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ABSTRACT. Grothendieck proved that any finite epimorphism of
noetherian schemes factors into a finite sequence of effective epimor-
phisms. We define the complexity of a flat groupoid R = X with
finite stabilizer to be the length of the canonical sequence of the finite
map R — X xx/p X, where X/R is the Keel-Mori geometric quo-
tient. For groupoids of complexity at most 1, we prove a theorem of
descent along the quotient X — X /R and a theorem on the existence
of the quotient of a groupoid by a normal subgroupoid. We expect
that the complexity could play an important role in the finer study of
quotients by groupoids.
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1 INTRODUCTION

MoTIVATION. Let X be a scheme endowed with an action of a group scheme
G such that there exists a quotient 7 : X — Y = X/G. Consider the category
C(X) of vector bundles on X. In this paper, we give new examples where one
can characterize the G-linearized bundles on X that descend to bundles on Y,
and similarly for other fibered categories C. More precisely, let C(G, X) be the
category of vector bundles endowed with a G-linearization. Let C(G, X)" be
the subcategory of G-linearized bundles for which the action of the stabilizers
of geometric points is trivial. It is not hard to see that for any vector bundle
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G € C(Y), the pullback § = 7*§ is naturally an object of C(G,X)". The
question is:

Let G x X — X be a group scheme action as above, with quotient 7 : X —
Y = X/G. When is the pullback 7* : €(Y) — C(G, X)’ an equivalence?

The correct framework for this type of question is that of algebraic spaces
(which generalize schemes) and groupoids (which generalize group actions).
That this is so was demonstrated twenty years ago by Keel and Mori who set-
tled the question of existence of quotients for actions with finite stabilizer in the
paper [KM97]. The main point is that groupoids allow reduction and dévis-
sage in a much more flexible way than group actions. Moreover, groupoids
include examples of interest like foliations in characteristic p, and insepara-
ble equivalence relations as in work of Rudakov and Shafarevich [RS76] and
Ekedahl [Ek88|, which we will return to in the end of this introduction. We
emphasize that our results are equally interesting in the restricted case of group
actions. So in the sequel we let

1) R = X be a flat locally finitely presented groupoid of algebraic spaces,

)
2) € — AlgSp be a category fibered over the category of algebraic spaces,
)

(
(
(3) C(R, X) be the category of objects of C(X) equipped with R-linearizations
(see Bl for a precise definition), and

(4

) C(R,X) C C(R,X) be the full subcategory of objects with trivial geomet-
ric stablhzer actions.

Since R-linearized objects on X are the same as objects on the algebraic stack
Z = [X/R], the language of stacks is an alternative which is also used on that
matter.

KNOwN RESULTS. When X — Y is a tame quotient, which means that the
geometric stabilizers of R = X are linearly reductive finite group schemes,
and C is either the category of line bundles, or finite étale covers, or torsors
under a fixed linearly reductive finite group scheme, Olsson showed that 7*
C(Y) — C(G, X)' is an equivalence [OI12 Props. 6.1, 6.2, 6.4]. When X — Y
is a good quotient and C is the category of vector bundles, Alper showed that
7* is an equivalence [AI13], Thm. 10.3]. Results for good quotients and other
categories C will be presented in an upcoming paper by the second author.

THE COMPLEXITY. We wish to find examples that go beyond these cases, e.g.,
wild actions in characteristic p. In this new setting the map =* : C(YV) —
C(G, X) fails to be an isomorphism in general; e.g. if C is the category of
line bundles and X = Spec(k[e]/(e?)) with trivial action of G = Z/pZ, the
G-line bundle L generated by a section z with action z +— (1 4 €)x is not
trivial. For this, we introduce a new invariant of flat groupoids which we call
the complexity. (This is not to be confused with the complexity as defined by
Vinberg [Vi&6] in another context, namely the minimal codimension of a Borel
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orbit in a variety acted on by a connected reductive group.) We fix our attention
on the morphism jy : R — X Xy X which is finite and surjective when the
groupoid has finite inertia. The complexity of the groupoid is controlled by the
epimorphicity properties of this map. In order to quantify this, we use a result
of Grothendieck to the effect that a finite epimorphism of noetherian schemes
factors as a finite sequence of effective epimorphisms. We prove in that
there is a canonical such sequence, and we define the complexity of R = X as
the length of the canonical sequence of jy .

MAIN NEW RESULTS. The complexity is equal to 0 when jy is an isomorphism,
which means that the groupoid acts freely; in this case most questions involving
R = X are easily answered. The next case in difficulty is the case of complexity
1. In order to obtain results in this case, we introduce the stabilizer ¥ of
R = X, which is the preimage of the diagonal under R — X x X. It refines
the information given by the collection of stabilizers of geometric points in
that it accounts for higher ramification. We let C(R, X)* C C(R, X)’ be the
subcategory of R-linearized objects for which the action of ¥ is trivial. In our
main result we have to assume that the quotient map is flat; the payoff is that
we can handle very general categories C.

THEOREM [£23l Let R = X be a flat, locally finitely presented groupoid
space with finite stabilizer ¥ — X and complexity at most 1. Assume that the
quotient m : X =Y = X/R is flat (resp. flat and locally of finite presentation).
Let @ — AlgSp be a stack in categories for the fpgc topology (resp. for the fppf

topology).

(1) If the sheaves of homomorphisms Home(F,G) have diagonals which are
representable by algebraic spaces, then the pullback functor = : C(Y) —
C(R, X)* is fully faithful.

(2) If the sheaves of isomorphisms IJsome(F,G) are representable by algebraic
spaces, then the pullback functor 7* : C(Y) — C(R, X)¥ is essentially surjec-
tive.

In particular if C is a stack in groupoids with representable diagonal, the functor
7 is an equivalence.

This applies to stacks whose diagonal has some representability properties. The
next theorem applies to a stack which does not enjoy such a property.

THEOREM .25 Let € — AlgSp be the fppf stack in categories whose objects
over X are flat morphisms of algebraic spaces X' — X. Let R = X be a
flat, locally finitely presented groupoid space with finite stabilizer ¥ — X and
complexity at most 1. Assume that the quotient m : X — Y = X/R is flat and
locally of finite presentation. Then the functor m* : €(Y) — C(R, X)* is an
equivalence.
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We give examples of groupoids satisfying the assumptions of these theorems
in section B3l These include groupoids acting on smooth schemes in such a
way that the stabilizers are symmetric groups acting by permutation of local
coordinates. Other examples are given by groupoids acting on curves in pos-
itive characteristic; this is especially interesting in characteristic 2. The two
theorems above can fail when 7 is not flat and the stabilizer groups are not
tame, see section We do not know if the assumption that the complexity
is at most one is necessary.

We give an application to the existence of quotients of groupoids by normal
subgroupoids. This is interesting when applying dévissage arguments, as for
instance in [KM97, § 7]. This question is also natural from the point of view of
understanding the internal structure of the category of groupoids. The basic
observation is this: if R = X is a groupoid P C R == X is a normal flat
subgroupoid, the actions of P on R by precomposition and postcomposition
are free, but the simultaneous action of P x P is not free. For groupoids
R = G x X given by group actions, it is nevertheless easy to make G/H act on
X/H, providing a quotient groupoid G/H x X/H = X/H. However for general
groupoids, constructing a composition law on the quotient P\R/P making it
a groupoid acting on X/P is much more complicated. In section we review
some cases where this is possible. For subgroupoids of complexity 1 with flat
quotient, we obtain a satisfying answer.

THEOREM 3Tl Let R = X be a flat, locally finitely presented groupoid
of algebraic spaces. Let P = X be a flat, locally finitely presented normal
subgroupoid of R with finite stabilizer Xp — X and complezity at most 1.
Assume that the quotient X — Y = X/P is flat and locally finitely presented.
Then there is a quotient groupoid Q = Y which is flat and locally finitely
presented, with @ = P\R/P. Moreover, the morphisms R — Q and Rxx R —
Q Xy Q are flat and locally finitely presented.

DIRECTIONS OF FURTHER WORK. The natural question now is to extend these
results to the case of groupoids of complexity 2. This would most likely shed
some light on the case of arbitrary complexity. For the moment, we have no idea
of what the correct substitute for C(R, X)* should be in the general context.
The application we envision for these results is to the study of finite flat covers
of algebraic varieties, typically over a field k of characteristic p. More precisely,
we expect our theorems to be useful for understanding how purely inseparable
morphisms of algebraic k-varieties f : V' — W can be factorized. An important
instance is when f is an iterate of the Frobenius morphism of V. We note that
when V' is smooth, f will be flat. Thus the assumption of flatness of the
quotient map in our results is not too annoying; we give some more comment
on this point in Remark 2.4

ORGANIZATION OF THE ARTICLE. As we said already, we work in the setting
of groupoids in algebraic spaces. (The relevance of this choice in questions of
quotients in Algebraic Geometry is well explained in the paper [Li05] which
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we recommend as an excellent contextual reading.) This leads us to start in
section [2] with some preparations on finite epimorphisms of spaces. In par-
ticular, we give sufficient conditions for an epimorphism of algebraic spaces
to be effective, and we prove a precise form of Grothendieck’s factorization of
finite epimorphisms into finite effective epimorphisms. In section [3 we recall
the basic vocabulary of groupoids, we define the complexity, and we present
several examples. Finally in section ] we prove the main results of the paper,
presented above.

ACKNOWLEDGEMENTS. This article is derived from the third author’s Ph.D.
thesis. We thank user27920 on MathOverflow for help in the proof of Proposi-
tion 232 before we learned this is in [SGA6]. We thank Alessandro Chiodo for
discussions related to Theorem [£.2.3] We thank Cédric Bonnafé for his interest
and for discussions around actions of groups generated by reflections.

2 FINITE EPIMORPHISMS

This section of preliminary nature contains material on finite epimorphisms
of algebraic spaces. The notion of epimorphism turns out to be a little more
subtle in the category of algebraic spaces than its counterpart in the category of
schemes, due to the lack of the locally ringed space description. The same is true
for the notion of effective epimorphism. In order to have a better understanding
of the situation, we will give some manageable conditions that ensure that a
map of algebraic spaces is an epimorphism, or an effective epimorphism. The
main result is Theorem 2.2.5] but for the convenience of the reader we will
indicate here its main consequence needed in the sequel. We occasionally write
qegs for quasi-compact and quasi-separated. Recall the following two statements
in the easy scheme case:

2.0.1 PROPOSITION. Let f : 8" — S be a qcqs surjective morphism of schemes.
Write A(S") = f+Og/. Then the following are equivalent:

(1) f is schematically dominant, that is, A(S) — A(S’) is injective;

(2) f is an epimorphism in the category of schemes.

2.0.2 PROPOSITION. Let f : S’ — S be a qcgs submersive morphism of
schemes. Write S” = S’ xg S’. Then the following are equivalent:

(1) A(S) — A(S") = A(S") is exact;

(2) f is an effective epimorphism in the category of schemes.
The main results we shall need are the following:

2.0.3 PROPOSITION. (Lemma [Z13]) Let f : 8" — S be a qcqs morphism of
algebraic spaces which is submersive after every étale base change on S. Then
the following are equivalent:
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(1) f is schematically dominant, that is, A(S) — A(S’) is injective;

(2) f is an epimorphism in the category of algebraic spaces.

2.0.4 PROPOSITION. (Lemma 223 + Corollary [222.8) Let f : S — S be an
integral morphism of algebraic spaces. Then the following are equivalent:

(1) A(S) — A(S") = A(S") is exact;

(2) f is an effective epimorphism in the category of algebraic spaces.
Under these equivalent conditions, f is a uniform effective epimorphism.

Finally we prove Grothendieck’s factorization of a finite epimorphism into a
finite sequence of finite effective epimorphisms, Proposition [.3.2] placing our-
selves in a slightly more general context and giving some useful complements.

2.1 EPIMORPHISMS

First we recall an easy characterization of epimorphisms of schemes.

2.1.1 LEMMA. Let f : S — S be a morphism of schemes. The following
conditions are equivalent:

(1) f is an epimorphism (of schemes).
(2) f does not factor through an open or closed subscheme Z C S.
(3) f does not factor through a subscheme Z C S.

PROOF : (1) = (2). Assume that f factors through a subscheme Z C S which
is either open or closed. Let X = S 11z S be the ringed space obtained by
gluing two copies of S along their common copy of Z. If Z is open then X is a
scheme by ordinary topological gluing, and if Z is closed then X is a scheme by
Ferrand [Fe03, Thm. 7.1] or Tag 0B7M]. Let u,v : S — X be the canonical
maps. We have v # v and uf = vf, so f is not an epimorphism.

(2) = (3) Immediate because a subscheme is a closed subscheme of an open
subscheme.

(3) = (1). Let X be a scheme and let u,v : S — X be morphisms such that
uf =vf. Let Z be the preimage of the diagonal A : X — X x X by the map
(u,v) + S — X x X. Since A is an immersion, then Z is a subscheme of S.
Since f factors through Z, by (3) it follows that Z = S. This shows that (u,v)
factors through the diagonal, that is u = v. O

Recall that an algebraic space is called locally separated if its diagonal is an
immersion. Clearly the lemma and its proof show that an epimorphism of
schemes is also an epimorphism in the category of locally separated algebraic
spaces. However, it may fail to be an epimorphism in the category of all
algebraic spaces, even if it is surjective and schematically dominant. Here is a
counter-example.
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2.1.2 EXAMPLE. Let k be a field of characteristic # 2. Consider the scheme

S = Spec(klz,y]/(2* - y?))

with closed subscheme Y = V(2 — y) and open complement U = D(z — y) =
S\Y. Let S’ =Y IIU. Then the canonical map f : S’ — S is a surjection to a
reduced scheme, hence an epimorphism of schemes by the lemma above. The
map j: S’ = S C A}C X A}v defines an étale equivalence relation on A}C. We
let 7 : A}C — X be the quotient algebraic space. By construction, the pullback
of the diagonal X € X x X to A} x Al is §. Let u,v: S — A, — X be
the maps induced by the two projections pry,pry : S — A}. These maps are
distinct, since otherwise (u,v) would factor through the diagonal of X, which
would mean that (p1,p2) : S — A} x A} factors through S’, which it does not.
However uf = vf, hence f is not an epimorphism of algebraic spaces.

In the applications that we have in mind, it is cumbersome to check that the
algebraic spaces involved satisfy some separation condition. Because of this,
we spend some effort on obtaining criteria for epimorphisms in the category
of all algebraic spaces. In order to put ZI.1] in perspective, it is useful to
have the construction of gluing along closed subschemes available for algebraic
spaces. This is originally due to Raoult [Ra74|. Variants appear in [Ar70,
Thm. 6.1], Thm. A 4], [CLO12, Thm. 2.2.2], Thm. 5.3.1]. In all
these sources, the hypotheses allow one of the maps f, g of the gluing diagram
to be finite or at least affine and usually some noetherian-like assumptions are
present. It is known to most people that these assumptions are not essential
at least when both maps f, g are closed immersions; we give a statement with
the main input for the proof coming from [SP].

2.1.3 LEMMA. Let iy : Y — Xq and iy : Y — Xo be closed immersions of
algebraic spaces. Then, there exists a pushout W = X, lly Xo in the category
of algebraic spaces:

y —2 X,

X —2—— W
Moreover, the diagram is a cartesian square; the maps a,b are closed im-
mersions; the pushout is topological, i.e., its underlying topological space is
| X1| My | X2|; and there is a short exact sequence
0— Ow — G*OXl @b*OXZ — ¢,O0y — 0

of sheaves on the small étale site of W.

Proor : We will reduce to the known case of schemes. For this we will use
the following classical extension result for étale maps: if U, E, E’ are disjoint
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unions of affine schemes (henceforth to be called sums of affines for brevity)
and E — U is a closed immersion, and £/ — FE is an étale morphism, then
there exists a sum of affines U’ and an étale morphism U’ — U such that
E' ~ U’ xy E. The proof can be found for example in Tag 04D1]. Note
that if B/ — E is surjective, we may choose U’ — U surjective by adding to U’
the sum of affines in a Zariski covering of U \ E.

For each i = 1,2 let m; : U; — X; be an étale surjective map where U; is a sum
of affines. Let E; = U; xx, Y. Then E; xy Es is étale surjective over E; and
Es. Let E' be the sum of affines given by a Zariski covering of E; Xy Fy. By
the fact quoted above, for each ¢ = 1,2 there exists U] — U, étale surjective
whose restriction to F; is isomorphic to E’. In this way, replacing U; by U/ we
see that we can assume that £; ~ F5. Now for i = 1,2 let R; = U; xx, U;
with its two projections s;,t; : R; — U;. Let F; be the preimage of Y in R;.
Since m;s; = m;t;, this is isomorphic to the preimage of E; under any of the
maps s; or t;. The isomorphism F; ~ E5 induces a compatible isomorphism
Py ~ F5; in the sequel we view these isomorphisms as identifications so we
write & = E1 = EQ and F' = F1 = FQ.

By the scheme case the pushouts % := U; g Us and % := Ry LI Ry make
sense as schemes. Using the pushout property for #Z we see that the maps
ss,t1lt: Ry II Ry — Uy II Uy induce maps which for simplicity we again
denote s,t : Z — % . They are clearly surjective. We claim that moreover
they are étale. This is a local property and is proved in [SPl Tag 08KQ)]. Let
W = % | % be the quotient algebraic space. Checking that W is the pushout is
formal, and obtaining the additional properties is easy by taking an atlas. O

We obtain at least a necessary condition.

2.1.4 LEMMA. An epimorphism of algebraic spaces does not factor through a
locally closed subspace Z C S.

PROOF : Same proof as 211 using Lemma instead of [Fe03, Thm. 7.1].
o

We now present two simple examples of epimorphisms of algebraic spaces. The
first one improves [Ry10, Prop. 7.2] where it is assumed that f is a submersion
after every base change.

2.1.5 LEMMA. Let f : S" — S be a morphism of algebraic spaces which is
schematically dominant, and submersive after every étale base change on S.
Then f is an epimorphism of algebraic spaces, and remains an epimorphism
after every étale base change.

PROOF : The assumptions are stable by étale base change, hence it is enough to
prove that f is an epimorphism. Let X be an algebraic space and let u,v : § —
X be morphisms such that uf = vf. Let Z be the preimage of the diagonal
A:X — X x X by the map (u,v) : § = X x X. Since A is a representable
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monomorphism of spaces which is locally of finite type, see [SPL Tag 02X4], the
map g : Z — S has the same properties. By the assumption on u,v the map f
factors through Z. This shows that g is a submersive monomorphism, hence a
homeomorphism. By the assumption on f, this remains true after every étale
base change on S. Then Cor. 18.12.4], whose proof uses only étale
base changes, shows that ¢ is finite. Thus g is a closed immersion which is
schematically dominant, hence an isomorphism. Hence v = v, and f is an
epimorphism of spaces. O

2.1.6 LEMMA. Let S = Spec(A) be a noetherian local scheme and let S, =
Spec(A/m™ 1) be the n-th thickening of the closed point. Then f:]],5qSn —
S is an epimorphism of algebraic spaces.

PROOF : Since f factors through the maximal-adic completion of S which is
fpqc over S, it is enough to assume that S is complete. Let u,v : S — X be
such that uf = vf, and Z as in the proof of Since S is henselian we can
write Z = Zy I Z; where Z; is finite over S and contains the unique closed
point, above the closed point of S. By assumption Zy — S is an isomorphism
over every .S,. Using Nakayama, we find that Zy; — S is a closed immersion.
Since S is noetherian, this implies that Zy — S is an isomorphism. O

2.1.7 REMARKS. The noetherian assumption is of course crucial, since other-
wise we may e.g. have m = m” for all n > 1.

2.2 EFFECTIVE EPIMORPHISMS

2.2.1 DEFINITION. We say that f : " — S is an effective epimorphism of
algebraic spaces if the diagram S’ xg S’ = S’ — S is exact, that is, if for all
algebraic spaces X we have an exact diagram of sets:

Hom(S, X) — Hom(S’, X) = Hom(S’ xg 5, X).

Another way to say it is that S is the categorical quotient of S’ by the groupoid
S'xg S8 = 5.

2.2.2 EXAMPLE. An fpqc covering of algebraic spaces is an effective epimor-
phism of algebraic spaces [SP, [Tag 04P2].

If f: X — S is amorphism, we write Ag(X) = f.Ox or simply A(X) = f.Ox
if the base S is clear from context. For instance A(S) = Og. Also let us write
S’ =58"xg 5"

2.2.3 LEMMA. Let f : S — S be a quasi-compact and quasi-separated mor-
phism of algebraic spaces. Assume that f is an effective epimorphism. Then
the sequence A(S) — A(S") = A(S") is ezact.
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PROOF : Let us simplify the notations by setting A* = A(S*) for x € {@,”,” }.
Let J be the kernel of A — A’ and let B be the kernel of the pair of arrows
A = A”. We must prove that A — B is an isomorphism. Since f is quasi-
compact and quasi-separated, the sheaves A, A’, A” are quasi-coherent hence
the sheaves J, B are also quasi-coherent. According to Lemma 2.1.4] we have
J = 0. Let us write T = Specg(B). We have injective sheaf morphisms Og =
A — B — A’ and corresponding scheme morphisms g : 8" - T, h: T — S
satisfying f = hg. Let p1,p2 : S — S’ be the projections. Since gp1 = gps
and f is effective, there is a morphism e : S — T such that g = ef = ehg. As
the sheaf map ¢* : B — A’ is injective, this implies that ef : B — A is a section
of the map hf : A — B which therefore is an isomorphism. O

Lemma shows that under the qcqs assumption, it is necessary for an
effective epimorphism of algebraic spaces to give rise to an exact sequence of
Og-modules A(S) — A(S") = A(S”). For the converse, in the world of schemes
things are quite simple: a submersion with the above exact sequence property
is an effective epimorphism, see [SGAT], Exp. VIII, Prop. 5.1].

In the world of algebraic spaces things are a bit more subtle, and our purpose
in the rest of this subsection is to strengthen slightly the submersion property
80 as to salvage the result. We recall that to say that f: S’ — S is a morphism
of effective descent for étale algebraic spaces means that for any two étale
S-algebraic spaces X, Y the diagram

Homg(X,Y) — Homg/ (X', Y'") = Homg (X", Y")

is exact, and that for every étale S’-algebraic space X', every descent datum
on X' with respect to S” — S is effective.

2.2.4 LEMMA. Let f : 8" — S be a morphism of algebraic spaces. The property
for f to be a morphism of effective descent for étale algebraic spaces is local on
the source and target for the étale topology. FExplicitly,

(1) of T — S is étale surjective, T' = T xgS’, and fr : T' — T is the pullback
of f, then f is a morphism of effective descent for étale algebraic spaces
if and only if fr is so; and

(2) ifg: 8" — S’ is étale surjective, then f is a morphism of effective descent
for étale algebraic spaces if and only if fg is so.

PROOF : (1) In one direction, assume f : S’ — S is a morphism of effective
descent for étale algebraic spaces, and let T — S be an étale base change. Let
T =T xg S and T" =T xpT' =T xg 5". We prove that fr : T/ — T
descends morphisms. Let X, Y be two étale T-algebraic spaces. We prove that
the diagram

HOIDT (X, Y) — HOHlT/ (Xl, YI) = HOIDTN (X”, Y”) (*)
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is exact. Note that X — T — S is étale and similarly for the other algebraic
spaces. Since f descends morphisms between étale spaces, we obtain an exact
diagram

Homg(X,Y) — Homg (X', Y’") = Homg» (X", Y").

Injectivity of the first map of (x) now follows from the injectivity of the maps
Homr(X,Y) — Homg(X,Y) and Homg(X,Y) — Homg(X',Y’). Let v :
X’ — Y’ be a T'-morphism such that its pullbacks under the maps 7" = T'
coincide. The second exact sequence provides an S-morphism v : X — Y.
Moreover if a : X — T, b:Y — T are the structure morphisms, we see that
a and bu become equal when pulled back to S’, hence they are equal. This
shows that w is in fact a map of T-algebraic spaces. Finally we prove effective
descent for objects. Let X’ — T’ be an étale algebraic space with a descent
datum with respect to 77 — T'. Then X' — T’ — 5’ is étale and moreover the
descent datum can be viewed as a descent datum with respect to S’ — S. By
the assumption on f there exists an étale morphism X — S whose pullback
under S’ — Sis X’. Moreover the map X’ — T" descends to an S-map X — T
and the construction of X is finished.

The other direction is a special case of [Gi64, Thm. 10.8] but for the convenience
of the reader we give the argument here. Let 7' — S be étale surjective and
assume that the base change fr : T — T is of effective descent for étale
algebraic spaces. We prove descent of morphisms for f. Let X,Y be étale
spaces over S, let X', Y’ be the pullbacks to S/, and let v/ : X’ — Y’ be an
S’-morphism whose pullbacks via the two maps S’ x5S’ = S’ coincide. Then
the map u/. obtained by the base change T” — S’ has coinciding pullbacks via
the two maps T" xp T’ = T". Since fr descends morphisms, u/. descends to a
T-map ur : X7 — Yp. Let us introduce some notation:

q1
T xgT —=T"' —— &'

q2
ol ]
TxsT Z:; y—
2
From the first part, we know that fr .7 is a morphism of (effective) descent.
From the equality ¢ju/r = ¢5u’- we thus deduce that pjur = pSur. By descent
along the étale map T — S, we obtain a unique S-map v : X — Y that
descends u/. Now we prove effective descent for objects. Let X’ — S’ be
an étale morphism equipped with a descent datum for S’/S. The pullback
X/ — T’ has a descent datum for T"/T. By assumption it descends to X1 —
T. The canonical isomorphism ¢; X/, — ¢3X} descends to an isomorphism
V: pi Xt — p5 X1 since fry o7 is a morphism of descent. Using that frx rxsr
is a morphism of descent, one checks that v is a descent datum on X for the
étale covering T' — S and by effective descent, it descends to a unique X — §
as desired.
(2) This is a special case of [Gi64, Props. 10.10 and 10.11]. O
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The next theorem is our main result on effective epimorphisms of algebraic
spaces. In the world of schemes, a qcqs submersion such that A(S) — A(S") =
A(S") is exact is an effective epimorphism. In the world of algebraic spaces, we
reinforce these conditions slightly in order to suitably allow étale localization
and descent.

2.2.5 THEOREM. Let f :S" — S be a morphism of algebraic spaces. Assume
that:

(1) f is a qcgs submersion and remains so after every étale base change,
(2) the diagram of Og-modules A(S) — A(S") = A(S”) is exact,

(3) f is a morphism of effective descent for étale algebraic spaces.

Then f is an effective epimorphism of algebraic spaces and remains so after
any étale base change.

PRrROOF : By Lemma[2.2.4] all three assumptions are stable by étale base change
on S. Therefore it is sufficient to prove that f is an effective epimorphism of
algebraic spaces, i.e., for all algebraic spaces X, the diagram X (S) — X(5) =
X (S") is exact. Note that after Lemmal[ZT.5 we know that f is an epimorphism
after every étale base change, which settles injectivity on the left. It remains to
prove that if o’ : S’ — X satisfies o/ pr; = o’ pry then there exists a : S — X
such that o/ = af.

We prove that the question is Zariski-local on X. Let (X;) be a covering of
X by open subspaces and let S/ = (a/)7*(X;). Then S/ is saturated, that
is S/ = f7Y(f(S!)). Since f is a submersion by (1), then S! descends to an
open subspace S; C S. If for each i there exists a; : .S; — X; C X such that
o s; = @;f|s; then by uniqueness the morphisms «; glue to give a solution
a: S — X.

We prove that the question has a positive answer when X is a scheme. In-
deed, we can cover X by open affine subschemes and then by the preced-
ing step we can reduce to the case where X = Spec(A) is affine. Since
Hom(T, Spec(4)) = Hom(A,I'(T,0Or)) for all algebraic spaces T' (see [SP
Tag 05Z0]), the question reduces to a construction of ring homomorphisms
and then the conclusion comes from assumption (2).

Now let X be an arbitrary algebraic space. Let w : Y — X be an étale surjective
morphism where Y is a scheme. Let U’ =Y xx S’ which is étale surjective
over S, and U” =Y xx S”. The assumption o' pr; = o pry implies that U’
carries a descent datum. By assumption (3) it descends to an étale algebraic
space U — S. Alsolet 8’ : U’ — Y be the pullback of o/. Let R = U xg U
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and R =U' xg5 U’.

R——R

S/Ht/ Sut

U”:;U’—>Uféé

T
e Qs*/ X

’
[e3%

We know 'pr; = 8 pry : U” — Y. Since U’ — U satisfies again all the
assumptions (1)—(3) and the statement holds when the test space Y is a scheme,
we obtain a morphism 8 : U — Y. We claim that 73 : U — X is R-invariant.
Since R" — R is an étale pullback of f : S” — S, it is an epimorphism. Hence
it is enough to prove that the compositions R" —+ R = U — X are equal.
This follows because they equal to o’ds’ = o’dt’. Thus 73 induces a morphism
a: S — X and we are done. O

Collecting some results on morphisms of effective descent for étale maps in the
literature, we find the following special cases.

2.2.6 COROLLARY. Let f : S" — S be a surjective morphism of algebraic
spaces which is either :
(i) integral,
(ii) proper,
(iii) wniversally open and locally of finite presentation,

(iv) wuniversally submersive and of finite presentation with S locally
noetherian.

Then if the sequence of modules A(S) — A(S’) = A(S”) is exact, the map f
is an effective epimorphism of algebraic spaces and remains so after any flat
base change.

PROOF : In each case the assumptions are stable under base change, except
possibly in case (iv). To deal with this, we use the notion of a subérusive mor-
phism from [Ry10] and we replace (iv) with the more general (iv)’ : universally
subtrusive and of finite presentation. That this is indeed more general than (iv)
follows from Cor. 2.10], with the advantage that (iv)’ is stable under
base change. It follows that it is enough to prove that f is an effective epi-
morphism of algebraic spaces. For this we apply Theorem In each case
conditions (1) and (2) hold and it remains to see that f is of effective descent
for étale algebraic spaces. Since by Lemma 2.2.4] this property is étale-local on
source and target, by taking étale atlases of S and S’ one reduces to the case
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where f is a map of schemes. Then the claim is [SGA4.2] Exp. VIII, Thm. 9.4]
in cases (i)—(ii) and Thm. A.2| in cases (iii)—(iv)’. O

2.2.7 REMARK. Assume that f satisfies one of the conditions (i)—(iv). Then
the property “f is an effective epimorphism” is fpqc-local on S because exact-
ness of a sequence of quasi-coherent modules is an fpqc-local condition.

For ease of future reference, we single out the following particular case of 2.2.6]
Recall that an (effective) epimorphism is uniform if it remains an (effective)
epimorphism after all flat base changes.

2.2.8 COROLLARY. Let f:S" — S be an integral morphism of algebraic spaces
such that the sequence A(S) — A(S") = A(S") is exact. Then f is a uniform
effective epimorphism of algebraic spaces. O

2.2.9 EXaMPLES. Here are some sufficient conditions for a morphism f :
Spec(A’) — Spec(A) defined by a finite ring extension A C A’ to be an effective
epimorphism.

(1) f is faithfully flat (faithfully flat descent).
(2) f is the quotient of a flat groupoid (by the quotient property).

(3) f is unramified with fiber-degree at most 2. Indeed, by the structure of
unramified morphisms, étale-locally on the target the morphism f has the form
Spec(A/I) I Spec(A/J) — Spec(A). Hence we may assume that A" = A/T x
A/J with INJ =0, so that A’ @4 A" = (A/T) x (A/T+J) x (A/I+J)x (A/J).
To say that a’ = (a1, a2) € A’ has equal images in A’®4 A’ means that a; = ao
mod I + J, hence a1 +i =ag + j for some i € I, j € J. Thus a’ € A.

(4) Levelt [Le65] contains some more examples. For instance if A C A’ is alocal
inclusion of local rings with trivial residue field extension and no intermediate
subring then f is effective [Le65, Chap. IV, Lem. 4]. If for some maximal ideal
m C A we have A'/A ~ A/m as A-modules, then f is effective [Le65, Chap. IV,
Lem. 7].

(5) f is weakly normal, e.g., A and A’ are integral domains, f is generically
étale and A is weakly normal [Ry10, Lem. B.5].

Here is a non-example showing that d = 2 is required in (3) above.

2.2.10 EXAMPLE. Let A = k[z,y]/(zy(y—=)) and A’ = A/(z)x A/ (y)x A/ (y—
x). Then f : Spec(A’) — Spec(A) is finite and unramified of fiber-degree at
most 3 but not an effective epimorphism. Indeed, A’®4 A’ = A’ x k8 is reduced
so the equalizer of the two maps A" — A’ @4 A’ is the weak subintegral clo-
sure Lem. B.5] which is isomorphic to B = k[u, v, w]/(u,v)(u, w) (v, w).
Explicitly, we have injective maps A — B and B — A’ where z — u + v,
y—u+wand u— (0,0,z), v — (0,2,0), w+ (y,0,0).

DOCUMENTA MATHEMATICA 23 (2018) 1157-1196



THE COMPLEXITY OF A FLAT GROUPOID 1171

2.3 THE CANONICAL FACTORIZATION

The main result of this section gives a canonical factorization of a finite epimor-
phism as a composition of finitely many finite effective epimorphisms. It is first
stated in [Gr59, A.2.b] and then used to study the functor of subgroups of mul-
tiplicative type of a group scheme [SGA3.2l Exp. XV, just before Lem. 3.7] and
the relative representability of the Picard functor [SGA6, Exp. XII, Lem. 2.6].
A proof appears in the latter reference. With an eye towards the study of
groupoids of higher complexity, we provide additional properties of the canon-
ical factorization : uniqueness, compatibility with flat base change, and min-
imality of its length. For the convenience of the reader, we provide complete
proofs.

2.3.1 DEFINITIONS. Let f: T — S be an epimorphism of algebraic spaces.

(1) An f-sequence is a sequence T = Ty — T1 — T» — ... of epimorphisms
of S-spaces such that for each ¢ > 0, if T; — T;4; is an isomorphism then
Ti+1 — Tiyo is an isomorphism.

(2) The length of an f-sequence as above is the smallest n € NU{oo} such that
T, — Ty41 is an isomorphism, i.e., the number of non-isomorphic arrows of the
sequence. If an f-sequence has finite length n and 7,, — S is an isomorphism,
we say that it is finite and separated or that it is a factorization.

(3) Assume that f is affine. The canonical sequence of f is the f-sequence
T=Ty— Ty — Ty — ... given by T; = Specg(A;) where Ag := f.Or and
Aip1 = ker(.Ai = A ®og Az) for all i > 0.

2.3.2 PROPOSITION. Let f : T — S be an integral epimorphism of algebraic
spaces.

(1) The canonical sequence T =Ty — Th1 — To» — ... is characterized by the
properties :

(i) for each i, the morphism T; — S is integral and the morphism T; —
Ti+1 is an integral effective epimorphism;

(i) for each i the canonical morphism T; x1,., Ty — T x5 T; is an
isomorphism.

(2) The formation of the canonical sequence is compatible with flat base change
and local for the flat topology on S. More precisely, let S — S be a faithfully
flat morphism of schemes. Let 7 = (Ty — T1 — To — ...) be a sequence of
morphisms of S-schemes and let 7' = (T} — T{ — Ty — ...) be the sequence
obtained by the base change S’ — S. Then 7 is the canonical sequence of
T — S if and only if ' is the canonical sequence of T' — S’.

(3) The canonical sequence has length O if and only if f is an isomorphism,
and length at most 1 if and only if f is an effective epimorphism.
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(4) The canonical sequence is terminal among f-sequences, affine over S,
whose factors are effective epimorphisms, i.e., for each such sequence T =
T, —=T{ = T} — ... there are maps T} — T; making a commautative diagram:

Ty Ty 1;
I
To T Ty

(5) When S is noetherian and f is finite, the morphisms T; — T; 11 are finite
and the canonical sequence is finite and separated, i.e., a factorization. It
has minimal length among all finite separated f-sequences whose factors are
effective epimorphisms.

All claims except (5) are actually quite formal.

PRrROOF : (1) Write A := Og and Ag := f.Or. Since A; C Ag, the morphisms
T; = Specg A; — S and T; — T;y1 are integral. The surjective morphism
Ai®@aA; — A; ®a,,, A; has kernel generated by the local sections a®1—-1®a
for local sections a € A;41. By the definition of A;;1, it follows that this map
is an isomorphism hence (ii) is satisfied. Therefore we have an exact diagram
Aig1 = Ai 3 A; ®a,,, Ai. By Corollary 2.8, this means that T; — Tjy is
an effective epimorphism, hence (i) is satisfied. Conversely, if a factorization
T =Ty — T{ — T3 — ... satisfies (ii) then A} ®4 A; — Aj @a;,, Aj is an
isomorphism, and if moreover (i) is satisfied then A} | = ker(A; = A; ®og Ai).
Thus we see that the given sequence is the canonical one.

(2) This follows because the formation of kernels of morphisms of quasi-coherent
sheaves commutes with flat base change and is local for the flat topology on
the base.

(3) This follows from the definitions.

(4) By induction, assume that there is a diagram of length i:

T3 Ty . Ti_, Ty
“« ] [
T T, . Ty T;.

Then because T; — T, is effective, we have a containment A;; = ker(A; =
Ai ®a A;) C ker(A; = Aj @, Aj) = Ay This gives a map T, — Tipa
and a diagram of length 7 4 1.

(5) First, assume that the canonical sequence has finite length, so there exists
n > 0 such that A,+1 = A,,. Then we have an isomorphism A, ®4 A, —
An ®@s,iy An =~ Ayn. This means that 7, — S is a monomorphism. Being
dominant and finite, it must be an isomorphism hence the sequence is sepa-
rated. Now we prove that the canonical sequence has finite length. Since S
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is noetherian, this property is étale-local on S. Moreover the formation of A;
commutes with restriction to an open subscheme and with passage to the stalks
on étale local rings. If for some point s € S the sequence of stalks (A; s)io0
is stationary, then the isomorphism A, — A,  extends in a neighborhood of
s. Thus we may assume that .S is local with closed point s. In particular, we
may assume that S (local or not) has finite dimension d. We now argue by
induction on d. If d = 0, the rings A; have finite length and the sequence A, is
stationary. If d > 0, the open U = S\ {s} has dimension < d so by induction
the sequence A; is stationary after restriction to U. By the same argument as
before, we then know that for all big enough ¢ the morphism A — A; is an
isomorphism away from s. It follows that the quotient Og-module A;/A has
finite length. Thus A;/A is stationary, and hence also A;.

Now consider a finite separated sequence T' = Tj; — 1] — --- — T, = S of
length m whose factors are effective epimorphisms. We have a diagram:

T T o T T, —— 8
ol ] ] ]
To T o s T S.

We obtain Og C A, C A., = Og. Thus T,,, — S is an isomorphism, so the
canonical sequence has length at most m. O

2.3.3 EXAMPLE. Let k be a field and S the affine cuspidal k-curve with equa-

tion y3 = x*. We shall see that the canonical sequence of the normalization

map f: T — S has length n = 2, as follows :

T > T » S
1 spatial planar
Ak singularity cuspidal
y? =z singularity
22— g2 3 _ 4
y ==
yz =23

We have S = Spec(A) and T = Spec(B) with A = k[z,y]/(y> — 2*) and
B = k[t], the morphism A — B being given by z = t3 and y = t*. In other
words A ~ k[t?,t*] < k[t]. We can write :

K[t1, to]

BR®sB=——"F—"F—":
(1] — 13,11 — 13)

and the two arrows B =% B ®4 B map t to ¢t; and t9 respectively. The ring
By = ker(B = B ®4 B) contains A as well as the element t°, since ¢] =
tits = titat] = tijta = t5. Therefore B contains k[t3,t* ¢%]. If we notice
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that the annihilator of ¢; — t; in B ® 4 B is generated by t? + t1ty + t2 and
(t1 +12)(t2 +12), we see that B; does not contain elements of the form at + bt2.
This proves that By = k[t3,t*,t5]. Letting 2 = t°> we get the presentation :

B, - klz,y, 2]

(y? — 2,22 — a2y, yz — a3)’

In particular Bj is a free k[xz]-module with basis {1,y, z}. We now prove that
A =ker(B; = B; ®4 B1). We write :

By ®a By = k[z,y, 21, 22]/1

with I = (y? — w21, 22 — 2%y,y21 — 23, 2(21 — 22),y(21 — 22), 2% — 22). The
two arrows B1 = B ®4 By map z to z; and z3 respectively. Let P = a(z) +
b(x)y + c(x)z be an element of B; such that P(z,y,z1) = P(x,y,22), i.e.,
c(x)z1 = ¢(x)z2. In view of the structure of the annihilator of z; — z5 inside
B; ®4 By, this implies that x divides ¢(x), hence P € k[z,y, xz] = k[z,y] = A,
as announced.

3 THE CATEGORY OF GROUPOIDS

In this section we briefly recall some definitions and notations on groupoids
(§ BI) and we define the complexity of a flat groupoid with finite stabilizer
whose jy : R — X xy X map is schematically dominant (§ B-2]).

3.1 THE VOCABULARY OF GROUPOIDS

Good references for this material are Keel-Mori [KM97] and Rydh [Ry13]. We
fix a base algebraic space S, and products are fibered over S. We use the
vocabulary of the functor of points: a T -point of an algebraic space X over §
is a morphism z : T' — X with values in some S-scheme T. We often write
x € X(T).

3.1.1 GrouproIDS. We work with groupoids in S-algebraic spaces, also called
groupoid spaces or simply groupoids. A groupoid is given by five morphisms of
algebraic S-spaces s,t : R = X, c: Rxsx: R+ X,e: X -2 R,i:R—R
subject to the conditions that X (T') is the set of objects and R(T) is the set
of arrows of a small category, functorially in T'. The maps s,t, ¢, e, i are called
source, target, composition, unit (or identity), and inversion. The points of
R x5 xR are called pairs of composable arrows. Usually we denote a groupoid
simply by s,t : R = X and we call j the map j = (¢,s) : R — X x X. Typically
a T-point of X will be denoted = while a T-point of R will be denoted with a
Greek letter like «. We sometimes write 1, or simply 1 instead of e(z). We
occasionally write o : © — y if x = s(«) and y = ¢(«). With our choices of ¢
and j, note that it is more natural to picture T-points of R as arrows y <— x
going from right to left.
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3.1.2 Actions. For instance, an S-group space G acting on an algebraic space
X gives rise to a groupoid s,t : G x X = X where s is the second projection
and ¢ is the action. In the general setting one may shape one’s intuition by
thinking of a groupoid as a space R acting on a space X. If « : x — y is an
arrow, there is a corresponding action-like notation «(z) :=t(«) = y. In these
terms, the action is trivial if and only if s = ¢ and the maps ¢, e,i make R — X
into an X-group space.

3.1.3 STaABILIZERS. If R = X is a groupoid, then its stabilizer is the X-group
space Stabr = j71(Ax) where Ax C X x X is the diagonal. This is the largest
subgroupoid of R which is a group space, or also, the largest subgroupoid acting
trivially.

3.1.4 SUBGROUPOIDS. A subgroupoid is a sub-algebraic space P C R that is
stable under composition and inversion, and contains the unit section e(X).
(Topologists call this a wide subgroupoid because they also allow subgroupoids
P = Y whose base is an arbitrary possibly empty subspace Y C X. By sub-
algebraic space, we here mean a subfunctor that is an algebraic space, that
is, a monomorphism P — R of algebraic spaces.) A subgroupoid is called
normal if for any o € P(T) and ¢ € R(T) we have pap~! € P(T) whenever
composability holds. In detail, if ¢ : © — y, then composability means that
a € Stabp,(T) and then we have pap~! € Stabp,(T). In particular the
condition that P be normal in R depends only on the stabilizer Stabp. Any
subgroupoid containing Stabp is normal; in particular if Stabp is trivial then
all subgroupoids are normal.

3.1.5 MORPHISMS, KERNELS. A morphism of groupoids from R = X to R’ =
X' is a morphism of S-spaces f : R — R’ such that f(af) = f(a)f(B) for
all composable arrows «, 8 € R(T). We also use the notation f : (R,X) —
(R',X"). Such a morphism f has various automatic compatibilities with the
maps s,t,e,i. For instance, f maps identities to identities. Moreover there is
an induced morphism on objects s’ o foe=1 0o foe: X — X’ which we also
write f for simplicity. Thus, notationally for an arrow « :  — y in R we obtain
an arrow f(«) : f(z) — f(y) in R’. The kernel of a morphism f: R — R’ is
the preimage of the unit section ¢’ : X’ — R’. Tt is a normal subgroupoid of R.

3.1.6 INVARIANT MORPHISMS. Let R = X be a groupoid and let P be a
subgroupoid. Then P acts on R in various natural ways. The action by pre-
composition is a groupoid R X (4 PP = R, and the action by postcomposition
is a groupoid P X, R = R. The stabilizers of both actions are trivial.
The simultaneous action, to be called by pre-post-composition, is a groupoid
P x5t R X(sty P = R. We have an isomorphism Stabpyx  , rx.,p =
Stabp x (s R given by (¢, a,9) — (¢,a). This implies that the morphism
of groupoids f : P x(s4) R X(s4) P — R, f(p,a,1) = ¢ whose underly-
ing morphism on objects is f =t : R — X is fixed point reflecting, in the
sense of [KMO97, 2.2]. Now let us consider moreover a morphism of groupoids
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f + R — R'. Then the following four assertions are rewordings of one and
the same property : (i) P C ker(f), (ii) f is invariant by the left P-action on
R, (iii) f is invariant by the right P-action on R, (iv) f is invariant by the
pre-post-composition P-action on R. If this property holds, we say that f is
P-invariant.

3.1.7 QUOTIENTS. Let R = X be a groupoid and P C R a subgroupoid. A
categorical quotient of R by P is a morphism of groupoids 7 : R — @ which is
P-invariant and is universal among invariant morphisms R — R'.

In Definition B.I.7 we simplify the discussion by restricting to categorical quo-
tients; other notions of quotients are recalled in B2l below. To shed light on the
definition, note that by the universal property there is a morphism P — ker(7)
but contrary to what happens in the category of groups, it is not at all clear if
this is an isomorphism (and we do not think it is the case in general). We will
not pursue this question in this article.

3.2 THE COMPLEXITY

Whereas we introduced basic notions internal to the category of groupoids,
in order to define the complexity we come back to the categories of schemes
and algebraic spaces. Recall that if s,t : R = X is a groupoid space, then a
morphism f : X — X’ is called R-invariant if fs = ft. We will not repeat
here the various definitions related to quotients because they receive a clear
presentation in [KM97, § 1] and § 2]. We content ourselves with saying
that a morphism X — Y is a categorical quotient if it is initial among R-
invariant morphisms X — X', a geometric quotient if it is a submersion and
Oy is identified with the sheaf of R-invariant sections of Oy, and a quotient of
one of these types is uniform it its formation commutes with flat base change.
We recall the statement of the fundamental Keel-Mori theorem from [KM97],
[Ry13] as well as the case with trivial stabilizer from [Ar74].

3.2.1 THEOREM. Let S be an algebraic space and let R =% X be a flat, locally
finitely presented S-groupoid space with finite stabilizer.

(1) There is a uniform geometric and categorical quotient X — X/R =Y such
that the map jy : R — X xy X is finite and surjective. Moreover X — Y is
universally open.

(2) The space Y — S is separated (resp. quasi-separated) if and only if js :
R — X xg X is finite (resp. quasi-compact). It is locally of finite type if S is
locally noetherian and X — S is locally of finite type.

(3) If the stabilizer is trivial, then'Y is the fppf quotient sheaf of X by R, X —
Y is flat locally finitely presented, jy is an isomorphism, and the formation of
Y commutes with arbitrary base changes Y' — Y.

When R = X is finite and locally free, it is known moreover that X — Y is
integral.
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3.2.2 REMARKS. (1) The map jy : R — X Xy X need not be schematically
dominant, in particular it need not be an epimorphism. Here is an example.
Let X = Spec(k[z]/(2?)) with action of u, = Spec(k[z]/(z™ — 1)) by multipli-
cation then Y = X/R = Spec(k). We have X xy X = Spec(k[z1, 2]/ (23, 23)).
The morphism jy : R — X Xy X is given by the map of k-algebras
klzy,22]/ (22, 23) — klz,2]/(x?, 2™ — 1) such that z; — z and x5 — zz. The
element x129 is not zero and it is mapped to zx? = 0.

(2) The map X — X/R need not be of finite type even when R =% X is
finite locally free. For example if X = Spec(k[t1,to,...]) with action of u,
by z.t; = zt; then X/R is the spectrum of the ring of polynomials all whose
homogeneous components have degree a multiple of n.

In the rest of the text, we will focus on flat groupoids such that the morphism
jy : R = X Xy X is an epimorphism. This occurs for instance when X — Y
is flat and there is a schematically dense open subscheme Xy C X where the
action is free. One way to measure further the good behavior of these groupoids
is furnished by Proposition and leads to the following notion.

3.2.3 DEFINITION. Let R =% X be a flat, locally finitely presented groupoid
space with finite stabilizer. We say that R = X has complexity n if the map
jy : R — X xy X is an epimorphism and the length of its canonical sequence
is n.

3.2.4 REMARKS. (1) The groupoid R = X has complexity 0 if and only if it is
free. It has complexity at most 1 if and only if jy is an effective epimorphism.
(2) If jy is an epimorphism, then, by Proposition[Z:3.2(5), a sufficient condition
for a groupoid to have finite complexity is that X is of finite type over a fixed
noetherian base scheme.

(3) Levelt’s results [Le65)], see Example 2:22.9(4), hint that finite locally free
groupoids with isolated fixed points of stabilizer degree at most 2 (e.g., an
action of a group scheme of order 2 with isolated fixed points) should have
complexity at most 1. We shall see examples of this in the next section.

3.3 EXAMPLES

Because the formation of the canonical sequence is local on the base for the
flat topology (Proposition [2.3.2(2)), the computation of the complexity can be
done locally. It follows that computations in this section provide results also for
groupoids which are group actions only locally for the flat topology, or locally
after passage to a completed local ring. This applies for instance to quotients
of surfaces by p-closed vector fields, studied by many people in the last 40 years
(Rudakov—Shafarevich, Russell, Ekedahl, Katsura—Takeda, Hirokado...).

We start with examples valid in any characteristic.

3.3.1 PROPOSITION. Let X = A} be affine n-space over a scheme S. Let G
be the symmetric group on n letters, acting by permutation of the coordinates
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of X. Then the quotient map 7 : X — Y = X/G is finite locally free of rank
n! and the groupoid G x X = X has complexity 1.

PROOF : First we set the notations. We may assume S = Spec(R) affine. Then

X = Spec(B) where B = R|x1,...,x,] is a polynomial ring in n variables, and
Y = Spec(A) where A = BY is the ring of invariants. Let Si(X1,...,X,) be
the symmetric function of degree k in X1, ..., X, and s = Sg(z1,...,2,) € A.
By the Main Theorem on symmetric functions, we have A = R|[sq,. .., s,] which

is a ring of polynomials in the variables s;, moreover

A[zla- .- 51'71]

B e m) = st S (@) — )

and therefore

B[Xla-'-aXn]
(Sl(Xz) — S1,.- ;Sn(Xz) — Sn)

is B-free of rank n! with basis the set of monomials

B®y B~

B={XD. . X 0<d; <i,Vi}.

The map j : G x X — X xy X corresponds to the map of B-algebras which is

given by evaluation on (z1,...,z,) and its permutations:
B[Xla-'-aXn]
ev 3 B
(Sl(Xi)—Sl,...,S (X —Sn ag

P+— (P(.Tg(l), c. ,xg(n)))gegn.

The stabilizer ¥ — X of the groupoid has function ring:

B =[] ( B

ces, (@1 = Try e B0 = )

The two maps pry,d : ¥ Xx (G x X) = G x X correspond to the maps of
B-algebras

B
B H b= H axn_-r'r(n))

m — T
ceG, o,7€ES, 1 (1)

defined by a(Q)a,‘r = Q. and ﬁ(Q)a,‘r = Qo forall Q = (QG)GEGn‘

Since the action of G on X is not free, the complexity of the groupoid is not 0.
Hence what remains to be proved is that ev is injective and im(ev) = ker(a—pf).
In order to describe the image of ev let us introduce some more notation.
Let E be the set of pairs of integers (i,7) with 1 < ¢ < j < n. Let V =
V(z1,...,2n) = [l jyep(®; — 2i) be the Vandermonde determinant of the ;.

To each subset I" C E we attach a monomial u(F) = [[; jyer X;- For example
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if n=4and F = {(1,3),(2,4),(3,4)} then u(F) = X3X7. Obviously the map
o P(E) — P is surjective and if M = p(F) then deg(M) = card(F'). Now
for each basis monomial M € Z we define a B-linear form ¢ : [ B—+B
by

oeS,

Q= (Qo)oce, — prr(Q) = Zs<o>(

> I za(z‘)) Qo

FCE (i,j)eE—
#(ngM (i,j)eE~F

(Here (o) is the sign of the permutation 0.) We let ¢ : [[,ce, B = [I17c2 B
be the map with components ¢,; and we use the same letter to denote the map
with values in [],,., B/V B obtained by reduction mod V. We claim that the
following sequence is exact:

B[X1,...,X,]

= B % B/VB.
(Sl(Xz) —81,...,Sn(Xi) _Sn) Ugn M]._G‘[@

0—

In order to prove this we introduce suitable Lagrange interpolation polynomi-
als which allow us to invert the map ev after the base change B — B[1/V].
Precisely, we set:

£(o)
La(Xla s 5Xn) = 7 H (Xj - za(i))'
(i,J)EE

We have degy, (Ls) < i for all i = 1,...,n. Thus, after inverting V, the
polynomial L, lies in the submodule ®y;ezR-M C B[Xy,...,X,] which as we
said earlier maps isomorphically onto B[ X7, ..., X,]/(S1(Xi)—s1,. .., (X;)—
sn). Moreover one sees that Ly (2,(1),...,%r(n)) = do,r (Kronecker 6). From
these remarks follows that the inverse to ev ®@1idp(; /) is given by interpolation,
that is:
int(Q) = Z QoLs.
cEGS,

From this, since V is a nonzerodivisor in B, the injectivity of ev follows. By
expanding one finds:

. 1
(@) = 7 Y 0@ ] (X =00
ceS, (1,5)€E
1 car: —
=V Z £(0)Qs Z(*l) AE=E). H To(iy - ((F)
o€, FCE (4,)EE—F
1 nn_
=5 Y0, Y Y ()T [T ag - M
ceES, Me#B FCE (i,j)EE—F
w(F)=M
_ 1 nn=D _ Jeg(M)
=7 do(-1) e g om(Q) - M.

Me%
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Since Q = (ev®idpp,v))(int(Q)), we see that @ lies in the image of ev if and
only if the components of int(Q) on the basis vectors M € £ lie in B. This
means precisely that ¢/ (Q) is divisible by V for all M € £, which proves the
exactness of the sequence.

We can now conclude. It is clear that im(ev) C ker(« — /3). In order to prove
the reverse inclusion let @ = (Qs)see,, lie in the equalizer of o and S, that is:

Qro =Qy mod (T1 — Tr(1),. ., Tn — Tr(ny), forallo, 7€ &,

We want to prove that ¢ (Q) is divisible by V for all M € £. It is enough
to prove that p(Q) is divisible by z, — x, for all (u,v) € E. Consider the
transposition 7 = (u,v). Then &, is partitioned into n!/2 pairs {0, 70} and it
is enough to prove that for each ¢ the sum

o XM ww)etetra( X I wew)en

#(FngEM (i.j)EE-F #(FngEM (i,))EE-F
is divisible by x,, —xz,. This is clear, because modulo x, —x,, we have Q,, = Q.
by the assumption on @ and ,,(;) = Z4(;) by the definition of 7. O

3.3.2 REMARK. More generally, we can ask if the complexity is at most 1 for
a finite constant group G acting on a smooth scheme X in such a way that the
pointwise stabilizers G, are generated by reflections, in the sense that there is a
system of local coordinates such that G is generated by linear automorphisms
of order 2.

Here is another example in arbitrary characteristic.

3.3.3 LEMMA. Let R be a ring. Let n > 2 be an integer. Let X = AL be
the affine line over R, with the action of G = p, g given by G x X — X,
(z,x) — zx. Then the groupoid G x X = X has complexity 1 if n = 2 and at
least 2 otherwise. If n = 3, the complexity is equal to 2.

PROOF : We have X = Spec(B) and Y = X/G = Spec(A) with B = R[z], A =
Rly]and y = ™. Let Coo = B®4B = B[X]/(X"—2a") and Cy = B[z]/(z"—1).
The question is about the finite morphism of B-algebras p : Cx — Cy with
p(X) = zz. Note that p identifies Cx with the sub-B-algebra of B[z]/(z"™ — 1)
generated by zz. We have Cy ®c,, Co = Blz1, 2]/ (2] — 1,25 — 1,2(21 — 22))
with the maps «, 8 : Cy — Cp ®¢., Co given by a(z) = z; and 3(z) = z2. Let
C1 C Cy be the equalizer of these maps, this is the sub-B-algebra generated by
the elements y; := z'z for i = 1,...,n — 1. If n = 2 we have C, = C}, so the
complexity is 1. If n > 3 we have 222 € C1\Cy and the complexity is at least 2.
In general Cy has a fairly complicated structure. We leave it to the reader to
check that for n = 3 we have C; = Blyy,v2]/(y3 — 2, y192 — 22,95 — xy1) and
that the map Co, — C is effective. O
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Finally an example in characteristic p.

3.3.4 LEMMA. Let R be a ring of characteristic p > 0. Let X = Al be
the affine line over R, with the action of G = o, r given by G x X — X,
(a,x) = 5. Then the groupoid G x X = X has complezity 1 if p =2 and
at least 2 otherwise.

PROOF : We have X = Spec(B) and Y = X/G = Spec(A4) with B = R[z],
A = Rly] and y = zP. The question is about exactness of the sequence of
B-algebras:

B[X] P Bla] % Bla,as]

XP—gp aP —_E_éafJSJJWf—aﬂ
with p(X) = 752, a(a) = a1, B(a) = a2. In order to find the image of p we
compute in the localizations with respect to x. Since p is injective we write X
for p(X). From X = =2— we get a = X' — 27" s0 if Q(a) = P Qial s
the image of some P under p then we have:

POX) = QX! — ™)

p—1 p—1 p—1 .
=> (D27 Qi+ > [ D (-1 (;):CWHQZ- XP,
=0 Jj=1 \i=j

We find that the image of p is the set of @ such that zP~! divides
ST (—1)iaP 71 1Q; and 2?1 divides Y77 (—1) (a1 TiQ; for all j =
1,...,p — 1. This may be rewritten as the set of @ such that 2! divides Q;
foralli=1,...,p—1 (say Q; = 2" R; for some R; € B) and zP~177 divides
Zf:_jl(fl)i(;)Ri for all j = 1,...,p— 1. On the other hand, the equalizer of
o and A is the set of Q such that 22 divides @; for all i =1,...,p — 1. These
sets are equal if and only if p = 2. O

4  MAIN THEOREMS

After the work of the previous sections, we are ready to give an answer to the
descent question from the introduction, for groupoids of complexity at most 1.
It applies to the objects of a stack whose isomorphism sheaves are representable:
see Theorem [£.2.3

4.1 EQUIVARIANT OBJECTS

4.1.1 DEFINITION. Let s,t : R = X be a groupoid and c,pry,pry
R x+ R — R the composition and projections. Let € — AlgSp be a category
fibered over the category of algebraic spaces and let F € C(X) be an object.
An R-linearization on F is an isomorphism ¢ : s*F = t*F satisfying the co-
cycle condition ¢*¢ = (pr} ¢) o (pri ¢), meaning that the following triangle is
commutative :
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*

(spry)*F = (se)*F L) (te)*F = (tpry)*F

(tpry)*F = (spr)"J.

An R-equivariant object of C over X is an object F € C(X) together with an
R-linearization. We write C(R, X)) for the category of R-equivariant objects.

4.1.2 EXAMPLE. Let R =2 X be a groupoid as above and let 7 : X — VY
be an R-invariant morphism, i.e., 7s = wt. Then for any object § € C(Y),
the pullback ¥ = 7*§G is endowed with a canonical R-linearization ¢ : s*F =
s*1*G ~ (ms)*G = (wt)*G ~ t*7n*G = t*TF.

We recall the notion of a square, which is closely related to that of R-equivariant
object.

4.1.3 DEFINITION. A morphism of groupoids f : (R, X’) — (R, X) is called
a square or cartesian when the commutative diagram

R — X'

f}L—”Lf

is cartesian, if we take for horizontal maps either both source maps, or both
target maps.

To illustrate these definitions, take for C the category of algebraic spaces over
algebraic spaces. For (X' — X) € C(X), the following lemma makes it clear
that an R-linearization on X’ is the same as a lift of the R-action to X'.

4.1.4 LEMMA. Let s,t : R = X be a groupoid. Let (f : X' — X, ¢ :
s* X' = t*X') be an R-equivariant X -space. Complete X' to a quintuple
(R, X', ¢',t',c) as follows :

(1) R' = s*X' = R x5,x,57 X' whose T-points are pairs (o, z') with o € R(T)
and x' € X'(T),

(2) ¢ =pry: R — X/,

(3) t/ =pryop: Rxs x5 X — Rxy x5 X — X/,

(4) ¢ : R xg xw R — R defined on T-points by ¢ ((a,2),(8,v')) =
(B,y).
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Then (R, X', s',t', ) is a groupoid and the morphism (R',X') — (R, X) is a
square morphism of groupoids.

Conversely, a square morphism of groupoids (R',X’) — (R,X) gives an R-
equivariant X -space (X' — X, s* X' = R = t*X’).

Proor : This is [SP| [Tag 0APC]. O

4.2 DESCENT ALONG THE QUOTIENT

Let s,t : R = X be a flat locally finitely presented groupoid. In this section we
are interested in the problem of descending objects of a category € fibered over
the category of algebraic spaces along the quotient map 7 : X — X/R =Y.
We know that for any object § € C(Y), the pullback F = 7*G is endowed
with a canonical R-linearization (example[d.1.2)). Conversely, if F € C(X) then
the datum of an R-linearization allows to descend F to an object based on
[X/R], the quotient as an algebraic stack, but is not enough to descend F to
an object of C(Y) in general. Let C(R,X) be the category of R-equivariant
objects (F,®). Descent Theory as formulated by Grothendieck seeks to char-
acterize the essential image of the pullback functor 7* : C(Y) — C(R,X).
When € is the category of étale morphisms of spaces, and without additional
conditions on B = X — Y, Keel and Mori [KM97, Lem. 6.3], Kollar [Ko97,
§ 2], Rydh § 3] obtain such a characterization in terms of fixed-point
reflecting R-equivariant objects. In a different direction, we shall prove that
if R = X has complexity at most 1 and flat quotient X — Y, there is a nice
description of the image of 7* for very general stacks C.

4.2.1 DEFINITION. Let ¥ = Stabp be the stabilizer of the groupoid, let a :
¥ — R be the inclusion, and put b = sa = ta. We denote by C(R, X)* the full
subcategory of C(R, X) consisting of R-equivariant objects (F, ¢) such that the
action of ¥ is trivial, meaning that the following map is the identity:

BT~ ats F L gttt F ~ b
To dispel the dryness of the formalism of groupoids, we emphasize that if C
is the category of schemes or algebraic spaces, and if the groupoid is given by
the action of a group G, then a G x X-linearization on some X’ € C(X) is

equivalent to a lift of the action of G to X’ and the action of X is trivial in the
above sense if and only if it is trivial in the usual sense.

4.2.2 LEMMA. The functor 7* : C(Y) — C(R, X) takes values in C(R, X)*.

PrOOF : We have to show that the canonical R-linearization of a pullback
F = 7*§ becomes trivial when restricted to X. Recall from [Gr59, A.1] or [SP,
Tag 003N], that in a fibered category, there are isomorphisms (fg)* == g* f*
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between pullback functors, and commutative squares giving compatibility for
triple compositions :

(fgh)" —— (gh)"f~

L

h*(fg)" —— h*g"f*.

We write the two squares picturing such compatibility for the two compositions
msa : X — Y and wta : X — Y, taking advantage of the fact that 7s = 7t in
order to glue them on one side:

Since sa = ta we see that the top row is the identity. The commutativity of
the exterior diagram is exactly the claim we want to prove. O

4.2.3 THEOREM. Let R = X be a flat, locally finitely presented groupoid
space with finite stabilizer ¥ — X and complexity at most 1. Assume that the
quotient m : X —'Y = X/R is flat (resp. flat and locally of finite presentation).
Let @ — AlgSp be a stack in categories for the fpgc topology (resp. for the fppf

topology).

(1) If the sheaves of homomorphisms Home(F,S) have diagonals which are
representable by algebraic spaces, then the pullback functor =* : C(Y) —
C(R, X)* is fully faithful.

(2) If the sheaves of isomorphisms IJsome(F,G) are representable by algebraic
spaces, then the pullback functor 7* : C(Y) — C(R, X)* is essentially surjec-
tive.

In particular if C is a stack in groupoids with representable diagonal, the functor
7 is an equivalence.

In Section B3]l many examples were given that satisfy the assumptions of the
Theorem.

DOCUMENTA MATHEMATICA 23 (2018) 1157-1196



THE COMPLEXITY OF A FLAT GROUPOID 1185

4.2.4 REMARK. This result is not really an alternative to faithfully flat de-
scent, but rather a refinement of it. Indeed, faithfully flat descent does provide
an answer to the question of the image of 7*: it is the particular case of our
theorem for the flat groupoid R; := X xy X = X whose stabilizer is triv-
ial. The category C(Ry,X) comprises objects with descent data, the latter
being isomorphisms on products X xy X with conditions on triple products
X Xy X xy X. However, it is often the case in concrete geometric situations
that there is a natural action of a group or groupoid R # R; such that it is
much easier to handle R-equivariant objects. In these situations, the functor
of points of the quotient Y = X/R is usually hard to describe, as well as the
square and the cube of X over Y, making C(Ry, X) less convenient.

PrOOF : The assumptions on € and 7 imply that effective descent along
holds in € ; in the fpqc case note that 7 is an fpqc covering since it is open
(B21) and faithfully flat, see e.g. Vistoli [Vi03, Prop. 2.35]. Since the map
jy 1 R = X xy X will come up repeatedly, we write simply j := jy.

(1) Let G1,52 € C(Y) and let (F1, ¢1), (F2, ¢2) € C(R, X)* be their pullbacks.
We must prove that the map:

Home(y) (91, G2) — Homeg, x)= ((F1, ¢1), (F2, ¢2))

is bijective. Injectivity is a consequence of the fact that 7 : X — Y is a covering
for the topology for which € is a stack, and the fact that Home(yy (91, 2) is a
separated presheaf. For surjectivity let f : (F1,¢1) = (F2, ¢2) be a morphism.
Let m1,m2 : X Xy X — X be the projections. By descent it is enough to prove
that 77 f = 75 f. By construction ¢; is the identity of ¢*%; for i = 1,2, where
q = ms = wt. Therefore s*f = t*f. Write H := Home(y)(91,92). We have a
commutative diagram:

R— i Xxy X

| I

H—2 s HxyH

where d := (7] f, 75 f). Since the diagonal A is assumed to be representable,
the fiber product

P:=H X(A7d)X Xy X

is representable and the map j factors through a map k: P — X xy X. Since
the groupoid has complexity at most 1, the map j is an effective epimorphism.
It follows by formal arguments that k& has the same property. Since k is a
pullback of the diagonal, it is also a monomorphism. Thus, k is an isomorphism,
and therefore 7} f = 75 f.

(2) Let (F,¢) € C(R, X)* be an R-equivariant object. Given that R X xx, x R
is isomorphic to X X (s 4) R via the map (p,¢) — (p¥ ™', %), the exact sequence
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for the effective epimorphism j is:

a .
Ex(syt)Rp:rgR;)X Xy X.

Here d is the composition X X, R Lid) R X R —° % R. Tt follows that
for all X xy X-algebraic spaces I, we have an exact diagram of sets:

. "
Hom(X xy X, I) —— Hom(R, I) == Hom(X x (. ;) R, I).

pPry

Let m1, 72 : X xy X — X be the projections, and let I = Isomx x, x (73 F, 77 F).
This is an algebraic space by assumption, so from the above we obtain an exact
diagram of sets:

” g
Isomy ., x (13F, 71 F) <= Isomp(s*F, t*F) —= Isomy x g (prh s*F, prj t*F).

*
pry

Here we use the identifications d*s*F ~ (sd)*F = (spry)*F ~ pri s*F which
need no further comment, and the similar identifications with s replaced by ¢
which require the observation that td = tpr, since source and target agree
on the stabilizer. Now consider the cocycle condition ¢*¢ = pr} ¢ o prj ¢ on
R x(44) R satisfied by the R-linearization ¢ : s*F — t*JF. Then after pullback
along a xid : ¥ X4y R — R X(44) R, and since the stabilizer acts trivially
on ¥, this becomes:

d*¢ = (apry)“¢opr; ¢ = prj ¢.

Therefore by exactness of the diagram of Isom sets, ¢ descends to an isomor-
phism ¢ : 75F = 77 F. To conclude, we use descent along the map 7 : X — Y.
For 1 to be a descent datum with respect to X — Y, it need only satisfy the
usual gluing condition:

(%) w3 = miath o maz1p

where 7;; : X xy X Xy X — X xy X are the projections. In order to prove
that this indeed holds, we consider the commutative diagram:

Rxsxi R—29 5 X xy X xy X

pry,prp,c T12,7T23,7713

R XXyX.

On pulling back the relation (x) by j x j we obtain the relation ¢*¢ = (prj ¢) o
(pr3 ¢) which holds by assumption. Since X — Y is flat, the morphism j x j is
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finite, surjective and schematically dominant, hence an epimorphism. Therefore
Condition (x) holds, hence by descent F is the pullback of an object § €
C(Y). O

4.2.5 THEOREM. Let C — AlgSp be one of the following stacks in categories:

(1) €, = Flat, the fppf stack whose objects over X are flat morphisms of
algebraic spaces X' — X.

(2) €y = Flat?®, the fpqc stack whose objects over X are quasi-affine flat mor-
phisms of algebraic spaces X' — X.

Let R = X be a flat, locally finitely presented groupoid space with finite
stabilizer ¥ — X and complexity at most 1. Assume that the quotient
m: X =Y = X/R is flat and locally of finite presentation if C = C1, and
flat if @ = Cy. Then the functor ™ : C(Y) — C(R, X)* is an equivalence.

Recall that an object (X’ — X) € €(X) is equivalent to a flat square morphism
of groupoids (R, X') — (R, X) (Lemmal.T4) and when (X’ —» X) =7*(Y’ —
Y), then Y’ = X'/R’. The essential surjectivity of 7* can thus be rephrased as:
the natural morphism X’ — (X’/R’) xy X is an isomorphism, and X'/R' — Y
is flat.

PRrROOF : Here the conditions on the representability of the diagonal of € fail
to hold, so we need different arguments. In order to prove full faithfulness let
W1, Wy be objects of C(Y') and (V1, ¢1), (Va, ¢2) the pullbacks to X. We prove
bijectivity of the map:

Home(y (Wi, Wa) — Home(g, x)= ((V1, ¢1), (V2, ¢2)).

Since Homy (W7, Ws) is a sheaf in the fpqc topology (this does not use flatness
of W; — Y), injectivity goes as in 2.3 For the surjectivity part let f :
(V1,¢1) — (Va,¢2) be a morphism, so s*f = ¢t*f. Since Homy (W7, W) is a
sheaf, it is enough to prove that 7} f = 73 f. We have commutative diagrams:

Vi xx R iy Vo xx R

Lo

V1 Xx(XXyX)—)‘/Q Xx(XXyX)

for ¢ = 1,2. From s*f = t*f it follows that j*n7f = j*m;f. Since the
left vertical map is the pullback of j along the flat map V3 — X, it is an
epimorphism. It then follows that = f = 7} f.

In order to show essential surjectivity let (V,¢) € C(R, X)*. Let V; = njV be
the pullbacks of V' — X along the projections m1,7m2 : X Xy X — X. When
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pulling back j along the flat morphism h: V; — X xy X, it remains an effective
epimorphism.

(S X R) —=j*Vi ——— W

| = | ok

Ex(si)R:;R;)X Xy X.

The morphism j*V; = s*V Oy = J*Va — Vo is h* (¥ X (44 R)-invariant,
so by effectivity we obtain a unique morphism ¢ : V; — V5. Similarly we
obtain a unique morphism y : V5 — V7. We claim that 1) and x are inverse
isomorphisms. Since j is a uniform epimorphism, in order to prove that the
X Xy X-morphism 4 o x is the identity it is enough to do it after pullback
along j. In this case it is clear since j*9 = ¢ and j*x = ¢~ !. Similarly we
prove that x o4 is the identity. One shows as in the end of the proof of [£.2.3]
that the isomorphism ¢ : 77V == 73V is a descent datum for V' with respect
tom: X — Y. The assumptions of the theorem imply that effective descent
along 7 holds in € so V' descends to a unique flat morphism W — Y. O

4.3 QUOTIENT BY A SUBGROUPOID

In this section we come to the quotient question from the introduction, i.e., the
construction of a quotient of a groupoid by a normal subgroupoid. Let us first
review some known cases where this construction is possible.

(1) If R = X is given by the action of a group space G and P = X is given
by a flat normal subgroup H. In this case the quotient groupoid Q = Y is the
action of G/H on X/H. More generally the quotient exists when R =2 X is a
local group action (i.e., it is given by a group action, fppf locally on X/R) and
P is a flat local normal subgroup action.

(2) If R = X is finite locally free and P is a normal open and closed sub-
groupoid; this is the Bootstrap Theorem of [KM97, 7.8].

(3) If P is included in the stabilizer; this is the process of rigidification

of [ACV03, §5.1] and [AOV0S, §A].

With suitable flatness assumptions, we shall provide another case in a different
direction: the quotient exists when P has complexity at most 1. We emphasize
that the existence of the quotients Y = X/P and @ = P\R/P appearing in
the statement is granted by 3211

4.3.1 THEOREM. Let R = X be a flat, locally finitely presented groupoid
of algebraic spaces. Let P = X be a flat, locally finitely presented normal
subgroupoid of R with finite stabilizer Xp — X and complezity at most 1.
Assume that the quotient X — Y = X/P is flat and locally finitely presented.
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Then there is a quotient groupoid Q = Y which is flat and locally finitely
presented, with Q = P\R/P. Moreover, the morphisms R — @ and Rxx R —
Q Xy Q are flat and locally finitely presented.

The rest of this subsection is devoted to the proof. We denote by s,t: R = X
and 0,7 : P = X the source and target maps of the groupoids, and by p : R —
@ and 7 : X — Y the quotient maps.

STEP 1. There exist flat locally finitely presented maps 5,Z : Q = Y and
commutative squares:

R—— X
5,t
Q .............. s Y

and p is flat. To prove this we start with the action of P on R by post-
composition. This action is free so there is a flat, locally finitely presented
quotient morphism ppest : R — P\R where P\R is an algebraic space. Since
s : R — X is invariant by the action of P, there is an induced faithfully flat
locally finitely presented morphism s’ : P\R — X. The map R X ,) P — R,
(o, p) = ap~! is equivariant for the action of P on the R-factors by postcom-
position. Using that the formation of the quotient ppos; : R — P\ R commutes
with the flat base change ¢ : P — X, we deduce that there is an induced
map (P\R) X(y,,y P — P\R. In this way we obtain a P-linearization on the
X-object P\R, as follows:

0*(P\R) = (P\R) X(y,0) P = 7*(P\R) = (P\R) X (s - P.
(a,0) — (™, 9)

We claim that because P is normal, the restriction of this P-linearization to
the stabilizer X p is trivial. In order to check this, we take advantage of the fact
that the space P\R is equal to the fppf quotient sheaf so locally (P\R)(T) =
P(T)\R(T). If o € Xp(T) and a € R(T), we have ¢ := app~ta™! € Xp(T) and
hence ap™! = ¢ in R(T) which is equal to o in (P\R)(T). This proves our
claim. Tt follows from case (1) of Theorem that s’ : P\R — X descends
to a faithfully flat locally finitely presented map s: Q1 — Y.

Similarly, considering the action of P on R by precomposition, we obtain a flat,
locally finitely presented quotient morphism pp.. : R — R/P, and a flat locally
finitely presented morphism ¢’ : R/P — X induced by ¢. The latter supports
a P-linearization with trivial stabilizer action and descends to a faithfully flat
locally finitely presented map ¢: Qs — Y.

Since the formation of the quotient X — Y commutes with flat base change,
we see that @)1 is the quotient of P\R by P acting by postcomposition and
that Q2 is the quotient of R/P by P acting by precomposition. Both quotients
are isomorphic since they enjoy the same universal property as @ = P\R/P.
So Q@ = Q1 = Q2 canonically and we obtain maps 5, : Q = Y. In this way
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we obtain also that p : R — @ is flat, being the composition of the flat map
Ppost : R — P\R and of the morphism P\R — @ which is a base change of the
flat map X — Y. We have thus produced the commutative diagrams

Ppost 4 Ppre t

R P\R—— X R R/P X
o \Lﬂ" O J/ﬂ' x‘ lﬂ/ O lfr

in which all maps are flat.

STEP 2. There exists a flat locally finitely presented map ¢ : Q xy @ — @ and
a commutative square:

Rxx R——R

QXYQ ....... c.. >Q

where p x p is flat. To prove this, note that there are three commuting ac-
tions of R on R Xx R: pre-composition («,3,7) : (o, 8) — (a, B7), post-
composition (v,a,8) : (a,8) — (ya, ) and middle-composition (a,~, ) :
(o, 8) = (ay,7~1B). The joint action of any two of these are free. The com-
position ¢ is equivariant with pre- and post-composition and invariant under
middle-composition.

Taking the quotient by post-composition under P, we obtain a flat morphism
¢ (P\R) X (¢4 R — P\R. Since s' : P\R — X is the pull-back of 5: Q = Y,
we can identify the source of ¢’ with @ Xz R. Middle-composition then
becomes post-composition on the second factor so ¢’ factors into two flat maps

’
C

Qx§,th—>QX§,EW’ P\R ” P\R

The map ¢” fits into the diagram

where the outer square also is cartesian, so ¢’ descends to a flat map ¢ as
indicated in the diagram (Theorem [£2.5). The map px p: RXxx R — Q Xy Q
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is flat, being the composition of the flat map R x x R — @ X z» P\ R (quotient
map of the free middle-post-composition) and the pull-back of the flat map .

STEP 3. Conclusion. It is easy to construct the mapseé: Y — Qand7: Q — @
fitting in commutative diagrams:

X —° 4R R—"—R
o U R B
Y oy Q Q oty Q.

We skip the details. From the fact that p: R - Q and pxp: Rxx R — QxyQ
are epimorphisms of algebraic spaces, it follows formally that the maps 5,7, ¢, €,7
are unique, that they give Q = Y the structure of a groupoid, and that the
map p : R — @ is a morphism of groupoids. Finally we can prove that the
groupoid Q = Y is a quotient of R = X by P. Let f: (R, X) — (R, X’) be
a morphism of groupoids such that P C ker(f). Then the map f: R — R’
is invariant by the pre-post-composition of P on R, hence it factors through a
map @ — R’. Similarly the map f: X — X’ is invariant by the action of P
hence it factors through a map Y — X’. That (Q,Y) — (R/, X’) is a morphism
of groupoids follows again from the fact that p and p x p are epimorphisms.

4.4 STACKY INTERPRETATIONS

Let R = X be a flat locally finitely presented groupoid in algebraic spaces and
let ¢ — AlgSp be a stack for the fppf topology. Then the category C(R, X) of
R-equivariant object is equivalent with the category of morphisms [X/R] — €
between stacks. A morphism ¢ : [X/R] — € corresponds to an object with
trivial 3-action if and only if the following equivalent conditions hold

(1) For every algebraic space T, object x € [X/R]|(T), and automorphism
T € Aut(x), the image o(7) is the identity on ¢(x).

(2) The induced morphism of inertia stacks Ip : I[X/R] — IC is trivial, i.e.,
factors through C.

(3) The morphism ¢ factors, up to equivalence, through the fppf-sheafification
[X/R] = 7o ([X/R)).

If R = X has finite inertia, then the coarse space [X/R] — X/R factors
through the fppf sheaf quotient mo[X/R] = (X/R)tppt and mo[X/R] — X/R is
an isomorphism if the action is free. Theorem [£.2.3] thus says that the functor

Hom(X/R, €) — Hom(mo[X/R], C)

is an equivalence of categories if R = X has complexity at most 1, X — X/R
is flat, and under certain assumptions on C, e.g., if € is a stack in groupoids
with representable diagonal.
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In the setting of Theorem 23] the category C(R,X) is equivalent to the
category of flat morphisms of algebraic stacks X’ — X = [X/R] that are repre-
sentable by algebraic spaces. The subcategory C(R, X)* consists of stabilizer-
preserving morphisms, i.e., those such that the induced morphism of inertia
stacks IX" — (IX) xx X’ is an isomorphism. Theorem 23] thus says that the
category of flat morphisms Y’ — Y = X/R is equivalent to the category of flat
stabilizer-preserving representable morphisms of algebraic stacks X' — X.

4.4.1 REMARK. It can be proved that case (2) of Theorem holds for
arbitrary flat morphisms X’ — X. Indeed, let X’ — X be the corresponding
stabilizer-preserving representable morphism of algebraic stacks. Then X’ also
has finite stabilizer and a coarse moduli space Y’ = X'/R’. It is enough to
show that the diagram

X —X

L]

Y —Y

is cartesian. This can be checked étale-locally on Y’ and Y, so we can assume
that Y and Y’ are affine. After further étale localization on Y, we can assume
that X = [X/R] where X — X is finite: this follows from the proof of the Keel-
Mori theorem Thm. 6.12]. Since X’ — X is representable, we obtain a
finite presentation X’ — X’ where X’ = X x X’'. It follows that X’ and X are
affine since X’ — Y’ and X — Y are affine Thm. 5.3]. Thus X' — X
is affine and case (2) of Theorem applies.

Finally, Theorem [£.3.1] can be described as follows using stacks. We have a
locally finitely presented flat morphism [X/P] — [X/R]. This gives rise to a
groupoid

[X/P] x(x/r) [X/P] —= [X/P]

with quotient [X/R]. That P C R is a normal subgroupoid implies that the
morphisms of the groupoid above are stabilizer-preserving. We can also make
the identification [X/P] x[x,g) [X/P] = [P\R/P]. By Theorem [L.2.3] we thus
obtain a cartesian diagram

[P\R/P| ==} [X/P] —— [X/R
| o | o]
Q =P\R/P == X/P —— [(X/P)/Q)

where the horizontal morphisms are flat and locally of finite presentation and
the vertical morphisms are (relative) coarse moduli spaces.
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4.5 A NON-FLAT COUNTER-EXAMPLE

We give an example that shows that Theorems [£.2.3] and 2.5 do not hold
when 7 : X — Y is not flat. The counter-example satisfies:

(1) X is an affine 1-dimensional scheme in characteristic p with an action of
G=Z/pZbut 7: X -Y = X/G is not flat.

(2) There is a torsion equivariant line bundle ¥ € Picf(X )* that does not
come from Pic(Y). In particular, Theorem .23 fails for the algebraic stacks
€ = Pic = BG,, and € = Pic, = Bp,,.

(3) There is a smooth morphism X’ — X that is not the pull-back of a smooth
morphism Y’ — Y. In particular, Theorem fails even for smooth mor-
phisms.

Let k be a field of characteristic p. Let X = Speck[e, z]/(¢?) and let Z/pZ act
via t.(e,z) = (e,z + te). Then Y = Spec kle, 2P, ex, ex?, ..., exP~1].

Consider the following Z/pZ-equivariant line bundle . on X: as a line bundle
it is trivial £ = Ox - e and it has the action t.e = (1 + te)e.

The stabilizer acts trivially on this line bundle. Indeed, the stabilizer ¥ of X is
given by the closed subscheme te = 0 of (Z/pZ) x X = Specklt, e, x]/(tP —t, €%).
The line bundle is not in the image of 7* : QCoh(Y) — QCoh®(X). Indeed,
since 7* has the right adjoint (m,—)%, it is enough to verify that the counit
(1. L)Y — £ is not an isomorphism. But an easy calculation gives that
(1 L)Y = (e)- L C Z.

In terms of algebraic stacks, the line bundle .Z corresponds to the morphism

[X/(Z/pZ)] = B(Z/pZ)s 2 By, — BGyp,

where S = Speckle]/(e?) and ¢: (Z/pZ)s — p, is the group homomor-
phism given by ¢ — (1 + ¢)! = 1 + te. Here the map between inertia stacks
I[X/(Z/pZ)] — IB(Z/pZ)s — IBp, is induced by

EN/OP —1) —  Kl[e,t]/(2,t? —t) —  kle,x,t]/(€*, 1P —t, te)
A — 1+ te — 1

so it factors through B,.

The line bundle corresponds to the smooth stabilizer-preserving G-equivariant
morphism X’ = Speckl[e, z,y]/(¢?) where the G-action is t.(e,z,y) = (e, 2 +
te,y + tey). This is not the pull-back of the morphism Y’ = X'/G — Y =
X/G. Indeed, a similar calculation as for the line bundle gives that Y’ =
Spec k[e, 2P, yP, ex'y’].
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