
Documenta Math. 1263

On the Quotients of the Maximal

Unramified 2-Extension of a Number Field

Christian Maire

Received: June 14, 2018

Revised: July 26, 2018

Communicated by Otmar Venjakob

Abstract. Let K be a totally imaginary number field. Denote by
Gur

K (2) the Galois group of the maximal unramified pro-2 extension
of K. By using cup-products in étale cohomology of SpecOK we study
situations where Gur

K (2) has no quotient of cohomological dimension 2.
For example, in the family of imaginary quadratic fields K, the group
Gur

K (2) almost never has a quotient of cohomological dimension 2 and
of maximal 2-rank. We also give a relation between this question and
that of the 4-rank of the class group of K, showing in particular that
when ordered by absolute value of the discriminant, more than 99%
of imaginary quadratic fields satisfy an alternative (but equivalent)
form of the unramified Fontaine-Mazur conjecture (at p = 2).
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1 Introduction

Let K be a number field. Given a prime number p, denote by Kur(p) the max-
imal unramified pro-p extension of K; put Gur

K (p) := Gal(Kur(p)/K). Here we
are interested in the quotients of Gur

K (p), more precisely in their cohomolog-
ical dimension, and in the comparison to their structure with those of p-adic
analytic groups, a question which is related to the unramified Fontaine-Mazur
conjecture.
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1.1 On the cohomological dimension

Let S be a finite set of places of K. Denote by KS(p) the maximal unramified
outside S pro-p extension of K; put GK,S = Gal(KS(p)/K). For p = 2 and
for a real archimedean place v not in S, we assume that v splits totally in
KS(p)/K. Hence, Kur(p) = K∅(p), Gur

K (p) = GK,∅(p), and by class field theory
the p-Sylow ClK of the class group of K is isomorphic to the abelianization of
Gur

K (p). When S contains the set Sp of all p-adic places, and when moreover
K is totally imaginary for p = 2, it has been known for a long time that the
cohomological dimension cd(GK,S(p)) of the groups GK,S(p) is at most 2 (See
for example [12], [24, Chapter X, §2], etc.). In the two last decades, various
results have completed this fact.
− First, when Sp ⊂ S, Schmidt in [29] completed the Galois cohomological
study of GK,S(p) at p = 2, proving in particular that if S contains a real place,
then the group GK,S(p) has some torsion (and then cd(GK,S(p)) = ∞).
− A short while later, Labute in [17] made a real breakthrough by giving some
examples of pro-p groups of cohomological dimension 2 when S∩Sp = ∅. Recall
that in this tame context, the cohomological dimension cd(GK,S(p)) of GK,S(p)
is always > 1 (when GK,S(p) is not trivial). Methods and ideas of Labute have
been extended by many authors: Labute-Mináč [18], Schmidt [28] [30], Vogel
[34], Forré [6], Gärtner [9], etc. Let us give probably the most complete result
known due to Schmidt [30]: Given a finite set T of places of K with T ∩Sp = ∅,
there exist infinitely many finite sets S of places of K with T ⊂ S and S∩Sp = ∅,
such that cd(GK,S(p)) = 2.

In this work, when p = 2, we propose to give some families of imaginary
quadratic number fields K for which Gur

K (2) has no quotient of cohomological
dimension 2 and large 2-rank.
The starting point comes from the fact that H3

et(SpecOK,F2) is not trivial.
Then we exploit a computation of cup-products in H3

et(SpecOK,F2) made by
Carlson and Schlank in [3], thanks to the relationship between cohomology of
number fields and étale cohomology (see the work of Mazur [23]).
We first prove that in the family of imaginary quadratic fields F−, there are
few fields K for which Gur

K (2) has a quotient G of maximal 2-rank and of
cohomological dimension 2, in particular, such that cd(Gur

K (2)) = 2. Indeed,
for X ≥ 2 denote by

F−
X := {K ∈ F−, |discK| ≤ X},

and

D−
X = {K ∈ F−

X , Gur
K (2) has no quotient G s.t. cd(G) = 2 & d2G = d2Gur

K (2)}.

Theorem 1. One has:

0 ≤ 1 − #D−
X

#F−
X

≤ C
log log X√

log X
,

where C is an absolute constant.

Documenta Mathematica 23 (2018) 1263–1290



Unramified 2-Extensions of a Number Field 1265

Next, we extend this result by using a bilinear form that appears in the study
of the 4-rank of the class group of number fields. Let us be more precise.
Let (xi)i=1,··· ,n be an F2-basis of H1(Gur

K (2),F2) ≃ H1
et(SpecOK,F2), and con-

sider the n × n-square matrix MK := (ai,j)i,j with coefficients in F2, where
the ai,j ’s are cup-products ai,j = xi ∪ xi ∪ xj , thanks to the fact that here
H3

et(SpecOK,F2) ≃ F2. As we will see, this is the Gram matrix of a certain
bilinear form defined, via the Artin symbol, on the Kummer radical of the 2-
elementary abelian maximal unramified extension Kur,2/K of K. We also will
see that for imaginary quadratic number fields, this matrix is often of large
rank.
For a profinite group G, as usual we denote by dpG := dimFp

H1(G,Fp) the
p-rank of G.

We can now present the second result of our work:

Theorem 2. Let K be a totally imaginary number field. Then the pro-2 group
Gur

K (2) has no quotient G for which cd(G) = 2 and d2G > d2ClK − 1
2 rk(MK).

Now the key fact is the following: by relating the matrix MK to a Rédei-matrix
type, and thanks to the work of Gerth [10] and Fouvry-Klüners [8], one can
also deduce some density information when K varies in F−. For n, d, X ≥ 0,
denote by

Fn,X := {K ∈ F−
X , d2ClK = n},

D(d)
n,X := {K ∈ Fn,X , Gur

K (2) has no quotient G s.t. cd(G) = 2 & d2G ≥ d},

and consider the limit:

D(d)
n := lim inf

X→+∞

#D(d)
n,X

#Fn,X
.

In the family of imaginary quadratic fields K where the 2-rank of the class

group is equal to n, the quantity D(d)
n measures the proportion of fields K for

which Gur
K (2) has no quotient G of cohomological dimension 2 and of 2-rank

d2G ≥ d.

Then [10] allows us to obtain the following densities:

Corollary i. One has:

(i) D(3)
5 ≥ .33129, D(4)

5 ≥ .99062, D(5)
5 ≥ .99999,

(ii) D(4)
6 ≥ .86718, D(5)

6 ≥ .99925, D(6)
6 ≥ 1 − 5.2 · 10−8.

Moreover, for large n, D(2+n/2)
n ≥ .99995.

To conclude, let us mention a general asymptotic estimate thanks to [8]. Put

D[i]
X := {K ∈ F−

X , Gur
K (2) has no quotient G s.t. cd(G) = 2 & d2G ≥ i+

d2ClK
2

}
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and

D[i] := lim inf
X→+∞

#D[i]
X

#F−
X

.

Our work allows us to obtain:

Corollary ii. One has:

D[1] ≥ .28878, D[2] ≥ 0.99471, and D[3] ≥ 1 − 9.7 · 10−8.

Remark. At this point, one should make three observations.
1) Perhaps for many K ∈ F3,X and F4,X , the pro-2 group Gur

K (2) is finite
but, by the Theorem of Golod-Shafarevich (see for example [16]), for every
K ∈ Fn,X , n ≥ 5, the pro-2 group Gur

K (2) is infinite.
2) In our work, it will appear that we have no information about the cohomo-
logical dimension of the quotients of Gur

K (2) for number fields K for which the

4-rank of the class group is large. Typically, in the estimates of D(∗)
i one keeps

out all the number fields having maximal 4-rank.
3) A part of the computation of [3] has been extended in [1] by Bleher, Chinburg,
Greenberg, Kakde, Pappas and Taylor, at all p and number fields K containing
µp.

1.2 On the unramified Fontaine-Mazur conjecture at p = 2

Now we also propose to give a relation between the unramified Fontaine-Mazur
conjecture (conjecture (5b) of [5]) and the matrix MK defined before. More
precisely, here we are interested in uniform quotients of Gur

K (p) (see section 2.2
for definition) which are related to the unramified Fontaine-Mazur conjecture
thanks to the following equivalent version:

Conjecture 1.1. Every uniform quotient G of Gur
K (p) is trivial.

Remark that Conjecture 1.1 can be rephrased as follows: the pro-p group
Gur

K (p) has no uniform quotient G of dimension d for all d > 0. As we will
see, the matrix MK dectects the 4-rank of the class group of K, and the 4-rank
is a first test for Conjecture 1.1. We also obtain:

Theorem 3. Let K/Q be a number field.

(i) Suppose that the 4-rank of the class group of K is at most 2. Then Con-
jecture 1.1 holds for K (at p = 2).

(ii) Suppose K is totally imaginary. Then the pro-2 group Gur
K (2) has no

uniform quotient of dimension d > d2ClK − rk(MK). In particular, Con-
jecture 1.1 holds (for Gur

K (2)) when rk(MK) ≥ d2ClK − 2.

Now as for the cohomological dimension, one can also deduce a general asymp-
totic estimate when K varies in the family F− (resp. F+) of imaginary (resp.
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Unramified 2-Extensions of a Number Field 1267

real) quadratic fields. For n, d, X ≥ 0, denote by F±
X := {K ∈ F±, |discK| ≤

X}. Put
FM±

X := {K ∈ F±
X , Conjecture 1.1 holds for K }

and

FM± := lim inf
X→+∞

#FM±
X

#F±
X

.

Corollary iii. One has

FM− ≥ .99471, and FM+ ≥ .99929.

This paper has five sections. In Section 2, we give the elementary tools con-
cerning the étale cohomology of number fields and p-adic analytic groups. In
section 3, we develop some basic facts about bilinear forms over F2, specially
for the form introduced in our study (which is defined on a certain Kummer
radical). In particular, we emphasize the role played by totally isotropic sub-
spaces. Section 4 is devoted to considerations of cohomological dimension.
After proving Theorem 1 and Theorem 2 we consider a relation with a Rédei
matrix that allows us to obtain density information. In Section 5, we consider
the unramified Fontaine-Mazur conjecture at p = 2 by showing the relation
with the bilinear form studied in the previous sections. We finish this section
by giving a computational approach of this conjecture.

Notations

• Let p be a prime number and let K be a number field. Denote by

− p∗ = (−1)(p−1)/2p, when p is odd;

− OK the ring of integers of K;

− ClK the p-Sylow of the class group of OK;

− dpClK the p-rank of ClK: it is the dimension over Fp of Fp ⊗ ClK;

− Kur(p) the maximal pro-p extension of K unramified everywhere. Put
Gur

K (p) := Gal(Kur(p)/K).

Recall that the group Gur
K (p) is a finitely presented pro-p group (due to Koch

[16]). See also for example [24, Chapter X, §7] or [11, Appendix]. Moreover
ClK is isomorphic to the abelianization of Gur

K (p). In particular it implies that
every open subgroup H of Gur

K (p) has finite abelianization: this property is
known as "FAb".

• If G is a finitely generated pro-p group, denote by

− Hi(G) := Hi(G,Fp), i ∈ Z≥0;

− dpG = dimFp
H1(G) the p-rank of G;
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− cd(G) the cohomological dimension of G: it is the smallest integer n ≥ 0
such that Hn+m(G) = {0}, ∀m > 0.
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2 Generalities

2.1 Cup-products and etale cohomology: what we need

Assume K is totally imaginary when p = 2, and put XK = SpecOK. We use the
formalism of étale cohomology Hi

et of the site XK that we can find for example
in [23] (see also for example [28], [29]). The Hochschild-Serre spectral sequence
gives for every i ≥ 1 a map

αi : Hi(Gur
K (p)) −→ Hi

et(XK),

where the coefficients are in Fp (meaning the constant sheaf for the étale site
XK). Remark that α1 is an isomorphism. As H1

et(XKur(p)) is trivial, one obtains
the long exact sequence (see for example [24, Chapter I, Proposition 1.6.7]):

H2(Gur
K (p)) →֒ H2

et(XK) −→ H2
et(XKur(p))

Gur
K (p) −→ H3(Gur

K (p)) −→ H3
et(Xk)

(1)

where H3
et(Xk) ≃ (µK,p)∨, here (µK,p)∨ is the Pontryagin dual of the group of

pth-roots of unity in K.
For the two next subsections, take p = 2.

2.1.1 Cup-products in H2
et

Recall a result concerning cup-products in H2.

Proposition 2.1. Let G be a finitely presented pro-2 group. Take x ∈ H1(G).
Then x lifts in H1(G,Z/4Z) if and only if, x ∪ x = 0 ∈ H2(G). In particular,
the cup-product H1(G) ⊗ H1(G) → H2(G) is alternating (x ∪ x = 0 for all
x ∈ H1(G)) if and only if, G/G4[G, G] ≃ (Z/4Z)n, where n = d2G.
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Proof. See for example [31, Chapter 1, §1.2].

Take x a non-trivial character of H1(Gur(p)) ≃ H1
et(XK). Put Kx =

(Kur)ker(x). Hence the previous proposition allows us to recover the follow-
ing corollary of Carlson and Schlank [3, Corollary 5.14]:

Corollary 2.2. The cup-product x ∪ x ∈ H2
et(XK) is trivial if and only, the

quadratic extension Kx/K embeds in an unramified degree 4 cyclic extension.

Proof. Indeed, as H2(Gur
K (2)) →֒ H2

et(XK), see (1), the cup-product x ∪ x
vanishes in H2(Gur

K (2)) if and only if, it vanishes in H2
et(XK). Then, apply

Proposition 2.1 to G = Gur
K (2).

Remark 2.3. It is not difficult to see that Corollary 2.2 allows us to obtain
the following equivalence (see [3]): x ∪ x = 0 ∈ H2

et(XK) if and only if, for all
h ∈ ClK[2], h is a norm in Kx/K. Here ClK[2] denotes the kernel of the map

ClK
h 7→h2

−→ ClK.

2.1.2 Cup-products in H3
et

Take x and y two non-trivial characters of H1(Gur(p)) ≃ H1
et(X). By Kummer

theory, there exist ax, ay ∈ K×/(K×)2 such that Kx = K(
√

ax) and Ky =
K(

√
ay). As the extension Ky/K is unramified, for every prime ideal p of OK,

the p-valuation vp(ay) is even, and then
√

(ay) is well-defined (as an ideal of
OK). Let us write

√

(ay) :=
∏

i

(py,i)
ey,i .

Denote by Ix the set of prime ideals p of OK such that p is inert in Kx/K (or
equivalently, Ix is the set of primes of K such that the Frobenius at p generates
Gal(Kx/K)). In [3, Proposition 3.3], Carlson and Schlank prove:

Proposition 2.4. The cup-product x ∪ x ∪ y ∈ H3
et(X) is non-zero if and only

if,
∑

py,i∈Ix

ey,i is odd.

Remark 2.5. The condition of Proposition 2.4 is equivalent to the triviality of

the Artin symbol

(

Kx/K
√

(ay)

)

.

2.2 Uniform pro-p groups: what we need

2.2.1

Let us recall the p-central descending series (Gi)i of a pro-p group G:

G1 = G, Gi+1 = Gp
i [Gi, G], i ≥ 1.

Let us give the definition of a uniform pro-p group (see for example [4, Chapter
4, §4.1]).
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Definition 2.6. Let G be a finitely generated pro-p group. We say that G is
uniform if:

(i) [G, G] ⊂ G2p, and

(ii) for i ≥ 1, [Gi+1 : Gi] = [G2 : G].

Remark 2.7. For a uniform group G, the p-rank of G coincides with the di-
mension of G (as p-adic manifold). See [4, Chapter 4 and 8].

The uniform pro-p groups play a central role in the study of analytic pro-p
groups, indeed:

Theorem 2.8 (Lazard [19]). Let G be a profinite group. Then G is p-adic
analytic i.e. G embeds as a closed subgroup of Glm(Zp) for some positive integer
m, if and only if, G contains an open uniform subgroup H.

For different equivalent definitions of p-adic analytic groups, see [4, Interlude
A]. See also [22].

2.2.2 Cohomology

Recall by Lazard [19] (see also [33] for an alternative proof):

Theorem 2.9 (Lazard). Let G be a uniform pro-p group (of dimension d > 0).
Then for all i ≥ 1, one has:

Hi(G) ≃
i∧

(H1(G)),

where here the exterior product is induced by the cup-product.

As consequence, one has immediately:

Corollary 2.10. Let G be a uniform pro-2 group of dimension d. Then for
all x ∈ H1(G), one has x ∪ x = 0 ∈ H2(G). In particular, Gab

։ (Z/4Z)d.

Proof. By Theorem 2.9, the cup-product form on H1(G) is alternating, then
apply Proposition 2.1.

Remark 2.11. For p > 2, Theorem 2.9 is an equivalence: a pro-p group G
is uniform if and only if, for i ≥ 1, Hi(G) ≃ ∧i(H1(G). (See [33, Corollary
5.1.7].)

Let us mention another consequence useful in our context:

Corollary 2.12. Let G be a FAb uniform pro-p group of dimension d > 0.
Then d ≥ 3.
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Proof. This is well-known. Let G be a uniform pro-p group of dimension d.
If dim G = 1, then G ≃ Zp (G is pro-p free) and, if dim G = 2, then by
Theorem 2.9, H2(G) ≃ Fp and then, by taking homology long exact sequence
of the exact sequence 1 −→ Zp −→ Zp −→ Fp −→ 1, one gets

· · · −→ H2(G,Fp) −→ Gab −→ Gab −→ Gab/p −→ 1

and then dp(Gab[p]) ≤ 1, and Gab
։ Zp. Hence, if we assume moreover that G

is FAb, then dim G should be at least 3.

2.2.3 Filtrations

Let us start with a finitely generated pro-p group G with its p-central descend-
ing series (Gi)i. Usually one has [Gi, Gj ] ⊂ Gi+j , but when p = 2 and when G
is uniform, let us give a refinement of this inclusion. To do this, we need the
following result (see [4, Chapter 3, Theorem 3.6]):

Proposition 2.13. When G is uniform, one has for i, k ≥ 1, Gi+k = Gpk

i .

Here as usual, for a pro-p group G, we note by Gpk

the subgroup of G generated
by the pk-powers. One can now deduce the following:

Corollary 2.14. Let G be an uniform pro-2 group. Then, for all i, j ≥ 1,
one has: [Gi, Gj ] ⊂ Gi+j+1.

Proof. We prove it by induction. When i = j = 1, [G, G] ⊂ G4 = G3, and
the statement holds. Suppose now that [Gi, Gj ] ⊂ Gi+j+1, and let us look at
[Gi+1, Gj ]. Let us apply Hall’s formula:

[xy, z] = y−1[x, z]y[x, z]−1[x, z][y, z] = [y, [x, z]−1][x, z][y, z],

to note that [xy, z] ∈ Gi+j+2 when [x, z] and [y, z] are in Gi+j+2. Moreover,
for x ∈ Gi and z ∈ Gj , one has [x, [x, z]−1] ∈ G2i+j+1 and [x, z]2 ∈ Gi+j+2, by
hypothesis. As [x2, z] = [x, [x, z]−1][x, z]2, one obtains [x2, z] ∈ Gi+j+2 when
x ∈ Gi and z ∈ Gj . One conludes thanks to the fact that Gi+1 = G2

i .

In [14], the authors show that when G is uniform of dimension d then

Gi/Gpi

i [Gi, Gi] ≃ (Z/piZ)d. In fact, for p = 2, one can say a little bit more:

Proposition 2.15. Let G be an uniform pro-2 group of dimension d. Then
for i ≥ 1, one has

Gi/G2i+1

i [Gi, Gi] ≃ (Z/2i+1)d.

When i = 1, it is an alternative proof to Corollary 2.10.

Proof. Let S = {g1, · · · , gd} be a set of generators of G. Then the elements

g2i−1

j , j = 1, · · · , d, generate the uniform group Gi. Let g ∈ S and suppose

that (g2i−1

)2i ∈ [Gi, Gi]. As [Gi, Gi] ⊂ G2i+1 by Corollary 2.14, one gets
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g22i−1 ∈ G2i+1. Now let us recall that z 7→ z22i−1

induces an isomorphism ϕi

between G/G2 and G2i/G2i+1 (see [4, Chapter 4, §4.1]). But as ϕi(g) = 0, one

has g = 0 which is a contraction. Hence, for j = 1, · · · , d, the element g2i−1

j is

of order at least 2i+1 in Gi/[Gi, Gi].

3 Bilinear form over the 2-elementary maximal unramified ex-

tension

3.1 Bilinear forms over F2

Let B be a bilinear form over an F2-vector space V of finite dimension. Denote
by n the dimension of V and by rk(B) the rank of B.

Definition 3.1. Given a bilinear form B, one defines the index ν(B) of B by

ν(B) := max
W ⊂V

{dim W, B(W, W ) = 0}.

One has:

Proposition 3.2. The index ν(B) of a bilinear form B is at most n − 1
2 rk(B).

Proof. Let W be a totally isotropic subspace of V of dimension i. Let us
complete a basis of W to a basis B of V. It is then easy to see that the Gram
matrix of B in B is of rank at most 2n − 2i.

This bound is in a certain sense optimal as we can achieve it in the symmetric
case.

Definition 3.3. (i) Given a ∈ F2. The bilinear form H(a) with matrix
(

a 1
1 0

)

is called a metabolic plane.

(ii) A symmetric bilinear form (V, B) is called alternating if B(x, x) = 0 for all
x ∈ V . Otherwise B is called nonalternating.

Recall the Witt decomposition Theorem for symmetric bilinear forms over F2

(see for example [15, Chapter I, §2, Remark 5 of Theorem 1]).

Theorem 3.4. Let (V, B) be a symmetric bilinear form of dimension n over
F2. Denote by r the rank of B. Write r = 2r0 + δ, with δ = 0 or 1, and r0 ∈ N.

(i) If B is nonalternating, then (V, B) is isometric to

r0
︷ ︸︸ ︷

H(1)⊥ · · · ⊥H(1) ⊥
δ
︷︸︸︷

〈1〉 ⊥
n−r

︷ ︸︸ ︷

〈0〉⊥ · · · ⊥〈0〉 ≃
r

︷ ︸︸ ︷

〈1〉⊥ · · · ⊥〈1〉 ⊥
n−r

︷ ︸︸ ︷

〈0〉⊥ · · · ⊥〈0〉;

(ii) If B is alternating, then B is isometric to

r0
︷ ︸︸ ︷

H(0)⊥ · · · ⊥H(0) ⊥
n−r

︷ ︸︸ ︷

〈0〉⊥ · · · ⊥〈0〉 .
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Moreover, ν(B) = n − r + r0 = n − r0 − δ.

When (V, B) is not necessary symmetric, let us introduce the symmetrization
Bsym of B by

Bsym(x, y) = B(x, y) + B(y, x), ∀x, y ∈ V.

One has:

Corollary 3.5. Let (V, B) be a bilinear form of dimension n over F2. Then

ν(B) ≥ n − ⌊1

2
rk(Bsym)⌋ − ⌊1

2
rk(B)⌋.

In particular, ν(B) ≥ min{n − 3
2 rk(B), 1

2 (n − rk(B)}.

Proof. It is easy. Let us start with a maximal totally isotropic subspace W
of (V, Bsym). Then B|W is symmetric: indeed, for any two x, y ∈ W, we get
0 = Bsym(x, y) = B(x, y) + B(y, x), and then B(x, y) = B(y, x) (recall that V is
defined over F2). Hence by Theorem 3.4, B|W has a totally isotropic subspace

of dimension ν(B|W) = dim W−⌊ 1
2 rk(B|W)⌋. As dim W = n−⌊ 1

2 rk(Bsym)⌋ (by
Theorem 3.4), one obtains the first assertion. For the second one, it is enough
to note that rk(Bsym) ≤ max{2rk(B), n}.

3.2 Bilinear form and Kummer radical

Let us start with a number field K. Denote by n the 2-rank of Gur
K (2), in other

words, n = d2ClK.

Let V = 〈a1, · · · , an〉(K×)2 ∈ K×/(K×)2 be the Kummer radical of the 2-
elementary abelian maximal unramified extension Kur,2/K. Then V is an F2-
vector space of dimension n. For a ∈ V , denote Ka := K(

√
a), and a(a) :=

√

(a) ∈ OK (see section 2.1.2). We can now introduce the bilinear form BK

that plays a central role in our work.

Definition 3.6. For a, b ∈ V , put:

BK(a, b) =

(
Ka/K

a(b)

)

· √
a

/

√
a ∈ F2,

where here we use the additive notation.

Of course, we have:

Lemma 3.7. The application BK : V × V → F2 is a bilinear form on V .

Proof. The linearity on the right comes from the linearity of the Artin symbol.
Let us show that BK is linear on the left. Take a1 6= a2 ∈ V, and let p be a
prime ideal of OK. Let us remark the following:
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• If p splits in Ka1/K and in Ka2 /K, then p splits in Ka1a2 /K;
• If p is inert in Ka1/K and in Ka2/K, then p splits in Ka1a2/K;
• If p is inert in Ka1/K but splits in Ka2/K, then p is inert in Ka1a2 /K.

Hence for each case one has

(
Ka1a2/K

p

)

=

(
Ka1/K

p

)

+

(
Ka2/K

p

)

, and we

conclude by using again the linearity of the Artin symbol.

The bilinear form BK is not necessarily symmetric, but we will give later some
situations where BK is symmetric.

Remark 3.8. Assume K is totally imaginary. If we denote by xi a generator
of H1(Gal(K(

√
ai)/K)), then the Gram matrix of the bilinear form BK in the

basis {a1(K×)2, · · · , an(K×)2} is exactly the matrix (xi ∪ xi ∪ xj)i,j of the cup-
products in H3

et(SpecOK). See Proposition 2.4 and Remark 2.5. Hence the
bilinear form BK coincides with the bilinear form Bet

K on H1
et(SpecOK) defined

by Bet
K (x, y) = x ∪ x ∪ y ∈ H3

et(SpecOK).

Recall that the right-radical (resp. left-radical) Radr (resp. Radl) of a bilinear
form B on V is the subspace defined by: Radr := {x ∈ V, B(V, x) = 0}
(resp. Radl := {x ∈ V, B(x, V ) = 0}. Of course one always has dim B =
rk(B) + dim(Radr) = rk(B) + dim(Radl). And, remark moreover that the
restriction of B at Radr (resp. Radl) produces a totally isotropic subspace
of V.

Let us come back to the bilinear form BK on the Kummer radical of Kur,2/K,
and let us give now three types of totally isotropic subspaces W that may
appear.

Proposition 3.9. Let W := 〈ε1, · · · , εr〉(K×)2 ⊂ V be an F2-subspace of di-
mension r, generated by some units εi ∈ O×

K . Then W ⊂ Radr, and thus
(V, BK) contains W as a totally isotropic subspace of dimension r.

Proof. Indeed, here a(εi) = OK for i = 1, · · · , r.

Proposition 3.10. Let K = k(
√

b) be a quadratic extension. Suppose that there
exist a1, · · · , ar ∈ k such that the extensions k(

√
ai)/k are independent and

unramified everywhere. Suppose moreover that b /∈ 〈a1, · · · , ar〉(k×)2. Then
W := 〈a1, · · · , ar〉(K×)2 is a totally isotropic subspace of dimension r.

Proof. Let p ⊂ Ok be a prime ideal of Ok. It is sufficient to prove that
(

Kai
/K

p

)

is trivial. Let us study all the possibilities.

• If p is inert in K/k, then as K(
√

ai)/K is unramified at p, p must split in

K(
√

ai)/K and then

(
Kai

/K

p

)

is trivial.

• If p = P2 is ramified in K/k, then

(
Kai

/K

p

)

=

(
Kai

/K

P

)2

is trivial.
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• If p = P1P2 splits, then obviously

(
Kai

/K

P1

)

=

(
Kai

/K

P2

)

, and then
(

Kai
/K

p

)

is trivial.

Proposition 3.11. Suppose K is totally imaginary. Let W :=
〈a1, · · · , ar〉(K×)2 ⊂ V be a subspace of V such that each quadratic ex-
tension K(

√
ai)/K, i = 1, · · · , r, embeds in an unramified degree 4 cyclic

extension. Then W ⊂ Radl.

Proof. Denote by xi a generator of H1(Gal(Kai
/K)). By Proposition 2.2, we

get xi ∪ xi = 0 ∈ H2
et(G

ur
K (2)), and then BK(ai, V ) = 0 by Remark 3.8.

It is then natural to define the index of K as follows:

Definition 3.12. The index ν(K) of K is the index of the bilinear form BK.

Of course, if the form BK is non-degenerate, one has: ν(K) ≤ 1
2 d2ClK. Thus

one says that ClK is non-degenerate if the form BK is non-degenerate.

To finish this part, let us give the relation with the 4-rank RK,4 of the class
group ClK defined as follows: RK,4 := dimF2 ClK[4]/ClK[2], where ClK[m] =
{c ∈ ClK, cm = 1}. One has immediately:

Proposition 3.13. Let K be a totally imaginary number field. Then RK,4 ≤
d2ClK − rk(BK).

Proof. Indeed, the subspace of characters of H1(Gur
K (2)) corresponding to the

unramified degree 4 cyclic extensions of K is a subspace of the left-radical of
BK (see Proposition 3.11), and then RK,4 ≤ dim Radl. To conclude, use the
fact that n = d2ClK = dim Radl + rk(BK).

Remark 3.14. Of course, Proposition 3.13 can be made more precise in many
cases. Typically, in the quadratic case thanks to the Rédei matrix (see Section
4.3.4). See also the generalization of Yue [36].

4 On the cohomological dimension

4.1 A first observation

For basic facts concerning the cohomological dimension of a pro-p group we
refer for example to [24, Chapter III].

Before developing a general setting, let us start with the following observation.
Let O×

Kur(p) be the group generated by the units of the ring of integers of

all subextensions F/K of Kur(p)/K. Let us recall the following result due to
Wingberg [35, Theorem 1.1] (see also [24, Chapter VIII, §8, Corollary 8.8.3]):
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Theorem 4.1 (Wingberg). There are canonical isomorphims:

Ĥi(Gur
K (p), O×

Kur(p)) ≃ Ĥ3−i(Gur
K (p),Z)∨,

for all i ∈ Z.

Hence, the exact sequence 0 −→ Z/pZ−→Q/Z
p−→ Q/Z −→ 0 allows us to

obtain:

H3(Gur
K (p),Fp) −→ Ĥ0(GK(p), O×

Kur(p))
p−→ Ĥ0(GK(p), O×

Kur(p))

By using the isomorphism Ĥ0(GK(p), O×
Kur(p)) ≃ lim

←

F

O×
K/NF/K(O×

F ), where F

runs through the finite extensions of K in Kur(p), we then have

H3(GK(p),Fp) ։
(

lim
←−

F

O×
K/NF/K(O×

F )
)
[p]. (2)

Take now p = 2. Thanks to (2), we note that if −1 is not a universal norm
(of a unit) in Kur(2)/K, then H3(G,F2) 6= {0}, showing that cd(Gur

K (2)) 6= 2.
This condition about −1 is sometimes not so difficult to test, indeed:

Proposition 4.2. Let K be an imaginary quadratic field such that the discrim-
inant discK of K is divisible by at least three odd primes pi, with pi ≡ 3(mod 4),
i = 1, 2, 3. Then cd(Gur

K (2)) 6= 2.

Proof. Put L = K(
√

p1p2) and K1 = Q(
√

p1p2). Then the biquadratic field L
is an unramified extension of K. As the extension L/K1 is ramified at the odd
prime p3, the fundamental unit of K1 is also the fundamental unit of O×

L . As
NK1/Qε = +1, one concludes that −1 is not an universel norm in Kur(2)/K.

4.2 General statement

The strategy here is more or less the one used in [3] to disprove the existence
of unramified embeddings. Here we apply their idea to disprove the apparence
of quotients of Gur

K (2) of cohomological dimension 2 in a more systematic way,
by using the bilinear form BK.

From now on we assume that K is totally imaginary (and that p = 2).
Suppose given G a quotient of Gur

K (2). Then one has H1(G) →֒ H1(Gur
K (2)).

Now take x, y ∈ H1(Gur
K (2)) coming from H1(G). Then, the cup-product

x∪x∪y ∈ H3(Gur
K (2)) comes from H3(G) by the inflation map. Now, one may

use the computation of Carlson-Schlank : if x ∪ x ∪ y is non-zero in H3
et(XK),

then H3(G) 6= 0, and then G is not of cohomological dimension 2.

Remark 4.3. If we want x ∪ x ∪ y 6= 0, then we need the cup-product x ∪ x
non-trivial in H2

et(XK), which is equivalent to the condition that Kx/K can not
be embedded in an unramified degree 4 cyclic extension of K.

Let us recall Theorem 2 (we use the notations of Section 3):
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Theorem 4.4. Let K/Q be a totally imaginary number field. Then Gur
K (2)

has no quotient G of cohomological dimension 2 and of 2-rank d2G > ν(K).
In particular, Gur

K (2) has no quotient G of cohomological dimension 2 and of
2-rank d2G > d2ClK − 1

2 rk(BK).

Proof. Let G be a non-trivial uniform quotient of Gur
K (2) of dimension d > 0.

Let W be the Kummer radical of H1(G)∨; here W is a subspace of the Kummer
radical V of Kur,2/K. As d > ν(K), the space W is not totally isotropic. Then,
one can find x, y ∈ H1(G) ⊂ H1(XK) such that x ∪ x ∪ y ∈ H3

et(XK) is not
zero (by Proposition 2.4). See also Remark 3.8. And thanks to the stategy
developed just before, we are done for the first part ot the theorem. For the
second part, one has just to note that in this case ν(K) ≤ d2ClK − 1

2 rk(BK) by
Proposition 3.2.

Corollary 4.5. If ClK is non-degenerate, then Gur
K (2) has no quotient G of

cohomological dimension 2 and of 2-rank d2G > 1
2 d2ClK.

Proof. In this case, rk(BK) = d2ClK

4.3 The imaginary quadratic case - Density estimations

4.3.1 A first density estimate

Let us give now a density estimate for imaginary quadratic fields. Recall that
we denote by F− the set of imaginary quadratic fields and by F−

X := {K ∈
F−, |discK| ≤ X}. Put also

D−
X = {K ∈ F−

X , Gur
K (2) has no quotient G s.t. d2G = d2Gur

K (2) & cd(G) = 2}.

Theorem 4.6 (Theorem 1). One has:

0 ≤ 1 − #D−
X

#F−
X

≤ C
log log X√

log X
,

where C is an absolute constant.

Proof. The proof is based on the two following things: (i) on an analytic esti-
mate; (ii) on our strategy and on a computation of [3]. Let us start the analytic
tools. For X ≥ 2, denote by

T −
X = {K ∈ F−

X , ∃ odd primes p 6= q, pq|discK,

(
p∗

q

)

= −1}.

Remark at this point that

{K ∈ F−
X , ∃ odd primes p 6= q, p ≡ q ≡ 3 (mod 4), pq|discK} ⊂ T −

X ;

indeed, by Legendre formula,

(
p∗

q

)(
q∗

p

)

= −1. Denote by E−
X the comple-

ment of T −
X in F−

X .
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Proposition 4.7. The set E−
X is of zero density. More precisely, one has

#E−
X = O

(

X
log log X√

log X

)

.

Proof. Note by Ei,X the set of square-free integers n ≤ X , having exactly i
prime factors ≡ 3 (mod 4), and put EX = E0,X ∪E1,X . Clearly, #E−

X = O(#EX).
We will use the following:

Lemma 4.8. Uniformly for X ≥ 2, one has

#E0,X = O
( X√

log X

)

.

Proof. Indeed, every integer n ∈ E0,X is a sum of two squares. A famous
result of Landau (see for example [21, Chapter 7, Theorem 7.28]) states that
the number of integers n ≤ X which are sum of two squares is asymptotic to

C′ X√
log X

, for some absolute positive C′.

We want to prove the bound

E1,X = O
(

X
log log X√

log X

)

(3)

uniformly for X ≥ 2, as a consequence of Lemma 4.8. Since we are searching
an upper bound, we may suppose that X = 2κ, where κ > 1 is an integer. We
start from the decomposion formula

#E1,X =
∑

p≡3(mod 4)

p≤X/2

#E0,X/p + O(π(X)).

Put Y = 2t with t = 1, 2, · · · , κ − 1 and split the above formula as

#E1,X =
∑

t

∑

Y/2<p≤Y

#E0,X/p + O
( X

log X

)
. (4)

We deduce from Lemma 4.8 that, uniformly for Y/2 < p ≤ Y and Y = 2t, and
0 ≤ t ≤ κ − 1, we have the bound

#E0,X/p = O
( X

Y
√

κ − t

)
,

and by Tchebychev’s bound we deduce

∑

Y/2<p≤Y

#E0,X/p = O
( X

t
√

κ − t

)
.
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Inserting this into (4), we obtain

#E1,X = O
(
X

∑

1≤t≤κ−1

1

t
√

κ − t

)
.

To evaluate the sum over t, we split it according to 1 ≤ t < κ/ log κ and
κ/ log κ ≤ t ≤ κ − 1 leading to

∑

1≤t≤κ−1

1

t
√

κ − t
= O

( 1√
κ

∑

1≤t≤κ

1

t
+

log κ

κ

∑

1≤u≤κ

1√
u

)
,

which gives (3), since κ = O(log X). This completes the proof of Proposi-
tion 4.7.

Now let us give the tool from étale cohomology.

Lemma 4.9. Let K/Q be an imaginary quadratic field. Suppose that there exist

two distinct odd prime numbers p and q such that pq|discK and

(
p∗

q

)

= −1.

Then there exist x, y ∈ H1(Gur
K (2)) such that x ∪ x ∪ y 6= 0 ∈ H3(Gur

K (2)).

Proof. Take Kx = K(
√

p∗) and Ky = K(
√

q∗). Then, by Proposition 2.4,
the cup-product x ∪ x ∪ y ∈ H3

et(X) is not trivial, and then non-trivial in
H3(Gur

K (2)).

We now finish the proof of Theorem 4.6. Take K ∈ T −
K , and let us consider

a quotient Gur
K (2) ։ G such that H1(Gur

K (2)) ≃ H1(G). But by Lemma 4.9,
there exists x, y ∈ H1(GK(2)) such that x ∪ x ∪ y 6= 0 ∈ H3

et(XK), and then
not trivial in H3(Gur

K (2)) and finally not trivial in H3(G). Hence, T −
X ⊂ D−

X ,
and #F−

X − #D−
X ≤ E−

X ; to conclude, let us recall the well-known estimate:

#F−
X =

3

π2
X + O(

√
X).

Now, we would like to extend this density estimate.

4.3.2 The context

Let us consider an imaginary quadratic field K = Q(
√

D), D ∈ Z<0 square-
free. Let p1, · · · , pk+1 be the odd prime numbers dividing D (we assume D 6=
−1, −2). Let us write the discriminant discK of K as: discK = p∗

0 · p∗
1 · · · p∗

k+1,
where p∗

0 ∈ {1, −4, ±8}. Denote by n the 2-rank of ClK:

− if 2 is unramified in K/Q, i.e. p∗
0 = 1, then n = k and V =< p∗

1, · · · , p∗
k >

(K×)2 ⊂ K× is the Kummer radical of Kur,2/K;

− is 2 is ramified in K/Q, i.e. p∗
0 = −4 or ±8, then n = k + 1 and V =<

p∗
1, · · · , p∗

k+1 > (K×)2 ⊂ K× is the Kummer radical of Kur,2/K.
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We denote by F = {p∗
1, · · · , p∗

n} the F2-basis of V , where here n = k or k + 1.

Lemma 4.10. (i) For p∗ 6= q∗ ∈ F , one has: BK(p∗, q∗) = 0 if and only if,
(

p∗

q

)

= 1.

(ii) For p|D, put Dp := D/p∗. Then for p∗ ∈ F , one has:

BK(p∗, p∗) :=

(
Dp

p

)

.

Proof. Obvious.

Hence the matrix of the bilinear form BK in the basis F is a square n × n
Rédei-matrix type MK = (mi,j)i,j , where

mi,j =







(
p∗

i

pj

)

if i 6= j,
(

Dpi

pi

)

if i = j.

Here as usual, one uses the additive notation (the 1’s are replaced by 0’s and
the −1’s by 1’s).

Example 4.11. Take K = Q(
√−4 · 3 · 5 · 7 · 13). This quadratic field has a

root discriminant |discK|1/2 ≈ 73.89, and the 2-rank of GK(2) is actually 4 but
we don’t know if Gur

K (2) is finite or not; see the recent works of Boston and
Wang [2]. Take F = {−3, −5, −7, −13}. Then the Gram matrix of BK in F is:

MK =







1 1 1 0
1 1 1 1
0 1 1 1
0 1 1 0







.

Hence rk(BK) = 3 and ν(K) ≤ 4− 3
2 = 2.5. By Theorem 5.1, one concludes that

Gur
K (2) has no quotient G of cohomological dimension 2 and 2-rank d2G ≥ 3.

By Corollay 3.5, remark that here one has ν(K) = 2.

4.3.3 Symmetric bilinear forms. Examples

Let us conserve the context of the previous section 4.3.2. Then, thanks to the
quadratic reciprocity law, one gets:

Proposition 4.12. The bilinear form BK : V × V → F2 is symmetric, if and
only if, there is at most one prime p ≡ 3( mod 4) dividing D.

Proof. Obvious.

Let us give some examples.

Example 4.13. Take k + 1 prime numbers p1, · · · , pk+1, such that
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• p1 ≡ · · · pk ≡ 1(mod 4) and pk+1 ≡ 3(mod 4);

• for 1 ≤ i < j ≤ k,

(
pi

pj

)

= 1;

• for i = 1, · · · , k,

(
pi

pk+1

)

= −1

Put K = Q(
√−p1 · · · pk+1). In this case the matrix of the bilinear form BK in

the basis (pi)1≤k is the identity matrix of dimension k × k and, ν(K) = ⌊ k
2 ⌋.

Hence, Gur
K (2) has no quotient G of cohomological dimension 2 and of 2-rank

d2G ≥ ⌊ k
2 ⌋ + 1.

Example 4.14. Take 2m + 1 prime numbers p1, · · · , p2m+1, such that

• p1 ≡ · · · p2m ≡ 1(mod 4) and p2m+1 ≡ 3(mod 4);

•
(

p1

p2

)

=

(
p3

p4

)

= · · · =

(
p2m−1

p2m

)

= −1;

• for the other indices 1 ≤ i < j ≤ 2m,

(
pi

pj

)

= 1;

• for i = 1, · · · , 2m,

(
pi

p2m+1

)

= −1

Put K = Q(
√−p1 · · · p2m+1). In this case the bilinear form BK is non-

degenerate and alternating, then isometric to

m
︷ ︸︸ ︷

H(0)⊥ · · · ⊥H(0). Hence, ν(K) =
m, and Gur

K (2) has no quotient of cohomological dimension 2 and of 2-rank at
least m + 1.

4.3.4 Relation with the 4-rank of the class group

The study of the 4-rank of the class group of quadratic number fields started
with the work of Rédei [26] (see also [27]). Since, then many authors have
contribued to its extensions, generalizations and applications. Let us cite an
article of Lemmermeyer [20] where one can find a large literature about the
question. See also a paper of Stevenhagen [32], and the work of Gerth [10] and
Fouvry-Klüners [8] concerning the density question.
Let us conserve the context and the notations of the section 4.3.2: here K =
Q(

√
D) is an imaginary quadratic field of discrimant discK, D ∈ Z<0 square-

free. Denote by {q1, · · · qn+1} the set of prime numbers that ramify in K/Q;
d2ClK = n. Here we can take qi = pi for 1 ≤ i ≤ n, and qn = pk+1 or qn = 2
following the ramification at 2. Then, consider the Rédei matrix M′

K = (mi,j)i,j

of size (n + 1) × (n + 1) with coefficients in F2, where

mi,j =







(
q∗

i

qj

)

if i 6= j,
(

Dqi

qi

)

if i = j.
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It is not difficult to see that the sum of the rows is zero, hence the rank of M′
K

is smaller than n.

Theorem 4.15 (Rédei). Let K be an imaginary quadratic number field. Then
RK,4 = d2ClK − rk(M′

K).

Remark 4.16. The strategy of Rédei is to construct for every couple (D1, D2)
"of second kind", a degree 4 cyclic unramified extension of K. Here to be of
second kind means that discK = D1D2, where Di are fundamental discrimi-

nants such that
(

D1

p2

)

=
(

D2

p1

)

= 1, for every prime pi|Di, i = 1, 2. And

clearly, this condition corresponds exactly to the existence of orthogonal sub-
spaces Wi of the Kummer radical V, i = 1, 2, generated by the p∗

i , for all pi|Di:
BK(W1, W2) = BK(W2, W1) = {0}. Such orthogonal subspaces allow us to con-
struct totally isotropic subspaces. And then, the larger the 4-rank of ClK, the
larger ν(K) must be (as noted by Proposition 3.2 and 3.13).

Consider now the matrix M′′
K obtained from M′

K after deleting the last row.
Remark here that MK (which is the Gram matrix of BK) is a submatrix of the
Rédei matrix M′′

K:

M′′
K =




 MK

∗
...
∗






Hence,
rk(BK) + 1 ≥ rk(M′

K) = rk(M′′
K) ≥ rk(BK).

Remark that in example 4.11, rk(BK) = 3 and rk(M′
K) = 4. But sometimes

one has rk(M′
K) = rk(Bk), as for example:

(A): when: p0 = 1 (the set of primes pi ≡ 3(mod 4) is odd);

(B): or, when BK is non-degenerate.

For situation (A), it suffices to note that the sum of the columns is zero (thanks
to the properties of the Legendre symbol).

4.3.5

From now on we follow the work of Gerth [10]. Recall that we denote by F−

the set of imaginary quadratic number fields, and for 0 ≤ r ≤ n and X ≥ 0,

F−
X =

{
K ∈ F−, |discK| ≤ X

}
,

Fn,X =
{

K ∈ F−
X , d2ClK = n

}
, Fn,r,X =

{
K ∈ Fn,X , RK,4 = r

}
.

Denote also
AX =

{
K ∈ F−

X , satisfying (A)
}

,

An,X =
{

K ∈ AX , d2ClK = n
}

, An,r,X =
{

K ∈ An,X , RK,4 = r
}

.

One has the following density theorem due to Gerth:
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Theorem 4.17 (Gerth [10]). The limits lim
X→∞

|An,r,X |
|An,X | and lim

X→∞

|Fn,r,X |
|Fn,X | exist

and are equal. Denote by dn,r this quantity. Then dn,r can be estimated and,

d∞,r := lim
n→∞

dn,r =
2−r2 ∏∞

k=1(1 − 2−k)
∏r

k=1(1 − 2−k)
.

Recall also the following quantities introduced at the beginning of our work:

D(d)
n,X := {K ∈ Fn,X , Gur

K (2) has no quotient G s.t. cd(G) = 2 & d2(G) ≥ d},

and consider the limit:

D(d)
n := lim inf

X→+∞

#D(d)
n,X

#Fn,X
.

After combining all our observations, we obtain (see also Corollary i):

Corollary 4.18. For n+1
2 ≤ d ≤ n, one has

D(d)
n ≥ dn,0 + dn,1 + · · · + dn,2d−n−1.

In particular:

(i) D(3)
5 ≥ .33129, D(4)

5 ≥ .99062, D(5)
5 ≥ .99999;

(ii) D(4)
6 ≥ .86718, D(5)

6 ≥ .99925, D(6)
6 ≥ 1 − 5.2 · 10−8;

Moreover, for large n, D(2+n/2)
n ≥ .99995.

Proof. As noted by Gerth in [10], the dominating set in the density compu-
tation is the set An,X of imaginary quadratric number fields K = Q(

√
D)

satisfying (A). But for K in An,X , one has rk(BK) = rk(MK) = n − RK,4.
Hence for K ∈ An,X,r, by Proposition 3.2

ν(K) ≤ n − 1

2

(
n − RK,4

)
=

1

2

(
n + RK,4

)
.

Hence Gur
K (2) has no quotient G of cohomological dimension 2 and 2-rank d

when RK,4 < 2d − n. In particular, when 2d − n ≥ 1, one has

D(d)
n ≥ dn,0 + dn,1 + · · · + dn,2d−n−1.

Now one uses the estimates of Gerth in [10], to obtain:

(i) D(3)
5 ≥ d5,0 ≈ .33129, D(4)

5 ≥ d5,0 + d5,1 + d5,2 ≈ .99062, D(5)
5 ≥ d5,0 +

d5,1 + d5,2 + d5,3 + d5,4 ≈ .99999,

(ii) D(4)
6 ≥ d6,0 + d6,1 ≈ .86718, D(5)

6 ≥ d6,0 + d6,1 + d6,2 + d6,3 ≈ .99925,

D(6)
6 ≥ 1 − d6,6 ≈ 1 − 5.2 · 10−8,
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For the last point, remark that D(2+n/2)
n ≥ dn,0 + dn,1 + dn,2, and use the fact

that lim
n→∞

dn,r = d∞,r.

In the spirit of the Cohen-Lenstra heuristics, the work of Gerth has been im-
proved by Fouvry-Klüners [7], [8]. This work allows us to give a more general
density estimation as announced in the Introduction. Recall

D[i]
X := {K ∈ FX , Gur

K (2) has no quotient G s.t. cd(G) = 2 & d2G ≥ i+
d2ClK

2
}

and

D[i] := lim inf
X→+∞

#D[i]
X

#F−
X

.

Our work allows us to obtain (see Corollary ii):

Corollary 4.19. For i ≥ 1, one has:

D[i] ≥ d∞,0 + d∞,1 + · · · + d∞,2i−2.

In particular,

D[1] ≥ .28878, D[2] ≥ .99471, and D[3] ≥ 1 − 9.7 · 10−8.

Proof. By Fouvry-Klüners [8], the density of imaginary quadratic fields for
which RK,4 = r, is equal to d∞,r. Recall that for K ∈ F−, one has rk(BK) ≥
rk(M′

K) − 1. Then thanks to Proposition 3.2 and Theorem 4.15, we get

ν(K) ≤ 1

2
d2ClK +

1

2
+

1

2
RK,4.

Putting this fact together with Theorem 4.4, we obtain that Gur
K (2) has no

quotient G of cohomological dimension 2 and 2-rank d2G > 1
2 d2ClK+ 1

2 + 1
2 RK,4.

Then for i ≥ 1, the proportion of the fields K in D[i] is at least the proportion
of K ∈ F− for which RK,4 < 2i − 1, hence at least d∞,0 + d∞,1 + · · · + d∞,2i−2

by [8]. To conclude:
D[1] ≥ d∞,0 ≈ .28878

D[2] ≥ d∞,0 + d∞,1 + d∞,2 ≈ .99471

D[3] ≥ d∞,0 + d∞,1 + d∞,2 + d∞,3 + d∞,4 ≈ 1 − 9.7 · 10−8.

5 On unramified 2-adic analytic extensions

5.1 General result

The unramified Fontaine-Mazur at p = 2 has a first evidence just by looking at
the 2-part of the class group and the matrix of the bilinear form BK. Indeed,
one has very easily:
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Theorem 5.1 (Theorem 3). Let K/Q be a number field.

(i) Suppose that the 4-rank of the class group of K is at most 2. Then Con-
jecture 1.1 holds for K (at p = 2).

(ii) Suppose K is totally imaginary. Then Gur
K (2) has no uniform quotient of

dimension d > d2ClK − rk(BK). In particular, Conjecture 1.1 holds for
K (and p = 2) when rk(BK) ≥ d2ClK − 2.

Proof. (i) Let G be a non-trivial uniform quotient of Gur
K (2) of dimension d.

By class field theory, the group G is FAb, and then by Corollary 2.12 the
dimension of G must verify d ≥ 3. Then by Proposition 2.15, Gab

։ (Z/4Z)3,
which implies RK,4 ≥ 3.
(ii) If G is a uniform quotient of Gur

K (2) of dimension d then RK,4 ≥ d, but by
Proposition 3.13, RK,4 ≤ d2ClK − rk(BK). For the second part, recall that as
G must be FAb then d ≥ 3.

Remark 5.2. One of the main draw backs of the bilinear form BK is the appear-
ance of totally isotropic subspaces (following Proposition 3.9 and Proposition
3.10). Here is a situation where such phenomena do not occur. Take a CM-
extension K/k such that

(i) the 2-rank of the class group of k in the narrow sense is odd and µK,2 =
{±1},

(ii) the extension K/k is unramified at every prime p|2.

Then there is no totally isotropic subspaces coming from units (see Proposition
3.9).

As consequence of Theorem 5.1, one can give some density estimates following
the work of Fouvry-Klueners. Recall also the following quantities introduced
at the beginning of our work: for n, d, X ≥ 0, denote by

F±
X := {K ∈ F±, |discK| ≤ X},

FM±
X := {K ∈ F±

X , Conjecture 1.1 holds for K},

and put

FM± := lim inf
X→+∞

#FM±
X

#F±
X

.

This work allows us to give a more general density estimation as announced in
the Introduction.

Corollary 5.3. One has

FM− ≥ d∞,0 + d∞,1 + d∞,2 ≈ .99471, and FM+ ≥ .99929.

Proof. It is a consequence of Theorem 5.1, and the work of Fouvry-Klueners [8].
See also [10] for the computation of the densities.
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5.2 Climbing in Gur
K (2)

Suppose that Gur
K (2) has a non-trivial uniform quotient G of dimension d > 1.

Let L/K be the subextension of Kur(2)/K with Galois group G. Consider the
p-central decending series (Gi)i of G, and for i ≥ 1, denote by Ki the fixed field
by the group Gi. Hence, K2 ⊂ K2,el. By Proposition 2.15,

Lemma 5.4. One has: ClK2 ։ (Z/8Z)d.

In particular, the 8-rank RK2,8 of ClK2 should be at least d. In fact, one can say
a little bit more. Indeed, by Chebotarev’s density theorem there exist prime
ideals p1, · · · , pd of OK such that the Frobenius gi of pi (with an obvious abuse

of notation) in L/K generate G. As G is uniform, the elements g2i−1

1 , . . . , g2i−1

d

generate the subgroups Gi, for all i ≥ 1. For i = 1, · · · , d, let us choose now
Pi ⊂ OK2 a prime ideal of K2 above pi. Then, as pi does not totally split
in K2/K, and thanks to the property of the global Frobenius, we get that the
Frobenius of the primes Pi in L/K2 (or a Gal(K2/K)-conjugate of it) is equal
to g2

i . These Frobenius elements generate the Galois group Gal(L/K2) which
is of p-rank d, and in particular, the class of Pi in ClK2 is of order at least 8 by
Lemma 5.4. This observation is then a new obstruction to test Conjecture 1.1.
Let us explain it with an example.

Example 5.5. Take K = Q(
√−2 · 31 · 41 · 113). Here ClK ≃ (Z/4Z)3. The

2-class group ClK of K is generated by the classes of the prime ideals p29,
p823, and p211: by Burnside’s lemma the Frobenius of these elements generate
Gur

K (2) (and then every 2-adic analytic quotient of Gur
K (2)). Note that here

K2 = K(
√

−31,
√

41,
√

113), and ClK2 ≃ (Z/16Z)3×(Z/8Z)2×Z/4Z×(Z/2Z)4.
One can also verify that, in ClK2 , the class of P29 is of order 16, the class of
P823 is of order 16, and the class of P211 is of order 4. Hence, thanks to the
prime number 211, Conjecture 1.1 holds for K.

To finish, let us look at the family of imaginary quadratic fields K for which
ClK ≃ (Z/4Z)3. For X ≥ 0, denote by

NX = {K ∈ F−
X , ClK ≃ (Z/4Z)3}.

By a result of Koch (see Hajir [13]), one knows that for each K ∈ NX , the
pro-2 group Gur

K (2) is infinite. Let us see the different tests for Conjecture 1.1.
Denote by F the unramified 2-elementary maximal extension of K.
(i) First, let us see the criteria concerning the 8-rank of ClF. When
X = 25 · 106, we find #NX = 459, and 7 number fields in NX are
such that RF,8 ≤ 2 (in fact = 2), where RF,8 denotes the 8-rank
of the class group of F. Here is the list of these fields: |discK| ∈
{9384952, 11577476, 13478584, 14524408, 17765944, 20167563, 21799304}.
Then, for these number fields, Conjecture 1.1 holds.

(ii) Now we will test the condition implying the Frobenius. First, remark that
one should exclude quickly some number fields. Let us be more precise. Take a
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set of generators {H1, · · · , Hr} of ClF[4]. One can assume that for i = 1, · · · , s,
the elements Hi are not in (ClF)2, and for i = s + 1, · · · , r, the elements Hi are
in (ClF)2. For i = 1, · · · , r, put hi = NF/KHi. Let us make an easy observation:

Proposition 5.6. Suppose that there exists a prime ideal p ∈ OK such that
clK(p) ∈ ClK − (ClK)2 and clF(P) ∈ ClF[4], where P|p, P ⊂ OF. Then there
exists i0 ∈ {1, · · · , s} such that hi0 6= 1.

Proof. It is a consequence of the fact that NF/KClF = (ClK)2.

Hence, the criteria above the Frobenius will give nothing when the elements
h1, · · · , hs are all trivial in ClK. And this condition is very easy to test thanks
to GP-Pari. As before, take X = 25 · 106; in NX , we find 37 number fields (out
of 459), for which we are guaranteed that the criteria with the Frobenius will
give nothing at the stage F.

For the rest, take X = 107; one has |NX | = 120. Now, we use the strategy
developped before. For every class h of ClK/Cl2K, take a prime ideal p ⊂ OK

that corresponds to h (typically the prime having the smallest norm). Then,
we look at the order the Frobenius of P|p in ClF. If this order is less than 4,
then Conjecture 1.1 holds. For 86 of these number fields, the computations
finish, and for 10 of these fields, the strategy concerning the Frobenius holds;
here is the list of these fields (with the prime):

(1148984, p211), (1316755, p109), (1466643, p1721), (1934859, p127),

(1972191, p197), (2585464, p43), (3388855, p151), (4200655, p1303),

(7089476, p953), (8139027, p1181).

Remark 5.7. It woud be interesting to develop in a systematic way the test im-
plying the Frobenius elements. For example, by studying the action of Gal(F/K)
on ClF.
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