheaf morphisms OS =
A → B → A′

and orresponding sheme morphisms g : S′ → T , h : T → S
satisfying f = hg. Let p1, p2 : S′′ → S′

be the projetions. Sine gp1 = gp2
and f is e�etive, there is a morphism e : S → T suh that g = ef = ehg. As
the sheaf map g♯ : B→ A′

is injetive, this implies that e♯ : B→ A is a setion

of the map h♯ : A→ B whih therefore is an isomorphism.

Lemma 2.2.3 shows that under the qqs assumption, it is neessary for an

e�etive epimorphism of algebrai spaes to give rise to an exat sequene of

OS-modules A(S)→ A(S′) ⇒ A(S′′). For the onverse, in the world of shemes

things are quite simple: a submersion with the above exat sequene property

is an e�etive epimorphism, see [SGA1, Exp. VIII, Prop. 5.1℄.

In the world of algebrai spaes things are a bit more subtle, and our purpose

in the rest of this subsetion is to strengthen slightly the submersion property

so as to salvage the result. We reall that to say that f : S′ → S is a morphism

of e�etive desent for étale algebrai spaes means that for any two étale

S-algebrai spaes X,Y the diagram

HomS(X,Y )→ HomS′(X ′, Y ′) ⇒ HomS′′(X ′′, Y ′′)

is exat, and that for every étale S′
-algebrai spae X ′

, every desent datum

on X ′
with respet to S′ → S is e�etive.

2.2.4 Lemma. Let f : S′ → S be a morphism of algebrai spaes. The property

for f to be a morphism of e�etive desent for étale algebrai spaes is loal on

the soure and target for the étale topology. Expliitly,

(1) if T → S is étale surjetive, T ′ = T×SS
′
, and fT : T ′ → T is the pullbak

of f , then f is a morphism of e�etive desent for étale algebrai spaes

if and only if fT is so; and

(2) if g : S′′ → S′
is étale surjetive, then f is a morphism of e�etive desent

for étale algebrai spaes if and only if fg is so.

Proof : (1) In one diretion, assume f : S′ → S is a morphism of e�etive

desent for étale algebrai spaes, and let T → S be an étale base hange. Let

T ′ = T ×S S
′
and T ′′ = T ′ ×T T

′ = T ×S S
′′
. We prove that fT : T ′ → T

desends morphisms. Let X,Y be two étale T -algebrai spaes. We prove that

the diagram

HomT (X,Y )→ HomT ′(X ′, Y ′) ⇒ HomT ′′(X ′′, Y ′′) (⋆)
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is exat. Note that X → T → S is étale and similarly for the other algebrai

spaes. Sine f desends morphisms between étale spaes, we obtain an exat

diagram

HomS(X,Y )→ HomS′(X ′, Y ′) ⇒ HomS′′(X ′′, Y ′′).

Injetivity of the �rst map of (⋆) now follows from the injetivity of the maps

HomT (X,Y ) → HomS(X,Y ) and HomS(X,Y ) → HomS(X
′, Y ′). Let u′ :

X ′ → Y ′
be a T ′

-morphism suh that its pullbaks under the maps T ′′ ⇒ T ′

oinide. The seond exat sequene provides an S-morphism u : X → Y .
Moreover if a : X → T , b : Y → T are the struture morphisms, we see that

a and bu beome equal when pulled bak to S′
, hene they are equal. This

shows that u is in fat a map of T -algebrai spaes. Finally we prove e�etive

desent for objets. Let X ′ → T ′
be an étale algebrai spae with a desent

datum with respet to T ′ → T . Then X ′ → T ′ → S′
is étale and moreover the

desent datum an be viewed as a desent datum with respet to S′ → S. By
the assumption on f there exists an étale morphism X → S whose pullbak

under S′ → S is X ′
. Moreover the map X ′ → T ′

desends to an S-map X → T
and the onstrution of X is �nished.

The other diretion is a speial ase of [Gi64, Thm. 10.8℄ but for the onveniene

of the reader we give the argument here. Let T → S be étale surjetive and

assume that the base hange fT : T ′ → T is of e�etive desent for étale

algebrai spaes. We prove desent of morphisms for f . Let X,Y be étale

spaes over S, let X ′, Y ′
be the pullbaks to S′

, and let u′ : X ′ → Y ′
be an

S′
-morphism whose pullbaks via the two maps S′ ×S S

′ ⇒ S′
oinide. Then

the map u′T obtained by the base hange T ′ → S′
has oiniding pullbaks via

the two maps T ′ ×T T
′ ⇒ T ′

. Sine fT desends morphisms, u′T desends to a

T -map uT : XT → YT . Let us introdue some notation:

T ′ ×S′ T ′
q1

//

q2
//

fT×ST

��

T ′ //

fT

��

S′

f

��

T ×S T
p1

//

p2

// T // S.

From the �rst part, we know that fT×ST is a morphism of (e�etive) desent.

From the equality q∗1u
′
T = q∗2u

′
T we thus dedue that p∗1uT = p∗2uT . By desent

along the étale map T → S, we obtain a unique S-map u : X → Y that

desends u′. Now we prove e�etive desent for objets. Let X ′ → S′
be

an étale morphism equipped with a desent datum for S′/S. The pullbak

X ′
T → T ′

has a desent datum for T ′/T . By assumption it desends to XT →
T . The anonial isomorphism q∗1X

′
T → q∗2X

′
T desends to an isomorphism

ψ : p∗1XT → p∗2XT sine fT×ST is a morphism of desent. Using that fT×ST×ST

is a morphism of desent, one heks that ψ is a desent datum on XT for the

étale overing T → S and by e�etive desent, it desends to a unique X → S
as desired.

(2) This is a speial ase of [Gi64, Props. 10.10 and 10.11℄.
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The next theorem is our main result on e�etive epimorphisms of algebrai

spaes. In the world of shemes, a qqs submersion suh that A(S)→ A(S′) ⇒
A(S′′) is exat is an e�etive epimorphism. In the world of algebrai spaes, we

reinfore these onditions slightly in order to suitably allow étale loalization

and desent.

2.2.5 Theorem. Let f : S′ → S be a morphism of algebrai spaes. Assume

that:

(1) f is a qqs submersion and remains so after every étale base hange,

(2) the diagram of OS-modules A(S)→ A(S′) ⇒ A(S′′) is exat,

(3) f is a morphism of e�etive desent for étale algebrai spaes.

Then f is an e�etive epimorphism of algebrai spaes and remains so after

any étale base hange.

Proof : By Lemma 2.2.4, all three assumptions are stable by étale base hange

on S. Therefore it is su�ient to prove that f is an e�etive epimorphism of

algebrai spaes, i.e., for all algebrai spaes X , the diagram X(S)→ X(S′) ⇒
X(S′′) is exat. Note that after Lemma 2.1.5 we know that f is an epimorphism

after every étale base hange, whih settles injetivity on the left. It remains to

prove that if α′ : S′ → X satis�es α′ pr1 = α′ pr2 then there exists α : S → X
suh that α′ = αf .

We prove that the question is Zariski-loal on X . Let (Xi) be a overing of

X by open subspaes and let S′
i = (α′)−1(Xi). Then S′

i is saturated, that

is S′
i = f−1(f(S′

i)). Sine f is a submersion by (1), then S′
i desends to an

open subspae Si ⊂ S. If for eah i there exists αi : Si → Xi ⊂ X suh that

α′
|S′

i
= αif|S′

i
then by uniqueness the morphisms αi glue to give a solution

α : S → X .

We prove that the question has a positive answer when X is a sheme. In-

deed, we an over X by open a�ne subshemes and then by the preed-

ing step we an redue to the ase where X = Spec(A) is a�ne. Sine

Hom(T, Spec(A)) = Hom(A,Γ(T,OT )) for all algebrai spaes T (see [SP,

Tag 05Z0℄), the question redues to a onstrution of ring homomorphisms

and then the onlusion omes from assumption (2).

Now letX be an arbitrary algebrai spae. Let π : Y → X be an étale surjetive

morphism where Y is a sheme. Let U ′ = Y ×X S′
whih is étale surjetive

over S′
, and U ′′ = Y ×X S′′

. The assumption α′ pr1 = α′ pr2 implies that U ′

arries a desent datum. By assumption (3) it desends to an étale algebrai

spae U → S. Also let β′ : U ′ → Y be the pullbak of α′
. Let R = U ×S U
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and R′ = U ′ ×S′ U ′
.

R′

t′

��

s′

��

// R

t

��

s

��

U ′′ //
//

c

��

U ′ //

d
��

β′

77U
β

//❴❴❴

��

Y

π

��

S′′ //
// S′ //

α′

77S X

We know β′ pr1 = β′ pr2 : U ′′ → Y . Sine U ′ → U satis�es again all the

assumptions (1)�(3) and the statement holds when the test spae Y is a sheme,

we obtain a morphism β : U → Y . We laim that πβ : U → X is R-invariant.
Sine R′ → R is an étale pullbak of f : S′ → S, it is an epimorphism. Hene

it is enough to prove that the ompositions R′ → R ⇒ U → X are equal.

This follows beause they equal to α′ds′ = α′dt′. Thus πβ indues a morphism

α : S → X and we are done.

Colleting some results on morphisms of e�etive desent for étale maps in the

literature, we �nd the following speial ases.

2.2.6 Corollary. Let f : S′ → S be a surjetive morphism of algebrai

spaes whih is either :

(i) integral,

(ii) proper,

(iii) universally open and loally of �nite presentation,

(iv) universally submersive and of �nite presentation with S loally

noetherian.

Then if the sequene of modules A(S) → A(S′) ⇒ A(S′′) is exat, the map f
is an e�etive epimorphism of algebrai spaes and remains so after any �at

base hange.

Proof : In eah ase the assumptions are stable under base hange, exept

possibly in ase (iv). To deal with this, we use the notion of a subtrusive mor-

phism from [Ry10℄ and we replae (iv) with the more general (iv)' : universally

subtrusive and of �nite presentation. That this is indeed more general than (iv)

follows from [Ry10, Cor. 2.10℄, with the advantage that (iv)' is stable under

base hange. It follows that it is enough to prove that f is an e�etive epi-

morphism of algebrai spaes. For this we apply Theorem 2.2.5. In eah ase

onditions (1) and (2) hold and it remains to see that f is of e�etive desent

for étale algebrai spaes. Sine by Lemma 2.2.4 this property is étale-loal on

soure and target, by taking étale atlases of S and S′
one redues to the ase
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where f is a map of shemes. Then the laim is [SGA4.2, Exp. VIII, Thm. 9.4℄

in ases (i)�(ii) and [Ry13, Thm. A.2℄ in ases (iii)�(iv)'.

2.2.7 Remark. Assume that f satis�es one of the onditions (i)�(iv). Then

the property �f is an e�etive epimorphism� is fpq-loal on S beause exat-

ness of a sequene of quasi-oherent modules is an fpq-loal ondition.

For ease of future referene, we single out the following partiular ase of 2.2.6.

Reall that an (e�etive) epimorphism is uniform if it remains an (e�etive)

epimorphism after all �at base hanges.

2.2.8 Corollary. Let f : S′ → S be an integral morphism of algebrai spaes

suh that the sequene A(S)→ A(S′) ⇒ A(S′′) is exat. Then f is a uniform

e�etive epimorphism of algebrai spaes. �

2.2.9 Examples. Here are some su�ient onditions for a morphism f :
Spec(A′)→ Spec(A) de�ned by a �nite ring extension A ⊂ A′

to be an e�etive

epimorphism.

(1) f is faithfully �at (faithfully �at desent).

(2) f is the quotient of a �at groupoid (by the quotient property).

(3) f is unrami�ed with �ber-degree at most 2. Indeed, by the struture of

unrami�ed morphisms, étale-loally on the target the morphism f has the form

Spec(A/I) ∐ Spec(A/J) → Spec(A). Hene we may assume that A′ = A/I ×
A/J with I∩J = 0, so that A′⊗AA

′ = (A/I)× (A/I+J)× (A/I+J)× (A/J).
To say that a′ = (a1, a2) ∈ A

′
has equal images in A′⊗AA

′
means that a1 ≡ a2

mod I + J , hene a1 + i = a2 + j for some i ∈ I, j ∈ J . Thus a′ ∈ A.

(4) Levelt [Le65℄ ontains some more examples. For instane if A ⊂ A′
is a loal

inlusion of loal rings with trivial residue �eld extension and no intermediate

subring then f is e�etive [Le65, Chap. IV, Lem. 4℄. If for some maximal ideal

m ⊂ A we have A′/A ≃ A/m as A-modules, then f is e�etive [Le65, Chap. IV,

Lem. 7℄.

(5) f is weakly normal, e.g., A and A′
are integral domains, f is generially

étale and A is weakly normal [Ry10, Lem. B.5℄.

Here is a non-example showing that d = 2 is required in (3) above.

2.2.10 Example. Let A = k[x, y]/
(

xy(y−x)
)

andA′ = A/(x)×A/(y)×A/(y−
x). Then f : Spec(A′) → Spec(A) is �nite and unrami�ed of �ber-degree at

most 3 but not an e�etive epimorphism. Indeed, A′⊗AA
′ = A′×k6 is redued

so the equalizer of the two maps A′ → A′ ⊗A A′
is the weak subintegral lo-

sure [Ry10, Lem. B.5℄ whih is isomorphi to B = k[u, v, w]/(u, v)(u,w)(v, w).
Expliitly, we have injetive maps A → B and B → A′

where x 7→ u + v,
y 7→ u+ w and u 7→ (0, 0, x), v 7→ (0, x, 0), w 7→ (y, 0, 0).
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2.3 The canonical factorization

The main result of this setion gives a anonial fatorization of a �nite epimor-

phism as a omposition of �nitely many �nite e�etive epimorphisms. It is �rst

stated in [Gr59, A.2.b℄ and then used to study the funtor of subgroups of mul-

tipliative type of a group sheme [SGA3.2, Exp. XV, just before Lem. 3.7℄ and

the relative representability of the Piard funtor [SGA6, Exp. XII, Lem. 2.6℄.

A proof appears in the latter referene. With an eye towards the study of

groupoids of higher omplexity, we provide additional properties of the anon-

ial fatorization : uniqueness, ompatibility with �at base hange, and min-

imality of its length. For the onveniene of the reader, we provide omplete

proofs.

2.3.1 Definitions. Let f : T → S be an epimorphism of algebrai spaes.

(1) An f -sequene is a sequene T = T0 → T1 → T2 → . . . of epimorphisms

of S-spaes suh that for eah i > 0, if Ti → Ti+1 is an isomorphism then

Ti+1 → Ti+2 is an isomorphism.

(2) The length of an f -sequene as above is the smallest n ∈ N∪{∞} suh that

Tn → Tn+1 is an isomorphism, i.e., the number of non-isomorphi arrows of the

sequene. If an f -sequene has �nite length n and Tn → S is an isomorphism,

we say that it is �nite and separated or that it is a fatorization.

(3) Assume that f is a�ne. The anonial sequene of f is the f -sequene
T = T0 → T1 → T2 → . . . given by Ti = SpecS(Ai) where A0 := f∗OT and

Ai+1 := ker(Ai ⇒ Ai ⊗OS
Ai) for all i > 0.

2.3.2 Proposition. Let f : T → S be an integral epimorphism of algebrai

spaes.

(1) The anonial sequene T = T0 → T1 → T2 → . . . is haraterized by the

properties :

(i) for eah i, the morphism Ti → S is integral and the morphism Ti →
Ti+1 is an integral e�etive epimorphism;

(ii) for eah i the anonial morphism Ti ×Ti+1 Ti → Ti ×S Ti is an

isomorphism.

(2) The formation of the anonial sequene is ompatible with �at base hange

and loal for the �at topology on S. More preisely, let S′ → S be a faithfully

�at morphism of shemes. Let T = (T0 → T1 → T2 → . . . ) be a sequene of

morphisms of S-shemes and let T ′ = (T ′
0 → T ′

1 → T ′
2 → . . . ) be the sequene

obtained by the base hange S′ → S. Then T is the anonial sequene of

T → S if and only if T ′
is the anonial sequene of T ′ → S′

.

(3) The anonial sequene has length 0 if and only if f is an isomorphism,

and length at most 1 if and only if f is an e�etive epimorphism.
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(4) The anonial sequene is terminal among f -sequenes, a�ne over S,
whose fators are e�etive epimorphisms, i.e., for eah suh sequene T =
T ′
0 → T ′

1 → T ′
2 → . . . there are maps T ′

i → Ti making a ommutative diagram:

T ′
0

//

idT

��

T ′
1

//

��

T ′
2

//

��

. . .

T0 // T1 // T2 // . . .

(5) When S is noetherian and f is �nite, the morphisms Ti → Ti+1 are �nite

and the anonial sequene is �nite and separated, i.e., a fatorization. It

has minimal length among all �nite separated f -sequenes whose fators are

e�etive epimorphisms.

All laims exept (5) are atually quite formal.

Proof : (1) Write A := OS and A0 := f∗OT . Sine Ai ⊂ A0, the morphisms

Ti = SpecS Ai → S and Ti → Ti+1 are integral. The surjetive morphism

Ai⊗AAi → Ai⊗Ai+1 Ai has kernel generated by the loal setions a⊗1−1⊗a
for loal setions a ∈ Ai+1. By the de�nition of Ai+1, it follows that this map

is an isomorphism hene (ii) is satis�ed. Therefore we have an exat diagram

Ai+1 → Ai ⇒ Ai ⊗Ai+1 Ai. By Corollary 2.2.8, this means that Ti → Ti+1 is

an e�etive epimorphism, hene (i) is satis�ed. Conversely, if a fatorization

T = T ′
0 → T ′

1 → T ′
2 → . . . satis�es (ii) then A′

i ⊗A A′
i → A′

i ⊗A′

i+1
A′

i is an

isomorphism, and if moreover (i) is satis�ed then A′
i+1 = ker(Ai ⇒ Ai⊗OS

Ai).
Thus we see that the given sequene is the anonial one.

(2) This follows beause the formation of kernels of morphisms of quasi-oherent

sheaves ommutes with �at base hange and is loal for the �at topology on

the base.

(3) This follows from the de�nitions.

(4) By indution, assume that there is a diagram of length i:

T ′
0

//

idT

��

T ′
1

//

��

. . . // T ′
i−1

//

��

T ′
i

��

T0 // T1 // . . . // Ti−1
// Ti.

Then beause T ′
i → T ′

i+1 is e�etive, we have a ontainment Ai+1 = ker(Ai ⇒

Ai ⊗A Ai) ⊂ ker(A′
i ⇒ A′

i ⊗A′

i+1
A′

i) = A′
i+1. This gives a map T ′

i+1 → Ti+1

and a diagram of length i+ 1.

(5) First, assume that the anonial sequene has �nite length, so there exists

n > 0 suh that An+1 = An. Then we have an isomorphism An ⊗A An →
An ⊗An+1 An ≃ An. This means that Tn → S is a monomorphism. Being

dominant and �nite, it must be an isomorphism hene the sequene is sepa-

rated. Now we prove that the anonial sequene has �nite length. Sine S
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is noetherian, this property is étale-loal on S. Moreover the formation of Ai

ommutes with restrition to an open subsheme and with passage to the stalks

on étale loal rings. If for some point s ∈ S the sequene of stalks (Ai,s)i>0

is stationary, then the isomorphism As → An,s extends in a neighborhood of

s. Thus we may assume that S is loal with losed point s. In partiular, we

may assume that S (loal or not) has �nite dimension d. We now argue by

indution on d. If d = 0, the rings Ai have �nite length and the sequene Ai is

stationary. If d > 0, the open U = S \ {s} has dimension < d so by indution

the sequene Ai is stationary after restrition to U . By the same argument as

before, we then know that for all big enough i the morphism A → Ai is an

isomorphism away from s. It follows that the quotient OS-module Ai/A has

�nite length. Thus Ai/A is stationary, and hene also Ai.

Now onsider a �nite separated sequene T = T ′
0 → T ′

1 → · · · → T ′
m = S of

length m whose fators are e�etive epimorphisms. We have a diagram:

T ′
0

//

idT

��

T ′
1

//

��

. . . // T ′
m−1

//

��

T ′
m

��

S

T0 // T1 // . . . // Tm−1
// Tm // S.

We obtain OS ⊂ Am ⊂ A′
m = OS. Thus Tm → S is an isomorphism, so the

anonial sequene has length at most m.

2.3.3 Example. Let k be a �eld and S the a�ne uspidal k-urve with equa-

tion y3 = x4. We shall see that the anonial sequene of the normalization

map f : T → S has length n = 2, as follows :

T T1 S

A1
k

spatial

singularity

y
2 = xz

z
2 = x

2
y

yz = x
3

planar

uspidal

singularity

y
3 = x

4

We have S = Spec(A) and T = Spec(B) with A = k[x, y]/(y3 − x4) and

B = k[t], the morphism A → B being given by x = t3 and y = t4. In other

words A ≃ k[t3, t4] →֒ k[t]. We an write :

B ⊗A B =
k[t1, t2]

(t31 − t
3
2, t

4
1 − t

4
2)

and the two arrows B ⇒ B ⊗A B map t to t1 and t2 respetively. The ring

B1 = ker(B ⇒ B ⊗A B) ontains A as well as the element t5, sine t51 =
t1t

4
2 = t1t2t

3
1 = t41t2 = t52. Therefore B ontains k[t3, t4, t5]. If we notie
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that the annihilator of t1 − t2 in B ⊗A B is generated by t21 + t1t2 + t22 and

(t1+ t2)(t
2
1+ t

2
2), we see that B1 does not ontain elements of the form at+ bt2.

This proves that B1 = k[t3, t4, t5]. Letting z = t5 we get the presentation :

B1 =
k[x, y, z]

(y2 − xz, z2 − x2y, yz − x3)
.

In partiular B1 is a free k[x]-module with basis {1, y, z}. We now prove that

A = ker(B1 ⇒ B1 ⊗A B1). We write :

B1 ⊗A B1 = k[x, y, z1, z2]/I

with I = (y2 − xz1, z
2
1 − x2y, yz1 − x3, x(z1 − z2), y(z1 − z2), z

2
1 − z

2
2). The

two arrows B1 ⇒ B1 ⊗A B1 map z to z1 and z2 respetively. Let P = a(x) +
b(x)y + c(x)z be an element of B1 suh that P (x, y, z1) = P (x, y, z2), i.e.,
c(x)z1 = c(x)z2. In view of the struture of the annihilator of z1 − z2 inside

B1 ⊗AB1, this implies that x divides c(x), hene P ∈ k[x, y, xz] = k[x, y] = A,
as announed.

3 The category of groupoids

In this setion we brie�y reall some de�nitions and notations on groupoids

(� 3.1) and we de�ne the omplexity of a �at groupoid with �nite stabilizer

whose jY : R→ X ×Y X map is shematially dominant (� 3.2).

3.1 The vocabulary of groupoids

Good referenes for this material are Keel�Mori [KM97℄ and Rydh [Ry13℄. We

�x a base algebrai spae S, and produts are �bered over S. We use the

voabulary of the funtor of points: a T -point of an algebrai spae X over S
is a morphism x : T → X with values in some S-sheme T . We often write

x ∈ X(T ).

3.1.1 Groupoids. We work with groupoids in S-algebrai spaes, also alled

groupoid spaes or simply groupoids. A groupoid is given by �ve morphisms of

algebrai S-spaes s, t : R → X , c : R ×s,X,t R → X , e : X → R, i : R → R
subjet to the onditions that X(T ) is the set of objets and R(T ) is the set

of arrows of a small ategory, funtorially in T . The maps s, t, c, e, i are alled
soure, target, omposition, unit (or identity), and inversion. The points of

R×s,X,tR are alled pairs of omposable arrows. Usually we denote a groupoid

simply by s, t : R ⇒ X and we all j the map j = (t, s) : R→ X×X . Typially

a T -point of X will be denoted x while a T -point of R will be denoted with a

Greek letter like α. We sometimes write 1x or simply 1 instead of e(x). We

oasionally write α : x → y if x = s(α) and y = t(α). With our hoies of c

and j, note that it is more natural to piture T -points of R as arrows y
α
←− x

going from right to left.
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3.1.2 Actions. For instane, an S-group spae G ating on an algebrai spae

X gives rise to a groupoid s, t : G ×X ⇒ X where s is the seond projetion

and t is the ation. In the general setting one may shape one's intuition by

thinking of a groupoid as a spae R ating on a spae X . If α : x → y is an

arrow, there is a orresponding ation-like notation α(x) := t(α) = y. In these

terms, the ation is trivial if and only if s = t and the maps c, e, i make R→ X
into an X-group spae.

3.1.3 Stabilizers. If R ⇒ X is a groupoid, then its stabilizer is the X-group

spae StabR = j−1(∆X) where ∆X ⊂ X×X is the diagonal. This is the largest

subgroupoid of R whih is a group spae, or also, the largest subgroupoid ating

trivially.

3.1.4 Subgroupoids. A subgroupoid is a sub-algebrai spae P ⊂ R that is

stable under omposition and inversion, and ontains the unit setion e(X).
(Topologists all this a wide subgroupoid beause they also allow subgroupoids

P ⇒ Y whose base is an arbitrary possibly empty subspae Y ⊂ X . By sub-

algebrai spae, we here mean a subfuntor that is an algebrai spae, that

is, a monomorphism P → R of algebrai spaes.) A subgroupoid is alled

normal if for any α ∈ P (T ) and ϕ ∈ R(T ) we have ϕαϕ−1 ∈ P (T ) whenever
omposability holds. In detail, if ϕ : x → y, then omposability means that

α ∈ StabP,x(T ) and then we have ϕαϕ−1 ∈ StabP,y(T ). In partiular the

ondition that P be normal in R depends only on the stabilizer StabP . Any

subgroupoid ontaining StabR is normal; in partiular if StabR is trivial then

all subgroupoids are normal.

3.1.5 Morphisms, kernels. A morphism of groupoids from R ⇒ X to R′ ⇒

X ′
is a morphism of S-spaes f : R → R′

suh that f(αβ) = f(α)f(β) for

all omposable arrows α, β ∈ R(T ). We also use the notation f : (R,X) →
(R′, X ′). Suh a morphism f has various automati ompatibilities with the

maps s, t, e, i. For instane, f maps identities to identities. Moreover there is

an indued morphism on objets s′ ◦ f ◦ e = t′ ◦ f ◦ e : X → X ′
whih we also

write f for simpliity. Thus, notationally for an arrow α : x→ y in R we obtain

an arrow f(α) : f(x) → f(y) in R′
. The kernel of a morphism f : R → R′

is

the preimage of the unit setion e′ : X ′ → R′
. It is a normal subgroupoid of R.

3.1.6 Invariant morphisms. Let R ⇒ X be a groupoid and let P be a

subgroupoid. Then P ats on R in various natural ways. The ation by pre-

omposition is a groupoid R ×(s,t) P ⇒ R, and the ation by postomposition

is a groupoid P ×(s,t) R ⇒ R. The stabilizers of both ations are trivial.

The simultaneous ation, to be alled by pre-post-omposition, is a groupoid

P ×(s,t) R ×(s,t) P ⇒ R. We have an isomorphism StabP×(s,t)R×(s,t)P
∼−→

StabP ×(s,t)R given by (ϕ, α, ψ) 7−→ (ϕ, α). This implies that the morphism

of groupoids f : P ×(s,t) R ×(s,t) P −→ R, f(ϕ, α, ψ) = ϕ whose underly-

ing morphism on objets is f = t : R → X is �xed point re�eting, in the

sense of [KM97, 2.2℄. Now let us onsider moreover a morphism of groupoids

Documenta Mathematica 23 (2018) 1157–1196



1176 Matthieu Romagny, David Rydh, Gabriel Zalamansky

f : R → R′
. Then the following four assertions are rewordings of one and

the same property : (i) P ⊂ ker(f), (ii) f is invariant by the left P -ation on

R, (iii) f is invariant by the right P -ation on R, (iv) f is invariant by the

pre-post-omposition P -ation on R. If this property holds, we say that f is

P -invariant.

3.1.7 Quotients. Let R ⇒ X be a groupoid and P ⊂ R a subgroupoid. A

ategorial quotient of R by P is a morphism of groupoids π : R→ Q whih is

P -invariant and is universal among invariant morphisms R→ R′
.

In De�nition 3.1.7 we simplify the disussion by restriting to ategorial quo-

tients; other notions of quotients are realled in 3.2 below. To shed light on the

de�nition, note that by the universal property there is a morphism P → ker(π)
but ontrary to what happens in the ategory of groups, it is not at all lear if

this is an isomorphism (and we do not think it is the ase in general). We will

not pursue this question in this artile.

3.2 The complexity

Whereas we introdued basi notions internal to the ategory of groupoids,

in order to de�ne the omplexity we ome bak to the ategories of shemes

and algebrai spaes. Reall that if s, t : R ⇒ X is a groupoid spae, then a

morphism f : X → X ′
is alled R-invariant if fs = ft. We will not repeat

here the various de�nitions related to quotients beause they reeive a lear

presentation in [KM97, � 1℄ and [Ry13, � 2℄. We ontent ourselves with saying

that a morphism X → Y is a ategorial quotient if it is initial among R-
invariant morphisms X → X ′

, a geometri quotient if it is a submersion and

OY is identi�ed with the sheaf of R-invariant setions of OX , and a quotient of

one of these types is uniform it its formation ommutes with �at base hange.

We reall the statement of the fundamental Keel�Mori theorem from [KM97℄,

[Ry13℄ as well as the ase with trivial stabilizer from [Ar74℄.

3.2.1 Theorem. Let S be an algebrai spae and let R ⇒ X be a �at, loally

�nitely presented S-groupoid spae with �nite stabilizer.

(1) There is a uniform geometri and ategorial quotient X → X/R = Y suh

that the map jY : R → X ×Y X is �nite and surjetive. Moreover X → Y is

universally open.

(2) The spae Y → S is separated (resp. quasi-separated) if and only if jS :
R → X ×S X is �nite (resp. quasi-ompat). It is loally of �nite type if S is

loally noetherian and X → S is loally of �nite type.

(3) If the stabilizer is trivial, then Y is the fppf quotient sheaf of X by R, X →
Y is �at loally �nitely presented, jY is an isomorphism, and the formation of

Y ommutes with arbitrary base hanges Y ′ → Y .

When R ⇒ X is �nite and loally free, it is known moreover that X → Y is

integral.
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3.2.2 Remarks. (1) The map jY : R → X ×Y X need not be shematially

dominant, in partiular it need not be an epimorphism. Here is an example.

Let X = Spec(k[x]/(x2)) with ation of µn = Spec(k[z]/(zn − 1)) by multipli-

ation then Y = X/R = Spec(k). We have X×Y X = Spec(k[x1, x2]/(x
2
1, x

2
2)).

The morphism jY : R → X ×Y X is given by the map of k-algebras
k[x1, x2]/(x

2
1, x

2
2) → k[x, z]/(x2, zn − 1) suh that x1 7→ x and x2 7→ zx. The

element x1x2 is not zero and it is mapped to zx2 = 0.

(2) The map X → X/R need not be of �nite type even when R ⇒ X is

�nite loally free. For example if X = Spec(k[t1, t2, . . . ]) with ation of µn

by z.ti = zti then X/R is the spetrum of the ring of polynomials all whose

homogeneous omponents have degree a multiple of n.

In the rest of the text, we will fous on �at groupoids suh that the morphism

jY : R → X ×Y X is an epimorphism. This ours for instane when X → Y
is �at and there is a shematially dense open subsheme X0 ⊂ X where the

ation is free. One way to measure further the good behavior of these groupoids

is furnished by Proposition 2.3.2 and leads to the following notion.

3.2.3 Definition. Let R ⇒ X be a �at, loally �nitely presented groupoid

spae with �nite stabilizer. We say that R ⇒ X has omplexity n if the map

jY : R→ X ×Y X is an epimorphism and the length of its anonial sequene

is n.

3.2.4 Remarks. (1) The groupoid R ⇒ X has omplexity 0 if and only if it is

free. It has omplexity at most 1 if and only if jY is an e�etive epimorphism.

(2) If jY is an epimorphism, then, by Proposition 2.3.2(5), a su�ient ondition

for a groupoid to have �nite omplexity is that X is of �nite type over a �xed

noetherian base sheme.

(3) Levelt's results [Le65℄, see Example 2.2.9(4), hint that �nite loally free

groupoids with isolated �xed points of stabilizer degree at most 2 (e.g., an

ation of a group sheme of order 2 with isolated �xed points) should have

omplexity at most 1. We shall see examples of this in the next setion.

3.3 Examples

Beause the formation of the anonial sequene is loal on the base for the

�at topology (Proposition 2.3.2(2)), the omputation of the omplexity an be

done loally. It follows that omputations in this setion provide results also for

groupoids whih are group ations only loally for the �at topology, or loally

after passage to a ompleted loal ring. This applies for instane to quotients

of surfaes by p-losed vetor �elds, studied by many people in the last 40 years

(Rudakov�Shafarevih, Russell, Ekedahl, Katsura�Takeda, Hirokado...).

We start with examples valid in any harateristi.

3.3.1 Proposition. Let X = An
S be a�ne n-spae over a sheme S. Let G

be the symmetri group on n letters, ating by permutation of the oordinates
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of X. Then the quotient map π : X → Y = X/G is �nite loally free of rank

n! and the groupoid G×X ⇒ X has omplexity 1.

Proof : First we set the notations. We may assume S = Spec(R) a�ne. Then

X = Spec(B) where B = R[x1, . . . , xn] is a polynomial ring in n variables, and

Y = Spec(A) where A = BG
is the ring of invariants. Let Sk(X1, . . . , Xn) be

the symmetri funtion of degree k in X1, . . . , Xn and sk = Sk(x1, . . . , xn) ∈ A.
By the Main Theorem on symmetri funtions, we haveA = R[s1, . . . , sn] whih
is a ring of polynomials in the variables si, moreover

B ≃
A[x1, . . . , xn]

(S1(xi)− s1, . . . , Sn(xi)− sn)

and therefore

B ⊗A B ≃
B[X1, . . . , Xn]

(S1(Xi)− s1, . . . , Sn(Xi)− sn)

is B-free of rank n! with basis the set of monomials

B = {Xd1
1 . . .Xdn

n ; 0 6 di < i, ∀i}.

The map j : G×X → X ×Y X orresponds to the map of B-algebras whih is

given by evaluation on (x1, . . . , xn) and its permutations:

ev :
B[X1, . . . , Xn]

(S1(Xi)− s1, . . . , Sn(Xi)− sn)
−→

∏

σ∈Sn

B

P 7−→ (P (xσ(1), . . . , xσ(n)))σ∈Sn
.

The stabilizer Σ→ X of the groupoid has funtion ring:

B[Σ] =
∏

τ∈Sn

B

(x1 − xτ(1), . . . , xn − xτ(n))
.

The two maps pr2, d : Σ ×X (G × X) ⇒ G × X orrespond to the maps of

B-algebras

α, β :
∏

σ∈Sn

B −→
∏

σ,τ∈Sn

B

(x1 − xτ(1), . . . , xn − xτ(n))

de�ned by α(Q)σ,τ = Qσ and β(Q)σ,τ = Qτσ for all Q = (Qσ)σ∈Sn
.

Sine the ation of G on X is not free, the omplexity of the groupoid is not 0.

Hene what remains to be proved is that ev is injetive and im(ev) = ker(α−β).
In order to desribe the image of ev let us introdue some more notation.

Let E be the set of pairs of integers (i, j) with 1 6 i < j 6 n. Let V =
V (x1, . . . , xn) =

∏

(i,j)∈E(xj − xi) be the Vandermonde determinant of the xi.

To eah subset F ⊂ E we attah a monomial µ(F ) =
∏

(i,j)∈F Xj . For example
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if n = 4 and F = {(1, 3), (2, 4), (3, 4)} then µ(F ) = X3X
2
4 . Obviously the map

µ : P(E) → B is surjetive and if M = µ(F ) then deg(M) = card(F ). Now

for eah basis monomialM ∈ B we de�ne a B-linear form ϕM :
∏

σ∈Sn
B → B

by

Q = (Qσ)σ∈Sn
7−→ ϕM (Q) =

∑

σ

ε(σ)

(

∑

F⊂E
µ(F )=M

∏

(i,j)∈E−F

xσ(i)

)

Qσ.

(Here ε(σ) is the sign of the permutation σ.) We let ϕ :
∏

σ∈Sn
B →

∏

M∈B
B

be the map with omponents ϕM and we use the same letter to denote the map

with values in

∏

M∈B
B/V B obtained by redution mod V . We laim that the

following sequene is exat:

0 −→
B[X1, . . . , Xn]

(S1(Xi)− s1, . . . , Sn(Xi)− sn)

ev
−→

∏

σ∈Sn

B
ϕ
−→

∏

M∈B

B/V B.

In order to prove this we introdue suitable Lagrange interpolation polynomi-

als whih allow us to invert the map ev after the base hange B → B[1/V ].
Preisely, we set:

Lσ(X1, . . . , Xn) =
ε(σ)

V

∏

(i,j)∈E

(Xj − xσ(i)).

We have degXi
(Lσ) < i for all i = 1, . . . , n. Thus, after inverting V , the

polynomial Lσ lies in the submodule ⊕M∈BR ·M ⊂ B[X1, . . . , Xn] whih as we

said earlier maps isomorphially onto B[X1, . . . , Xn]/(S1(Xi)−s1, . . . , Sn(Xi)−
sn). Moreover one sees that Lσ(xτ(1), . . . , xτ(n)) = δσ,τ (Kroneker δ). From

these remarks follows that the inverse to ev⊗ idB[1/V ] is given by interpolation,

that is:

int(Q) =
∑

σ∈Sn

QσLσ.

From this, sine V is a nonzerodivisor in B, the injetivity of ev follows. By

expanding one �nds:

int(Q) =
1

V

∑

σ∈Sn

ε(σ)Qσ

∏

(i,j)∈E

(Xj − xσ(i))

=
1

V

∑

σ∈Sn

ε(σ)Qσ

∑

F⊂E

(−1)card(E−F ) ·
∏

(i,j)∈E−F

xσ(i) · µ(F )

=
1

V

∑

σ∈Sn

ε(σ)Qσ

∑

M∈B

∑

F⊂E
µ(F )=M

(−1)
n(n−1)

2 −deg(M)
∏

(i,j)∈E−F

xσ(i) ·M

=
1

V

∑

M∈B

(−1)
n(n−1)

2 −deg(M)ϕM (Q) ·M.
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Sine Q = (ev⊗ idB[1/V ])(int(Q)), we see that Q lies in the image of ev if and

only if the omponents of int(Q) on the basis vetors M ∈ B lie in B. This

means preisely that ϕM (Q) is divisible by V for all M ∈ B, whih proves the

exatness of the sequene.

We an now onlude. It is lear that im(ev) ⊂ ker(α − β). In order to prove

the reverse inlusion let Q = (Qσ)σ∈Sn
lie in the equalizer of α and β, that is:

Qτσ ≡ Qσ mod (x1 − xτ(1), . . . , xn − xτ(n)), for all σ, τ ∈ Sn.

We want to prove that ϕM (Q) is divisible by V for all M ∈ B. It is enough

to prove that ϕM (Q) is divisible by xv − xu for all (u, v) ∈ E. Consider the

transposition τ = (u, v). Then Sn is partitioned into n!/2 pairs {σ, τσ} and it

is enough to prove that for eah σ the sum

ε(σ)

(

∑

F⊂E
µ(F )=M

∏

(i,j)∈E−F

xσ(i)

)

Qσ + ε(τσ)

(

∑

F⊂E
µ(F )=M

∏

(i,j)∈E−F

xτσ(i)

)

Qτσ

is divisible by xv−xu. This is lear, beause modulo xv−xu we have Qτσ ≡ Qσ

by the assumption on Q and xτσ(i) ≡ xσ(i) by the de�nition of τ .

3.3.2 Remark. More generally, we an ask if the omplexity is at most 1 for

a �nite onstant group G ating on a smooth sheme X in suh a way that the

pointwise stabilizers Gx are generated by re�etions, in the sense that there is a

system of loal oordinates suh that Gx is generated by linear automorphisms

of order 2.

Here is another example in arbitrary harateristi.

3.3.3 Lemma. Let R be a ring. Let n > 2 be an integer. Let X = A1
R be

the a�ne line over R, with the ation of G = µn,R given by G × X → X,

(z, x) 7→ zx. Then the groupoid G×X ⇒ X has omplexity 1 if n = 2 and at

least 2 otherwise. If n = 3, the omplexity is equal to 2.

Proof : We have X = Spec(B) and Y = X/G = Spec(A) with B = R[x], A =
R[y] and y = xn. Let C∞ = B⊗AB = B[X ]/(Xn−xn) and C0 = B[z]/(zn−1).
The question is about the �nite morphism of B-algebras ρ : C∞ → C0 with

ρ(X) = zx. Note that ρ identi�es C∞ with the sub-B-algebra of B[z]/(zn− 1)
generated by zx. We have C0 ⊗C∞

C0 = B[z1, z2]/(z
n
1 − 1, zn2 − 1, x(z1 − z2))

with the maps α, β : C0 → C0 ⊗C∞
C0 given by α(z) = z1 and β(z) = z2. Let

C1 ⊂ C0 be the equalizer of these maps, this is the sub-B-algebra generated by

the elements yi := zix for i = 1, . . . , n− 1. If n = 2 we have C∞ = C1, so the

omplexity is 1. If n > 3 we have z2x ∈ C1\C∞ and the omplexity is at least 2.

In general C1 has a fairly ompliated struture. We leave it to the reader to

hek that for n = 3 we have C1 = B[y1, y2]/(y
3
1 − x

3, y1y2 − x
2, y22 − xy1) and

that the map C∞ → C1 is e�etive.
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Finally an example in harateristi p.

3.3.4 Lemma. Let R be a ring of harateristi p > 0. Let X = A1
R be

the a�ne line over R, with the ation of G = αp,R given by G × X → X,

(a, x) 7→ x
1+ax . Then the groupoid G ×X ⇒ X has omplexity 1 if p = 2 and

at least 2 otherwise.

Proof : We have X = Spec(B) and Y = X/G = Spec(A) with B = R[x],
A = R[y] and y = xp. The question is about exatness of the sequene of

B-algebras:
B[X]

Xp−xp

ρ
// B[a]

ap

α //

β
//

B[a1,a2]
ap
1 ,a

p
2,x

2(a1−a2)

with ρ(X) = x
1+ax , α(a) = a1, β(a) = a2. In order to �nd the image of ρ we

ompute in the loalizations with respet to x. Sine ρ is injetive we write X
for ρ(X). From X = x

1+ax we get a = X−1 − x−1
so if Q(a) =

∑p−1
i=0 Qia

i
is

the image of some P under ρ then we have:

P (X) = Q(X−1 − x−1)

=

p−1
∑

i=0

(−1)ix−iQi +

p−1
∑

j=1





p−1
∑

i=j

(−1)i−j

(

i

j

)

x−p−i+jQi



Xp−j.

We �nd that the image of ρ is the set of Q suh that xp−1
divides

∑p−1
i=1 (−1)

ixp−1−iQi and x2p−1−j
divides

∑p−1
i=j (−1)

i
(

i
j

)

xp−1−iQi for all j =

1, . . . , p − 1. This may be rewritten as the set of Q suh that xi+1
divides Qi

for all i = 1, . . . , p− 1 (say Qi = xi+1Ri for some Ri ∈ B) and x
p−1−j

divides

∑p−1
i=j (−1)

i
(

i
j

)

Ri for all j = 1, . . . , p − 1. On the other hand, the equalizer of

α and β is the set of Q suh that x2 divides Qi for all i = 1, . . . , p− 1. These
sets are equal if and only if p = 2.

4 Main theorems

After the work of the previous setions, we are ready to give an answer to the

desent question from the introdution, for groupoids of omplexity at most 1.
It applies to the objets of a stak whose isomorphism sheaves are representable:

see Theorem 4.2.3.

4.1 Equivariant objects

4.1.1 Definition. Let s, t : R ⇒ X be a groupoid and c, pr1, pr2 :
R×s,X,tR→ R the omposition and projetions. Let C→ AlgSp be a ategory

�bered over the ategory of algebrai spaes and let F ∈ C(X) be an objet.

An R-linearization on F is an isomorphism φ : s∗F ∼−→ t∗F satisfying the o-

yle ondition c∗φ = (pr∗1 φ) ◦ (pr
∗
2 φ), meaning that the following triangle is

ommutative :
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(s pr2)
∗F = (sc)∗F (tc)∗F = (t pr1)

∗F

(t pr2)
∗F = (s pr1)

∗F.

c∗φ

pr∗2 φ pr∗1 φ

An R-equivariant objet of C over X is an objet F ∈ C(X) together with an

R-linearization. We write C(R,X) for the ategory of R-equivariant objets.

4.1.2 Example. Let R ⇒ X be a groupoid as above and let π : X → Y
be an R-invariant morphism, i.e., πs = πt. Then for any objet G ∈ C(Y ),
the pullbak F = π∗G is endowed with a anonial R-linearization φ : s∗F =
s∗π∗G ≃ (πs)∗G = (πt)∗G ≃ t∗π∗G = t∗F.

We reall the notion of a square, whih is losely related to that of R-equivariant
objet.

4.1.3 Definition. A morphism of groupoids f : (R′, X ′) → (R,X) is alled
a square or artesian when the ommutative diagram

R′ //

f

��

X ′

f

��

R // X

is artesian, if we take for horizontal maps either both soure maps, or both

target maps.

To illustrate these de�nitions, take for C the ategory of algebrai spaes over

algebrai spaes. For (X ′ → X) ∈ C(X), the following lemma makes it lear

that an R-linearization on X ′
is the same as a lift of the R-ation to X ′

.

4.1.4 Lemma. Let s, t : R ⇒ X be a groupoid. Let (f : X ′ → X,φ :
s∗X ′ ∼−→ t∗X ′) be an R-equivariant X-spae. Complete X ′

to a quintuple

(R′, X ′, s′, t′, c′) as follows :

(1) R′ = s∗X ′ = R ×s,X,f X
′
whose T -points are pairs (α, x′) with α ∈ R(T )

and x′ ∈ X ′(T ),

(2) s′ = pr2 : R′ → X ′
,

(3) t′ = pr2 ◦φ : R×s,X,f X
′ −→ R×t,X,f X

′ −→ X ′
,

(4) c′ : R′ ×s′,X′,t′ R
′ −→ R′

de�ned on T -points by c′
(

(α, x′), (β, y′)
)

=
(αβ, y′).
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Then (R′, X ′, s′, t′, c′) is a groupoid and the morphism (R′, X ′)→ (R,X) is a
square morphism of groupoids.

Conversely, a square morphism of groupoids (R′, X ′) → (R,X) gives an R-
equivariant X-spae (X ′ → X, s∗X ′ ∼−→ R′ ∼−→ t∗X ′).

Proof : This is [SP, Tag 0APC℄.

4.2 Descent along the quotient

Let s, t : R ⇒ X be a �at loally �nitely presented groupoid. In this setion we

are interested in the problem of desending objets of a ategory C �bered over

the ategory of algebrai spaes along the quotient map π : X → X/R = Y .
We know that for any objet G ∈ C(Y ), the pullbak F = π∗G is endowed

with a anonial R-linearization (example 4.1.2). Conversely, if F ∈ C(X) then
the datum of an R-linearization allows to desend F to an objet based on

[X/R], the quotient as an algebrai stak, but is not enough to desend F to

an objet of C(Y ) in general. Let C(R,X) be the ategory of R-equivariant
objets (F, φ). Desent Theory as formulated by Grothendiek seeks to har-

aterize the essential image of the pullbak funtor π∗ : C(Y ) → C(R,X).
When C is the ategory of étale morphisms of spaes, and without additional

onditions on R ⇒ X → Y , Keel and Mori [KM97, Lem. 6.3℄, Kollár [Ko97,

� 2℄, Rydh [Ry13, � 3℄ obtain suh a haraterization in terms of �xed-point

re�eting R-equivariant objets. In a di�erent diretion, we shall prove that

if R ⇒ X has omplexity at most 1 and �at quotient X → Y , there is a nie

desription of the image of π∗
for very general staks C.

4.2.1 Definition. Let Σ = StabR be the stabilizer of the groupoid, let a :
Σ→ R be the inlusion, and put b = sa = ta. We denote by C(R,X)Σ the full

subategory of C(R,X) onsisting of R-equivariant objets (F, φ) suh that the

ation of Σ is trivial, meaning that the following map is the identity:

b∗F ≃ a∗s∗F
a∗φ
−−−→ a∗t∗F ≃ b∗F.

To dispel the dryness of the formalism of groupoids, we emphasize that if C

is the ategory of shemes or algebrai spaes, and if the groupoid is given by

the ation of a group G, then a G × X-linearization on some X ′ ∈ C(X) is

equivalent to a lift of the ation of G to X ′
and the ation of Σ is trivial in the

above sense if and only if it is trivial in the usual sense.

4.2.2 Lemma. The funtor π∗ : C(Y )→ C(R,X) takes values in C(R,X)Σ.

Proof : We have to show that the anonial R-linearization of a pullbak

F = π∗G beomes trivial when restrited to Σ. Reall from [Gr59, A.1℄ or [SP,

Tag 003N℄, that in a �bered ategory, there are isomorphisms (fg)∗ ∼−→ g∗f∗
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between pullbak funtors, and ommutative squares giving ompatibility for

triple ompositions :

(fgh)∗ //

��

(gh)∗f∗

��

h∗(fg)∗ // h∗g∗f∗.

We write the two squares pituring suh ompatibility for the two ompositions

πsa : Σ → Y and πta : Σ → Y , taking advantage of the fat that πs = πt in
order to glue them on one side:

(sa)∗π∗

��

id

((

(πsa)∗ = (πta)∗oo //

��

(ta)∗π∗

��

a∗s∗π∗

a∗φ

66a∗(πs)∗ = a∗(πt)∗oo // a∗t∗π∗.

Sine sa = ta we see that the top row is the identity. The ommutativity of

the exterior diagram is exatly the laim we want to prove.

4.2.3 Theorem. Let R ⇒ X be a �at, loally �nitely presented groupoid

spae with �nite stabilizer Σ→ X and omplexity at most 1. Assume that the

quotient π : X → Y = X/R is �at (resp. �at and loally of �nite presentation).

Let C→ AlgSp be a stak in ategories for the fpq topology (resp. for the fppf

topology).

(1) If the sheaves of homomorphisms HomC(F,G) have diagonals whih are

representable by algebrai spaes, then the pullbak funtor π∗ : C(Y ) →
C(R,X)Σ is fully faithful.

(2) If the sheaves of isomorphisms IsomC(F,G) are representable by algebrai

spaes, then the pullbak funtor π∗ : C(Y ) → C(R,X)Σ is essentially surje-

tive.

In partiular if C is a stak in groupoids with representable diagonal, the funtor

π∗
is an equivalene.

In Setion 3.3 many examples were given that satisfy the assumptions of the

Theorem.
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4.2.4 Remark. This result is not really an alternative to faithfully �at de-

sent, but rather a re�nement of it. Indeed, faithfully �at desent does provide

an answer to the question of the image of π∗
: it is the partiular ase of our

theorem for the �at groupoid R1 := X ×Y X ⇒ X whose stabilizer is triv-

ial. The ategory C(R1, X) omprises objets with desent data, the latter

being isomorphisms on produts X ×Y X with onditions on triple produts

X ×Y X ×Y X . However, it is often the ase in onrete geometri situations

that there is a natural ation of a group or groupoid R 6= R1 suh that it is

muh easier to handle R-equivariant objets. In these situations, the funtor

of points of the quotient Y = X/R is usually hard to desribe, as well as the

square and the ube of X over Y , making C(R1, X) less onvenient.

Proof : The assumptions on C and π imply that e�etive desent along π
holds in C ; in the fpq ase note that π is an fpq overing sine it is open

(3.2.1) and faithfully �at, see e.g. Vistoli [Vi05, Prop. 2.35℄. Sine the map

jY : R→ X ×Y X will ome up repeatedly, we write simply j := jY .

(1) Let G1,G2 ∈ C(Y ) and let (F1, φ1), (F2, φ2) ∈ C(R,X)Σ be their pullbaks.

We must prove that the map:

HomC(Y )(G1,G2) −→ HomC(R,X)Σ
(

(F1, φ1), (F2, φ2)
)

is bijetive. Injetivity is a onsequene of the fat that π : X → Y is a overing

for the topology for whih C is a stak, and the fat that HomC(Y )(G1,G2) is a
separated presheaf. For surjetivity let f : (F1, φ1)→ (F2, φ2) be a morphism.

Let π1, π2 : X ×Y X → X be the projetions. By desent it is enough to prove

that π∗
1f = π∗

2f . By onstrution φi is the identity of q∗Gi for i = 1, 2, where
q = πs = πt. Therefore s∗f = t∗f . Write H := HomC(Y )(G1,G2). We have a

ommutative diagram:

R
j

//

��

X ×Y X

d

��

H
∆ // H ×Y H

where d := (π∗
1f, π

∗
2f). Sine the diagonal ∆ is assumed to be representable,

the �ber produt

P := H ×(∆,d) X ×Y X

is representable and the map j fators through a map k : P → X ×Y X . Sine

the groupoid has omplexity at most 1, the map j is an e�etive epimorphism.

It follows by formal arguments that k has the same property. Sine k is a

pullbak of the diagonal, it is also a monomorphism. Thus, k is an isomorphism,

and therefore π∗
1f = π∗

2f .

(2) Let (F, φ) ∈ C(R,X)Σ be an R-equivariant objet. Given that R×X×Y X R
is isomorphi to Σ×(s,t)R via the map (ϕ, ψ) 7→ (ϕψ−1, ψ), the exat sequene
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for the e�etive epimorphism j is:

Σ×(s,t) R
d //

pr2
// R

j
// X ×Y X.

Here d is the omposition Σ×(s,t) R
a×id

// R×(s,t) R
c // R . It follows that

for all X ×Y X-algebrai spaes I, we have an exat diagram of sets:

Hom(X ×Y X, I)
j∗

// Hom(R, I)
d∗

//

pr∗2

// Hom(Σ×(s,t) R, I).

Let π1, π2 : X×YX → X be the projetions, and let I = IsomX×Y X(π∗
2F, π

∗
1F).

This is an algebrai spae by assumption, so from the above we obtain an exat

diagram of sets:

IsomX×Y X(π∗
2F, π

∗
1F)

j∗
// IsomR(s

∗F, t∗F)
d∗

//

pr∗2

// IsomΣ×R(pr
∗
2 s

∗F, pr∗2 t
∗F).

Here we use the identi�ations d∗s∗F ≃ (sd)∗F = (s pr2)
∗F ≃ pr∗2 s

∗F whih

need no further omment, and the similar identi�ations with s replaed by t
whih require the observation that td = t pr2 sine soure and target agree

on the stabilizer. Now onsider the oyle ondition c∗φ = pr∗1 φ ◦ pr
∗
2 φ on

R ×(s,t) R satis�ed by the R-linearization φ : s∗F → t∗F. Then after pullbak

along a × id : Σ ×(s,t) R → R ×(s,t) R, and sine the stabilizer ats trivially

on F, this beomes:

d∗φ = (a pr1)
∗φ ◦ pr∗2 φ = pr∗2 φ.

Therefore by exatness of the diagram of Isom sets, φ desends to an isomor-

phism ψ : π∗
2F

∼−→ π∗
1F. To onlude, we use desent along the map π : X → Y .

For ψ to be a desent datum with respet to X → Y , it need only satisfy the

usual gluing ondition:

(⋆) π∗
13ψ = π∗

12ψ ◦ π
∗
23ψ

where πij : X ×Y X ×Y X → X ×Y X are the projetions. In order to prove

that this indeed holds, we onsider the ommutative diagram:

R×s,X,t R
j×j

//

��

pr1,pr2,c

�� ��

X ×Y X ×Y X

π12,π23,π13

���� ��

R
j

// X ×Y X.

On pulling bak the relation (⋆) by j× j we obtain the relation c∗φ = (pr∗1 φ) ◦
(pr∗2 φ) whih holds by assumption. Sine X → Y is �at, the morphism j× j is
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�nite, surjetive and shematially dominant, hene an epimorphism. Therefore

Condition (⋆) holds, hene by desent F is the pullbak of an objet G ∈
C(Y ).

4.2.5 Theorem. Let C→ AlgSp be one of the following staks in ategories:

(1) C1 = Flat, the fppf stak whose objets over X are �at morphisms of

algebrai spaes X ′ → X.

(2) C2 = Flatqa, the fpq stak whose objets over X are quasi-a�ne �at mor-

phisms of algebrai spaes X ′ → X.

Let R ⇒ X be a �at, loally �nitely presented groupoid spae with �nite

stabilizer Σ → X and omplexity at most 1. Assume that the quotient

π : X → Y = X/R is �at and loally of �nite presentation if C = C1, and

�at if C = C2. Then the funtor π∗ : C(Y )→ C(R,X)Σ is an equivalene.

Reall that an objet (X ′ → X) ∈ C(X) is equivalent to a �at square morphism

of groupoids (R′, X ′)→ (R,X) (Lemma 4.1.4) and when (X ′ → X) = π∗(Y ′ →
Y ), then Y ′ = X ′/R′

. The essential surjetivity of π∗
an thus be rephrased as:

the natural morphism X ′ → (X ′/R′)×Y X is an isomorphism, and X ′/R′ → Y
is �at.

Proof : Here the onditions on the representability of the diagonal of C fail

to hold, so we need di�erent arguments. In order to prove full faithfulness let

W1,W2 be objets of C(Y ) and (V1, φ1), (V2, φ2) the pullbaks to X . We prove

bijetivity of the map:

HomC(Y )(W1,W2) −→ HomC(R,X)Σ
(

(V1, φ1), (V2, φ2)
)

.

Sine HomY (W1,W2) is a sheaf in the fpq topology (this does not use �atness

of Wi → Y ), injetivity goes as in 4.2.3. For the surjetivity part let f :
(V1, φ1) → (V2, φ2) be a morphism, so s∗f = t∗f . Sine HomY (W1,W2) is a
sheaf, it is enough to prove that π∗

1f = π∗
2f . We have ommutative diagrams:

V1 ×X R
j∗π∗

i f //

��

V2 ×X R

��

V1 ×X (X ×Y X)
π∗

i f // V2 ×X (X ×Y X)

for i = 1, 2. From s∗f = t∗f it follows that j∗π∗
1f = j∗π∗

2f . Sine the

left vertial map is the pullbak of j along the �at map V1 → X , it is an

epimorphism. It then follows that π∗
1f = π∗

2f .
In order to show essential surjetivity let (V, φ) ∈ C(R,X)Σ. Let Vi = π∗

i V be

the pullbaks of V → X along the projetions π1, π2 : X ×Y X → X . When
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pulling bak j along the �at morphism h : V1 → X×Y X , it remains an e�etive

epimorphism.

h∗(Σ×(s,t) R)
//
//

��

�

j∗V1 //

��

�

V1

h

��

Σ×(s,t) R
//
// R

j
// X ×Y X.

The morphism j∗V1 = s∗V
φ
−→ t∗V = j∗V2 −→ V2 is h∗(Σ×(s,t) R)-invariant,

so by e�etivity we obtain a unique morphism ψ : V1 → V2. Similarly we

obtain a unique morphism χ : V2 → V1. We laim that ψ and χ are inverse

isomorphisms. Sine j is a uniform epimorphism, in order to prove that the

X ×Y X-morphism ψ ◦ χ is the identity it is enough to do it after pullbak

along j. In this ase it is lear sine j∗ψ = φ and j∗χ = φ−1
. Similarly we

prove that χ ◦ ψ is the identity. One shows as in the end of the proof of 4.2.3

that the isomorphism ψ : π∗
1V

∼−→ π∗
2V is a desent datum for V with respet

to π : X → Y . The assumptions of the theorem imply that e�etive desent

along π holds in C so V desends to a unique �at morphism W → Y .

4.3 Quotient by a subgroupoid

In this setion we ome to the quotient question from the introdution, i.e., the

onstrution of a quotient of a groupoid by a normal subgroupoid. Let us �rst

review some known ases where this onstrution is possible.

(1) If R ⇒ X is given by the ation of a group spae G and P ⇒ X is given

by a �at normal subgroup H . In this ase the quotient groupoid Q⇒ Y is the

ation of G/H on X/H . More generally the quotient exists when R ⇒ X is a

loal group ation (i.e., it is given by a group ation, fppf loally on X/R) and
P is a �at loal normal subgroup ation.

(2) If R ⇒ X is �nite loally free and P is a normal open and losed sub-

groupoid; this is the Bootstrap Theorem of [KM97, 7.8℄.

(3) If P is inluded in the stabilizer; this is the proess of rigidi�ation

of [ACV03, �5.1℄ and [AOV08, �A℄.

With suitable �atness assumptions, we shall provide another ase in a di�erent

diretion: the quotient exists when P has omplexity at most 1. We emphasize

that the existene of the quotients Y = X/P and Q = P\R/P appearing in

the statement is granted by 3.2.1.

4.3.1 Theorem. Let R ⇒ X be a �at, loally �nitely presented groupoid

of algebrai spaes. Let P ⇒ X be a �at, loally �nitely presented normal

subgroupoid of R with �nite stabilizer ΣP → X and omplexity at most 1.
Assume that the quotient X → Y = X/P is �at and loally �nitely presented.
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Then there is a quotient groupoid Q ⇒ Y whih is �at and loally �nitely

presented, with Q = P\R/P . Moreover, the morphisms R→ Q and R×XR→
Q×Y Q are �at and loally �nitely presented.

The rest of this subsetion is devoted to the proof. We denote by s, t : R⇒ X
and σ, τ : P ⇒ X the soure and target maps of the groupoids, and by ρ : R→
Q and π : X → Y the quotient maps.

Step 1. There exist �at loally �nitely presented maps s̄, t̄ : Q ⇒ Y and

ommutative squares:

R
s,t

//

ρ

��

X

π

��

Q
s̄,t̄

// Y

and ρ is �at. To prove this we start with the ation of P on R by post-

omposition. This ation is free so there is a �at, loally �nitely presented

quotient morphism ρpost : R → P\R where P\R is an algebrai spae. Sine

s : R → X is invariant by the ation of P , there is an indued faithfully �at

loally �nitely presented morphism s′ : P\R → X . The map R ×(s,σ) P → R,
(α, ϕ) 7→ αϕ−1

is equivariant for the ation of P on the R-fators by postom-

position. Using that the formation of the quotient ρpost : R→ P\R ommutes

with the �at base hange σ : P → X , we dedue that there is an indued

map (P\R) ×(s′,σ) P → P\R. In this way we obtain a P -linearization on the

X-objet P\R, as follows:

σ∗(P\R) = (P\R)×(s′,σ) P
∼−→ τ∗(P\R) = (P\R)×(s′,τ) P.

(α, ϕ) 7−→ (αϕ−1, ϕ)

We laim that beause P is normal, the restrition of this P -linearization to

the stabilizer ΣP is trivial. In order to hek this, we take advantage of the fat

that the spae P\R is equal to the fppf quotient sheaf so loally (P\R)(T ) =
P (T )\R(T ). If ϕ ∈ ΣP (T ) and α ∈ R(T ), we have ψ := αϕ−1α−1 ∈ ΣP (T ) and
hene αϕ−1 = ψα in R(T ) whih is equal to α in (P\R)(T ). This proves our
laim. It follows from ase (1) of Theorem 4.2.5 that s′ : P\R → X desends

to a faithfully �at loally �nitely presented map s̄ : Q1 → Y .
Similarly, onsidering the ation of P on R by preomposition, we obtain a �at,

loally �nitely presented quotient morphism ρpre : R→ R/P , and a �at loally

�nitely presented morphism t′ : R/P → X indued by t. The latter supports

a P -linearization with trivial stabilizer ation and desends to a faithfully �at

loally �nitely presented map t̄ : Q2 → Y .
Sine the formation of the quotient X → Y ommutes with �at base hange,

we see that Q1 is the quotient of P\R by P ating by postomposition and

that Q2 is the quotient of R/P by P ating by preomposition. Both quotients

are isomorphi sine they enjoy the same universal property as Q = P\R/P .
So Q = Q1 = Q2 anonially and we obtain maps s̄, t̄ : Q ⇒ Y . In this way
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we obtain also that ρ : R → Q is �at, being the omposition of the �at map

ρpost : R→ P\R and of the morphism P\R→ Q whih is a base hange of the

�at map X → Y . We have thus produed the ommutative diagrams

R
ρpost

//

ρ
!!
❇

❇

❇

❇

❇

❇

❇

❇

❇

P\R
s′ //

π′

��

�

X

π

��

Q
s̄

// Y

R
ρpre

//

ρ
!!
❇

❇

❇

❇

❇

❇

❇

❇

❇

R/P
t′ //

π′

��

�

X

π

��

Q
t̄

// Y

in whih all maps are �at.

Step 2. There exists a �at loally �nitely presented map c̄ : Q×Y Q→ Q and

a ommutative square:

R ×X R
c //

ρ×ρ

��

R

ρ

��

Q×Y Q
c̄ // Q

where ρ × ρ is �at. To prove this, note that there are three ommuting a-

tions of R on R ×X R: pre-omposition (α, β, γ) : (α, β) → (α, βγ), post-
omposition (γ, α, β) : (α, β) → (γα, β) and middle-omposition (α, γ, β) :
(α, β) → (αγ, γ−1β). The joint ation of any two of these are free. The om-

position c is equivariant with pre- and post-omposition and invariant under

middle-omposition.

Taking the quotient by post-omposition under P , we obtain a �at morphism

c′ : (P\R)×(s′,t)R→ P\R. Sine s′ : P\R→ X is the pull-bak of s̄ : Q→ Y ,
we an identify the soure of c′ with Q ×s̄,πt R. Middle-omposition then

beomes post-omposition on the seond fator so c′ fators into two �at maps

Q×s̄,πt R

c′

++
// Q×s̄,t̄π′ P\R

c′′
// P\R.

The map c′′ �ts into the diagram

Q×s̄,t̄π′ P\R

s′ pr2

''c′′ //

��

P\R
s′ //

��

�

X

π

��

Q×Y Q

s̄ pr2

55
c̄ // Q

s̄ // Y

where the outer square also is artesian, so c′′ desends to a �at map c̄ as

indiated in the diagram (Theorem 4.2.5). The map ρ× ρ : R×X R→ Q×Y Q
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is �at, being the omposition of the �at map R×XR→ Q×s̄,t̄π′ P\R (quotient

map of the free middle-post-omposition) and the pull-bak of the �at map π.

Step 3. Conlusion. It is easy to onstrut the maps ē : Y → Q and ı̄ : Q→ Q
�tting in ommutative diagrams:

X
e //

π

��

R

ρ

��

Y
ē // Q

R
i //

ρ

��

R

ρ

��

Q
ı̄ // Q.

We skip the details. From the fat that ρ : R→ Q and ρ×ρ : R×XR→ Q×Y Q
are epimorphisms of algebrai spaes, it follows formally that the maps s̄, t̄, c̄, ē, ı̄
are unique, that they give Q ⇒ Y the struture of a groupoid, and that the

map ρ : R → Q is a morphism of groupoids. Finally we an prove that the

groupoid Q ⇒ Y is a quotient of R ⇒ X by P . Let f : (R,X) → (R′, X ′) be
a morphism of groupoids suh that P ⊂ ker(f). Then the map f : R → R′

is invariant by the pre-post-omposition of P on R, hene it fators through a

map Q → R′
. Similarly the map f : X → X ′

is invariant by the ation of P
hene it fators through a map Y → X ′

. That (Q, Y )→ (R′, X ′) is a morphism

of groupoids follows again from the fat that ρ and ρ× ρ are epimorphisms.

4.4 Stacky interpretations

Let R ⇒ X be a �at loally �nitely presented groupoid in algebrai spaes and

let C→ AlgSp be a stak for the fppf topology. Then the ategory C(R,X) of
R-equivariant objet is equivalent with the ategory of morphisms [X/R]→ C

between staks. A morphism ϕ : [X/R] → C orresponds to an objet with

trivial Σ-ation if and only if the following equivalent onditions hold

(1) For every algebrai spae T , objet x ∈ [X/R](T ), and automorphism

τ ∈ Aut(x), the image ϕ(τ) is the identity on ϕ(x).

(2) The indued morphism of inertia staks Iϕ : I[X/R] → IC is trivial, i.e.,

fators through C.

(3) The morphism ϕ fators, up to equivalene, through the fppf-shea��ation

[X/R]→ π0([X/R]).

If R ⇒ X has �nite inertia, then the oarse spae [X/R] → X/R fators

through the fppf sheaf quotient π0[X/R] = (X/R)fppf and π0[X/R]→ X/R is

an isomorphism if the ation is free. Theorem 4.2.3 thus says that the funtor

Hom(X/R,C)→ Hom(π0[X/R],C)

is an equivalene of ategories if R ⇒ X has omplexity at most 1, X → X/R
is �at, and under ertain assumptions on C, e.g., if C is a stak in groupoids

with representable diagonal.
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In the setting of Theorem 4.2.5, the ategory C(R,X) is equivalent to the

ategory of �at morphisms of algebrai staks X′ → X = [X/R] that are repre-
sentable by algebrai spaes. The subategory C(R,X)Σ onsists of stabilizer-

preserving morphisms, i.e., those suh that the indued morphism of inertia

staks IX′ → (IX)×X X′
is an isomorphism. Theorem 4.2.5 thus says that the

ategory of �at morphisms Y ′ → Y = X/R is equivalent to the ategory of �at

stabilizer-preserving representable morphisms of algebrai staks X′ → X.

4.4.1 Remark. It an be proved that ase (2) of Theorem 4.2.5 holds for

arbitrary �at morphisms X ′ → X . Indeed, let X′ → X be the orresponding

stabilizer-preserving representable morphism of algebrai staks. Then X′
also

has �nite stabilizer and a oarse moduli spae Y ′ = X ′/R′
. It is enough to

show that the diagram

X′ //

��

X

��

Y ′ // Y

is artesian. This an be heked étale-loally on Y ′
and Y , so we an assume

that Y and Y ′
are a�ne. After further étale loalization on Y , we an assume

that X = [X/R] where X → X is �nite: this follows from the proof of the Keel�

Mori theorem [Ry13, Thm. 6.12℄. Sine X′ → X is representable, we obtain a

�nite presentation X ′ → X′
where X ′ = X×XX′

. It follows that X ′
and X are

a�ne sine X ′ → Y ′
and X → Y are a�ne [Ry13, Thm. 5.3℄. Thus X ′ → X

is a�ne and ase (2) of Theorem 4.2.5 applies.

Finally, Theorem 4.3.1 an be desribed as follows using staks. We have a

loally �nitely presented �at morphism [X/P ] → [X/R]. This gives rise to a

groupoid

[X/P ]×[X/R] [X/P ]
//
// [X/P ]

with quotient [X/R]. That P ⊂ R is a normal subgroupoid implies that the

morphisms of the groupoid above are stabilizer-preserving. We an also make

the identi�ation [X/P ]×[X/R] [X/P ] = [P\R/P ]. By Theorem 4.2.5, we thus

obtain a artesian diagram

[P\R/P ] //
//

��

�

[X/P ] //

��

�

[X/R]

��

Q =P\R/P //
// X/P // [(X/P )/Q]

where the horizontal morphisms are �at and loally of �nite presentation and

the vertial morphisms are (relative) oarse moduli spaes.
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4.5 A non-flat counter-example

We give an example that shows that Theorems 4.2.3 and 4.2.5 do not hold

when π : X → Y is not �at. The ounter-example satis�es:

(1) X is an a�ne 1-dimensional sheme in harateristi p with an ation of

G = Z/pZ but π : X → Y = X/G is not �at.

(2) There is a torsion equivariant line bundle L ∈ PicGp (X)Σ that does not

ome from Pic(Y ). In partiular, Theorem 4.2.3 fails for the algebrai staks

C = Pic = BGm and C = Picp = Bµp.

(3) There is a smooth morphism X ′ → X that is not the pull-bak of a smooth

morphism Y ′ → Y . In partiular, Theorem 4.2.5 fails even for smooth mor-

phisms.

Let k be a �eld of harateristi p. Let X = Spec k[ǫ, x]/(ǫ2) and let Z/pZ at

via t.(ǫ, x) = (ǫ, x+ tǫ). Then Y = Spec k[ǫ, xp, ǫx, ǫx2, . . . , ǫxp−1].
Consider the following Z/pZ-equivariant line bundle L on X : as a line bundle

it is trivial L = OX · e and it has the ation t.e = (1 + tǫ)e.
The stabilizer ats trivially on this line bundle. Indeed, the stabilizer Σ of X is

given by the losed subsheme tǫ = 0 of (Z/pZ)×X = Spec k[t, ǫ, x]/(tp− t, ǫ2).
The line bundle is not in the image of π∗ : QCoh(Y ) → QCohG(X). Indeed,

sine π∗
has the right adjoint (π∗−)

G
, it is enough to verify that the ounit

π∗(π∗L )G → L is not an isomorphism. But an easy alulation gives that

π∗(π∗L )G = (ǫ) ·L ( L .

In terms of algebrai staks, the line bundle L orresponds to the morphism

[X/(Z/pZ)]→ B(Z/pZ)S
Bϕ
−−→ Bµp → BGm,

where S = Spec k[ǫ]/(ǫ2) and ϕ : (Z/pZ)S → µp is the group homomor-

phism given by t 7→ (1 + ǫ)t = 1 + tǫ. Here the map between inertia staks

I[X/(Z/pZ)]→ IB(Z/pZ)S → IBµp is indued by

k[λ]/(λp − 1) −→ k[ǫ, t]/(ǫ2, tp − t) −→ k[ǫ, x, t]/(ǫ2, tp − t, tǫ)
λ 7−→ 1 + tǫ 7−→ 1

so it fators through Bµp.

The line bundle orresponds to the smooth stabilizer-preserving G-equivariant
morphism X ′ = Spec k[ǫ, x, y]/(ǫ2) where the G-ation is t.(ǫ, x, y) = (ǫ, x +
tǫ, y + tǫy). This is not the pull-bak of the morphism Y ′ = X ′/G → Y =
X/G. Indeed, a similar alulation as for the line bundle gives that Y ′ =
Spec k[ǫ, xp, yp, ǫxiyj ].
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