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ABSTRACT. We give a conjectural description of the vanishing order
and leading Taylor coefficient of the Zeta function of a proper, regular
arithmetic scheme X at any integer n in terms of Weil-étale cohomol-
ogy complexes. This extends work of Lichtenbaum [65] and Geisser
[36] for X of characteristic p, of Lichtenbaum [66] for X = Spec(OF)
and n = 0 where F' is a number field, and of the second author for
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and Perrin-Riou [31] if X is smooth over Spec(Op), and hence that it
holds in cases where the Tamagawa number conjecture is known.
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1 INTRODUCTION

In [65], [66] and [67] Lichtenbaum introduced the idea of a Weil-étale coho-
mology theory in order to describe the vanishing order and leading Taylor
coefficient of the Zeta-function of an arithmetic scheme (i.e. a scheme sep-
arated and of finite type over Spec(Z)) at any integer argument s = n. In
[65] he defined a Weil-étale topos for any variety over a finite field and showed
that Weil-étale cohomology groups have the expected relationship to the Zeta
function of smooth, proper varieties at s = 0. Assuming the Tate conjecture,
Geisser extended this to smooth, proper varieties over finite fields and any
s =n € Z in [36], and to arbitrary varieties over finite fields and any n in [3§]
(also assuming resolution of singularities).

For schemes of characteristic 0, Lichtenbaum made the crucial first step in
[66] where he defined Weil-étale cohomology groups for X = Spec(Op), the
spectrum of the ring of integers in a number field F', and proved the expected
relationship to the Dedekind Zeta-function at s = 0 modulo a vanishing state-
ment for higher degree cohomology with Z-coefficients. Unfortunately this
cohomology was then shown to be nonvanishing in [25]. However, the coho-
mology with R-coefficients as defined by Lichtenbaum is correct in all degrees.
Encouraged by this fact we defined in [27] a Weil-étale topos for any regular,
proper, flat scheme X over Spec(Z) and showed again that the cohomology
with R-coefficients has the expected relationship to the vanishing order of the
Zeta-function at s = 0 (provided the Hasse-Weil L-functions of all motives
h'(Xgy) have the expected meromorphic continuation and functional equation).
Next, assuming finite generation of motivic cohomology of X', the second au-
thor gave in [72] a description of the leading coefficient at s = 0 in terms of
Weil-étale cohomology groups. The key idea of [72] was to define Weil-étale
cohomology complexes with Z-coefficients via (Artin-Verdier) duality rather
than as cohomology of a Weil-étale topos associated to X.

In the present article we pursue this idea further and define Weil-étale co-
homology complexes with Z(n)-coefficients for any n € Z, and we give their
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conjectural relation to the Zeta-function of X at s = n. As in [72] a key as-
sumption in this construction is finite generation of étale motivic cohomology
of X in a certain range. If X is smooth over the ring of integers of a number
field, we prove that our description is compatible with the Tamagawa num-
ber conjecture of Bloch-Kato [11] and Fontaine-Perrin-Riou [31], and hence
also with the analytic class number formula and the conjecture of Birch and
Swinnerton-Dyer. Besides [66], the only other work on Weil-étale cohomology
for arithmetic schemes of characteristic zero that we are aware of is [67] where
Lichtenbaum gives a description of the value of the Zeta-function of a 1-motive
modulo rational factors in terms of two sets of Weil-étale cohomology groups
("motivic" and "additive"). Our description is somewhat different from [67] in
cases where both apply although the two descriptions are of course equivalent.

1.1 STATEMENT OF THE MAIN CONJECTURE

For the remainder of this introduction X is a regular connected scheme of
dimension d, proper over Spec(Z) and n € Z is any integer. We assume that
X and n satisfy Conjectures AV (X, n), L(Xct,n), L(Xe,d — n), B(X,n)
and D, (X, n) below which we shall refer to as the "standard assumptions".
We construct two sets of cohomology complexes associated to X which we call
"Weil-étale" and "Weil-Arakelov" cohomology, respectively. More precisely, we
construct, a perfect complex of abelian groups

RTw..(X,Z(n))
and an exact triangle
RTaro(X,Z(n)) = RTar.o(X,R(n)) = RTar.o(X,R/Z(n)) — (1)

in the bounded derived category of locally compact abelian groups (see [45] for
precise definitions) with the following properties.

a) The groups HZ, (X, R(n)) are finite dimensional vector spaces over R for

all 7 and there is an exact sequence

D H (X R(0) S HAEL(XR(n) < (2)
In particular, the complex RI',; (X ,R(n)) has vanishing Euler charac-
teristic: _ _ B

> (=1)"dimg H}, (X, R(n)) = 0.

i€z

b) The groups H! .(X,R/Z(n)) are compact, commutative Lie groups for

ar,c
all 1.

Note here that the cohomology groups of a complex of locally compact abelian
groups carry an induced topology which however need not be locally compact.
Indeed, the groups H{ .(X,Z(n)) will not always be locally compact.

ar,c
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WEIL-ETALE COHOMOLOGY AND ZETA-VALUES 1429

The conjectural relation to the Zeta-function of X is given by the following two
statements.

c) The function (X, s) has a meromorphic continuation to s = n and

ords—p C(Xv S) = Z(il)z -4 - dimg H;r,c(‘)(v R(n))
iI€EZL

d) If ¢*(X,n) € R denotes the leading Taylor-coefficient of ((X,n) at s =n
then

¢ (m)~ = [T (voltti (2. R/Zm)))) 3)

€L

We explain the right hand side. There is no well defined measure on the
individual groups H}, .(X,R/Z(n)) but only on the entire complex, in the

following sense. One has an isomorphism of R-vector spaces

Hiy (X, Z(n))z = To Hy, (X, R/Z(n)), (4)

ar,c
where Ag := A ®z R and TG denotes the tangent space of a compact com-
mutative Lie group G. A Haar measure on G is given by a volume form, i.e.
a nonzero section s € detg TooG, up to sign. The volume of G with respect
to this measure equals |coker(exp)|u where exp : TooG — G is the exponential
map and pu € R>Y is such that detz(ker(exp)) = Z - us. One can extend the
tangent space functor T, to complexes of locally compact abelian groups (see
Remark 4.16) and the image of (1) under the tangent space functor identifies
with an exact triangle

RT(Xzar, LOY}7)r][—2] = RTa o(X,R(n)) = RUw.o(X,Z(n)g — (5)

in the derived category of R-vector spaces. We obtain an isomorphism

& detC Y Tog HE (X, R/Z(n)) 2deta RTar o(X, R(n)) ®g dety R (Xzar, LO3 )R
1EL

~dety ' RT(Xzar, LOZ2)r (6)

where the trivialization detg RT4; (X, R(n)) = R is induced by the exact se-

quence (2). Here RT'(Xzqr, LQ;’}Z) is derived deRham cohomology as defined

by Illusie [50] modulo the n-th step in its Hodge filtration. A generator of
the Z-line det; ' RT'(Xza,, LQ;’;Z), multiplied with a certain correction factor
C(X,n) € Q*, gives a unique section of (6), up to sign, which we view as a
"volume form" on the complex Rl (X, R/Z(n)). Now it turns out that the
isomorphism (4) is induced by an exact triangle

exp

RTw.o(X,Z(n)) = RUw.o(X,Z(n)g =2 RTaro(X,R/Z(n)) —  (7)
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and hence the volume, i.e. the right hand side, in (3) is the unique pu € R>? so
that

detz RUw,o(X, Z(n)) = p- C(X,n) - dety RT(Xzar, LOF))- (8)
This is an identity of invertible Z-submodules of the invertible R-module
detg RTy,o(X, Z(n))z = Q) detl V' To H, (X, R/Z(n))
€L
=dety ' RT(Xzar, LOY )R

At this point one can draw the connection to the Tamagawa number conjecture
of Fontaine and Perrin Riou [31]. At least if X — Spec(Op) is smooth proper
over a number ring it turns out that

A(Xg,n) :=detgRT'w,.(X,Z(n))g ®g detoRT (Xzqr, LQ;’;Z)

is the fundamental line of Fontaine and Perrin-Riou for the motive

2d—2

h(Xg)(n) = P h'(Xe)(n)[—4]

i=0
of the generic fibre of X with trivialization
Aot R = A(XQ, n)R (9)

induced by (5) and (2). An element y € R maps to A(Xgy,n) under this
trivialization if and only if it satisfies (8) up to factors in Q@Q*. One is then
naturally led to define an integral fundamental line

A(X/Z, TL) = detzRFWﬁ(X, Z(n)) KRz detzRF(XZar, LQX?Z)

which is attached to the entire arithmetic scheme X rather than to individual
motivic summands. Equation (3) is equivalent to the statement

Ao (CH(X,n)"E-C(X,n) - Z) = A(X/Z,n)

which no longer involves Weil-Arakelov groups. One could therefore completely
ignore the Weil-Arakelov groups for the purpose of making a special value
conjecture. They are still needed, however, to describe the vanishing order and
we believe they also give a more convincing geometric picture underlying the
Zeta function than the fundamental line by itself.

We make a few more remarks about our construction.

1.2 CONCERNING NOTATION

We use the notation RTay o(X,Z(n)), resp. RDw.(X,Z(n)), rather than
RYT(Xar, Z(n)), resp. RI.(Xw,Z(n)), since we do not define a topos (or an
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oo-topos, or a more general geometric object) Xy, resp. Xy, associated to
the scheme X whose compact support cohomology with appropriately defined
Z(n)-coeflicients gives rise to those complexes. In fact, even for X = Spec(Or)
and n = 0 this remains a major open problem and we do not know whether
to expect the existence of such a topos. It seems somewhat more likely that
the groups R (X, Z(n)) will be associated to some geometric object Xa,.
For example, one expects the existence of a class § € H(X,,, R) so that cup-
product with 6 produces the exact sequence (2) whereas our construction of
(2) will be entire ly formal.

Our choice of notation RT'w .(X,Z(n)) was motivated by the idea that "Weil-
étale" cohomology complexes should always be perfect complexes of abelian
groups.

The tilde in the notation R(n) goes back to the case n = 0 treated in [66]
and [27] where it is supposed to distinguish R with its Euclidean topology
from R with the discrete topology (as representing objects for sheaves in a
suitable Weil-étale topos). In the context of the present paper the notation
is meaningless. All we do in this paper is to construct Weil-étale and Weil-
Arakelov complexes directly by performing various mapping fibre constructions,
starting with RT' (X, Z(n)) (the étale hypercohomology of Bloch’s higher Chow
complex) and involving Artin-Verdier duality and the Beilinson regulator.
The "compact support" notation will hopefully become clearer in Remark 1.5
below.

1.3 VARIETIES OVER FINITE FIELDS

If X — Spec(F,) is smooth proper over a finite field, and n € Z is arbitrary,
one has isomorphisms

RTay o(X,Z(n)) =2 RT'w,(X,Z(n)) = RT'(Xw,Z(n))

where Ay is the Weil-étale topos associated to & by Lichtenbaum [65]. Our
standard assumptions L(X.:,n) and L(X.,d — n) imply the perfectness of
these complexes ("Tate conjecture") and one has an isomorphism

RTar o(X,R(n)) = RT 4 (X, Z(n)) @z R.

Assuming perfectness, properties a)-d) are all true since they are a straight-
forward reformulation of those proved by Milne, Lichtenbaum and Geisser (see
[36][Thm. 9.1]). In other words, finite generation of motivic cohomology is the
only unresolved issue in order for all statements outlined in section 1.1 to hold
true for smooth proper varieties over finite fields.

Under a resolution of singularities assumption, one also has an isomorphism

RTar o(X,Z(n)) =2 RT(Xw,Z(n)) =2 RT o(Xar, Z(n))

with the "arithmetic cohomology" groups defined by Geisser in [38], i.e. the
cohomology groups of the (large) Weil-eh site associated to X' [38][Cor. 5.5].
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So our notation is consistent with [38] even though we do not call our groups
"arithmetic" for reasons explained in Remark 1.5 below. Also note that the
purpose of [38] was to generalize Weil-étale cohomology from smooth proper
to arbitrary arithmetic schemes over F, whereas in this paper we generalize
from smooth proper schemes over F, to regular, proper schemes over Z. We
will have nothing to say about arithmetic schemes that are not regular or not
proper.

1.4 ON THE CORRECTION FACTOR C(X,n)

The use of derived rather than naive de Rham cohomology tends to simplify
the correction factor C(X,n), and we regard this as one of the truly new
discoveries of this project. One has C(X,n) =1 for n < 0 or if X is smooth
proper over a finite field by [73], and C(Spec(Or),n) = (n — 1)!71FU for a
number field F and n > 1 (see Prop. 5.34 below). The correction factor
would be |Dg[>~" - (n — 1)!"I*U for naive de Rham cohomology where Dp
is the discriminant. The precise definition of C'(X,n) in general is forced by
the compatibility of our conjecture with the Tamagawa number conjecture and
therefore involves p-adic Hodge theory.

1.5 ORIGIN OF THE TERMINOLOGY "WEIL-ARAKELOV"

For X regular, proper and flat over Spec(Z), any n € Z and F =
Z(n),R(n),R/Z(n) we shall also construct an exact triangle

RU o o(X,F) = RTop(X,F) = RDap(Xoo, F) —
as well as an exact triangle of perfect complexes of abelian groups
RTyw..(X,Z(n)) — RTw(X,Z(n)) = RUw(Xa, Z(n)) — .

Here one should think of X’ as the Artin-Verdier or Arakelov compactification
of X and X, as the fibre at infinity but, as in Remark 1.2 above, we shall
have nothing to say about actual geometric objects ?ar, ?W, Xoo,ar OF Xoo .
In the construction of RT'w (X, Z(n)) we do however make use of the classical
Artin-Verdier étale topos X [1] associated to X since it has the right duality
properties needed in this construction. Under our standard assumptions on
X, the complexes associated to X satisfy some remarkable duality properties.
There is an isomorphism of perfect complexes of abelian groups

RUyw (X, Z(n)) — RHomg(RTw (X, Z(d — n)), Z[—2d — 1))
a perfect duality of finite dimensional R-vector spaces
Hi (B, R(n)) x H2F (X R(d - n) - B2V (R R() =R (10)
for any i,n € Z and a Pontryagin duality of locally compact abelian groups

H (X, Z(n)) x HITH (X R/Z(d — n)) — HM (X, R/Z(d) ~ R/Z
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for any i,n € Z. One has an isomorphism
HZ'(X,R(n)) = CH"(X)r

with the Arakelov Chow groups defined by Gillet and Soule [41][3.3.3] and there
is also a close relation between H2"(X,Z(n)) and CH"(X) defined in [40][5.1]
(note that CH™(X)g does not denote CH"(X)®zR. The two groups CH"(X)
and CH™(X)g are rather Arakelov modifications of classical Chow groups with
7 and R-coefficients, respectively). The R-vector spaces H: (X,R(n)) vanish
for i # 2n,2n + 1 and one has an isomorphism

H2'(X,R(n)) 2% HZY (X, R(n)).

In this regard the spaces H’ (X,R(n)) behave completely analogous to the
Weil-étale cohomology spaces

for a smooth projective variety Y over a finite field. In fact, there are also ana-
logues of Grothendieck’s standard conjectures for H2"(X,R(n)) = CH"(X)g
in the literature [61]. Because of this relation to Arakelov theory we call
our groups Weil-Arakelov cohomology. Using the terminology "arithmetic"
would be confusing since arithmetic Chow groups as defined in [40] differ from
Arakelov Chow groups.

It is fairly easy to prove the analogue of c)

orde—n (X, 5) = > (—1)" i - dimg H., (X, R(n))
i€EL

for the completed Zeta-function

C(?v S) = C(Xv S)C(Xoo; 5)

of X provided that c) holds for {(X,s). Here ((Xw,s) is the usual product
of I'-functions. As far as we know this conjectural relation between C H"(X)g
and the pole order of the completed Zeta-function has not been noticed in
the literature. However, there is no statement d) for ((X,s) as the groups
H! (X,R/Z(n)) are in general only locally compact. This is somewhat consis-
tent with the fact that there are no special value conjectures for the completed

Zeta-function in the literature.

1.6 THE EXAMPLE X = Spec(Op)

We refer the reader to section 5.8 below for computations of Weil-Arakelov and
Weil-étale cohomology groups in the case X = Spec(Op). In this introduction
we shall now just record the analogue of the analytic class number formula that
we obtain by making statement (3) explicit.
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It has been well understood since the work of Borel in the 1970’s that the
higher algebraic K-groups Ks,—1(Op) and Ks,_2(Of) govern the behaviour
of the Dedekind Zeta function (r(s) at s = n in a way similar to the role played
by K1(Or) = OF and Ko(OF)ior = Pic(OF) in the analytic class number for-
mula. A precise higher analogue of the class number formula was implicit in
the Tamagawa number conjecture of Bloch and Kato [11] but has not been
written down explicitly. In order to do this we first replace Ks,—1(Of) and
Ko,—2(OF) by motivic cohomology H'(Xe,Z(n)) and H?(X.,Z(n)), respec-
tively (the difference only amounts to 2-primary groups). We then consider the
Beilinson regulator map

B
H'(Xet, Z(n)) = Hp(X)p, R(n)) = [ [ H(F,, (27i)"'R)
v|oco
which is known to induce isomorphisms
H'(Xer, Z(n))z = [ HO(Fo, 7)) 'R),  HY(Xer, Z(1)z = ([[ R)™°
v]oo v|oco
for n > 1 and n = 1, respectively. For n > 1 we set
B o= |H2(Xet, Z(n))], W 1= [H (Xt Z))iorls R = vol(coker(o?))

where the volume is taken with respect to the Z-structure
[1,jo0 HO(Fy, 270)" ' Z), resp.  ([],100 Z)™=°, of the target. For n < 0
the identity (3) is then equivalent to

Ch(n) = iw (11)

W1—n
and for n > 1 the identity (3) is equivalent to
2T1~(—1)"71(27T)[F:Q]‘n—T2+7‘1~(((—1)"—1)/2)han

wy, - |[Dp|"~t /| Dp|

where 71 and ro denote the number of real and complex places of the number

field F. For n > 1 the complex RF(XZM,LQ;’;Z) is quasi-isomorphic to a

(p(n) = (n— 117

(12)

complex

RF(XZIIT) LQ(<9F/Z) = (OF S QOF/Z(n))
where Qp,./z(n) is a certain finite abelian group of order |Dp|"~!, equal to
Kaehler differentials for n = 2. There is a spectral sequence [68] from derived
de Rham cohomology to cyclic homology, an additive analogue of algebraic
K-theory, and this spectral sequence degenerates to give isomorphisms

d(n
K39 (Op) = HCop_o(Op |7) = ker (oF 2, 9o, /Z(n)>

d(n
Kggd_Q(OF) = HCang(OF/Z) =~ coker (OF ‘(.)_> QOF/Z(R)) .
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One can therefore rewrite the term |Dp|"~!\/|Dp| in (12) as

DD = R

where R := covol(K$4?,(OF)) and h%% := |K$9,(OF)|. One can further
speculate that there is a modified additive K-group K3 ,(Op) = (n — 1)!-
K$9 (Op) C O which would explain the correction factor (n — 1)!=17:@ but
we have no idea how to define K$,(OFp)’ in a natural way.

Finally, the analytic class number formula and known cases of the Tamagawa

number conjecture give the following theorem.

ProposITION 1.1. FEquations (11) and (12) hold for n = 0,1 if F is arbitrary
and for any n € Z if F/Q is abelian.

1.7 OUTLINE OF THE PAPER

In section 2 we give a formulation of Beilinson’s conjectures for arithmetic
schemes rather than motives over (. This also has been done independently
by Scholbach [83]. Our definition of motivic cohomology throughout the paper
will be via (étale hypercohomology of) Bloch’s higher Chow complex [8]. Our
formulation of Beilinson’s conjectures will be a simple duality statement, Con-
jecture B(X,n), which includes finite dimensionality of motivic cohomology
tensored with R.

In section 3 we construct the Weil-étale cohomology complexes following the
model of [72]. We state a finite generation assumption on étale motivic co-
homology, Conjecture L(X ., n), which will play a key role in the rest of the
paper. We need one further assumption, Conjecture AV (X, n), which con-
cerns Artin-Verdier-duality for motivic cohomology with torsion coefficients
and is known in many more cases than either L(X ., n) or B(X,n).

In section 4 we construct the Weil-Arakelov cohomology complexes without
any further assumption.

In section 5 we define the correction factor C'(X,n) and formulate our conjec-
tures on the vanishing order and leading Taylor coefficient of the Zeta function.
The rational number C (X, n) is defined as a product of its p-primary parts and
for each prime p we need one further assumption, Conjecture D, (X, n), which
relates p-adically completed motivic cohomology of Az, with de Rham cohomol-
ogy of Ap, and p-adically completed motivic cohomology of &f,. For smooth
schemes and n < p — 1 such a description follows from the relation between
syntomic and motivic cohomology proved by Geisser [37]. For general regular
X we expect a similar relationship and we isolate in App. B the results in
p-adic Hodge theory which would be needed to prove D, (X, n) in general. In
view of recent progress in the theory of syntomic cohomology ([76], [17], [22])
these results hold for smooth schemes and might be within reach for semistable
schemes. In subsection 5.6 we prove that our conjecture is equivalent to the
Tamagawa number conjecture of Bloch, Kato, Fontaine, Perrin-Riou for all
primes p if X’ is smooth over the ring of integers in a number field. This proof
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also draws on the results of App. B. In subsection 5.8 we discuss in detail the
case X = Spec(Op) for a number field F'. -
In App. A we discuss in detail the Artin-Verdier étale topos X.; associated

to X, we construct motivic complexes Z(n)* on X for any n € Z and we
prove conjecture AV (X.;,n) in many cases. The main novelty is a complete
discussion of 2-primary parts.

In App. B. we outline the expected relation between p-adically completed
motivic cohomology and syntomic cohomology for regular X and we discuss
the motivic decomposition of p-adically completed motivic cohomology.
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helpful discussions related to this paper. The first author also acknowledges

support from the Simons foundation which enabled this collaboration. The
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2  MOTIVIC COHOMOLOGY OF PROPER REGULAR SCHEMES AND THE BEILIN-
SON CONJECTURES

Throughout this section X denotes a regular scheme of dimension d, proper
over Spec(Z). For any complex of abelian groups A we set Ag := A ®z R.

2.1 THE BEILINSON REGULATOR ON THE LEVEL OF COMPLEXES
We consider Bloch’s higher Chow complex [8]
Z(n) = z"(—,2n — *)

which is in fact a complex of sheaves in the étale topology on X. The first
construction of a map of complexes

2"(X,2n — %) — RI'p(X/p,R(n)) (13)
inducing the Beilinson regulator map
CH™(X,i) — Hp' ™" (X, R(n))
was given by Goncharov in [42] and [43]. This was refined to a map of complexes
2"(X,2n — %) — RI'p (X, Z(n)) (14)

in [58] and, building on this construction, the thesis of Fan [23] gives a map of

complexes
RI'(Xet, Z(n)) — RUp(X)r, Z(n)). (15)

The mapping fibre of this map will play a role in the construction of
R4 (X, Z(n)) in section 4.4 and the mapping fibre of the composite map

RI'(Xet, Z(n)) — RU'p(X)r, Z(n)) — RI'(Gr, X(C), (27i)"Z) (16)
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in the construction of RT'w (X, Z(n)) in section 3.8. For the remainder of this
section we shall only consider the hypercohomology of Z(n)

RU(X,R(n)) := RT'(Xu, Z(n))g = RT(Xzar, Z(n))r

tensored with R. By definition RT'(X,R(n)) = 0 for n < 0. We denote by
RT'.(X,R(n)) the mapping fibre of the Beilinson regulator map so that there
is an exact triangle of complexes of R-vector spaces

RT.(X,R(n)) — RT(X,R(n)) — RU'p (X, R(n)) — . (17)

Recall that for any n € Z Deligne cohomology is defined as the Ggr-equivariant
cohomology of the complex

of Gr-equivariant sheaves on the Gg-space X(C), where R(n) is the constant
Gr-equivariant sheaf R(n) := (277)" - R. So we have

RTp (X, R(n)) := RI(Gg, X(C),R(n)p) = RI(X(C),R(n)p)“*.
For n < 0 we have RT'(X,R(n))) = 0 and
RT.(X,R(n))) = RU'p(X/e, R(n))[~1] = R (X(C), R(n))“*[1].

The mapping fibre of the Beilinson regulator to real Deligne cohomology (usu-
ally without tensoring the source with R) has been denoted "Arakelov motivic
cohomology" in [43], [46], and a slightly modified mapping fibre yields the
"higher arithmetic Chow groups" of [13] which generalize the arithmetic Chow
groups of [40].

2.2 THE BEILINSON CONJECTURES AND ARITHMETIC DUALITY WITH R-
COEFFICIENTS

The purpose of this subsection is to give a uniform statement (for the cen-
tral, the near central and the other points) of Beilinson’s conjectures relating
motivic to Deligne cohomology, including non-degeneracy of a height pairing.
Our statement, Conjecture B(X,n) below, has the form of a simple duality
between motivic cohomology with R-coefficients and Arakelov motivic coho-
mology with R-coefficients. Such a formulation of Beilinson’s conjectures is
implicit in the six term sequence of Fontaine and Perrin-Riou [31][Prop. 3.2.5].
However, both the original Beilinson conjectures [81] and [31] work with mo-
tives over Q rather than arithmetic schemes. The origin of his subsection is
an unpublished note of the first author from the early 1990’s transposing the
ideas of [31] to arithmetic schemes. Meanwhile, a formulation of Beilinson’s
conjectures as a duality theorem for objects in the triangulated category of
motives DM (Spec(Z)) (which includes arithmetic schemes but also the inter-
mediate extension of motives over Q if one assumes the existence of a motivic
t-structure) has been given by Scholbach in [83].
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ProPOSITION 2.1. For n,m € Z there is a product
RD(X,R(n)) ®" RTe(X,R(m)) — RTc(X,R(n +m)) (18)
in the derived category of R-vector spaces.

Proof. For the (regular) arithmetic scheme f : X — Spec(Z), a spectral
sequence from H®(Spec(Z)zar, f+zi—n(—,®)) to algebraic K-groups was con-
structed by Levine in [64][(8.8)] and it was shown to degenerate after ®Q in
[63][Thm. 11.8]. This gives isomorphisms

H' (Xet, Zn))o = H'(Xzar, 2U(n))g & H'(Spec(Z) zar, frza-n(—, )0 = Kan—i(X)g"
where the second isomorphism is [37][Cor.3.3 b)]. By [15][Cor. 14.2.14] there
is an isomorphism

Koo X)) = Hompagg (2)(Q(0), @n)fil) = Homs (), (5% He,x (n)i])

where DMgp(X), resp. SH(X)q, is the triangulated category of mixed mo-
tives, resp. Q-linear stable homotopy category defined by Cisinski and Deglise,
resp. Morel-Voevodsky. Now note that SH(X)q is naturally enriched over the
derived category of Q-vector spaces and hence we get an isomorphism

RF(XenZ(”))Q = RHomSH(X)@(Sov HB,X(”))
and a similar R-linear variant
RI'(X,R(n)) = RHomgp(x), (5%, He,x r(n)).

The spectrum Hp x g is a strict ring spectrum and in [46][Def. 4.1, Rem. 4.6]
an exact triangle
Hgxgr — Hexr 2 Hp —

in SH(X)r was constructed, where Hp is a ring spectrum representing real
Deligne cohomology and p induces the Beilinson regulator [84][Thm. 5.7]. This
gives an isomorphism

RT.(X,R(n)) = RHomgpx), (S, Hp,x r(n)).

The map p is a map of ring spectra which implies that fIB7 X R acquires a
structure of Hp x r-module spectrum [46][Thm. 4.2 (ii)]. The product map

Hp x r(n) A HB,X,]R(m) — HB,X,}R(TL +m)
induces a map
[S°, He x r(n)]@" [S°, He x r(m)] — [S°AS°, He x r(n+m)] = [S°, Hg x x(n+m)]
where we have written
[S°, A] := RHomgp(x), (S, A)
for brevity. In view of the isomorphisms RU(X,R(n)) = [S° Hp,xr(n)] and
RT.(X,R(m))) = [S°, Hp x r(m)] we obtain the product (18). O
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REMARK 2.2. The construction of the product on RT(X,R(n)) makes use of
the elaborate formalism of [15], in particular the representability of algebraic K-
theory by a ring spectrum in SH. We are not aware of a direct construction of a
product on higher Chow complexes (even tensored with Q), unless X is smooth
over a number ring or a finite field [63]. In order to appreciate the amount of
detail hidden in the short proof of Prop. 2.1 the reader may want to look at the
construction of a product structure in [13] on the mapping fibre of the Beilinson
regqulator from the higher Chow complex of the (smooth, proper) generic fibre
Xg to real Deligne cohomology. Both [13] and [46] use a representative of
the real Deligne complex by differential forms due to Burgos Gil [12] which is
quite different from the complex in terms of currents used by Goncharov in
(18), and also in (14) and (15). It remains an open problem to construct a
RT'(Xet, Z(n))-module structure on the mapping fibre of (15).

LEMMA 2.3. a) One has
Hp ' (Xr,R(d)) = HI(X,R(d)) = 0
for i > 2d and there is a commutative diagram

Hy'™ (X, R(d)) —— HZ'(X,R(d))

l l

R —_— R
b) For any i,n € Z the product on Deligne cohomology
Hp(Xe.R(n)) x Hp'™'7(Xe,R(d —n)) — H' " (X)z,R(d)) — R
induces a perfect duality, i.e. an isomorphism
Hp (g, R(n)) = Hp' ™' (g, R(d = n))” (19)
where (—)* denotes the dual R-vector space.

Proof. In this proof we write Hj(X,c,R(n)) for H'(X(C),R(n)p). From the
long exact sequence

H'™1(X(C),C)/F* — Hp(X;c, R(d)) = H'(X(C),R(d))

we find Hj(X/c,R(d)) = 0 and hence H,(X/g,R(d)) =0 for i > 2d — 1. From
the long exact sequence

Hy 'YX, R(d)) = H{(X,R(d)) = H'(X,R(d))

and Hi(X,R(d)) C Kaq_i(X)Y = 0 for i > 2d we get Hi(X,R(d)) = 0 for
i > 2d. For i = 2d we find H'(X,R(d)) = CHY(X)g = 0, using the finiteness
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of CHY(X) due to Kato and Saito [55]. So H24(X,R(d)) is the cokernel of the
regulator map from Kl(X)]%d) to
Hy' ™ (X/z, R(d) = (H*'72(X(C),C)/F)* = H*72(X(C),C)T = R¥=

where S, is the set of archimedean places of the étale Q-algebra L :=
H°(X,0x)q and the last isomorphism is induced by the cycle classes of points
in H24=D(X(C),C). In particular, we get a canonical map to R given by the
sum on RS>, On the other hand from the Gersten-Quillen spectral sequence
with weights [87][Th. 4(iii))] the group K;(X)® is generated by

Byt =ker | J] k@)= ][] z

zeXxd—1 zeXd

and the regulator is induced by the usual Dirichlet unit regulator on L composed
with N,/ (if 2 € & survives in the generic fibre of X'). So the image of the
regulator on K1 (&)@ lies in the subspace {(z,) € RS=|>" z, = 0} and the
sum map induces a map from the cokernel H2¢(X ,R(d)) to R.

For part b) we first prove the following Lemma.

LEMMA 2.4. For any n € Z the natural map
H'(X(C),R(n)) — H'(X(C),C)/F" (20)
is injective for i < 2n — 1 and surjective for i > 2n — 1.
Proof. (see also [81][§2] for the injectivity). We can write
H'(X(C),C) = H'(X(C),R(n)) ® H'(X(C),R(n — 1)) (21)

and this is the decomposition of H*(X(C),C) into the (—1)" and (—1)"~!
eigenspaces for the involution 7 which is induced by complex conjugation on
the coefficients C. For ¢ < 2n — 1 we show that F™ contains no eigenvector for

7. Indeed
Frorrr =@ H ' n@PHE" = P H' =0
n<s n<t n<s,t

fori=s+t<2n—1. For i > 2n — 1 we show

@ H%t = @Hs’t + any T eigenspace V.

s+t=1 n<s

Given s,t with s +¢t =7 > 2n — 1 we have either n < s or n < t, so F"* =
@D, <. H*" contains either H*" or H"*, say H*" C F™. Since 7(H>') = H"*
we can write x +y € H%! 4+ H"® as

c+y=aF2 +7@) £’ e HS +VECF 4+ VE

where 2/ € H*! satisfies y = 7(2’). This finishes the proof of the lemma. O

DOCUMENTA MATHEMATICA 23 (2018) 1425-1560



WEIL-ETALE COHOMOLOGY AND ZETA-VALUES 1441

This Lemma gives short exact sequences
0— H ' (X(C),R(n)) — H ' (X(C),C)/F"™ — Hp(X)c,R(n)) - 0 (22)
for: <2n—1 and
0 — Hp(X/c,R(n)) = H'(X(C),R(n)) - H(X(C),C)/F" =0  (23)

for ¢ > 2n. Taking the R-dual of (23) and using Poincare duality we obtain
(noting that dim(X) = d — 1 and that the orthogonal complement of F™ is
Fdfn)

0+ Hp(X)c,R(n))" + H* 727/ (X(C),R(d—1-n)) + F*""H*7>7(X(C),C) + 0.

Using (21) this sequence can also be written as

0+ Hp(X)c,R(n))" « H*7>71(X(C),C)/F*™" + H**7/(X(C),R(d — n)) + 0

and comparing this to (22) with (i,n) replaced by (2d — 1 —1,d —n) we obtain
Hp(X/c, R(n)) = Hp' ™! (X)c,R(d — n))". (24)

Taking Gg-invariants gives (19). O

We can now state the main conjecture of this section.
CONJECTURE 2.5. B(X,n) For any i € Z, the pairing (18)

H{(X,R(n)) x H**(X,R(d —n)) — H*(X,R(d)) = R
is a perfect pairing of finite dimensional R-vector spaces.

REMARK 2.6. By Lemma 2.8 a) one has a morphism of long exact sequences

(X, R(n) Hi(X,R(n) H (Xz, R(n)
> H2(X,R(d — )" —> H2 (X, R(d — n))* —— HE 7 (A, R(d — n))*

and the right hand vertical maps are isomorphism by Lemma 2.3 b). Hence the
Five Lemma implies
B(X,n) < B(X,d —n).

REMARK 2.7. If X — Spec(F,) is smooth proper over a finite field, then
H((X,R(n)) = H'(X,R(n))

and it is expected that H'(X,R(n)) = 0 for i # 2n (Parshin’s conjecture). By
definition, there is an isomorphism H?"(X,R(n)) & CH"(X)r and Conjecture
B(X,n) reduces to perfectness of the intersection pairing

CH™(X)g x CH*™™(X)p — CHY(X)g — R.
This is also a conjecture of Beilinson (numerical and rational equivalence co-

incide).
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REMARK 2.8. The conjectures of Beilinson [81] concern an "integral motivic
cohomology" of the generic fibre X := Xy whereas we work directly with the
arithmetic scheme X. More precisely, there is a long exact localization sequence

o P CH™ (X 20— i)g — HI(X,Q(n) 2 HI(X,Q(n) - -
l

where X := X ® F;, and Beilinson’s conjectures concern
HY(Xz,Q(n)) == im(p'(n)) (25)

which is not naturally the cohomology of any complex but which one can show
to be independent of the choice of a reqular model. However, one expects

CONJECTURE 2.9. The map p'(n) is injective for i # 2n.
This means that the discussion below also applies to the groups
H'(Xz,R(n)) := H'(X 2, Q(n))r

instead of H'(X,R(n)) provided i # 2n. We refer to Prop. 5.21 and Remark
5.22 below for some evidence for Conjecture 2.9.

For the rest of this subsection we assume that X is flat over Z and we indi-
cate how Conjecture B(X,n) is equivalent to Beilinson’s conjectures, tacitly
assuming Conjecture 2.9. For i < 2n we have

H?1(X,R(d — 1)) C Ki—an(X)§ ™ =0
and so B(X,n) is equivalent to
HY(X,R(n)) =0 fori< 2n. (26)
From the long exact sequence
Hy(X,R(n)) = H'(X,R(n)) — Hp(X/z,R(n)) = H(X,R(n))  (27)
induced by (17) this is equivalent to
H'(X,R(n)) = Hp (X, R(n)) for i < 2n —1. (28)
For n > 0 this is Beilinson’s conjecture away from the central and near central
point, including the Beilinson-Soulé conjecture for ¢ < 0. For n < 0 both sides

are zero since then also ¢ < 2n — 1 < 0. The central and near central point are
accounted for by the exact sequence

n d—mn,*
0 — H (X, R(n)) 2> HE ' (X)g,R(n)) —— H* 72" (X R(d —n))" 2

H>™(X,R(n)) HE (X2, R(n)) — H* 7> "X, R(d—n))" — 0 (29)
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where we have rewritten H>" and H2?"*! in terms of the dual of H® using
Conjecture B(X,n) and we also used H?"T1(X,R(n)) = 0. For n < 0 this
sequence is exact since all terms are zero (for

H 27 (X, R(d = ) = K(X)¢ )

and ¢ = 0, 1 this follows for dimension reasons from the Gersten-Quillen spectral
sequence with weights [87][Th. 4(iii))]). If n > 0 the exactness of (29), i.e.
Conjecture B(X, n), is equivalent to nondegeneracy of the height pairing h

H>™(X,R(n))? x H*="(X,R(d —n))’ - R

on the space
H?"(X,R(n))° := ker(z")

together with a decomposition
HZ N, R(n)) = im(r™)Sim(z?~")* =2 H*" (X, R(n))@im(24"")*. (30)

This decomposition is Beilinson’s conjecture for the near central point if one
assumes the standard conjecture "numerical equals homological equivalence"
for the generic fibre X = &j in which case the dual of

im(zd_") = CHd_"(X)R/hom = CHd_"(X)R/hom
can be computed as
im(z4")* = CH¥ == (X)) /hom = CH" (X )g /hom.

Beilinson’s conjecture at the central point asserts non-degeneracy of the Bloch-
Beilinson height pairing on the space

CH™(X)f = H*(X,R(n))® = H*"(X,7,R(n))"

of homologically trivial cycles on the generic fibre. Beilinson also conjectures
that there is a commutative diagram of pairings

H?"(X,R(n))% x H2d_2"(X,R(d -n)® —— R
| ||
H2"(X/Z,R(n))0 X H2d_2"(X/Z,R(d -n)? —— R
with surjective vertical maps where
(X, R(n)™ € H>" (X, R(n)°

is the subgroup of classes homologically trivial on all fibres AF,. This implies
that the Bloch-Beilinson height pairing can be defined in terms of the pairing
h on X but we have not tried to investigate whether nondegeneracy of h is
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equivalent to nondegeneracy of the Bloch-Beilinson pairing. Finally, in the
index range ¢ > 2n we have

H(X,R(n)) C Kgp_i(X){ =0

and therefore
Hp(X)r, R(n)) = HITH (X, R(n)).

Using the duality (19) we see that B(X,n) is equivalent to Beilinson’s conjec-
ture (28) with (é,n) replaced by (2d — 1 —4,d — n), i.e. the second map in the
sequence

Hip(X)p, R(n)) = HI (X, R(n)) = H2-71 (X, R(d —n))* = HE 7 (X)n, R(d - n))*

is an isomorphism if and only if the third is.

2.3 MOTIVIC COHOMOLOGY OF THE ARTIN-VERDIER COMPACTIFICATION

For any n € Z we shall now extend the exact triangle (17) to a diagram in the
derived category of R-vector spaces

RT.(X,R(n)) —— RU(X,R(n)) —— RUp(Xp,R(n)) ——

|| | |

RT.(X,R(n)) —— RI(X,R(n)) —— RI(Xs,R(n)) —

| Jo

(31)
with exact rows and columns. Here one should think of X as the "Artin-
Verdier" or "Arakelov" compactification of X and X, as the "fibre at infinity".
We choose a splitting o of the inclusion

T§2n71RI\D(X/R7]R(n)) — RF'D(X/R;R(R))

and define RT'(X,R(n)) as the mapping fibre of the Beilinson regulator com-
posed with o

RI(X,R(n)) = RI'p(X/r,R(n)) 5 752" "' RI'p(X/z, R(n)). (32)
We then set
RUx_ (X, R(n))[1] := 75" "' RI'p (X, R(n))

and
RI'(Xx,R(n)) := 72*"Rlp(X/r, R(n)). (33)
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With these definitions it is clear that the diagram (31) has exact rows and
columns and that the right hand column is a split exact triangle, i.e. the mor-
phism 0 is indeed the zero map. The middle horizontal and the middle vertical
triangle are analogous to localization triangles in sheaf theory. The right ver-
tical triangle only becomes a "local" localization triangle in the presence of an
isomorphism between RI'(X5,R(n)) and the cohomology of a suitable "regular
neighborhood" of X.

PROPOSITION 2.10. Conjecture B(X,n) implies that there is a perfect pairing
H(X,R(n)) x H*(X ,R(d — n)) — H*}(X,R(d)) = R (34)

of finite dimensional R-vector spaces for all i and n and that H (X ,R(n)) =0
for i #£ 2n.

Proof. By definition of RT'(X',R(n)) we have an isomorphism

H(X,R(n)) = H'(X,R(n)) (35)
for i < 2n and an isomorphism

H(X,R(n)) = H'(X,R(n)) (36)
for ¢ > 2n. Since ¢ < 2n implies 2d — ¢ > 2d — 2n = 2(d — n) the duality (34)
is an immediate consequence of Conjecture B(X',n). Actually both groups are

zero in this case by (26). For i = 2n we have a diagram with exact rows and
columns

0
—% 5 HXX,R(n)) —— H™X,R(n)) ——— HZ(Xm R(n))
n | n

0 ——  H™X,R(n) —— H"X,R(n) —— H™(Xs,R(n))
HZ N X, R(n)) =—= HZF" (X,R(n))
H Y(X R(n)) =——— H*™ '(X,R(n))

~

where 2z, r™ and a 2 (277")* are the maps in (29) and the injectivity of ¢
follows by an easy diagram chase. We obtain exact sequences

0 — H2"(X,R(n)) — H*(X,R(n)) — im(z") — 0 (37)
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and
0 — coker(r") — H?"(X,R(n)) — H*"(X,R(n)) — 0. (38)

In view of the isomorphism coker(r")* 2 im(2?~") of (30), Conjecture B(X, d—
n) implies that there is an isomorphism between the dual of (38) and (37) with
n replaced by d — n. O

PROPOSITION 2.11. There is an isomorphism
H*"(X,R(n)) = CH"(X)g (39)

where CH"(X ) is the Arakelov Chow group with real coefficients defined by
Gillet and Soule [41]/3.3.3].

Proof. One first checks that the proof of the exactness of the sequence
cH™ Y X)L H b () & CHM(X) — CH™(X) — 0 (40)

in [40][Thm. 5.1.2] equally works for (Arakelov) Chow groups made from cycles
with real coefficients to give an exact sequence

CH™ N X)r & H 'Y (X)) & CH™"(X)r — CH™(X)r — 0.

Here
CH™(X)g := CH™(X) ®z R = Ko(X)(" = H>"(X,R(n))

and
CHn’n_l(X)]R — CHn’n_l(X) Q7 R = KI(X)I(R") o~ H2n—1(X, R(n))

by the Gersten-Quillen spectral sequence with weights [87][Th. 4(iii))], and
HPP(XR) is the space of real differential (p,p) forms n on X(C) which are
harmonic for the choice of a Kahler metric w on X' (C) and satisfy Fin = (—1)Pn
where F is complex conjugation on X' (C). It is remarked in [40][3.5.3 1)] that

H"=1n N (Xg) = Hp' ™ (X/p, R(n))
and one can see this as follows. One has the exact sequence (22) for i = 2n —1
0 — H*"7(X(C),R(n)) = H***(X(C),C)/F" = H3" " (X)c,R(n)) = 0

and
H2n_2(X((C),(C)/Fn o~ Hn—l,n—l e @ Hp,2n—2—p.
p<n-—1
Denoting by 7 the complex conjugation on coefficients, given 2 € HP:2"—2—P
with p < n — 1, we have z + (—1)"7(z) € H*"~?(X(C),R(n)) and 7(z) € F".
So
H2n_2(X((C), (C)/Fn — HQH_Q(X((C), R(n)) + Hn_l’n_l
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whereas
H*72(X(C),R(n)) n g~ b1

consists of harmonic (n — 1,n — 1)-forms in the (—1)"eigenspace of 7. So
HE' =N (X, R(n)) = H"~V" 7L/ (H72(X(C), R(n) N H" 1)
consists of harmonic (n — 1,n — 1)-forms in the (—1)""!-eigenspace of 7 and
Hy' N (Xm, R(n) = HE' ™' (X)c, R(n)) 9 = H" 1" ()

consists of forms 7 satisfying (FX, @ 7)n = n and 7 = (—1)""1#, i.e. real forms
satisfying F* n = (—1)""1n.

It is proved in [40][Thm. 3.5.4] that the map p coincides with the Beilinson
regulator (up to a constant factor —2), hence we obtain an exact sequence

0 — coker(p) = CH"(X)g — CH™(X)g — 0

whose outer terms are isomorphic to the outer terms of (38), hence there exists
an isomorphism on the middle terms. O

REMARK 2.12. We have "constructed” the pairing (34) and the isomorphism
(89) in an ad hoc way by choosing an isomorphism of middle terms in ex-
act sequences whose outer terms are isomorphic. We expect that there is an
isomorphism (39) so that the pairing (34) is the Arakelov intersection pair-
ing of [40][5.1.4]. By [60][Eq. (18)] the space H'(X,R(n)) is orthogonal to
coker(r?=") under the Arakelov intersection pairing, and it remains to show
that the induced pairing coincides with the pairing (18). Assuming finite-
dimensionality of H*"(X,R(n)), the non-degeneracy of the Arakelov intersec-
tion pairing is a consequence of the standard conjectures for Arakelov Chow
groups [61][Prop. 3.1].

REMARK 2.13. The definition of Arakelov Chow groups depends on the choice
of a Kihler metric on X(C) even though any two choices yield isomorphic
groups [40|/Thm. 5.1.6]. Recall that the Deligne complex RI'p(X,c,R(n)) has
a representative which in degrees 2n — 1 and 2n looks like [12][Thm. 2.6]

(2mi)dde

2 () D" (n) — -+

where Dy(n) is the space of (p,q)-currents on X(C) tensored by R(n). A
choice of Kdhler metric also yields a harmonic projection [40][5.1.1]

H:Dp " Yn—1) = H" V" Y(X)(n — 1) = ker(dd®)

and hence a splitting o of the Deligne complex as above.

3  WEIL-ETALE COHOMOLOGY OF PROPER REGULAR SCHEMES

Throughout this section, X denotes a regular scheme of pure dimension d,

proper over Spec(Z), and satisfying Conjectures L(X ¢, n), L(X,d —n) and
AV (X, n) stated in Section 3.2.
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3.1 NOTATIONS

For any n > 0, we consider Bloch’s cycle complex
Z(n) :=2"(—,2n — %)

as a complex of sheaves on the small étale topos X of the scheme X (see [64],
[63], [37] and Section 6 for more details). We write Z/mZ(n) := Z(n) @ Z/mZ
and Q/Z(n) = @Z/mZ(n). For n < 0, we have Q(n) = 0 hence Z(n) =
Q/Z(n)[—1]. Proper base change and the projective bundle formula suggest
Z/p"Z(n) ~ jpy!(ufﬁ”), where j, is the open immersion j, : X[1/p] = X, jp is
the extension by zero functor and p,- is the étale sheaf of p"-th roots of unity.
This leads to the following definition. For n < 0 we define the complex Z(n)
on X, as follows (see also [36]):

Z(n) = @ o () [ 1):

The complexes Z(n)¥ and RpZ(n) over the Artin-Verdier étale topos X
are defined in Appendix A. Recall that there is a canonical open embedding
¢ Xy — X, where X,; is the usual small étale topos of the scheme X. We
simply denote by RT'(X.:,Z(n)) the hypercohomology of the complex Z(n)%
over X If X(R) = 0, or if one is willing to ignore 2-torsion issues, one has
quasi-isomorphisms (see Proposition 6.6)

R&Z(n) 5 Z(n)* 5 ReuZ(n),
hence one may simply define
RI(X e, Z(n)) := RT(Xot, Z(n))

where RT'(X,:,Z(n)) denotes the hypercohomology of the complex Z(n) of
sheaves over X.;. We also denote

RT(X.;, Z(n)) := holim RT(X o, Z/mZ(n)).

If A is an abelian group, we denote by Ay, (resp. Agip) its maximal torsion
(resp. divisible) subgroup, and by Acotor (resp. Acodiv) the cokernel of the
inclusion Ay, — A (resp. Agiw — A). We denote by , A (resp. A,,) the kernel
(resp. the cokernel) of the multiplication map n : A — A, and by TA := @1”/1

the Tate module of A. If A is torsion or profinite, AP denotes its Pontryagin
dual. We say that A is of cofinite type if A is of the form Homy(B, Q/Z) where
B is finitely generated. We denote by D the derived category of abelian group.
More generally, if T is a topos, we denote by D(T) the derived category of
abelian sheaves on T'. If C is an object of D(T") then we denote by C<,, or by
T7S"C the good truncation of C in degrees < n.
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3.2 ASSUMPTIONS

The definition of Weil-étale cohomology requires the following conjectures.

CONJECTURE 3.1;AV(?et,n) There are compatible product maps Z(n)¥ ®F
Z(d—n)* — Z(d)* and Rp\Z(n) @F Rp.Z(d—n) — Z(d)* in D(X ) inducing
a perfect pairing of finite groups

H (X, Z/m(n)) x H* U X oy, Z/m(d—n)) — H* (X ey, Z/m(d)) — Q/Z.
for any i € Z and any m > 0.
Conjecture AV (X.;,n) holds in the following cases:

e for any n and X smooth over a finite field;

e for any n < 0 or n > d and X regular;

e for any n and X smooth over a number ring.

Indeed, the second case (respectively the third) is Corollary 6.26 (respectively
Corollary 6.27). Assume that X is smooth over a finite field of characteristic
p. The result for m prime to p is well known. For m = p", it follows from
Z/p"Z(n) ~ v[—n] (see [34][Thm. 8.5] and from [70][Thm. 1.14].

CONJECTURE 3.2. L(X.,n) The group H (X ., 7Z(n)) is finitely generated for
1 < 2n+ 1 and vanishes for i << 0.

Conjecture L(X ., n) holds in the following cases:
e for dim(X) < 1;

e for n = 1 and X an arithmetic surface (or a surface over a finite field)
with finite Brauer group;

e forn>d—1orn<1and X in the category A(F,) (see Section 3.6);

e forn > dorn <0 and X a regular cellular scheme over a number ring
(more generally for n > d or n < 0 and X regular in the class £(Z), see
[72]).

We have the following slight reformulation.

LEMMA 3.3. Conjecture L(X .+, n) is equivalent to
L(X.:,n): The group H'(X.;,Z(n)) is finitely generated for i < 2n + 1.

Proof. By Corollary 6.8 there is an exact triangle
RTx__(X,Z(n)) — RT(X,Z(n)) — RU(X,Z(n))

where RT x__(X,Z(n)) has finite 2-torsion cohomology and is bounded below.
Hence finite generation of H* (X, Z(n)) and H' (X, Z(n)) for i < 2n+ 1 are
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equivalent. If H i_(?et, Z(n)) is finitely generated its vanishing is implied by the

vanishing of H¥(X.t,Z(n)/p) for all primes p and, if i << 0, by the vanishing of

H (X, 7<"Z(n)/p). By Prop. 6.9 and [92][Thm. 2.6] there is an isomorphism
JrE =LY [p 2 T [p = "

where _ .
X[l/p]et i) Xet — Xet

are the natural open immersions. Following the proof of Lemma 5.15 below we
obtain an exact triangle

RT(X[1/p], ™) — RI(X,75"Z(n)/p) — RI(AXe,u$™) @ RT(Xz,,<"Z(n)/p)

where the outer terms have vanishing cohomology for i << 0. For the complex
TS"Z(n)/p on Xz, this follows from the proof of Lemma 7.7 which shows that
the mapping fibre of 7="Z(n)/p — 7" Rjj, . 3™ is quasi-isomorphic to 7. Z(n—
1)/p[—2] in degrees < n, even without assuming Conj. 7.1. But Z(n —1)/p on
Ak, is cohomologically bounded below by [92][Thm. 1.1]. O

3.3 THE COMPLEX RI'w(X,Z(n))

PROPOSITION 3.4. For any i > 2n+ 2 there is an isomorphism of cofinite type
groups o
H' (X4, Z(n)) — Hom(H*274(X 4, Z(d — n)), Q/7Z).

For i =2n+ 1, there is an isomorphism of finite groups
H* (X oy, Z(n)) = HX=WHN(X,,, Z(d — n))P.
For any i < 2n there is an isomorphism of profinite groups
H'(Xet, Z(n))" — Hom(H*™*7(X ., Z(d — n)), Q/Z).
where (—)" is the profinite completion.

Proof. The distinguished triangle

Z(n) = Q(n) — Q/Z(n)
and the fact that H'(X.;,Q(n)) = H'(X,Q(n)) = 0 for i > 2n + 1 imply
H'(Xet,Z(n)) = H'™'(Xer, Q/Z(n))

~ IEHZ Y X e, Z/mZ(n))
~ i B0 (X, 2/mZ(d - )P

(L H2d+2 z( oty Z/mZ( )))D
H2270(X ,, 7(d — n))P

12

12
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for i > 2n + 2. Indeed, to show the last isomorphism we consider the exact
sequence

0 — H* 24X Z(d — 1))y — H* 274X o, Z/mZ(d — n)))
— W H? T2, 7(d —n)) — 0.
Passing to the limit we get
0 = Lim H*27 (X oy, Z(d — ) — Y H*274(X oy, Z/mZ(d - n))
— TH?2=F X Z(d —n)) =0

since H24+2=+1(X ;, Z(d — n)) is finitely generated for i > 2n + 2. We obtain
isomorphisms

(m H2d+2_i(?eta Z/mZ(d - n)))D = (@ H2d+2_i(?eta Z(d - n))m)D
S HTN(X oy, Z(d —n))P

again using finite generation of H2*2=%(X ., Z(d — n)).
It remains to treat the case i = 2n + 1. The exact sequence

H* (X1, Q/Z(n)) — H* (X oy, Z(n)) — H*™ (X, Q(n)) =0

implies that H2"*1(X.;,Z(n)) is torsion hence finite. We have an exact se-
quence

0 = Lim H*" (X op, Z(n))m — lim H*" (X ey, Z/mZ(n))

— TH?*""2(X o, Z(n)).

But H2?"*2(X;,Z(n)) is of cofinite type (thanks to the case i > 2n + 2 treated
above) hence its Tate module is torsion-free. We obtain

H" (Xey, Z(n)) = Jm H*" " (Xey, Z(n))m

5 (tim B2 (R, 2/mZ(n)) )
(@1 HQdH*(Q"H)(Yet,Z/mZ(d _ n))D)
~ (H2<d—n> (For, Q/Z(d — n))D)
H2=+LF | 7(d —n))P.

tors

12

tors

tors

R

THEOREM 3.5. There is a canonical morphism in D:
ax n : RHom(RT(X,Q(d —n)), Q[—2d — 2]) — RI'(Xet, Z(n))
functorial in X and such that H (ax ,,) factors as follows
Hom(H?*2={(x,Q(d — n)),Q) = H (X, Z(n))din — H' (Xer, Z(n))
where H (X ot,Z) aiy denotes the mazimal divisible subgroup of H' (X ot,7Z).
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Proof. Weset Dy, := RHom(RI'(X,Q(d—n)), Q[—2d—2]). Using Proposition
3.4, it is easy to see that the spectral sequence

H Ext?(H (Dx ), H™ (X 1, Z(n))) = HPT(RHom(Dy ,,, RT'(X o, Z(n))))

yields a canonical isomorphism

[[Ext®(H (D n), H' (X et, Z(n))) ~ H°(RHom(Dx 1y, RT (X r, Z(n)))).
i€Z
For i < 2n+1 any map H(ax ) : H(Dx.) — H*(X e, Z(n)) must be trivial
since HY(Dx ) = 0. For any i > 2n + 2 there is a canonical map H'(ay ) :
H'(Dx.n) = Hom(H*"71(X,Q(d — n)), Q) = Hom(H****~" (X, Z(d — n)), Q)
— Hom(H>"*7* (X, Z(d — n)), Q/Z) ¢ H'(Xer, Z(n)).
Hence there exists a unique map

ax n: RHom(RT(X,Q(d — n)), Q[—2d — 2]) — RT(X e, Z(n))

inducing H'(ax ) on cohomology. The fact that ay ,, is functorial is shown
in Theorem 3.9.
O

DEFINITION 3.6. Setting 6 := 2d + 2 we define RT'w(X,Z(n)), up to non-
canonical isomorphism, such that there is an exact triangle

RHom(RI'(X,Q(d — n)),Q[—6]) — RI'(Xct, Z(n)) — RUw (X, Z(n)).

We shall see below that RI'w (X,Z(n)) is in fact defined up to a canonical
isomorphism in the derived category (see Corollary 4.10). The long exact se-
quence of cohomology groups associated to the exact triangle of Definition 3.6
together with Proposition 3.4 yields the following

LEMMA 3.7. There is an exact sequence
0 = H' (Xet, Z(n))cotiv — Hiy (X, Z(n)) — Hom(H**' " (Xer, Z(d — 1)), Z) — 0
for any i € Z.

PROPOSITION 3.8. The group Hi, (X, Z(n)) is finitely generated for any i € Z.
Moreover one has Hjy, (X, Z(n)) = 0 for almost all i € Z.

Proof. By Proposition 3.4, the group H2+2~(+1(X , 7(d — n)) is cither
finitely generated or of cofinite type and H®(Xct,Z(n))codiv is finitely gen-
erated. Hence the exact sequence

0— Hi(?@f’ Z(n))codiv — H%/[/(?, Z(?’L))
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— Homy (H?4T2-0+V (X, Z(d — n)),Z) — 0
shows that Hj, (X, Z(n)) is finitely generated. Moreover, H*(X ¢, Z(n)) = 0 for
i << 0and H’ (X, Z(d—n)) is torsion for j > 2(d—n), hence Hi},(X,Z(n)) =0
for ¢ << 0. For i large, the group

H™ Rty Z(0))eodiv = H' (Ret, Q/Z(n))cousn = (H* 7 (Rt Ld = )"

codiv

vanishes by L(X ., d —n).
O

THEOREM 3.9. Let f : X — Y be a flat morphism between proper regqular
arithmetic schemes of pure dimensions dx and dy respectively. Assume that
L(Xet,n), L(Xet; dX —n), AV(Xet, n), L(Jiet, n), L(Jiet, dy —n), AV(_yet,TL),
and AV (f,n) hold (see Section 6.10). We choose complezes RUw (X,Z(n))
and RUyw (), Z(n)) as in Definition 3.6. Then there exists a unique map in D

fiv : RUw (Y, Z(n)) — RTw (X, Z(n))
which sits in the morphism of exact triangles:

RHom(RT(Y,Q(dy —n)),Q[~dy]) — RT(Ver, Z(n)) —= RTw (¥, Z(n))

| | l

RHom(RD(X, Q(dxy — n)),Q[—0x]) ——= R (Xer, Z(n)) — RUw (X, Z(n))

Proof. We may assume X and ) connected; thus X and ) are proper regu-
lar connected arithmetic schemes of dimension dx and dy respectively. We
set 6x = 2dx + 2 and 8y = 2dy + 2. We choose complexes RI'y (X, Z) and
RT'w(Y,7) as in Definition 3.6. Let f : X — ) be a morphism of relative di-
mension ¢ = dyx —dy. Proper push-forward of cycles along the proper morphism

f
2™(X, %) = 2T, )

induces a morphism
fQ(dx —n) = Q(dy — n))[—2(]

of complexes of abelian Zariski sheaves on ). We have f.Q(dy — n) ~
Rf.Q(dx — n). Indeed, for a scheme over a discrete valuation ring, the co-
homology of cycle complex coincides with its Zariski hypercohomology. We
obtain a morphism

RT(X,Q(dx —n)) ~ RT'(Y, f.Q(dx —n)) — RT'(Y,Q(dy —n))[-2¢]
hence

RHom(RT(Y,Q(dy — n)), Q[—dy]) = RHom(RT'(X,Q(dx — n)), Q[—dx])-
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On the other hand, by Proposition 6.12, we have a pull-back map
RT (Vet, Z(n)) — RT(Xet, Z(n)).

We need to show that the following square

RHom(RT(Y, Q(dy — n)), Q[—dy]) —=% RT (Per, Z(n))

| |

RHom(RT(X,Q(dx — n)), Q[—0x]) —= RT(X ., Z(n))

commutes. It is enough to show that the induced diagrams of cohomology
groups commute. One may assume i > 2n + 2. Then the map H'(ay )
coincides with the following composite map

Hom(H (¥, Q(dy — n)),Q) = Hom(H* " (Ver, Z(dy — n)), Q)
— Hom(H " (Vuy, Z(dy — 1)), Q/Z) & Hom(H® " (Ver, Z(d — 1)), Q/Z)

& HT Ve, Q/2Z(n)) — H7 Ve, Q/Z(n)) — H Vet Z(m)).

It follows from AV(f,n) that this map is functorial in ). Hence there exists a
morphism
fiv : RTw (Y, Z(n)) — RTw (X, Z(n))

inducing a morphism of exact triangles.
We claim that such a morphism f};, is unique. In order to ease the notations,
we set

Dy := RHom(RT'(X,Q(dx — n)),Q[—dx])

and
Dy, := RHom(RT'(Y, Q(dy — n)), Q[—dy]).

The complexes RT'w (X, Z(n)) and RT'w (Y,Z(n)) are both perfect complexes
of abelian groups. Applying the functor Homp(—, RT'w (X, Z(n))) to the exact
triangle

Dy, = RU(YVer, Z(n)) — RUw (Y, Z(n)) — Dy n[1]

we obtain an exact sequence of abelian groups:
Homp (Dy,n[l], RI'yw (?, Z(n))) — Homyp (RFW (y, Z(n)), Rrw(Y, Z(n)))

— Homp (R (V.t, Z(n)), RTw (X, Z(n))).

On the one hand, Homp(Dy ,[1], RT'w (X, Z(n))) is uniquely divisible since
Dy ,[1] is a complex of Q-vector spaces. On the other hand, the abelian group

Homp (RTw (Y, Z(n)), RTw (X, Z(n)))
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is finitely generated as it follows from the spectral sequence
[ Ext? (i (9, 2(n), B (F, Z(n))) = HPT(RHom(RTw (¥, Z(n)), RU'w (X, Z(n))))
iz
since RT'y (X, Z(n)) and RT'w (), Z(n)) are both perfect. Hence the morphism
Homp (RI'w (Y, Z(n)), RT'w (X, Z(n))) — Homp (RT'(Vet, Z(n)), RUw (X, Z(n)))

is injective. It follows that there exists a unique morphism f};, which renders
the square

RT (Yer, Z(n)) — RTw (Y, Z(n))
RT(Xet, Z(n)) — RTw (X, Z(n))
commutative. O

COROLLARY 3.10. RTw (X, 7Z(n)) is well defined up to a unique isomorphism
i D.

Proof. Let RT'w (X,Z(n)) and Ry (X,Z(n))" be two complexes as above. By
Theorem 3.9, the identity map Id : X — X induces a unique isomorphism
RTyw (X, Z(n)) ~ RT'w (X, Z(n))' in D.

O

REMARK 3.11. Following [39] we denote by Z°(n) the cycle complex with ho-
mological indezing and we keep Z(n) for the cycle complex with cohomological
indexing, so that Z°(n) = Z(d — n)[2d] over a regular scheme of pure dimen-
sion d. One should think of RU(X,Z°(n)) (resp. of RT'(Xct,Z(n))) as Borel-
Moore homology (resp. as étale motivic cohomology). Then, for any regular
proper arithmetic scheme X (not necessarily connected nor pure dimensional)
satisfying our standard assumptions, one may define the Weil-étale complex
RTw(X,Z(n)) by the exact triangle

RHom(RT'(X,Z°(n)),Q[-2]) = RT(X e, Z(n)) — RUw (X, Z(n)) —

which is somewhat more natural. However, in order to avoid confusion, we
use exclusively cohomological indexing for the cycle complex throughout this
paper. Accordingly, we use the triangle of Definition 3.6 in order to define the
Weil-étale complexes.

3.4 RATIONAL COEFFICIENTS

COROLLARY 3.12. There is a canonical direct sum decomposition

which is functorial with respect to flat morphisms of proper regular arithmetic

schemes.
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Proof. Assume that X is connected of dimension d and write § = 2d + 2.
Applying (—) ® Q to the exact triangle of Definition 3.6, we obtain an exact
triangle

RHom(RI'(X,Q(d — n)),Q[-4]) = RI(X,Q(n)) = Rlw (X, Z(n))qg.
We write D := RHom(RT (X, Q(d—n)), Q[—6]) for brevity. The exact sequence
Homp(D[1], RT(X,Q(n))) — Homp(RTw (X, Z(n)), RT(X,Q(n)))
— Homp (RT(X,Q(n)), RT(X,Q(n))) — Homp (D, RT(X,Q(n)))
yields an isomorphism
Homp (RTw (X, Z)qg, RT (X, Q(n))) = Homp(RT (&, Q(n)), RT(X,Q(n))),

since RT'(X,Q(n)) is a complex of Q-vector spaces concentrated in degrees
< 2n and the complex RHom(RI'(X,Q(d — n))>o, Q[—4]) is acyclic in degrees
< 2n + 1. This yields the canonical direct sum decomposition.

It remains to show that this direct sum decomposition is functorial. Let X — )
be a flat map between regular proper schemes. One may assume X and )Y
connected of dimension dy and dy respectively. We set dx = 2dx + 2 and
0y = 2dy + 2. Flat pull-back of cycles yields a map

u: RT(Y,Q(n)) — RI'(X,Q(n))
while proper push-forward of cycles yields a map
v : RHom(RT'(Y,Q(dy — n)), Q[—dy]) = RHom(RT'(X,Q(dx — n)), Q[—dx]).

In order to show that the diagram of complexes of Q-vector spaces

RTw (Y, Z(n)) ® Q — R (Y,Q(n)) ® RHom(RT(Y, Q(dy — n)), Q[-dy])[1]

lfﬁ‘v l(uw)

RTw (X,Z(n)) ® Q —= RI(X,Q(n)) & RHom(RT (X, Q(dx —n)), Q[~dx])[1]

commutes in D, it is enough to show that the following square

Hiy (Y, Z(n)) © Q —— H'(Y,Q(n)) & H>~ (Y, Q(dy — n))*

lfév l(uw)

Hiy (X,Z(n)) ® Q — H'(X,Q(n)) ® H**~+D(X,Q(dx — n))*

commutes for any ¢ € Z, where (—)* denotes the dual Q-vector space. The
result is obvious for ¢ > 2n + 1 since we then have

Hl(yaQ(n)) = HZ(X,Q(TL)) =0.
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Hence the diagram is commutative for ¢ > 2n+1 by Theorem 3.9. Fori < 2n+1,
we have

H>~ (Y, Qdy —n))* = H* DX, Qdx —n))* =0
and the horizontal maps in the square above are inverse isomorphisms to
H'(Y,Q(n)) = Hiy (¥, Z(n))g and H'(X,Q(n)) — Hiy (X, Z(n))g

respectively. Hence the result follows from the fact that

Hyy (Y, Z(n)) ® Q =—— H'(Y,Q(n))

Z
k)
Hiy (X, Z(n)) ® Q =—— H'(X,Q(n))

commutes, again by Theorem 3.9.

3.5 TORSION COEFFICIENTS

LEMMA 3.13. For any positive integer m, there is a canonical isomorphism
RTU(X ., Z/mZ(n)) ~ RUw(X,Z(n)) ®% Z/mZ

which is functorial with respect to flat morphisms of proper regular arithmetic
schemes.

Proof. Consider the exact triangle
RHom(RI'(X,Q(d — n)),Q[-4]) = RI(Xt,Z(n)) — RUyw (X, Z(n)) —

where § := 2d + 2. Taking derived tensor product — ®% Z/mZ we obtain an
exact triangle

0 — RT(X ., Z/mZ(n)) — RUw(X,Z(n)) @F Z/mZ —
since we have canonical isomorphisms
RTU(X o4, Z(n)) @% Z/mZ ~ RT (X1, Z/mZ(n))

and
RHom(RI(X,Q(d —n)),Q[—4)) ®% Z/m = 0.

It follows that the map
RT(X ., Z/mZ(n)) — RU'w (X, Z(n)) @% Z/mZ

is an isomorphism in the derived category. It is functorial by Theorem 3.9. [
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3.6 RELATIONSHIP WITH THE LICHTENBAUM-GEISSER DEFINITION OVER FI-
NITE FIELDS

Let Y be a smooth proper scheme over a finite field k. We may assume that
Y is connected and d-dimensional. In this section, we show that the Weil-étale
complex RT'w(Y,Z(n)) defined in this paper is (expected to be) canonically
isomorphic in the derived category to the Weil-étale complex defined in [36],
and we describe the relationship between the conjecture L(Y.:,n) stated in
Section 3.2 and the conjecture L(Yy,n) stated in [36].

We denote by W, the Weil group of the finite field k. The Weil-étale topos Yy
is the category of Wj-equivariant sheaves of sets on the étale site of Y @y, k,
where k/k is an algebraic closure. By [36] one has an exact triangle in the
derived category D(Ye)

Z(n) = Ry.Z(n) = Q(n)[—1] = Z(n)[1]

where 7 : Yy — Ye; is the canonical map. Applying RT'(Y.:, —) and rotating,
we get

Rr(nta Q(n)[_2]) - Rr(nta Z(n)) - RP(YWa Z(n)) - RP(YVeta @(’I’L)[—Q])[l]
The following conjecture is due to T. Geisser and S. Lichtenbaum.

CONJECTURE 3.14. L(Yy,n) For every i, the group H'(Yy,Z(n)) is finitely
generated.

The following conjecture is due to T. Geisser and B. Kahn (see [54] and [36]).
Consider the map ¢; : Ry.Z(n) @ Z; — RlimZ/1"Z(n) in D(Ye:) [36].

CONJECTURE 3.15. K (Yw,n) For every prime | and any i € Z, the map ¢
induces an isomorphism

H (Yw,Z(n)) @ Z; ~ H' (Y, Z(n)).

cont

Consider the full subcategory A(k) of the category of smooth projective vari-
eties over the finite field k generated by products of curves and the following
operations:

(1) If X and Y are in A(k) then X [TY is in A(k).

(2) If Y is in A(k) and there are morphisms ¢ : X - Y and ¢/ : Y — X in
the category of Chow motives, such that ¢’ oc: X — X is multiplication by a
constant, then X isin A(k).

(3) If ¥'/k is a finite extension and X Xy, k' is in A(k), then X is in A(k).

(4) If Y is a closed subscheme of X with X and Y in A(k), then the blow-up
X' of X along Y is in A(k).

The following result is due to T. Geisser [36].

THEOREM 3.16. (Geisser) Let Y be a smooth projective variety of dimension
d.

- One has K(Yw,n) + K(Yw, d— TL) = L(Yw, TL) = K(Yw, TL)

- If Y belongs to A(k) then L(Yw,n) holds forn <1 andn >d—1.
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PROPOSITION 3.17. Let Y be a connected smooth projective scheme over a finite
field of dimension d. Then we have

L(Yw,n) = L(Yet,n).
Proof. By [36], one has an exact sequence
— H' (Yo, Z(n)) — H' (Yw, Z(n)) — H™ ' (Yer,Q(n)) — H™ (Yey, Z(n)) —
With rational coefficients, this exact sequence yields isomorphisms
H'(Yw,Z(n)) ® Q =~ H'(Yw,Q(n)) = H'(Yer, Q(n)) ® H'™" (Yer, Q(n)). (41)

Assume now that Conjecture L(Yw,n) holds. Let us first show that
H(Yw,Z(n)) is finite for i # 2n,2n + 1. By Theorem 3.16, Conjecture
K(Yw,n) holds, i.e. we have an isomorphism

H (Yw,Z(n)) ® Zy ~ H:, (Y, Z(n))

cont

for any [ and any i. But for i # 2n,2n+1, the group H? (Y, Z;(n)) is finite for

any [ and zero for almost all [ [33] (see also the proof of Cor. 3.8 in [54]). Hence
H!(Yw,Z(n)) is finite for i # 2n,2n + 1. Then (41) gives H' (Y., Q(n)) =
0 for i # 2n. The exact sequence above then shows that H*(Ye:,Z(n)) —
Hi(Yw,Z(n)) is injective for i < 2n + 1, hence that H*(Yet,Z(n)) is finitely
generated for i < 2n + 1.

(]

COROLLARY 3.18. Any variety Y in A(k) satisfies L(Yer,n) and L(Yer,d —n)
forn <1.

Proof. This follows from Theorem 3.16 and Proposition 3.17. O
CONJECTURE 3.19. P(Y,n) The intersection product induces a perfect pairing:
CH™Y)g x CHY™™(Y)g — CHY(Y)g 25 Q.

Note that CH4(Y)g dog Q is known to be an isomorphism by class field theory.

THEOREM 3.20. If Y satisfies L(Yer,n), L(Yer,d —n) and P(Y,n) then there
is an isomorphism in D

RT (Yw,Z(n)) — RTw (Y, Z(n))

where the left hand side is the cohomology of the Weil-étale topos and the right
hand side is the complex defined in this paper.
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Proof. We shall show that there is a commutative diagram in D:

RI(Yer, Q(n)[—2]) RE(Yer, Z(n))

| |

RHom(RT(Y, Q(d — 1)) 0, Q[—2d — 2]) “22= RT(Yer, Z(n))

where the vertical maps are isomorphisms. This will imply the existence of an
isomorphism RT(Yyy,Z(n)) — RTw (Y, Z(n)), whose uniqueness follows from
the argument given in the proof of Theorem 3.9.

One has H?4(Y,Q(d)) = CHY(Y)g = Q and H*(Y,Q(d)) = 0 for i > 2d. This
yields a map RT'(Y,Q(d))) — Q[—2d]. Moreover, since Y is smooth over the
field k, we have a product map

RI(Y,Q(n)) ® RI(Y,Q(d — n)) — RT(Y,Q(d)).
We obtain a morphism
RT(Yer,Q(n)) = T(Y,Q(n)) — RHom(I(Y,Q(d — n)), Q[-2d)).  (42)

The conjunction of Conjectures L(Yer,n), L(Yer,d—n) and P(Y,n) implies that
RT'(Yet, Q(n)) is concentrated in degree 2n and that the morphism (42) is a
quasi-isomorphism. Indeed, assuming L(Yy:,n) and L(Y.,d — n) we get, by
Proposition 3.4, the finiteness of H?""!(Y,;,Z(n)) and an isomorphism

H' (Yo, Z(n)) =5 Hom(H?*27(Y,;, Z(d — n), Q/Z)
for i > 2n + 2. Hence H*(Y,Q(n)) = 0 for i > 2n + 1. For i < 2n we have
H! (Yo, Z(n))" =5 Hom(H?274 (Y, Z(d — n),Q/7Z).

But H2+2-4(Y,,, Z(d — n) is finite for i < 2n—1. Indeed, writing j = 2d+2—1
and t = d —n, we need H’ (Y, Z(t)) finite for j > 2¢ + 3. But in this range we
have

H (Yer, Z(t)) = H' ™' (Yer, Q/Z(1))
since H7 (Yer, Q(t)) = 0 for j > 2t. Moreover Y satisfies Artin-Verdier duality
with mod-m coefficients (see Conjecture 3.1), since Z/mZ(n) = u&" for p not
dividing m and Z/p"Z(n) ~ v]|—n]. Passing to the limit we get an isomorphism
of profinite groups

HI™ (Yo, Q/Z(8)P = H*¥ =070 (Y, Zn HH”“ G- (¥,,, Zy(n)).

cont

For j — 1 > 2t + 2, this group is finite (indeed, for i # 2¢,2t + 1 the l-adic
cohomology group me(Yet, Zi(t)) is finite for all I and trivial for almost all
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1 [33]). We obtain that H(Y,Q(n)) = 0 for i # 2n. Hence we have canonical
isomorphisms

RHom(RL(Y,Q(d — n)), Q[—2d])

12

Hom(H*2"(Y,Q(d — n)), Q)[~2n]
CH™™(Y)g[—2n]
and
R(Y,Q(n)) =~ H*"(Y,Q(n))[~2n] = CH" (Y )g[~2n].
Moreover the map
H?"(Y,Q(n)) — Hom(H**""(Y,Q(d — n)), Q)
is given by the intersection pairing
CH™(Y)g x CH"™™(Y)g — CHY(Y)q — Q.
Therefore, it follows from the conjunction of Conjectures L(Ye:, n), L(Yer,d—n)

and P(Y,n) that the map (42) is an isomorphism.
It remains to check the commutativity of the above diagram. The complex

Dy, == RHom(RI'(Y,Q(d — n)), Q[—2d — 2]) ~ RT'(Yer, Q(n)[—2])

is concentrated in degree 2n+ 2, hence acyclic in degrees > 2n+2. The spectral
sequence

H Ext?(H(Dy,), H™(Yet, Z(n))) = HPTY(RHom(Dyp, RT(Yer, Z(n))))
i€L
degenerates at E5 and yields an isomorphism

Homop(Dy.p, RTU(Yer, Z(n)) <ons2) =~ Hom(H*" 2 (Dy.,,), H*""2(Yet, Z(n)))

since Dy, is quasi-isomorphic to a Q-vector space put in degree 2n + 2 while
H(Yet, Z(n)) is finitely generated for i < 2n and finite for i = 2n + 1. One is
therefore reduced to show the commutativity of the following square (of abelian
groups):

d2mt

CH™(Y)q ———— H*""(Ye1, Z(n))
H2"+2(ay,n)
CHY ™Y ) —————= H>"?(Y, Z(n))

where the left vertical map is given by the intersection pairing. The fact that

this square commutes follows from Geisser’s description of the differential map
2n,1

dy™"", see [36]. O

COROLLARY 3.21. LetY be a connected smooth projective scheme over a finite
field of dimension d. Then we have

L(YW’n) + L(YWad - 7’L) g L(Yvetan) + L(Yvetad - 7’L) + P(K 7’L)
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Proof. Assume L(Ye,n), L(Yer,d —n) and P(Y,n). Then RTw (Y,Z(n)) and
RT'w (Y, Z(d — n)) are well defined and have finitely generated cohomology
groups. Hence Conjecture L(Yy,n) and L(Yw,d — n) follow from Theorem
3.20.

Assume L(Yw,n) and L(Yy,d — n). Conjectures L(Ye,n) and L(Ye:,d — n)
then hold by Proposition 3.17. The fact that L(Yy, n) and L(Yw,d—n) imply
P(Y,n) is proven in [36]. O

3.7 WEIL-ETALE DUALITY
THEOREM 3.22. There is a canonical product map
RTw (X, Z(n)) % RUw (X, Z(d — n)) — Z[—2d — 1]

such that the induced map

RTw (X, Z(n)) — RHom(RT'w (X, Z(d — n)), Z[—2d — 1])
is an isomorphism of perfect complexes of abelian groups.
Proof. First we consider the map

RUw (X, Z(n))g ©§ RT'w (X, Z(d — n))g — Q[—2d — 1]
given, thanks to Corollary 3.12, by the sum of the following tautological maps

RI(X,Q(n)) & RHom(RT (X, Q(n)), Q[-8)[1] - Q[-2d — 1],
RHom(RT'(X,Q(d — n)), Q[—))[1] ®(LD RT'(X,Q(d —n)) = Q[-2d —1].
Recall that we denote continuous étale cohomology with Z(n)—coeﬂicients by
RI(X 1, Z(n)) := holim RT(X o1, Z/mZ(n)).

Conjecture AV (X1, n) provides us with a map Z/mZ(n)* @LZ/mZ(d—n)¥ —
Z/mZ(d)?* inducing a morphism

RU(X 1, Z/mZ(n)) @% RU(X o, Z/mZ(d — n)) — RU(X o, Z/mZ(d))
— Z/mZ]—2d — 1] — Q/Z[—2d — 1].
By adjunction, we obtain
RT(Xey, Z/mZ(d — n)) — RHom(RT (X s, Z/mZ(n)), Q/Z[—2d — 1))
and
RI(X o, Z(d — n)) — RHom (R (X, Q/Z(n)), Q/Z[—2d — 1]).
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Moreover, the maps
RTw(X,Z(n)) — RUw(X,Z(n)) ®% Z/mZ ~ RT(X o, Z/mZ(n))
yield a map . L
RTw (X,Z(n)) — RT (X, Z(n))

inducing the following morphism on cohomology:

Hiy (X, Z(n)) — Hiy(X,Z(n))" = H'(Xer, Z(n)).
Then we consider the maps
RIw (X,Z(n)) ®%F RUw (X, Z(d — n)) @% Q/Z = Ry (X, Z(n)) ®F RU(Xet, Q/Z(d — n))

— RT'(Xet, Z(n)) ®% RI(Xer, Q/Z(d — n)) — Q/Z[—2d — 1]
and
Ry (¥,Z(n)) ®F RUw (X, Z(d — n)) ®F Q/Z < RI'(Xer,Q/Z(n)) ®F RTw (X, Z(d — n))

—+ RI(Xct, Q/Z(n)) @% RT (X et, Z(d — n)) — Q/Z[—2d — 1].
We need to see that these two maps give the same element in

Hom(RTw (%, Z(n)) &% RTw (F,Z(d — n)) ©f Q/Z, Q/Z[-2d — 1)
~ Hom(RTw (X, Z(n)) @% RUyw (X, Z(d — n)), Z|-2d — 1]).
But these maps are both induced by the limit of
RUw (%, Z(n)) @& RTw (%, 2(d - n))
— RU(Xer, Z/m(n)) @5 RT' (X o, Z/m(d — n)) — Z/m[—2d — 1],
hence they coincide. We obtain a canonical map
RTw (X,Z(n)) ®F RUw (X, Z(d — n)) ®% Q/Z — Q/Z[-2d —1].  (43)

We now consider the diagram

3 !pn,dfn,

RTw (X, Z(n)) @ RUyw (X, Z(d — n)) Z[-2d — 1]

| !

RTw (X, Z(n)) ®% RUw (X, Z(d — n)) @% Q Q[-2d - 1]

| !

RTw (X, Z(n)) ®% RUw (T, Z(d - n)) 0k Q/Z —> Q/Z[~2d — 1]

We explain why the lower square is commutative. Unwinding the definitions,
we see that the following square

RI(Xet,Z(n)) @% RHom(RT (X et, Z(n), Q[—2d — 1)) ——— Q[-2d — 1]

- |

RT(X ey, Z(n)) @k RT(Xer, Q/2Z(d — n)) Q/Z]-2d - 1]
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commutes, where RT (X oy, Z(n)) % RI(X e, Z(n)) is the obvious map and
RHom(RT (X, Z(n), Q[—2d — 1)) % RT(X.y, Q/Z(d — n))
— RI(Xet, Z(d — n))[1]

is ax 4—n[l]. Moreover, the square

RI(Xer, Z(n)) ®% RT(X e, Q(d — n)) ——= Q[~2d — 1]

| |

RI(Xey, Z(n)) ©% RT(Xer, Q/Z(d — n)) — Q/Z[~2d — 1]

commutes as well, where the top horizontal arrow is the zero map. It follows
that the lower square of the diagram above commutes.

Then the existence of the upper horizontal map p,, 4—, follows from the fact
that the columns of the diagram above are exact triangles. Its uniqueness
follows from the argument given in the proof of Theorem 3.9. By adjunction
we obtain

RTUyw (X, Z(n)) — RHom(RTw (X, Z(d — n)), Z]—2d — 1]). (44)
Applying the functor (—) ®L Z/mZ to (44) we obtain the map

RT(Xo,Z/m(n)) — RHom(RT(X.,Z/m(d —n))[—1],Z[—2d — 1])(45)
~ RHom(RI'(X e, Z/m(d —n)),Q/Z[—2d — 1]) (46)

where we identify RI'w (X,Z(n)) @ Z/m with RT(X.,Z/m(n)). By con-
struction, (45) is the map induced by AV (X ., n), which is an isomorphism by
assumption. So (44) is a morphism in D of perfect complexes of abelian groups
such that

RUyw (X, Z(n)) @ Z/mZ =+ RHom(RTw (X, Z(d —n)), Z[—2d — 1)) @* Z/mZ

is an isomorphism for any m. It follows that (44) is an isomorphism as well.
O

3.8 THE COMPLEX RT'w .(X,Z(n))

We continue to use the notations of Section 6. In particular, we denote
by X(C) the set of complex points of X endowed with the complex topol-
ogy. Complex conjugation gives a continuous action of Gg on X(C), and
we denote by X := X(C)/Gr the quotient topological space. We also de-
note by Sh(Gg, X(C)) the topos of Gg-equivariant sheaves on X(C), and by
RT'(Ggr, X(C),—) the cohomology of the topos Sh(Ggr,X(C)). We consider
the Gr-equivariant sheaves given by the Gr-modules (27i)"Z. We denote by
7 : Sh(Ggr, X(C)) — Sh(X) the canonical morphism of topoi. Recall that
there is a natural transformation Rw, — RT7,., where R7, is the functor de-
fined in Section 6.4.
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DEFINITION 3.23. For any n € Z, we define the complez of sheaves on Xy :

i*.Z(n) := Cone(Rm,(2mi)"Z — 77" R, (2mi)"Z)[—1]

o0

and we set
RTw (X, Z(n)) := RT (X, s Z(n)).

For n > 0, the canonical map 77" R, (2mi)"Z — 77" R7.(2m)"Z is a quasi-
isomorphism (see the proof of Lemma 6.7), so that we have a quasi-isomorphism
i* Z(n) = =" R, (2im)" 7

o0

for n > 0. There is an exact triangle

RT'w (Xwo, Z(n)) — RT(Gr, X(C), (2mi)"Z) N RT(X(R), 77" R7. (27i)" Z).

(47)
The projective bundle formula
=N
RTw (PY ., Z(n)) ~ @D RTw (Xoo, Z(n — i))[—2i]
1=0

can be obtained using (47) and an argument similar to the one given in the
proof of Proposition 6.29. We consider the representative of Ry (Xoo, Z(n))
given by the mapping fibre of the second map ¢ in the triangle (47). Consider
the map of complexes (16)

RT(X.., Z(n)) — RD(GR, X(C), (2mi)"Z).

We may redefine the object RI'(X s, Z(n)) € D as the one given by the mapping
fibre of the map of complexes

RT(X.t,Z(n)) — RT(Gg, X(C), (27i)"Z) — RI'(X(R), 7" R7.(27i)"Z).
The square of complexes

RT(X.t, Z(n)) —— RT(X(R), 7" R7, (2mi)"Z)

| |

RT'(Ggr, X(C), (2im)"Z) — RT(X(R), 7" R, (2mi)"Z)
commutes. By functoriality of the cone, we obtain a canonical map
u’, : RU(Xot,Z(n)) — RUyw (Xso, Z(n)).
PROPOSITION 3.24. There exists a unique map
it RTw (X, Z(n)) — RTw (Xs0, Z(n))
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which renders the following square commutative:

RF(?etaZ(n)) RPW(?’Z(W‘))

* %
uOO ZOO

Ry (Xso, Z(n)) —2 Ry (Xoo, Z(n))

Moreover, the square
RTw (X, Z(n))o —— RT(X,Q(n)) & RHom(RI'(X, Q(d — n)),Q[~2d — 1])
lz‘;m l(u;@b@, 0)
= RTw (Xoo, Z(n))g

RT'w (Xoo, Z(n))g
commutes, where the top horizontal map is the isomorphism of Corollary 8.12.

Proof. We set Dy ,, := RHom(RI'(X,Q(d — n)),Q[—2d — 2]). It follows from
Lemma 3.25 below and from the fact that Dy , is acyclic in degrees < 2n + 2
that the composite map

D 23 RT(Xor, Z(n)) — Ry (Xoo, Z(n)) (48)

is the zero map. The existence of %  follows. Its uniqueness can then be
obtained as in Theorem 3.9, using the fact that both RI'w (X,Z(n)) and
RT'w (X, Z(n)) are perfect complexes.

We now show the second statement of the proposition. The exact triangle

Dy — 22" RT (X o, Z(n)) — 722" H Ry (X, Z(n))
and the argument given in the proof of Theorem 3.9 show that the map from
Homp (122" RTw (X, Z(n)), 722" M Ry (X, Z(n)))

to
Homp (722" LRI (X oy, Z(n)), 722" T RT 1y (Xoo, Z(n)))

is injective. Hence the fact that 722" +1y*_ is torsion (see Lemma 3.25 below)

implies that 7=2"1i*_ is torsion as well. It follows that
7225 ® Q) : Dan[—1] = 72"V RTWw (X, Z(n))g
— T22n+1Rrw(Xoo, Z(?’L))Q

is the zero map. The fact that 752" (i*, ® Q) may be identified with u’, ® Q
follows from the commutativity of the first square of the proposition. O

LEMMA 3.25. The map
220 () 72 R (X oy, Z(n)) — 722" T Ry (Xao, Z(n))

s torsion.
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Proof. In view of the exact triangle (47), one is reduced to showing that the
composite map

722 RT (X oy, Z(n)) — 722" RD(Gg, X (C), (27)"Z)

is torsion. Denote by 722" RT(X.;, Q/Z(n))" the cokernel of the morphism of
complexes

H*(X o1, Q/7(n)) gin[—2n] — 752" 122" RT (X o, Q/Z(n))

— 72 RI(X e, Q/Z(n)).

Similarly, let 722" RT'(GR, X (C), (27i)"Q/Z)’ be the cokernel of the morphism
of complexes

H?"(Gr, X(C), (2m1)"Q/Z) aiv[~2n] — 7=*"RI(Gr, X(C), (27i)"Q/Z).

Then we have a commutative square

T2 RT(X o, Q/Z(n))'[—1] = 2R (X ot, Z(n))

lﬂ lv

7220 RD(GR, X(C), (271)"Q/Z) |~ 1] — 72271 RT(Gg, X(C), (273" Z)

where the upper horizontal map is a quasi-isomorphism. One is therefore re-
duced to showing that  is torsion. Note also that H2?" (722" RT(X ¢, Q/Z(n))")
is finite. Verdier’s spectral sequence (tensored with Q) shows that o is torsion
if and only if the induced map

H'(X e, Q/Z(n))aiw — H'(Gr, X(C), (210)"Q/Z) aiv
is the zero map for any ¢ > 2n + 1. Since the kernel of the map
HY(Ggr, X(C), (211)"Q/Z) 4in — H(X(C), (27)"Q/Z) giv
is killed by a power of 2, it suffices to show that
HY (X ot Q/Z(n))asy — HH(X(C), (27i)"Q/ L, (19)

is the zero map for any ¢ > 2n + 1.
The map (49) factors through (H (A, et,u®")G@)d_ where Q/Q is an alge-

braic closure and f is the étale sheaf on g of all roots of unity. It is therefore
enough to showing that

(g o n™%) =@ (Hi(g o Q/Zi)) =0 (50)
l

v
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for any ¢ > 2n + 1. Let [ be a fixed prime number. Let U C Spec(Z) be an
open subscheme on which [ is invertible and such that Xy — U is smooth, and
let p € U. By smooth and proper base change we have:

HY(X5 o Qu/Zu(n)) ~ H (X5 ., Qu/Zi(n))

where I, denotes an inertia subgroup at p. Recall that Hl(X]F et?
finitely generated Z;-module. We have an exact sequence

0= H'(X5, o4sZ1(n))cotor — H' (X5, s Qu(n)) = H' (X5, Q1/Zu(1))aiv — 0.

We get

Zi(n)) is a

0= (H'(X, s Z1(n))cotor) ¥ = H' (X5, Qu(n)) %

s (H (X, o0 QT2 () i) — Gy (X o Za(m))eoton).
Again, H* (G, , H'(X,

IE_‘Z, ,et?
we get a surjective map

Hi(XIF‘p,et’Ql(n))GFp - ((Hi(Xﬁp,etvQl/Zl(n))div)G% )aiv — 0.
Note that

(' (X, 0o Q@/Za()ain) ) = (B, o0 Qu/Za () )

By the Weil Conjectures, H'(X; %,,er» Qi(n)) is pure of weight i—2n. Fori > 2n+

1, we have i —2n > 0, hence there is no non-trivial element in Hi(X F,, et Qi(n))
ﬁxed by the Frobenius. This shows that

(F' (s, o0 Q) ) | = (X, Q)% = 0

div

Zi(n))cotor) is a finitely generated Z;-module, hence

div div '

hence that
(H (g o/ Za())

A fortiori, one has

= (H'(X, o @B ), =0

div div

(H'(%g, o Q/Zi(m))%%) =0

div
for i > 2n + 1, and the result follows.
O

DEFINITION 3.26. We define RTUyw (X, Z(n)), up to a non-canonical isomor-
phism in D, such that we have an exact triangle

RUyo(X,Z(n)) —s RTw(®,Z(n)) “= Ry (Xuo, Z(n)). (51)

The determinant detz RT'w, (X, Z(n)) is well defined up to a canonical isomor-
phism.
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To see that detz RT'w,.(X, Z(n)) is indeed well defined, consider another object
RT'w,(X,Z(n)) of D endowed with an exact triangle (51). There exists a
(non-unique) morphism

uw: Rlw,o(X,Z(n)) = Rlw,.(X,Z(n))’

lying in a morphism of exact triangles

RTw..(X,Z(n)) — RT'w (X, Z(n)) — RT'w (Xx, Z(n)) —

s n
Hul/"’ Idl Idl
s n

Rl (X,Z(n)) — RT'w(X,Z(n)) — Rl'w (X, Z(n)) —
The map u induces
detZ(u) : deterwyc(X, Z(n)) ;> detzRFWﬁ(X, Z(n))'

which does not depend on the choice of u [59].

4 WEIL-ARAKELOV COHOMOLOGY OF PROPER REGULAR SCHEMES

In this section X denotes a regular scheme proper over Z of pure dimension d
which satisfies AV (X ¢, n), L(Xc,n) and L(X ., d—n) and B(X,n). The Weil-
Arakelov complexes we introduce in this section will only play a minor role in
subsequent sections (in Conjecture 5.11 which does not really need them for its
formulation), and we mainly discuss them to make precise the picture outlined
in the introduction. The Weil-Arakelov complexes defined in subsections 4.2
and 4.4 below will only be specified up to a noncanonical isomorphism because
they are defined as mapping fibres or mapping cones in the derived category of
abelian groups. We certainly do expect a canonical construction of these objects
when the geometry underlying Arakelov theory is better understood but we do
not have bette r definitions at this point. There are more complexes than those
discussed below for which we have definitions, for example RT (X, Z(n)), but
these definitions are of the same preliminary nature and we do not include
them.

4.1 WEIL-ARAKELOV COHOMOLOGY WITH R(n)-COEFFICIENTS

For any n € Z recall the diagram (31) of (perfect) complexes of R-vector spaces.

DEFINITION 4.1. For each complez RT'»(Y,R(n)) in diagram (31) set

RT.2(Y,R(n)) := R+ (Y,R(n)) ® RT+(Y,R(n))[—1]. (52)
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We define a map 9, by commutativity of the diagram

H: (Y, R(n)) . HEM(Y,R(n))
[ [
(i)

H(Y,R(n)) & H; ™ (Y,R(n)) === Hy*'(Y,R(n)) ® Hi(Y,R(n))
so that there is a long exact sequence

Dl (Y R(n) 2D HELN(Y,R(n)) 2 - (53)

The motivation for this definition is its compatibility with previous work on
Weil-étale cohomology, with the Weil-Arakelov groups with Z(n)-coefficients
defined below, and possibly also with the conjectural picture of Deninger [21].
The dualities (19), B(X,n) and (34) imply corresponding dualities for the
Weil-Arakelov groups where the top degree is increased by one. We record the
duality implied by (34) in the following proposition.

PROPOSITION 4.2. There is a canonical homomorphism H2H1 (X R(d)) — R
and a perfect duality

Hi (X, R(n)) x Hy ™71 (X, R(d = n)) — Hi T (X, R(d)) — R
of finite-dimensional R-vector spaces for all i,n € Z. Moreover we have

H;r(?af@(n)) =0 f07" ) 7é 2n,2n + 1.

Proof. This is immediate from Prop. 2.10. O

4.2 WEIL-ARAKELOV COHOMOLOGY OF X
Recall the direct sum decomposition

RTw (X, Z(n))g < RT(X,Q(n)) & RHom(RT (X, Q(d — n)), Q[—2d — 1])
of Corollary 3.12 which induces a decomposition

RTyw (X, Z(n))g — RT(X,R(n))®RHom(RT(X,R(d—n)), R[-2d—1]). (54)
Also recall the map (32)

RT(X,R(n)) & RTp(X/r,R(n)) & 7" "' RTp(X/r, R(n))
where p is the Beilinson regulator and o a splitting of the natural inclusion
TSI RIp(X/r, R(n)) = RUp(X/r, R(n)).

We obtain a composite map

RTyw (X, Z(n)) 2% ROw (X, Z(n))x = RU(X,R(n)) 22 7<*""' Rlp (X /g, R(n))
(55)

where 7y is the first projection in (54).
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DEFINITION 4.3. Define RT..(X,Z(n)) as a mapping fibre of the map (55).
By definition there is an exact triangle
R4 (X,Z(n)) — RT'w (X, Z(n)) — 7" 'RTp(X/p,R(n)) —.  (56)
PROPOSITION 4.4. There is a map in the derived category
RTur(X, Z(n)) = RTar(¥,R(n)) (57)
where RU,(X,R(n)) was defined in (52).
Proof. By definition
RT4 (X, R(n)) = RT(X,R(n)) & R (X, R(n))[-1],

so to define (57) we need to define its two components. Recall from section 2.3
that RT'(X,R(n)) was defined as the mapping fibre of o o p. Hence we obtain
an induced map on mapping fibres

RU..(X,Z(n)) — RT'(X,R(n))
which is the first component of (57). The second component is the composite
RU..(X,Z(n)) — RTw(X,Z(n)) = RTw(X,Z(n))r —
22 RT(X,R(d — n))*[-2d — 1] £ RT.(X,R(n))[~1] & RT(X,R(n))[-1]

where 79 is the second projection in (54), B is the duality isomorphism of
conjecture B(X, n) and ¢ is the natural map arising from the respective mapping
fibre definitions of its source and target. O

DEFINITION 4.5. Define RU,.(X,R/Z(n)) as a mapping cone of the map (57).

By definition there is an exact triangle
R0 (X,Z(n)) — RLw(X,R(n)) — R4 (X, R/Z(n)) — .

The following proposition gives an analogue of (56) for R/Z(n)-coefficients.
Define the complex RT'w (X,R/Z(n)) as the mapping cone of the map ®1 in
(55) so that there is an exact triangle

RTyw (X, Z(n)) <5 RTw (X, Z(n))g — RTw (X, R/Z(n)) — .  (58)
PROPOSITION 4.6. There is an ezact triangle
(722" RU'p (X, R(n))) [-2] — RTw (X, R/Z(n)) — RTa(X,R/Z(n)) — .
(59)
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Proof. The definition of RI'..(X,Z(n)) as a mapping fibre of the composite
map (opm1) o ®1 gives an exact triangle

RTw (X, R/Z(n))[~1] = RT.(X,Z(n)) % Cone(opmi)[~1] —
and one has an isomorphism
Cone(opm)[—1] — RT(X,R(n)) ® RHom(RT(X,R(d — n)),R[-2d — 1]).

The definition of RT,, (X, R/Z(n)) as a mapping cone of the composite map
(id®tB~1) o a gives an exact triangle

RTw (X, R/Z(n)) = RT (X, R/Z(n)) — Cone(id ®B~1) — .
Since Cone(id ©:B~!) = Cone(r) and one has an exact triangle

RT(X, R(n)) L2 RD(X,R(n)) — 722" RLp (X /g, R(n)) —

the proposition follows. O
REMARK 4.7. One has two ezact sequences

HY b Y(Ag) —n CH"(X) —— CH™(X) ——0

HE ! (Xp Rn) —— HE(F,Zn)) —— H*"(X, Z(n) — 0

where the top row is the exact sequence (40) of Gillet and Soule, the bottom
sequence is induced by the exact triangle (56), € is the natural map from the
higher Chow complez to its étale hypercohomology and € we only expect to exist.
However, even if € does exist it will not in general be an isomorphism because
e may not be an isomorphism. In general we expect the maps € and € to have
finite kernel and cokernel. We also remark that HE (X,Z(n)) can be nonzero
both for i < 2n and i > 2n and satisfies the duality in Theorem 4.9 below.

Deligne cohomology RI'p (&g, R(n)) is contravariantly functorial and so is its
truncation 752"~ RI'p (X g, R(n)) whereas the complex RI'w (X, Z(n)) is con-
travariantly functorial for flat morphisms.

LEMMA 4.8. Let f : Y — X be a flat morphism. Then there exists a
(nonunique) map

f* 1 RUw (X, Z(n)) — RLW (Y, Z(n))
sitting in a morphism of exact triangles
RT (X, Z(n)) — RTw (X, Z(n)) — TSQn*lRFD(A’/R, R(n)) ——

I | l

RT..(Y,Z(n)) — RTw (Y, Z(n)) — TSQn*lRFD()}/R, R(n)) ——
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Proof. We need to show that the outer square in the diagram

RTw (X, Z(n)) — RT'w (X, Z(n))g — RT(X,Q(n)) — TSQ”_lRFD(X/R, R(n))

l | l !

RUyw (Y, Z(n)) — RT'w (Y, Z(n))g — RT(Y,Q(n)) — TSzn*lRFD()}/R,R(n))

commutes in the derived category. But the left square clearly commutes, the
middle square commutes by Corollary 3.12 and the right square commutes by
functoriality of the Beilinson regulator. O

4.3 WEIL-ARAKELOV DUALITY FOR X

We have already noted in Prop. 4.2 a duality for Weil-Arakelov cohomology
with R(n)-coefficients. In this section we establish a Pontryagin duality between
Weil-Arakelov cohomology with Z(n) and R/Z(d — n) coefficients.

For homological algebra of locally compact abelian groups we refer to [45]. A
continuous homomorphism f : A — B of locally compact abelian groups is
called strict if A/ker(f) — B is a closed embedding, and a complex of locally
compact abelian groups is called strictly acyclic if all differentials are strict
and the complex is acyclic in the usual sense. The bounded derived category
of locally compact abelian groups is defined in [45] by inverting all maps of
complexes whose mapping cone is strictly acyclic.

We denote by GP the Pontryagin dual of a locally compact abelian group G.
The functor (—) preserves strict morphisms and strictly acyclic complexes
and extends to the bounded derived category of [45]. Examples of objects in
this category are bounded complexes P® (resp. V'*) of finitely generated free
abelian groups (resp. R-vector spaces) as well as the complexes RI ., (X, Z(n))
and RT,.(X,R/Z(n)) defined in Def. 4.3 and 4.5, respectively. To see this
note that any map P®* — V* in the derived category of abelian groups can be
realized by a map of complexes which is automatically continuous since the P?
carry the discrete topology. There is a natural isomorphism

(V.)D o (V.)*
and a short exact sequence of complexes
0 — Homgz(P*,Z) - Homgz(P*,R) — (P*)” — 0. (60)
Finally note that the cohomology groups of a complex of locally compact

abelian groups (taken in the category of abelian groups) carry an induced
topology which however need not be locally compact.

THEOREM 4.9. For n € Z there is a quasi-isomorphism
RT..(X,Z(n))P = R, (X, R/Z(d — n))[2d + 1]

DOCUMENTA MATHEMATICA 23 (2018) 1425-1560



1474 MATTHIAS FLACH AND BAPTISTE MORIN

and the cohomology groups of both complexes are locally compact. The isomor-
phism L
HZ™H (X, R/Z(d)) ~ R/Z

is canonical and hence one obtains a Pontryagin duality

H: (X, Z(n)) x H*H1=4(X R/Z(d —n)) — H2FY (X, R/Z(d)) ~ R/Z.

Proof. One has an isomorphism of exact triangles with 6 = 2d + 1
— RI'w (X, Z(n))" —  RI'w(X,Z(n)); <+ RIw(X,R/Z(n))"
]~ [~ [~
+— RTw (X, R/Z(d —n))[8] + RTw(X,Z(d—n))r[d] <+ RTw(X,Z(d —n))[d]

where the top row is the Pontryagin dual of (58) and the middle isomor-
phism is clear from (54). More concretely, if P® denotes a representative of
RTyw (X, Z(n)) and ¢ denotes the map in (60) then 3 is the map from the cone
of ¢ to the quotient complex of ¢+ (see [90][1.5.8]), combined with the duality
isomorphism of Theorem 3.22. Furthermore, one has an isomorphism of exact
triangles

RTW(X,Z(n))?  «  RTw(X,Z(n)?  « (r=*" 1 RDp (X5, R(n)) )"

- T -
RTa (X, R/Z(d — n))[5] + RTw (X,R/Z(d — n))[d] « (722<d*">RFD(X/R,R(d - n))) [6 —2]
(61)
where the top row is the Pontryagin dual of (56) and 8" arises from the duality
(19) for Deligne cohomology

(TSQn*lRFD(A’/R, R(n)))* oo >—2n+1 (RTp(X /g, R(d —n))[2d — 1])

~ (722<d—">RFD(X/R, R(d — n))) 5 —2].

The bottom row is (59) with n replaced by d —n. The quasi-isomorphism £’ is
non-canonical, quite like our pairing in Prop. 2.10. However, in degree 2d + 1,
one has a canonical isomorphism

HZHH (X, R(d)) = R
arising from Lemma 2.3 and Definition 4.1 and a canonical isomorphism
HEHH(X,2(d)) = Hy (X, 2(d) 2 Z

arising from Theorem 3.22 and the map defined in Prop. 4.4 is in fact the
inclusion.
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The long exact sequence induced by (56) gives an isomorphism
H,, (X, Z(n)) = Hyy (X, Z(n))
for ¢ > 2n + 1 and an exact sequence
= Hy ' (X, Z(n)) % Hp (X, R(n)) = Hy (X, Z(n)) — Hiy (X, Z(n)) =

for i < 2n. Since H{,(X,Z(n)) is finitely generated and the image of the
Beilinson regulator p is a lattice, the natural topology on H: (X, Z(n)) is locally
compact. O

In the proof we have obtained the following more precise result. For a locally
compact abelian group G denote by G° the connected component of the identity
and by G, a maximal compact subgroup.

COROLLARY 4.10. The locally compact group H: (X, 7Z(n)) is finitely generated
for i > 2n+ 1 and a compact Lie group for i < 2n — 1. Dually, the locally
compact group H! (X, R/Z(n)) is finitely generated for i > 2n+2 and a compact
Lie group for i < 2n. For G = H?"(X,Z(n)) and G = H>""1(X R/Z(n)) the
group G/G° is finitely generated, G. is a compact Lie group and G°/G.N G°
is a finite dimensional real vector space.

REMARK 4.11. One may use the previous result to redefine, up to a canonical

isomorphism, the groups H' (X,7(r)) and Hi (X,R/Z(t)) in terms of Weil-
étale cohomology groups, for i # 2r and i # 2t + 1 respectively.

4.4 WEIL-ARAKELOV COHOMOLOGY WITH COMPACT SUPPORT
For any n € Z recall that the complex
RTar (X, R(n)) := RT.(X,R(n)) @ RT(X,R(n))[~1]

was already defined in Definition 4.1, the complex RT'yy (X, Z(n)) in Definition
3.26 and that there is an exact triangle (51) of perfect complexes of abelian
groups

RUw (X, Z(n)) = RUw (X, Z(n)) == RUw(Xoo, Z(n)) . (62)
We define versions of these complexes with R/Z(n)-coefficients as in (58).
LEMMA 4.12. The composite

(722" RUp (X5, R(n))) [-2] — RDw (X, R/Z(n)) =224

RT'w (Xoo, R/Z(n)),
where the first map is the one in (59), is the zero map.
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Proof. From the proof of Prop. 4.6 we obtain a commutative square

722 BRI (X, R(n))[~2] ——— Cone(opm1)[—1] 2 RU(F,R(n)) & RI(X, R(d — n))* (-]

I |
22" Rl p (X)g, R(n))[-2] ——— RUyw (X,R/Z(n))
where the upper horizontal map factors through the second summand. We
have another commutative diagram

RUw (T, Z(n))r = RT(X,R(n)) ® RT(X,R(d — n))*[=6] —=Z55  RTw (KXo, Z(n))x

| |

RTw (X, R/Z(n)) ——— RT'w(Xsx,R/Z(n))
where the upper horizonal map is zero on the second summand by Prop. 3.24.
This implies the Lemma. |

DEFINITION 4.13. Define
RTar,o(X,R/Z(n)) := Rlw,o(X,R/Z(n))
and
RUo(Xoo, R/Z(n)) := RTw (Xoo, R/Z(n)) ® (122" RTp(X )z, R(n))) [-1].

In view of Lemma 4.12 the exact triangle (59) then extends to a commutative
diagram with exact rows and columns

RTw,o(X,R/Z(n)) =5 Rlaro(X,R/Z(n)) —

| |

(r>*"RUp(X)2, R(n) [-2) — RTw(R,R/Z(n) — RLuw(@.R/Z() —

| li;@R/Z l

(722" RU(X)5, R(n))) [-2) = RTw (Xoo,R/Z(n)) — Rlar(Xoo, R/Z(n)) —

3 (63)
and it is also clear that the cohomology groups H}, .(X,R/Z(n)) are compact

for all 4,n € Z. The exact triangle (7) in the introduction is just the defining
triangle of RT'w,.(X,R/Z(n)) and the exact triangle (5) in the introduction is
given by the following proposition. Recall the definition of algebraic deRham
cohomology

RFdR(XF/F) = RF(XF,Zar; Q}p/F)

for any field F' of characteristic zero. For F' = C one has an isomorphism
RTar(Xc/C) = RI'(X(C), Q% ¢) /)
and for F' = R an isomorphism

RT4r(Xe/R) = RT4r(Xc/C)“" = RT (G, X(C), Yy c)/c)-
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PROPOSITION 4.14. There is an exact triangle of perfect complezxes of R-vector
spaces

RT4r(Xg/R)/Fil"[2] = RTur o(X,R(n)) = RUw.o(X,Z(n))g —  (64)
and hence a map

RUaro(X,R(n)) = RTar.o(X,R/Z(n)). (65)

Proof. Recall that by definition

RUw (Xoo, Z(n)) = RT(Xno,i% Z(n))

where 7% Z(n) is the complex of sheaves
i*.Z(n) := Cone(Rm,(2mi)"Z — 77" R7.(2mi)"Z)[—1]
on Xoo = X(C)/Gr. So we have
RTw (Xoo, Z(n))r = R (Xs, R (27i)"R) = RI'(Gr, X(C), (27mi)"R)
and the exact triangle
Q% c)/c/F"[-1] = R(n)p — (2mi)"R[0] —
in Sh(Gg, X(C)) induces an exact triangle
RT (X /R)/Fil*[—1] = RU'p(X)z, R(n)) = RUw (Xo, Z(n))g — . (66)
One then has a commutative diagram with exact rows and columns

RT4r(Xr/R)/Fil*"[-2] — RI:(X,R(n)) ® RT(X,R(n))[-1] — RTw,(X,Z(n))r

Le !

RI'(X,R(n)) ® RT'(X,R(d — n))*[-6] = RI'w(X,Z(n))r

~

! !

RTyr(Xr/R)/Fil"[-1] — RT'p(X/r,R(n)) ﬁ) Rl (Xoo, Z(n))r

where (7 is the isomorphism (54), the middle column is the sum of the triangle
(17) with the duality isomorphism of conjecture B(X',n) and the bottom row
is (66). The top row then gives (64). O

DEFINITION 4.15. Define RT,; (X, Z(n)) to be a mapping fibre of the map (65)
so that there is an exact triangle

RTar o(X,Z(n)) = RTar o(X,R(n)) = RTaro(X,R/Z(n)) — .  (67)
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One then has a diagram with exact rows and columns

RTar,c(X,Z(n)) —  RI(X,R(n)) ® RT(X,R(n))[—-1] — RTw(X,R/Z(n)) —

! [ !

RTw (X,Z(n)) — RT(X,R(n))® RT(X,R(d—n))*[-§] — RIw(X,R/Z(n)) —

| | Jienr

RUp (X5, Z(n)) 22 RT'p (¥, R(n)) 24y RUw (Xoo, R/Z(n)) —
. (68)
where RI'p(X)r,Z(n)) is the hypercohomology of the complex of sheaves

Cone(Rm.Z(n)p — 77" R7.(2mi)"Z)[-1]
on X, and B, is the composite of 83 with the natural map
RTw (X0, Z(n))r = RTw (X, R/Z(n)).

Alternatively, one can follow the construction of Ry (X, Z(n)) in section 3.8,
starting with the étale Beilinson regulator on the level of complexes (15)

RT(X.y, Z(n)) — RTp (X, Z(n))

and using the left column in (68) as the defining triangle of RTa, (X, Z(n)). As
we already remarked in the introduction to this section, neither construction
gives RTar.o(X,Z(n)) or RUur (X, R/Z(n)) up to a unique isomorphism in the
derived category.

REMARK 4.16. All complezes in (67) can be represented by bounded complexes
of locally compact abelian groups (see the considerations at the beginning of
subsection 4.8) and (67) is in fact an exact triangle in the bounded derived
category of locally compact abelian groups defined in [45]. For a locally compact
abelian group G we define the tangent space to be the R-vector space

TooG := Hom,s(GP, R) = Hom,ts(Homss (G, R/Z), R)

where Homets(—, —) is endowed with the compact open topology. While the
topology on GP is always locally compact, this is not in general true for
Homs(G,R). However, by [45]|[Prop. 3.12] it is true if G has finite ranks in
the sense of [45][Def. 2.6] and all the complezes in (67) are easily seen to con-
sist of groups of finite ranks. By [45][Prop. 4.14 vii)] the functor Hom.ts(—, R)
is exact and of course so is (—)P. We conclude that T, is an ezact covariant
functor (with values in finite dimensional real vector spaces if the argument
has finite ranks) and extends to the bounded derived category of locally compact
abelian groups. The image of the exact triangle (67) under the tangent space
functor T, is the exact triangle (64).
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DEFINITION 4.17. Define RT,,(Xx,Z(n)) to be the mapping fibre of the com-
posite map
RUp (X, Z(n)) 22 RTp(X)g, R(n)) % 75" ' RTp(X g, R(n)).
PRrROPOSITION 4.18. There is an exact triangle
RT o (Xoo, Z(n)) = RTar(Xoo, R(1)) = RTar(Xoo, R/Z(n)) — .

)
Proof. The mapping fibre of 85 identifies with RT'y (Xoo, R/Z(n))[—1] and that
of o with 722" RT'p(X/g,R(n)). The definition of RTa (X, Z(n)) as the map-
ping fibre of the composite o o 85 gives the central horizontal exact triangle in
the diagram

RTar (Xoo, R/Z(n))[—-1] — (TZQnRFD(X/R,R(TL))) [—2] N RT'w (Xoo, R/Z(n))

| o ||

RT o (Xoo, Z(n0)) — TZQnRPD(X/R,R(n)) — Ry (X, R/Z(n))

l | !

- 722 RTp (X )R, R(n))
RUur(Xo,R0) = o (a0 prn (b R()) 1]

l l !

while (63) gives the upper horizontal exact triangle. The diagram commutes
and the middle and right column are exact, hence so is the left. O

— 0

The relation between Weil-étale and Weil-Arakelov cohomology with Z(n)-
coefficients can then be summarized in the following diagram. The correspond-
ing diagram (63) for R/Z(n)-coefficients is simpler which is why we discussed
R/7Z(n)-coefficients first. This can be traced to the fact that Deligne cohomol-
ogy with R/Z(n)-coefficients coincides with singular cohomology with R/Z(n)-
coefficients for any n € Z.

DEFINITION 4.19. Define T(X,n) to be the mapping cone of
RUqr(Xp/R)/Fil"[-1] = RTp(X/g,R(n)) = 7=*""'RI'p(X/r, R(n)).

We leave it again as an exercise to show exactness of the rows and columns in
the following diagram. Note that the middle, resp. right hand, column consists
of perfect complexes of abelian groups, resp. R-vector spaces.

RTar o(X,Z(n)) — RT'w.(X,Z(n)) — RTqr(Ar/R)/Fil"[-1] —

| l l

RT.(X,Z(n)) — RTw(X,Z(n)) — 75" 1RIp(XR,R(n)) —  (69)

! | l

Rl (Xx,Z(n)) - RTw(Xx,Z(n)) — T(Xoo,n) —
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5 SPECIAL VALUES OF ZETA FUNCTIONS

Throughout this section, X denotes a proper regular connected arithmetic
scheme of dimension d. Additional assumptions on X will be given at the
beginning of each subsection.

In the introduction we have already given a conjectural description of the van-
ishing order and leading Taylor coefficient of ((X, s) at any integer argument
s =mn € Z in terms of Weil-Arakelov groups, and we have seen how to refor-
mulate these conjectures in terms of a fundamental line. In the following we
shall exclusively work with the fundamental line and leave the Weil-Arakelov
description as a suggestive reformulation that invites further exploration. The
main thing that remains to be done is a precise definition of the correction
factor C(X,n) € Q and a proof of the equivalence of our formulation with the
Tamagawa number conjecture of Fontaine and Perrin-Riou [31].

5.1 DE RHAM COHOMOLOGY

Let n € Z be an integer. We consider the derived de Rham complex modulo
the Hodge filtration LQ?, ,/Fil" (see [49][VIIL.2.1]) as a complex of abelian
sheaves on the Zariski site of X. Note that L}, ,/Fil" = 0 for n < 0. We
denote

RU4p(X/Z)/F" := RU (X4, LQY 1 /Fil").

We remark that H},(X/Z)/F" := H'(RTqr(X/Z)/F™) is finitely generated
for all 7 and vanishes for ¢ < 0 and ¢« > d + n. Indeed, since X is regu-
lar, the map X — Spec(Z) is a local complete intersection, hence the cotan-
gent complex Ly,z has perfect amplitude C [~1,0] (see [49]|[IIL.3.2.6]). It
follows that LAPLy /7 has perfect amplitude C [—p,0] (see [49][II1.3.2.6]). By
[48][2.2.7.1] and [48][2.2.8], LAP Ly 7 is globally isomorphic in D(Ox ) to a com-
plex of locally free finitely generated Ox-modules put in degrees [—p, 0], where
D(Ox) denotes the derived category of Oy-modules. Since X is proper over
Z, H(Xzqr, LAPLx 7) is a finitely generated abelian group for all ¢ and 0 for
almost all g. Then the spectral sequence

HY(Xzqr, LAP<"Lxz) = HL (X /Z)/F"

shows that H'p(X/Z)/F™ := H(RU4r(X/Z)/F™) is finitely generated for all
i and vanishes for i < 0 and i > d+n. Here LAP<"Ly 7 := LAPLx 7 forp <n
and LAP<"Ly 7 := 0 for p > n.

For any flat Z-algebra A, we have a canonical isomorphism

RU4p(X/Z)/F™ @7 A = RU4p(Xa/A)/F" := RU(XA zar, L%, ,4/Fil")

where X4 := X ®z A. Moreover, if X4/A is smooth then we have a quasi-
isomorphism

L, /FiI" 5 Q557
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5.2 THE FUNDAMENTAL LINE

We suppose that X satisfies Conjectures L(Xc,n), L(Xe,d — n) and
AV(Xet,TL).

DEFINITION 5.1. The fundamental line is
A(X/Z,n) := detz RT'w,.(X,Z(n)) @z detz RTqr(X /Z)/F".

PROPOSITION 5.2. If X satisfies Conjecture B(X',n), then there is a canonical
trivialization

Moo (X, 1) : R =5 detg RTar o (X, R(n)) = A(X/Z,n) @7 R.
Proof. The first isomorphism is induced by the long exact sequence (53) and
the second by the exact triangle (64). O

5.3 THE cOMPLEX RI",, (AF,,Zy(n)) AND MILNE’S CORRECTING FACTOR

Let p be a prime number. Recall that, if Y is a smooth scheme over [, one
has
Z]p"(n) = vt [=n] := W, Qy,,[—n],

where WTQQlOg is the étale subsheaf of the de Rham-Witt sheaf W, Q% locally
generated by the sections of the form dlog(f1) A--- Adlog(f,). Here f; denotes

the Teichmuller representative of the unit f; € Os. It follows that
RTo+(Y,Zp(n)) := holim RT'(Yet, Z(n)/p®)

is a perfect complex of Z,-modules if Y is a smooth projective variety.
To treat arbitrary separated schemes of finite type over IF),, we consider the
eh-topos over F,, [38] and we denote

RT., (Y, Zy(n)) := holim RT(Yep,Z(n)/p®),

see [38][Sect. 4]. We also denote by R(F,,c) the strong form of resolution of
singularities given in [38|[Def. 2.4] for varieties over F, of dimension < ¢. If
R(F,,dim(Y")) holds, then RT'.(Y,Z,(n)) is perfect for Y proper over F, (see
[38][Cor. 4.4] and the canonical map RT(Y,Z,(n)) — RTcn(Y,Zy(n)) is a
quasi-isomorphism for ¥ smooth (see [38][Thm. 4.3]).

NOTATION 5.3. Let X be a proper regular arithmetic scheme. We set
RUy,(Xs,, Zp(n)) := RUer (X524, Zyp(n))

if Xﬁd is smooth, and
RT¢, (X, Zp(n)) := R en(Xr,, Zp(n))

otherwise. Here Xﬁd denotes the mazimal reduced closed subscheme of Xf,.
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Notice that, under R(F,,dim(XF,)), one has RI,(AF,,Zy(n)) =~
RTcn(AX¥,,Zp(n)). Indeed, the map X]}%Z‘d — Af, induces an isomorphism
in the eh-topos (since this map is both a monomorphism and an eh-covering),
so that R(F,, dim(Xr,)) yields

RT o1 (X529, Zy(n)) = RUen (X5, Zy(n)) = RUen (X, Zp(n))

whenever Xﬁd is smooth. We introduce RI",;, (XF,,Z,(n)) in order to avoid the

systematic use of R(IF,, dim(AF,)). We proceed similarly for Milne’s correcting
factor, and we refer to [38][Sect. 4.1] for the definition of H?, (X, ,Q").

DEFINITION 5.4. Let X be a proper regular arithmetic scheme. We set

X(Xe,,0,n) = Y (=1)"™ - (n — i) - dimg, HY,, (45, Q)

i<n,j
if Xﬁd is smooth, and
X(Xg,,0,n) = > (=1)"7 - (n — i) - dimg, H, (X, Q")
i<n,j

if Xﬁd is singular and R(F,, dim(Ay,)) holds.

5.4 THE LOCAL FACTOR ¢p(X,n)

The following conjecture is a p-adic analogue of the fundamental exact triangle
RU4r(Xr/R)/F"[—-1] = RI'p(X)g,R(n)) — RT(GR, X(C), (2mi)"R)

for Deligne cohomology.

CONJECTURE 5.5. D, (X,n) There is an exact triangle of complezes of Q,-
vector spaces

RTar(Xg,/Qp)/F"[—1] = RTet(Xz,, Qp(n)) — Ry (Xk,, Qp(n)).

The triangle of Conjecture 5.5 must be compatible with the fundamental trian-
gle of [10][Thm. 5.4] in the following sense. If Az /Z, is smooth and n < p—1,
then we have an isomorphism of triangles

RUar(Xo,/Qp)/F" (1] REet(Xz,, Qp(n)) RL et (X, Qp(n))

l | l

RT(Xg,,p(n) - Q%7)q, [-1] — RI(Ax,, 6x, (n))o, — RL(&k,, WeQk, 1.[-nl)g,

<n
XQp /Qp
Xp, /Q, is smooth, the middle vertical isomorphism is given by [37][Thm. 1.3]

where the left vertical isomorphism follows from L€, o JF" ~Q since
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and the right vertical isomorphism is given by [38][Thm. 4.3] together with the
quasi-isomorphism Z/p"(n) ~ v;}[—n] over Ak, ;. Finally, p(n)- Q3" is defined
as in [10].

Conjecture 5.5 gives an isomorphism A, (X, n) :

(detz, RTt(Xz,, Zy(n))) o

= detQp RT et (XZ,, , Qp (n))

~

—  detg, BT, (Xz,, Qp(n)) ®q, ety RTar(Xg, /Qp)/F"

= (detz, RT, (X, ,Z,(n)) ®z, dety ' RUar(Xz, /Z,) /F")Q

/~/

P

DEFINITION 5.6. We define

dp(X,n) = det(N\p(X,n)) € Q) /Z) and c,(X,n) = pXXenOm) g (X ).

Here the determinant of A,(X,n) is computed with the given integral struc-
tures, i.e. one has

Ap (dp(X,n) ™" - detz, RT ot (Xz,, Zy(n)))
= dety, RI',;,(Xr,, Zy(n)) ®z, ety RUap(Xz, [Zy)/ F™. (70)

REMARK 5.7. For simplicity, we assume R(F,, dim(Xy,)) in this remark. We
expect a definition of RU'w, .(X[1/p],Z(n)) such that there is an exact triangle
of perfect complexes of abelian groups

RTw,o(X[1/p], Z(n)) = RUw,(X, Z(n)) = RTwh(XF,, Z(n))

where RU'w,(XF,,Z(n)) is the cohomology of the Weil-eh topos [38][Sect. 5].
Similarly, we expect an exact triangle of perfect complexes of abelian groups

RUgr.(X[1/pl/Z)/F" — RT4r(X/Z)/F" — RT( Xk, ch, LQgeh/Z/F”)

where RF(X]FP,E;L,LQE%/Z/F”) is defined as in [74]. The multiplicative Euler

characteristic of RT' (X, cn, LQ’(‘Deh/Z/F”) 18 pX(XFP’O’"). Conjecture 5.5 would
give an ezxact triangle analogous to (64)

RUan,c(X[1/pl/Z)/F" @ Qp[=2] = RTet,e(X[1/p], Qp(n)) = Rl'w,c(X[1/p], Z(n))q,

hence an isomorphism

(detZP Rret,c(x[l/p]v Zp(n)))(@p
—  (detzRTw,c(X[1/p], Z(n)) ®z detzRTar.o(X[1/p]/Z)/F"))q, -

Then c,(X,n) is the determinant of this isomorphism.
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PROPOSITION 5.8. Forn <0, D,(X,n) holds and c,(X,n) = 1mod Z) for all
D.
Proof. By definition, we have RI'qr(Az,/Qp)/F™ = 0 and the map

RTe(Xy,, Zpp(n)) — RTwt(Xk,, Zpp(n)) — RTon(Xe,, Zp(n))
is an isomorphism by [38][Thm. 3.6]. O
PROPOSITION 5.9. Assume that X has characteristic p. Then D;(X,n) holds
and ¢;(X,n) = 1modZ; for all primes I.
Proof. We have RT¢y(Xy,,Zy(n)) = RUet(X, Zp(n)) and

RFdR(XZP/Zp)/Fn ~ RFdR(X/Z)/Fn ®Z Zp.

The cohomology groups of the complex RT 4 r(X/Z)/F"™ are finite, and the
alternate product of their orders is pX(¥m @m) hy [73], so that dp(X,n) =
p~X(Xip,Oom) modZ,. For I # p, we have Xz, = X, = (0, hence ¢;(X,n) =
di(X,n) =1modZ,. O
PROPOSITION 5.10. Let X be a reqular proper arithmetic scheme. We have
cp(X,n) = 1modZ) for almost all p.

Proof. By Proposition 5.9, we may assume that X is flat over Z. We may also
assume n < p — 1 and Az, /Z, smooth. By Remark 7.23 and by [10][Thm. 5.4|
the triangle

RI'(Az,,p(n) - Q;ZP/ZP)[—l] — RU¢(Xz,,Zyp(n)) — RU (X, , Zy(n))

is exact, where

< . 0 -1 1 -1
p(n) : QX;lp/Zp T [pn ’ QXZp/ZP %pn ' QXZP/ZP TP Q}ZP/ZP]

sits in degrees [0,n — 1]. The local factor d,(X,n) measures the difference
between two different Z,-structures on detg, RT'¢;(Xz,,Qp(n)). The first of
those Z,-structures is given by

det@p RF@t (XZP ) QP (n))
—  detg, RTet(Xk,,Qp(n)) ®q, dety, RUar(Xg, /Qp)/F"

)
-~ (dethRFet(XFp, (n) ®z, detileFdR(XZp/Zp)/F”) ®z, Qp
)

ZP
=+ (detz, RLat (s, Z,(n)) @z, det ROz, Q5 15))

where the last isomorphism follows from LQ}, , /F" ~ Q3" , since Az, is
smooth. The second Z,-structure is
detQp Rret (‘XZ;D ’ Qp(n))

—_— (dethRFet(XZp ) Zp(n)))(@p

=5 (det, BT (Xz,, 7y (n)) @3, et RT (X, ,p(n) - Q57 /zp))Q .
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Hence d,,(X,n) is defined as the determinant of the isomorphism

(detz RY (X, p(n) - Q5 /ZP))Q 5 (detz BRI (%, Q57 /Zp))Q

with respect to the given integral structures. The Hodge to de Rham spectral
sequence gives the commutative square of isomorphisms

(detgpl RI(Xz,.p(n) - Q5 /Zp))@l, (detileF(XZp, Q<n

Xap/ ZP)) @

(—1)ititt

Hj(XZp’pnii ' Q}ﬁp/zp))(@ (®i<nu’ deth Hj(XZr’ Qifzp/zp))
P

(_1)i+l+1
3

(®i<n;j detZ Q
where the vertical maps identify the given lattices and the horizontal maps
are the obvious identifications. Hence dp,(X, n) is the determinant of the lower
horizontal map.

In view of ‘ ' ‘ '
HJ(XZ;J’QIXZP/ZP) ~ H'(X,Q% /) ®z Ly

and since Hj(X, QiX/Z) is a finitely generated Z-module, one may suppose that

Hi(Xy,, Q, /Zp) is a finitely generated free Z,-module for any 4, j. It follows

that d,(X,n)~! is the determinant of the isomorphism

_1)iti o, ; i ~ -1t i
(@ det(Zp AR .HJ(XZP,QXZP/ZP)> x <® det%p ) HJ(XZP’QXZP/ZP)>
Q Q

i<n;j i<n;j
P P

and we obtain

dy(X,n) = p Picn,; (1) (n—i)-ranky, HY (Xy, ’Qz"zp /Zp)_

Moreover, since H7 (Xy, , Qi?% /z,) 18 a free Z,-module for any i, j, we have (see

for example [53][Prop. 6.6]
HJ‘(XZP,QZ'XZP /z,) ©z, Fp = Hj(XFP,Qg(FP /F,)-

The result follows. O

5.5 THE MAIN CONJECTURE

Let X be a regular proper arithmetic scheme. We assume that X satisfies
L(Xe,n), L(Xe,d — n), AV(Xe,n), B(X,n) and D,(X,n) for any prime
number p. Moreover, we assume that R(FF,, dim(AF,)) holds at the primes p
where Xﬁd is singular. We suppose that

1
s = 1] TN N@—

reX)y
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which converges for Re(s) > dim(&X), has a meromorphic contination to the
whole complex plane. We denote by ords—, (X, s) € Z its vanishing order and
by ¢*(X,n) € R its leading Taylor coefficient at s = n.

CONJECTURE 5.11. For anyn € Z
orde—n((X,5) = Y (=1)"-i - dimpH}, (X, R(n)).
i€EZ
We consider the rational number
CX,n) =[] lep(X.n) |, = J] poetert®m)
p<oo p<oo

where v, denotes the p-adic valuation. Recall from Proposition 5.2 that we
have a trivialization

Moo = Aoo(X,n) : R =5 detg RTar o (X, R(0)) = A(X/Z,n) @z R
induced by cup-product with the fundamental class.

CONJECTURE 5.12.
Ao (CH(X )™ C(X,n) - Z) = A(X]Z,n).

We draw the following immediate consequence of Conjecture 5.11. The defini-
tion of ((X, s) will be recalled in the proof.

PROPOSITION 5.13. Conjecture 5.11 implies that

orde—p, (X, 8) = > (—1)"-i - dimg H.,(X,R(n))
i€z
where -
C(X,5) = (X, 5)((Xoo, 5)
is the completed Zeta-function of X.

Proof. In view of definition 4.1 the middle horizontal triangle in (31) gives an
exact triangle

Rl o(X,R(n)) = RT4(X,R(n)) = RTar(Xoo, R(n)) —
and it suffices to show that
ords=n((Xss, s)
= (=1)"-i-dimp H, (Xeo,R(n)) = > _(=1)"" - dimp H(Xoo, R(n))
1EL 1E€EL

= " (1) - dimz Hb (X/g, R(n))
i>2n

= > (-t (dimR H'(X(C), R(n))%® — dimg (H*(X(C), C)/F")GR)

i>2n
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where we have used the definition (33) and the exact sequence (23). Denoting
by H'(X(C),C) = ®, i H"? the Hodge decomposition and by

hPY = dime HPY;  hPE = dimC(Hp’p)Fw:i(_l)p

the Hodge numbers we have

dimg (H'(X(C),C)/F™)% = dim¢ H'(X(C),C)/F" = _ h*
p<n
and
dimg H'(X(C),R(n))“* = dimg H'(X(C),R)"™=="1"

= dim¢ H(X(C),C)==(=1"
S a4
p<q

since Fioo (H?7) = H%P. Here h** = 0 if 1 ¢ 7. For i > 2n we have that
p < n implies p < ¢ =i — p and hence we must show that

ordy—nC(Xso, 8) = Z (_1)i+1 Z hPa 4 h%,(—l)"*i/z

i>2n n<p<q
:E :(_1)i+1 § : RPA 4 E pa (D"
1€Z n<p<q n<i

where the last identity holds since the sums are empty for i < 2n. By definition

=[] L(r’(x s)-D" (71)
i€EZ
where
Loo =[] Fe(s —p)"" HrRsf "Tr(s—p+ )M,

p<q

Tr(s) = 77%/?T'(s/2); Tc(s) = 2(2r)~L(s)
and X = AXp is the generic fibre. Since

-1 <
Ords n (S) = nx 0
0 n>1
we find
ordgs—p, Loo(hi(X), 5) = — Z RPa 4 Z h%y(fl)n—i/2
n<p<q n<i
which proves the proposition. -

DOCUMENTA MATHEMATICA 23 (2018) 1425-1560



1488 MATTHIAS FLACH AND BAPTISTE MORIN

5.6 COMPATIBILITY WITH THE TAMAGAWA NUMBER CONJECTURE
Let F' be a number field and
7w : X — Spec(OF)

a smooth projective scheme, connected of dimension d. We assume that X
satisfies Conjectures L(Xct,n), L(X ¢, d — n) and B(X,n) and note that Con-
jecture AV (X, n) holds by Corollary 6.27 and Conjecture D, (X,n) by Prop.
7.21, so that Conjecture 5.12 makes sense.

We write X := X ®p,, F for the generic fiber of X, a smooth projective variety
over F' of dimension d —1 and we fix a prime number p. By Lemma 7.2 in App.
B we have a quasi-isomorphism of complexes of sheaves on X[1/p].:

Z(n)/p* = pil[0]
for any n € Z. By [20] there is a decomposition in the derived category of
p-adic sheaves on Spec(Op[1/p])et

Rr,Q, = @) R'n,Q,[-i] (72)
i€l

where 7’ := 7[1/p] and R'7,Q, is a local system whose generic fibre we denote
by

V, = H' (X5, Qp).

For the Artin-Verdier étale topos X; studied in App. A and the open subtopos
b X[ ple D X D Xy
we define compact support cohomology RI.(X[1/p], F) := RT(X,nF) in
the usual way. We denote by
u X]Fp,et H Xoo — Yet
the complementary closed embedding with components u,, and u.,. We define
the morphism of topoi o’ by the factorization
a: Sh(Gr, X(C)) 25 X[1/ple L Xt
where « was defined in section 6.3.

LEMMA 5.14. For a complex of sheaves A on X o with torsion cohomology there
is a commutative diagram of exact triangles

RU.(X[1/p], A) —— RD(X[1/p],*A) —— RF(GRéXég();égj}jﬁ*A)

[ | |

- RI'( X, us A
RU(X(1/pl, A) ——  RO®A)  — FH @Qﬁr(;)er7u;A)

I I

RI'(Xoo, Rub, A)

i, 1 (64 == R (s, R )
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Proof. This follows from the diagram of complexes of sheaves on X,

VA ——— R A ——— Ugo S RPD* A D up wuy Ripurp* A

H I I

Pp* A —— A — Uoo WS A ® Up xupy A
uRu'A —— Uso « Ruly A @ .« Ruj, A

together with the isomorphism
ui R 2 ul RpuRjs & Rmoa*Rj. = R (/) j*Rj. =2 Rm. (o) (73)
of Lemma 6.2, the isomorphism
up R )" A =it g* 6" Ryp* A= 0 g* " R Rjp* A

of Lemma 7.9 (the notation of which we use) and the proper base change

theorem
R (X, , up Rip. )" A) = RT (X, 1" Rj.g" 4" A)

= RU(Xz,, Rj.G" " A) = RI(Xg,, A).

For n € Z we set
RI(X, Zy(n)) := holims RT (T, Z(n)™ /p*),

RT(Xoo, Zp(n)) := holime RT (X, u’ Z(n)™ /p*)

and
RTx_ (X, Z,(n)) := holime RT'(Xs, Ru Z(n)" /p*)
where Z(n)¥ is defined in Def. 6.5 in App. A. If Z is a scheme we set
RI(Z,Zp(n)) := holimeg RT'(Zct, Z(n) /p®)

where Z(n) was defined in section 3.1, i.e. is given by the higher Chow complex
for n > 0. If RT'2(Z,Z,(n)) is any of the complexes just defined we set

RT(Z,Qy(n)) = RT2(Z. Zy(n)o.
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LEMMA 5.15. There is a commutative diagram with exact rows and columns
RUe(X[1/p],Zp(n)) — RU(X[1/p],Zp(n)) —  RI(AR,Zp(n)) & RL(Xy,,Zp(n))

I | |

RTe(X[1/p, Zp(n)) —  RL(X,Zp(n)) —  RI(Xeo,Zp(n)) © RU(Xz,,, Zp(n))

I I

RUx, 11xs (X, Zp(n)) = RTx (X,Zp(n)) & RT 2y, (Xz,, Zp(n))

Proof. We apply Lemma 5.14 with A4 = Z(n)y/pﬂ By Prop. 6.9 there is an
isomorphism

W)Y [p* = " L)Y " = L) ot = (74)
By Artin’s comparison isomorphism we have
RF(GR,X(C),(a’)*M;?.") = RP(GR,RF(X((C),(a’)*uf?."))

R (G, RT(Xe et "))
= RT(Xget, pie")-

Il

By proper base change and Lemma 7.8 we get an isomorphism
RT (X, wiZ(n)” /p*) ZRT (X, ,i*g"¢*Z(n)™ /p*) = RT(Xz,, g*Z(n) /p°)
=RI(Az,,Z(n)/p*)
where we use the notation of Lemma 7.9 with D = Z. O
PROPOSITION 5.16. There is an isomorphism of exact triangles

RU.(X[1/p],Qp(n)) —  RO(X,Qu(n))  — RE}’@;S:@:&%

! ! !

. ) @ (RT ¢ (Fk, Vyi(n))®
@ RLe(Or[], Vi (n)[~i] — @ RL¢(F,V,(n))[~i] — i<z ’ . _
i€z icz RT'y(Fg,, Vy (n)))[—]

where the upper row is the middle row in Lemma 5.15 tensored with Q, the
lower ezact triangles are defined as in [28] for the p-adic representation V;(n)
and the outer vertical isomorphisms are induced by the decomposition (72).

Proof. The left vertical map is clearly an isomorphism. The complex
RT(X, Rul Z(n)* /p*) has 2-torsion cohomology by (112) in App. A. Hence

RTx_(X,Qp(n)) := (holimg RT(Xso, Ru’ Z(n)* /p*))g = 0
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and

RI(Xoo, Qp(n)) = RI(Xr, Qp(n)) = @D RT(Fr, V) (n))[—i] = @D RT (Fr, V) (n))[~i]
i€Z 1EL

is an isomorphism, where RI'¢(Fg,V) := RI'(Fg, V) holds by definition [31].
The isomorphism

RT(Xz,,Qp(n) = €D RT4(Fo,, V; (n))[i
€L

is the statement of Cor. 7.20 where we take the local decomposition (147) to
be induced by (72).

The middle vertical map will be an isomorphism if it exists, and existence will
follow from commutativity of

RI(Xoo, Qp(n)) @ RI(Xz,, Qp(n)) ——  REe(X[1/p],Qp(n))[1]

d !

@ (BT (Fr, Vy (n)) & RTy(Fo,,, Vy (n)))[—i] ——— @ RLe(Or[3], Vy (n))[—i + 1]

IE€EL €L
The following diagram commutes

@ (RT(Fs, V; (n) & RT(Fo,, V; ()| ~i] —— @ RTe(Or[2], Vi(n))[~i + 1]

1€EZ €L

I I

RE(Xe,Qp(n)) & RU(Xg,, Qp(n))  ———  RE(X[1/p], Qp(n))[1]

| I

RI(Xeo, Qp(n)) @ RT(Xz,, Qp(n))  ———  RL(X[1/p], Qp(n))[1]
since the bottom square is a shift of the commutative diagram in Lemma 5.15
and the top square is induced by the decomposition (72). But the left vertical
map factors through 5 which concludes the proof. O
LEMMA 5.17. There are natural isomorphisms
RTw (X,Z(n))z, ~ holime RT'(X ¢, Z(n)/p®) = RU(X,Z,(n))  (75)

where RT'w (X, Z(n)) was defined in Def. 3.6, and

RTw (Xoo, Z(n))z, = holime RT(Xoo, e Z(n) ¥ /p*) = RT(Xoo, Zy(n))  (76)
where RT'w (X, Z(n)) was defined in Def. 3.23.

Proof. The first isomorphism is clear from Lemma 3.13 and perfectness of
RTyw(X,Z(n)). One has an isomorphism of exact triangles in the derived
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category of sheaves on X

it Z(n)/p®* —— Rm.(2mi)"Z/p* —— T°"RT.(27)"Z/p®

oo

| | |
us Z(n)¥ [p* ——— wi R L) [p* ——  Rul Z(n)Y /p*[1]

o0

where the first row is the defining triangle of i%,Z(n) modulo p* and the second

row is the localization triangle for Z(n)* /p®. The right vertical map is an
isomorphism by (112) and the middle by (73) and (74). The statement then
follows again from perfectness of RI'w (X, Z(n)) := RT (X, i5 Z(n)). O

DEFINITION 5.18. For each prime p | p of F' define the two-term complez
i i 1-¢ i
Ceris,p(Vy(n)) := [Derisp(Vy (1)) — Deris,p(V, (n))]

LEMMA 5.19. In the situation of Prop. 5.16 there is an isomorphism of exact
triangles.

RTar(Xo,/Qp)/F"[~1] — @®; B, Darp(V; (n))/FO[—i — 1]

| |

RT(Xz,,Qp(n)) D B, BL 4 (Fp, Vy (n)[—i]

| |

RI;, (X, Qp(n)) SY2 @mp Cerisp (V; (n))[—1]

Proof. This is clear in view of Prop. 7.21, the isomorphism

RT4(Fg,,Vy(n)) = @ R4 (Fy, V; (n)
plp

and the fact that Xﬁ;’d = HXP is smooth projective over I, where &, :=
plp
X @0, Fy. By definition we have
RT,),(Xs,, Zy(n)) = RUer(X54, Zp(n)).
O

Recall that an endomorphism D Y. D of a vector space over Q,,, say, is called
semisimple at zero if the map

¥ : ker(y)) € D — coker(v))
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is an isomorphism. In this case one has a commutative diagram of isomorphisms

idp,triv

det[D % D] Q,
l lDet*(w) (77)
det(ker (1)) ® det™* (coker(z)) BTN Q,

where for any isomorphism f: V — W we denote by fi,;, the induced isomor-
phism det(V) ® det ™' (W) = Q, and Det*(¢)) € QX is the determinant of ¢ on
a complement of ker(z)).

LEMMA 5.20. In the situation of Prop. 5.16, assume in addition that the com-

plex Cerisp(V(n)) is semi-simple at O for any i and any p | p. Then cup-

product with the fundamental class e € Hl(WFP,Z) gives an acyclic complex

S HI (X, Qp(n) S HFH (X, Qp(n) 5 -

and hence a trivialization

~

Ue : detg, R, (Xr,, Qp(n)) — Q.
Moreover the square of isomorphisms

detg, RI',;, (X, , Qp(n)) 2 Qp
lﬂ"(x’”) [

<g|> det Y Coriap(Vi(n)) —7— Q,
2,p|p

commutes, where 3,(X,n) is induced by the bottom isomorphism in Lemma
5.19, and

0 = QT = D) Derisp (Vi ()t

i,plp

Proof. For any complex of Wr -modules C we have

R (Ws,, C) = holim(C ~=% ) = [0 1% ¢

and the discussion before [36][Prop. 4.4] shows that there is a commutative
diagram

RO(We,,C) —=— [0 c =%, ¢
er idcl
RD(Wg,,C)[1] —— [¢ —2 C 0]
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and hence a commutative diagram with exact rows for each i

0 — coker(l — p|H=(C)) » Hi(Wg,,C) — ker(l—¢|H/(C)) — 0

er idH";(C’)J(

0 « ker(l—¢|H*L(C)) « H*Y(Wg,,C) « coker(l— ¢|H!(C)) « 0.

So if 1 — ¢ is semisimple at zero on each H*(C') we obtain a long exact sequence

Ue

=5 HY(C) 25 HITH(C) =5
It then suffices to remark that

RT4, (X, Qp(n)) = RUet(X5, Qp(n)) = RU(We,, R cris (X /Qp))
where ¢ € Wg, acts on RI‘CMS(X];E‘* /Qp) by ¢, = ¢p~™ and that for this action

we have an isomorphism of ¢-modules

Hzrzs XI;ed/@p @ Dcrzs p )
plp

O

PROPOSITION 5.21. Under the assumptions of this section, Conjecture 2.9 holds
for X. In fact, _ _

H'(X,Q(n)) — H'(X,Q(n))
is injective for all m and i.

Proof. For i > 2n both groups are zero. For i < 2n we have a commutative
diagram

HY (X, Q(n)) —> Hiy (%, Z(n))g — Hiy (X, Z(n))g, 2% Hi(X,Q,(n))

| |

Hi(X,Q(n)) H'(X,Qp(n))

where the first map in the top row is the isomorphism of Cor. 3.12, the second
map is clearly injective, and the right vertical map is injective since by Prop.
5.16 it is isomorphic to the injective map

HY(F,Vi(n)) ® H{(F,V;~(n)) = H°(F,Vj(n)) ® H'(F,V; ! (n)).

It follows that the left vertical map is injective. Note here that for j = 2,3 we
have

H}(F,V; ™ (n)) = Hy 7 (F, V7 (n)*(1))" = H (B, V427 (d —n))* =0
since

H3—j+2d—2—i+j (X, @(d _ n)) _ H2(d—n)+2n—i+1(X’ @(d _ n)) -0
for 2n — 1 > 0. O
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REMARK 5.22. Suppose X is a reqular scheme satisfying Conjectures L(X .1, n),
L(X,d—n) and AV (X, n). Suppose p is a prime number so that the conclu-
sion of Cor. 7.20 holds for Xz, and the conclusion of Cor. 7.6 (with the roles
of p and 1 switched) for Xz, if p # 1. Then one can prove an analogue of Prop.
5.16 with X[1/p]/Or[1/p] replaced by X[1/Np|/Z]1/Np] where N is divisible
by all | where Xz, /Z; is not smooth, and one can deduce Congecture 2.9 for X
and i < 2n following the proof of Prop. 5.21. So essentially, Conjecture 2.9
is a consequence of finite generation of motivic cohomology, the monodromy
weight conjecture for all Xg, and the syntomic description of p-adically com-
pleted motivic cohomology of Xz, (which holds if one simply chooses p to be a
good reduction prime).

We recall the formulation of the Tamagawa number conjecture from [31]. We

consider the pure motive h*(X)(n) of weight i — 2n which we imagine as a pure
object of MMp. Note that

(R*(X)(n))" (1) = R*@=D7H(X)(d = 1 = n)(1) = K**>7*(X)(d — n).
Consider the Q-fundamental line

Ag(R'(X)(n))
= detoH}(F, h'(X)(n)) ®q detg H}(F,h'(X)(n))
®qdetoH{ (F, (h'(X)(n))* (1)) ®q detg " H (F, (h*(X)(n))*(1))
®qgdety" (AH(X)(n)};) @q detg (thi(x)(n)) -

Here tp,i(x)(n) := (h*(X)(n))ar/Fil’ is the tangent space. The period isomor-
phism induces the map

anixyny - (RX)M)E) g — (thix)n)) g -

CONJECTURE 5.23. (Fontaine-Perrin-Riou) There is a canonical exact se-
quence of finite dimensional R-vector spaces

0 — HY(F,h"(X)(n))r — Ker(opi(x)(n)) = Hf(F, (b (X)(n))*(1))&
— H(F,h'(X)(n))r — Coker(ai(x)(n)) = HY(F, (R"(X)(n))*(1))z — 0.
Conjecture 5.23 gives a trivialization
95 R Ap(hH(X)(n))r.

Beilinson’s conjecture on special values, in the formulation Fontaine-Perrin-
Riou, is the following

CONJECTURE 5.24. (Beilinson)
IS (LF(h(X),n) ™) € Ap (R (X)(n)).
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For a prime number p one defines
Ap(Vin) = detog, HY(F,Vi(n)) @, detg HH(F, Vi(n))
o, detg, H (F, (V;(n))" (1)) ®q, detg, Hi(F, (V,(n))*(1))
@g,detg) (Vi(m)" @q, detq, (tviom ) -

CONJECTURE 5.25. (Bloch-Kato) For M = hi(X)(n) and M = h*(X)(n)*(1)
the p-adic realization induces isomorphisms

HY(F, M) ®q Q, — H}(F, M,)
for 7 =0,1.
One has an isomorphism
05" Ap(h'(X)(n)g, = Ap(V;(n)) = detg, RTc(Or[1/p], V, (n))

where the first isomorphism is obtained by Conjecture 5.25 and Artin’s com-
parison theorem and the second isomorphism by the lower exact triangle in
Prop. 5.16, the exact triangle

Dar p(Vy (n))/F°[=1] = RL 4 (Fy, V(1)) = Corisp(Vy(n)) —

arising from the definition of RI's(Fy,V,/(n)) and the isomorphism

%

Ty =1dp,,.,, (Vi) triv | detg, Ceris p (Vi (n)) ~ Qp (78)

in the notation of diagram (77). Any locally constant Z,-sheaf T(n) on
Spec(Op[1/p]) together with an isomorphism T7(n) ®z, Q, ~ V,i(n) gives an
integral structure

detg, RTe(Or[1/p], V,(n)) = detz, RT(Or([1/p], Ty(n)) ©z, Qp
which does not depend on the choice of T} (n).

CONJECTURE 5.26. (Bloch-Kato, Fontaine-Perrin-Riou) There is an identity
of invertible Z,-submodules

D95 (L* (W' (X),n) ") - Zp = detg, RTc(OF[1/p], T (n)).
of detg, RU.(Or[1/p], Vi (n)).
In order to compare this statement with Conjecture 5.12 we shall consider the

total "motive" h(X)(n) € DT (MMp) such that H'(h(X)(n)) = h'(X)(n).
One expects a (non-canonical) direct sum decomposition

X)) = P KM= (79)

0<i<2(d—1)

DOCUMENTA MATHEMATICA 23 (2018) 1425-1560



WEIL-ETALE COHOMOLOGY AND ZETA-VALUES 1497

In any case, the fundamental line of h(X)(n) is
A(h(X)m) = @A) )
0<i<2(d—1)

and similarly, we set

Ap(r(X)(n)) = Q) Ap(Vym) Y

0<i<2(d—1)

In view of Prop. 5.21 we can take the higher Chow groups H(X,Q(n)) as
our definition for the f-motivic cohomology H(F,h(X)(n)). In view of the
isomorphism

RTw (%, Z(n))g ~ RT(X,Q(n)) ® RHom(RT(X,Q(d — n)), Q[—2d — 1])

of Cor. 3.12, the definition of RT'w (X,Z(n)) in Def. 3.26 and the definition
of A(X/Z,n) in Def. 5.1 we then have an isomorphism

Ap(h(X)(n))
= detgRIw (X, Z(n))g ® detg' RT(X(C), Q(n))°* ® detqRTar(Xg/Q)/F™
= detoRTw (%, Z(n))g @ ety RUw (X, Z(n)) ©g detq(RTan(X/Z)/F")q
= detQRFwﬁc( , Z(n))(@ X detQ(RFdR(X/Z)/F")Q
— A(X/Z,n)g.
The isomorphism 9o, := @, (9%")(~1" becomes the isomorphism (9)
Voo : R = A(XQ, n)R = A(X/Z,?’L)R = Af(h(X)(n))R

explained in the introduction, based on Prop. 4.14. The isomorphism of Con-
jecture 5.25 is the composite of the isomorphisms

RUw (X,Z(n))g, ~ RT(X,Q,(n)) ~ @ R 4(F, Vi (n))[—i]
€L

arising from Lemma 5.17 and Prop. 5.16, and the isomorphism ¥, :=
&, (¥5™)(=D" becomes an isomorphism

Op : Ap(M(X)(n))g, = Ap(h(X)(n),) = detq, RT(X[1/p], Qp(n))

using the left vertical isomorphism in Prop. 5.16. Since X is smooth projective
over Spec(OF) we have

=[] (i(x),s) "V

i1€EZL
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and Conjecture 5.26 therefore predicts that
Ipoo(C7(X, ) 71) - Zp = detz, RUo(X[1/p], Zp(n)) (80)
inside detg, RI'.(X[1/p], Qy(n)). Note here that we have an isomorphism
detz, RTe(X[1/p], Zy(n)) =~ detg, RTe(OF[1/p], R Zy(n))
~ R dets V' RT(OF[1/p], R'7.Z,(n))

and we can choose T}(n) := R'w,Zy(n).

THEOREM 5.27. Let X /OF be smooth projective and n € Z so that Conjectures
L(Xe,n), L(Xet,d—n) and B(X,n) hold for X and n. Assume that the com-
plex Cerisp (Vi (n)) is semisimple at zero for all i and all primes p of F. Then
Conjecture 5.12 for (X,n) is equivalent to the conjunction of the Tamagawa
number conjecture (80) for the motive h(X)(n) over all primes p.

Proof. First note that the isomorphism ., and the isomorphism \,, defined
in Prop. 5.2 coincide by definition. So Conjecture 5.12 is equivalent to the
identity

Voo (C*(X,0)7Y) - C(X ) - Zy = A(X[Zy0) @2 Ly (81)

for all primes p. Lemma 5.17 and Lemma 5.15 induce an isomorphism
A(X/Z,n) Qz Ly
= (detzRFW,C(X, Z(n)) Rz detzRFdR(X/Z)/Fn)Zp
~ (deterw(T, Z(n)) Rz detZ_IRrw(Xoo, Z(n)) Rz detz;(RFdR(X/Z)/Fn))ZP
~ detzp RF(?, Zp(n)) ®ZP detileF(Xoo, Zp(n)) ®Zp detz;p RFdR(XZp /Zp)/Fn
~ detz, RT(X[1/p], Zp(n)) ®z, detz, RT'(Xz,, Zp(n))
®ZP detzp RFdR(XZp /Zp)/Fn

which we denote by 191%’”. Lemma 5.19 induces a commutative diagram of
isomorphisms

n Ap(X,n)
detq, RI'(Xz,,, Qp(n)) ®q,, detg, RT'ar(Xg, /Qp)/F —E%  detg, RT., (X, Qp(n))

l lspw,n)

(-1’ i (-1’ i o &N G i
® det@p RT¢(Fyp, V,(n)) ® detf@p Dar,p(V,(n))/F° —— & det@p Ceris,p(Vy ()
i,plp i,p|p

where \,(X, n) is the map defined using conjecture D, (X, n). By definition we
have

Uy = (idrr, ® ) © (19%,, )o

DOCUMENTA MATHEMATICA 23 (2018) 1425-1560



WEIL-ETALE COHOMOLOGY AND ZETA-VALUES 1499
where idgr, is the identity map of detg, RI'c(X'[1/p], Qp(n)) and
T = (@(T;’n)(_l)l o Bp(X,n) o )‘p(Xa”))

where the trivializations T;’” were defined in (78). Comparing (81) and (80)
we see that the two statements are equivalent if and only if

C(X, n) “Yp (detszF(XZP, Zp(n)) ®Zp detszFdR(sz /Zp)/Fn) = Zp
and from (70) and the definition of C(X,n) this identity holds if and only if

pX(Xey O (@(T;"")(‘l)i oﬁp(X,n)) (detz, RT'., (Xe,, Zy(n))) = Zy.

Consider the rational function Z(&r,,t) such that ((AF,,s) = Z(&F,,p~°) and
its special value

Z*(X]vap_n) = hmt—>p*” (1 - pnt)an(‘Xva t)

where p,, := —ord;—,-» Z(AF,, t) is the order of the pole of Z(&XF,,t) at t = p~".
Note that we have
Z (X, t) = Z(X2 1)

and

Z(Xe,,p ") = [[ 2(X,p7"t) = [T [ ] deto, (1 —t¢| Dm,p(v,j(n)))

plp plp 1

(-pitt

If Ceris,p(V,i(n)) is semisimple at zero then diagram (77) implies

®(Tg,n)(*1)% _ Z*(X]Fp,pin) P

where ¢ is the map in Lemma 5.20. Hence by Lemma 5.20 we are reduced to
showing

pfx(pr,O,n) : Z*(XFpﬂpin) ' (J o ﬂp(Xﬂ TL)) (dethRF/eh(X]va Zp(n)))
= pX(Xep,Om) Z*(Xr,,p™") - (Ue) (dethRth(XFp,Zp(n))) = Zp.

But this is just a rewriting of the leading term formula for Z(Af,,t) due to
Milne [70][Thm. 0.1]. Note here that if C' denotes the perfect complex of
Zyp-modules with finite cohomology groups

o 5 HU (X, Zp(n) = U (X, , Zp(n) = -
then the image of detz, (C') under the isomorphism a : detz, (C')q, = Q, arising
from acyclicity of C, is x(C)~!-Z, where x(C) € p” is the multiplicative Euler
characteristic of C. But a coincides with the isomorphism denoted Ue above.
Hence R
(Ue) (detz, RTe, (X, , Zy(n))) = x(Xe,, Z(n) ™" - Zy

where x(AF,,Z(n)) is the quantity appearing in [70]|[Thm. 0.1].

DOCUMENTA MATHEMATICA 23 (2018) 1425-1560



1500 MATTHIAS FLACH AND BAPTISTE MORIN

5.7 RELATIONSHIP WITH THE FUNCTIONAL EQUATION

We fix a regular scheme X’ of pure dimension d, which is flat and proper over Z.
We assume that X satisfies L(Xct,n), L(X e, d —n), AV(X e, n), B(X,n) and
D, (X, n) for any prime number p. Moreover, we assume that R(IF,,, dim(AF, ))
holds at the primes p where X]}%Z‘d is not smooth. Recall that we denote the
fundamental line by

A(X/Z,n) := detz RT'w,.(X,Z(n)) @z detz RTqr(X /Z)/F".
DEFINITION 5.28. We set

Zo(X/Z,n) = detzRTw (Xso,Z(n)) @ dety, ' RT 4r(X /7)) F"
@det; ' RTw (Xao, Z(d — n)) @ detz RUqr(X /Z)/F* ™",

PROPOSITION 5.29. Duality for Deligne cohomology and duality for Weil-étale
cohomology induce isomorphisms

€ RS E.®R

and

~

A(X/Z,n) @ Ex(X/Z,n) — AX/Z,d —n)
respectively, such that the square
AX)Z,n) @ E(X/Z,n) R —= A(X/Z,d —n) @R
)\OO(X,n)®§ao(X,n)T Aw(x,dn)T
R®R — R

commutes.

Proof. Recall from Section 3.8 the definition of RT'w (Xoo,Z(n)). We have an
isomorphism

RTw (X, Z(n)) @ R ~ RT(Gg, X(C), (27i)"R).
Duality for Deligne cohomology
RT'p(X/R,R(n)) ~ RHom(RT'p(X/R,R(d — n)),R[—2d + 1])
yields
(detzRTw (Xso, Z(n)) ®7 det; ' RTqr(X/Z)/F™) @ R
~ detRRFD(X/R, R(n))
detg RHom(RT'p(X /R, R(d — n)), R[—2d + 1])

detg RU'p (X /R, R(d — n))
~ (detzRTw (X, Z(d —n)) @z det; ' RT4p(X/Z)/F") @ R

12

12
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We obtain
b RS20 0R.

The exact triangle
RTw,o(X,Z(n)) — RUw (X, Z(n)) — RTw (X, Z(n))
gives
detz RT'w, (X, Z(n)) @ detz RTyw (Xso, Z(n)) =~ detz RUyw (X, Z(n)).  (82)
Similarly, we have

detzRFWﬁ(X, Z(d — TL)) ® detz RI'wy (Xom Z(d — TL)) ~ detz Ry (?, Z(d — TL))
(83)

Moreover, duality for Weil-étale cohomology gives
detz RT'w (X, Z(n)) =~ detzRHom(RI'w (X,Z(n)),Z[—2d —1]) (84)
~ detzRl'w (X,Z(d —n)). (85)

Then (82), (83) and (85) induce
A(X/Z,n) @ Zoo(X)Z,n) — A(X/Z,d — n).
We have canonical isomorphism (see Corollary 3.12)
RTw (X, Z(n))r ~ RI'(X,R(n)) ® RHom(RI'(X,R(d — n)),R[—2d — 1])

and the pairing induced by Weil-étale duality, after (—) ® R, is the evident
one (see the proof of Theorem 3.22). Moreover, the maps A (X,n) and
Aoo(X,d — n) are induced by the pairing between motivic cohomology with
R-coefficients and motivic cohomology with R-coefficients and compact sup-
port (see Conjecture B(X,n)), which is compatible with duality for Deligne
cohomology in the sense of Remark 2.6. If follows [59] that the induced square
of isomorphisms

detg RT'.(X,R(n)) @ detg RT'p (X /R, R(n)) detg RT'(X,R(n))

l |

detg RT(X,R(d — n))* ® dety ' RTp(X /R, R(d — n))* — detg RD(X,R(d — n))*

commutes, where (—)* := RHom(—, R[—2d]). From there, we easily obtain the
commutativity of the square of the proposition.
O

We denote by
22 (X, n) := det(éx (X, n)) € Ry
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the determinant of the isomorphism £, (X', n) with respect to the given integral
structures, i.e. the strictly positive real number such that

Eao(X,n)(2% (X, n)"1 - Z) = 20 (X, n).

o0

Recall the definition of
(X, 5) == ((X,5) - ((Xoo, 5)
from (71).
CONJECTURE 5.30. We have
AX) 2 (X d - s) = £A(X)*? - (X, 5)
where the conductor A(X) > 0 is a positive real number.

For X of dimension d = 2, the conductor A(X) is the square root of the
discriminant of the pairing

RT4r(X/Z)/F® @f RTar(X/Z)/F? — Z[-2]
induced by Poincaré duality (see [9]).

COROLLARY 5.31. Assume that ((X,d — s) satisfies the functional equation of
Conjecture 5.30. If two of the following assertions are true, then so is the third:

i) We have

A2 (Xoyn) - oo (X, n) L - C(X, )7

=+ AX) T2 (X, d — ) - oo (X, d —n) "L O(X,d —n) L
(86)

i) Conjecture 5.12 for (X,n) holds.
iii) Conjecture 5.12 for (X,d —n) holds.

Proof. We have o, (X,d—n) = +2,,(X,n)~!, hence Proposition 5.29 gives an
equality

det(Aoo (X, 1))  Zoo (X, n) = det(Aoo (X, d —n)) - oo (X, d — n).
Moreover, Conjecture 5.12 for (X, n) is the following:
det (Ao (X, 1)) = £C* (X, n) - C(X,n) !

and similarly for (X,d —n). The Corollary now easily follows from Conjecture
5.30. .
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5.8 PROVEN CASES AND EXAMPLES
5.8.1 VARIETIES OVER FINITE FIELDS

Let X be regular proper arithmetic scheme of pure dimension d defined over
the finite field F,. We assume that X satisfies L(X,:,n), L(Xe,d — n) and
B(X,d).

PRrROPOSITION 5.32. Conjecture 5.12 holds for X and any n € Z.

Proof. By Proposition 5.9, we have C'(X,n) = 1. By Corollary 3.21 and since
B(X,d) implies P(X,d), X satisfies L(Xy,n). The result follows from Theo-
rem 3.20 and [73]. O
5.8.2 THE CASE n = 0.

Let X be regular proper arithmetic scheme of pure dimension d. We assume
that X satisfies L(X ., d) and B(X,d).

PROPOSITION 5.33. Conjecture 5.12 for X andn = 0 is equivalent to [72][Conj.
1.200)].
Proof. By Proposition 5.8, we have C'(X,0) = 1. The result follows. O

5.8.3 NUMBER RINGS

Let F' be a number field, set

X = Spec(OF)
and let
ro n <0 odd
r1+ 172 n < 0 even
pn = 0rds—p Cp(s) =<1 +1r3—1 n=0
-1 n=1
0 n>1

be the well known vanishing order of the Dedekind Zeta function

C(Xﬂ 5) = CF(S)

where r1, resp. ro, is the number of real, resp. complex, places of F. Conjec-
tures L(Xc,n), B(X,n) and AV (X, n) are known for any n € Z. For n > 1
define

H"" := H(Xet, Z(n)).

We have H*" = 0 for i < 0, the group H" is finitely generated and H>" is
finite. This follows from the isomorphism [37][Thm.1.2]

H'(Xzar, Z(n)) = H'(Xet, Z(n)), i<n+1,
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the analysis of the spectral sequence from motivic cohomology to algebraic K-
theory (see [63][14.4]) and the known properties (finite generation, ranks) of
the algebraic K-groups of Op. In degrees i > 3 we have

im ~ ) Br(Or) = (Z)2Z) 5=, Q/Z, (Z/2Z)" % n =1
) (z/2z)r Vi N>

where

5in:

)

1 n=4¢ mod?2
0 n#i mod 2.

The Beilinson regulator map

H'(Xet, Z(n)) *»HD (X/m, R(n)) =] [ Fo/H(Fo, (2m1)"R) =] [ H°(F., (27i)"'R)

v|oo v|oo

induces isomorphisms

QE,R t HY (Xt Z(n))r = H HY(F,, (2mi)""'R)
v|oco
for n > 1 and
QER : H ( et7 g HR
v|oo

for n=1. For n > 1 we set

n—|H( eth(n))|
n = H (Xet, Z(1))tor |
R,, :=vol(coker(o?))

where the volume is taken with respect to the Z-structure
[1,j00 HO(Ey, (2m0)"'Z), resp. (I],o 2)"=0, of the target. We have

0,0, H'™, H>" (Z,/2Z)" 3 | (Z,/2Z)" i n>1
Hiy (., 2n)) = 3 00 OF» CUOR), 2,0 n=l
Wi ~ ) 0.2,0,(05)" & COR)P, (0F)R,,0 n=0

(Z/22)" =1, 0,0, (M 7")" @ (H*'™™)P, (Hyg,m")P,0 n<0

in degrees ¢ < 0, ¢ =0,1,2,3 and ¢ > 3 respectively. Here A* = Homy(A4, Z),
D is the Pontryagin dual and

Oim 1<i<norn<i<O0
€in =
0 else.
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The long exact sequence induced by (56) gives

0,0, H,;7, coker(of) & H>™, (Z/2Z) ™ 3n  (Z/27)" i n>1
0,0, (O%)tor, CU(X),Z,0 n=1
0,7,0,(05)* & Cl(OF)?, (0X)E,,0 n=20

(Z/QZ)m-ei,l,n’O’O7 (Hl,l—n)* ey (];12,1—n)D7 (Hl,lfn)D70 n<0

tor

1%

H; (X, Z(n))

where CI(X) 22 Pic(X) is the usual Arakelov class group of Op. For n < 0
there are isomorphisms

Hi, (X, Z(n)) = Hiy (X, Z(n)) = 0,207, (HY' ") @ (H>' )P, (HS5 )P, 0

ar,c tor

in degrees 1 < 1,4 = 1,2,3 and ¢ > 3 respectively. Hence for any ¢ € Z the
groups H! .(X,Z(n)) are finitely generated,

ar,c

i
Har,c

(X,R(n)) = H!

ar,c

(X,Z(n)) @z R

and Hi (X ,R/Z(n)) is compact. More precisely, for n < 0 we have isomor-

phisms

Hy. (X, R(n)) = HY(X,R(n)) =2 HY(X)g,R(n)) = H HY(F,, (271)"R)

ar,c
v|oo

and

H} (X, R(n)) =H; (X, R(n)) = H'(X,R(1 — n))" = Hp(X)e,R(1 —n))*

(87)
= [[(F./H (F,, (2mi)' ~"R))* = [ HO(F,, (27i) "R)*
v|oo

v|oo

and similarly for n = 0 (taking the quotient by the diagonally embedded R in
the target). We note that

dimg Hy, (X, R(n)) = dimg HZ, (X, R(n)) = py,

ar,c

and H, ,(X,R(n)) = 0 for i # 1,2, verifying Conjecture 5.11. For n < 0
recall that R;_, was formed with respect to the Z-structures H>'~" /tor and

| - HO(F,,(2mi)""Z) in the dual of (87) and therefore also agrees with the
regulator formed with respect to (H'1~™)* and the natural Z-structure

([T #°F., @mi)—"z))" = [ HO(F,, (270)"Z) = Hiy (X, Z(n))
v|oo v|oo
of H;r,c()(,f&(n)). Similar considerations apply to n = 0. For n < 0 we have
C(X,n) =1 by Prop. 5.8 and RT'4r(X/Z)/F™ = 0 and hence Conjecture 5.12
reduces to the statement
h —-n R —-n
Chln) = £———= (88)

W1—n
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For n > 1 the groups H., .(X,Z(n)) vanish except for i = 2,3. There is an
exact sequence

0— | [T ES | /05 = HZ (X, Z(1)) = CL(OF) = 0

ar,c

v|oco

showing that the group HZ .(X,Z(1)) is an extension

ar,c

0— Hy (X, R/Z(1)) — HE (X,Z(1)) — HZ (X, R(1)) =R =0

ar,c ar,c ar,c
of R by a compact group. The continuation of this long exact sequence looks
like

0 —— H3 (X,Z(1)) —— H3 (X, RQ1)) — HE (X,R/Z(1)) ——— 0

ar,c

0 —— Z _ R _ R/Z — 0.

Conjecture 5.11 follows since HQEC(X,R(l)) = 0 for ¢ # 2,3. For n > 2 there
is an exact sequence

0— | [[ #*(F..C/2mi)"z) | JHY (X, Z(n)) — HE. (X, Z(n))
v|oco

— H*(X,Z(n)) — (Z)27)™ 2~ — H3

ar,c

(X,Z(n)) =0
showing that the groups
Hyo o (X, R/Z(n)) = Hy, (X, Z(n))

ar,c ar,c

are compact for i = 2,3. We have

H;r,c(X’ R(?’L)) =0

for all ¢, verifying Conjecture 5.11.

PROPOSITION 5.34. Assume X = Spec(Op) and n > 1. If Conjecture
Cepr(Qp(n)) of [T7)[App.C2] holds over all local fields K = F,, in particular if
all F,, are abelian extensions of Qp [4], then

C(X,n) = (n— 1)1~ FQ,
Proof. We first explicate Conjecture Cgp (V) of [77|[App.C2| for K = F,, and
V =Qp(n). We have Dyr(V) = K - t~™ and the period isomorphism
Bair ®Qp K -t7" = Bygr ®Qp Ind% Qp(n)
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is already induced by the isomorphism
Qp ®q, K = Qp Q®q, Ind%’ Qp = H Qp
b3}
sending 1 ® z to (0(2)),ex where ¥ = Hom(K,Q,). Denote by Dx € Q, the
discriminant of K/Q,, well defined up to Z,;. For
w=uw; I wr

where w1, resp. wr, is a Zy-basis of Detz, Ok, resp. Detz, Ind%) Z,, we have
in the notation of [77][Lemme C.2.8]

and B
iy = | YPEEe) [T 1
6(‘/7 wO,Kvl’LO,K) » €(V, wo,K;,uo,K) D

where €(V, ¢, i, o k) 18 the e-factor associated by the theory of [19] to the rep-
resentation of the Weil Group of K on D, (V) defined in [77][C.1.4]. Here the
additive character 9, x and the Haar measure p, x are defined in [77][C.2.7].
In particular p, x (Ok) = 1 and the n(¢, i) of [19][3.4] is the valuation of the
different of K/Q,. By [19][5.9] we have

v (@) = [e(Qp(n), Yo.x0: o, i) p = |Dic "|p ~ D' mod Zy).

Furthermore, the I'-factor of [77][C.2.9] is
Hp*(_j)—hj(V)[K:@p] =(n— 1)!—[K:@p]
JEZ
and so Conjecture Cgp(Qp(n)) becomes
Detz, RT(K,Zy(n)) = (1 —q~") - (n— DI7EWL pr=t 7t (89)

where ¢ is the cardinality of the residue field of K. This is an identity of
invertible Z,-submodules of the invertible Q,-module Detq, RI'(K,Q,(n)) =
Detg, (K)~! where this last isomorphism is given by the Bloch-Kato exponen-
tial map

exp

K =5 HY(K,Qy(n))
for n > 2 and the exact sequence

exp

0= K 22 gY(K,Q,(1) = K* @z, @, <% Q, = H*(K,Q,(1)) = 0

for n = 1. Coming back to the computation of C(X’,n) we have by Prop. 5.36
below

detzRFdR(X/Z)/Fn = |DF|TL71 -detzOp C detQpFQp = detQpRFdR(XQp/Qp)/Fn
(90)
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where D is the discriminant of . Moreover

ere ( HRF eta ( )) =0
vlp
and
RF(XZ et, HRF OF eta ( ))
olp
By the localization triangle (138) for X = Spec(Op,), the fact that

TSP Rjupise’ = Rj.pusd for n > 1 and the vanishing of RT(k(v)et, Zp(n — 1))
for n > 2 we have

RI(OF, et, Zp(n)) = RU(Fy e, Zp(n)) (91)
for n > 2 and an exact triangle
RU(OF, et Zp(1)) = RU(Fy 0, Zp(1)) = R (5(0)et, Zp)[—1] = (92)

for n = 1. The exact triangle in Conjecture D, (X, n) is the product over v | p
of the isomorphism

Fy[=1] = H(Fy, Qp(n))[-1] = BRI 4(F,,Qp(n)) = RL(OF, 1, Qp(n))

where the first map is the Bloch-Kato exponential. For v | p define d,(X,n) €
Q) /Z,; such that

dy(X,n)"" - detz, RT(OF, ct, Zy(n)) = dety RUar(Xz, /Zp)/F".
From (89), (90), (91) and (92) we deduce
du(X,m) =(1 = g;") - (n — DI1Fe] . pr=t . plon
=(1—q;") - (n— 1)1~ FeQ]
where ¢, = |k(v)|. With d,(X,n) and ¢,(X,n) defined in Definition 5.6 we

have
n) = Hdv(?(,n), cp(X,n) = Hqﬁ cdy(Xyn
vlp vlp
and hence
C(X,n) = H | ep(X;n) Jp= H H| 7ol = =(n 1)!7[F:Q]-
p<oo p<o0 v|p

For n > 2 we have H{'MC(X, Z(n)) =0 for i #1,2,3 and an exact sequence
0— [[ H(F,, 2mi)"Z) — Hyy (X, Z(n)) - H"" 5 (Z/22)" 1 —

v|oco

— Hﬁvyc(X,Z(n)) — H>™ — (Z/27)" 2 — Hévyc(X,Z(n)) - 0.
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The exact triangle (64) reduces to an isomorphism
Hyy (X, Z(n))r = Fr. (93)

The determinant of this isomorphism for the Z-structures Hyy, (X, Z(n)) and

[] 2R, 2ri)z) © HO(F, (27i)"'2) (94)
v|oco
on
Fp= [[ £ = [] HO(F, (270)"R) © HO(F,, (2mi)"'R)
v|oo v|oco
equals R, /w, - |im(a)| and hence the determinant between RI'w . (X,Z(n))
and (94) equals

Yy (X Z0)| R, -h, - 2riiis

fon (@ T T TN~ w2

noting that d;, = €;, for i = 1,2 and n > 1. The determinant between (94)
and Op is

(27_[.2')7‘2(27171)4*7’1(7’1751,”)/ DF — i(QF)[F:Q]'n7T27Tl'61,n/ /|DF|

using that /Dp = +i"/|Dp|. Hence, also using Prop. 5.36 below, the
isomorphism

Ao : R A(X/Z, n)R = detRRFW7C(X, Z(n))R Rr detR(RFdR(X/Z)/Fﬂn)R
induced by (64) satisfies

Ao <|DF|"1 : Wn V| Dr| -Z) = A(X/Z,n).

2T1‘(61,n_62,n) (QW)[FIQ]‘H—T2—7‘1‘51,71 han

Finally, using Prop. 5.34, the identity of Conjecture 5.12
Moo (CF(X,n) ™" - C(X,n) - Z) = A(X/Z,n)

is equivalent to
27"1'(51,n—52,n) (QW)[F:Q]'/”_TZ_TI'(SI,TL hnRn

Wn A/ |DF| ’

(95)

at least if we also assume conjecture Crp(Qp(n)) for all local fields F,. For
n = 1 the triangle (64) gives an exact sequence

Gi(n) = o) = D" - (n = IIFD

0= Hy (X, Z(1)5 = Fr —25 R =00 R S B, (X, Z(1))s = 0
instead of the isomorphism (93) but otherwise the computation is the same,
showing that for any number field F' Conjecture 5.12 is equivalent to (95) for
n = 1, i.e. to the analytic class number formula. Conjecture 5.30 holds with
A(X) = |Dp| and one easily proves that (95) is equivalent to (88) by verifying
identity (86) in Corollary 5.31 1).
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PROPOSITION 5.35. Assume X = Spec(Op). Then Conjecture 5.12 holds for
n=0,11if F is arbitrary and for any n € Z if F/Q is abelian.

Proof. By Theorem 5.27 this reduces to known cases of the Tamagawa number
conjecture [14,24,26,47]. O

We conclude this section with the computation of derived de Rham cohomology
of X = Spec(OF). Let Dr C O be the different ideal so that

|Dr| = |N(Dr)| = [OF : D]

is the absolute discriminant of F. Recall from [86][III. Prop. 14| that the
module of K&hler differentials Q}QF /z is a cyclic Op-module with annihilator

Dp. A generator w of Q}OF /z therefore gives an exact sequence of Op-modules

and we have [, ;| = |Dp|. Recall that LQo, /z/F" = Tot(Q5];) where
P, — Or is an augmented simplicial Z-algebra which is a free resolution of Op
and that

RU4r(X/Z)/F" := RT'(Xz4r, L0, 2/ F") = I'(Xz4r, L0, j2/ F™)

is the derived de Rham cohomology modulo the n-th step of the Hodge filtration
introduced in section 5.1. Here the last isomorphism holds since X is affine.
We denote by LQAOF/Z = "lim” LYo, /z/F" the Hodge-completed derived de
Rham complex. Unless stated otherwise, a complex of the form [M — N]
denotes a cochain complex placed in degrees [0, 1].

PROPOSITION 5.36. We have grO(LQAOF/Z) ~ Op[0]. For anyi > 1, a generator
of the cyclic Op-module Q%OF/Z gives a quasi-isomorphism of complezxes of Op-
modules

&' (Lo, /2) 2T, Dr ®0r Qo z[—1] (97)

where FZ;DF is an invertible Op-module. In particular, for any n > 1, we
have an ezact sequence of complexes

0— F'/F™ — RT4p(X/Z)/F™ — Op[0] = 0
where F1/F™ is concentrated in degree 1, and H'(F'/F") is finite with order
|H'(F'/F™)| = |Dp["".
Proof. The first assertion is obvious, since we have
g’ (Lo, /) ~ [+ = PL = Bo] = Op[0].
Next we claim that the canonical morphism

Logjz = H*(Loyz)[0] =~ Q. /(0]
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is a quasi-isomorphism. The map Spec(Or) — Spec(Z) is a local complete in-
tersection, hence we have an isomorphism Le,, /7 ~ [M — N]|[1] in the derived
category of Op-modules, where M and N are finitely generated and locally
free Op-modules [49][Prop. 3.2.6]. In particular H '(Lo, z) is a torsion-
free Op-module. It is therefore enough to show that H'(Lo, /z) ®o, F =
H (Lo, /z ®0, F) =0, which in turn follows from

LOF/Z Rop F ~ LF/Q ~ 0.

Recall from [50][Ch. VIII (2.1.1.5)] that g’ (LY, ;) =~ LA (Lo, /z)[—i] and
assume ¢ > 1. We obtain using (96), [50][Ch. VIII, Lemme 2.1.2.1] and [49][Ch.
I, Prop. 4.3.2.1 (ii)]

LA (Log/z) =~ LA(Qp,/z)

LA ([Dr — OF][1))

[['Dp — I 'Dp @ A Op — -+ — A Op][i]
TDp — T 'Dr @ OF][i]

12

12

where all tensor products and exterior and divided power algebras are taken
over Op. The map & : I'"Dp — I'""'Dp ® Op corresponds to the canonical
"application i-ique" Dr — I'""!Dp @ O sending = to v;—1(z) ® x. Thus & is
given by
K : FlDF — Fi_IDF QR Of
vi(z) — i@ @x

Consider the sequence of Op-modules
0—I"Dp ST Dp @ Op “S T ' Dp@ QY — 0. (98)

To see that (98) is exact, one may localize for the Zariski topology since the
functor I'? is compatible with extension of scalars, i.e. Ty (M)®4B ~T%(M®4
B) (see [78] Théoréme II1.3). Hence one may assume that Dp is a free module
of rank one with generator x, in which case I'*Dp is also free of rank one and
generated by v;(x), and similarly for I'*"1Dp. The exactness of the sequence
(98) follows. We obtain

LA (Lo, /z) = [["Dp = T 'Dp @ OF][i] ~ T""'Dr ® Qg z[i — 1]
hence
gr' (L, /z) ~ LA (Lo, jz)[—i] ~ T4 ' Dr @0, Qb z[—1]-

As observed above, FZ(;FlDF is an invertible Op-module, hence FZ(;FlDF R0
Q%OF /z is a torsion Z-module whose order is given by

ICo, DF ®0r Qo,./zl = 10, /2| = 1DrF|.
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In order to show the last assertion, it remains to prove that F'/F™ is concen-
trated in degree 1 and that H!'(F'/F™) is finite with order |[H*(F'/F")| =
|Dp|"~1, where F* denotes the Hodge filtration. This is obvious for n = 1. We
conclude by induction on n using the exact triangle

F"/F"t — FY/ "t — FU P —
and the isomorphism (97)

F"/F" =T (x, gf"(LQAoF/z)) = F?Q;LDF ®op Q%QF/Z[_l]'

6 APPENDIX A: ARTIN-VERDIER DUALITY

In this section X denotes a regular connected scheme, which is proper over Z.
We assume that X is of pure (absolute) dimension d. Unless specified otherwise,
a scheme is always endowed with the étale topology.

6.1 INTRODUCTION

Artin-Verdier duality for the cycle complex over X is known in certain cases
by [37], [39] and [79]. In order to deal with 2-torsion, these duality theorems
relate étale cohomology of X' with étale cohomology with compact support of
X in the sense of Milne [69]. The aim of this appendix is to define complexes

Z(n)X over the Artin-Verdier étale topos X.; and to show duality over X.;. In
particular, we obtain Conjecture AV (X, n) for smooth proper schemes over
number rings and any n € Z (see Corollary 6.27), as well as for arbitrary regular
proper arithmetic schemes if n > d or n < 0 (see Corollary 6.26). These results
are essentially due to Geisser and Sato (see [37], [39] and [79]); we only treat
the 2-torsion in order to restore duality over X.;. This appendix may be seen
as a generalization of [7] to higher dimensional arithmetic schemes.

We now explain our definition for Z(n)* and describe the contents of this ap-
pendix. The topos X is defined so that there is an open-closed decomposition
(see Section 6.3)

Qﬁ:XetHXet(—XOOZUOO

where ¢ : X,y — X is the open embedding and X, its closed complement.
The right definition for Z(n)? in the range 0 < n < d is

Z(n)™ = 75" (R, Z(n)7"). (99)

Since we need ¢*Z(n)* ~ Z(n)¥, this definition requires #(Z(n)¥) = 0 for
any ¢ > n, which is not known for general regular X. However (99) gives

Rul_Z(n)* = (T7 "o s R4 (2im) " Z) [—1] 2 (77 U BT (2im) " Z) [—1].
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where R (2im)"Z is the complex of 2-torsion sheaves on X defined in Section
6.4. Therefore, we define Z(n)* such that there is an exact triangle

Z(n)* — Rp.Z(n) — 77" (Uoo « RT. (2im)"Z)

for any n € Z (see Corollary 6.8). We then show that the resulting complexes
Z(n)¥ for any n € 7Z satisfy the expected Artin-Verdier duality. This fact relies
on Poincaré duality for the cohomology of the possibly non-orientable manifold
X(R) with Z/2Z-coefficients. Moreover, our definition of Z(n)? coincides with
(99) whenever n > 0 and H!(Z(n)?*) = 0 for any i > n (see Proposition 6.10).
In particular, we have Z(0)* ~ Z and Z(1)" ~ ¢.G,,[—1], where Z denotes
the constant sheaf on X.;, and G,, denotes the multiplicative group on X,
(Proposition 6.11). We notice that, even though the complex RI'(X ¢, Z(n)) has
bounded cohomology, it may have non-trivial cohomology in negative degrees
for n < 0. We observe in Proposition 6.29 that this surprising fact is forced by
the projective bundle formula.

6.2 THE MOTIVIC COMPLEX Z(n)%

For any n > 0, we consider Bloch’s cycle complex Z(n) = 2"(—,2n — %) as a
complex of sheaves on the small étale site X, of the scheme X. We have Z(0) ~
Z and Z(1) ~ G,,[—1] (see [64], [63]). We write Z/mZ(n) := Z(n) @L Z/mZ
and Q/Z(n) := @Z/mZ(n). We have an exact triangle

Z(n) = Q(n) = Q/Z(n).

The Beilinson-Soulé vanishing conjecture states that Z(n) is acyclic in negative
degrees. In order to unconditionally define hypercohomology (or higher direct
images) with coefficients in Z(n), we use K-injective resolutions (see [88] and
[85]). Similarly, we use K-flat resolutions in order to define the derived tensor
product of unbounded complexes. By [37], if X’ is smooth over a number ring
then Z/p"Z(n) is isomorphic, in the derived category, to Sato’s complex [79].
Recall also from Section 3.1 that for n < 0 we define

Z(n) == @ jpa () [~ 1].

6.3 THE ARTIN-VERDIER ETALE TOPOS Xy

For a scheme X" as above, we consider X(C) as a topological space with respect
to the complex topology. The space X(C) carries an action of Gg := Gal(C/R),
and we consider the quotient topological space X5 := X(C)/Gr. Consider the
canonical morphisms of topoi

o : Sh(Gg, X (C)) — X
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and
7w Sh(GRr, X(C)) — Sh(X).

Here Sh(Gr, X(C)) and Sh(X) denote the topos of Gr-equivariant sheaves
(of sets) on X(C) and the topos of sheaves on X, respectively. Recall that
there is a canonical equivalence between Sh(Gg, X(C)) and the category of G-
equivariant étalé spaces over X'(C), i.e. the category of topological spaces F
given with a Gr-action and a Gg-equivariant local homeomorphism £ — X'(C).
The morphisms 7 and « are defined as follows. In order to construct «, we need
to define a functor a* from the étale site of X' to the category Sh(Gg, X (C))
such that o* is both continuous and left exact (i.e. such that o* preserves the
final object, fiber products and covering families). This functor simply takes
an étale X-scheme U — X to the Ggr-equivariant étalé space U(C) — X(C).
We shall also consider the topos Sh(Gr, X ) of Gr-equivariant sheaves on X,
where Gy acts trivially on X,. Notice that an abelian sheaf on Sh(Gg, Xs) is
simply a sheaf of Z[Gg]-modules on X. In order to define 7, we consider the
map p : Sh(Ggr, X(C)) — Sh(Gr, X=) induced by the G ,qtnbpr-equivariant
continuous map X (C) — X. Given an étalé space E — X, we define

m(FE = Xx) = E xx X(C)—= X(C)

where Gg acts on the second factor. Given a Ggr-sheaf F' on X(C) and an
open U C X, we have a canonical Gr-action on the set p, F(U), and we set
7. F(U) := (p.F(U))%*. The following result is well-known.

LEMMA 6.1. Let A be an abelian object of Sh(Gr, X (C)). For any point x € Xy
and y € X(C) lying over z, we have

(RmA)y ~ RT(Gy, Ay) (100)
where G, C Gr is the stabilizer of y.

In particular the sheaf R'7..A is concentrated on the closed subset X(R) C X
as long as i > 0. The topos X is the category of sheaves of sets on the
Artin-Verdier étale site of X' (see [27]). There is an open-closed decomposition

¢:Xet —>?et<_)(oo L Uso
whose gluing functor can be described as follows:
ul P = ma” 1 Xy — Sh(Gr, X(C)) — Sh(Xs) (101)

Those two properties characterize X; up to equivalence: X.; is canonically
equivalent to the category of triples (Fy, Fwo, f) where Fx is an object of X
(i.e. an étale sheaf on X'), Fo an object of Sh(Xx) and f : Foo — ma*Fy is a
map in Sh(X..). This description of the topos X.; gives as usual two triples of
adjoint functors (¢, ¢*, ¢ ) and (u’,, Ueo +,u',) between the corresponding cat-
egories of abelian sheaves, which satisfy the classical formalism. In particular,
we have

U toox — Id,  ¢*dx S Id, ¢ us . = 0.
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Moreover, for any complex of abelian sheaves A on X.;, we have an exact
sequence
0— ¢prp* A= A — uso sus, A — 0

and an exact triangle
Uoo s RuS A — A — R A

where the maps are given by adjunction. The following derived version of (101)
will be useful. We denote by D(Xe;), D(X.;) and D(X) the derived categories
of the abelian categories of abelian sheaves on X, X and X, respectively.

Moreover we denote by DV (X.), DT (X ) and DT (X) the corresponding
derived categories of bounded below complexes.

LEMMA 6.2. The functor o sends injective objects to m.-acyclic objects, hence
the natural transformation of functors from DV (X)) to D(Xs)

u*, o Rpy — Rm.oa*
s an isomorphism.
Proof. In view of the canonical isomorphisms
uso Row > R(ui,¢x) ~ R(ma),

one is reduced to showing that o* sends injective objects to m.-acyclic objects.
Indeed, if this is the case then the spectral sequence for the composite functor
e 0 o together with the exactness of o yield

R(m.a*) ~ Rm.Ra™ ~ R(m,)a™.
Let I be an injective abelian sheaf on X.;. By Lemma 6.1, we have
(Rimy(a*I)), =0 for any i > 1 and any y € Xoo — X (R). Let y € X (R) C X
The point y is a morphism y : Spec(R) — X and we denote by
x : Spec(C) — Spec(R) — X
the (unique) point z € X(C) such that m(x) = y. Then we have
(R'me(a*1))y = H'(Gr, (a"])s) = H'(Gr,2"I) = H'(Spec(R)et, y*I)
for any 7 > 1. Moreover, we have

H' (Spec(R)et,y"I) = H' (UmU, Ty ) = g H' (U, Iy) (102)

where U runs over the filtered set of pointed étale neighborhoods of (X,y), i.e.
the family of pairs (U — X, Spec(R) — U) such that y coincides with the com-
position Spec(R) — U — X. Notice that (102) holds since étale cohomology
commutes with filtered projective limits of schemes and because hHmL[ is an
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henselian local ring with residue field of Galois group Gg (however the residue
field of lim/ is not R but rather an henselian real field algebraic over Q). We
obtain

H (Spec(R)er, y™I) = i H (U, ) = 0

since I, is injective on U, hence
Rim,(a*I) = 0 for any i > 1.

The result follows.

6.4 TATE COHOMOLOGY AND THE FUNCTOR RT,

We choose a resolution Py — Z of the Z[Ggr]-module Z by finitely generated
free Z|Gr]-modules, and we extend it into a complete resolution P.. We have
morphisms of complexes of Z[Gr]-modules:

P, — P —Z.

If A is a bounded below complex of Ggr-modules, Tate hypercohomology is
defined as

RL(Gg, A) := / Homg, vod (Ps, A)

where f denotes the totalization of the double complex Hom with respect to
the direct sum on diagonals. The spectral sequence

H'(Gg, H (A)) = H™(Gg, A)
converges. It follows that Rf(GR, —) preserves quasi-isomorphisms. We keep

the notations of the previous section and we consider the Gg-action on the
topological space X(C). We define Tate equivariant cohomology as follows:

RI(Gg, X(C), A) := RT(Gg, RT'(X(C), A))

where A is a bounded below complex of Gg-equivariant abelian sheaves on
X(C). We have

Rm A~ Ou/HomSh(GWXOC)(Z,p*[*)
— Ou/HomSh(GWXx)(F*PJF,p*I*)

— Ou/I_IO—mSh(GR,Xx)(F*PJmp*A)

where A — I* is an injective resolution (by injective equivariant sheaves), I'* Py
is the complex of equivariant sheaves associated with P, Homgy, gy, vy de-
notes the internal Hom inside the category of abelian sheaves on Sh(Gg, X ),
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f refers to the total complex associated with a double complex and Ou :
Sh(GRr, Xs) — Sh(Xs) denotes the forgetful functor. Finally p,. is the di-
rect image of the morphism Sh(Gg, X(C)) — Sh(Gg, X ). The functor p, is
exact by proper base change. Similarly, we define

T 1= Ou/HomSh(GKXOC)(F*P*,p*A)

where f now denotes totalization with respect to the direct sum on anti-
diagonals. We have a convergent spectral sequence

H' (Gr, pHI (A)) = HH (7, A). (103)

Here, given a sheaf of Z|Gg]-modules F on X, we denote by ﬁi(GR,}“) the

sheaf associated with the presheaf U — H'(Gg, F(U)). The spectral sequence
(103) shows that 7, preserves quasi-isomorphisms. Hence 7, induces a functor

R7. : DT (GR, X(C)) — D(Xy).
The spectral sequence above reads as follows:
H' (Gr, pHI (A)) = HH (R7,A). (104)

Note that the map P, — P, gives a natural transformation Rw, — R7.. We
shall need the following

LEMMA 6.3. Let A be a bounded below complex of abelian sheaves on
Sh(Gg, X(C)). There are canonical isomorphisms

RT(Gg, X(C), A) ~ RT(Xoo, R7,A) =~ RU(X(R), R A xg))-

Proof. Let A — I* be an injective resolution. The first isomorphism follows
from the following canonical identifications:

RI(Xoo, RRA) ~ RI(Xs, / Homg), g, vy (T*PeypuI*))  (105)

12

I (X, / Homg, ¢, v )T PopeI?)  (106)

~ / P(Xoe, Homgy g, vy (T"PorpaI®))  (107)

~ /HomGW,Mod(P*,F(XOO,p*I*)) (108)
o~ /HomGW,MOd(P*,F(X((C),I*)) (109)
~ RI(Gg,X(C), A). (110)
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Here (105) follows from the spectral sequence (104); (106) and (107) follow
from the fact that X, is compact and finite dimensional. Indeed, the sheaves
Homgy, gy, ) (U Prs pad 1) are injective abelian equivariant sheaves (hence in
particular injective abelian sheaves) since Py is a finitely generated free Z[Gr|-
module. Moreover, a direct sum of injective sheaves is acyclic for the global
sections functor I'(X,, —), since H'(Xs,—) commutes with direct sums. It
follows that [ Homgy (g, x.) (T* Py, p«I*)) is a complex of acyclic sheaves, hence
(106) follows from the fact that I'(X, —) has finite cohomological dimension.
The identification (107) is valid since I'(Xs, —) commutes with direct sums,
and (108) is given by adjunction.

The second isomorphism of the Lemma follows from the fact that H(R7..A)
is concentrated on the closed subset X(R) C X, for any i € Z. (]

6.5 THE MOTIVIC COMPLEX Z(n)¥

The construction of Z(n)?* requires the following lemma.

LEMMA 6.4. Let Z(n) — I(n) be a K-injective resolution. There is a canonical
morphism of complexes of abelian sheaves on X o
OF 1(n) : GuI () — Uo7 "Tua™ (1201 (n))

such that o Z(n) induces the following morphism in D(X o)

Rp.Z(n) —  Uco Ui RPZ(n)
= Upo + R(mea*)Z(n)
—  Uso xR (12°Z(n))
3 Uso < RT* (72°Z(n))
= Uo7 "RELF(T72Z(0)).

Proof. We consider the morphism

oI (n) Uoo,+Usy G I (1)
Uso,«Tx "I (1)
Uoo w70 (7201 (1))
Uoo +Tx 0 (7201 (n))

Uoo T " T (7201 (n))

LEL Lkl

where the first map is given by adjunction and the second map is given by
(101). The fourth map is given by the natural transformation 7, — 7, induced
by P, — Z. O

DEFINITION 6.5. We consider the following morphisms of complexes:
OF 1(n) : GuI(n) —  Uoo T "Tua* (12°1(n))

U!Tz(n):(b*l(n) U xT*(7201(n))
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and we define

Z(n)¥ = Cone(oy 5(,)[~1]
ROZ(n) = Cone(alzz(n))[—l].

Notice that Z(n)¥ and R&Z(n) are well defined in the derived category D(X.;),
i.e. they do not depend on the choice of I(n) up to a canonical isomorphism

in D(Xey).

PROPOSITION 6.6. We have canonical morphisms of complexes
RiZ(n) — Z(n)™ — Rp.Z(n)

If X(R) = 0, these two maps are quasi-isomorphisms.

Proof. The maps are the obvious ones. The cohomology sheaves of the com-
plex R7.a*(72%%Z(n)) are concentrated on X (R) (see Lemma 6.7 below). In
particular, X (R) = () implies that R7.a*(7=°Z(n)) ~ 0. O

LEMMA 6.7. For any n € Z, we have a canonical isomorphism
R7,.(72%*Z(n)) ~ R7,((2im)"Z)
in the derived category D(Xs). For n > 0 the natural map of complezes
" R(m.a*)Z(n) — 77" RE,(120a* Z(n))
is a quasi-isomorphism.
Proof. The exact triangle
a*Z(n) = a*Q(n) = «*Q/Z(n)

induces
TEOOZ*Z(TL) — 7200* (n) — TEOOZ*@/Z(TL)

since a*Q/Z(n) is concentrated in degree 0. This gives another exact triangle
R7.(72%*Z(n)) = R7.(12°%*Q(n)) — R7.a*Q/Z(n).

The spectral sequence (104) and the fact that 72°a*Q(n) is bounded show that
the cohomology sheaves of R7,(7=%a*Q(n)) are 2-primary torsion. Since they
are also divisible, they vanish. We obtain

R7.(12%*Z(n)) ~ R7.a*Q/Z(n)[—1].
We have isomorphisms
a*Q/Z(n) = lim o™ (C)|[0] == (2im)"Q/Z[0]
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in the derived category of Ggr-equivariant abelian sheaves on X' (C). We obtain
R#.(r2%0"Z(n)) ~ R#.a*Q/Z(n)[~1]
~ R7.((2im)"Q/Z)[—1] ~ R7.((2im)"Z)
where the last isomorphisms follows from the exact sequence
0— (2im)"Z — (2im)"Q — (2im)"Q/Z — 0

of Gg-equivariant abelian sheaves and from the fact that R7.(2i7)"Q ~ 0 as
above.

We prove the second assertion. Let Sh(X.:, Q) and Sh(Xs, Q) (respectively
Sh(X.:,Z) and Sh(X,Z)) be the categories of sheaves of Q-vector spaces
(respectively of abelian groups) on X.; and X, respectively. The inclusion
functor i : Sh(Xet, Q) — Sh(Xet,Z) is exact and preserves K-injective com-
plexes. Moreover the functor m.a* 0 i : Sh(Xe, Q) — Sh(Xx, Q) is exact. We
obtain

me* 01 = R(mea® 0i) ~ R(m.a®)Ri ~ R(m.a*)i

hence
R(m.a™)Q(n) = mea*Q(n).
In particular we have

HP(R(mea™)Q(n)) =~ HP (ma™Q(n)) =0

for p > n, since a*Q(n) is acyclic in degrees p > n. Then we consider the long
exact sequence

H" (R(m.a)Q(n)) — H" (R(m.a")Q/Z(n)) — H"F (R(m.a”)Z(n))

— 0= H"YR(1.a")Q/Z(n)) — H" 3 (R(m,a*)Z(n)) — 0 — - -

The complex a*Q/Z(n) ~ (2im)™Q/Z|0] is concentrated in degree zero, hence
the abelian sheaf

H"(R(m+a™)Q/Z(n)) = H" (R« (a*Q/Z(n))) = R"m«(a*Q/Z(n)) ~ R"m.((2im)"Q/Z)
is killed by two for any n > 0 (see Lemma 6.1). It follows that the map
H"(R(m.a”)Q(n)) — H"(R(m.a*)Q/Z(n))
is the zero map for n > 0, so that the long exact sequence above gives isomor-
phisms
H YR (a*Q/Z(n))) = H'(R(m.a*)Z(n)) for any i > n.
We obtain

T (R(mea")Z(n) = 77"(R(mea”)Q/Z(n)[-1])
T (R (a"Q/Z(n))[-1])
77" (R, (2im)"Q/Z[-1])
77" (R, (2im)"Z)

12

12
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for any n > 0. Note that
77" (R(mea™)Z(n)) ~ 77" (R, (2im)" Z) (111)
also holds for n = 0 since Z(0) ~ Z[0]. It follows that the composite map
" R(ma*)Z(n) — 77" R7L (1207 Z(n)) —= 77" R7.((2in)"7Z)

is an isomorphism in the derived category. The result follows.

COROLLARY 6.8. For any n € Z, we have exact triangles
Z(n)T — RO T(n) — oo 7 "RFL(2im)"Z

and
RAZ(n) = R Z(n) — Use » R, (2im)"Z.

Proof. This follows from Lemma 6.7 together with the definition of Z(n)y and
RHZ(n). O

In particular we have isomorphisms
Rul Z(n)* =~ (77" Rz.((2im)"Z)) [-1] (112)

and
Ru'_(R$Z(n)) ~ R7,((2im)"Z)[~1].

PROPOSITION 6.9. For any n € Z, we have an isomorphism in D(Xe):

¢*Z(n) ~ Z(n)*.

For n >0, we have an isomorphism in D(Xx):

ul Z(n)Y ~ 75"t R Z(n).

oo

Proof. Applying ¢* to the first exact triangle of Corollary 6.8, we obtain
¢*Z(n)* ~ Z(n)?* since ¢*Ro. = R(¢*¢x) = Id and ¢*us « = 0. For n > 0,
we have an exact triangle

Z(n)T — ROLZ(n)Y — oo « (77" R(mea*)Z(n))
by Lemma 6.7. Applying u} to this exact triangle, we obtain
uf Z(n)* = uf Re.Z(n)* — 77"u* R$.Z(n)

since uf too « = Id and R(m.a*) ~ R(ul dx) ~ ul Ros. O
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PROPOSITION 6.10. Let n > 0. If H'(Z(n)*) = 0 for any i > n then the map
Z(n)* — Re.Z(n)?™ induces a quasi-isomorphism

Z(n)® =5 757 (R, Z(n)¥).
This is for example the case for X smooth over a number ring.

Proof. Recall that the family of exact functors (¢*,u,) is conservative. More-
over, the complex Z(n)¥ is acyclic in degree > n, hence so is the complex
Z(n)® by Proposition 6.9. Hence the map Z(n)* — R¢.Z(n)* factors though
Z(n)* — 7="(R¢.Z(n)™). This map is a quasi-isomorphism if and only if it is
a quasi-isomorphism after applying the functors ¢* and u’,. Hence the result
follows from Proposition 6.9. O

PROPOSITION 6.11. We have Z(0)¥ ~ Z and Z(1)¥ ~ ¢,G,,[~1], where Z
denotes the constant sheaf on X, and G,, denotes the multiplicative group on
Xet-

Proof. In view of Z(0) ~ Z[0] and Z(1) ~ G,,,[—1], this follows from Proposition
6.10.
O

6.6 FUNCTORIALITY

Let f : X — ) be an equidimensional flat map between (regular proper)
arithmetic schemes. Recall that flat pull-back of cycles induces a morphism
Z(n)Y — Rf.Z(n)*. We consider the following commutative diagram of topoi:

¥ = ul

Xet—>Xet<LXoo
]
¥ = uk
yetﬁyet%yoo

PROPOSITION 6.12. For any n € Z, the pull-back map Z(n)Y — Rf.Z(n)* in-
duces compatible maps Z(n)¥ — Rf,Z(n)* and RQAﬁ!yZ(n)y — RT*R?Z(n)X
mn D(yet).

Proof. The following diagram

R (Z(n))¥ ReYRf.Z(n)* = Rf.R¢FZ(n)*

| J |

’u&7*7>"R%2’((2i7r)"Z) — ug’oT*Rf:,o,*T”'Rﬁf((2i7r)"Z) - Rf*u§7*7>"R%f((2iﬂ)"Z)

commutes in D(Y.;), hence there exists a map
Z(n)Y —s Rf,Z(n)*
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sitting in a morphism of exact triangles. If n > 0, such a map is unique
since u* Z(n))Y is concentrated in degrees < m by Proposition 6.9, whereas
Rfoo 77" R7¥ ((2im)"Z) is concentrated in degrees > n + 2.

For arbitrary n € Z, we represent the previous diagram by a commutative
diagram of actual complexes of sheaves (using Lemma 6.4 and Lemma 6.7),
and we use the fact that the cone is functorial (note that the right horizontal
maps are isomorphisms of complexes). We define similarly a canonical map

R&YZ(n)” — RF, R Z(n)™
such that the following diagram commutes

~

RV Z(n)Y ——— Z(n)¥ R$YZ(n)Y

l ! |

Rf.RGFZ(n)¥ — Rf,Z(n)* — Rf, R$XZ(n)*

O

6.7 RELATIONSHIP WITH MILNE’S COHOMOLOGY WITH COMPACT SUPPORT

We start with the definition of cohomology with compact support with respect
to the Artin-Verdier compactification: we define

RFC(Xeta A) = RP(Yeta ¢'A)

for any bounded below complex A of abelian sheaves on X.;. There is an exact
triangle
RPC(Xet, A) — RI‘(?et, A) — RF(XOO, ’U/ZOA)

PROPOSITION 6.13. We have an exact triangle

RT(Xet, A) = RT'(Xet, A) — RI'(GRr, X(C),a*A).

Proof. Using Lemma 6.2, we obtain an exact triangle
PA = R A — Uso « R (" A).
The result then follows from the canonical identifications

RT (X et, Uoo + Rms(a* A)) ~ RT'(Xso, R (a* A)) ~ RI(GRr, X(C),a" A).
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We now recall Milne’s definition for étale cohomology with compact sup-
port [69]. Let A be an abelian sheaf on Spec(Z)e;. One defines a complex
RT'.(Spec(Z)et, A) so that there is an exact triangle

RT(Spec(Z)et, A) — RL(Spec(Z)er, A) — RL(Gr, v* A)

where Rf(GR, —) denotes Tate cohomology of the finite group Gr and v :
Spec(C) — Spec(Z) is the unique map. This definition generalizes as follows.
Let f : X — Spec(Z) be a proper scheme over Spec(Z), and let A be a complex
of abelian sheaves on X.; whose restriction Ax1,g) to X[1/S] := & ®zZ[1/S5]
is bounded below, for some finite set S of prime numbers. Then v*Rf. A is
bounded below, and one defines

RTo(X.i, A) := RTo(Spec(Z)er, Rf.A)
so that we have an exact triangle
RL.(X.;, A) = RT(X., A) — RL(Gg, v*Rf.A).

LEMMA 6.14. Let A be a complex of abelian sheaves such that Axp s is a
bounded below complex of locally constant torsion abelian sheaves, for some
finite set of primes S. Then we have an exact triangle

RL.(X.;, A) = RT (X, A) — RL(Gg, X(C), a* A).
Proof. By proper base change we have an isomorphism
V*Rfe A~ Rt (X ®7 C, Axg,c)

where Axg,c is the pull-back of A to X @z C. Artin’s comparison theorem
then gives

RT(X(C),a* A) ~ RT ot(X ®2 C, Axg,c) ~ v*Rf.A

hence N N
RT(Gg, X(C),a*A) ~ RT'(Ggr,v*Rf.A).

O

PROPOSITION 6.15. For any n € Z and any m > 1, we have an isomorphism
RU(X o, RpZ(n)) @ Z/mZ ~ RT (Xer, Z/m(n)).

Proof. By definition of RQAﬁ!Z(n), Lemma 6.3 and Lemma 6.7, we have an exact
triangle

RU(X o, RO\ Z(n))®Z/mZ — RT(Xes,Z/m(n)) — RT(Gr, X(C), (2i7)"Z/m)

which can be identified with the triangle of Lemma 6.14. O
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This suggests the following

NOTATION 6.16. We set
RT.(X.;,Z(n)) := RT(X o, ROZ(n))

and N o N
H!(Xet,Z(n)) := H' (X ot, RNIZ(1)).

PROPOSITION 6.17. There are canonical exact triangles
ROZ(n) = Z(n)F = toe . 7<" R7, (2im)"Z
and
RT (X, Z(n)) = RT(Xe, Z(n)) — RI(X(R), 75" R7,(2im)"Z).

Proof. We have a commutative diagram with exact rows and columns:

R Z(n) ————> R Z(n) ———> Uoo  B7, (2im)"Z

| | |

Z(n)¥ —————— R$.Z(n) —= uco .77 " R7.(2im)" L

| | |

Uoo «T=" RT, (2im)" L 0 Uoo «T<" R7 . (2im)VZ[1]

The result follows. U
COROLLARY 6.18. For any i > dim(X) + n, there is a canonical isomorphism
H'(Xey, Z(n)) ~ HY(Xer, Z(n)).

Proof. This follows immediately from the exact triangle
RL(X(R), 7<"RT(Gg, (2i7)"Z))|—1] = RL (X, Z(n)) — R (X ey, Z(n))
since X'(R) has topological dimension < dim(X’) — 1. O

COROLLARY 6.19. We have Hi(?et, Z(d)) = 0 for any i > 2d + 2 and there is
a canonical trace map H*12(X o4, 7(d)) — Q/Z.

Proof. We may assume X flat over Z. By Corollary 6.18, we have
H (X, 7(d)) ~ HY(Xe,Z(d)) for i > 2d. We have H!(X.,Q(d)) =~
H (Xz4r,Q(d)) = 0 for i > 2d (the case i = 2d follows from the fact that
CH?(X) is finite). We get H! (X, Z(d)) ~ H= (X, Q/Z(d)) for i > 2d. Us-
ing [39], we find Hi(X,;,Q/Z(d)) = 0 for i > 2d + 1. The push-forward map
Rf.Z(d)[—2d] — Z(1)[—2] induces a morphism from

ﬁgd-{-l(x, Z/m(d)) = ﬁgdﬂ(spec(Z), Rf.Z/m(d))
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to
H?(Spec(Z),Z/m(1)) ~ Z/m

where the last identification follows from Z(1) ~ G,,[—1] and classical Artin-
Verdier duality.
O

6.8 PRoDUCTS

We consider below product maps Z(n) @~ Z(m) — Z(n +m) in D(X,:). These
product maps are always assumed to induce, after (—) @’ Z/rZ, the natural
maps u®" @ u@"™ — p@"t™ over the étale site of X'[1/r], where X’ C X is an
open subscheme which is smooth over Z.

We shall use the following observation. Consider the complete resolution P,
and the completed tensor product P,®P,, which is defined as the total complex
of the double complex (P; ® P;); jez with respect to the direct product on
anti-diagonals: one has (P,®P.)n = [I;;;—, P ® Pj. The product on Tate
cohomology is induced by a map P, — P,®P,. Let I'* be the functor which
sends a Gg-module to the corresponding constant Gg-equivariant sheaf on X .
Then I'* commutes with both tensor products and direct products. Hence the
map P, — P.®P, induces I'*(P,) — I'*(P,)®I'*(P,), which in turn induces a
product map

R7.(2im)"Z @ R7.(2im)™7Z — R7.(2in)" ™7 (113)

for any n,m € Z. Moreover, the morphism R@.Z(n) — Uoo +«R7«(2im)"Z of
Corollary 6.8 is compatible with the products (113) and (114) defined below.
More precisely, the square

u R, Z(n) @L u? Rp.Z(m) . ul R Z(n 4+ m)

| |

R7.(2im)"Z o Rz, (2im)"Z -22s 7, 2im)ntm7,
commutes. To see this, we first remark that R7,(2i7)""™Z is a complex of
sheaves of Z/2Z-modules by (119). By adjunction, it is enough to check that the

square above commutes after (—) ®% Z /27, which follows from our assumption
on the product Z(n) @ Z(m) — Z(n + m).

PROPOSITION 6.20. Let n,m > 0 be non-negative integers. A product map

Z(n) @ Z(m) — Z(n+m) as above over X induces a unique product map over
X: o o o
Z(n)* @ Z(m)* = Z(n +m)*.

Proof. The product map Z(n) ® Z(m) — Z(n + m) in D(X,:) induces
Rp.Z(n) @ Rp.Z(m) — Ro.Z(n +m) (114)
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in D(X.t), and we consider

Z(n)* @" Z(m)* — Re.Z(n) @" Rp.Z(m) — ReZ(n+m).  (115)
We now remark that the composite map

Z(n)¥ @ Z(m)® = Re.Z(n 4+ m) — tise o7 " Rer, (2im)" T
is zero and that

HomD(yet)(Z(n)y @ Z(m)¥ oo 7" Ry, (2im) T Z[-1]) = 0

simply because

ul Z(n)T oL ur Z(m)Y ~ 15"t R Z(n) @F 5™ ul Rp.Z(m)

o0

is concentrated in degrees < n + m by Proposition 6.9. It follows that (115)
induces a unique map

Z(n)¥ @ Z(m)* — Z(m)~.
O

REMARK 6.21. If Z(n), Z(m) and Z(n + m) are acyclic in degrees > n, > m
and > n + m respectively, then (114) induces

=" Ry Z(n) @ 75" R, Z(n +m) — 7="T" R, Z(n + m)

by adjunction. Proposition 6.20 then follows somewhat more directly from
Proposition 6.10. This applies for X smooth over a number ring.

PROPOSITION 6.22. Let n,m € Z be arbitrary integers. A product map Z(n) ®
Z(m) — Z(n +m) over X induces in a non-canonical way product maps

Z(n)* @ Z(m)® = Z(n +m)¥ (116)

and R .
RO Z(n) @ Rp.Z(m) — Z(n +m)™. (117)

If n > 0 these product maps can be chosen so that the induced square

R Z(n) — RHom(R¢.Z(m), Z(n +m)~)

| T
Z(n)¥ ——— RHom(Z(m)¥, Z(n + m)*)

commutes.
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Proof. We need to show that the composite map
Z(n)* @ Z(m)¥ — Ré.Z(n) @ R¢.Z(m)

— RO Z(n 4 m) = Uoo 7 " R (2im) "L

is the zero map. This follows from the fact that the map
R Z(n) @ ROLZ(m) = too 77" T R7, (2im)" T Z

factors through

77 (U o BT (20m)" 2 @ oo o BT (2im) " Z)
on the one hand and that

Z(n)*® @F Z(m)* = U s R7,(26m)"Z @ s 7, (2im) ™7

factors through

Uoo x TSR (20T) "L RF U » TS RT 4 (2im) ™ Z

on the other. This gives the existence of (116), which however is non-unique in
general because

u' Z(n)Y @F ul Z(m)™
fails to be concentrated in degrees < n +m (e.g. take n << 0). We obtain by
a similar argument a non-canonical map (117).
We now show that these product maps (116) and (117) may be chosen to be
compatible, at least for n > 0. In view of

Uoo T " T RA (20i70)" T T =~ U w7 TR REL (2i) T
we see that the group
Hom ) (ttoo,+ 7" B4 (2i)" 2 @ tho w7 R (20m) " Z[e] oo w7 "+ R (26) 7 2)
vanishes for e = 0, 1. It follows that the map
Uoo xT=" R (207) " Z @ toe x RT4(20T) ™ L — U o7~ "™ R7 (2im)" T L
obtained from (113), induces a unique map

Uoo,o 7" R (20m)" 2 @ oo, o7 R (207) "L = Uoo, o7 " R (207) " L.

(118)
We obtain a commutative diagram
Z(n)* @ Z(m)* Z(n+ m)¥
Z(n)* @ R, Z(m) R$.Z(n +m)

| |

Z(n)F @ Uge o 77 ™ RR, (207) ML ——> Uoo 7> " RE, (2i7) T
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where the lower horizontal map is the composition of (118) with
Z(n)¥ @ too uT” " R7W(27) T = oo T " REW(27) "% @ tUne w77 ™ Riw (2im) " 2.

The columns are exact triangles hence one may choose a map (116) which turns
this diagram into a morphism of exact triangles. It follows that the square

Z(n)® — RHom(Z(m), Z(n + m)¥)

| |

Uoo x TS RT, (2i7)"Z —— RHom (oo 7> ™ RT (2im)™Z[—1], Z(n + m)y)

commutes, where the left vertical map is induced by adjunction

Z(n)} = Uoo s UE Z(N)Y 2 ugy TS RAL(2i7)"Z

and the right vertical map is induced by the map ueo 7™ R7.(2i7)™Z[—1] —
Z(m)* which is in turn given by the definition of Z(m)®* (see Corollary 6.8).
Hence there exists a product map (117) inducing a morphism of exact triangles:

(117)

R&Z(n) RHom(R¢.Z(m), Z(n +m)7)

| |

Z(n)® 0o RHom(Z(m)¥, Z(n + m)¥)

| |

Uso wT<" R7, (2i)" 7 —— RHOm(Uoo o7 ™ R7 (2im) " Z[—1], Z(n + m)™¥)

O

6.9 ARTIN-VERDIER DUALITY

The following conjecture is known for X smooth proper over a number ring,
and for regular proper X as long as n < 0. It is expected to hold for arbitrary
regular proper X

CONJECTURE 6.23. AV (X,n) There is a symmetric product map
Z(n) @ Z(d — n) — Z(d)
in D(Xet) such that the induced pairing
Hi(Xer, Z/m(n)) x H** 17Xy, Z/m(d — n)) — HXHN(Xey, Z/m(d)) — Q/Z

is a perfect pairing of finite abelian groups for any i € Z and any positive integer
m.
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The aim of this section is to prove the following result.

THEOREM 6.24. Let n € Z. Assume that X satisfies AV (X, n). Then there is
a product map

7(n)¥ @ 7(d — n)¥ - 7(d)¥
in D(X ;) such that the induced pairing
H' (X, Z/m(n)) x H** Xy, Z/m(d—n)) — H*H(X oy, Z/m(d)) — Q/Z
is a perfect pairing of finite abelian groups for any i € Z and any positive integer
m.

Proof. By Proposition 6.22 there exist product maps (116) and (117) inducing
a morphism of exact triangles (see the last diagram in the proof of Proposition
6.22). Applying RT'(X¢:, —) and composing with the map

RT(X o4, Z(d)) — 7222 RT(X o, Z(d)) ~ Q/Z[—2d — 2]

given by Corollary 6.19, we obtain a morphism of exact triangles (setting 7 =
d—n):

RU(X., Z(n)) RHom(RI (X1, Z(d — n)), Q/Z[—2d — 2])

l |

RT (X, Z(n)) ——————————— RHom(RT (X4, Z(d — n)), Q/Z[—2d — 2])

l |

RI(X(R), 7<"R7,(2in)"Z) —— RHom(RT(X (R), 7>" R7,(2im) ¥ "Z[-1]), Q/Z[—2d — 2])

where the bottom horizontal map is an isomorphism by Lemma 6.25 below.
Applying the functor (—) ®% Z/m we obtain a morphism of exact triangles:

RT(X.r, Z/m(n)) RHom(RT(X.;, Z/m(d — n)), Q/Z[—2d — 1])

| J

RT(Xet, Z/m(n)) RHom(RT(X ¢, Z/m(d — n)), Q/Z[—2d — 1])

RT(X(R), 7<"R7.(2i7)"Z/m) — = RHom(RT (X (R), 77" R7.(2im)?"Z/m[-1]), Q/Z[-2d — 1])

where top horizontal map is an isomorphism by assumption. The theorem
therefore follows from the following Lemma 6.25. (]

LEMMA 6.25. The product (2im)"Z ® (2im)4""Z — (2im)9Z induces a perfect
pairing

HY(X(R),7S"R7,(2in)"Z) x H* 1= X (R), >4 "Rz, (2i7) " "Z)
— HI7Y(X(R), H2(GR, (2im)'Z)) — Q/Z

of finite 2-torsion abelian groups.
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Proof. For any integer r, one has an isomorphism
R (i) Z) ey = D (RT (G, (i) Z)),

where I'* is the constant sheaf functor, and a canonical direct sum decomposi-
tion in D
RL(G, (2i7)"Z) ~ (D Z/2Z]—r + 2k).

kEZ
We obtain an isomorphism
R7.((2i7) ) 12 r) ~ €D Z/2Z]—r + 2K] (119)
kEZ

in D(X(R)), which is compatible in the obvious sense with the product map
(113). The pairing of the lemma is induced by the composite morphism
RT(X(R), 7<"R7,(2in)"Z) @ RT(X(R), 7”9 " R7 . (2im)~"7Z)
— RT(X(R), 7> R7,(2i7)Z) — RT(X(R),Z/2Z[—d — 2])
— H7Y(X(R),Z/27)[-2d — 1] — Q/Z[-2d — 1]

where we use (118), the direct sum decomposition (119) for r = d, and the fact

that the real manifold X' (R) is (d — 1)-dimensional (we may assume X /Z flat).

We need to show that this pairing induces isomorphisms

H*H1U X (R), 779 " R7, (2im)"Z)) ~ H (X (R), 75" R7, ((2im)"Z))"

(120)

where (—)P denotes the Pontryagin dual. We have

> RE((2im) " 2) ~ @D Z/2Z[—(d + 2 — n) — 2K]
k>0

and
T<"R7L((2im)"Z) ~ @D Z,/2Z]—n + 2K).
k>0
Hence Poincaré duality for the (d — 1)-dimensional real manifold X(R) with
7/ 2Z-coefficients yields
H*T1=( X (R), 779" R7, ((2im) " 7))
~ @ H2d+1_i_(d+2_n)_2k(X(R), Z/QZ)

k>0

_ @ H(dfl)f(ifnJer) (X(R), Z/QZ)
k>0

~ PHTTHXR),Z/22)"
k>0

12

P E (X (R), Z/22)

k>0
~ HY(X(R),r<"R7,((2ir)"Z))"
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where the sums are all finite. Note that the manifold X(R) may very well
be non-orientable (e.g. take X = PZ) but Poincaré duality still holds with
Z/2Z-coeflicients. The result follows. O

COROLLARY 6.26. Let X be a regular proper scheme of pure dimension d and
let n < 0. There is a product map Z(n)* @ Z(d — n)* — Z(d)* such that

H2T=4X , Z/m(n)) x H (X o, Z/m(d —n)) — H*TY X oy, Z/m(d)) — Q/Z

is a perfect pairing of finite groups for any i € 7Z.

Proof. The pairing Z(0) ®F Z(d) ~ Z @ Z(d) — Z(d) is the obvious one. By
[39][Thm. 7.8] the assumption of Theorem 6.24 for n = 0 is fulfilled. The case
n < 0 will follow from [39][Thm. 7.8] and from an isomorphism

Z{m(d —n) ~ RH(3_H1)([1/m] (N%n[_l]a Z(d)).

Let f : X[1/m] — Spec(Z[1/m]) be the unique map. By [39][Thm. 7.10] and
since Z(1) ~ G,,[—1], we have

RHom /(" [=1],2(d)) =~ RHomy(y oy (f" " [-1], Z(d)) (121)
Rf' RHomy, ), (i [1], Z(1)[~2d + 2]) (122)

~ RfY(Z/m(1 —n))[—2d + 2| (123)

Z/m(d —n). (124)

We obtain
Z/p"(d —n) = RijpwjnZ/p"(d —n) ~ RHomy (jp1p [—1], Z(d))

where the first isomorphism follows from [39][Thm. 7.2(a)] and [39][Prop. 2.3].
Taking the limit over v and p, we obtain the product map

Z(d —n) — holimZ/m(d — n) — RHom y(Z(n), Z(d))
over X. Finally, the induced map
Hi{(Xor, Z/m(n)) x H*¥ (X, Z/m(d — n)) — HXY (X, Z/m(d)) — Q/Z

is a perfect pairing of finite groups by [39][Thm. 7.8].
O

COROLLARY 6.27. Let X' be a smooth proper scheme over a number ring and let
n € Z be an arbitrary integer. There is a product map Z(n)* @* Z(d —n)* —
Z(d)* such that

H*N Xy Z/m(n)) x H (X er, Z/m(d—n)) — H* Xy, Z/m(d)) — Q/Z
is a perfect pairing of finite groups for any i € 7Z.
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Proof. It remains to treat the case 0 < n < d. By [37], the complex Z/p*Z(n)
is isomorphic (in the derived category) to Sato’s complex (see [82] and [79]):
we have Z/p*Z(n) ~ T, (n). For general m = p{* ---p¥=, we simply write

ZJmZ(n) ~ Z/py* Z(n) x - -- X L] p]" Z(n).
Using this identification with Sato’s complex, there is a canonical product map
Z/mZ(n) @ Z/mZ(d —n) = Z/mZ(d)
which is uniquely induced by

®(Id—n)

®n ®d
v @ U v — U,
Mm i Mm i Hpi i

over X[1/p;] for ¢ = 1,...,s. By [89], this product map is defined integrally:
Spitzweck defines motivic complexes Z(n)s on X.; which are canonically iso-
morphic (in the derived category) to Bloch’s cycle complexes Z(n) on X
(since X is assumed to be smooth over a number ring), and product maps
Z(n)s ®* Z(d — n)s — Z(d)s inducing the product on Sato’s complexes. By
[79][10.1.3] the induced map

H!(X.y, Z)m(n)) x H* (X, Z/m(d — n)) — H*H (X, Z/m(d)) — Q/Z

is a perfect pairing of finite abelian groups for any ¢ € Z and any positive
integer m, so that Theorem 6.24 applies. O

6.10 THE CONJECTURE AV(f,n)

Let f : X — Y be a flat map of relative dimension ¢ between connected
regular proper arithmetic schemes of dimension dy and dy respectively. We
have canonical maps

RTo(Ver, Q/Z(n)) — RTo(Xer, Q/Z(n)). (125)

and
RU(Yer,Q/Z(n)) — RT(X e, Q/Z(n)). (126)
Assume that AV (X, n) and AV (Y., n) hold. This yields isomorphisms

RT(Vet, Z(dy — n)) = RHom(RTo(Ver, Q/Z(n)), Q/Z[~2dy — 1])
and
RT(Xey, Z(dx — n)) = RHom(RT o(Xer, Q/Z(n)), Q/Z[~2dx — 1))
in D, where
RY(Ver, Z(d — n)) = holim RT(Vey, Z/m(d — n)).
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Hence (125) induces a morphism

RU(Xet, Z(dx — n)) — RT(Ver, Z(dy — n))[—2¢]. (127)
We obtain similarly a morphism

RU(X o, Z(dx — 1)) — RT(Ver, Z(dy — n))[—2c]. (128)

CONJECTURE 6.28. AV(f,n) The diagram

RY(X4r, Z(dx — n)) RT(X.y, Z(dx — ) RT(X .y, Z(dx — n))

l l(127) l(ms)

RT(Vzar, Z(dy — n))[~2¢] — RU(Ver, Z(dy — n))[~2¢] =<— RT(Ver, Z(dy — n))[~2¢]

commutes in D, where the horizontal maps are the evident ones and the left
vertical map is induced by proper push-forward of cycles.

6.11 THE PROJECTIVE BUNDLE FORMULA

For n < 0, the complex RI'(X.,Z(n)) may have non-trivial cohomology in
negative degrees. The following proposition shows that this surprising fact is a
consequence of the projective bundle formula. We only treat the simplest (but
decisive) case X = Spec(Z).

PROPOSITION 6.29. There is an isomorphism

RU(PF ,,.Z)~ @ RIU(Spec(Z),,, Z(—n))[—2n].

0<n<m

Proof. By proper base change, one has

RT(PF ., Z) ~ €D RIT(Spec(Z)et, Z(—n))[—2n].

0<n<m

Moreover, one has 7" R7,Z ~ @, . , Z/2Z[—2k] by (119) hence

RT(P™(R), 7~ R#.Z) = €D RT(P™(R), Z/2Z)[2k].
k>0

Let S™ C R™*! be the m-sphere endowed with its natural (antipodal) action
of {£1}. A look at the spectral sequence for the Galois cover

S™ — S /{£1} ~P™(R)
shows that the canonical map
RY'({£1},Z/2Z)<, — RT'({£1},Z/2Z) — RT'(P™(R), Z/2Z)
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is an isomorphism. This yields

RT(P™(R),Z/2Z) ~ € Z/2Z[-n)].

0<n<m
We obtain

RT(P™(R), 7 R#.Z) ~ P RT(P™(R),Z/2Z)[-2k]

P P z/2z]-n][-2k]

k>00<n<m

B Ppz/2z-2k+n)[-2n]
0<n<m k>0

P > "RL(Gr, (2ir)~"Z)[-2n]

0<n<m

12

12

12

We obtain an exact triangle

RC(PR ,,2) » €D RU(Spec(Z)er, Z(—n))[-2n] - @ 77 "RL(G, (2im) " Z)[-2n]
0<n<m 0<n<m

where the second map is the sum of the maps RI'(Spec(Z)ct,Z(—n)) —
7> " RI(Gg, (2im)~"Z). The result follows. O

7 APPENDIX B: MOTIVIC AND SYNTOMIC COHOMOLOGY

The first purpose of this appendix is to formulate a conjectural relation between
(p-adically completed cohomology of) higher Chow complexes and syntomic
cohomology for arbitrary regular arithmetic schemes over local integer rings,
extending results of Geisser [37] in the smooth case. Whereas [37] applies with
integral coefficients under the assumption 0 < n < p — 1 we shall only consider
rational coefficients but any n € Z. The second purpose is to discuss the motivic
decomposition of p-adically completed motivic cohomology which is necessary
to compare our main conjecture to the Tamagawa Number Conjecture. This
appendix is only needed in the main body of the text in section 5.6, and then
only in the restricted setting of smooth schemes for which more complete results
are known (see Prop. 7.21 and the remarks following it).

For any equidimensional scheme Y and n € Z we define the complex of étale
sheaves

Z(n) = z"(—,2n — %)

from Bloch’s higher Chow complex (and we retain the cohomological indexing
even if YV is singular). For any prime number [ we set

RU(Y, Zy(n)) = holim RT(Y, Z(n) /I°); RF(Y,@l(n)):RF(Y,Zl(n))E@ |
129
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where cohomology groups are always understood in the étale topology. For n <
0 we have Z(n) = 0 which differs from the definition in section 3.1. However,
the two definitions will lead to the same cohomology with Q;(n)-coefficients in
Cor. 7.6 and Cor. 7.17 below.

In the following a regular scheme will always assumed to be (essentially) of
finite type over a field or a Dedekind ring.

CONJECTURE 7.1. For a reqular scheme X the complex Z(n) on X is (coho-
mologically) concentrated in degrees < n.

This conjecture is known if X is smooth over a field or Dedekind ring by
[37][Cor. 4.4]. Note that the Bloch complex of presheaves Z(n) is concentrated
in degrees < 2n and so the conjecture says that the sheafification (in the étale
topology) of H%(Z(n)) vanishes for i = n + 1,...,2n. This should be true for
the Zariski topology as well.

LEMMA 7.2. If Conjecture 7.1 holds, [ is invertible on X and n > 0 then
Z(n)/1° = pid™ on Xep.

Proof. This is [92][Thm. 2.6], noting that truncation is unnecessary under
Conjecture 7.1. O

We shall usually consider the following local setting. For a prime p let K/Q,
be a finite extension with maximal unramified subextension Ko/Q,. We set

s = Spec(k), S =Spec(Ok), n = Spec(K)
and
7 = Spec(7), 5= Spec(k), S“" = Spec(O%), n"“" = Spec(K"")

where k is the residue field of K and K*" /K the maximal unramified extension.
We denote by ¢ : s — S and j : n — S the complementary immersions. Finally,
we let

f:X—S

be a flat, projective morphism of relative dimension d — 1 and we assume
throughout that X is a regular scheme. We denote the base change of a map
by indexing it with the source of the base change map to its target. For example,
tx : Xs — X is the closed immersion of the special fibre.

7.1 [-ADIC COHOMOLOGY

In this section [ is a prime number different from p. We summarize here some
facts from [-adic cohomology in order to motivate the conjectures of the next
section.
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7.1.1 LOCALIZATION TRIANGLES
There is a localization triangle
Rl x, (Xsur, Qi) = RT'(Xgur, Q) = RT(Xyur, Qr)

where we can view the first group as (Borel-Moore or ordinary) homology and
the second (via proper base change) as cohomology of the special fibre X;.
The topological analogue of this situation is a tubular neighborhood, i.e. a
closed embedding X; — X of a compact space X5 into a manifold X which
is moreover a homotopy equivalence. This gives rise to a map from homology
to cohomology of Xz by the same localization sequence. Using regularity of X
and S we have f'Q; = Qi(d — 1)[2d — 2] and using regularity of s and S we
have R/'Q; = Q;(—1)[~2]. Since to fs = f o tx we obtain

RixQu = Rix f'Qu(—d + 1)[-2d + 2] = f,Qu(~d)[-2d]
and we can rewrite the shifted localization triangle as
RT'(X5, Q) = RT(Xur, Q) — RI'(X5, flQu(—d)[-2d +1]) — (130)

which we view as a computation of the cohomology of X,«-. The cohomology
of Xyur can also be computed by Galois descent from the cohomology of Xj.
Setting I := Gal(K/K"") one has

RT'(X,ur, Q) = RT'(I, RT'(X5, Q)

but in order to bring out the analogy with p-adic cohomology in the next section
we rewrite this slightly using Weil-Deligne representations. If (V| p) is a con-
tinuous l-adic representation of G := Gal(K/K), a theorem of Grothendieck
guarantees that an open subgroup I; C I acts unipotently, i.e. for o € I

p(o) = exp(ti(o)N)

where ¢; : I — Z;(1) is the natural surjection and N : V' — V(—1) is a nilpotent
endomorphism. Following [19][8.4.2] one defines a representation (V?,p%) of
the Weil group Wx C Gx on V = V? by p°(¢"0) = p(¢" ) exp(—t;(c)N) for
o € I and ¢ any lift of Frobenius. By Grothendieck’s theorem p° is trivial on
the open subgroup I, of Wk, i.e. p° is discrete. One then has with oy denoting
a topological generator of Z;(1) and P = ker(¢;)

RI(1,V) 2 RU(Zy(1), VF) 2 [VF 258 vP(-1)] = [vor 2 vol (-1
where for a map of complexes A — B we write
[A — B] := holim[A — B| = Cone(A — B)[—1].

Applying these considerations to a decomposition [20]

RT(X;, Q) = @) H (X5, Q)] (131)

i€EL
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we find
RT(X,ur, Q) = RI(I,RI'(X5 Q)
= nolim (RI(Xy, @)™ &5 RT (X5, @)% (-1))
for a certain nilpotent endomorphism N of RI'(X5,Q;) and obtain the exact

triangle

RI(Xs, Q1) = [RT(X3, Q@)% & RD(X5,Q0)™ (<1)] = RD(X5, Q1) (~d)[~2d + 1]
(132)

where we have used the duality RT'(Xs, fiQ;) = RI'(Xs, Q;)* between homol-

ogy and cohomology.

7.1.2 MOTIVIC DECOMPOSITION

If f is smooth then I acts trivially, N = 0, and the composite map
Sp: RF(X§5 Ql) — RF(XW”Ta Ql) — RF(Xﬁa Ql)&l = RF(Xﬁle)

is an isomorphism, i.e. gives a splitting of (130) and (132). For general regu-
lar X it was shown in [27][Thm 10.1] that the monodromy weight conjecture
[52][Conj. 3.9] implies that in each degree i there is a short exact sequence

0— 7' = H' (X5, Q) 5 H (X5, Q) = H (X5, Q)0 V=0 =0

where Z? is pure of weight i. For each i this gives a splitting of the short exact
sequence

0— HNX5,Q)(-1)>"/N = H (Xpur, Q) = H'(X57,Q)>"N=0 =0
as well as a short exact sequence

0— H'NX;Q)(-1)""/N = H* (X5, Qu(d)* = 2 =0 (133)
using the long exact sequence induced by (132).

PROPOSITION 7.3. Assume the monodromy weight conjecture for the generic
fibre of the reqular scheme X and set

V= HY(X;,Q).

Assume moreover that Frobenius acts semisimply on H'(Xs, Q) for each i.
Then the triangle (132) is isomorphic to the direct sum over i € Z of the
[—i]-shift of the exact triangles

Z'0] @ ViSIN=0[] — |yidd Ty yidl ()| o viSl (1) /N[-1] @ Z[1] -
(134)

in the derived category of Wy,-modules. Here we denote by Wy, C Gal(k/k) the
Weil group of the finite field k.
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Proof. If M denotes the monodromy filtration on V := V%91 [18][1.6.1] we
have an isomorphism of Wy-modules

V=)V

neZ

since GrMV is pure of weight n by the monodromy weight conjecture. By
[18][1.6. 14, 2, 1.6.14.3] there is an isomorphism of Wj-modules

)

ntj

M ~ M N=
Gryve @ G (VV=0)( ;

il
j=n (2)

and VV=Y is a quotient of H*(Xs, Q;), hence semisimple. We conclude that
W), acts semisimply on V = V»%!_ Since the cohomological dimension of the
abelian category of l-adic sheaves on s = Spec(k) is equal to one, there exists
a decomposition

(X5, Q) = @D H (X5, Q)[-i] (135)

i€EZ

in the derived category of Wi-modules. In the following diagram the unlabeled
arrows form a commutative diagram induced by the truncation functors, o is
the splitting given by (135), o7 is the splitting given by (131), the (surjective)
splitting o5 exists by semisimplicity of V%! and the (injective) splitting o3 by
semisimplicity of H*(X3, Q).

o3 g2
— .

Hi(Xg, @l)[*l] - o Vi,S,I,N:O[ii] - o VZVM[fi]

I |-

'Rl (X5, Qi) T2 RT(X5,Q)*"

Write 09 = 0f @ o} corresponding to the decomposition of Wjy-modules
Hi(Xg, Ql) o~ Zl @ Vi,6,I,N:0

induced by 3. After replacing og by 0Z @® 03 0 03 0 01 0y where v = 72%sp
is the bottom horizontal arrow, the diagram of splittings commutes. A similar
argument applies to (133)[—1]. By an easy induction one finds that (132) is
isomorphic to the claimed direct sum of triangles. O

We record the following Corollary which is not needed in the rest of the paper.

COROLLARY 7.4. Under the assumptions of Prop. 7.3 there exists a (noncanon-
ical) decomposition

REQ = DR LQI-1 =P iV -] @ 0. Z[~i]

€L €L

in the derived category of l-adic sheaves on S.
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Proof. The abelian category of [-adic sheaves on S can be described as the
category of diagrams Vo -2 V; where Vj is an l-adic Gi-representation, V; a
G-representation and sp is Gx-equivariant. In this description, by proper
base change, R'f,Q; is given by H(X5,Q;) = Vi, j, Vi by (V) — V? and
L2 by Z" = 0. O

REMARK 7.5. An alternative proof of Cor. 7.4 might be obtained along the
following lines. There is a perverse t-structure on the derived category of l-adic
sheaves on separated, finite type S-schemes [52][App.]. Assuming the mon-
odromy weight conjecture it seems plausible that one can adapt the proof of the
relative hard Lefschetz isomorphism

¢ PHT'REQuld]) = PH'Rf.Quld)(7)

from [2][Thm. 5.4.10]. As explained in [20] this implies a (noncanonical) direct
sum decomposition

REQi[d] = EDFH' Rf.Qu[d])][ ).

i€z
Since Q[d] is a pure complex of weight d, so is Rf.Q;[d]. Hence F :=
PH'Rf.Qi[d] is a pure perverse sheaf (of weight i + d) and one might be able
to adapt the proof of the direct sum decomposition [2][5.3.11]
F =2 G " F®ulF
assuming semisimplicity of Frobenius. By proper base change j*F = Vitd gnd
since S is of dimension one we have j. Vit = . Vitd  Moreover Pv* F =

Z+d+1 1] and the isomorphism of Corollary 7.4 follows.

For any [-adic representation V of Gk := Gal(K/K) recall the definition of
f-cohomology of Bloch-Kato [28]

RIf(K,V) o= (VI 2% V1) = RI(S, j.V) = RI(s,0°1.V)
and the definition of RI',¢(K, V') via the exact triangle
RT§(K,V) — RT(K,V) = RT;(K,V) -

where RI'(K,V) = RI'(n,V) is continuous Galois cohomology of V' and ¢ is
the geometric Frobenius generating Gal(k/k).

COROLLARY 7.6. Assume Conjecture 7.1 and the assumptions of Prop. 7.3
for the regular scheme X. Then for any n € Z there is a (noncanonical)
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isomorphism of localization triangles

RI(X,Qi(n)) = RI(s,Z*"(n))[-2n] ® 62 RI (K, Vi(n))[—i]
RT(X,,Qi(n)) = 5692 RI(K,V'(n))[—1]

! !

RT (X, fiQu(n — d)[-2d + 1]) = RI(s, Z*"(n))[-2n + 1] & @ RT (K, V*(n))[—i]

| |

where the Tate twist in the right hand column is defined in the usual way. For
n < 0 all complezes in this diagram are acyclic.

Proof. The left vertical triangle is isomorphic to RI['(s, —) applied to the (n)-
Tate-twist of (130) which agrees with the higher Chow definition of the left
hand column for n > 0 if we assume Conjecture 7.1. The statement now
follows from our rewriting of (130) as (132) and €, (134)[—1] together with
the fact RT'(s, Z%(n)) is acyclic for ¢ # 2n since Z* is pure of weight ¢. The
acyclicity of the complexes in the right hand column for n < 0 follows from an
easy weight argument (see the Proof of Prop. 7.18 below). This then shows
that the higher Chow definition of the left hand column also holds for n < 0.
O

The middle isomorphism in the diagram of Corollary 7.6 can be interpreted
as a computation of [-adic motivic cohomology of the generic fibre from the
geometric cohomology (fibre functor) X — H'(X;,Q;) with its natural extra
structure, i.e. the continuous G k-action. Succinctly, one has the isomorphism

RI(X,.Qu(n)) = RT(K, RT(X5,Qu(n))).

Alternatively, one can compute RI'(X,,, Q;(n)) from the slightly different fibre
functor X — H Z'(X,—I,(@l)‘s with values in Weil-Deligne representations intro-
duced above. One has

RI(X,, Qi(n)) =R(s, RT(Xyur, Q1(n)))
RT(X,, Q)% —=% RI(X,, Q)%
~holim Nl Nl (136)

RD(X5, Q)% =" RI(X,, Q)%
where ¢, = ¢|k|™".
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7.2 p-ADIC COHOMOLOGY

The two computations of [-adic motivic cohomology of the generic fibre X,
given at the end of the last section lead to different absolute cohomology theo-
ries for I = p. Since p is invertible on X, and X, is smooth over a field, one still
has the isomorphism Z(n)/p® = u?." [0] on X, c¢. Hence the first computation

RI(X,,Qy(n)) = RT(Grc, RU(X5, Qp(n)))

applies in the same way. The analogue of the fibre functor X — H'(Xj, Q)°
with values in [-adic Weil-Deligne representation is the fibre functor

X = Dyst(H'(X5,Qp))

with values in (weakly admissible) filtered (¢, N, Gk )-modules in the sense
of [29] (finite dimensional K{" vector spaces with operators ¢ and N and a
discrete Gx-action as well as a filtration on the scalar extension to K. See also
[30] for a detailed discussion of these fibre functors both for [ = p and [ # p).
If f is smooth then this fibre functor is isomorphic to crystalline cohomology
of the special fibre X5, if f is log-smooth it is isomorphic to log-crystalline,
or Hyodo-Kato cohomology of X and for general X, (not necessarily smooth
or proper) it was constructed by Beilinson [3] from the log-smooth case by
h-descent. Following [76] we denote this functor by

B,i ~ i
X = Hyye (Xan) = Dpst(H' (X5, Qp))-
The corresponding absolute cohomology theory is log-syntomic cohomology of
X, as defined by Niziol and Nekovar in [76]. It can be computed by a homotopy
limit similar to (136)

R syn (Xy,n)

(1—=¢n,tqRr) n
RUE i (X)) 0K —224B% RPE (X5.0) 9K @ (RTar(Xq,0)/F™)CK
= holim Nl (N’O)l (137)
1—¢p_1
RT G i (X5,0) 9K —— RT G i (X,n) 9K

where ¢,, = ¢p~™. There is a comparison map [76][Thm. A (4)]

RFsyn(Xm n) i RF(XU’ Qp(n))

but it only induces an isomorphism in degrees i < n.

7.2.1 LOCALIZATION TRIANGLES

We now discuss the localization exact triangles for both version of p-adic mo-
tivic cohomology. We first establish a localization triangle for a fairly general
regular scheme X which uses the definition of Z(n) as a cycle complex.
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LEMMA 7.7. Assume X is of finite type over a discrete valuation ring D with
perfect residue field k of characteristic p and fraction field F' of characteristic
0. Denote by

j:Xp = X, 1: X, = X

the complementary open and closed immersions. Assume n > 1. If X is
reqular and satisfies Congjecture 7.1 then there is an ezxact triangle of complexes
of sheaves on Xt

TS (@20 = 1)/p)[=2) = Zn) /p* - =" Rjapt = . (138)

If X, is a normal crossing divisor, the truncation in front of the first term can
be removed.

Proof. We follow the argument in [37][Proof of Thm. 1.2.1]. Since X is of
finite type over a discrete valuation ring one has an exact localization triangle
on Xzqr [37][Cor. 3.3]

z*Z(n — 1)Zm~[—2] — Z(n)zar — j*Z(n)Zar —

and an isomorphism I'(V,Z(n)) = RT'(Vzar,Z(n)) for any open subscheme
V C X [37][Thm.3.2 b)]. But this implies that

j*Z(n)ZaT 1> Rj*Z(n)Zar
since the map on stalks at x € X

%r(v N X, Z(n)) — ilegv RT((V N Xp) Zar, Z(n))

is an isomorphism. So we obtain a localization triangle in the Zariski topology
ixZ(n — 1) zar[—2] = Z(n) 2ar = RJ+Z(N) zar — (139)

not only on X but, by the same argument, on any étale scheme X’ — X. Let
€ : Xyt — Xzar be the morphism from the étale topos to the topos of Zariski
sheaves on the category of étale schemes over X and use the same notation
for Xr and X,. Note that e, is the inclusion of étale into Zariski sheaves
and hence the identity map on objects whereas €* is étale sheafification. The
identity e*e, F = F for any étale sheaf F induces isomorphisms

e F* = € Re F* = F* (140)

for any complex of étale sheaves F*. In particular €,Z(n) = Z(n)zqr and
€*Z(n) zar = Z(n). There is a commutative diagram of exact triangles on X,

e i Z(n — 1) zar[-2] —— €Z(n)zar —— € RIZ(N)720r ——

| H l

i Ri'Z(n) —  Z(n) —— RjZ(n) ——
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where the top row is the pullback of (139) and the bottom row is the localization
triangle in the étale topology. The vertical maps are induced by choosing a K-
injective resolution Z(n) — I(n). To see the right commutative diagram, start
with the adjunction id — j.j* in the category of complexes of sheaves and
compose with e*e,. Applied to Z(n) we get

€ Z(n) zar = €' €. L(n) = €' €4 f L(n) = € juerJL(N) = € JuZ(N) zar
and applied to I(n) we get
Z(n) 2 e'e I(n) = €*ejuf I(n) = €" €. RjZ(n) = Rj,Z(n).

The left commutative diagram is similarly obtained by applying e*e,i,i' — €*e,
to Z(n) — I(n). Taking mapping cones of multiplication by p® we obtain the
diagram

E*i*Z(nf 1)Zar/p.[72] e E*Z(n)zcw/]f E— E*Rj*Z(n)Zar/p. ——

| H !

i Ri'Z(n)/p* ——F  Z(n)/p* ——  RjZ(n)/p*® —— .

(141)

By the Rost-Voevodsky theorem (previously Beilinson-Lichtenbaum conjecture,
see e.g. [92][Thm. 2.5]) on Xp, the adjunction

Z(n)zar [P = €xZ(n)/p* — €.1(n)/p* = Re.Z(n)/p*
induces a quasi-isomorphism
Z(n) zar/p® = TS"Re.Z(n) /p°.
By [92][Lemma 2.4] we obtain a quasi-isomorphism
TS RGLL(N) zar /P = TS" R TS"Re Z(n)/p®

>~ rS"Rj.Re.Z(n)/p® = TS"Re.Rj.Z(n)/p®

and hence an isomorphism
PN R ZN) gar [p° 7€ Re RGLZ(n) [p* = T RLZ(0) /b,

i.e. the right vertical map in (141) is an isomorphism in degrees < n. From
the Five Lemma and 75"Z(n)/p® = Z(n)/p® it follows that the truncation of
the left vertical map in (141)

TS"'He*i*Z(n — V) zar/p*[-2] — TS""'IZ'*Ri!Z(n)/p'
is a quasi-isomorphism and that there is an exact triangle
TN Z(n = 1) [p°*[=2]) = Z(n)/p* = T="RjL(n)/p* —
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using €6, Z(n—1) zar/P® = 0. Z(n — 1) 741 /p® = i+Z(n—1)/p®. Using Lemma
7.2 we have an isomorphism

Z(n)/p® = pid (142)

on Xr and we get the exact triangle (138).

Recall that if Z is a separated, finite type scheme over a perfect field x of
characteristic p all of whose irreducible components are of dimension d — 1 and
r > 0 there is a quasi-isomorphism on Z,; [92][Thm. 1.1]

Z(r)/p* =Z(d—1—71)/p*[—2d + 2] 2 Uze(d — 1 —r)[—2d + 2]

where Uz 4(d — 1 —r)[—2d + 2] is the Gersten complex of logarithmic deRham-
Witt sheaves (see [80][1.7])
D ie Wy 25 @ il S

z,log xz,log
z€Z° zeZ?t

concentrated in degrees [r,2r]. Note that these complexes are identical for Z
and Z,.q. If Xs is a normal crossing divisor, i.e. X is semistable, then this
complex is cohomologically concentrated in degree r by [80][Cor. 2.2.5]. Hence
the truncation in front of the first term in (138) can be removed.

The following consequence of Lemma, 7.7 is only needed in section 5.6 in the
main text.

LEMMA 7.8. With notation and assumptions as in Lemma 7.7 denote by D the
p-adic completion of D and by g : X5 — X the natural (flat) morphism. Then
the flat pullback on higher Chow complexes [8]

9"Z(n)/p* — Z(n)/p*
is a quasi-isomorphism.

Proof. We first prove the following general base change result for torsion
sheaves.

LEMMA 7.9. Let X be of finite type over a Dedekind D ring with fraction field
of characteristic zero. Let p be a prime number and denote by D the p-adic
completion of D. Consider the Cartesian diagram

%

Xpll/p) —— X A,

i | ||

X/ —o X —— X,

Then for any complex of sheaves F on X with torsion cohomology, the base
change morphism R
B:g"Rjj*F = Rjg*j* F
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as wells the natural morphism
i*a: Ri'F — Ri'g*F

are quasi-isomorphisms.

Proof. There is a commutative diagram with exact rows

Rl F —— ¢°F —— Rj.j'¢'F ——

[e H Js

¥ Ri'F —— ¢*F —— ¢*Rj.j*F ——

where the top row is the localization triangle for g*F on X5 and the bottom
row is the pullback of the localization triangle for 7 on X. The right square
commutes since both maps are adjoint to the same map and similarly for the
left square. The stalk of § at a geometric point p : Spec(Z) — X is an
isomorphism if x € Xp[1/p], i.e. p= Jp', in view of the isomorphism

P9 Rjuj*F =) g Rief" F = (9)" 35" Rjef" F
~()'§"5" F = () R3S F
=" Rj.g"j"F.

For x € &, the stalk of 3 is the map

RF(A[%]et,}“) — RF(A’[%]et,]-“) (143)

where A (resp A’) is the strict Henselization of X' (resp. X') at . By the def-
inition and elementary properties of the notion of Henselian pair [44][(18.5.5),
(18.5.6)] it follows that (A4, (p)) and (A’,(p)) are Henselian pairs. By the
Gabber-Fujiwara formal base change theorem [32][Cor. 6.6.4] the restriction
map

1

RP(A[;]et,]-") — RL(A[=]et, F)

=

is a quasi-isomorphism, where fl\is the p-adic completion of A. The same
holds for A’ and we have A = A’. Hence (143) and therefore 8 are quasi-
isomorphisms. This implies that « is a quasi-isomorphism which proves Lemma,
7.9. O

We continue with the proof of Lemma 7.8. There is a commutative diagram
with exact rows where the top row is (138) on X', the bottom row is the
pullback of (138) on X and the middle row is the truncated localization triangle
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for g*Z(n)/p® on X,

TSN Zn - 1) /p*)[-2] —— Z(n)/p* —— TSRS

I i K

TEMHULRIG Z(n) [p* —— ¢"Z(n)/p* —— T="Rj.jg"Z(n)/p°

TTSTI'+1DL || TTSHB
* -<n—1

g L = 1) /p*)[-2] —— ¢'Z(n)/p* —— g T R

The maps from the middle to the top row form a commutative diagram by
functoriality of the (truncated) localization triangle. By Lemma 7.9 for F :=
Z(n)/p® the middle and bottom row are quasi-isomorphic. Since the base
change of ¢ to x is an isomorphism, the map o’ o 7<"*1q is an isomorphism.

It follows that o’ is a quasi-isomorphism. Since
Tk ok ® ~U ~k % o~k AN ~ ,, QN
J g L(n)/p® = G L(n) [p® = G e = e
the map 3’ is a quasi-isomorphism and we deduce the same for ~. O

For the discussion below we find it most convenient to isolate the following
statement. Lemma 7.7 shows that it holds in the semistable case under Con-
jecture 7.1. Unfortunately we cannot prove it in the general regular case even
assuming Gersten’s conjecture.

CONJECTURE 7.10. Assume X is of finite type over a discrete valuation ring
D with perfect residue field x of characteristic p and fraction field F' of char-
acteristic 0. Denote by

JiXe X, i X, X

the complementary open and closed immersions. If X is reqular then there is
an exact triangle of complezes of sheaves on X

iZ(n —1)/p*[=2] = Z(n)/p* — 75" Rj.pSd — . (144)

We now return to the local setting. Assuming Conjecture 7.10 we obtain a
commutative diagram of exact localization triangles where the top row is in-
duced by (144) and the bottom row is the usual localization triangle in the
étale topology.

RI(Xs,Qp(n —1))[-2] —— RI(X,Q,(n)) —— RI(X,75"Rj.Q,(n))

! H l

RI(X,, Ri'Qy(n)) ——— RI'(X,Qu(n)) —— RI(X,,Qp(n))
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CONJECTURE 7.11. For regular X and n > 0 the period map

RE gy (Xy.m) % BT (X, Qy(n))
of [76][Thm. A (4)] factors through an isomorphism
RT gy (Xy,n) = RI(X, 75" Rj,.Qp(n)).

PROPOSITION 7.12. If X is strictly semistable (in the sense of [17]) then Con-
jecture 7.11 holds.

Proof. By [17][Thm.1.1] there is a morphism
ai]y : Fe(n)x — i*TS"Rj*uf."

whose kernel and cokernel are annihilated by a fixed power of p, and where
Zo(n)x is the log-syntomic complex of Fontaine-Messing-Kato [57]. Hence

IR

(holime RT(X, % (n)x))o (holimg RT (X, i* 7" Rj. 5" g

RT(X, 75" Rj.Q,(n)).

IR

By [76][Thm. 3.8] there is an isomorphism
Qoyn : (holimg RT'(X, % (n)x))g = Rl syn (X, n)
where RI'gy,(X,,n) is given by the homotopy limit (137). O

COROLLARY 7.13. For X semistable satisfying Conjecture 7.1 and n > 0 there
is an exact localization triangle

RT(X,,Qp(n —1))[-2] = RT'(X,Qp(n)) = Rl gyn(Xy,n) — .

Proof. Combine Lemma 7.7 and Prop. 7.12. O

REMARK 7.14. The natural map Z(n) — Z(n)/p® of (pro)-complezes of sheaves
on Xep and X, ; induces a commutative diagram

HI(X,Z(n))q —— H(X,,Z(n))g
HY(X,Qp(n)) —— H(X,,Qy(n)).

The Chern class maps from K -theory to motivic cohomology [8] induce an iso-
morphism

Kon—i(Xy)y 2= H (X, zar, Z(n))g = H'(X,, Z(n))g
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whose composite with ¢ is the étale Chern class map c°*. By [76][Thm. A
(7)] ¢ factors through H ,(X,,n), hence so does the composite map c o j*.

Corollary 7.13 then gives another proof of the factorization

syn

Kon—i(X)§" 2 H'(X, Z(n))g = Hiyp(Xy,n) = H'(X,,Qp(n))
in the semistable case.

Concerning a syntomic description of RI'(X,Q,(n)) we expect the following.
The geometric cohomology theory for arbitrary varieties Y/k is rigid cohomol-
ogy [5,6]

Y — H};ig(Y/KO)

taking values in the (Tannakian) category of ¢-modules (finite dimensional
Ky-vector spaces with a Frobenius-semilinear endomorphism ¢ [29][4.2]). We
expect the following p-adic analogue of (132) relating the geometric cohomology
of the special and the generic fibre.

CONJECTURE 7.15. For regular X there is an ezact triangle in the derived
category of ¢-modules

cosp

RTig(X, /o) 2[RV (X )% 25 R (X5 (-1)0x | 222,
RTyig(Xs/Ko)* (—d)[-2d + 1] — (145)

where sp induces the specialization map constructed in [91] and cosp is the
composite of the Poincare duality isomorphism

RT e (Xi.0)(—1) & RT3 (X n) " (—d)[—2d + 2]
on Xy and sp*.

We expect the following relation between rigid cohomology with compact sup-
port [5] and p-adic motivic cohomology with compact support as defined in [38]
and between the dual of rigid cohomology with compact support and p-adic
motivic Borel-Moore homology as defined in (129) above. For n € Z and a
separated, finite type k-scheme Y define

RTc(Yen, Qp(n)) := (holime RTc(Yer, Z(n)/p*))q

where the complex of sheaves Z(n) on (Sch/k)., was defined in [38][Sec. 4]. It
is expected that the arithmetic cohomology groups H:(Y,.,Z(n)) of [38][Def.
5.4] are finitely generated for all 4,n € Z [38][Conj. L(X,n)], and if this is the
case we have

Hé(Yeh’ Qp(n)) = Hé(Yara Z(n)) ®z QP
by [38][Thm. 5.2 (b)].
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CONJECTURE 7.16. a) For a separated, finite type k-scheme Y and n € 7 there
exists an isomorphism

RTo(Yon, Qp(n)) = {Rl“m-gyc(Y/Ko) 120, ang,c(Y/Ko)} .

b) For a separated, finite type k-scheme Y , equidimensional of dimension d—1,
and n € 7 there exists an isomorphism

RIU(Y,Q,(n)) = [RFTZ-Q,C(Y/KO)* SR RF”'M(Y/KO)*} [—2d + 2].

COROLLARY 7.17. Assume X is reqular and satisfies Conjectures 7.10, 7.11,
7.15 and 7.16b) for Y = X, and that the bottom square in the diagram below
commutes. Then for n > 0 there is an isomorphism of localization triangles

RO(X,Qp(n) [er-gocs/xo)mer-gocs/Ko)@erR<Xn>/F"}

! !

(1—=¢n,tqgr) n
RUG o (X p) 0K —24B% RDD(X5.n) 9K @ ROap(X,)/F

RTyn (X,, 1) = Nl <N,o>l

1—¢n—1
RU g (Xgn) 9K ——

! !

RI'(Xs,Qp(n —1))[—1] = [RFMQ(XS/KO)* H—"*"K RFMQ(XS/KU)*] [—2d + 1]

RT g (Xi,0) O K

where sp’ = L4 o sp.

Corollary 7.17 implies Conjecture D,(X,n) (Conj. 5.5 in section 5.4) in the
presence of Conjecture 7.16a). This rather indirect way of obtaining a syntomic
description of RI'(X,Qp(n)) goes back to [37] for smooth fand 0 <n <p—1.
A more natural way to obtain a syntomic description of RT'(X,Q,(n)) would
be to construct a cycle class map with values in syntomic cohomology, following
the construction of the étale cycle class map in [35].

ProPoSITION 7.18. Corollary 7.17 holds unconditionally for n < 0. More
precisely, all complexes in the right hand column are acyclic, whereas the com-
plexes in the left hand column are acyclic by definition (for RT'(X,Qp(n)) we
can use the higher Chow definition or that of section 3.1).

Proof. Since X, is proper of dimension d — 1 the eigenvalues of ¢£§“ ol on any
H},,(X:/Ko) are Weil numbers of weight w in the range —2n < w < 2(d —
1) — 2n [75]. Hence for n < 0 the eigenvalue 1 of weight w = 0 cannot occur.
Similarly, the eigenvalues of qﬁgf:_F;] on any H', (X,/Ko)* have weight w in the
range —2(n —d) —2(d — 1) < w < =2(n —d) and w = 0 cannot occur if n < 0.

rig
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Together with the fact that RI4r(X,) = FORL4r(X,) = F"Rl4r(X,) for
n < 0 this implies that two of the three complexes in the right hand column
are acyclic, hence so is the third. It remains to show that RT'(X,Q,(n)) as
defined in section 3.1 is acyclic. We have

RI(X,Z(n)/p*) = RT(X, jx ") = RU(S, Rf.jx ")

= RI(S, jiR foapige’) =0

using the fact that f is proper, i.e. Rf. = Rf), and the vanishing of RT'(S, j1.F)
for any sheaf F [69][Prop. II.1.1]. O

7.2.2 MOTIVIC DECOMPOSITION

Define the ¢-module
7' = ker (H,fig(XS/KO) 2, Hgg(xﬁ,h)) .

PROPOSITION 7.19. Assume the p-adic monodromy weight conjecture [71] for
the generic fibre of the reqular scheme X and assume moreover that the ¢-
module H;, (X;/Ko) is semisimple for each i. Assume Congecture 7.15 holds
for X. Then the triangle (145) is the direct sum over i € Z of the [—i]-shift of
the exact triangles

Z10)& Hjjie (Xa) %V =00] — [Hf e (Xa )% S Hij (Xan) (-1)%% | =
Hyie(Xpn) ()% /N[-1] @ Z'[1] — (146)
in the derived category of ¢-modules. Moreover Z* is pure of weight i.

Proof. The proof of [27][Thm 10.1] consists in applying the exact weight fil-
tration functor to the long exact sequence induced by (130), using the fact
that H'(Xs, Q;) has weights < i since X is proper, together with the mon-
odromy weight conjecture. In view of [75] these arguments are available to
show surjectivity of

rig

(X Ko) =5 Higie(X5) =0

as well as the fact that Z* is pure of weight 4, assuming the p-adic monodromy
weight conjecture. We can then follow the proof of Prop. 7.3, using the fact
that the category of ¢-modules has global dimension one, and that the motivic
decomposition

RF(Xﬁa Qp) = @Hi(Xﬁan)[_i] (147)
i€
induces a motivic decomposition of

RPEK(X’T],}L) = Dpst (RF(Xﬁa QP))
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For any ¢-module D set

R(¢,D) = [D =% D] = holim(D ~=% D).

For any p-adic representation V' of Gk recall the definition of f-cohomology of
Bloch-Kato and Fontaine Perrin-Riou [28]

(1-¢,1)

RU;(K,V) = (DC”-S(V) Deris(V) @ DdR(V)/FO)

where ¢ is induced by the inclusion D.,;s(V) C Dyr(V), and the definition of
RI' /4 (K, V) via the exact triangle

RT4(K,V) — RU(K,V) = RT,((K,V) — .

Define
Du(v) L2 DL(V) @ Dar(V)/FO
RT (K, V) = Nl Nl
Du(V(-1)) % Da(V(-1))

so that there is an exact triangle
RT#(K,V) — RI's(K,V) = R(¢,Dst(V(—1))/N)[—1] — .

Setting
Vii=H' (X5 Q,)

we have an isomorphism of (¢, N)-modules, resp. ¢-modules, resp. filtered
K-vector spaces

Dst(Vi) = Hﬁ?{ (Xﬁ h)GKa DcriS(Vi) = Hﬁ?{ (Xﬁ h)GK’NZOa
Dar(V") = Hyp(Xy)
and obtain the following motivic decomposition of both localization triangles.

COROLLARY 7.20. Let X be a reqular scheme satisfying the assumptions of
Cor. 7.17 and of Prop. 7.19. Then for any n € Z there is an isomorphism of
localization triangles

RI(X, Qp(n)) = R(¢, Z2°™(n))[-2n] & %RW(K, Vi(n))[~i]
RFsyn(Xnyn) = %RFSt(K7 Vl(n))[fz}

! !

RD(Xs,Qp(n = 1))[-1] — R($, Z*"(n))[-2n + 1] & EGZR(QZ Dst(V*(n = 1))/N)[~i — 1]

! !
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and an isomorphism of localization triangles

RD(X,Qp(n)) = R(¢,22n(n))[—2nl@%BZRFf(K,Vi(n))[—i]

| |

RL(Xy, Qp(n)) = _?ZRF(K, Vi(n))[—i]

l !

RIU(X,, Ri'Q,(n))[1] = R(¢,Z**(n))[-2n+1] & ?ZRFN(K, Vi(n))[—i]

! !

ProPoSITION 7.21. If f : X — S is smooth then Conjectures 7.1, 7.11, 7.15,
7.16 hold true, if in 7.16a) we replace RT' (X cn,Qp(n)) by (see notation 5.3)
RI, (X5, Qp(n)) := RT(Xset, Qp(n)).

Moreover, the conclusions of Corollary 7.17, Prop. 7.19, and Cor. 7.20 hold
true, in particular there is an isomorphism

RT(X,Qp(n)) 2 | RTeris (Xo/Ko) L2200 RE,ou(Xs/Ko) ® RTar(X) /F"}

(148)
and Congecture D, (X, n) in section 5.4 holds true.

Proof. Conjecture 7.1 holds by [37][Cor. 4.4], Conjecture 7.11 by Prop. 7.12
and Conjecture 7.15 is trivial since sp is in this case the isomorphism

Rrrig(Xs/KO) = RFCTiS(XS/KO) = RFHK(XS/KO) = RrgK(Xﬁ,h)GK

and N = 0. The theory of the deRham-Witt complex [51][1.5.7.2] gives a short
exact sequence

0= Wo% 1oy = Wallk 5 W% =0

where F' is the Frobenius on the deRham-Witt complex, and an isomorphism

d—1
chris(Xs/KO) = @ RF(st WOQ%(S )Q[fj]
j=0

where ¢; = ¢p~7 on the left hand side induces F' on RI'(Xj, W.Qg(s)@. In each
degree ¢ the decomposition of the ¢-module

d—1
HZris(XS/KO) = @ Hi_j(XS’ W'Q-;(S)Q

=0
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is such that the slopes of H*=7 (X, W.Q&S)Q lie in the interval [j,5 + 1). In
particular, ¢ is divisible by p?, and F = ¢p~7 has no eigenvalue 1 for n # j.
Hence

[RFcris(Xs/KO) i) RFcris(Xs/KO):| (149)
= | (holim RT(X,, WaQ%.)) [-n] “= (holim RT(X,, WaQ%.)) [-n]
= (holim RT(Xs, WaQ% 14,))
%RF(XS, Qp(n))

Q [_n]

where this last isomorphism follows from the isomorphism of étale sheaves on
X [34][Thm. 8.5]
Z(n)/p* = Wellk _ 104[—nl. (150)

for n > 0. This gives Conjecture 7.16a) with RI'(X, cn, Qp(n)) replaced by
RT'(Xs,et,Qp(n)). Conjecture 7.16b) follows from Conj. 7.16a), Poincare
duality for RT'.ris(Xs/Ko), Milne’s duality [70][Thm. 1.11] for the sheaves
WeQ% ., and the isomorphism (150).

One has a commutative diagram of exact triangles of pro-complexes of étale
sheaves on X,

*Z(n)/p* —— i*TS”Rj*u;?." —— (Z(n-1)/p*]-1]) ——

y | g

Lln)x —— TSRt —— WYL -n] ——

’ FM
Ta. Lv I

Fln)x ——  FAl)x —— WL [n]

where .7} (n)x is defined as the mapping fibre of the map s and .#}(n)x is the
(non-logarithmic) syntomic complex of the smooth scheme X as defined in [56].
The isomorphism of the top two rows was shown in [37][Sec. 6], the exactness
of the lower triangle in [22][Thm. 3.2] and the commutativity of the lower two
rows in [22][(3.10)]. If n < p — 1 a result of Kurihara [62] shows that o/ is an
isomorphism, and for any n a result of Niziol and Colmez [17][Thm.1.1] shows
that affy and hence o), have bounded kernel and cokernel. In either case, by
following the proof of [76][Thm. 3.8], one verifies that the composite map

(holime RT'(X,.,(n)x))g — (holime RT(X,.Za (1) x))g —2 RT gyn (X, 1)

) (17¢n75p/)

— chris(Xs/KO RFCTiS(XS/KO) ¥ RFdR(Xn)/Fn

is an isomorphism. This implies the commutativity of the top square in Cor.
7.17 and hence the conclusion of Cor. 7.17. Concerning Prop. 7.19, the p-

adic monodromy weight conjecture is trivially true in the smooth case and
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semisimplicity of H! ;,(Xs/Kp) is not needed in the proof. The conclusion of
Cor. 7.17 and Prop. 7.19 then imply Corollary 7.20. O

REMARK 7.22. Using the theory of cohomological descent one can show
[16]/Prop. 5.3.3] that the natural maps

RT(Xs,et,Qp(n)) = RI(X; en, @*Qp(n)) = RN Xs p, @™ Qp(n))

are quasi-isomorphisms where « is the pullback from the small étale site of X.
However, the eh-motivic cohomology defined by Geisser in [38] and occurring
in Congecture 7.16a) is defined by pulling back Voevodsky’s complex Z(n) from
the site (Sm/k)et to the site (Sch/k)en. As already remarked before notation
5.8, one needs to assume resolution of singularities in order to prove the iso-
morphism RU'(Xs e, Qp(n)) & RI(Xs.en,Qp(n)) in this case (see [38][Thm.
1.3).

REMARK 7.23. If f is smooth and and n < p—1 then one has an isomorphism
[10]/Prop. 7.2 (3)]

i*Z(n)[p" = Z(n)x = Z(n)x, /p”

where Z(n)x, 1is the motivic pro-complex defined in [10]. Hence the compat-
ibility requested after Conjecture Dy(X,n) (Conjecture 5.5 in section 5.4) is
satisfied. The exact triangle

RT4r(X,)/F"[~1] = RT(X,Qu(n)) — [chm(xs JEKo) ~=2% RTeria( X, /Ko)]
arising from (148) can be written as the fundamental triangle
RUqr(Xy)/F"[—1] = RI(X,Qy(n)) — RI'(Xs, Qp(n))

by (149), and it agrees with the (rational cohomology of the) fundamental tri-
angle of [10][Thm. 5.4].
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