
Doumenta Math. 1425

Weil-Étale Cohomology and Zeta-Values

of Proper Regular Arithmeti Shemes

Matthias Flah and Baptiste Morin

Received: September 23, 2016

Revised: November 30, 2017

Communicated by Stephen Lichtenbaum

Abstrat. We give a onjetural desription of the vanishing order

and leading Taylor oe�ient of the Zeta funtion of a proper, regular

arithmeti sheme X at any integer n in terms of Weil-étale ohomol-

ogy omplexes. This extends work of Lihtenbaum [65℄ and Geisser

[36℄ for X of harateristi p, of Lihtenbaum [66℄ for X = Spec(OF )
and n = 0 where F is a number �eld, and of the seond author for

arbitrary X and n = 0 [72℄. We show that our onjeture is ompat-

ible with the Tamagawa number onjeture of Bloh, Kato, Fontaine

and Perrin-Riou [31℄ if X is smooth over Spec(OF ), and hene that it

holds in ases where the Tamagawa number onjeture is known.
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1 Introdution

In [65℄, [66℄ and [67℄ Lihtenbaum introdued the idea of a Weil-étale oho-

mology theory in order to desribe the vanishing order and leading Taylor

oe�ient of the Zeta-funtion of an arithmeti sheme (i.e. a sheme sep-

arated and of �nite type over Spec(Z)) at any integer argument s = n. In

[65℄ he de�ned a Weil-étale topos for any variety over a �nite �eld and showed

that Weil-étale ohomology groups have the expeted relationship to the Zeta

funtion of smooth, proper varieties at s = 0. Assuming the Tate onjeture,

Geisser extended this to smooth, proper varieties over �nite �elds and any

s = n ∈ Z in [36℄, and to arbitrary varieties over �nite �elds and any n in [38℄

(also assuming resolution of singularities).

For shemes of harateristi 0, Lihtenbaum made the ruial �rst step in

[66℄ where he de�ned Weil-étale ohomology groups for X = Spec(OF ), the
spetrum of the ring of integers in a number �eld F , and proved the expeted

relationship to the Dedekind Zeta-funtion at s = 0 modulo a vanishing state-

ment for higher degree ohomology with Z-oe�ients. Unfortunately this

ohomology was then shown to be nonvanishing in [25℄. However, the oho-

mology with R-oe�ients as de�ned by Lihtenbaum is orret in all degrees.

Enouraged by this fat we de�ned in [27℄ a Weil-étale topos for any regular,

proper, �at sheme X over Spec(Z) and showed again that the ohomology

with R-oe�ients has the expeted relationship to the vanishing order of the

Zeta-funtion at s = 0 (provided the Hasse-Weil L-funtions of all motives

hi(XQ) have the expeted meromorphi ontinuation and funtional equation).

Next, assuming �nite generation of motivi ohomology of X , the seond au-

thor gave in [72℄ a desription of the leading oe�ient at s = 0 in terms of

Weil-étale ohomology groups. The key idea of [72℄ was to de�ne Weil-étale

ohomology omplexes with Z-oe�ients via (Artin-Verdier) duality rather

than as ohomology of a Weil-étale topos assoiated to X .
In the present artile we pursue this idea further and de�ne Weil-étale o-

homology omplexes with Z(n)-oe�ients for any n ∈ Z, and we give their
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onjetural relation to the Zeta-funtion of X at s = n. As in [72℄ a key as-

sumption in this onstrution is �nite generation of étale motivi ohomology

of X in a ertain range. If X is smooth over the ring of integers of a number

�eld, we prove that our desription is ompatible with the Tamagawa num-

ber onjeture of Bloh-Kato [11℄ and Fontaine-Perrin-Riou [31℄, and hene

also with the analyti lass number formula and the onjeture of Birh and

Swinnerton-Dyer. Besides [66℄, the only other work on Weil-étale ohomology

for arithmeti shemes of harateristi zero that we are aware of is [67℄ where

Lihtenbaum gives a desription of the value of the Zeta-funtion of a 1-motive

modulo rational fators in terms of two sets of Weil-étale ohomology groups

("motivi" and "additive"). Our desription is somewhat di�erent from [67℄ in

ases where both apply although the two desriptions are of ourse equivalent.

1.1 Statement of the main onjeture

For the remainder of this introdution X is a regular onneted sheme of

dimension d, proper over Spec(Z) and n ∈ Z is any integer. We assume that

X and n satisfy Conjetures AV(X et, n), L(X et, n), L(X et, d − n), B(X , n)
and Dp(X , n) below whih we shall refer to as the "standard assumptions".

We onstrut two sets of ohomology omplexes assoiated to X whih we all

"Weil-étale" and "Weil-Arakelov" ohomology, respetively. More preisely, we

onstrut a perfet omplex of abelian groups

RΓW,c(X ,Z(n))

and an exat triangle

RΓar,c(X ,Z(n))→ RΓar,c(X , R̃(n))→ RΓar,c(X , R̃/Z(n))→ (1)

in the bounded derived ategory of loally ompat abelian groups (see [45℄ for

preise de�nitions) with the following properties.

a) The groups Hi
ar,c(X , R̃(n)) are �nite dimensional vetor spaes over R for

all i and there is an exat sequene

· · · ∪θ−−→ Hi
ar,c(X , R̃(n))

∪θ−−→ Hi+1
ar,c(X , R̃(n))

∪θ−−→ · · · (2)

In partiular, the omplex RΓar,c(X , R̃(n)) has vanishing Euler hara-

teristi: ∑

i∈Z

(−1)i dimRH
i
ar,c(X , R̃(n)) = 0.

b) The groups Hi
ar,c(X , R̃/Z(n)) are ompat, ommutative Lie groups for

all i.

Note here that the ohomology groups of a omplex of loally ompat abelian

groups arry an indued topology whih however need not be loally ompat.

Indeed, the groups Hi
ar,c(X ,Z(n)) will not always be loally ompat.
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The onjetural relation to the Zeta-funtion of X is given by the following two

statements.

) The funtion ζ(X , s) has a meromorphi ontinuation to s = n and

ords=n ζ(X , s) =
∑

i∈Z

(−1)i · i · dimRH
i
ar,c(X , R̃(n)).

d) If ζ∗(X , n) ∈ R denotes the leading Taylor-oe�ient of ζ(X , n) at s = n
then

|ζ∗(X , n)|−1 =
∏

i∈Z

(
vol(Hi

ar,c(X , R̃/Z(n)))
)(−1)i

. (3)

We explain the right hand side. There is no well de�ned measure on the

individual groups Hi
ar,c(X , R̃/Z(n)) but only on the entire omplex, in the

following sense. One has an isomorphism of R-vetor spaes

Hi
W,c(X ,Z(n))R ∼= T∞H

i
ar,c(X , R̃/Z(n)), (4)

where AR := A ⊗Z R and T∞G denotes the tangent spae of a ompat om-

mutative Lie group G. A Haar measure on G is given by a volume form, i.e.

a nonzero setion s ∈ detR T∞G, up to sign. The volume of G with respet

to this measure equals |coker(exp)|µ where exp : T∞G→ G is the exponential

map and µ ∈ R>0
is suh that detZ(ker(exp)) = Z · µs. One an extend the

tangent spae funtor T∞ to omplexes of loally ompat abelian groups (see

Remark 4.16) and the image of (1) under the tangent spae funtor identi�es

with an exat triangle

RΓ(XZar, LΩ<nX/Z)R[−2]→ RΓar,c(X , R̃(n))→ RΓW,c(X ,Z(n))R → (5)

in the derived ategory of R-vetor spaes. We obtain an isomorphism

⊗

i∈Z

det
(−1)i

R T∞H
i
ar,c(X , R̃/Z(n)) ∼=detRRΓar,c(X , R̃(n))⊗R det−1

R RΓ(XZar, LΩ
<n
X/Z)R

∼=det−1
R RΓ(XZar, LΩ

<n
X/Z)R (6)

where the trivialization detRRΓar,c(X , R̃(n)) ∼= R is indued by the exat se-

quene (2). Here RΓ(XZar, LΩ<nX/Z) is derived deRham ohomology as de�ned

by Illusie [50℄ modulo the n-th step in its Hodge �ltration. A generator of

the Z-line det−1Z RΓ(XZar, LΩ<nX/Z), multiplied with a ertain orretion fator

C(X , n) ∈ Q×, gives a unique setion of (6), up to sign, whih we view as a

"volume form" on the omplex RΓar,c(X , R̃/Z(n)). Now it turns out that the

isomorphism (4) is indued by an exat triangle

RΓW,c(X ,Z(n))→ RΓW,c(X ,Z(n))R exp−−→ RΓar,c(X , R̃/Z(n))→ (7)
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and hene the volume, i.e. the right hand side, in (3) is the unique µ ∈ R>0
so

that

detZRΓW,c(X ,Z(n)) = µ · C(X , n) · det−1Z RΓ(XZar, LΩ<nX/Z). (8)

This is an identity of invertible Z-submodules of the invertible R-module

detRRΓW,c(X ,Z(n))R ∼=
⊗

i∈Z

det
(−1)i

R T∞H
i
ar,c(X , R̃/Z(n))

∼=det−1R RΓ(XZar, LΩ<nX/Z)R.

At this point one an draw the onnetion to the Tamagawa number onjeture

of Fontaine and Perrin Riou [31℄. At least if X → Spec(OF ) is smooth proper

over a number ring it turns out that

∆(XQ, n) := detQRΓW,c(X ,Z(n))Q ⊗Q detQRΓ(XZar, LΩ<nX/Z)Q

is the fundamental line of Fontaine and Perrin-Riou for the motive

h(XQ)(n) =

2d−2⊕

i=0

hi(XQ)(n)[−i]

of the generi �bre of X with trivialization

λ∞ : R
∼−→ ∆(XQ, n)R (9)

indued by (5) and (2). An element µ ∈ R maps to ∆(XQ, n) under this

trivialization if and only if it satis�es (8) up to fators in Q×. One is then

naturally led to de�ne an integral fundamental line

∆(X/Z, n) := detZRΓW,c(X ,Z(n)) ⊗Z detZRΓ(XZar , LΩ<nX/Z)

whih is attahed to the entire arithmeti sheme X rather than to individual

motivi summands. Equation (3) is equivalent to the statement

λ∞(ζ∗(X , n)−1 · C(X , n) · Z) = ∆(X/Z, n)

whih no longer involves Weil-Arakelov groups. One ould therefore ompletely

ignore the Weil-Arakelov groups for the purpose of making a speial value

onjeture. They are still needed, however, to desribe the vanishing order and

we believe they also give a more onvining geometri piture underlying the

Zeta funtion than the fundamental line by itself.

We make a few more remarks about our onstrution.

1.2 Conerning notation

We use the notation RΓar,c(X ,Z(n)), resp. RΓW,c(X ,Z(n)), rather than

RΓc(Xar,Z(n)), resp. RΓc(XW ,Z(n)), sine we do not de�ne a topos (or an

Doumenta Mathematia 23 (2018) 1425�1560
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∞-topos, or a more general geometri objet) Xar, resp. XW , assoiated to

the sheme X whose ompat support ohomology with appropriately de�ned

Z(n)-oe�ients gives rise to those omplexes. In fat, even for X = Spec(OF )
and n = 0 this remains a major open problem and we do not know whether

to expet the existene of suh a topos. It seems somewhat more likely that

the groups RΓar,c(X ,Z(n)) will be assoiated to some geometri objet Xar.

For example, one expets the existene of a lass θ ∈ H1(Xar, R̃) so that up-

produt with θ produes the exat sequene (2) whereas our onstrution of

(2) will be entire ly formal.

Our hoie of notation RΓW,c(X ,Z(n)) was motivated by the idea that "Weil-

étale" ohomology omplexes should always be perfet omplexes of abelian

groups.

The tilde in the notation R̃(n) goes bak to the ase n = 0 treated in [66℄

and [27℄ where it is supposed to distinguish R with its Eulidean topology

from R with the disrete topology (as representing objets for sheaves in a

suitable Weil-étale topos). In the ontext of the present paper the notation

is meaningless. All we do in this paper is to onstrut Weil-étale and Weil-

Arakelov omplexes diretly by performing various mapping �bre onstrutions,

starting with RΓ(Xet,Z(n)) (the étale hyperohomology of Bloh's higher Chow

omplex) and involving Artin-Verdier duality and the Beilinson regulator.

The "ompat support" notation will hopefully beome learer in Remark 1.5

below.

1.3 Varieties over finite fields

If X → Spec(Fp) is smooth proper over a �nite �eld, and n ∈ Z is arbitrary,

one has isomorphisms

RΓar,c(X ,Z(n)) ∼= RΓW,c(X ,Z(n)) ∼= RΓ(XW ,Z(n))

where XW is the Weil-étale topos assoiated to X by Lihtenbaum [65℄. Our

standard assumptions L(X et, n) and L(X et, d − n) imply the perfetness of

these omplexes ("Tate onjeture") and one has an isomorphism

RΓar,c(X , R̃(n)) ∼= RΓar,c(X ,Z(n)) ⊗Z R.

Assuming perfetness, properties a)-d) are all true sine they are a straight-

forward reformulation of those proved by Milne, Lihtenbaum and Geisser (see

[36℄[Thm. 9.1℄). In other words, �nite generation of motivi ohomology is the

only unresolved issue in order for all statements outlined in setion 1.1 to hold

true for smooth proper varieties over �nite �elds.

Under a resolution of singularities assumption, one also has an isomorphism

RΓar,c(X ,Z(n)) ∼= RΓ(XW ,Z(n)) ∼= RΓc(Xar,Z(n))

with the "arithmeti ohomology" groups de�ned by Geisser in [38℄, i.e. the

ohomology groups of the (large) Weil-eh site assoiated to X [38℄[Cor. 5.5℄.
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So our notation is onsistent with [38℄ even though we do not all our groups

"arithmeti" for reasons explained in Remark 1.5 below. Also note that the

purpose of [38℄ was to generalize Weil-étale ohomology from smooth proper

to arbitrary arithmeti shemes over Fp whereas in this paper we generalize

from smooth proper shemes over Fp to regular, proper shemes over Z. We

will have nothing to say about arithmeti shemes that are not regular or not

proper.

1.4 On the orretion fator C(X , n)
The use of derived rather than naive de Rham ohomology tends to simplify

the orretion fator C(X , n), and we regard this as one of the truly new

disoveries of this projet. One has C(X , n) = 1 for n ≤ 0 or if X is smooth

proper over a �nite �eld by [73℄, and C(Spec(OF ), n) = (n − 1)!−[F :Q]
for a

number �eld F and n ≥ 1 (see Prop. 5.34 below). The orretion fator

would be |DF |2−n · (n − 1)!−[F :Q]
for naive de Rham ohomology where DF

is the disriminant. The preise de�nition of C(X , n) in general is fored by

the ompatibility of our onjeture with the Tamagawa number onjeture and

therefore involves p-adi Hodge theory.

1.5 Origin of the terminology "Weil-Arakelov"

For X regular, proper and �at over Spec(Z), any n ∈ Z and F =
Z(n), R̃(n), R̃/Z(n) we shall also onstrut an exat triangle

RΓar,c(X ,F)→ RΓar(X ,F)→ RΓar(X∞,F)→

as well as an exat triangle of perfet omplexes of abelian groups

RΓW,c(X ,Z(n))→ RΓW (X ,Z(n))→ RΓW (X∞,Z(n))→ .

Here one should think of X as the Artin-Verdier or Arakelov ompati�ation

of X and X∞ as the �bre at in�nity but, as in Remark 1.2 above, we shall

have nothing to say about atual geometri objets X ar, XW , X∞,ar or X∞,W .

In the onstrution of RΓW (X ,Z(n)) we do however make use of the lassial

Artin-Verdier étale topos X et [1℄ assoiated to X sine it has the right duality

properties needed in this onstrution. Under our standard assumptions on

X , the omplexes assoiated to X satisfy some remarkable duality properties.

There is an isomorphism of perfet omplexes of abelian groups

RΓW (X ,Z(n))→ RHomZ(RΓW (X ,Z(d− n)),Z[−2d− 1])

a perfet duality of �nite dimensional R-vetor spaes

Hi
ar(X , R̃(n))×H2d+1−i

ar (X , R̃(d− n))→ H2d+1
ar (X , R̃(d)) ≃ R (10)

for any i, n ∈ Z and a Pontryagin duality of loally ompat abelian groups

Hi
ar(X ,Z(n)) ×H2d+1−i

ar (X , R̃/Z(d− n))→ H2d+1
ar (X , R̃/Z(d)) ≃ R/Z
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for any i, n ∈ Z. One has an isomorphism

H2n
ar (X , R̃(n)) ∼= CHn(X )R

with the Arakelov Chow groups de�ned by Gillet and Soule [41℄[3.3.3℄ and there

is also a lose relation between H2n
ar (X ,Z(n)) and CHn(X ) de�ned in [40℄[5.1℄

(note that CHn(X )R does not denote CHn(X )⊗ZR. The two groups CH
n(X )

and CHn(X )R are rather Arakelov modi�ations of lassial Chow groups with

Z and R-oe�ients, respetively). The R-vetor spaes Hi
ar(X , R̃(n)) vanish

for i 6= 2n, 2n+ 1 and one has an isomorphism

H2n
ar (X , R̃(n))

∪θ−−→ H2n+1
ar (X , R̃(n)).

In this regard the spaes Hi
ar(X , R̃(n)) behave ompletely analogous to the

Weil-étale ohomology spaes

Hi(YW ,R(n)) ∼= Hi(YW ,Z(n)) ⊗Z R

for a smooth projetive variety Y over a �nite �eld. In fat, there are also ana-

logues of Grothendiek's standard onjetures for H2n
ar (X , R̃(n)) ∼= CHn(X )R

in the literature [61℄. Beause of this relation to Arakelov theory we all

our groups Weil-Arakelov ohomology. Using the terminology "arithmeti"

would be onfusing sine arithmeti Chow groups as de�ned in [40℄ di�er from

Arakelov Chow groups.

It is fairly easy to prove the analogue of )

ords=n ζ(X , s) =
∑

i∈Z

(−1)i · i · dimRH
i
ar(X , R̃(n))

for the ompleted Zeta-funtion

ζ(X , s) = ζ(X , s)ζ(X∞, s)

of X provided that ) holds for ζ(X , s). Here ζ(X∞, s) is the usual produt

of Γ-funtions. As far as we know this onjetural relation between CHn(X )R
and the pole order of the ompleted Zeta-funtion has not been notied in

the literature. However, there is no statement d) for ζ(X , s) as the groups

Hi
ar(X , R̃/Z(n)) are in general only loally ompat. This is somewhat onsis-

tent with the fat that there are no speial value onjetures for the ompleted

Zeta-funtion in the literature.

1.6 The example X = Spec(OF )
We refer the reader to setion 5.8 below for omputations of Weil-Arakelov and

Weil-étale ohomology groups in the ase X = Spec(OF ). In this introdution

we shall now just reord the analogue of the analyti lass number formula that

we obtain by making statement (3) expliit.
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It has been well understood sine the work of Borel in the 1970's that the

higher algebrai K-groups K2n−1(OF ) and K2n−2(OF ) govern the behaviour

of the Dedekind Zeta funtion ζF (s) at s = n in a way similar to the role played

by K1(OF ) = O×F and K0(OF )tor = Pic(OF ) in the analyti lass number for-

mula. A preise higher analogue of the lass number formula was impliit in

the Tamagawa number onjeture of Bloh and Kato [11℄ but has not been

written down expliitly. In order to do this we �rst replae K2n−1(OF ) and
K2n−2(OF ) by motivi ohomology H1(Xet,Z(n)) and H

2(Xet,Z(n)), respe-
tively (the di�erene only amounts to 2-primary groups). We then onsider the

Beilinson regulator map

H1(Xet,Z(n))
̺Bn−−→ H1

D(X/R,R(n)) ∼=
∏

v|∞

H0(Fv, (2πi)
n−1R)

whih is known to indue isomorphisms

H1(Xet,Z(n))R
∼−→
∏

v|∞

H0(Fv, (2πi)
n−1R), H1(Xet,Z(1))R ∼=

(∏

v|∞

R
)Σ=0

for n > 1 and n = 1, respetively. For n ≥ 1 we set

hn := |H2(Xet,Z(n))|, wn := |H1(Xet,Z(n))tor|, Rn := vol(coker(̺Bn ))

where the volume is taken with respet to the Z-struture∏
v|∞H

0(Fv, (2πi)
n−1Z), resp. (

∏
v|∞ Z)Σ=0

, of the target. For n ≤ 0

the identity (3) is then equivalent to

ζ∗F (n) = ±
h1−n ·R1−n

w1−n
(11)

and for n ≥ 1 the identity (3) is equivalent to

ζ∗F (n) = (n− 1)!−[F :Q] · 2
r1·(−1)

n−1

(2π)[F :Q]·n−r2+r1·(((−1)
n−1)/2)hnRn

wn · |DF |n−1 ·
√
|DF |

(12)

where r1 and r2 denote the number of real and omplex plaes of the number

�eld F . For n ≥ 1 the omplex RΓ(XZar, LΩ<nX/Z) is quasi-isomorphi to a

omplex

RΓ(XZar, LΩ<nOF/Z
) =

(
OF

d(n)−−−→ ΩOF /Z(n)

)

where ΩOF /Z(n) is a ertain �nite abelian group of order |DF |n−1, equal to
Kaehler di�erentials for n = 2. There is a spetral sequene [68℄ from derived

de Rham ohomology to yli homology, an additive analogue of algebrai

K-theory, and this spetral sequene degenerates to give isomorphisms

Kadd
2n−1(OF ) := HC2n−2(OF /Z) ∼= ker

(
OF

d(n)−−−→ ΩOF /Z(n)

)

Kadd
2n−2(OF ) := HC2n−3(OF /Z) ∼= coker

(
OF

d(n)−−−→ ΩOF /Z(n)

)
.
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One an therefore rewrite the term |DF |n−1
√
|DF | in (12) as

|DF |n−1
√
|DF | = haddn Raddn

where Raddn := covol(Kadd
2n−1(OF )) and haddn := |Kadd

2n−2(OF )|. One an further

speulate that there is a modi�ed additive K-group Kadd
2n−1(OF )′ = (n − 1)! ·

Kadd
2n−1(OF ) ⊆ OF whih would explain the orretion fator (n− 1)!−[F :Q]

but

we have no idea how to de�ne Kadd
2n−1(OF )′ in a natural way.

Finally, the analyti lass number formula and known ases of the Tamagawa

number onjeture give the following theorem.

Proposition 1.1. Equations (11) and (12) hold for n = 0, 1 if F is arbitrary

and for any n ∈ Z if F/Q is abelian.

1.7 Outline of the paper

In setion 2 we give a formulation of Beilinson's onjetures for arithmeti

shemes rather than motives over Q. This also has been done independently

by Sholbah [83℄. Our de�nition of motivi ohomology throughout the paper

will be via (étale hyperohomology of) Bloh's higher Chow omplex [8℄. Our

formulation of Beilinson's onjetures will be a simple duality statement, Con-

jeture B(X , n), whih inludes �nite dimensionality of motivi ohomology

tensored with R.

In setion 3 we onstrut the Weil-étale ohomology omplexes following the

model of [72℄. We state a �nite generation assumption on étale motivi o-

homology, Conjeture L(X et, n), whih will play a key role in the rest of the

paper. We need one further assumption, Conjeture AV(X et, n), whih on-

erns Artin-Verdier-duality for motivi ohomology with torsion oe�ients

and is known in many more ases than either L(X et, n) or B(X , n).
In setion 4 we onstrut the Weil-Arakelov ohomology omplexes without

any further assumption.

In setion 5 we de�ne the orretion fator C(X , n) and formulate our onje-

tures on the vanishing order and leading Taylor oe�ient of the Zeta funtion.

The rational number C(X , n) is de�ned as a produt of its p-primary parts and

for eah prime p we need one further assumption, Conjeture Dp(X , n), whih
relates p-adially ompleted motivi ohomology of XZp with de Rham ohomol-

ogy of XQp and p-adially ompleted motivi ohomology of XFp . For smooth

shemes and n < p − 1 suh a desription follows from the relation between

syntomi and motivi ohomology proved by Geisser [37℄. For general regular

X we expet a similar relationship and we isolate in App. B the results in

p-adi Hodge theory whih would be needed to prove Dp(X , n) in general. In

view of reent progress in the theory of syntomi ohomology ([76℄, [17℄, [22℄)

these results hold for smooth shemes and might be within reah for semistable

shemes. In subsetion 5.6 we prove that our onjeture is equivalent to the

Tamagawa number onjeture of Bloh, Kato, Fontaine, Perrin-Riou for all

primes p if X is smooth over the ring of integers in a number �eld. This proof
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also draws on the results of App. B. In subsetion 5.8 we disuss in detail the

ase X = Spec(OF ) for a number �eld F .
In App. A we disuss in detail the Artin-Verdier étale topos X et assoiated
to X , we onstrut motivi omplexes Z(n)X on X et for any n ∈ Z and we

prove onjeture AV(X et, n) in many ases. The main novelty is a omplete

disussion of 2-primary parts.

In App. B. we outline the expeted relation between p-adially ompleted

motivi ohomology and syntomi ohomology for regular X and we disuss

the motivi deomposition of p-adially ompleted motivi ohomology.

Aknowledgements: We would like to thank S. Lihtenbaum and W. Niziol for

helpful disussions related to this paper. The �rst author also aknowledges

support from the Simons foundation whih enabled this ollaboration. The

seond author was supported by ANR-12-JS01-0007 and ANR-15-CE40-0002.

2 Motivi ohomology of proper regular shemes and the Beilin-

son onjetures

Throughout this setion X denotes a regular sheme of dimension d, proper
over Spec(Z). For any omplex of abelian groups A we set AR := A⊗Z R.

2.1 The Beilinson regulator on the level of omplexes

We onsider Bloh's higher Chow omplex [8℄

Z(n) := zn(−, 2n− ∗)

whih is in fat a omplex of sheaves in the étale topology on X . The �rst

onstrution of a map of omplexes

zn(X , 2n− ∗)→ RΓD(X/R,R(n)) (13)

induing the Beilinson regulator map

CHn(X , i)→ H2n−i
D (X/R,R(n))

was given by Gonharov in [42℄ and [43℄. This was re�ned to a map of omplexes

zn(X , 2n− ∗)→ RΓD(X/R,Z(n)) (14)

in [58℄ and, building on this onstrution, the thesis of Fan [23℄ gives a map of

omplexes

RΓ(Xet,Z(n))→ RΓD(X/R,Z(n)). (15)

The mapping �bre of this map will play a role in the onstrution of

RΓar,c(X ,Z(n)) in setion 4.4 and the mapping �bre of the omposite map

RΓ(Xet,Z(n))→ RΓD(X/R,Z(n))→ RΓ(GR,X (C), (2πi)nZ) (16)
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in the onstrution of RΓW,c(X ,Z(n)) in setion 3.8. For the remainder of this

setion we shall only onsider the hyperohomology of Z(n)

RΓ(X ,R(n)) := RΓ(Xet,Z(n))R ∼= RΓ(XZar ,Z(n))R
tensored with R. By de�nition RΓ(X ,R(n)) = 0 for n < 0. We denote by

RΓc(X ,R(n)) the mapping �bre of the Beilinson regulator map so that there

is an exat triangle of omplexes of R-vetor spaes

RΓc(X ,R(n))→ RΓ(X ,R(n))→ RΓD(X/R,R(n))→ . (17)

Reall that for any n ∈ Z Deligne ohomology is de�ned as the GR-equivariant

ohomology of the omplex

R(n)D : R(n)→ Ω•X (C)/C/F
n

of GR-equivariant sheaves on the GR-spae X (C), where R(n) is the onstant
GR-equivariant sheaf R(n) := (2πi)n · R. So we have

RΓD(X/R,R(n)) := RΓ(GR,X (C),R(n)D) ∼= RΓ(X (C),R(n)D)GR .

For n < 0 we have RΓ(X ,R(n))) = 0 and

RΓc(X ,R(n))) ∼= RΓD(X/R,R(n))[−1] ∼= RΓ(X (C),R(n))GR [−1].

The mapping �bre of the Beilinson regulator to real Deligne ohomology (usu-

ally without tensoring the soure with R) has been denoted "Arakelov motivi

ohomology" in [43℄, [46℄, and a slightly modi�ed mapping �bre yields the

"higher arithmeti Chow groups" of [13℄ whih generalize the arithmeti Chow

groups of [40℄.

2.2 The Beilinson onjetures and arithmeti duality with R-

oeffiients

The purpose of this subsetion is to give a uniform statement (for the en-

tral, the near entral and the other points) of Beilinson's onjetures relating

motivi to Deligne ohomology, inluding non-degeneray of a height pairing.

Our statement, Conjeture B(X , n) below, has the form of a simple duality

between motivi ohomology with R-oe�ients and Arakelov motivi oho-

mology with R-oe�ients. Suh a formulation of Beilinson's onjetures is

impliit in the six term sequene of Fontaine and Perrin-Riou [31℄[Prop. 3.2.5℄.

However, both the original Beilinson onjetures [81℄ and [31℄ work with mo-

tives over Q rather than arithmeti shemes. The origin of his subsetion is

an unpublished note of the �rst author from the early 1990's transposing the

ideas of [31℄ to arithmeti shemes. Meanwhile, a formulation of Beilinson's

onjetures as a duality theorem for objets in the triangulated ategory of

motives DM(Spec(Z)) (whih inludes arithmeti shemes but also the inter-

mediate extension of motives over Q if one assumes the existene of a motivi

t-struture) has been given by Sholbah in [83℄.

Doumenta Mathematia 23 (2018) 1425�1560



1438 Matthias Flah and Baptiste Morin

Proposition 2.1. For n,m ∈ Z there is a produt

RΓ(X ,R(n))⊗L RΓc(X ,R(m))→ RΓc(X ,R(n+m)) (18)

in the derived ategory of R-vetor spaes.

Proof. For the (regular) arithmeti sheme f : X → Spec(Z), a spetral

sequene from H•(Spec(Z)Zar , f∗zd−n(−, •)) to algebrai K-groups was on-

struted by Levine in [64℄[(8.8)℄ and it was shown to degenerate after ⊗Q in

[63℄[Thm. 11.8℄. This gives isomorphisms

Hi(Xet,Z(n))Q ∼= Hi(XZar,Z(n))Q ∼= Hi(Spec(Z)Zar, f∗zd−n(−, •))Q ∼= K2n−i(X )
(n)
Q

where the seond isomorphism is [37℄[Cor.3.3 b)℄. By [15℄[Cor. 14.2.14℄ there

is an isomorphism

K2n−i(X )(n)Q
∼= HomDMB(X )(Q(0),Q(n)[i]) ∼= HomSH(X )Q(S

0, HB,X (n)[i])

where DMB(X ), resp. SH(X )Q, is the triangulated ategory of mixed mo-

tives, resp. Q-linear stable homotopy ategory de�ned by Cisinski and Deglise,

resp. Morel-Voevodsky. Now note that SH(X )Q is naturally enrihed over the

derived ategory of Q-vetor spaes and hene we get an isomorphism

RΓ(Xet,Z(n))Q ∼= RHomSH(X )Q(S
0, HB,X (n))

and a similar R-linear variant

RΓ(X ,R(n)) ∼= RHomSH(X )R(S
0, HB,X ,R(n)).

The spetrum HB,X ,R is a strit ring spetrum and in [46℄[Def. 4.1, Rem. 4.6℄

an exat triangle

ĤB,X ,R → HB,X ,R
ρ−→ HD →

in SH(X )R was onstruted, where HD is a ring spetrum representing real

Deligne ohomology and ρ indues the Beilinson regulator [84℄[Thm. 5.7℄. This

gives an isomorphism

RΓc(X ,R(n)) ∼= RHomSH(X )R(S
0, ĤB,X ,R(n)).

The map ρ is a map of ring spetra whih implies that ĤB,X ,R aquires a

struture of HB,X ,R-module spetrum [46℄[Thm. 4.2 (ii)℄. The produt map

HB,X ,R(n) ∧ ĤB,X ,R(m)→ ĤB,X ,R(n+m)

indues a map

[S0,HB,X ,R(n)]⊗
L [S0, ĤB,X ,R(m)]→ [S0∧S0, ĤB,X ,R(n+m)] ∼= [S0, ĤB,X ,R(n+m)]

where we have written

[S0, A] := RHomSH(X )R(S
0, A)

for brevity. In view of the isomorphisms RΓ(X ,R(n)) ∼= [S0, HB,X ,R(n)] and

RΓc(X ,R(m))) ∼= [S0, ĤB,X ,R(m)] we obtain the produt (18).
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Remark 2.2. The onstrution of the produt on RΓ(X ,R(n)) makes use of

the elaborate formalism of [15℄, in partiular the representability of algebrai K-

theory by a ring spetrum in SH. We are not aware of a diret onstrution of a

produt on higher Chow omplexes (even tensored with Q), unless X is smooth

over a number ring or a �nite �eld [63℄. In order to appreiate the amount of

detail hidden in the short proof of Prop. 2.1 the reader may want to look at the

onstrution of a produt struture in [13℄ on the mapping �bre of the Beilinson

regulator from the higher Chow omplex of the (smooth, proper) generi �bre

XQ to real Deligne ohomology. Both [13℄ and [46℄ use a representative of

the real Deligne omplex by di�erential forms due to Burgos Gil [12℄ whih is

quite di�erent from the omplex in terms of urrents used by Gonharov in

(13), and also in (14) and (15). It remains an open problem to onstrut a

RΓ(Xet,Z(n))-module struture on the mapping �bre of (15).

Lemma 2.3. a) One has

Hi−1
D (X/R,R(d)) = Hi

c(X ,R(d)) = 0

for i > 2d and there is a ommutative diagram

H2d−1
D (X/R,R(d)) −−−−→ H2d

c (X ,R(d))
y

y

R R

b) For any i, n ∈ Z the produt on Deligne ohomology

Hi
D(X/R,R(n))×H2d−1−i

D (X/R,R(d− n))→ H2d−1
D (X/R,R(d))→ R

indues a perfet duality, i.e. an isomorphism

Hi
D(X/R,R(n)) ∼= H2d−1−i

D (X/R,R(d− n))∗ (19)

where (−)∗ denotes the dual R-vetor spae.

Proof. In this proof we write Hi
D(X/C,R(n)) for Hi(X (C),R(n)D). From the

long exat sequene

Hi−1(X (C),C)/F d → Hi
D(X/C,R(d))

αi−→ Hi(X (C),R(d))

we �nd Hi
D(X/C,R(d)) = 0 and hene Hi

D(X/R,R(d)) = 0 for i > 2d− 1. From
the long exat sequene

Hi−1
D (X/R,R(d))→ Hi

c(X ,R(d))→ Hi(X ,R(d))

and Hi(X ,R(d)) ⊆ K2d−i(X )(d)R = 0 for i > 2d we get Hi
c(X ,R(d)) = 0 for

i > 2d. For i = 2d we �nd Hi(X ,R(d)) ∼= CH

d(X )R = 0, using the �niteness
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of CH

d(X ) due to Kato and Saito [55℄. So H2d
c (X ,R(d)) is the okernel of the

regulator map from K1(X )(d)R to

H2d−1
D (X/R,R(d)) ∼= (H2d−2(X (C),C)/F d)+ ∼= H2d−2(X (C),C)+ ∼= RS∞

where S∞ is the set of arhimedean plaes of the étale Q-algebra L :=
H0(X ,OX )Q and the last isomorphism is indued by the yle lasses of points

in H2(d−1)(X (C),C). In partiular, we get a anonial map to R given by the

sum on RS∞
. On the other hand from the Gersten-Quillen spetral sequene

with weights [87℄[Th. 4(iii))℄ the group K1(X )(d) is generated by

Ed−1,−d2 = ker


 ∐

x∈X d−1

k(x)× →
∐

x∈X d

Z




and the regulator is indued by the usual Dirihlet unit regulator on L omposed

with Nk(x)/L (if x ∈ X survives in the generi �bre of X ). So the image of the

regulator on K1(X )(d) lies in the subspae {(xv) ∈ RS∞ |∑v xv = 0} and the

sum map indues a map from the okernel H2d
c (X ,R(d)) to R.

For part b) we �rst prove the following Lemma.

Lemma 2.4. For any n ∈ Z the natural map

Hi(X (C),R(n))→ Hi(X (C),C)/Fn (20)

is injetive for i ≤ 2n− 1 and surjetive for i ≥ 2n− 1.

Proof. (see also [81℄[�2℄ for the injetivity). We an write

Hi(X (C),C) ∼= Hi(X (C),R(n)) ⊕Hi(X (C),R(n− 1)) (21)

and this is the deomposition of Hi(X (C),C) into the (−1)n and (−1)n−1
eigenspaes for the involution τ whih is indued by omplex onjugation on

the oe�ients C. For i ≤ 2n− 1 we show that Fn ontains no eigenvetor for

τ . Indeed
Fn ∩ τFn =

⊕

n≤s

Hs,t ∩
⊕

n≤t

Hs,t =
⊕

n≤s,t

Hs,t = 0

for i = s+ t ≤ 2n− 1. For i ≥ 2n− 1 we show

⊕

s+t=i

Hs,t =
⊕

n≤s

Hs,t + any τ eigenspae V ±.

Given s, t with s + t = i ≥ 2n − 1 we have either n ≤ s or n ≤ t, so Fn =⊕
n≤s′ H

s′,t′
ontains either Hs,t

or Ht,s
, say Hs,t ⊆ Fn. Sine τ(Hs,t) = Ht,s

we an write x+ y ∈ Hs,t +Ht,s
as

x+ y = x∓ x′ + τ(x′)± x′ ∈ Hs,t + V ± ⊆ Fn + V ±

where x′ ∈ Hs,t
satis�es y = τ(x′). This �nishes the proof of the lemma.
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This Lemma gives short exat sequenes

0→ Hi−1(X (C),R(n))→ Hi−1(X (C),C)/Fn → Hi
D(X/C,R(n))→ 0 (22)

for i ≤ 2n− 1 and

0→ Hi
D(X/C,R(n))→ Hi(X (C),R(n))→ Hi(X (C),C)/Fn → 0 (23)

for i ≥ 2n. Taking the R-dual of (23) and using Poinare duality we obtain

(noting that dim(X) = d − 1 and that the orthogonal omplement of Fn is

F d−n)

0← Hi
D(X/C,R(n))

∗ ← H2d−2−i(X (C),R(d−1−n))← F d−nH2d−2−i(X (C),C)← 0.

Using (21) this sequene an also be written as

0← Hi
D(X/C,R(n))

∗ ← H2d−2−i(X (C),C)/F d−n ← H2d−2−i(X (C),R(d− n))← 0

and omparing this to (22) with (i, n) replaed by (2d− 1− i, d−n) we obtain
Hi
D(X/C,R(n)) ∼= H2d−i−1

D (X/C,R(d− n))∗. (24)

Taking GR-invariants gives (19).

We an now state the main onjeture of this setion.

Conjeture 2.5. B(X , n) For any i ∈ Z, the pairing (18)

Hi
c(X ,R(n)) ×H2d−i(X ,R(d− n))→ H2d

c (X ,R(d))→ R

is a perfet pairing of �nite dimensional R-vetor spaes.

Remark 2.6. By Lemma 2.3 a) one has a morphism of long exat sequenes

// Hi
c(X ,R(n)) //

��

Hi(X ,R(n)) //

��

Hi
D(X/R,R(n))

��
// H2d−i(X ,R(d − n))∗ // H2d−i

c (X ,R(d − n))∗ // H2d−1−i
D (X/R,R(d− n))∗

and the right hand vertial maps are isomorphism by Lemma 2.3 b). Hene the

Five Lemma implies

B(X , n)⇔ B(X , d− n).
Remark 2.7. If X → Spec(Fp) is smooth proper over a �nite �eld, then

Hi
c(X ,R(n)) = Hi(X ,R(n))

and it is expeted that Hi(X ,R(n)) = 0 for i 6= 2n (Parshin's onjeture). By

de�nition, there is an isomorphism H2n(X ,R(n)) ∼= CHn(X )R and Conjeture

B(X , n) redues to perfetness of the intersetion pairing

CHn(X )R × CHd−n(X )R → CHd(X )R → R.

This is also a onjeture of Beilinson (numerial and rational equivalene o-

inide).
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Remark 2.8. The onjetures of Beilinson [81℄ onern an "integral motivi

ohomology" of the generi �bre X := XQ whereas we work diretly with the

arithmeti sheme X . More preisely, there is a long exat loalization sequene

· · · →
⊕

l

CHn−1(Xl, 2n− i)Q → Hi(X ,Q(n))
ρi(n)−−−→ Hi(X,Q(n))→ · · ·

where Xl := X ⊗ Fl, and Beilinson's onjetures onern

Hi(X/Z,Q(n)) := im(ρi(n)) (25)

whih is not naturally the ohomology of any omplex but whih one an show

to be independent of the hoie of a regular model. However, one expets

Conjeture 2.9. The map ρi(n) is injetive for i 6= 2n.

This means that the disussion below also applies to the groups

Hi(X/Z,R(n)) := Hi(X/Z,Q(n))R

instead of Hi(X ,R(n)) provided i 6= 2n. We refer to Prop. 5.21 and Remark

5.22 below for some evidene for Conjeture 2.9.

For the rest of this subsetion we assume that X is �at over Z and we indi-

ate how Conjeture B(X , n) is equivalent to Beilinson's onjetures, taitly

assuming Conjeture 2.9. For i < 2n we have

H2d−i(X ,R(d− n)) ⊆ Ki−2n(X )(d−n)R = 0

and so B(X , n) is equivalent to

Hi
c(X ,R(n)) = 0 for i < 2n. (26)

From the long exat sequene

Hi
c(X ,R(n))→ Hi(X ,R(n))→ Hi

D(X/R,R(n))→ Hi+1
c (X ,R(n)) (27)

indued by (17) this is equivalent to

Hi(X ,R(n)) ∼= Hi
D(X/R,R(n)) for i < 2n− 1. (28)

For n ≥ 0 this is Beilinson's onjeture away from the entral and near entral

point, inluding the Beilinson-Soulé onjeture for i < 0. For n < 0 both sides

are zero sine then also i < 2n− 1 < 0. The entral and near entral point are

aounted for by the exat sequene

0→ H2n−1(X ,R(n))
rn

−−→ H2n−1
D (X/R,R(n))

zd−n,∗

−−−−→ H2d−2n(X ,R(d− n))∗
h
−→

H2n(X ,R(n))
zn

−−→ H2n
D (X/R,R(n))→ H2d−2n−1(X ,R(d− n))∗ → 0 (29)
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where we have rewritten H2n
c and H2n+1

c in terms of the dual of Hi
using

Conjeture B(X , n) and we also used H2n+1(X ,R(n)) = 0. For n < 0 this

sequene is exat sine all terms are zero (for

H2d−2n−i(X ,R(d− n)) ∼= Ki(X )(d−n)R

and i = 0, 1 this follows for dimension reasons from the Gersten-Quillen spetral

sequene with weights [87℄[Th. 4(iii))℄). If n ≥ 0 the exatness of (29), i.e.

Conjeture B(X , n), is equivalent to nondegeneray of the height pairing h

H2n(X ,R(n))0 ×H2d−2n(X ,R(d − n))0 → R

on the spae

H2n(X ,R(n))0 := ker(zn)

together with a deomposition

H2n−1
D (X/R,R(n)) ∼= im(rn)⊕im(zd−n)∗ ∼= H2n−1(X ,R(n))⊕im(zd−n)∗. (30)

This deomposition is Beilinson's onjeture for the near entral point if one

assumes the standard onjeture "numerial equals homologial equivalene"

for the generi �bre X = XQ in whih ase the dual of

im(zd−n) = CHd−n(X )R/hom ∼= CHd−n(X)R/hom

an be omputed as

im(zd−n)∗ ∼= CHd−1−(d−n)(X)R/hom ∼= CHn−1(X)R/hom.

Beilinson's onjeture at the entral point asserts non-degeneray of the Bloh-

Beilinson height pairing on the spae

CHn(X)0R
∼= H2n(X,R(n))0 ∼= H2n(X/Z,R(n))

0

of homologially trivial yles on the generi �bre. Beilinson also onjetures

that there is a ommutative diagram of pairings

H2n(X ,R(n))00 ×H2d−2n(X ,R(d− n))00 −−−−→ R
y ‖

H2n(X/Z,R(n))
0 ×H2d−2n(X/Z,R(d− n))0 −−−−→ R

with surjetive vertial maps where

H2n(X ,R(n))00 ⊆ H2n(X ,R(n))0

is the subgroup of lasses homologially trivial on all �bres XFp . This implies

that the Bloh-Beilinson height pairing an be de�ned in terms of the pairing

h on X but we have not tried to investigate whether nondegeneray of h is
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equivalent to nondegeneray of the Bloh-Beilinson pairing. Finally, in the

index range i > 2n we have

Hi(X ,R(n)) ⊆ K2n−i(X )(n)R = 0

and therefore

Hi
D(X/R,R(n)) ∼= Hi+1

c (X ,R(n)).
Using the duality (19) we see that B(X , n) is equivalent to Beilinson's onje-

ture (28) with (i, n) replaed by (2d− 1− i, d− n), i.e. the seond map in the

sequene

Hi
D(X/R,R(n)) ∼= Hi+1

c (X ,R(n)) ∼= H2d−i−1(X ,R(d − n))∗ ∼= H2d−1−i
D (X/R,R(d− n))∗

is an isomorphism if and only if the third is.

2.3 Motivi ohomology of the Artin-Verdier ompatifiation

For any n ∈ Z we shall now extend the exat triangle (17) to a diagram in the

derived ategory of R-vetor spaes

RΓc(X ,R(n)) −−−−→ RΓ(X ,R(n)) −−−−→ RΓD(X/R,R(n)) −−−−→

‖
x

x

RΓc(X ,R(n)) −−−−→ RΓ(X ,R(n)) −−−−→ RΓ(X∞,R(n)) −−−−→x
x0

RΓX∞(X ,R(n)) RΓX∞(X ,R(n))
(31)

with exat rows and olumns. Here one should think of X as the "Artin-

Verdier" or "Arakelov" ompati�ation of X and X∞ as the "�bre at in�nity".

We hoose a splitting σ of the inlusion

τ≤2n−1RΓD(X/R,R(n))→ RΓD(X/R,R(n))

and de�ne RΓ(X ,R(n)) as the mapping �bre of the Beilinson regulator om-

posed with σ

RΓ(X ,R(n))→ RΓD(X/R,R(n)) σ−→ τ≤2n−1RΓD(X/R,R(n)). (32)

We then set

RΓX∞(X ,R(n))[1] := τ≤2n−1RΓD(X/R,R(n))

and

RΓ(X∞,R(n)) := τ≥2nRΓD(X/R,R(n)). (33)
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With these de�nitions it is lear that the diagram (31) has exat rows and

olumns and that the right hand olumn is a split exat triangle, i.e. the mor-

phism 0 is indeed the zero map. The middle horizontal and the middle vertial

triangle are analogous to loalization triangles in sheaf theory. The right ver-

tial triangle only beomes a "loal" loalization triangle in the presene of an

isomorphism between RΓ(X∞,R(n)) and the ohomology of a suitable "regular

neighborhood" of X∞.

Proposition 2.10. Conjeture B(X , n) implies that there is a perfet pairing

Hi(X ,R(n))×H2d−i(X ,R(d− n))→ H2d(X ,R(d))→ R (34)

of �nite dimensional R-vetor spaes for all i and n and that Hi(X ,R(n)) = 0
for i 6= 2n.

Proof. By de�nition of RΓ(X ,R(n)) we have an isomorphism

Hi
c(X ,R(n)) ∼= Hi(X ,R(n)) (35)

for i < 2n and an isomorphism

Hi(X ,R(n)) ∼= Hi(X ,R(n)) (36)

for i > 2n. Sine i < 2n implies 2d− i > 2d − 2n = 2(d − n) the duality (34)

is an immediate onsequene of Conjeture B(X , n). Atually both groups are

zero in this ase by (26). For i = 2n we have a diagram with exat rows and

olumns

0
x

α
−−−−−→ H2n

c (X ,R(n)) −−−−−→ H2n(X ,R(n))
zn

−−−−−→ H2n
D (X/R,R(n))

‖
x ‖

0 −−−−−→ H2n
c (X ,R(n))

ι
−−−−−→ H2n(X ,R(n)) −−−−−→ H2n(X∞,R(n))

α

x
x

H2n−1
D (X/R,R(n)) H2n

X∞
(X ,R(n))

xrn

x

H2n−1(X ,R(n)) H2n−1(X ,R(n))

where zn, rn and α ∼= (zd−n)∗ are the maps in (29) and the injetivity of ι
follows by an easy diagram hase. We obtain exat sequenes

0→ H2n
c (X ,R(n))→ H2n(X ,R(n))→ im(zn)→ 0 (37)
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and

0→ oker(rn)→ H2n(X ,R(n))→ H2n(X ,R(n))→ 0. (38)

In view of the isomorphism coker(rn)∗ ∼= im(zd−n) of (30), ConjetureB(X , d−
n) implies that there is an isomorphism between the dual of (38) and (37) with

n replaed by d− n.

Proposition 2.11. There is an isomorphism

H2n(X ,R(n)) ∼= CHn(X )R (39)

where CHn(X̄)R is the Arakelov Chow group with real oe�ients de�ned by

Gillet and Soule [41℄[3.3.3℄.

Proof. One �rst heks that the proof of the exatness of the sequene

CHn,n−1(X ) ρ−→ Hn−1,n−1(XR)
a−→ CHn(X )→ CHn(X )→ 0 (40)

in [40℄[Thm. 5.1.2℄ equally works for (Arakelov) Chow groups made from yles

with real oe�ients to give an exat sequene

CHn,n−1(X )R ρ−→ Hn−1,n−1(X/R) a−→ CHn(X )R → CHn(X )R → 0.

Here

CHn(X)R := CHn(X )⊗Z R ∼= K0(X )(n)R
∼= H2n(X ,R(n))

and

CHn,n−1(X )R := CHn,n−1(X )⊗Z R ∼= K1(X )(n)R
∼= H2n−1(X ,R(n))

by the Gersten-Quillen spetral sequene with weights [87℄[Th. 4(iii))℄, and

Hp,p(XR) is the spae of real di�erential (p, p) forms η on X (C) whih are

harmoni for the hoie of a Kähler metri ω on X (C) and satisfy F ∗∞η = (−1)pη
where F∞ is omplex onjugation on X (C). It is remarked in [40℄[3.5.3 1)℄ that

Hn−1,n−1(XR) ∼= H2n−1
D (X/R,R(n))

and one an see this as follows. One has the exat sequene (22) for i = 2n− 1

0→ H2n−2(X (C),R(n))→ H2n−2(X (C),C)/Fn → H2n−1
D (X/C,R(n))→ 0

and

H2n−2(X (C),C)/Fn ∼= Hn−1,n−1 ⊕
⊕

p<n−1

Hp,2n−2−p.

Denoting by τ the omplex onjugation on oe�ients, given x ∈ Hp,2n−2−p

with p < n− 1, we have x + (−1)nτ(x) ∈ H2n−2(X (C),R(n)) and τ(x) ∈ Fn.
So

H2n−2(X (C),C)/Fn = H2n−2(X (C),R(n)) +Hn−1,n−1
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whereas

H2n−2(X (C),R(n)) ∩Hn−1,n−1

onsists of harmoni (n− 1, n− 1)-forms in the (−1)neigenspae of τ . So
H2n−1
D (X/C,R(n)) ∼= Hn−1,n−1/(H2n−2(X (C),R(n)) ∩Hn−1,n−1)

onsists of harmoni (n− 1, n− 1)-forms in the (−1)n−1-eigenspae of τ and

H2n−1
D (X/R,R(n)) = H2n−1

D (X/C,R(n))GR = Hn−1,n−1(XR)

onsists of forms η satisfying (F ∗∞⊗τ)η = η and τη = (−1)n−1η, i.e. real forms

satisfying F ∗∞η = (−1)n−1η.
It is proved in [40℄[Thm. 3.5.4℄ that the map ρ oinides with the Beilinson

regulator (up to a onstant fator −2), hene we obtain an exat sequene

0→ coker(ρ)→ CHn(X )R → CHn(X )R → 0

whose outer terms are isomorphi to the outer terms of (38), hene there exists

an isomorphism on the middle terms.

Remark 2.12. We have "onstruted" the pairing (34) and the isomorphism

(39) in an ad ho way by hoosing an isomorphism of middle terms in ex-

at sequenes whose outer terms are isomorphi. We expet that there is an

isomorphism (39) so that the pairing (34) is the Arakelov intersetion pair-

ing of [40℄[5.1.4℄. By [60℄[Eq. (18)℄ the spae Hi
c(X ,R(n)) is orthogonal to

coker(rd−n) under the Arakelov intersetion pairing, and it remains to show

that the indued pairing oinides with the pairing (18). Assuming �nite-

dimensionality of H2n(X ,R(n)), the non-degeneray of the Arakelov interse-

tion pairing is a onsequene of the standard onjetures for Arakelov Chow

groups [61℄[Prop. 3.1℄.

Remark 2.13. The de�nition of Arakelov Chow groups depends on the hoie

of a Kähler metri on X (C) even though any two hoies yield isomorphi

groups [40℄[Thm. 5.1.6℄. Reall that the Deligne omplex RΓD(X/C,R(n)) has
a representative whih in degrees 2n− 1 and 2n looks like [12℄[Thm. 2.6℄

· · · → Dn−1,n−1R (n− 1)
(2πi)ddc−−−−−→ Dn,nR (n)→ · · ·

where Dp,qR (n) is the spae of (p, q)-urrents on X (C) tensored by R(n). A

hoie of Kähler metri also yields a harmoni projetion [40℄[5.1.1℄

H : Dn−1,n−1R (n− 1)→ Hn−1,n−1(X )(n − 1) = ker(ddc)

and hene a splitting σ of the Deligne omplex as above.

3 Weil-étale ohomology of proper regular shemes

Throughout this setion, X denotes a regular sheme of pure dimension d,
proper over Spec(Z), and satisfying Conjetures L(X et, n), L(X et, d − n) and
AV(X et, n) stated in Setion 3.2.
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3.1 Notations

For any n ≥ 0, we onsider Bloh's yle omplex

Z(n) := zn(−, 2n− ∗)

as a omplex of sheaves on the small étale topos Xet of the sheme X (see [64℄,

[63℄, [37℄ and Setion 6 for more details). We write Z/mZ(n) := Z(n)⊗LZ/mZ

and Q/Z(n) := lim−→Z/mZ(n). For n < 0, we have Q(n) = 0 hene Z(n) =

Q/Z(n)[−1]. Proper base hange and the projetive bundle formula suggest

Z/prZ(n) ≃ jp,!(µ⊗npr ), where jp is the open immersion jp : X [1/p]→ X , jp,! is
the extension by zero funtor and µpr is the étale sheaf of pr-th roots of unity.

This leads to the following de�nition. For n < 0 we de�ne the omplex Z(n)
on Xet as follows (see also [36℄):

Z(n) :=
⊕

p

jp,!(µ
⊗n
p∞)[−1].

The omplexes Z(n)X and Rφ̂!Z(n) over the Artin-Verdier étale topos X et
are de�ned in Appendix A. Reall that there is a anonial open embedding

φ : Xet → X et, where Xet is the usual small étale topos of the sheme X . We

simply denote by RΓ(X et,Z(n)) the hyperohomology of the omplex Z(n)X

over X et. If X (R) = ∅, or if one is willing to ignore 2-torsion issues, one has

quasi-isomorphisms (see Proposition 6.6)

Rφ̂!Z(n)
∼→ Z(n)X

∼→ Rφ∗Z(n),

hene one may simply de�ne

RΓ(X et,Z(n)) := RΓ(Xet,Z(n))

where RΓ(Xet,Z(n)) denotes the hyperohomology of the omplex Z(n) of

sheaves over Xet. We also denote

RΓ(X et, Ẑ(n)) := holimRΓ(X et,Z/mZ(n)).

If A is an abelian group, we denote by Ator (resp. Adiv) its maximal torsion

(resp. divisible) subgroup, and by Acotor (resp. Acodiv) the okernel of the

inlusion Ator → A (resp. Adiv → A). We denote by nA (resp. An) the kernel
(resp. the okernel) of the multipliation map n : A→ A, and by TA := lim←− nA

the Tate module of A. If A is torsion or pro�nite, AD denotes its Pontryagin

dual. We say that A is of o�nite type if A is of the form HomZ(B,Q/Z) where
B is �nitely generated. We denote by D the derived ategory of abelian group.

More generally, if T is a topos, we denote by D(T ) the derived ategory of

abelian sheaves on T . If C is an objet of D(T ) then we denote by C≤n or by

τ≤nC the good trunation of C in degrees ≤ n.
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3.2 Assumptions

The de�nition of Weil-étale ohomology requires the following onjetures.

Conjeture 3.1. AV(X et, n) There are ompatible produt maps Z(n)X ⊗L
Z(d−n)X → Z(d)X and Rφ̂!Z(n)⊗LRφ∗Z(d−n)→ Z(d)X in D(X et) induing
a perfet pairing of �nite groups

Hi(X et,Z/m(n))×H2d+1−i(X et,Z/m(d−n))→ H2d+1(X et,Z/m(d))→ Q/Z.

for any i ∈ Z and any m > 0.

Conjeture AV(X et, n) holds in the following ases:

• for any n and X smooth over a �nite �eld;

• for any n ≤ 0 or n ≥ d and X regular;

• for any n and X smooth over a number ring.

Indeed, the seond ase (respetively the third) is Corollary 6.26 (respetively

Corollary 6.27). Assume that X is smooth over a �nite �eld of harateristi

p. The result for m prime to p is well known. For m = pr, it follows from
Z/prZ(n) ≃ νnr [−n] (see [34℄[Thm. 8.5℄ and from [70℄[Thm. 1.14℄.

Conjeture 3.2. L(X et, n) The group Hi(X et,Z(n)) is �nitely generated for

i ≤ 2n+ 1 and vanishes for i << 0.

Conjeture L(X et, n) holds in the following ases:

• for dim(X ) ≤ 1;

• for n = 1 and X an arithmeti surfae (or a surfae over a �nite �eld)

with �nite Brauer group;

• for n ≥ d− 1 or n ≤ 1 and X in the ategory A(Fq) (see Setion 3.6);

• for n ≥ d or n ≤ 0 and X a regular ellular sheme over a number ring

(more generally for n ≥ d or n ≤ 0 and X regular in the lass L(Z), see
[72℄).

We have the following slight reformulation.

Lemma 3.3. Conjeture L(X et, n) is equivalent to
L(Xet, n): The group Hi(Xet,Z(n)) is �nitely generated for i ≤ 2n+ 1.

Proof. By Corollary 6.8 there is an exat triangle

RΓX∞(X ,Z(n))→ RΓ(X ,Z(n))→ RΓ(X ,Z(n))

where RΓX∞(X ,Z(n)) has �nite 2-torsion ohomology and is bounded below.

Hene �nite generation of Hi(Xet,Z(n)) and Hi(X et,Z(n)) for i ≤ 2n+ 1 are

Doumenta Mathematia 23 (2018) 1425�1560



1450 Matthias Flah and Baptiste Morin

equivalent. If Hi(X et,Z(n)) is �nitely generated its vanishing is implied by the

vanishing of Hi(X et,Z(n)/p) for all primes p and, if i << 0, by the vanishing of
Hi(X et, τ≤nZ(n)/p). By Prop. 6.9 and [92℄[Thm. 2.6℄ there is an isomorphism

j∗φ∗τ≤nZ(n)X /p ∼= τ≤nZ(n)/p ∼= µ⊗np

where

X [1/p]et j−→ Xet φ−→ X et
are the natural open immersions. Following the proof of Lemma 5.15 below we

obtain an exat triangle

RΓc(X [1/p], µ⊗n
p ) −→ RΓ(X , τ≤nZ(n)/p) −→ RΓ(XR, µ

⊗n
p )⊕RΓ(XZp , τ

≤nZ(n)/p)

where the outer terms have vanishing ohomology for i << 0. For the omplex

τ≤nZ(n)/p on XZp this follows from the proof of Lemma 7.7 whih shows that

the mapping �bre of τ≤nZ(n)/p→ τ≤nRjp,∗µ
⊗n
p is quasi-isomorphi to i∗Z(n−

1)/p[−2] in degrees ≤ n, even without assuming Conj. 7.1. But Z(n− 1)/p on
XFp is ohomologially bounded below by [92℄[Thm. 1.1℄.

3.3 The omplex RΓW (X ,Z(n))
Proposition 3.4. For any i ≥ 2n+2 there is an isomorphism of o�nite type

groups

Hi(X et,Z(n)) ∼−→ Hom(H2d+2−i(X et,Z(d − n)),Q/Z).
For i = 2n+ 1, there is an isomorphism of �nite groups

H2n+1(X et,Z(n)) ∼−→ H2(d−n)+1(X et,Z(d− n))D.

For any i ≤ 2n there is an isomorphism of pro�nite groups

Hi(X et,Z(n))∧ ∼−→ Hom(H2d+2−i(X et,Z(d− n)),Q/Z).

where (−)∧ is the pro�nite ompletion.

Proof. The distinguished triangle

Z(n)→ Q(n)→ Q/Z(n)

and the fat that Hi(X et,Q(n)) = Hi(X ,Q(n)) = 0 for i ≥ 2n+ 1 imply

Hi(X et,Z(n)) = Hi−1(X et,Q/Z(n))
≃ lim−→Hi−1(X et,Z/mZ(n))

≃ lim−→H2d+1−(i−1)(X et,Z/mZ(d− n))D

≃
(
lim←−H

2d+2−i(X et,Z/mZ(d− n))
)D

≃ H2d+2−i(X et,Z(d− n))D
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for i ≥ 2n + 2. Indeed, to show the last isomorphism we onsider the exat

sequene

0→ H2d+2−i(X et,Z(d− n)))m → H2d+2−i(X et,Z/mZ(d− n)))
→ mH

2d+2−i+1(X et,Z(d− n))→ 0.

Passing to the limit we get

0→ lim←−H
2d+2−i(X et,Z(d− n))m → lim←−H

2d+2−i(X et,Z/mZ(d− n))

→ TH2d+2−i+1(X et,Z(d − n)) = 0

sine H2d+2−i+1(X et,Z(d− n)) is �nitely generated for i ≥ 2n+ 2. We obtain

isomorphisms

(lim←−H
2d+2−i(X et,Z/mZ(d− n)))D ∼→ (lim←−H

2d+2−i(X et,Z(d− n))m)D

∼→ H2d+2−i(X et,Z(d− n))D

again using �nite generation of H2d+2−i(X et,Z(d− n)).
It remains to treat the ase i = 2n+ 1. The exat sequene

H2n(X et,Q/Z(n))→ H2n+1(X et,Z(n))→ H2n+1(X et,Q(n)) = 0

implies that H2n+1(X et,Z(n)) is torsion hene �nite. We have an exat se-

quene

0→ lim←−H
2n+1(X et,Z(n))m → lim←−H

2n+1(X et,Z/mZ(n))

→ TH2n+2(X et,Z(n)).
But H2n+2(X et,Z(n)) is of o�nite type (thanks to the ase i ≥ 2n+2 treated
above) hene its Tate module is torsion-free. We obtain

H2n+1(X et,Z(n)) = lim←−H
2n+1(X et,Z(n))m

∼→
(
lim←−H

2n+1(X et,Z/mZ(n))
)
tors

≃
(
lim←−H

2d+1−(2n+1)(X et,Z/mZ(d− n))D
)
tors

≃
(
H2(d−n)(X et,Q/Z(d− n))D

)
tors

≃ H2(d−n)+1(X et,Z(d− n))D.

Theorem 3.5. There is a anonial morphism in D:
αX ,n : RHom(RΓ(X ,Q(d− n)),Q[−2d− 2])→ RΓ(X et,Z(n))

funtorial in X and suh that Hi(αX ,n) fators as follows

Hom(H2d+2−i(X ,Q(d− n)),Q) ։ Hi(X et,Z(n))div →֒ Hi(X et,Z(n))
where Hi(X et,Z)div denotes the maximal divisible subgroup of Hi(X et,Z).
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Proof. We setDX ,n := RHom(RΓ(X ,Q(d−n)),Q[−2d−2]). Using Proposition
3.4, it is easy to see that the spetral sequene

∏

i∈Z

Extp(Hi(DX ,n), H
q+i(X et,Z(n)))⇒ Hp+q(RHom(DX ,n, RΓ(X et,Z(n))))

yields a anonial isomorphism

∏

i∈Z

Ext0(Hi(DX ,n), H
i(X et,Z(n))) ≃ H0(RHom(DX ,n, RΓ(X et,Z(n)))).

For i ≤ 2n+1 any map Hi(αX ,n) : H
i(DX ,n)→ Hi(X et,Z(n)) must be trivial

sine Hi(DX ,n) = 0. For any i ≥ 2n+ 2 there is a anonial map Hi(αX ,n) :

Hi(DX ,n) = Hom(H2d+2−i(X ,Q(d− n)),Q)
∼
→ Hom(H2d+2−i(X et,Z(d− n)),Q)

→ Hom(H2d+2−i(X et,Z(d− n)),Q/Z)
∼
← Hi(X et,Z(n)).

Hene there exists a unique map

αX ,n : RHom(RΓ(X ,Q(d− n)),Q[−2d− 2])→ RΓ(X et,Z(n))

induing Hi(αX ,n) on ohomology. The fat that αX ,n is funtorial is shown

in Theorem 3.9.

Definition 3.6. Setting δ := 2d + 2 we de�ne RΓW (X ,Z(n)), up to non-

anonial isomorphism, suh that there is an exat triangle

RHom(RΓ(X ,Q(d− n)),Q[−δ])→ RΓ(X et,Z(n))→ RΓW (X ,Z(n)).

We shall see below that RΓW (X ,Z(n)) is in fat de�ned up to a anonial

isomorphism in the derived ategory (see Corollary 4.10). The long exat se-

quene of ohomology groups assoiated to the exat triangle of De�nition 3.6

together with Proposition 3.4 yields the following

Lemma 3.7. There is an exat sequene

0→ Hi(X et,Z(n))codiv → Hi
W (X ,Z(n))→ Hom(H2d+1−i(X et,Z(d− n)),Z)→ 0

for any i ∈ Z.

Proposition 3.8. The group Hi
W (X ,Z(n)) is �nitely generated for any i ∈ Z.

Moreover one has Hi
W (X ,Z(n)) = 0 for almost all i ∈ Z.

Proof. By Proposition 3.4, the group H2d+2−(i+1)(X et,Z(d − n)) is either

�nitely generated or of o�nite type and Hi(X et,Z(n))codiv is �nitely gen-

erated. Hene the exat sequene

0→ Hi(X et,Z(n))codiv → Hi
W (X ,Z(n))
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→ HomZ(H
2d+2−(i+1)(X et,Z(d− n)),Z)→ 0

shows that Hi
W (X ,Z(n)) is �nitely generated. Moreover,Hi(X et,Z(n)) = 0 for

i << 0 andHj(X et,Z(d−n)) is torsion for j > 2(d−n), heneHi
W (X ,Z(n)) = 0

for i << 0. For i large, the group

Hi+1(X et,Z(n))codiv = Hi(X et,Q/Z(n))codiv ≃
(
H2d+1−i(X et, Ẑ(d− n))

D
)

codiv

vanishes by L(X et, d− n).

Theorem 3.9. Let f : X → Y be a �at morphism between proper regular

arithmeti shemes of pure dimensions dX and dY respetively. Assume that

L(X et, n), L(X et, dX −n), AV(X et, n), L(Yet, n), L(Yet, dY −n), AV(Yet, n),
and AV(f, n) hold (see Setion 6.10). We hoose omplexes RΓW (X ,Z(n))
and RΓW (Y ,Z(n)) as in De�nition 3.6. Then there exists a unique map in D

f∗W : RΓW (Y,Z(n))→ RΓW (X ,Z(n))

whih sits in the morphism of exat triangles:

RHom(RΓ(Y,Q(dY − n)),Q[−δY ]) //

��

RΓ(Yet,Z(n)) //

��

RΓW (Y ,Z(n))

��
RHom(RΓ(X ,Q(dX − n)),Q[−δX ]) // RΓ(X et,Z(n)) // RΓW (X ,Z(n))

Proof. We may assume X and Y onneted; thus X and Y are proper regu-

lar onneted arithmeti shemes of dimension dX and dY respetively. We

set δX = 2dX + 2 and δY = 2dY + 2. We hoose omplexes RΓW (X ,Z) and
RΓW (Y ,Z) as in De�nition 3.6. Let f : X → Y be a morphism of relative di-

mension c = dX−dY . Proper push-forward of yles along the proper morphism

f
zm(X , ∗)→ zm−c(Y, ∗)

indues a morphism

f∗Q(dX − n)→ Q(dY − n))[−2c]

of omplexes of abelian Zariski sheaves on Y. We have f∗Q(dX − n) ≃
Rf∗Q(dX − n). Indeed, for a sheme over a disrete valuation ring, the o-

homology of yle omplex oinides with its Zariski hyperohomology. We

obtain a morphism

RΓ(X ,Q(dX − n)) ≃ RΓ(Y, f∗Q(dX − n))→ RΓ(Y,Q(dY − n))[−2c]

hene

RHom(RΓ(Y,Q(dY − n)),Q[−δY ])→ RHom(RΓ(X ,Q(dX − n)),Q[−δX ]).
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On the other hand, by Proposition 6.12, we have a pull-bak map

RΓ(Yet,Z(n))→ RΓ(X et,Z(n)).

We need to show that the following square

RHom(RΓ(Y,Q(dY − n)),Q[−δY ])
αY,n //

��

RΓ(Yet,Z(n))

��
RHom(RΓ(X ,Q(dX − n)),Q[−δX ])

αX,n // RΓ(X et,Z(n))

ommutes. It is enough to show that the indued diagrams of ohomology

groups ommute. One may assume i ≥ 2n + 2. Then the map Hi(αY,n)
oinides with the following omposite map

Hom(HδY−i(Y,Q(dY − n)),Q)
∼→ Hom(HδY−i(Yet,Z(dY − n)),Q)

→ Hom(HδY−i(Yet,Z(dY − n)),Q/Z) ∼← Hom(HδY−i(Yet, Ẑ(d− n)),Q/Z)
∼← Ĥi−1

c (Yet,Q/Z(n))→ Ĥi−1(Yet,Q/Z(n))→ Ĥi(Yet,Z(n)).
It follows from AV(f, n) that this map is funtorial in Y. Hene there exists a
morphism

f∗W : RΓW (Y,Z(n))→ RΓW (X ,Z(n))
induing a morphism of exat triangles.

We laim that suh a morphism f∗W is unique. In order to ease the notations,

we set

DX ,n := RHom(RΓ(X ,Q(dX − n)),Q[−δX ])
and

DY,n := RHom(RΓ(Y,Q(dY − n)),Q[−δY ]).
The omplexes RΓW (X ,Z(n)) and RΓW (Y ,Z(n)) are both perfet omplexes

of abelian groups. Applying the funtor HomD(−, RΓW (X ,Z(n))) to the exat
triangle

DY,n → RΓ(Yet,Z(n))→ RΓW (Y ,Z(n))→ DY,n[1]

we obtain an exat sequene of abelian groups:

HomD(DY,n[1], RΓW (X ,Z(n)))→ HomD(RΓW (Y ,Z(n)), RΓW (X ,Z(n)))

→ HomD(RΓ(Yet,Z(n)), RΓW (X ,Z(n))).
On the one hand, HomD(DY,n[1], RΓW (X ,Z(n))) is uniquely divisible sine

DY,n[1] is a omplex of Q-vetor spaes. On the other hand, the abelian group

HomD(RΓW (Y ,Z(n)), RΓW (X ,Z(n)))
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is �nitely generated as it follows from the spetral sequene

∏

i∈Z

Ext

p(Hi
W (Y ,Z(n)), Hq+i

W (X ,Z(n))) ⇒ Hp+q(RHom(RΓW (X ,Z(n)), RΓW (X ,Z(n))))

sine RΓW (X ,Z(n)) and RΓW (Y,Z(n)) are both perfet. Hene the morphism

HomD(RΓW (Y,Z(n)),RΓW (X ,Z(n)))→ HomD(RΓ(Yet,Z(n)), RΓW (X ,Z(n)))

is injetive. It follows that there exists a unique morphism f∗W whih renders

the square

RΓ(Yet,Z(n)) //

f∗
et

��

RΓW (Y ,Z(n))

f∗
W

��
RΓ(X et,Z(n)) // RΓW (X ,Z(n))

ommutative.

Corollary 3.10. RΓW (X ,Z(n)) is well de�ned up to a unique isomorphism

in D.
Proof. Let RΓW (X ,Z(n)) and RΓW (X ,Z(n))′ be two omplexes as above. By

Theorem 3.9, the identity map Id : X → X indues a unique isomorphism

RΓW (X ,Z(n)) ≃ RΓW (X ,Z(n))′ in D.

Remark 3.11. Following [39℄ we denote by Zc(n) the yle omplex with ho-

mologial indexing and we keep Z(n) for the yle omplex with ohomologial

indexing, so that Zc(n) = Z(d − n)[2d] over a regular sheme of pure dimen-

sion d. One should think of RΓ(X ,Zc(n)) (resp. of RΓ(X et,Z(n))) as Borel-
Moore homology (resp. as étale motivi ohomology). Then, for any regular

proper arithmeti sheme X (not neessarily onneted nor pure dimensional)

satisfying our standard assumptions, one may de�ne the Weil-étale omplex

RΓW (X ,Z(n)) by the exat triangle

RHom(RΓ(X ,Zc(n)),Q[−2])→ RΓ(X et,Z(n))→ RΓW (X ,Z(n))→

whih is somewhat more natural. However, in order to avoid onfusion, we

use exlusively ohomologial indexing for the yle omplex throughout this

paper. Aordingly, we use the triangle of De�nition 3.6 in order to de�ne the

Weil-étale omplexes.

3.4 Rational oeffiients

Corollary 3.12. There is a anonial diret sum deomposition

RΓW (X ,Z(n)) ⊗Q
∼−→ RΓ(X ,Q(n))⊕RHom(RΓ(X ,Q(d− n)),Q[−2d− 1])

whih is funtorial with respet to �at morphisms of proper regular arithmeti

shemes.
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Proof. Assume that X is onneted of dimension d and write δ = 2d + 2.
Applying (−) ⊗ Q to the exat triangle of De�nition 3.6, we obtain an exat

triangle

RHom(RΓ(X ,Q(d− n)),Q[−δ])→ RΓ(X ,Q(n))→ RΓW (X ,Z(n))Q.

We write D := RHom(RΓ(X ,Q(d−n)),Q[−δ]) for brevity. The exat sequene

HomD(D[1], RΓ(X ,Q(n)))→ HomD(RΓW (X ,Z(n))Q, RΓ(X ,Q(n)))

→ HomD(RΓ(X ,Q(n)), RΓ(X ,Q(n)))→ HomD(D,RΓ(X ,Q(n)))

yields an isomorphism

HomD(RΓW (X ,Z)Q, RΓ(X ,Q(n)))
∼→ HomD(RΓ(X ,Q(n)), RΓ(X ,Q(n))),

sine RΓ(X ,Q(n)) is a omplex of Q-vetor spaes onentrated in degrees

≤ 2n and the omplex RHom(RΓ(X ,Q(d− n))≥0,Q[−δ]) is ayli in degrees

≤ 2n+ 1. This yields the anonial diret sum deomposition.

It remains to show that this diret sum deomposition is funtorial. Let X → Y
be a �at map between regular proper shemes. One may assume X and Y
onneted of dimension dX and dY respetively. We set δX = 2dX + 2 and

δY = 2dY + 2. Flat pull-bak of yles yields a map

u : RΓ(Y,Q(n))→ RΓ(X ,Q(n))

while proper push-forward of yles yields a map

v : RHom(RΓ(Y,Q(dY − n)),Q[−δY ])→ RHom(RΓ(X ,Q(dX − n)),Q[−δX ]).

In order to show that the diagram of omplexes of Q-vetor spaes

RΓW (Y,Z(n)) ⊗Q //

f∗
W

��

RΓ(Y,Q(n))⊕RHom(RΓ(Y,Q(dY − n)),Q[−δY ])[1]

(u,v)

��
RΓW (X ,Z(n))⊗Q // RΓ(X ,Q(n))⊕RHom(RΓ(X ,Q(dX − n)),Q[−δX ])[1]

ommutes in D, it is enough to show that the following square

Hi
W (Y ,Z(n))⊗Q //

f∗
W

��

Hi(Y,Q(n))⊕HδY−(i+1)(Y,Q(dY − n))∗

(u,v)

��
Hi
W (X ,Z(n)) ⊗Q // Hi(X ,Q(n))⊕HδX−(i+1)(X ,Q(dX − n))∗

ommutes for any i ∈ Z, where (−)∗ denotes the dual Q-vetor spae. The

result is obvious for i ≥ 2n+ 1 sine we then have

Hi(Y,Q(n)) = Hi(X ,Q(n)) = 0.
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Hene the diagram is ommutative for i ≥ 2n+1 by Theorem 3.9. For i < 2n+1,
we have

HδY−(i+1)(Y,Q(dY − n))∗ = HδX−(i+1)(X ,Q(dX − n))∗ = 0

and the horizontal maps in the square above are inverse isomorphisms to

Hi(Y,Q(n))
∼−→ Hi

W (Y ,Z(n))Q and Hi(X ,Q(n))
∼−→ Hi

W (X ,Z(n))Q

respetively. Hene the result follows from the fat that

Hi
W (Y,Z(n)) ⊗Q

f∗
W

��

Hi(Y,Q(n))

u

��

oo

Hi
W (X ,Z(n))⊗Q Hi(X ,Q(n))oo

ommutes, again by Theorem 3.9.

3.5 Torsion oeffiients

Lemma 3.13. For any positive integer m, there is a anonial isomorphism

RΓ(X et,Z/mZ(n))
∼−→ RΓW (X ,Z(n))⊗LZ Z/mZ

whih is funtorial with respet to �at morphisms of proper regular arithmeti

shemes.

Proof. Consider the exat triangle

RHom(RΓ(X ,Q(d− n)),Q[−δ])→ RΓ(X et,Z(n))→ RΓW (X ,Z(n))→

where δ := 2d + 2. Taking derived tensor produt − ⊗LZ Z/mZ we obtain an

exat triangle

0→ RΓ(X et,Z/mZ(n))→ RΓW (X ,Z(n)) ⊗LZ Z/mZ→

sine we have anonial isomorphisms

RΓ(X et,Z(n)) ⊗LZ Z/mZ ≃ RΓ(X et,Z/mZ(n))

and

RHom(RΓ(X ,Q(d− n)),Q[−δ])⊗LZ Z/m = 0.

It follows that the map

RΓ(X et,Z/mZ(n))→ RΓW (X ,Z(n)) ⊗LZ Z/mZ

is an isomorphism in the derived ategory. It is funtorial by Theorem 3.9.
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3.6 Relationship with the Lihtenbaum-Geisser definition over fi-

nite fields

Let Y be a smooth proper sheme over a �nite �eld k. We may assume that

Y is onneted and d-dimensional. In this setion, we show that the Weil-étale

omplex RΓW (Y,Z(n)) de�ned in this paper is (expeted to be) anonially

isomorphi in the derived ategory to the Weil-étale omplex de�ned in [36℄,

and we desribe the relationship between the onjeture L(Yet, n) stated in

Setion 3.2 and the onjeture L(YW , n) stated in [36℄.

We denote by Wk the Weil group of the �nite �eld k. The Weil-étale topos YW
is the ategory of Wk-equivariant sheaves of sets on the étale site of Y ⊗k k,
where k/k is an algebrai losure. By [36℄ one has an exat triangle in the

derived ategory D(Yet)

Z(n)→ Rγ∗Z(n)→ Q(n)[−1]→ Z(n)[1]

where γ : YW → Yet is the anonial map. Applying RΓ(Yet,−) and rotating,

we get

RΓ(Yet,Q(n)[−2])→ RΓ(Yet,Z(n))→ RΓ(YW ,Z(n))→ RΓ(Yet,Q(n)[−2])[1].

The following onjeture is due to T. Geisser and S. Lihtenbaum.

Conjeture 3.14. L(YW , n) For every i, the group Hi(YW ,Z(n)) is �nitely

generated.

The following onjeture is due to T. Geisser and B. Kahn (see [54℄ and [36℄).

Consider the map cl : Rγ∗Z(n)⊗ Zl → RlimZ/lrZ(n) in D(Yet) [36℄.
Conjeture 3.15. K (YW , n) For every prime l and any i ∈ Z, the map cl
indues an isomorphism

Hi(YW ,Z(n))⊗ Zl ≃ Hi
cont(Y,Zl(n)).

Consider the full subategory A(k) of the ategory of smooth projetive vari-

eties over the �nite �eld k generated by produts of urves and the following

operations:

(1) If X and Y are in A(k) then X
∐
Y is in A(k).

(2) If Y is in A(k) and there are morphisms c : X → Y and c′ : Y → X in

the ategory of Chow motives, suh that c′ ◦ c : X → X is multipliation by a

onstant, then X is in A(k).
(3) If k′/k is a �nite extension and X ×k k′ is in A(k), then X is in A(k).
(4) If Y is a losed subsheme of X with X and Y in A(k), then the blow-up

X ′ of X along Y is in A(k).
The following result is due to T. Geisser [36℄.

Theorem 3.16. (Geisser) Let Y be a smooth projetive variety of dimension

d.
- One has K (YW , n) +K (YW , d− n)⇒ L(YW , n)⇒ K (YW , n).
- If Y belongs to A(k) then L(YW , n) holds for n ≤ 1 and n ≥ d− 1.
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Proposition 3.17. Let Y be a onneted smooth projetive sheme over a �nite

�eld of dimension d. Then we have

L(YW , n)⇒ L(Yet, n).

Proof. By [36℄, one has an exat sequene

→ Hi(Yet,Z(n))→ Hi(YW ,Z(n))→ Hi−1(Yet,Q(n))→ Hi+1(Yet,Z(n))→

With rational oe�ients, this exat sequene yields isomorphisms

Hi(YW ,Z(n))⊗Q ≃ Hi(YW ,Q(n)) ≃ Hi(Yet,Q(n))⊕Hi−1(Yet,Q(n)). (41)

Assume now that Conjeture L(YW , n) holds. Let us �rst show that

Hi(YW ,Z(n)) is �nite for i 6= 2n, 2n + 1. By Theorem 3.16, Conjeture

K(YW , n) holds, i.e. we have an isomorphism

Hi(YW ,Z(n))⊗ Zl ≃ Hi
cont(Y,Zl(n))

for any l and any i. But for i 6= 2n, 2n+1, the group Hi
cont(Y,Zl(n)) is �nite for

any l and zero for almost all l [33℄ (see also the proof of Cor. 3.8 in [54℄). Hene
Hi(YW ,Z(n)) is �nite for i 6= 2n, 2n + 1. Then (41) gives Hi(Yet,Q(n)) =
0 for i 6= 2n. The exat sequene above then shows that Hi(Yet,Z(n)) →
Hi(YW ,Z(n)) is injetive for i ≤ 2n + 1, hene that Hi(Yet,Z(n)) is �nitely
generated for i ≤ 2n+ 1.

Corollary 3.18. Any variety Y in A(k) satis�es L(Yet, n) and L(Yet, d− n)
for n ≤ 1.

Proof. This follows from Theorem 3.16 and Proposition 3.17.

Conjeture 3.19. P(Y,n) The intersetion produt indues a perfet pairing:

CHn(Y )Q × CHd−n(Y )Q → CHd(Y )Q
deg−→ Q.

Note that CHd(Y )Q
deg−→ Q is known to be an isomorphism by lass �eld theory.

Theorem 3.20. If Y satis�es L(Yet, n), L(Yet, d − n) and P(Y, n) then there

is an isomorphism in D

RΓ(YW ,Z(n))
∼−→ RΓW (Y,Z(n))

where the left hand side is the ohomology of the Weil-étale topos and the right

hand side is the omplex de�ned in this paper.
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Proof. We shall show that there is a ommutative diagram in D:

RΓ(Yet,Q(n)[−2])

≃

��

// RΓ(Yet,Z(n))

Id

��
RHom(RΓ(Y,Q(d− n))≥0,Q[−2d− 2])

αY,n // RΓ(Yet,Z(n))

where the vertial maps are isomorphisms. This will imply the existene of an

isomorphism RΓ(YW ,Z(n))
∼−→ RΓW (Y,Z(n)), whose uniqueness follows from

the argument given in the proof of Theorem 3.9.

One has H2d(Y,Q(d)) = CHd(Y )Q = Q and Hi(Y,Q(d)) = 0 for i > 2d. This
yields a map RΓ(Y,Q(d))) → Q[−2d]. Moreover, sine Y is smooth over the

�eld k, we have a produt map

RΓ(Y,Q(n))⊗RΓ(Y,Q(d− n))→ RΓ(Y,Q(d)).

We obtain a morphism

RΓ(Yet,Q(n)) ≃ Γ(Y,Q(n)) −→ RHom(Γ(Y,Q(d− n)),Q[−2d]). (42)

The onjuntion of Conjetures L(Yet, n), L(Yet, d−n) and P(Y, n) implies that

RΓ(Yet,Q(n)) is onentrated in degree 2n and that the morphism (42) is a

quasi-isomorphism. Indeed, assuming L(Yet, n) and L(Yet, d − n) we get, by

Proposition 3.4, the �niteness of H2n+1(Yet,Z(n)) and an isomorphism

Hi(Yet,Z(n))
∼−→ Hom(H2d+2−i(Yet,Z(d− n),Q/Z)

for i ≥ 2n+ 2. Hene Hi(Y,Q(n)) = 0 for i ≥ 2n+ 1. For i ≤ 2n we have

Hi(Yet,Z(n))
∧ ∼−→ Hom(H2d+2−i(Yet,Z(d− n),Q/Z).

But H2d+2−i(Yet,Z(d−n) is �nite for i ≤ 2n−1. Indeed, writing j = 2d+2− i
and t = d− n, we need Hj(Yet,Z(t)) �nite for j ≥ 2t+3. But in this range we

have

Hj(Yet,Z(t)) = Hj−1(Yet,Q/Z(t))

sine Hj(Yet,Q(t)) = 0 for j > 2t. Moreover Y satis�es Artin-Verdier duality

with mod-m oe�ients (see Conjeture 3.1), sine Z/mZ(n) = µ⊗nm for p not

dividingm and Z/prZ(n) ≃ νnr [−n]. Passing to the limit we get an isomorphism

of pro�nite groups

Hj−1(Yet,Q/Z(t))
D = H2d+1−(j−1)(Yet, Ẑ(n)) =

∏

l

H
2d+1−(j−1)
cont (Yet,Zl(n)).

For j − 1 ≥ 2t + 2, this group is �nite (indeed, for i 6= 2t, 2t + 1 the l-adi
ohomology group Hi

cont(Yet,Zl(t)) is �nite for all l and trivial for almost all
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l [33℄). We obtain that Hi(Y,Q(n)) = 0 for i 6= 2n. Hene we have anonial
isomorphisms

RHom(RΓ(Y,Q(d− n)),Q[−2d]) ≃ Hom(H2d−2n(Y,Q(d− n)),Q)[−2n]
≃ CHd−n(Y )∗Q[−2n]

and

RΓ(Y,Q(n)) ≃ H2n(Y,Q(n))[−2n] ≃ CHr(Y )Q[−2n].
Moreover the map

H2n(Y,Q(n))→ Hom(H2d−2n(Y,Q(d− n)),Q)

is given by the intersetion pairing

CHn(Y )Q × CHd−n(Y )Q → CHd(Y )Q → Q.

Therefore, it follows from the onjuntion of Conjetures L(Yet, n), L(Yet, d−n)
and P(Y, n) that the map (42) is an isomorphism.

It remains to hek the ommutativity of the above diagram. The omplex

DY,n := RHom(RΓ(Y,Q(d− n)),Q[−2d− 2]) ≃ RΓ(Yet,Q(n)[−2])

is onentrated in degree 2n+2, hene ayli in degrees > 2n+2. The spetral
sequene

∏

i∈Z

Ext

p(Hi(DY,n), H
q+i(Yet,Z(n)))⇒ Hp+q(RHom(DY,n, RΓ(Yet,Z(n))))

degenerates at E2 and yields an isomorphism

HomD(DY,n, RΓ(Yet,Z(n))≤2n+2) ≃ Hom(H2n+2(DY,n), H
2n+2(Yet,Z(n)))

sine DY,n is quasi-isomorphi to a Q-vetor spae put in degree 2n+ 2 while

Hi(Yet,Z(n)) is �nitely generated for i ≤ 2n and �nite for i = 2n+ 1. One is
therefore redued to show the ommutativity of the following square (of abelian

groups):

CHn(Y )Q

��

d2n,1
2 // H2n+2(Yet,Z(n))

Id

��
CHd−n(Y )∗Q

H2n+2(αY,n)// H2n+2(Yet,Z(n))

where the left vertial map is given by the intersetion pairing. The fat that

this square ommutes follows from Geisser's desription of the di�erential map

d2n,12 , see [36℄.

Corollary 3.21. Let Y be a onneted smooth projetive sheme over a �nite

�eld of dimension d. Then we have

L(YW , n) + L(YW , d− n)⇔ L(Yet, n) + L(Yet, d− n) + P(Y, n).
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Proof. Assume L(Yet, n), L(Yet, d − n) and P(Y, n). Then RΓW (Y,Z(n)) and
RΓW (Y,Z(d − n)) are well de�ned and have �nitely generated ohomology

groups. Hene Conjeture L(YW , n) and L(YW , d − n) follow from Theorem

3.20.

Assume L(YW , n) and L(YW , d − n). Conjetures L(Yet, n) and L(Yet, d − n)
then hold by Proposition 3.17. The fat that L(YW , n) and L(YW , d−n) imply

P(Y, n) is proven in [36℄.

3.7 Weil-étale duality

Theorem 3.22. There is a anonial produt map

RΓW (X ,Z(n))⊗LZ RΓW (X ,Z(d− n)) −→ Z[−2d− 1]

suh that the indued map

RΓW (X ,Z(n))→ RHom(RΓW (X ,Z(d − n)),Z[−2d− 1])

is an isomorphism of perfet omplexes of abelian groups.

Proof. First we onsider the map

RΓW (X ,Z(n))Q ⊗LQ RΓW (X ,Z(d− n))Q −→ Q[−2d− 1]

given, thanks to Corollary 3.12, by the sum of the following tautologial maps

RΓ(X ,Q(n))⊗LQ RHom(RΓ(X ,Q(n)),Q[−δ])[1]→ Q[−2d− 1],

RHom(RΓ(X ,Q(d− n)),Q[−δ])[1]⊗LQ RΓ(X ,Q(d− n))→ Q[−2d− 1].

Reall that we denote ontinuous étale ohomology with Ẑ(n)-oe�ients by

RΓ(X et, Ẑ(n)) := holimRΓ(X et,Z/mZ(n)).

ConjetureAV(X et, n) provides us with a map Z/mZ(n)X⊗LZ/mZ(d−n)X →
Z/mZ(d)X induing a morphism

RΓ(X et,Z/mZ(n))⊗LZ RΓ(X et,Z/mZ(d− n))→ RΓ(X et,Z/mZ(d))

→ Z/mZ[−2d− 1]→ Q/Z[−2d− 1].

By adjuntion, we obtain

RΓ(X et,Z/mZ(d− n))→ RHom(RΓ(X et,Z/mZ(n)),Q/Z[−2d− 1])

and

RΓ(X et, Ẑ(d− n))→ RHom(RΓ(X et,Q/Z(n)),Q/Z[−2d− 1]).
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Moreover, the maps

RΓW (X ,Z(n))→ RΓW (X ,Z(n))⊗LZ Z/mZ ≃ RΓ(X et,Z/mZ(n))

yield a map

RΓW (X ,Z(n)) −→ RΓ(X et, Ẑ(n))
induing the following morphism on ohomology:

Hi
W (X ,Z(n)) −→ Hi

W (X ,Z(n))∧ ∼−→ Hi(X et, Ẑ(n)).
Then we onsider the maps

RΓW (X ,Z(n)) ⊗L
Z RΓW (X ,Z(d − n)) ⊗L

Z Q/Z
∼
−→ RΓW (X ,Z(n)) ⊗L

Z RΓ(X et,Q/Z(d − n))

−→ RΓ(X et, Ẑ(n)) ⊗
L
Z RΓ(X et,Q/Z(d− n)) −→ Q/Z[−2d− 1]

and

RΓW (X ,Z(n)) ⊗L
Z RΓW (X ,Z(d − n)) ⊗L

Z Q/Z
∼
−→ RΓ(X et,Q/Z(n)) ⊗L

Z RΓW (X ,Z(d − n))

−→ RΓ(X et,Q/Z(n)) ⊗L
Z RΓ(X et, Ẑ(d − n)) −→ Q/Z[−2d− 1].

We need to see that these two maps give the same element in

Hom(RΓW (X ,Z(n))⊗LZ RΓW (X ,Z(d− n))⊗LZ Q/Z,Q/Z[−2d− 1])

≃ Hom(RΓW (X ,Z(n))⊗LZ RΓW (X ,Z(d− n)), Ẑ[−2d− 1]).

But these maps are both indued by the limit of

RΓW (X ,Z(n))⊗LZ RΓW (X ,Z(d− n))
→ RΓ(X et,Z/m(n))⊗LZ RΓ(X et,Z/m(d− n))→ Z/m[−2d− 1],

hene they oinide. We obtain a anonial map

RΓW (X ,Z(n)) ⊗LZ RΓW (X ,Z(d− n))⊗LZ Q/Z −→ Q/Z[−2d− 1]. (43)

We now onsider the diagram

RΓW (X ,Z(n)) ⊗LZ RΓW (X ,Z(d− n))

��

∃ ! pn,d−n // Z[−2d− 1]

��
RΓW (X ,Z(n)) ⊗LZ RΓW (X ,Z(d− n))⊗LZ Q

��

// Q[−2d− 1]

��
RΓW (X ,Z(n))⊗LZ RΓW (X ,Z(d− n))⊗LZ Q/Z // Q/Z[−2d− 1]

We explain why the lower square is ommutative. Unwinding the de�nitions,

we see that the following square

RΓ(X et,Z(n)) ⊗LZ RHom(RΓ(X et,Z(n),Q[−2d− 1])

a⊗b
��

// Q[−2d− 1]

��
RΓ(X et, Ẑ(n)) ⊗LZ RΓ(X et,Q/Z(d− n)) // Q/Z[−2d− 1]
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ommutes, where RΓ(X et,Z(n)) a→ RΓ(X et, Ẑ(n)) is the obvious map and

RHom(RΓ(X et,Z(n),Q[−2d− 1])
b→ RΓ(X et,Q/Z(d− n))

→ RΓ(X et,Z(d− n))[1]
is αX ,d−n[1]. Moreover, the square

RΓ(X et,Z(n))⊗LZ RΓ(X et,Q(d− n))

��

0 // Q[−2d− 1]

��
RΓ(X et, Ẑ(n)) ⊗LZ RΓ(X et,Q/Z(d− n)) // Q/Z[−2d− 1]

ommutes as well, where the top horizontal arrow is the zero map. It follows

that the lower square of the diagram above ommutes.

Then the existene of the upper horizontal map pn,d−n follows from the fat

that the olumns of the diagram above are exat triangles. Its uniqueness

follows from the argument given in the proof of Theorem 3.9. By adjuntion

we obtain

RΓW (X ,Z(n))→ RHom(RΓW (X ,Z(d− n)),Z[−2d− 1]). (44)

Applying the funtor (−)⊗LZ Z/mZ to (44) we obtain the map

RΓ(X et,Z/m(n)) → RHom(RΓ(X et,Z/m(d− n))[−1],Z[−2d− 1])(45)

≃ RHom(RΓ(X et,Z/m(d− n)),Q/Z[−2d− 1]) (46)

where we identify RΓW (X ,Z(n)) ⊗L Z/m with RΓ(X et,Z/m(n)). By on-

strution, (45) is the map indued by AV(X et, n), whih is an isomorphism by

assumption. So (44) is a morphism in D of perfet omplexes of abelian groups

suh that

RΓW (X ,Z(n))⊗L Z/mZ
∼−→ RHom(RΓW (X ,Z(d−n)),Z[−2d− 1])⊗L Z/mZ

is an isomorphism for any m. It follows that (44) is an isomorphism as well.

3.8 The omplex RΓW,c(X ,Z(n))
We ontinue to use the notations of Setion 6. In partiular, we denote

by X (C) the set of omplex points of X endowed with the omplex topol-

ogy. Complex onjugation gives a ontinuous ation of GR on X (C), and

we denote by X∞ := X (C)/GR the quotient topologial spae. We also de-

note by Sh(GR,X (C)) the topos of GR-equivariant sheaves on X (C), and by

RΓ(GR,X (C),−) the ohomology of the topos Sh(GR,X (C)). We onsider

the GR-equivariant sheaves given by the GR-modules (2πi)nZ. We denote by

π : Sh(GR,X (C)) → Sh(X∞) the anonial morphism of topoi. Reall that

there is a natural transformation Rπ∗ → Rπ̂∗, where Rπ̂∗ is the funtor de-

�ned in Setion 6.4.
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Definition 3.23. For any n ∈ Z, we de�ne the omplex of sheaves on X∞:

i∗∞Z(n) := Cone(Rπ∗(2πi)
nZ −→ τ>nRπ̂∗(2πi)

nZ)[−1]

and we set

RΓW (X∞,Z(n)) := RΓ(X∞, i∗∞Z(n)).

For n ≥ 0, the anonial map τ>nRπ∗(2πi)
nZ → τ>nRπ̂∗(2πi)

nZ is a quasi-

isomorphism (see the proof of Lemma 6.7), so that we have a quasi-isomorphism

i∗∞Z(n)
∼→ τ≤nRπ∗(2iπ)

nZ

for n ≥ 0. There is an exat triangle

RΓW (X∞,Z(n)) −→ RΓ(GR,X (C), (2πi)nZ) t−→ RΓ(X (R), τ>nRπ̂∗(2πi)nZ).
(47)

The projetive bundle formula

RΓW (PNX ,∞,Z(n)) ≃
i=N⊕

i=0

RΓW (X∞,Z(n− i))[−2i]

an be obtained using (47) and an argument similar to the one given in the

proof of Proposition 6.29. We onsider the representative of RΓW (X∞,Z(n))
given by the mapping �bre of the seond map t in the triangle (47). Consider

the map of omplexes (16)

RΓ(Xet,Z(n)) −→ RΓ(GR,X (C), (2πi)nZ).

We may rede�ne the objet RΓ(X et,Z(n)) ∈ D as the one given by the mapping

�bre of the map of omplexes

RΓ(Xet,Z(n)) −→ RΓ(GR,X (C), (2πi)nZ) −→ RΓ(X (R), τ>nRπ̂∗(2πi)nZ).

The square of omplexes

RΓ(Xet,Z(n)) //

��

RΓ(X (R), τ>nRπ̂∗(2πi)nZ)

��
RΓ(GR,X (C), (2iπ)nZ) // RΓ(X (R), τ>nRπ̂∗(2πi)nZ)

ommutes. By funtoriality of the one, we obtain a anonial map

u∗∞ : RΓ(X et,Z(n)) −→ RΓW (X∞,Z(n)).

Proposition 3.24. There exists a unique map

i∗∞ : RΓW (X ,Z(n)) −→ RΓW (X∞,Z(n))
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whih renders the following square ommutative:

RΓ(X et,Z(n)) //

u∗
∞

��

RΓW (X ,Z(n))

i∗∞
��

RΓW (X∞,Z(n)) Id // RΓW (X∞,Z(n))

Moreover, the square

RΓW (X ,Z(n))Q ∼ //

i∗∞⊗Q

��

RΓ(X ,Q(n))⊕RHom(RΓ(X ,Q(d− n)),Q[−2d− 1])

(u∗
∞⊗Q, 0)

��
RΓW (X∞,Z(n))Q Id // RΓW (X∞,Z(n))Q

ommutes, where the top horizontal map is the isomorphism of Corollary 3.12.

Proof. We set DX ,n := RHom(RΓ(X ,Q(d − n)),Q[−2d− 2]). It follows from
Lemma 3.25 below and from the fat that DX ,n is ayli in degrees < 2n+ 2
that the omposite map

DX ,n
αX,n−→ RΓ(X et,Z(n)) −→ RΓW (X∞,Z(n)) (48)

is the zero map. The existene of i∗∞ follows. Its uniqueness an then be

obtained as in Theorem 3.9, using the fat that both RΓW (X ,Z(n)) and

RΓW (X∞,Z(n)) are perfet omplexes.

We now show the seond statement of the proposition. The exat triangle

DX ,n → τ≥2n+1RΓ(X et,Z(n))→ τ≥2n+1RΓW (X ,Z(n))

and the argument given in the proof of Theorem 3.9 show that the map from

HomD(τ
≥2n+1RΓW (X ,Z(n)), τ≥2n+1RΓW (X∞,Z(n)))

to

HomD(τ
≥2n+1RΓ(X et,Z(n)), τ≥2n+1RΓW (X∞,Z(n)))

is injetive. Hene the fat that τ≥2n+1u∗∞ is torsion (see Lemma 3.25 below)

implies that τ≥2n+1i∗∞ is torsion as well. It follows that

τ≥2n+1(i∗∞ ⊗Q) : DX ,n[−1] ≃ τ≥2n+1RΓW (X ,Z(n))Q
→ τ≥2n+1RΓW (X∞,Z(n))Q

is the zero map. The fat that τ≤2n(i∗∞ ⊗ Q) may be identi�ed with u∗∞ ⊗ Q

follows from the ommutativity of the �rst square of the proposition.

Lemma 3.25. The map

τ≥2n+1(u∗∞) : τ≥2n+1RΓ(X et,Z(n))→ τ≥2n+1RΓW (X∞,Z(n))

is torsion.
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Proof. In view of the exat triangle (47), one is redued to showing that the

omposite map

v : τ≥2n+1RΓ(X et,Z(n))→ τ≥2n+1RΓ(GR,X (C), (2πi)nZ)

is torsion. Denote by τ≥2nRΓ(X et,Q/Z(n))′ the okernel of the morphism of

omplexes

H2n(X et,Q/Z(n))div[−2n]→ τ≤2nτ≥2nRΓ(X et,Q/Z(n))

→ τ≥2nRΓ(X et,Q/Z(n)).
Similarly, let τ≥2nRΓ(GR,X (C), (2πi)nQ/Z)′ be the okernel of the morphism

of omplexes

H2n(GR,X (C), (2πi)nQ/Z)div[−2n]→ τ≥2nRΓ(GR,X (C), (2πi)nQ/Z).

Then we have a ommutative square

τ≥2nRΓ(X et,Q/Z(n))′[−1] ∼ //

ṽ

��

τ≥2n+1RΓ(X et,Z(n))

v

��
τ≥2nRΓ(GR,X (C), (2πi)nQ/Z)′[−1] // τ≥2n+1RΓ(GR,X (C), (2πi)nZ)

where the upper horizontal map is a quasi-isomorphism. One is therefore re-

dued to showing that ṽ is torsion. Note also that H2n(τ≥2nRΓ(X et,Q/Z(n))′)
is �nite. Verdier's spetral sequene (tensored with Q) shows that ṽ is torsion

if and only if the indued map

Hi(X et,Q/Z(n))div → Hi(GR,X (C), (2πi)nQ/Z)div

is the zero map for any i ≥ 2n+ 1. Sine the kernel of the map

Hi(GR,X (C), (2πi)nQ/Z)div → Hi(X (C), (2πi)nQ/Z)div

is killed by a power of 2, it su�es to show that

Hi(X et,Q/Z(n))div → Hi(X (C), (2πi)nQ/Z)div (49)

is the zero map for any i ≥ 2n+ 1.

The map (49) fators through

(
Hi(X

Q,et, µ
⊗n)GQ

)
div

where Q/Q is an alge-

brai losure and µ is the étale sheaf on X
Q
of all roots of unity. It is therefore

enough to showing that

(
Hi(XQ, et, µ

⊗n)GQ

)
div

=
⊕

l

(
Hi(XQ, et,Ql/Zl(n))

GQ

)
div

= 0 (50)
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for any i ≥ 2n + 1. Let l be a �xed prime number. Let U ⊆ Spec(Z) be an

open subsheme on whih l is invertible and suh that XU → U is smooth, and

let p ∈ U . By smooth and proper base hange we have:

Hi(X
Q, et,Ql/Zl(n))

Ip ≃ Hi(X
Fp, et

,Ql/Zl(n))

where Ip denotes an inertia subgroup at p. Reall that Hi(X
Fp, et

,Zl(n)) is a

�nitely generated Zl-module. We have an exat sequene

0→ Hi(XFp, et
,Zl(n))cotor → Hi(XFp, et

,Ql(n))→ Hi(XFp, et
,Ql/Zl(n))div → 0.

We get

0→ (Hi(X
Fp, et

,Zl(n))cotor)
GFp → Hi(X

Fp, et
,Ql(n))

GFp

→ (Hi(XFp, et
,Ql/Zl(n))div)

GFp → H1(GFp , H
i(XFp, et

,Zl(n))cotor).

Again, H1(GFp , H
i(XFp, et

,Zl(n))cotor) is a �nitely generated Zl-module, hene

we get a surjetive map

Hi(X
Fp, et

,Ql(n))
GFp → ((Hi(X

Fp, et
,Ql/Zl(n))div)

GFp )div → 0.

Note that

(
(Hi(X

Fp, et
,Ql/Zl(n))div)

GFp

)
div

=
(
Hi(X

Fp, et
,Ql/Zl(n))

GFp

)
div

.

By the Weil Conjetures,Hi(X
Fp, et

,Ql(n)) is pure of weight i−2n. For i ≥ 2n+

1, we have i−2n > 0, hene there is no non-trivial element in Hi(X
Fp, et

,Ql(n))
�xed by the Frobenius. This shows that

(
Hi(X

Fp, et
,Ql/Zl(n))

GFp

)
div

= Hi(X
Fp, et

,Ql(n))
GFp = 0

hene that

(
Hi(XQ, et,Ql/Zl(n))

GQp

)
div
≃
(
Hi(XFp, et

,Ql/Zl(n))
GFp

)
div

= 0.

A fortiori, one has (
Hi(XQ, et,Ql/Zl(n))

GQ

)
div

= 0

for i ≥ 2n+ 1, and the result follows.

Definition 3.26. We de�ne RΓW,c(X ,Z(n)), up to a non-anonial isomor-

phism in D, suh that we have an exat triangle

RΓW,c(X ,Z(n)) −→ RΓW (X ,Z(n)) i∗∞−→ RΓW (X∞,Z(n)). (51)

The determinant detZRΓW,c(X ,Z(n)) is well de�ned up to a anonial isomor-

phism.
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To see that detZRΓW,c(X ,Z(n)) is indeed well de�ned, onsider another objet

RΓW,c(X ,Z(n))′ of D endowed with an exat triangle (51). There exists a

(non-unique) morphism

u : RΓW,c(X ,Z(n))→ RΓW,c(X ,Z(n))′

lying in a morphism of exat triangles

RΓW,c(X ,Z(n))

∃u ≃

��

// RΓW (X ,Z(n))

Id

��

// RΓW (X∞,Z(n))

Id

��

//

RΓW,c(X ,Z(n))′ // RΓW (X ,Z(n)) // RΓW (X∞,Z(n)) //

The map u indues

detZ(u) : detZRΓW,c(X ,Z(n)) ∼−→ detZRΓW,c(X ,Z(n))′

whih does not depend on the hoie of u [59℄.

4 Weil-Arakelov ohomology of proper regular shemes

In this setion X denotes a regular sheme proper over Z of pure dimension d
whih satis�esAV(X et, n), L(X et, n) and L(X et, d−n) andB(X , n). The Weil-

Arakelov omplexes we introdue in this setion will only play a minor role in

subsequent setions (in Conjeture 5.11 whih does not really need them for its

formulation), and we mainly disuss them to make preise the piture outlined

in the introdution. The Weil-Arakelov omplexes de�ned in subsetions 4.2

and 4.4 below will only be spei�ed up to a nonanonial isomorphism beause

they are de�ned as mapping �bres or mapping ones in the derived ategory of

abelian groups. We ertainly do expet a anonial onstrution of these objets

when the geometry underlying Arakelov theory is better understood but we do

not have bette r de�nitions at this point. There are more omplexes than those

disussed below for whih we have de�nitions, for example RΓar(X ,Z(n)), but
these de�nitions are of the same preliminary nature and we do not inlude

them.

4.1 Weil-Arakelov ohomology with R̃(n)-oeffiients

For any n ∈ Z reall the diagram (31) of (perfet) omplexes of R-vetor spaes.

Definition 4.1. For eah omplex RΓ?(Y,R(n)) in diagram (31) set

RΓar,?(Y, R̃(n)) := RΓ?(Y,R(n))⊕RΓ?(Y,R(n))[−1]. (52)
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We de�ne a map

∪θ−−→ by ommutativity of the diagram

Hi
ar,?(Y, R̃(n))

∪θ−−−−→ Hi+1
ar,?(Y, R̃(n))

‖ ‖

Hi
?(Y,R(n))⊕Hi−1

? (Y,R(n))
( 0 id
0 0 )−−−−→ Hi+1

? (Y,R(n))⊕Hi
?(Y,R(n))

so that there is a long exat sequene

· · · ∪θ−−→ Hi
ar,?(Y, R̃(n))

∪θ−−→ Hi+1
ar,?(Y, R̃(n))

∪θ−−→ · · · (53)

The motivation for this de�nition is its ompatibility with previous work on

Weil-étale ohomology, with the Weil-Arakelov groups with Z(n)-oe�ients

de�ned below, and possibly also with the onjetural piture of Deninger [21℄.

The dualities (19), B(X , n) and (34) imply orresponding dualities for the

Weil-Arakelov groups where the top degree is inreased by one. We reord the

duality implied by (34) in the following proposition.

Proposition 4.2. There is a anonial homomorphism H2d+1
ar (X , R̃(d)) → R

and a perfet duality

Hi
ar(X , R̃(n))×H2d+1−i

ar (X , R̃(d− n))→ H2d+1
ar (X , R̃(d))→ R

of �nite-dimensional R-vetor spaes for all i, n ∈ Z. Moreover we have

Hi
ar(X , R̃(n)) = 0 for i 6= 2n, 2n+ 1.

Proof. This is immediate from Prop. 2.10.

4.2 Weil-Arakelov ohomology of X
Reall the diret sum deomposition

RΓW (X ,Z(n))Q ∼−→ RΓ(X ,Q(n))⊕RHom(RΓ(X ,Q(d− n)),Q[−2d− 1])

of Corollary 3.12 whih indues a deomposition

RΓW (X ,Z(n))R ∼−→ RΓ(X ,R(n))⊕RHom(RΓ(X ,R(d−n)),R[−2d−1]). (54)
Also reall the map (32)

RΓ(X ,R(n)) ρ−→ RΓD(X/R,R(n)) σ−→ τ≤2n−1RΓD(X/R,R(n))
where ρ is the Beilinson regulator and σ a splitting of the natural inlusion

τ≤2n−1RΓD(X/R,R(n))→ RΓD(X/R,R(n)).
We obtain a omposite map

RΓW (X ,Z(n))
⊗1
−−→ RΓW (X ,Z(n))R

π1−→ RΓ(X ,R(n))
σ◦ρ
−−→ τ≤2n−1RΓD(X/R,R(n))

(55)

where π1 is the �rst projetion in (54).
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Definition 4.3. De�ne RΓar(X ,Z(n)) as a mapping �bre of the map (55).

By de�nition there is an exat triangle

RΓar(X ,Z(n))→ RΓW (X ,Z(n))→ τ≤2n−1RΓD(X/R,R(n))→ . (56)

Proposition 4.4. There is a map in the derived ategory

RΓar(X ,Z(n))→ RΓar(X , R̃(n)) (57)

where RΓar(X̄ , R̃(n)) was de�ned in (52).

Proof. By de�nition

RΓar(X̄ , R̃(n)) ∼= RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1],

so to de�ne (57) we need to de�ne its two omponents. Reall from setion 2.3

that RΓ(X ,R(n)) was de�ned as the mapping �bre of σ ◦ ρ. Hene we obtain
an indued map on mapping �bres

RΓar(X ,Z(n))→ RΓ(X ,R(n))

whih is the �rst omponent of (57). The seond omponent is the omposite

RΓar(X ,Z(n))→ RΓW (X ,Z(n))→ RΓW (X ,Z(n))R →
π2−→ RΓ(X ,R(d− n))∗[−2d− 1]

B←− RΓc(X ,R(n))[−1] ι−→ RΓ(X̄ ,R(n))[−1]

where π2 is the seond projetion in (54), B is the duality isomorphism of

onjetureB(X , n) and ι is the natural map arising from the respetive mapping

�bre de�nitions of its soure and target.

Definition 4.5. De�ne RΓar(X , R̃/Z(n)) as a mapping one of the map (57).

By de�nition there is an exat triangle

RΓar(X ,Z(n))→ RΓar(X , R̃(n))→ RΓar(X , R̃/Z(n))→ .

The following proposition gives an analogue of (56) for R̃/Z(n)-oe�ients.

De�ne the omplex RΓW (X ,R/Z(n)) as the mapping one of the map ⊗1 in

(55) so that there is an exat triangle

RΓW (X ,Z(n)) ⊗1−−→ RΓW (X ,Z(n))R −→ RΓW (X ,R/Z(n))→ . (58)

Proposition 4.6. There is an exat triangle

(
τ≥2nRΓD(X/R,R(n))

)
[−2]→ RΓW (X ,R/Z(n))→ RΓar(X , R̃/Z(n))→ .

(59)
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Proof. The de�nition of RΓar(X ,Z(n)) as a mapping �bre of the omposite

map (σρπ1) ◦ ⊗1 gives an exat triangle

RΓW (X ,R/Z(n))[−1]→ RΓar(X ,Z(n)) α−→ Cone(σρπ1)[−1]→
and one has an isomorphism

Cone(σρπ1)[−1] ∼−→ RΓ(X ,R(n))⊕RHom(RΓ(X ,R(d − n)),R[−2d− 1]).

The de�nition of RΓar(X , R̃/Z(n)) as a mapping one of the omposite map

(id⊕ιB−1) ◦ α gives an exat triangle

RΓW (X ,R/Z(n))→ RΓar(X , R̃/Z(n))→ Cone(id⊕ιB−1)→ .

Sine Cone(id⊕ιB−1) ∼= Cone(ι) and one has an exat triangle

RΓc(X ,R(n))
ι[1]−−→ RΓ(X̄ ,R(n))→ τ≥2nRΓD(X/R,R(n))→

the proposition follows.

Remark 4.7. One has two exat sequenes

Hn−1,n−1(XR) −−−−→ CHn(X ) −−−−→ CHn(X ) −−−−→ 0
y∼=

yǭ
yǫ

H2n−1
D (X/R,R(n)) −−−−→ H2n

ar (X ,Z(n)) −−−−→ H2n(Xet,Z(n)) −−−−→ 0

where the top row is the exat sequene (40) of Gillet and Soule, the bottom

sequene is indued by the exat triangle (56), ǫ is the natural map from the

higher Chow omplex to its étale hyperohomology and ǭ we only expet to exist.
However, even if ǭ does exist it will not in general be an isomorphism beause

ǫ may not be an isomorphism. In general we expet the maps ǫ and ǭ to have

�nite kernel and okernel. We also remark that Hi
ar(X ,Z(n)) an be nonzero

both for i < 2n and i > 2n and satis�es the duality in Theorem 4.9 below.

Deligne ohomology RΓD(X/R,R(n)) is ontravariantly funtorial and so is its

trunation τ≤2n−1RΓD(X/R,R(n)) whereas the omplex RΓW (X ,Z(n)) is on-
travariantly funtorial for �at morphisms.

Lemma 4.8. Let f : Y → X be a �at morphism. Then there exists a

(nonunique) map

f∗ : RΓar(X ,Z(n))→ RΓar(Y,Z(n))
sitting in a morphism of exat triangles

RΓar(X ,Z(n)) //

f∗

��

RΓW (X ,Z(n)) //

��

τ≤2n−1RΓD(X/R,R(n))

��

//

RΓar(Y ,Z(n)) // RΓW (Y,Z(n)) // τ≤2n−1RΓD(Y/R,R(n)) //

Doumenta Mathematia 23 (2018) 1425�1560



Weil-Étale Cohomology and Zeta-Values 1473

Proof. We need to show that the outer square in the diagram

RΓW (X ,Z(n)) //

��

RΓW (X ,Z(n))Q //

��

RΓ(X ,Q(n)) //

��

τ≤2n−1RΓD(X/R,R(n))

��
RΓW (Y ,Z(n)) // RΓW (Y ,Z(n))Q // RΓ(Y,Q(n)) // τ≤2n−1RΓD(Y/R,R(n))

ommutes in the derived ategory. But the left square learly ommutes, the

middle square ommutes by Corollary 3.12 and the right square ommutes by

funtoriality of the Beilinson regulator.

4.3 Weil-Arakelov duality for X
We have already noted in Prop. 4.2 a duality for Weil-Arakelov ohomology

with R̃(n)-oe�ients. In this setion we establish a Pontryagin duality between

Weil-Arakelov ohomology with Z(n) and R̃/Z(d− n) oe�ients.

For homologial algebra of loally ompat abelian groups we refer to [45℄. A

ontinuous homomorphism f : A → B of loally ompat abelian groups is

alled strit if A/ker(f)→ B is a losed embedding, and a omplex of loally

ompat abelian groups is alled stritly ayli if all di�erentials are strit

and the omplex is ayli in the usual sense. The bounded derived ategory

of loally ompat abelian groups is de�ned in [45℄ by inverting all maps of

omplexes whose mapping one is stritly ayli.

We denote by GD the Pontryagin dual of a loally ompat abelian group G.
The funtor (−)D preserves strit morphisms and stritly ayli omplexes

and extends to the bounded derived ategory of [45℄. Examples of objets in

this ategory are bounded omplexes P • (resp. V •) of �nitely generated free

abelian groups (resp. R-vetor spaes) as well as the omplexes RΓar(X ,Z(n))
and RΓar(X , R̃/Z(n)) de�ned in Def. 4.3 and 4.5, respetively. To see this

note that any map P • → V • in the derived ategory of abelian groups an be

realized by a map of omplexes whih is automatially ontinuous sine the P i

arry the disrete topology. There is a natural isomorphism

(V •)D ∼= (V •)∗

and a short exat sequene of omplexes

0→ HomZ(P
•,Z)

ι−→ HomZ(P
•,R)→ (P •)D → 0. (60)

Finally note that the ohomology groups of a omplex of loally ompat

abelian groups (taken in the ategory of abelian groups) arry an indued

topology whih however need not be loally ompat.

Theorem 4.9. For n ∈ Z there is a quasi-isomorphism

RΓar(X ,Z(n))D ∼= RΓar(X , R̃/Z(d− n))[2d+ 1]
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and the ohomology groups of both omplexes are loally ompat. The isomor-

phism

H2d+1
ar (X , R̃/Z(d)) ≃ R/Z

is anonial and hene one obtains a Pontryagin duality

Hi
ar(X ,Z(n))×H2d+1−i

ar (X , R̃/Z(d− n))→ H2d+1
ar (X , R̃/Z(d)) ≃ R/Z.

Proof. One has an isomorphism of exat triangles with δ = 2d+ 1

←− RΓW (X ,Z(n))D ←− RΓW (X ,Z(n))∗R ←− RΓW (X ,R/Z(n))D

β

x∼

x∼

x∼

←− RΓW (X ,R/Z(d− n))[δ] ←− RΓW (X ,Z(d− n))R[δ] ←− RΓW (X ,Z(d− n))[δ]

where the top row is the Pontryagin dual of (58) and the middle isomor-

phism is lear from (54). More onretely, if P • denotes a representative of

RΓW (X ,Z(n)) and ι denotes the map in (60) then β is the map from the one

of ι to the quotient omplex of ι (see [90℄[1.5.8℄), ombined with the duality

isomorphism of Theorem 3.22. Furthermore, one has an isomorphism of exat

triangles

RΓar(X ,Z(n))
D ←− RΓW (X ,Z(n))D ←−

(
τ≤2n−1RΓD(X/R,R(n))

)D

β′

x∼ β

x∼ β′′

x∼

RΓar(X , R̃/Z(d− n))[δ] ←− RΓW (X ,R/Z(d− n))[δ] ←−
(
τ≥2(d−n)RΓD(X/R,R(d− n))

)
[δ − 2]

(61)

where the top row is the Pontryagin dual of (56) and β′′ arises from the duality

(19) for Deligne ohomology

(
τ≤2n−1RΓD(X/R,R(n))

)∗ ∼=τ≥−2n+1
(
RΓD(X/R,R(d− n))[2d− 1]

)

∼=
(
τ≥2(d−n)RΓD(X/R,R(d− n))

)
[δ − 2].

The bottom row is (59) with n replaed by d−n. The quasi-isomorphism β′ is
non-anonial, quite like our pairing in Prop. 2.10. However, in degree 2d+ 1,
one has a anonial isomorphism

H2d+1
ar (X , R̃(d)) ∼= R

arising from Lemma 2.3 and De�nition 4.1 and a anonial isomorphism

H2d+1
ar (X ,Z(d)) ∼= H2d+1

W (X ,Z(d)) ∼= Z

arising from Theorem 3.22 and the map de�ned in Prop. 4.4 is in fat the

inlusion.

Doumenta Mathematia 23 (2018) 1425�1560



Weil-Étale Cohomology and Zeta-Values 1475

The long exat sequene indued by (56) gives an isomorphism

Hi
ar(X ,Z(n)) ∼= Hi

W (X ,Z(n))

for i ≥ 2n+ 1 and an exat sequene

→ Hi−1
W (X ,Z(n)) ρ−→ Hi−1

D (X/R,R(n))→ Hi
ar(X ,Z(n))→ Hi

W (X ,Z(n))→

for i ≤ 2n. Sine Hi
W (X ,Z(n)) is �nitely generated and the image of the

Beilinson regulator ρ is a lattie, the natural topology onHi
ar(X ,Z(n)) is loally

ompat.

In the proof we have obtained the following more preise result. For a loally

ompat abelian groupG denote by G0
the onneted omponent of the identity

and by Gc a maximal ompat subgroup.

Corollary 4.10. The loally ompat group Hi
ar(X ,Z(n)) is �nitely generated

for i ≥ 2n + 1 and a ompat Lie group for i ≤ 2n − 1. Dually, the loally

ompat group Hi
ar(X , R̃/Z(n)) is �nitely generated for i ≥ 2n+2 and a ompat

Lie group for i ≤ 2n. For G = H2n
ar (X ,Z(n)) and G = H2n+1

ar (X , R̃/Z(n)) the
group G/G0

is �nitely generated, Gc is a ompat Lie group and G0/Gc ∩ G0

is a �nite dimensional real vetor spae.

Remark 4.11. One may use the previous result to rede�ne, up to a anonial

isomorphism, the groups Hi
ar(X ,Z(r)) and Hi

ar(X , R̃/Z(t)) in terms of Weil-

étale ohomology groups, for i 6= 2r and i 6= 2t+ 1 respetively.

4.4 Weil-Arakelov ohomology with ompat support

For any n ∈ Z reall that the omplex

RΓar,c(X , R̃(n)) := RΓc(X,R(n))⊕RΓc(X ,R(n))[−1]

was already de�ned in De�nition 4.1, the omplex RΓW,c(X ,Z(n)) in De�nition
3.26 and that there is an exat triangle (51) of perfet omplexes of abelian

groups

RΓW,c(X ,Z(n))→ RΓW (X ,Z(n)) i∗∞−−→ RΓW (X∞,Z(n))→ . (62)

We de�ne versions of these omplexes with R/Z(n)-oe�ients as in (58).

Lemma 4.12. The omposite

(
τ≥2nRΓD(X/R,R(n))

)
[−2]→ RΓW (X ,R/Z(n)) i

∗
∞⊗R/Z−−−−−→ RΓW (X∞,R/Z(n)),

where the �rst map is the one in (59), is the zero map.
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Proof. From the proof of Prop. 4.6 we obtain a ommutative square

τ≥2nRΓD(X/R,R(n))[−2] −−−−−→Cone(σρπ1)[−1] ∼= RΓ(X ,R(n)) ⊕RΓ(X ,R(d− n))∗[−δ]

‖
y

τ≥2nRΓD(X/R,R(n))[−2] −−−−−→ RΓW (X ,R/Z(n))

where the upper horizontal map fators through the seond summand. We

have another ommutative diagram

RΓW (X ,Z(n))R ∼= RΓ(X ,R(n))⊕RΓ(X ,R(d− n))∗[−δ]
i∗∞⊗R
−−−−−→ RΓW (X∞,Z(n))R

y
y

RΓW (X ,R/Z(n)) −−−−−→ RΓW (X∞,R/Z(n))

where the upper horizonal map is zero on the seond summand by Prop. 3.24.

This implies the Lemma.

Definition 4.13. De�ne

RΓar,c(X , R̃/Z(n)) := RΓW,c(X ,R/Z(n))
and

RΓar(X∞, R̃/Z(n)) := RΓW (X∞,R/Z(n))⊕
(
τ≥2nRΓD(X/R,R(n))

)
[−1].

In view of Lemma 4.12 the exat triangle (59) then extends to a ommutative

diagram with exat rows and olumns

RΓW,c(X ,R/Z(n))
∼
−→ RΓar,c(X , R̃/Z(n)) −→

y
y

(
τ≥2nRΓD(X/R,R(n))

)
[−2] −→ RΓW (X ,R/Z(n)) −→ RΓar(X , R̃/Z(n)) −→

‖
yi∗∞⊗R/Z

y
(
τ≥2nRΓD(X/R,R(n))

)
[−2]

0
−→ RΓW (X∞,R/Z(n)) −→ RΓar(X∞, R̃/Z(n)) −→

(63)

and it is also lear that the ohomology groups Hi
ar,c(X , R̃/Z(n)) are ompat

for all i, n ∈ Z. The exat triangle (7) in the introdution is just the de�ning

triangle of RΓW,c(X ,R/Z(n)) and the exat triangle (5) in the introdution is

given by the following proposition. Reall the de�nition of algebrai deRham

ohomology

RΓdR(XF /F ) := RΓ(XF,Zar,Ω∗XF /F
)

for any �eld F of harateristi zero. For F = C one has an isomorphism

RΓdR(XC/C) ∼= RΓ(X (C),Ω•X (C)/C)

and for F = R an isomorphism

RΓdR(XR/R) ∼= RΓdR(XC/C)
GR ∼= RΓ(GR,X (C),Ω•X (C)/C).
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Proposition 4.14. There is an exat triangle of perfet omplexes of R-vetor

spaes

RΓdR(XR/R)/Fil
n[−2]→ RΓar,c(X , R̃(n))→ RΓW,c(X ,Z(n))R → (64)

and hene a map

RΓar,c(X , R̃(n))→ RΓar,c(X , R̃/Z(n)). (65)

Proof. Reall that by de�nition

RΓW (X∞,Z(n)) = RΓ(X∞, i∗∞Z(n))

where i∗∞Z(n) is the omplex of sheaves

i∗∞Z(n) := Cone(Rπ∗(2πi)
nZ −→ τ>nRπ̂∗(2πi)

nZ)[−1]

on X∞ = X (C)/GR. So we have

RΓW (X∞,Z(n))R = RΓ(X∞, Rπ∗(2πi)nR) = RΓ(GR,X (C), (2πi)nR)

and the exat triangle

Ω•X (C)/C/F
n[−1]→ R(n)D → (2πi)nR[0]→

in Sh(GR,X (C)) indues an exat triangle

RΓdR(XR/R)/Fil
n[−1]→ RΓD(X/R,R(n))→ RΓW (X∞,Z(n))R → . (66)

One then has a ommutative diagram with exat rows and olumns

RΓdR(XR/R)/Fil
n[−2] −→ RΓc(X ,R(n)) ⊕RΓc(X ,R(n))[−1] −→ RΓW,c(X ,Z(n))R

yβ2

y

RΓ(X ,R(n)) ⊕ RΓ(X ,R(d − n))∗[−δ]
β1−−→
∼

RΓW (X ,Z(n))R
y

y

RΓdR(XR/R)/Fil
n[−1] −→ RΓD(X/R,R(n))

β3−−→ RΓW (X∞,Z(n))R

where β1 is the isomorphism (54), the middle olumn is the sum of the triangle

(17) with the duality isomorphism of onjeture B(X , n) and the bottom row

is (66). The top row then gives (64).

Definition 4.15. De�ne RΓar,c(X ,Z(n)) to be a mapping �bre of the map (65)

so that there is an exat triangle

RΓar,c(X ,Z(n))→ RΓar,c(X , R̃(n))→ RΓar,c(X , R̃/Z(n))→ . (67)
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One then has a diagram with exat rows and olumns

RΓar,c(X ,Z(n)) −→ RΓc(X ,R(n))⊕ RΓc(X ,R(n))[−1] −→ RΓW,c(X ,R/Z(n)) −→

y
yβ2

y

RΓW (X ,Z(n)) −→ RΓ(X ,R(n)) ⊕ RΓ(X ,R(d− n))∗[−δ] −→ RΓW (X ,R/Z(n)) −→

y
y

yi∗∞⊗R/Z

R̃ΓD(X/R,Z(n))
β5−−→ RΓD(X/R,R(n))

β4−−→ RΓW (X∞,R/Z(n)) −→

(68)

where R̃ΓD(X/R,Z(n)) is the hyperohomology of the omplex of sheaves

Cone(Rπ∗Z(n)D −→ τ>nRπ̂∗(2πi)
nZ)[−1]

on X∞ and β4 is the omposite of β3 with the natural map

RΓW (X∞,Z(n))R → RΓW (X∞,R/Z(n)).

Alternatively, one an follow the onstrution of RΓW,c(X ,Z(n)) in setion 3.8,

starting with the étale Beilinson regulator on the level of omplexes (15)

RΓ(Xet,Z(n))→ RΓD(X/R,Z(n))

and using the left olumn in (68) as the de�ning triangle of RΓar,c(X ,Z(n)). As
we already remarked in the introdution to this setion, neither onstrution

gives RΓar,c(X ,Z(n)) or RΓar,c(X , R̃/Z(n)) up to a unique isomorphism in the

derived ategory.

Remark 4.16. All omplexes in (67) an be represented by bounded omplexes

of loally ompat abelian groups (see the onsiderations at the beginning of

subsetion 4.3) and (67) is in fat an exat triangle in the bounded derived

ategory of loally ompat abelian groups de�ned in [45℄. For a loally ompat

abelian group G we de�ne the tangent spae to be the R-vetor spae

T∞G := Homcts(G
D,R) = Homcts(Homcts(G,R/Z),R)

where Homcts(−,−) is endowed with the ompat open topology. While the

topology on GD is always loally ompat, this is not in general true for

Homcts(G,R). However, by [45℄[Prop. 3.12℄ it is true if G has �nite ranks in

the sense of [45℄[Def. 2.6℄ and all the omplexes in (67) are easily seen to on-

sist of groups of �nite ranks. By [45℄[Prop. 4.14 vii)℄ the funtor Homcts(−,R)
is exat and of ourse so is (−)D. We onlude that T∞ is an exat ovariant

funtor (with values in �nite dimensional real vetor spaes if the argument

has �nite ranks) and extends to the bounded derived ategory of loally ompat

abelian groups. The image of the exat triangle (67) under the tangent spae

funtor T∞ is the exat triangle (64).
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Definition 4.17. De�ne RΓar(X∞,Z(n)) to be the mapping �bre of the om-

posite map

R̃ΓD(X/R,Z(n))
β5−→ RΓD(X/R,R(n)) σ−→ τ≤2n−1RΓD(X/R,R(n)).

Proposition 4.18. There is an exat triangle

RΓar(X∞,Z(n))→ RΓar(X∞, R̃(n))→ RΓar(X∞, R̃/Z(n))→ .

Proof. The mapping �bre of β5 identi�es with RΓW (X∞,R/Z(n))[−1] and that
of σ with τ≥2nRΓD(X/R,R(n)). The de�nition of RΓar(X∞,Z(n)) as the map-

ping �bre of the omposite σ ◦ β5 gives the entral horizontal exat triangle in
the diagram

RΓar(X∞, R̃/Z(n))[−1] −→
(
τ≥2nRΓD(X/R,R(n))

)
[−2]

0
−→ RΓW (X∞,R/Z(n))

y
y0 ‖

RΓar(X∞,Z(n)) −→ τ≥2nRΓD(X/R,R(n)) −→ RΓW (X∞,R/Z(n))

y
y

y

RΓar(X∞, R̃(n))
τ≥2nRΓD(X/R,R(n))

⊕
(
τ≥2nRΓD(X/R,R(n))

)
[−1]

−→ 0

y
y

y

while (63) gives the upper horizontal exat triangle. The diagram ommutes

and the middle and right olumn are exat, hene so is the left.

The relation between Weil-étale and Weil-Arakelov ohomology with Z(n)-
oe�ients an then be summarized in the following diagram. The orrespond-

ing diagram (63) for R̃/Z(n)-oe�ients is simpler whih is why we disussed

R̃/Z(n)-oe�ients �rst. This an be traed to the fat that Deligne ohomol-

ogy with R/Z(n)-oe�ients oinides with singular ohomology with R/Z(n)-
oe�ients for any n ∈ Z.

Definition 4.19. De�ne T (X∞, n) to be the mapping one of

RΓdR(XR/R)/Fil
n[−1]→ RΓD(X/R,R(n)) σ−→ τ≤2n−1RΓD(X/R,R(n)).

We leave it again as an exerise to show exatness of the rows and olumns in

the following diagram. Note that the middle, resp. right hand, olumn onsists

of perfet omplexes of abelian groups, resp. R-vetor spaes.

RΓar,c(X ,Z(n)) −→ RΓW,c(X ,Z(n)) −→ RΓdR(XR/R)/Fil
n[−1] −→

y
y

y

RΓar(X ,Z(n)) −→ RΓW (X ,Z(n)) −→ τ≤2n−1RΓD(X/R,R(n)) −→y
y

y

RΓar(X∞,Z(n)) −→ RΓW (X∞,Z(n)) −→ T (X∞, n) −→

(69)
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5 Speial values of zeta funtions

Throughout this setion, X denotes a proper regular onneted arithmeti

sheme of dimension d. Additional assumptions on X will be given at the

beginning of eah subsetion.

In the introdution we have already given a onjetural desription of the van-

ishing order and leading Taylor oe�ient of ζ(X , s) at any integer argument

s = n ∈ Z in terms of Weil-Arakelov groups, and we have seen how to refor-

mulate these onjetures in terms of a fundamental line. In the following we

shall exlusively work with the fundamental line and leave the Weil-Arakelov

desription as a suggestive reformulation that invites further exploration. The

main thing that remains to be done is a preise de�nition of the orretion

fator C(X , n) ∈ Q and a proof of the equivalene of our formulation with the

Tamagawa number onjeture of Fontaine and Perrin-Riou [31℄.

5.1 De Rham ohomology

Let n ∈ Z be an integer. We onsider the derived de Rham omplex modulo

the Hodge �ltration LΩ∗X/Z/Fil
n
(see [49℄[VIII.2.1℄) as a omplex of abelian

sheaves on the Zariski site of X . Note that LΩ∗X/Z/Fil
n = 0 for n ≤ 0. We

denote

RΓdR(X/Z)/Fn := RΓ(XZar, LΩ∗X/Z/Filn).

We remark that Hi
dR(X/Z)/F

n := Hi(RΓdR(X/Z)/Fn) is �nitely generated

for all i and vanishes for i < 0 and i ≥ d + n. Indeed, sine X is regu-

lar, the map X → Spec(Z) is a loal omplete intersetion, hene the otan-

gent omplex LX/Z has perfet amplitude ⊂ [−1, 0] (see [49℄[III.3.2.6℄). It

follows that LΛpLX/Z has perfet amplitude ⊆ [−p, 0] (see [49℄[III.3.2.6℄). By
[48℄[2.2.7.1℄ and [48℄[2.2.8℄, LΛpLX/Z is globally isomorphi in D(OX ) to a om-

plex of loally free �nitely generated OX -modules put in degrees [−p, 0], where
D(OX ) denotes the derived ategory of OX -modules. Sine X is proper over

Z, Hq(XZar , LΛpLX/Z) is a �nitely generated abelian group for all q and 0 for

almost all q. Then the spetral sequene

Hq(XZar , LΛp<nLX/Z) =⇒ Hp+q
dR (X/Z)/Fn

shows that Hi
dR(X/Z)/F

n := Hi(RΓdR(X/Z)/Fn) is �nitely generated for all

i and vanishes for i < 0 and i ≥ d+n. Here LΛp<nLX/Z := LΛpLX/Z for p < n
and LΛp<nLX/Z := 0 for p ≥ n.
For any �at Z-algebra A, we have a anonial isomorphism

RΓdR(X/Z)/Fn ⊗Z A ≃ RΓdR(XA/A)/Fn := RΓ(XA,Zar, LΩ∗XA/A
/Filn)

where XA := X ⊗Z A. Moreover, if XA/A is smooth then we have a quasi-

isomorphism

LΩ∗XA/A
/Filn

∼→ Ω∗<nXA/A
.
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5.2 The fundamental line

We suppose that X satis�es Conjetures L(X et, n), L(X et, d − n) and

AV(X et, n).
Definition 5.1. The fundamental line is

∆(X/Z, n) := detZRΓW,c(X ,Z(n)) ⊗Z detZRΓdR(X/Z)/Fn.

Proposition 5.2. If X satis�es Conjeture B(X , n), then there is a anonial

trivialization

λ∞(X , n) : R ∼−→ detRRΓar,c(X , R̃(n)) ∼−→ ∆(X/Z, n)⊗Z R.

Proof. The �rst isomorphism is indued by the long exat sequene (53) and

the seond by the exat triangle (64).

5.3 The omplex RΓ′eh(XFp ,Zp(n)) and Milne's orreting fator

Let p be a prime number. Reall that, if Y is a smooth sheme over Fp, one

has

Z/pr(n)
∼→ νnr [−n] :=WrΩ

n
Y,log[−n],

where WrΩ
n
Y,log is the étale subsheaf of the de Rham-Witt sheaf WrΩ

n
Y loally

generated by the setions of the form dlog(f1)∧ · · · ∧dlog(fn). Here fi denotes
the Teihmuller representative of the unit fi ∈ O×Y . It follows that

RΓet(Y,Zp(n)) := holim RΓ(Yet,Z(n)/p
•)

is a perfet omplex of Zp-modules if Y is a smooth projetive variety.

To treat arbitrary separated shemes of �nite type over Fp, we onsider the

eh-topos over Fp [38℄ and we denote

RΓeh(Y,Zp(n)) := holim RΓ(Yeh,Z(n)/p
•),

see [38℄[Set. 4℄. We also denote by R(Fp, c) the strong form of resolution of

singularities given in [38℄[Def. 2.4℄ for varieties over Fp of dimension ≤ c. If

R(Fp, dim(Y )) holds, then RΓeh(Y,Zp(n)) is perfet for Y proper over Fp (see

[38℄[Cor. 4.4℄ and the anonial map RΓet(Y,Zp(n)) → RΓeh(Y,Zp(n)) is a

quasi-isomorphism for Y smooth (see [38℄[Thm. 4.3℄).

Notation 5.3. Let X be a proper regular arithmeti sheme. We set

RΓ′eh(XFp ,Zp(n)) := RΓet(X red
Fp

,Zp(n))

if X red
Fp

is smooth, and

RΓ′eh(XFp ,Zp(n)) := RΓeh(XFp ,Zp(n))

otherwise. Here X red
Fp

denotes the maximal redued losed subsheme of XFp.
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Notie that, under R(Fp, dim(XFp)), one has RΓ′eh(XFp ,Zp(n)) ≃
RΓeh(XFp ,Zp(n)). Indeed, the map X red

Fp
→ XFp indues an isomorphism

in the eh-topos (sine this map is both a monomorphism and an eh-overing),
so that R(Fp, dim(XFp)) yields

RΓet(X red
Fp

,Zp(n))
∼→ RΓeh(X red

Fp
,Zp(n))

∼→ RΓeh(XFp ,Zp(n))

whenever X red
Fp

is smooth. We introdue RΓ′eh(XFp ,Zp(n)) in order to avoid the

systemati use of R(Fp, dim(XFp)). We proeed similarly for Milne's orreting

fator, and we refer to [38℄[Set. 4.1℄ for the de�nition of Hj
eh(XFp ,Ω

i).

Definition 5.4. Let X be a proper regular arithmeti sheme. We set

χ(XFp ,O, n) :=
∑

i≤n,j

(−1)i+j · (n− i) · dimFpH
j
Zar(X red

Fp
,Ωi)

if X red
Fp

is smooth, and

χ(XFp ,O, n) :=
∑

i≤n,j

(−1)i+j · (n− i) · dimFpH
j
eh(XFp ,Ω

i)

if X red
Fp

is singular and R(Fp, dim(XFp)) holds.

5.4 The loal fator cp(X , n)
The following onjeture is a p-adi analogue of the fundamental exat triangle

RΓdR(XR/R)/F
n[−1]→ RΓD(X/R,R(n))→ RΓ(GR,X (C), (2πi)nR)

for Deligne ohomology.

Conjeture 5.5. Dp(X , n) There is an exat triangle of omplexes of Qp-

vetor spaes

RΓdR(XQp/Qp)/F
n[−1]→ RΓet(XZp ,Qp(n))→ RΓ′eh(XFp ,Qp(n)).

The triangle of Conjeture 5.5 must be ompatible with the fundamental trian-

gle of [10℄[Thm. 5.4℄ in the following sense. If XZp/Zp is smooth and n < p−1,
then we have an isomorphism of triangles

RΓdR(XQp/Qp)/F
n[−1]

��

// RΓet(XZp ,Qp(n))

��

// RΓet(XFp ,Qp(n))

��
RΓ(XFp , p(n) · Ω<nX•

)Qp [−1] // RΓ(XFp ,SX•(n))Qp
// RΓ(XFp ,W•Ω

n
XFp ,log

[−n])Qp

where the left vertial isomorphism follows from LΩ∗XQp/Qp
/Fn ≃ Ω<nXQp/Qp

sine

XQp/Qp is smooth, the middle vertial isomorphism is given by [37℄[Thm. 1.3℄
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and the right vertial isomorphism is given by [38℄[Thm. 4.3℄ together with the

quasi-isomorphism Z/pr(n) ≃ νnr [−n] over XFp,et. Finally, p(n) ·Ω<nX•
is de�ned

as in [10℄.

Conjeture 5.5 gives an isomorphism λp(X , n) :
(
detZpRΓet(XZp ,Zp(n))

)
Qp

∼−→ detQpRΓet(XZp ,Qp(n))
∼−→ detQpRΓ

′
eh(XFp ,Qp(n))⊗Qp det

−1
Qp
RΓdR(XQp/Qp)/F

n

∼−→
(
detZpRΓ

′
eh(XFp ,Zp(n))⊗Zp det

−1
Zp
RΓdR(XZp/Zp)/F

n
)
Qp

.

Definition 5.6. We de�ne

dp(X , n) := det(λp(X , n)) ∈ Q×p /Z
×
p and cp(X , n) := pχ(XFp ,O,n) · dp(X , n).

Here the determinant of λp(X , n) is omputed with the given integral stru-

tures, i.e. one has

λp
(
dp(X , n)−1 · detZpRΓet(XZp ,Zp(n))

)

= detZpRΓ
′
eh(XFp ,Zp(n))⊗Zp det

−1
Zp
RΓdR(XZp/Zp)/F

n. (70)

Remark 5.7. For simpliity, we assume R(Fp, dim(XFp)) in this remark. We

expet a de�nition of RΓW,c(X [1/p],Z(n)) suh that there is an exat triangle

of perfet omplexes of abelian groups

RΓW,c(X [1/p],Z(n))→ RΓW,c(X ,Z(n))→ RΓWh(XFp ,Z(n))

where RΓWh(XFp ,Z(n)) is the ohomology of the Weil-eh topos [38℄[Set. 5℄.

Similarly, we expet an exat triangle of perfet omplexes of abelian groups

RΓdR,c(X [1/p]/Z)/Fn → RΓdR(X/Z)/Fn → RΓ(XFp,eh, LΩ
∗
Oeh/Z/F

n)

where RΓ(XFp,eh, LΩ
∗
Oeh/Z/F

n) is de�ned as in [74℄. The multipliative Euler

harateristi of RΓ(XFp,eh, LΩ
∗
Oeh/Z/F

n) is pχ(XFp ,O,n)
. Conjeture 5.5 would

give an exat triangle analogous to (64)

RΓdR,c(X [1/p]/Z)/Fn ⊗Qp[−2]→ RΓet,c(X [1/p],Qp(n))→ RΓW,c(X [1/p],Z(n))Qp

hene an isomorphism

(
detZpRΓet,c(X [1/p],Zp(n))

)
Qp

∼−→ (detZRΓW,c(X [1/p],Z(n))⊗Z detZRΓdR,c(X [1/p]/Z)/Fn))Qp
.

Then cp(X , n) is the determinant of this isomorphism.
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Proposition 5.8. For n ≤ 0, Dp(X , n) holds and cp(X , n) ≡ 1modZ×p for all

p.

Proof. By de�nition, we have RΓdR(XZp/Qp)/F
n = 0 and the map

RΓet(XZp ,Zp(n))→ RΓet(XFp ,Zp(n))→ RΓeh(XFp ,Zp(n))

is an isomorphism by [38℄[Thm. 3.6℄.

Proposition 5.9. Assume that X has harateristi p. Then Dl(X , n) holds
and cl(X , n) ≡ 1modZ×l for all primes l.

Proof. We have RΓet(XZp ,Zp(n)) = RΓet(X ,Zp(n)) and
RΓdR(XZp/Zp)/F

n ≃ RΓdR(X/Z)/Fn ⊗Z Zp.

The ohomology groups of the omplex RΓdR(X/Z)/Fn are �nite, and the

alternate produt of their orders is pχ(XFp ,O,n)
by [73℄, so that dp(X , n) ≡

p−χ(XFp ,O,n)modZ×p . For l 6= p, we have XZl
= XFl

= ∅, hene cl(X , n) ≡
dl(X , n) ≡ 1modZ×l .

Proposition 5.10. Let X be a regular proper arithmeti sheme. We have

cp(X , n) ≡ 1modZ×p for almost all p.

Proof. By Proposition 5.9, we may assume that X is �at over Z. We may also

assume n < p− 1 and XZp/Zp smooth. By Remark 7.23 and by [10℄[Thm. 5.4℄

the triangle

RΓ(XZp , p(n) · Ω<nXZp/Zp
)[−1]→ RΓet(XZp ,Zp(n))→ RΓet(XFp ,Zp(n))

is exat, where

p(n) · Ω<nXZp/Zp
:= [pn · Ω0

XZp/Zp
→ pn−1 · Ω1

XZp/Zp
→ · · · → p · Ωn−1XZp/Zp

]

sits in degrees [0, n − 1]. The loal fator dp(X , n) measures the di�erene

between two di�erent Zp-strutures on detQpRΓet(XZp ,Qp(n)). The �rst of

those Zp-strutures is given by

detQpRΓet(XZp ,Qp(n))
∼−→ detQpRΓet(XFp ,Qp(n))⊗Qp det

−1
Qp
RΓdR(XQp/Qp)/F

n

∼−→
(
detZpRΓet(XFp ,Zp(n))⊗Zp det

−1
Zp
RΓdR(XZp/Zp)/F

n
)
⊗Zp Qp

∼−→
(
detZpRΓet(XFp ,Zp(n))⊗Zp det

−1
Zp
RΓ(XZp ,Ω

<n
XZp/Zp

)
)
Qp

,

where the last isomorphism follows from LΩ∗XZp/Zp
/Fn ≃ Ω<nXZp/Zp

sine XZp is

smooth. The seond Zp-struture is

detQpRΓet(XZp ,Qp(n))
∼−→

(
detZpRΓet(XZp ,Zp(n))

)
Qp

∼−→
(
detZpRΓet(XFp ,Zp(n))⊗Zp det

−1
Zp
RΓ(XZp , p(n) · Ω<nXZp/Zp

)
)
Qp

.

Doumenta Mathematia 23 (2018) 1425�1560



Weil-Étale Cohomology and Zeta-Values 1485

Hene dp(X , n) is de�ned as the determinant of the isomorphism

(
det−1Zp

RΓ(XZp , p(n) · Ω<nXZp/Zp
)
)
Qp

∼→
(
det−1Zp

RΓ(XZp ,Ω
<n
XZp/Zp

)
)
Qp

with respet to the given integral strutures. The Hodge to de Rham spetral

sequene gives the ommutative square of isomorphisms

(
det−1Zp

RΓ(XZp , p(n) · Ω<nXZp/Zp
)
)
Qp

//

��

(
det−1Zp

RΓ(XZp ,Ω
<n
XZp/Zp

)
)
Qp

��(⊗
i<n;j det

(−1)i+j+1

Zp
Hj(XZp , p

n−i · ΩiXZp/Zp
)
)
Qp

//
(⊗

i<n;j det
(−1)i+j+1

Zp
Hj(XZp ,Ω

i
XZp/Zp

)
)
Qp

where the vertial maps identify the given latties and the horizontal maps

are the obvious identi�ations. Hene dp(X , n) is the determinant of the lower

horizontal map.

In view of

Hj(XZp ,Ω
i
XZp/Zp

) ≃ Hj(X ,ΩiX/Z)⊗Z Zp

and sine Hj(X ,ΩiX/Z) is a �nitely generated Z-module, one may suppose that

Hj(XZp ,Ω
i
XZp/Zp

) is a �nitely generated free Zp-module for any i, j. It follows

that dp(X , n)−1 is the determinant of the isomorphism




⊗

i<n;j

det
(−1)i+j

Zp
pn−i ·Hj(XZp ,Ω

i
XZp/Zp

)





Qp

∼
→




⊗

i<n;j

det
(−1)i+j

Zp
Hj(XZp ,Ω

i
XZp/Zp

)





Qp

and we obtain

dp(X , n) = p
−

∑
i≤n,j(−1)

i+j·(n−i)·rankZpH
j(XZp ,Ω

i
XZp

/Zp
)
.

Moreover, sine Hj(XZp ,Ω
i
XZp/Zp

) is a free Zp-module for any i, j, we have (see

for example [53℄[Prop. 6.6℄

Hj(XZp ,Ω
i
XZp/Zp

)⊗Zp Fp ≃ Hj(XFp ,Ω
i
XFp/Fp

).

The result follows.

5.5 The main onjeture

Let X be a regular proper arithmeti sheme. We assume that X satis�es

L(X et, n), L(X et, d − n), AV(X et, n), B(X , n) and Dp(X , n) for any prime

number p. Moreover, we assume that R(Fp, dim(XFp)) holds at the primes p
where X red

Fp
is singular. We suppose that

ζ(X , s) =
∏

x∈X0

1

1−N(x)−s
,
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whih onverges for Re(s) > dim(X ), has a meromorphi ontination to the

whole omplex plane. We denote by ords=nζ(X , s) ∈ Z its vanishing order and

by ζ∗(X , n) ∈ R its leading Taylor oe�ient at s = n.

Conjeture 5.11. For any n ∈ Z

ords=nζ(X , s) =
∑

i∈Z

(−1)i · i · dimRH
i
ar,c(X , R̃(n)).

We onsider the rational number

C(X , n) :=
∏

p<∞

| cp(X , n) |p :=
∏

p<∞

p−vp(cp(X ,n))

where vp denotes the p-adi valuation. Reall from Proposition 5.2 that we

have a trivialization

λ∞ = λ∞(X , n) : R ∼−→ detRRΓar,c(X , R̃(n)) ∼−→ ∆(X/Z, n)⊗Z R

indued by up-produt with the fundamental lass.

Conjeture 5.12.

λ∞(ζ∗(X , n)−1 · C(X , n) · Z) = ∆(X/Z, n).

We draw the following immediate onsequene of Conjeture 5.11. The de�ni-

tion of ζ(X∞, s) will be realled in the proof.

Proposition 5.13. Conjeture 5.11 implies that

ords=n ζ(X , s) =
∑

i∈Z

(−1)i · i · dimRH
i
ar(X , R̃(n))

where

ζ(X , s) = ζ(X , s)ζ(X∞, s)
is the ompleted Zeta-funtion of X .
Proof. In view of de�nition 4.1 the middle horizontal triangle in (31) gives an

exat triangle

RΓar,c(X , R̃(n))→ RΓar(X , R̃(n))→ RΓar(X∞, R̃(n))→

and it su�es to show that

ords=nζ(X∞, s)

=
∑

i∈Z

(−1)i · i · dimR Hi
ar(X∞, R̃(n)) =

∑

i∈Z

(−1)i+1 · dimR Hi(X∞,R(n))

=
∑

i≥2n

(−1)i+1 · dimR Hi
D(X/R,R(n))

=
∑

i≥2n

(−1)i+1 ·
(
dimR Hi(X (C),R(n))GR − dimR(H

i(X (C),C)/Fn)GR

)
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where we have used the de�nition (33) and the exat sequene (23). Denoting

by Hi(X (C),C) ∼=
⊕

p+q=iH
p,q

the Hodge deomposition and by

hp,q = dimCH
p,q; hp,± = dimC(H

p,p)F∞=±(−1)p

the Hodge numbers we have

dimR(H
i(X (C),C)/Fn)GR = dimCH

i(X (C),C)/Fn =
∑

p<n

hp,q

and

dimRH
i(X (C),R(n))GR = dimRH

i(X (C),R)F∞=(−1)n

= dimCH
i(X (C),C)F∞=(−1)n

=
∑

p<q

hp,q + h
i
2 ,(−1)

n−i/2

sine F∞(Hp,q) = Hq,p
. Here h

i
2 ,± = 0 if

i
2 /∈ Z. For i ≥ 2n we have that

p < n implies p < q = i− p and hene we must show that

ords=nζ(X∞, s) =
∑

i≥2n

(−1)i+1


 ∑

n≤p<q

hp,q + h
i
2 ,(−1)

n−i/2




=
∑

i∈Z

(−1)i+1


 ∑

n≤p<q

hp,q +
∑

n≤ i
2

h
i
2 ,(−1)

n−i/2




where the last identity holds sine the sums are empty for i < 2n. By de�nition

ζ(X∞, s) =
∏

i∈Z

L∞(hi(X), s)(−1)
i

(71)

where

L∞(hi(X), s) =
∏

p<q

ΓC(s− p)h
p,q ·

∏

p= i
2

ΓR(s− p)h
p,+

ΓR(s− p+ 1)h
p,−

,

ΓR(s) = π−s/2Γ(s/2); ΓC(s) = 2(2π)−sΓ(s)

and X = XQ is the generi �bre. Sine

ords=n Γ(s) =

{
−1 n ≤ 0

0 n ≥ 1

we �nd

ords=n L∞(hi(X), s) = −


 ∑

n≤p<q

hp,q +
∑

n≤ i
2

h
i
2 ,(−1)

n−i/2




whih proves the proposition.
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5.6 Compatibility with the Tamagawa Number Conjeture

Let F be a number �eld and

π : X → Spe(OF )
a smooth projetive sheme, onneted of dimension d. We assume that X
satis�es Conjetures L(X et, n), L(X et, d− n) and B(X , n) and note that Con-

jeture AV(X et, n) holds by Corollary 6.27 and Conjeture Dp(X , n) by Prop.

7.21, so that Conjeture 5.12 makes sense.

We write X := X ⊗OF F for the generi �ber of X , a smooth projetive variety

over F of dimension d−1 and we �x a prime number p. By Lemma 7.2 in App.

B we have a quasi-isomorphism of omplexes of sheaves on X [1/p]et
Z(n)/p• ∼= µ⊗np• [0]

for any n ∈ Z. By [20℄ there is a deomposition in the derived ategory of

p-adi sheaves on Spec(OF [1/p])et
Rπ′∗Qp

∼=
⊕

i∈Z

Riπ′∗Qp[−i] (72)

where π′ := π[1/p] and Riπ′∗Qp is a loal system whose generi �bre we denote

by

V ip
∼= Hi(XF ,Qp).

For the Artin-Verdier étale topos X et studied in App. A and the open subtopos

ψ : X [1/p]et j−→ Xet φ−→ X et
we de�ne ompat support ohomology RΓc(X [1/p],F) := RΓ(X et, ψ!F) in

the usual way. We denote by

u : XFp,et

∐
X∞ → X et

the omplementary losed embedding with omponents up and u∞. We de�ne

the morphism of topoi α′ by the fatorization

α : Sh(GR,X (C)) α′

−→ X [1/p]et j−→ Xet
where α was de�ned in setion 6.3.

Lemma 5.14. For a omplex of sheaves A on X et with torsion ohomology there

is a ommutative diagram of exat triangles

RΓc(X [1/p],A) −−−−−→ RΓ(X [1/p], ψ∗A) −−−−−→
RΓ(GR,X (C), (α′)∗ψ∗A)

⊕RΓ(XQp ,A)

‖
x

x

RΓc(X [1/p],A) −−−−−→ RΓ(X ,A) −−−−−→
RΓ(X∞, u

∗
∞A)

⊕RΓ(XFp , u
∗
pA)x

x

RΓXFp

∐
X∞(X ,A)

∼
−−−−−→

RΓ(X∞, Ru
!
∞A)

⊕RΓ(XFp , Ru
!
pA)
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Proof. This follows from the diagram of omplexes of sheaves on X et
ψ!ψ

∗A −−−−→ Rψ∗ψ
∗A −−−−→ u∞,∗u

∗
∞Rψ∗ψ

∗A⊕ up,∗u∗pRψ∗ψ∗A

‖
x

x

ψ!ψ
∗A −−−−→ A −−−−→ u∞,∗u

∗
∞A⊕ up,∗u∗pAx
x

u∗Ru
!A ∼−−−−→ u∞,∗Ru

!
∞A⊕ up,∗Ru!pA

together with the isomorphism

u∗∞Rψ∗
∼= u∗∞Rφ∗Rj∗

∼= Rπ∗α
∗Rj∗ ∼= Rπ∗(α

′)∗j∗Rj∗ ∼= Rπ∗(α
′)∗ (73)

of Lemma 6.2, the isomorphism

u∗pRψ∗ψ
∗A ∼=î∗g∗φ∗Rψ∗ψ∗A ∼= î∗g∗φ∗Rφ∗Rj∗ψ

∗A
∼=î∗g∗Rj∗ψ∗A
∼=î∗Rĵ∗g̃∗ψ∗A

of Lemma 7.9 (the notation of whih we use) and the proper base hange

theorem

RΓ(XFp , u
∗
pRψ∗ψ

∗A) ∼= RΓ(XFp , î
∗Rĵ∗g̃

∗ψ∗A)
∼= RΓ(XZp , Rĵ∗g̃

∗ψ∗A) ∼= RΓ(XQp ,A).

For n ∈ Z we set

RΓ(X ,Zp(n)) := holim•RΓ(X et,Z(n)X /p•),

RΓ(X∞,Zp(n)) := holim•RΓ(X∞, u∗∞Z(n)X /p•)

and

RΓX∞(X ,Zp(n)) := holim•RΓ(X∞, Ru!∞Z(n)X /p•)

where Z(n)X is de�ned in Def. 6.5 in App. A. If Z is a sheme we set

RΓ(Z,Zp(n)) := holim•RΓ(Zet,Z(n)/p
•)

where Z(n) was de�ned in setion 3.1, i.e. is given by the higher Chow omplex

for n ≥ 0. If RΓ?(Z,Zp(n)) is any of the omplexes just de�ned we set

RΓ?(Z,Qp(n)) := RΓ?(Z,Zp(n))Q.
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Lemma 5.15. There is a ommutative diagram with exat rows and olumns

RΓc(X [1/p],Zp(n)) −→ RΓ(X [1/p],Zp(n)) −→ RΓ(XR,Zp(n)) ⊕ RΓ(XQp ,Zp(n))

‖
x

x

RΓc(X [1/p],Zp(n)) −→ RΓ(X ,Zp(n)) −→ RΓ(X∞ ,Zp(n)) ⊕ RΓ(XZp ,Zp(n))

x
x

RΓXFp

∐
X∞

(X ,Zp(n))
∼
−→ RΓX∞ (X ,Zp(n)) ⊕RΓXFp

(XZp ,Zp(n))

Proof. We apply Lemma 5.14 with A = Z(n)X /p•. By Prop. 6.9 there is an

isomorphism

ψ∗Z(n)X /p• ∼= j∗φ∗Z(n)X /p• ∼= Z(n)/p• ∼= µ⊗np• . (74)

By Artin's omparison isomorphism we have

RΓ(GR,X (C), (α′)∗µ⊗np• ) ∼= RΓ(GR, RΓ(X (C), (α′)∗µ⊗np• ))

∼= RΓ(GR, RΓ(XC,et, µ
⊗n
p• ))

∼= RΓ(XR,et, µ
⊗n
p• ).

By proper base hange and Lemma 7.8 we get an isomorphism

RΓ(XFp , u
∗
pZ(n)

X /p•) ∼=RΓ(XFp , î
∗g∗φ∗Z(n)X /p•) ∼= RΓ(XZp , g

∗Z(n)/p•)

∼=RΓ(XZp ,Z(n)/p
•)

where we use the notation of Lemma 7.9 with D = Z.

Proposition 5.16. There is an isomorphism of exat triangles

RΓc(X [1/p],Qp(n)) −→ RΓ(X ,Qp(n)) −→
RΓ(X∞,Qp(n))⊕
RΓ(XZp ,Qp(n))y

y
y

⊕
i∈Z

RΓc(OF [
1
p
], V i

p (n))[−i] −→
⊕
i∈Z

RΓf (F, V
i
p (n))[−i] −→

⊕
i∈Z

(RΓf (FR, V
i
p (n))⊕

RΓf (FQp , V
i
p (n)))[−i]

where the upper row is the middle row in Lemma 5.15 tensored with Q, the

lower exat triangles are de�ned as in [28℄ for the p-adi representation V ip (n)
and the outer vertial isomorphisms are indued by the deomposition (72).

Proof. The left vertial map is learly an isomorphism. The omplex

RΓ(X∞, Ru!∞Z(n)X /p•) has 2-torsion ohomology by (112) in App. A. Hene

RΓX∞(X ,Qp(n)) := (holim•RΓ(X∞, Ru!∞Z(n)X /p•))Q = 0
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and

RΓ(X∞ ,Qp(n)) ∼= RΓ(XR,Qp(n)) ∼=
⊕

i∈Z

RΓ(FR, V
i
p (n))[−i] ∼=

⊕

i∈Z

RΓf (FR, V
i
p (n))[−i]

is an isomorphism, where RΓf (FR, V ) := RΓ(FR, V ) holds by de�nition [31℄.

The isomorphism

RΓ(XZp ,Qp(n))
∼=
⊕

i∈Z

RΓf (FQp , V
i
p (n))[−i]

is the statement of Cor. 7.20 where we take the loal deomposition (147) to

be indued by (72).

The middle vertial map will be an isomorphism if it exists, and existene will

follow from ommutativity of

RΓ(X∞,Qp(n))⊕RΓ(XZp ,Qp(n)) −−−−−→ RΓc(X [1/p],Qp(n))[1]

β

y
y

⊕
i∈Z

(RΓf (FR, V
i
p (n))⊕RΓf (FQp , V

i
p (n)))[−i] −−−−−→

⊕
i∈Z

RΓc(OF [
1
p
], V i

p (n))[−i+ 1]

.

The following diagram ommutes

⊕
i∈Z

(RΓ(FR, V
i
p (n))⊕RΓ(FQp , V

i
p (n)))[−i] −−−−−→

⊕
i∈Z

RΓc(OF [
1
p
], V i

p (n))[−i+ 1]

x
x

RΓ(XR,Qp(n))⊕RΓ(XQp ,Qp(n)) −−−−−→ RΓc(X [1/p],Qp(n))[1]
x ‖

RΓ(X∞,Qp(n))⊕RΓ(XZp ,Qp(n)) −−−−−→ RΓc(X [1/p],Qp(n))[1]

sine the bottom square is a shift of the ommutative diagram in Lemma 5.15

and the top square is indued by the deomposition (72). But the left vertial

map fators through β whih onludes the proof.

Lemma 5.17. There are natural isomorphisms

RΓW (X ,Z(n))Zp ≃ holim•RΓ(X et,Z(n)/p•) = RΓ(X ,Zp(n)) (75)

where RΓW (X ,Z(n)) was de�ned in Def. 3.6, and

RΓW (X∞,Z(n))Zp ≃ holim•RΓ(X∞, u∗∞Z(n)X /p•) = RΓ(X∞,Zp(n)) (76)

where RΓW (X∞,Z(n)) was de�ned in Def. 3.23.

Proof. The �rst isomorphism is lear from Lemma 3.13 and perfetness of

RΓW (X ,Z(n)). One has an isomorphism of exat triangles in the derived
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ategory of sheaves on X∞

i∗∞Z(n)/p• −−−−→ Rπ∗(2πi)
nZ/p• −−−−→ τ>nRπ̂∗(2πi)

nZ/p•

≃

y ≃

y ≃

y

u∗∞Z(n)X /p• −−−−→ u∗∞Rψ∗ψ
∗Z(n)X /p• −−−−→ Ru!∞Z(n)X /p•[1]

where the �rst row is the de�ning triangle of i∗∞Z(n) modulo p• and the seond

row is the loalization triangle for Z(n)X /p•. The right vertial map is an

isomorphism by (112) and the middle by (73) and (74). The statement then

follows again from perfetness of RΓW (X∞,Z(n)) := RΓ(X∞, i∗∞Z(n)).

Definition 5.18. For eah prime p | p of F de�ne the two-term omplex

Ccris,p(V
i
p (n)) := [Dcris,p(V

i
p (n))

1−φ−→ Dcris,p(V
i
p (n))]

Lemma 5.19. In the situation of Prop. 5.16 there is an isomorphism of exat

triangles.

RΓdR(XQp/Qp)/F
n[−1] //

��

⊕
i

⊕
p|pDdR,p(V

i
p (n))/F

0[−i− 1]

��
RΓ(XZp ,Qp(n)) //

��

⊕
i

⊕
p|pRΓf(Fp, V

i
p (n))[−i]

��
RΓ′eh(XFp ,Qp(n)) //⊕

i

⊕
p|p Ccris,p(V

i
p (n))[−i]

Proof. This is lear in view of Prop. 7.21, the isomorphism

RΓf (FQp , V
i
p (n)))

∼=
⊕

p|p

RΓf (Fp, V
i
p (n))

and the fat that X red
Fp

=
∐

p|p

Xp is smooth projetive over Fp where Xp :=

X ⊗OF Fp. By de�nition we have

RΓ′eh(XFp ,Zp(n)) = RΓet(X red
Fp

,Zp(n)).

Reall that an endomorphism D
ψ−→ D of a vetor spae over Qp, say, is alled

semisimple at zero if the map

ψ̄ : ker(ψ) ⊆ D → coker(ψ)
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is an isomorphism. In this ase one has a ommutative diagram of isomorphisms

det[D
ψ−→ D]

idD,triv−−−−−→ Qpy
yDet

∗(ψ)

det(ker(ψ))⊗ det−1(coker(ψ))
ψ̄triv−−−−→ Qp

(77)

where for any isomorphism f : V → W we denote by ftriv the indued isomor-

phism det(V )⊗ det−1(W ) ∼= Qp and Det

∗(ψ) ∈ Q×p is the determinant of ψ on

a omplement of ker(ψ).

Lemma 5.20. In the situation of Prop. 5.16, assume in addition that the om-

plex Ccris,p(V
i
p (n)) is semi-simple at 0 for any i and any p | p. Then up-

produt with the fundamental lass e ∈ H1(WFp ,Z) gives an ayli omplex

· · · ∪e−→ H ′ ieh(XFp ,Qp(n))
∪e−→ H ′ i+1

eh (XFp ,Qp(n))
∪e−→ · · ·

and hene a trivialization

∪e : detQpRΓ
′
eh(XFp ,Qp(n))

∼−→ Qp.

Moreover the square of isomorphisms

detQpRΓ
′
eh(XFp ,Qp(n))

∪e−−−−→ Qpyβp(X ,n) ‖
⊗
i,p|p

det
(−1)i

Qp
Ccris,p(V

i
p (n))

σ−−−−→ Qp

ommutes, where βp(X , n) is indued by the bottom isomorphism in Lemma

5.19, and

σ =
⊗

i,p|p

((1− φ)|Dcris,p(V ip (n)))
(−1)i

triv .

Proof. For any omplex of WFp-modules C we have

RΓ(WFp , C)
∼= holim(C

1−φ−−−→ C) = [C
1−φ−−−→ C]

and the disussion before [36℄[Prop. 4.4℄ shows that there is a ommutative

diagram

RΓ(WFp , C)
∼−−−−→ [0 −−−−→ C

1−φ−−−−→ C]
y∪e idC

y

RΓ(WFp , C)[1]
∼−−−−→ [C

1−φ−−−−→ C −−−−→ 0]
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and hene a ommutative diagram with exat rows for eah i

0 −→ coker(1− φ|Hi−1(C)) −→ Hi(WFp , C) −→ ker(1− φ|Hi(C)) −→ 0
y∪e idHi(C)

y

0 ←− ker(1− φ|Hi+1(C)) ←− Hi+1(WFp , C) ←− coker(1 − φ|Hi(C)) ←− 0.

So if 1−φ is semisimple at zero on eah Hi(C) we obtain a long exat sequene

· · · ∪e−→ Hi(C)
∪e−→ Hi+1(C)

∪e−→ · · ·
It then su�es to remark that

RΓ′eh(XFp ,Qp(n)) = RΓet(X red
Fp

,Qp(n)) ∼= RΓ(WFp , RΓcris(X red
Fp

/Qp))

where φ ∈WFp ats on RΓcris(X red
Fp

/Qp) by φn = φp−n and that for this ation

we have an isomorphism of φ-modules

Hi
cris(X red

Fp
/Qp) ∼=

⊕

p|p

Dcris,p(V
i
p (n)).

Proposition 5.21. Under the assumptions of this setion, Conjeture 2.9 holds

for X . In fat,

Hi(X ,Q(n))→ Hi(X,Q(n))

is injetive for all n and i.

Proof. For i > 2n both groups are zero. For i ≤ 2n we have a ommutative

diagram

Hi(X ,Q(n))

��

∼ // Hi
W (X ,Z(n))Q // Hi

W (X ,Z(n))Qp

(75)⊗Q // Hi(X ,Qp(n))

��
Hi(X,Q(n)) // Hi(X,Qp(n))

where the �rst map in the top row is the isomorphism of Cor. 3.12, the seond

map is learly injetive, and the right vertial map is injetive sine by Prop.

5.16 it is isomorphi to the injetive map

H0
f (F, V

i
p (n))⊕H1

f (F, V
i−1
p (n))→ H0(F, V ip (n))⊕H1(F, V i−1p (n)).

It follows that the left vertial map is injetive. Note here that for j = 2, 3 we

have

Hj
f (F, V

i−j
p (n)) ∼= H3−j

f (F, V i−jp (n)∗(1))∗ ∼= H3−j
f (F, V 2d−2−i+j

p (d− n))∗ = 0

sine

H3−j+2d−2−i+j(X ,Q(d− n)) = H2(d−n)+2n−i+1(X ,Q(d − n)) = 0

for 2n− i ≥ 0.
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Remark 5.22. Suppose X is a regular sheme satisfying Conjetures L(X et, n),
L(X et, d−n) and AV(X et, n). Suppose p is a prime number so that the onlu-

sion of Cor. 7.20 holds for XZp and the onlusion of Cor. 7.6 (with the roles

of p and l swithed) for XZl
if p 6= l. Then one an prove an analogue of Prop.

5.16 with X [1/p]/OF [1/p] replaed by X [1/Np]/Z[1/Np] where N is divisible

by all l where XZl
/Zl is not smooth, and one an dedue Conjeture 2.9 for X

and i < 2n following the proof of Prop. 5.21. So essentially, Conjeture 2.9

is a onsequene of �nite generation of motivi ohomology, the monodromy

weight onjeture for all XQl
and the syntomi desription of p-adially om-

pleted motivi ohomology of XZp (whih holds if one simply hooses p to be a

good redution prime).

We reall the formulation of the Tamagawa number onjeture from [31℄. We

onsider the pure motive hi(X)(n) of weight i− 2n whih we imagine as a pure

objet ofMMF . Note that

(
hi(X)(n)

)∗
(1) ≃ h2(d−1)−i(X)(d− 1− n)(1) = h2d−2−i(X)(d− n).

Consider the Q-fundamental line

∆f (h
i(X)(n))

:= detQH
0
f (F, h

i(X)(n))⊗Q det−1Q H1
f (F, h

i(X)(n))

⊗QdetQH
0
f (F, (h

i(X)(n))∗(1))⊗Q det−1Q H1
f (F, (h

i(X)(n))∗(1))

⊗Qdet
−1
Q

(
hi(X)(n)+B

)
⊗Q detQ

(
thi(X)(n)

)
.

Here thi(X)(n) := (hi(X)(n))dR/Fil
0
is the tangent spae. The period isomor-

phism indues the map

αhi(X)(n) :
(
hi(X)(n)+B

)
R
−→

(
thi(X)(n)

)
R
.

Conjeture 5.23. (Fontaine-Perrin-Riou) There is a anonial exat se-

quene of �nite dimensional R-vetor spaes

0→ H0
f (F, h

i(X)(n))R → Ker(αhi(X)(n))→ H1
f (F, (h

i(X)(n))∗(1))∗R

→ H1
f (F, h

i(X)(n))R → Coker(αhi(X)(n))→ H0
f (F, (h

i(X)(n))∗(1))∗R → 0.

Conjeture 5.23 gives a trivialization

ϑi,n∞ : R
∼−→ ∆f (h

i(X)(n))R.

Beilinson's onjeture on speial values, in the formulation Fontaine-Perrin-

Riou, is the following

Conjeture 5.24. (Beilinson)

ϑi,n∞ (L∗(hi(X), n)−1) ∈ ∆f (h
i(X)(n)).
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For a prime number p one de�nes

∆f (V
i
p (n)) := detQpH

0
f (F, V

i
p (n))⊗Qp det

−1
Q H1

f (F, V
i
p (n))

⊗QpdetQpH
0
f (F, (V

i
p (n))

∗(1))⊗Qp det
−1
Qp
H1
f (F, (V

i
p (n))

∗(1))

⊗Qpdet
−1
Qp

(
V ip (n)

)+ ⊗Qp detQp

(
tV i

p (n)

)
.

Conjeture 5.25. (Bloh-Kato) For M = hi(X)(n) and M = hi(X)(n)∗(1)
the p-adi realization indues isomorphisms

Hj
f (F,M)⊗Q Qp

∼−→ Hj
f (F,Mp)

for j = 0, 1.

One has an isomorphism

ϑi,np : ∆f (h
i(X)(n))Qp ≃ ∆f (V

i
p (n))

∼= detQpRΓc(OF [1/p], V ip (n))

where the �rst isomorphism is obtained by Conjeture 5.25 and Artin's om-

parison theorem and the seond isomorphism by the lower exat triangle in

Prop. 5.16, the exat triangle

DdR,p(V
i
p (n))/F

0[−1]→ RΓf (Fp, V
i
p (n))→ Ccris,p(V

i
p (n))→

arising from the de�nition of RΓf (Fp, V
i
p (n)) and the isomorphism

τ i,np = idDcris,p(V i
p (n)),triv

: detQpCcris,p(V
i
p (n)) ≃ Qp (78)

in the notation of diagram (77). Any loally onstant Zp-sheaf T
i
p(n) on

Spec(OF [1/p]) together with an isomorphism T ip(n) ⊗Zp Qp ≃ V ip (n) gives an
integral struture

detQpRΓc(OF [1/p], V ip (n)) ≃ detZpRΓc(OF [1/p], T ip(n))⊗Zp Qp

whih does not depend on the hoie of T ip(n).

Conjeture 5.26. (Bloh-Kato, Fontaine-Perrin-Riou) There is an identity

of invertible Zp-submodules

ϑi,np ϑi,n∞ (L∗(hi(X), n)−1) · Zp = detZpRΓc(OF [1/p], T ip(n)).

of detQpRΓc(OF [1/p], V ip (n)).
In order to ompare this statement with Conjeture 5.12 we shall onsider the

total "motive" h(X)(n) ∈ D+(MMF ) suh that Hi(h(X)(n)) = hi(X)(n).
One expets a (non-anonial) diret sum deomposition

h(X)(n) ≃
⊕

0≤i≤2(d−1)

hi(X)(n)[−i]. (79)
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In any ase, the fundamental line of h(X)(n) is

∆f (h(X)(n)) :=
⊗

0≤i≤2(d−1)

∆f (h
i(X)(n))(−1)

i

and similarly, we set

∆f (h(X)(n)p) :=
⊗

0≤i≤2(d−1)

∆f (V
i
p (n))

(−1)i .

In view of Prop. 5.21 we an take the higher Chow groups Hj(X ,Q(n)) as

our de�nition for the f -motivi ohomology Hj
f (F, h(X)(n)). In view of the

isomorphism

RΓW (X ,Z(n))Q ≃ RΓ(X ,Q(n))⊕RHom(RΓ(X ,Q(d− n)),Q[−2d− 1])

of Cor. 3.12, the de�nition of RΓW,c(X ,Z(n)) in Def. 3.26 and the de�nition

of ∆(X/Z, n) in Def. 5.1 we then have an isomorphism

∆f (h(X)(n))

∼= detQRΓW (X ,Z(n))Q ⊗ det−1Q RΓ(X (C),Q(n))GR ⊗ detQRΓdR(XQ/Q)/Fn

∼= detQRΓW (X ,Z(n))Q ⊗ det−1Q RΓW (X∞,Z(n)) ⊗Q detQ(RΓdR(X/Z)/Fn)Q
∼= detQRΓW,c(X ,Z(n))Q ⊗ detQ(RΓdR(X/Z)/Fn)Q
= ∆(X/Z, n)Q.

The isomorphism ϑ∞ :=
⊗

i(ϑ
i,n
∞ )(−1)

i

beomes the isomorphism (9)

ϑ∞ : R ∼= ∆(XQ, n)R = ∆(X/Z, n)R ∼= ∆f (h(X)(n))R

explained in the introdution, based on Prop. 4.14. The isomorphism of Con-

jeture 5.25 is the omposite of the isomorphisms

RΓW (X ,Z(n))Qp ≃ RΓ(X ,Qp(n)) ≃
⊕

i∈Z

RΓf(F, V
i
p (n))[−i]

arising from Lemma 5.17 and Prop. 5.16, and the isomorphism ϑp :=⊗
i(ϑ

i,n
p )(−1)

i

beomes an isomorphism

ϑp : ∆f (h(X)(n))Qp
∼= ∆f (h(X)(n)p) ∼= detQpRΓc(X [1/p],Qp(n))

using the left vertial isomorphism in Prop. 5.16. Sine X is smooth projetive

over Spec(OF ) we have

ζ(X , s) =
∏

i∈Z

L(hi(X), s)(−1)
i
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and Conjeture 5.26 therefore predits that

ϑpϑ∞(ζ∗(X , n)−1) · Zp = detZpRΓc(X [1/p],Zp(n)) (80)

inside detQpRΓc(X [1/p],Qp(n)). Note here that we have an isomorphism

detZpRΓc(X [1/p],Zp(n)) ≃ detZpRΓc(OF [1/p], Rπ′∗Zp(n))
≃

⊗

i

det
(−1)i

Zp
RΓc(OF [1/p], Riπ′∗Zp(n))

and we an hoose T ip(n) := Riπ′∗Zp(n).

Theorem 5.27. Let X/OF be smooth projetive and n ∈ Z so that Conjetures

L(X et, n), L(X et, d−n) and B(X , n) hold for X and n. Assume that the om-

plex Ccris,p(V
i
p (n)) is semisimple at zero for all i and all primes p of F . Then

Conjeture 5.12 for (X , n) is equivalent to the onjuntion of the Tamagawa

number onjeture (80) for the motive h(X)(n) over all primes p.

Proof. First note that the isomorphism ϑ∞ and the isomorphism λ∞ de�ned

in Prop. 5.2 oinide by de�nition. So Conjeture 5.12 is equivalent to the

identity

ϑ∞(ζ∗(X , n)−1) · C(X , n) · Zp = ∆(X/Z, n) ⊗Z Zp (81)

for all primes p. Lemma 5.17 and Lemma 5.15 indue an isomorphism

∆(X/Z, n)⊗Z Zp

= (detZRΓW,c(X ,Z(n))⊗Z detZRΓdR(X/Z)/F
n)

Zp

≃
(
detZRΓW (X ,Z(n))⊗Z det−1

Z RΓW (X∞,Z(n))⊗Z detZ(RΓdR(X/Z)/F
n)
)
Zp

≃ detZpRΓ(X ,Zp(n))⊗Zp det−1
Zp
RΓ(X∞,Zp(n))⊗Zp detZpRΓdR(XZp/Zp)/F

n

≃ detZpRΓc(X [1/p],Zp(n))⊗Zp detZpRΓ(XZp ,Zp(n))

⊗ZpdetZpRΓdR(XZp/Zp)/F
n

whih we denote by ϑ
Zp
p . Lemma 5.19 indues a ommutative diagram of

isomorphisms

detQpRΓ(XZp ,Qp(n))⊗Qp detQpRΓdR(XQp/Qp)/F
n λp(X,n)

−−−−−−→ detQpRΓ′
eh(XFp ,Qp(n))

y
yβp(X,n)

⊗

i,p|p

det
(−1)i

Qp
RΓf (Fp, V

i
p (n))⊗ det

(−1)i

Qp
DdR,p(V

i
p (n))/F

0

⊗
λ
i,n
p

−−−−−−→
⊗

i,p|p

det
(−1)i

Qp
Ccris,p(V

i
p (n))

where λp(X , n) is the map de�ned using onjeture Dp(X , n). By de�nition we

have

ϑp = (idRΓc ⊗ γp) ◦ (ϑZp
p )Q
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where idRΓc is the identity map of detQpRΓc(X [1/p],Qp(n)) and

γp :=
(⊗

(τ i,np )(−1)
i ◦ βp(X , n) ◦ λp(X , n)

)

where the trivializations τ i,np were de�ned in (78). Comparing (81) and (80)

we see that the two statements are equivalent if and only if

C(X , n) · γp
(
detZpRΓ(XZp ,Zp(n))⊗Zp detZpRΓdR(XZp/Zp)/F

n
)
= Zp

and from (70) and the de�nition of C(X , n) this identity holds if and only if

p−χ(XFp ,O,n) ·
(⊗

(τ i,np )(−1)
i ◦ βp(X , n)

) (
detZpRΓ

′
eh(XFp ,Zp(n))

)
= Zp.

Consider the rational funtion Z(XFp , t) suh that ζ(XFp , s) = Z(XFp , p
−s) and

its speial value

Z∗(XFp , p
−n) = limt→p−n(1− pnt)ρnZ(XFp , t)

where ρn := −ordt=p−nZ(XFp , t) is the order of the pole of Z(XFp , t) at t = p−n.
Note that we have

Z(XFp , t) = Z(X red
Fp
, t)

and

Z(XFp , p
−nt) =

∏

p|p

Z(Xp, p
−nt) =

∏

p|p

∏

i

detQp

(
1− tφ | Dcris,p(V

i
p (n))

)(−1)i+1

.

If Ccris,p(V
i
p (n)) is semisimple at zero then diagram (77) implies

⊗
(τ i,np )(−1)

i

= Z∗(XFp , p
−n) · σ

where σ is the map in Lemma 5.20. Hene by Lemma 5.20 we are redued to

showing

p−χ(XFp ,O,n) · Z∗(XFp , p
−n) · (σ ◦ βp(X , n))

(
detZpRΓ

′
eh(XFp ,Zp(n))

)

= p−χ(XFp ,O,n) · Z∗(XFp , p
−n) · (∪e)

(
detZpRΓ

′
eh(XFp ,Zp(n))

)
= Zp.

But this is just a rewriting of the leading term formula for Z(XFp , t) due to

Milne [70℄[Thm. 0.1℄. Note here that if C denotes the perfet omplex of

Zp-modules with �nite ohomology groups

· · · ∪e−→ H ′ ieh(XFp ,Zp(n))
∪e−→ H ′ i+1

eh (XFp ,Zp(n))
∪e−→ · · ·

then the image of detZp(C) under the isomorphism a : detZp(C)Qp
∼= Qp arising

from ayliity of CQp is χ(C)
−1 ·Zp where χ(C) ∈ pZ is the multipliative Euler

harateristi of C. But a oinides with the isomorphism denoted ∪e above.
Hene

(∪e)
(
detZpRΓ

′
eh(XFp ,Zp(n))

)
= χ(XFp , Ẑ(n))

−1 · Zp
where χ(XFp , Ẑ(n)) is the quantity appearing in [70℄[Thm. 0.1℄.
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5.7 Relationship with the funtional equation

We �x a regular sheme X of pure dimension d, whih is �at and proper over Z.

We assume that X satis�es L(X et, n), L(X et, d−n), AV(X et, n), B(X , n) and
Dp(X , n) for any prime number p. Moreover, we assume that R(Fp, dim(XFp))
holds at the primes p where X red

Fp
is not smooth. Reall that we denote the

fundamental line by

∆(X/Z, n) := detZRΓW,c(X ,Z(n)) ⊗Z detZRΓdR(X/Z)/Fn.

Definition 5.28. We set

Ξ∞(X/Z, n) := detZRΓW (X∞,Z(n)) ⊗ det−1Z RΓdR(X/Z)/Fn
⊗det−1Z RΓW (X∞,Z(d− n))⊗ detZRΓdR(X/Z)/F d−n.

Proposition 5.29. Duality for Deligne ohomology and duality for Weil-étale

ohomology indue isomorphisms

ξ∞ : R
∼−→ Ξ∞ ⊗ R

and

∆(X/Z, n)⊗ Ξ∞(X/Z, n) ∼−→ ∆(X/Z, d − n)
respetively, suh that the square

∆(X/Z, n)⊗ Ξ∞(X/Z, n)⊗ R // ∆(X/Z, d − n)⊗ R

R⊗ R

λ∞(X ,n)⊗ξ∞(X ,n)

OO

= // R

λ∞(X ,d−n)

OO

ommutes.

Proof. Reall from Setion 3.8 the de�nition of RΓW (X∞,Z(n)). We have an

isomorphism

RΓW (X∞,Z(n)) ⊗ R ≃ RΓ(GR,X (C), (2πi)nR).

Duality for Deligne ohomology

RΓD(X/R,R(n)) ≃ RHom(RΓD(X/R,R(d− n)),R[−2d+ 1])

yields

(
detZRΓW (X∞,Z(n))⊗Z det−1Z RΓdR(X/Z)/Fn

)
⊗ R

≃ detRRΓD(X/R,R(n))
≃ detRRHom(RΓD(X/R,R(d− n)),R[−2d+ 1])

≃ detRRΓD(X/R,R(d− n))
≃

(
detZRΓW (X∞,Z(d− n))⊗Z det−1Z RΓdR(X/Z)/F d−n

)
⊗ R
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We obtain

ξ∞ : R
∼−→ Ξ∞ ⊗ R.

The exat triangle

RΓW,c(X ,Z(n))→ RΓW (X ,Z(n))→ RΓW (X∞,Z(n))

gives

detZRΓW,c(X ,Z(n)) ⊗ detZRΓW (X∞,Z(n)) ≃ detZRΓW (X ,Z(n)). (82)

Similarly, we have

detZRΓW,c(X ,Z(d− n))⊗ detZRΓW (X∞,Z(d− n)) ≃ detZRΓW (X ,Z(d− n)).
(83)

Moreover, duality for Weil-étale ohomology gives

detZRΓW (X ,Z(n)) ≃ detZRHom(RΓW (X ,Z(n)),Z[−2d− 1]) (84)

≃ detZRΓW (X ,Z(d− n)). (85)

Then (82), (83) and (85) indue

∆(X/Z, n)⊗ Ξ∞(X/Z, n) ∼−→ ∆(X/Z, d− n).

We have anonial isomorphism (see Corollary 3.12)

RΓW (X ,Z(n))R ≃ RΓ(X ,R(n))⊕RHom(RΓ(X ,R(d− n)),R[−2d− 1])

and the pairing indued by Weil-étale duality, after (−) ⊗ R, is the evident

one (see the proof of Theorem 3.22). Moreover, the maps λ∞(X , n) and

λ∞(X , d − n) are indued by the pairing between motivi ohomology with

R-oe�ients and motivi ohomology with R-oe�ients and ompat sup-

port (see Conjeture B(X , n)), whih is ompatible with duality for Deligne

ohomology in the sense of Remark 2.6. If follows [59℄ that the indued square

of isomorphisms

detRRΓc(X ,R(n))⊗ detRRΓD(X/R,R(n)) //

��

detRRΓ(X ,R(n))

��
detRRΓ(X ,R(d− n))∗ ⊗ det−1R RΓD(X/R,R(d− n))∗ // detRRΓ(X ,R(d− n))∗

ommutes, where (−)∗ := RHom(−,R[−2d]). From there, we easily obtain the

ommutativity of the square of the proposition.

We denote by

x2∞(X , n) := det(ξ∞(X , n)) ∈ R>0
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the determinant of the isomorphism ξ∞(X , n) with respet to the given integral
strutures, i.e. the stritly positive real number suh that

ξ∞(X , n)(x2∞(X , n)−1 · Z) = Ξ∞(X , n).

Reall the de�nition of

ζ(X , s) := ζ(X , s) · ζ(X∞, s)

from (71).

Conjeture 5.30. We have

A(X )(d−s)/2 · ζ(X , d− s) = ±A(X )s/2 · ζ(X , s)

where the ondutor A(X ) > 0 is a positive real number.

For X of dimension d = 2, the ondutor A(X ) is the square root of the

disriminant of the pairing

RΓdR(X/Z)/F 2 ⊗LZ RΓdR(X/Z)/F 2 → Z[−2]

indued by Poinaré duality (see [9℄).

Corollary 5.31. Assume that ζ(X , d− s) satis�es the funtional equation of

Conjeture 5.30. If two of the following assertions are true, then so is the third:

i) We have

A(X )n/2 · ζ∗(X∞, n) · x∞(X , n)−1 · C(X , n)−1

=±A(X )(d−n)/2 · ζ∗(X∞, d− n) · x∞(X , d− n)−1 · C(X , d − n)−1.
(86)

ii) Conjeture 5.12 for (X , n) holds.

iii) Conjeture 5.12 for (X , d− n) holds.

Proof. We have x∞(X , d−n) = ±x∞(X , n)−1, hene Proposition 5.29 gives an

equality

det(λ∞(X , n)) · x∞(X , n) = ±det(λ∞(X , d − n)) · x∞(X , d− n).

Moreover, Conjeture 5.12 for (X , n) is the following:

det(λ∞(X , n)) = ±ζ∗(X , n) · C(X , n)−1

and similarly for (X , d−n). The Corollary now easily follows from Conjeture

5.30.
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5.8 Proven ases and examples

5.8.1 Varieties over finite fields

Let X be regular proper arithmeti sheme of pure dimension d de�ned over

the �nite �eld Fp. We assume that X satis�es L(Xet, n), L(Xet, d − n) and

B(X , d).
Proposition 5.32. Conjeture 5.12 holds for X and any n ∈ Z.

Proof. By Proposition 5.9, we have C(X , n) = 1. By Corollary 3.21 and sine

B(X , d) implies P(X , d), X satis�es L(XW , n). The result follows from Theo-

rem 3.20 and [73℄.

5.8.2 The ase n = 0.

Let X be regular proper arithmeti sheme of pure dimension d. We assume

that X satis�es L(X et, d) and B(X , d).
Proposition 5.33. Conjeture 5.12 for X and n = 0 is equivalent to [72℄[Conj.
4.2(b)℄.

Proof. By Proposition 5.8, we have C(X , 0) = 1. The result follows.

5.8.3 Number rings

Let F be a number �eld, set

X = Spec(OF )

and let

ρn := ords=n ζF (s) =





r2 n < 0 odd

r1 + r2 n < 0 even

r1 + r2 − 1 n = 0

−1 n = 1

0 n > 1

be the well known vanishing order of the Dedekind Zeta funtion

ζ(X , s) = ζF (s)

where r1, resp. r2, is the number of real, resp. omplex, plaes of F . Conje-
tures L(X et, n), B(X , n) and AV(X et, n) are known for any n ∈ Z. For n ≥ 1
de�ne

Hi,n := Hi(Xet,Z(n)).

We have Hi,n = 0 for i ≤ 0, the group H1,n
is �nitely generated and H2,n

is

�nite. This follows from the isomorphism [37℄[Thm.1.2℄

Hi(XZar ,Z(n)) ∼−→ Hi(Xet,Z(n)), i ≤ n+ 1,
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the analysis of the spetral sequene from motivi ohomology to algebrai K-

theory (see [63℄[14.4℄) and the known properties (�nite generation, ranks) of

the algebrai K-groups of OF . In degrees i ≥ 3 we have

Hi,n ∼=
{
Br(OF ) ∼= (Z/2Z)r1,Σ=0,Q/Z, (Z/2Z)r1·δi,1 n = 1

(Z/2Z)r1·δi,n n ≥ 2

where

δi,n =

{
1 n ≡ i mod 2

0 n 6≡ i mod 2.

The Beilinson regulator map

H1(Xet,Z(n))
̺Bn−−→H1

D(X/R,R(n)) ∼=
∏

v|∞

Fv/H
0(Fv, (2πi)

n
R) ∼=

∏

v|∞

H0(Fv, (2πi)
n−1

R)

indues isomorphisms

̺Bn,R : H1(Xet,Z(n))R
∼−→
∏

v|∞

H0(Fv, (2πi)
n−1R)

for n > 1 and

̺B1,R : H1(Xet,Z(1))R ∼=
(∏

v|∞

R
)Σ=0

for n = 1. For n ≥ 1 we set

hn :=|H2(Xet,Z(n))|
wn :=|H1(Xet,Z(n))tor |
Rn :=vol(coker(̺Bn ))

where the volume is taken with respet to the Z-struture∏
v|∞H

0(Fv, (2πi)
n−1Z), resp. (

∏
v|∞ Z)Σ=0

, of the target. We have

Hi
W (X ,Z(n)) ∼=






0, 0, H1,n,H2,n, (Z/2Z)r1·ǫ3,n , (Z/2Z)r1·ǫi,n n > 1

0, 0,O×
F ,Cl(OF ),Z, 0 n = 1

0,Z, 0, (O×
F )∗ ⊕ Cl(OF )

D, (O×
F )Dtor, 0 n = 0

(Z/2Z)r1·ǫi−1,n , 0, 0, (H1,1−n)∗ ⊕ (H2,1−n)D, (H1,1−n
tor )D, 0 n < 0

in degrees i < 0, i = 0, 1, 2, 3 and i > 3 respetively. Here A∗ = HomZ(A,Z),
D is the Pontryagin dual and

ǫi,n =

{
δi,n 1 ≤ i ≤ n or n < i < 0

0 else.
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The long exat sequene indued by (56) gives

Hi
ar(X ,Z(n)) ∼=






0, 0,H1,n
tor , coker(̺

B
n )⊕H

2,n, (Z/2Z)r1·ǫ3,n , (Z/2Z)r1·ǫi,n n > 1

0, 0, (O×
F )tor, Cl(X ),Z, 0 n = 1

0,Z, 0, (O×
F )∗ ⊕ Cl(OF )

D, (O×
F )Dtor, 0 n = 0

(Z/2Z)r1·ǫi−1,n , 0, 0, (H1,1−n)∗ ⊕ (H2,1−n)D, (H1,1−n
tor )D, 0 n < 0

where Cl(X ) ∼= Pic(X ) is the usual Arakelov lass group of OF . For n ≤ 0
there are isomorphisms

Hi
ar,c(X ,Z(n)) ∼= Hi

W,c(X ,Z(n)) ∼= 0,Zρn , (H1,1−n)∗⊕(H2,1−n)D, (H1,1−n
tor )D, 0

in degrees i < 1, i = 1, 2, 3 and i > 3 respetively. Hene for any i ∈ Z the

groups Hi
ar,c(X ,Z(n)) are �nitely generated,

Hi
ar,c(X , R̃(n)) ∼= Hi

ar,c(X ,Z(n)) ⊗Z R

and Hi
ar,c(X , R̃/Z(n)) is ompat. More preisely, for n < 0 we have isomor-

phisms

H1
ar,c(X , R̃(n)) = H1

c (X ,R(n)) ∼= H0
D(X/R,R(n)) ∼=

∏

v|∞

H0(Fv, (2πi)
nR)

and

H2
ar,c(X , R̃(n)) =H1

c (X ,R(n)) ∼= H1(X ,R(1− n))∗ ∼= H1
D(X/R,R(1− n))∗

(87)

∼=
∏

v|∞

(Fv/H
0(Fv , (2πi)

1−nR))∗ ∼=
∏

v|∞

H0(Fv, (2πi)
−nR)∗

and similarly for n = 0 (taking the quotient by the diagonally embedded R in

the target). We note that

dimRH
1
ar,c(X , R̃(n)) = dimRH

2
ar,c(X , R̃(n)) = ρn

and Hi
ar,c(X , R̃(n)) = 0 for i 6= 1, 2, verifying Conjeture 5.11. For n < 0

reall that R1−n was formed with respet to the Z-strutures H1,1−n/tor and∏
v|∞H

0(Fv, (2πi)
−nZ) in the dual of (87) and therefore also agrees with the

regulator formed with respet to (H1,1−n)∗ and the natural Z-struture

(
∏

v|∞

H0(Fv, (2πi)
−nZ))∗ ∼=

∏

v|∞

H0(Fv, (2πi)
nZ) ∼= H1

W,c(X ,Z(n))

of H1
ar,c(X , R̃(n)). Similar onsiderations apply to n = 0. For n ≤ 0 we have

C(X , n) = 1 by Prop. 5.8 and RΓdR(X/Z)/Fn = 0 and hene Conjeture 5.12

redues to the statement

ζ∗F (n) = ±
h1−n · R1−n

w1−n
. (88)
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For n ≥ 1 the groups Hi
ar,c(X ,Z(n)) vanish exept for i = 2, 3. There is an

exat sequene

0→


∏

v|∞

F×v


 /O×F → H2

ar,c(X ,Z(1))→ Cl(OF )→ 0

showing that the group H2
ar,c(X ,Z(1)) is an extension

0→ H1
ar,c(X , R̃/Z(1))→ H2

ar,c(X ,Z(1))→ H2
ar,c(X , R̃(1)) ∼= R→ 0

of R by a ompat group. The ontinuation of this long exat sequene looks

like

0 −−−−−→ H3
ar,c(X ,Z(1)) −−−−−→ H3

ar,c(X , R̃(1)) −−−−−→ H3
ar,c(X , R̃/Z(1)) −−−−−→ 0

‖ ‖ ‖

0 −−−−−→ Z −−−−−→ R −−−−−→ R/Z −−−−−→ 0.

Conjeture 5.11 follows sine Hi
ar,c(X , R̃(1)) = 0 for i 6= 2, 3. For n ≥ 2 there

is an exat sequene

0→


∏

v|∞

H0(Fv,C/(2πi)
nZ)


 /H1(X ,Z(n))→ H2

ar,c(X ,Z(n))

→ H2(X ,Z(n))→ (Z/2Z)r1·ǫ2,n → H3
ar,c(X ,Z(n))→ 0

showing that the groups

Hi−1
ar,c (X , R̃/Z(n)) ∼= Hi

ar,c(X ,Z(n))

are ompat for i = 2, 3. We have

Hi
ar,c(X , R̃(n)) = 0

for all i, verifying Conjeture 5.11.

Proposition 5.34. Assume X = Spec(OF ) and n ≥ 1. If Conjeture

CEP (Qp(n)) of [77℄[App.C2℄ holds over all loal �elds K = Fv, in partiular if

all Fv are abelian extensions of Qp [4℄, then

C(X , n) = (n− 1)!−[F :Q].

Proof. We �rst expliate Conjeture CEP (V ) of [77℄[App.C2℄ for K = Fv and

V = Qp(n). We have DdR(V ) = K · t−n and the period isomorphism

BdR ⊗Qp K · t−n ∼= BdR ⊗Qp Ind
Qp

K Qp(n)
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is already indued by the isomorphism

Q̄p ⊗Qp K
∼= Q̄p ⊗Qp Ind

Qp

K Qp ∼=
∏

Σ

Q̄p

sending 1⊗ x to (σ(x))σ∈Σ where Σ = Hom(K, Q̄p). Denote by DK ∈ Qp the

disriminant of K/Qp, well de�ned up to Z×p . For

ω = ω−11 ⊗ ωT

where ω1, resp. ωT , is a Zp-basis of DetZp OK , resp. DetZp Ind
Qp

K Zp we have

in the notation of [77℄[Lemme C.2.8℄

ξ̃V (ω) = (
√
DK)−1 ∈ Q̄p

and

ηV (ω) :=

∣∣∣∣∣

√
DK · ξ̃V (ω)

ǫ(V, ψo,K , µo,K)

∣∣∣∣∣

−1

p

=

∣∣∣∣
1

ǫ(V, ψo,K , µo,K)

∣∣∣∣
−1

p

where ǫ(V, ψo,K , µo,K) is the ǫ-fator assoiated by the theory of [19℄ to the rep-
resentation of the Weil Group of K on Dpst(V ) de�ned in [77℄[C.1.4℄. Here the

additive harater ψo,K and the Haar measure µo,K are de�ned in [77℄[C.2.7℄.

In partiular µo,K(OK) = 1 and the n(ψo,K) of [19℄[3.4℄ is the valuation of the

di�erent of K/Qp. By [19℄[5.9℄ we have

ηV (ω) = |ǫ(Qp(n), ψo,K , µo,K)|p = |D1−n
K |p ∼ Dn−1

K mod Z×p .

Furthermore, the Γ-fator of [77℄[C.2.9℄ is
∏

j∈Z

Γ∗(−j)−hj(V )[K:Qp] = (n− 1)!−[K:Qp]

and so Conjeture CEP (Qp(n)) beomes

DetZp RΓ(K,Zp(n)) = (1 − q−n) · (n− 1)!−[K:Qp] ·Dn−1
K · ω−11 (89)

where q is the ardinality of the residue �eld of K. This is an identity of

invertible Zp-submodules of the invertible Qp-module DetQp RΓ(K,Qp(n))
∼=

DetQp(K)−1 where this last isomorphism is given by the Bloh-Kato exponen-

tial map

K
exp−−→ H1(K,Qp(n))

for n ≥ 2 and the exat sequene

0→ K
exp−−→ H1(K,Qp(1)) ∼= K̂× ⊗Zp Qp

val−−→ Qp ∼= H2(K,Qp(1))→ 0

for n = 1. Coming bak to the omputation of C(X , n) we have by Prop. 5.36

below

detZRΓdR(X/Z)/F
n = |DF |

n−1 · detZOF ⊆ detQpFQp = detQpRΓdR(XQp/Qp)/F
n

(90)
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where DF is the disriminant of F . Moreover

RΓ′eh(XFp ,Zp(n))
∼=
∏

v|p

RΓ(κ(v)et,Zp(n)) = 0

and

RΓ(XZp,et,Zp(n))
∼=
∏

v|p

RΓ(OFv ,et,Zp(n)).

By the loalization triangle (138) for X = Spec(OFv ), the fat that

τ≤nRj∗µ
⊗n
p• = Rj∗µ

⊗n
p• for n ≥ 1 and the vanishing of RΓ(κ(v)et,Zp(n − 1))

for n ≥ 2 we have

RΓ(OFv ,et,Zp(n))
∼= RΓ(Fv,et,Zp(n)) (91)

for n ≥ 2 and an exat triangle

RΓ(OFv ,et,Zp(1))→ RΓ(Fv,et,Zp(1))→ RΓ(κ(v)et,Zp)[−1]→ (92)

for n = 1. The exat triangle in Conjeture Dp(X , n) is the produt over v | p
of the isomorphism

Fv[−1] ∼−→ H1
f (Fv ,Qp(n))[−1] ∼= RΓf (Fv,Qp(n)) ∼= RΓ(OFv ,et,Qp(n))

where the �rst map is the Bloh-Kato exponential. For v | p de�ne dv(X , n) ∈
Q×p /Z

×
p suh that

dv(X , n)−1 · detZpRΓ(OFv ,et,Zp(n)) = det−1Zp
RΓdR(XZp/Zp)/F

n.

From (89), (90), (91) and (92) we dedue

dv(X , n) =(1− q−nv ) · (n− 1)!−[Fv :Qp] ·Dn−1
Fv
·D1−n

F

=(1− q−nv ) · (n− 1)!−[Fv :Qp]

where qv := |κ(v)|. With dp(X , n) and cp(X , n) de�ned in De�nition 5.6 we

have

dp(X , n) =
∏

v|p

dv(X , n), cp(X , n) =
∏

v|p

qnv · dv(X , n)

and hene

C(X , n) :=
∏

p<∞

| cp(X , n) |p=
∏

p<∞

∏

v|p

|(n− 1)!|[Fv:Qp]
p = (n− 1)!−[F :Q].

For n ≥ 2 we have Hi
W,c(X ,Z(n)) = 0 for i 6= 1, 2, 3 and an exat sequene

0→
∏

v|∞

H0(Fv, (2πi)
nZ)→ H1

W,c(X ,Z(n))→ H1,n α−→ (Z/2Z)r1·ǫ1,n →

→ H2
W,c(X ,Z(n))→ H2,n → (Z/2Z)r1·ǫ2,n → H3

W,c(X ,Z(n))→ 0.
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The exat triangle (64) redues to an isomorphism

H1
W,c(X ,Z(n))R ∼= FR. (93)

The determinant of this isomorphism for the Z-strutures H1
W,c(X ,Z(n)) and

∏

v|∞

H0(Fv, (2πi)
nZ)⊕H0(Fv, (2πi)

n−1Z) (94)

on

FR
∼=
∏

v|∞

Fv ∼=
∏

v|∞

H0(Fv, (2πi)
nR)⊕H0(Fv, (2πi)

n−1R)

equals Rn/wn · | im(α)| and hene the determinant between RΓW,c(X ,Z(n))
and (94) equals

Rn/wn · | im(α)| ·
|H2

W,c(X ,Z(n))|
|H3

W,c(X ,Z(n))|
=
Rn · hn · 2r1·δ1,n
wn · 2r1·δ2,n

noting that δi,n = ǫi,n for i = 1, 2 and n ≥ 1. The determinant between (94)

and OF is

(2πi)r2(2n−1)+r1(n−δ1,n)/
√
DF = ±(2π)[F :Q]·n−r2−r1·δ1,n/

√
|DF |

using that

√
DF = ±ir2

√
|DF |. Hene, also using Prop. 5.36 below, the

isomorphism

λ∞ : R ∼= ∆(X/Z, n)R ∼= detRRΓW,c(X ,Z(n))R ⊗R detR(RΓdR(X/Z)/Filn)R
indued by (64) satis�es

λ∞

(
|DF |n−1 ·

wn
√
|DF |

2r1·(δ1,n−δ2,n)(2π)[F :Q]·n−r2−r1·δ1,nhnRn
· Z
)

= ∆(X/Z, n).

Finally, using Prop. 5.34, the identity of Conjeture 5.12

λ∞(ζ∗(X , n)−1 · C(X , n) · Z) = ∆(X/Z, n)
is equivalent to

ζ∗F (n) = ζF (n) = |DF |
1−n · (n− 1)!−[F :Q] ·

2r1·(δ1,n−δ2,n)(2π)[F :Q]·n−r2−r1·δ1,nhnRn

wn

√
|DF |

,

(95)

at least if we also assume onjeture CEP (Qp(n)) for all loal �elds Fv. For

n = 1 the triangle (64) gives an exat sequene

0→ H1
W,c(X ,Z(1))R → FR

TrFR/R−−−−→ R→ 0→ 0→ R
∼−→ H3

W,c(X ,Z(1))R → 0

instead of the isomorphism (93) but otherwise the omputation is the same,

showing that for any number �eld F Conjeture 5.12 is equivalent to (95) for

n = 1, i.e. to the analyti lass number formula. Conjeture 5.30 holds with

A(X ) = |DF | and one easily proves that (95) is equivalent to (88) by verifying

identity (86) in Corollary 5.31 i).
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Proposition 5.35. Assume X = Spec(OF ). Then Conjeture 5.12 holds for

n = 0, 1 if F is arbitrary and for any n ∈ Z if F/Q is abelian.

Proof. By Theorem 5.27 this redues to known ases of the Tamagawa number

onjeture [14, 24, 26, 47℄.

We onlude this setion with the omputation of derived de Rham ohomology

of X = Spec(OF ). Let DF ⊆ OF be the di�erent ideal so that

|DF | = |N(DF )| = [OF : DF ]

is the absolute disriminant of F . Reall from [86℄[III. Prop. 14℄ that the

module of Kähler di�erentials Ω1
OF /Z

is a yli OF -module with annihilator

DF . A generator ω of Ω1
OF /Z

therefore gives an exat sequene of OF -modules

0 −→ DF −→ OF ω−→ Ω1
OF /Z

−→ 0 (96)

and we have |Ω1
OF /Z

| = |DF |. Reall that LΩOF /Z/F
n := Tot(Ω<nP•/Z

) where

P• → OF is an augmented simpliial Z-algebra whih is a free resolution of OF
and that

RΓdR(X/Z)/Fn := RΓ(XZar, LΩOF /Z/F
n) = Γ(XZar , LΩOF/Z/F

n)

is the derived de Rham ohomology modulo the n-th step of the Hodge �ltration
introdued in setion 5.1. Here the last isomorphism holds sine X is a�ne.

We denote by LΩˆOF /Z
:= ”lim”LΩOF/Z/F

n
the Hodge-ompleted derived de

Rham omplex. Unless stated otherwise, a omplex of the form [M → N ]
denotes a ohain omplex plaed in degrees [0, 1].

Proposition 5.36. We have gr0(LΩˆOF /Z
) ≃ OF [0]. For any i ≥ 1, a generator

of the yli OF -module Ω1
OF /Z

gives a quasi-isomorphism of omplexes of OF -
modules

gri(LΩˆOF /Z
) ≃ Γi−1OF

DF ⊗OF Ω1
OF /Z

[−1] (97)

where Γi−1OF
DF is an invertible OF -module. In partiular, for any n ≥ 1, we

have an exat sequene of omplexes

0→ F 1/Fn → RΓdR(X/Z)/Fn → OF [0]→ 0

where F 1/Fn is onentrated in degree 1, and H1(F 1/Fn) is �nite with order

|H1(F 1/Fn)| = |DF |n−1.

Proof. The �rst assertion is obvious, sine we have

gr0(LΩˆOF /Z
) ≃ [· · · → P1 → P0]

∼→ OF [0].

Next we laim that the anonial morphism

LOF /Z → H0(LOF /Z)[0] ≃ Ω1
OF /Z

[0]
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is a quasi-isomorphism. The map Spec(OF )→ Spec(Z) is a loal omplete in-

tersetion, hene we have an isomorphism LOF /Z ≃ [M → N ][1] in the derived

ategory of OF -modules, where M and N are �nitely generated and loally

free OF -modules [49℄[Prop. 3.2.6℄. In partiular H−1(LOF /Z) is a torsion-

free OF -module. It is therefore enough to show that H−1(LOF /Z) ⊗OF F =
H−1(LOF /Z ⊗OF F ) = 0, whih in turn follows from

LOF/Z ⊗OF F ≃ LF/Q ≃ 0.

Reall from [50℄[Ch. VIII (2.1.1.5)℄ that gri(LΩˆOF /Z
) ≃ LΛi(LOF/Z)[−i] and

assume i ≥ 1. We obtain using (96), [50℄[Ch. VIII, Lemme 2.1.2.1℄ and [49℄[Ch.

I, Prop. 4.3.2.1 (ii)℄

LΛi(LOF /Z) ≃ LΛi(Ω1
OF /Z

)

≃ LΛi ([DF → OF ][1])
≃ [ΓiDF → Γi−1DF ⊗ Λ1OF → · · · → ΛiOF ][i]
≃ [ΓiDF → Γi−1DF ⊗OF ][i]

where all tensor produts and exterior and divided power algebras are taken

over OF . The map κ : ΓiDF → Γi−1DF ⊗ OF orresponds to the anonial

"appliation i-ique" DF → Γi−1DF ⊗OF sending x to γi−1(x) ⊗ x. Thus κ is

given by

κ : ΓiDF −→ Γi−1DF ⊗OF
γi(x) 7−→ γi−1(x) ⊗ x .

Consider the sequene of OF -modules

0 −→ ΓiDF κ−→ Γi−1DF ⊗OF 1⊗ω−→ Γi−1DF ⊗ Ω1
OF /Z

−→ 0. (98)

To see that (98) is exat, one may loalize for the Zariski topology sine the

funtor Γi is ompatible with extension of salars, i.e. ΓiA(M)⊗AB ≃ ΓiB(M⊗A
B) (see [78℄ Théorème III.3). Hene one may assume that DF is a free module

of rank one with generator x, in whih ase ΓiDF is also free of rank one and

generated by γi(x), and similarly for Γi−1DF . The exatness of the sequene

(98) follows. We obtain

LΛi(LOF /Z) ≃ [ΓiDF → Γi−1DF ⊗OF ][i] ≃ Γi−1DF ⊗ Ω1
OF /Z

[i− 1]

hene

gri(LΩˆOF /Z
) ≃ LΛi(LOF /Z)[−i] ≃ Γi−1OF

DF ⊗OF Ω1
OF /Z

[−1].

As observed above, Γi−1OF
DF is an invertible OF -module, hene Γi−1OF

DF ⊗OF

Ω1
OF /Z

is a torsion Z-module whose order is given by

|Γi−1OF
DF ⊗OF Ω1

OF /Z
| = |Ω1

OF /Z
| = |DF |.
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In order to show the last assertion, it remains to prove that F 1/Fn is onen-

trated in degree 1 and that H1(F 1/Fn) is �nite with order |H1(F 1/Fn)| =
|DF |n−1, where F ∗ denotes the Hodge �ltration. This is obvious for n = 1. We

onlude by indution on n using the exat triangle

Fn/Fn+1 → F 1/Fn+1 → F 1/Fn →

and the isomorphism (97)

Fn/Fn+1 ∼= Γ(X , grn(LΩˆOF/Z
)) ∼= Γn−1OF

DF ⊗OF Ω1
OF /Z

[−1].

6 Appendix A: Artin-Verdier duality

In this setion X denotes a regular onneted sheme, whih is proper over Z.

We assume that X is of pure (absolute) dimension d. Unless spei�ed otherwise,
a sheme is always endowed with the étale topology.

6.1 Introdution

Artin-Verdier duality for the yle omplex over X is known in ertain ases

by [37℄, [39℄ and [79℄. In order to deal with 2-torsion, these duality theorems

relate étale ohomology of X with étale ohomology with ompat support of

X in the sense of Milne [69℄. The aim of this appendix is to de�ne omplexes

Z(n)X over the Artin-Verdier étale topos X et and to show duality over X et. In
partiular, we obtain Conjeture AV(X et, n) for smooth proper shemes over

number rings and any n ∈ Z (see Corollary 6.27), as well as for arbitrary regular

proper arithmeti shemes if n ≥ d or n ≤ 0 (see Corollary 6.26). These results
are essentially due to Geisser and Sato (see [37℄, [39℄ and [79℄); we only treat

the 2-torsion in order to restore duality over X et. This appendix may be seen

as a generalization of [7℄ to higher dimensional arithmeti shemes.

We now explain our de�nition for Z(n)X and desribe the ontents of this ap-

pendix. The topos X et is de�ned so that there is an open-losed deomposition

(see Setion 6.3)

φ : Xet −→ X et ←− X∞ : u∞

where φ : Xet → X et is the open embedding and X∞ its losed omplement.

The right de�nition for Z(n)X in the range 0 ≤ n ≤ d is

Z(n)X := τ≤n(Rφ∗Z(n)
X ). (99)

Sine we need φ∗Z(n)X ≃ Z(n)X , this de�nition requires Hi(Z(n)X ) = 0 for

any i > n, whih is not known for general regular X . However (99) gives

Ru!∞Z(n)X =
(
τ>nu∞,∗Rπ∗(2iπ)

nZ
)
[−1] ≃

(
τ>nu∞,∗Rπ̂∗(2iπ)

nZ
)
[−1].
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where Rπ̂∗(2iπ)
nZ is the omplex of 2-torsion sheaves on X∞ de�ned in Setion

6.4. Therefore, we de�ne Z(n)X suh that there is an exat triangle

Z(n)X −→ Rφ∗Z(n) −→ τ>n (u∞,∗Rπ̂∗(2iπ)
nZ)

for any n ∈ Z (see Corollary 6.8). We then show that the resulting omplexes

Z(n)X for any n ∈ Z satisfy the expeted Artin-Verdier duality. This fat relies

on Poinaré duality for the ohomology of the possibly non-orientable manifold

X (R) with Z/2Z-oe�ients. Moreover, our de�nition of Z(n)X oinides with

(99) whenever n ≥ 0 and Hi(Z(n)X ) = 0 for any i > n (see Proposition 6.10).

In partiular, we have Z(0)X ≃ Z and Z(1)X ≃ φ∗Gm[−1], where Z denotes

the onstant sheaf on X et, and Gm denotes the multipliative group on Xet
(Proposition 6.11). We notie that, even though the omplex RΓ(X et,Z(n)) has
bounded ohomology, it may have non-trivial ohomology in negative degrees

for n < 0. We observe in Proposition 6.29 that this surprising fat is fored by

the projetive bundle formula.

6.2 The motivi omplex Z(n)X

For any n ≥ 0, we onsider Bloh's yle omplex Z(n) = zn(−, 2n − ∗) as a
omplex of sheaves on the small étale site Xet of the sheme X . We have Z(0) ≃
Z and Z(1) ≃ Gm[−1] (see [64℄, [63℄). We write Z/mZ(n) := Z(n) ⊗L Z/mZ

and Q/Z(n) := lim−→Z/mZ(n). We have an exat triangle

Z(n)→ Q(n)→ Q/Z(n).

The Beilinson-Soulé vanishing onjeture states that Z(n) is ayli in negative

degrees. In order to unonditionally de�ne hyperohomology (or higher diret

images) with oe�ients in Z(n), we use K-injetive resolutions (see [88℄ and

[85℄). Similarly, we use K-�at resolutions in order to de�ne the derived tensor

produt of unbounded omplexes. By [37℄, if X is smooth over a number ring

then Z/prZ(n) is isomorphi, in the derived ategory, to Sato's omplex [79℄.

Reall also from Setion 3.1 that for n < 0 we de�ne

Z(n) :=
⊕

p

jp,!(µ
⊗n
p∞)[−1].

6.3 The Artin-Verdier étale topos X et
For a sheme X as above, we onsider X (C) as a topologial spae with respet

to the omplex topology. The spae X (C) arries an ation of GR := Gal(C/R),
and we onsider the quotient topologial spae X∞ := X (C)/GR. Consider the

anonial morphisms of topoi

α : Sh(GR,X (C)) −→ Xet
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and

π : Sh(GR,X (C)) −→ Sh(X∞).

Here Sh(GR,X (C)) and Sh(X∞) denote the topos of GR-equivariant sheaves

(of sets) on X (C) and the topos of sheaves on X∞ respetively. Reall that

there is a anonial equivalene between Sh(GR,X (C)) and the ategory of GR-

equivariant étalé spaes over X (C), i.e. the ategory of topologial spaes E
given with a GR-ation and a GR-equivariant loal homeomorphism E → X (C).
The morphisms π and α are de�ned as follows. In order to onstrut α, we need
to de�ne a funtor α∗ from the étale site of X to the ategory Sh(GR,X (C))
suh that α∗ is both ontinuous and left exat (i.e. suh that α∗ preserves the
�nal objet, �ber produts and overing families). This funtor simply takes

an étale X -sheme U → X to the GR-equivariant étalé spae U(C) → X (C).
We shall also onsider the topos Sh(GR,X∞) of GR-equivariant sheaves on X∞,
where GR ats trivially on X∞. Notie that an abelian sheaf on Sh(GR,X∞) is
simply a sheaf of Z[GR]-modules on X∞. In order to de�ne π, we onsider the
map p : Sh(GR,X (C)) → Sh(GR,X∞) indued by the G mathbbR-equivariant

ontinuous map X (C)→ X∞. Given an étalé spae E → X∞, we de�ne
π∗(E → X∞) := E ×X∞ X (C)→ X (C)

where GR ats on the seond fator. Given a GR-sheaf F on X (C) and an

open U ⊂ X∞, we have a anonial GR-ation on the set p∗F (U), and we set

π∗F (U) := (p∗F (U))GR
. The following result is well-known.

Lemma 6.1. Let A be an abelian objet of Sh(GR,X (C)). For any point x ∈ X∞
and y ∈ X (C) lying over x, we have

(Rπ∗A)x ≃ RΓ(Gy,Ay) (100)

where Gy ⊆ GR is the stabilizer of y.

In partiular the sheaf Riπ∗A is onentrated on the losed subset X (R) ⊂ X∞
as long as i > 0. The topos X et is the ategory of sheaves of sets on the

Artin-Verdier étale site of X (see [27℄). There is an open-losed deomposition

φ : Xet −→ X et ←− X∞ : u∞

whose gluing funtor an be desribed as follows:

u∗∞φ∗ ≃ π∗α∗ : Xet −→ Sh(GR,X (C)) −→ Sh(X∞) (101)

Those two properties haraterize X et up to equivalene: X et is anonially
equivalent to the ategory of triples (FX , F∞, f) where FX is an objet of Xet
(i.e. an étale sheaf on X ), F∞ an objet of Sh(X∞) and f : F∞ → π∗α

∗FX is a

map in Sh(X∞). This desription of the topos X et gives as usual two triples of
adjoint funtors (φ!, φ

∗, φ∗) and (u∗∞, u∞,∗, u
!
∞) between the orresponding at-

egories of abelian sheaves, whih satisfy the lassial formalism. In partiular,

we have

u∗∞u∞,∗
∼→ Id, φ∗φ∗

∼→ Id, φ∗u∞,∗ = 0.
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Moreover, for any omplex of abelian sheaves A on X et, we have an exat

sequene

0→ φ!φ
∗A → A→ u∞,∗u

∗
∞A → 0

and an exat triangle

u∞,∗Ru
!
∞A → A → Rφ∗φ

∗A

where the maps are given by adjuntion. The following derived version of (101)

will be useful. We denote by D(Xet), D(X et) and D(X∞) the derived ategories
of the abelian ategories of abelian sheaves on Xet, X et and X∞ respetively.

Moreover we denote by D+(Xet), D+(X et) and D+(X∞) the orresponding

derived ategories of bounded below omplexes.

Lemma 6.2. The funtor α∗ sends injetive objets to π∗-ayli objets, hene
the natural transformation of funtors from D+(Xet) to D(X∞)

u∗∞ ◦Rφ∗
∼−→ Rπ∗ ◦ α∗

is an isomorphism.

Proof. In view of the anonial isomorphisms

u∗∞Rφ∗ ≃ R(u∗∞φ∗) ≃ R(π∗α∗),

one is redued to showing that α∗ sends injetive objets to π∗-ayli objets.
Indeed, if this is the ase then the spetral sequene for the omposite funtor

π∗ ◦ α∗ together with the exatness of α∗ yield

R(π∗α
∗) ≃ Rπ∗Rα∗ ≃ R(π∗)α∗.

Let I be an injetive abelian sheaf on Xet. By Lemma 6.1, we have

(Riπ∗(α
∗I))y = 0 for any i ≥ 1 and any y ∈ X∞−X (R). Let y ∈ X (R) ⊂ X∞.

The point y is a morphism y : Spec(R)→ X and we denote by

x : Spec(C)→ Spec(R)→ X

the (unique) point x ∈ X (C) suh that π(x) = y. Then we have

(Riπ∗(α
∗I))y = Hi(GR, (α

∗I)x) = Hi(GR, x
∗I) = Hi(Spec(R)et, y

∗I)

for any i ≥ 1. Moreover, we have

Hi(Spec(R)et, y
∗I) = Hi(lim←−U , I|lim←−U ) = lim−→H

i(U , I|U ) (102)

where U runs over the �ltered set of pointed étale neighborhoods of (X , y), i.e.
the family of pairs (U → X , Spec(R)→ U) suh that y oinides with the om-

position Spec(R) → U → X . Notie that (102) holds sine étale ohomology

ommutes with �ltered projetive limits of shemes and beause lim←−U is an
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henselian loal ring with residue �eld of Galois group GR (however the residue

�eld of lim←−U is not R but rather an henselian real �eld algebrai over Q). We

obtain

Hi(Spec(R)et, y
∗I) = lim−→H

i(U , I|U ) = 0

sine I|U is injetive on U , hene

Riπ∗(α
∗I) = 0 for any i ≥ 1.

The result follows.

6.4 Tate ohomology and the funtor Rπ̂∗

We hoose a resolution P+ → Z of the Z[GR]-module Z by �nitely generated

free Z[GR]-modules, and we extend it into a omplete resolution P∗. We have

morphisms of omplexes of Z[GR]-modules:

P∗ → P+ → Z.

If A is a bounded below omplex of GR-modules, Tate hyperohomology is

de�ned as

RΓ̂(GR, A) :=

∫
HomGR−Mod(P∗, A)

where

∫
denotes the totalization of the double omplex Hom with respet to

the diret sum on diagonals. The spetral sequene

Ĥi(GR, H
j(A)) =⇒ Ĥi+j(GR, A)

onverges. It follows that RΓ̂(GR,−) preserves quasi-isomorphisms. We keep

the notations of the previous setion and we onsider the GR-ation on the

topologial spae X (C). We de�ne Tate equivariant ohomology as follows:

RΓ̂(GR,X (C),A) := RΓ̂(GR, RΓ(X (C),A))

where A is a bounded below omplex of GR-equivariant abelian sheaves on

X (C). We have

Rπ∗A ≃ Ou

∫
HomSh(GR,X∞)(Z, p∗I

∗)

∼→ Ou

∫
HomSh(GR,X∞)(Γ

∗P+, p∗I
∗)

∼← Ou

∫
HomSh(GR,X∞)(Γ

∗P+, p∗A)

whereA → I∗ is an injetive resolution (by injetive equivariant sheaves), Γ∗P+

is the omplex of equivariant sheaves assoiated with P+, HomSh(GR,X∞) de-

notes the internal Hom inside the ategory of abelian sheaves on Sh(GR,X∞),
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∫
refers to the total omplex assoiated with a double omplex and Ou :

Sh(GR,X∞) → Sh(X∞) denotes the forgetful funtor. Finally p∗ is the di-

ret image of the morphism Sh(GR,X (C)) → Sh(GR,X∞). The funtor p∗ is
exat by proper base hange. Similarly, we de�ne

π̂∗A := Ou

∫
HomSh(GR,X∞)(Γ

∗P∗, p∗A)

where

∫
now denotes totalization with respet to the diret sum on anti-

diagonals. We have a onvergent spetral sequene

Ĥ
i
(GR, p∗Hj(A)) =⇒ Hi+j(π̂∗A). (103)

Here, given a sheaf of Z[GR]-modules F on X∞, we denote by Ĥ
i
(GR,F) the

sheaf assoiated with the presheaf U → Ĥi(GR,F(U)). The spetral sequene
(103) shows that π̂∗ preserves quasi-isomorphisms. Hene π̂∗ indues a funtor

Rπ̂∗ : D+(GR,X (C)) −→ D(X∞).

The spetral sequene above reads as follows:

Ĥ
i
(GR, p∗Hj(A)) =⇒ Hi+j(Rπ̂∗A). (104)

Note that the map P∗ → P+ gives a natural transformation Rπ∗ → Rπ̂∗. We

shall need the following

Lemma 6.3. Let A be a bounded below omplex of abelian sheaves on

Sh(GR,X (C)). There are anonial isomorphisms

RΓ̂(GR,X (C),A) ≃ RΓ(X∞, Rπ̂∗A) ≃ RΓ(X (R), Rπ̂∗A|X (R)).

Proof. Let A → I∗ be an injetive resolution. The �rst isomorphism follows

from the following anonial identi�ations:

RΓ(X∞, Rπ̂∗A) ≃ RΓ(X∞,
∫

HomSh(GR,X∞)(Γ
∗P∗, p∗I

∗)) (105)

≃ Γ(X∞,
∫

HomSh(GR,X∞)(Γ
∗P∗, p∗I

∗)) (106)

≃
∫

Γ(X∞,HomSh(GR,X∞)(Γ
∗P∗, p∗I

∗)) (107)

≃
∫

HomGR−Mod(P∗,Γ(X∞, p∗I∗)) (108)

≃
∫

HomGR−Mod(P∗,Γ(X (C), I∗)) (109)

≃ RΓ̂(GR,X (C),A). (110)
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Here (105) follows from the spetral sequene (104); (106) and (107) follow

from the fat that X∞ is ompat and �nite dimensional. Indeed, the sheaves

HomSh(GR,X∞)(Γ
∗Pk, p∗I

l) are injetive abelian equivariant sheaves (hene in

partiular injetive abelian sheaves) sine Pk is a �nitely generated free Z[GR]-
module. Moreover, a diret sum of injetive sheaves is ayli for the global

setions funtor Γ(X∞,−), sine Hi(X∞,−) ommutes with diret sums. It

follows that

∫
HomSh(GR,X∞)(Γ

∗P∗, p∗I
∗)) is a omplex of ayli sheaves, hene

(106) follows from the fat that Γ(X∞,−) has �nite ohomologial dimension.

The identi�ation (107) is valid sine Γ(X∞,−) ommutes with diret sums,

and (108) is given by adjuntion.

The seond isomorphism of the Lemma follows from the fat that Hi(Rπ̂∗A)
is onentrated on the losed subset X (R) ⊆ X∞ for any i ∈ Z.

6.5 The motivi omplex Z(n)X

The onstrution of Z(n)X requires the following lemma.

Lemma 6.4. Let Z(n)→ I(n) be a K-injetive resolution. There is a anonial

morphism of omplexes of abelian sheaves on X et
σX ,Z(n) : φ∗I(n) −→ u∞,∗τ

>nπ̂∗α
∗(τ≥0I(n))

suh that σX ,Z(n) indues the following morphism in D(X et)

Rφ∗Z(n) −→ u∞,∗u
∗
∞Rφ∗Z(n)

∼−→ u∞,∗R(π∗α
∗)Z(n)

−→ u∞,∗Rπ∗α
∗(τ≥0Z(n))

−→ u∞,∗Rπ̂∗α
∗(τ≥0Z(n))

−→ u∞,∗τ
>nRπ̂∗α

∗(τ≥0Z(n)).

Proof. We onsider the morphism

φ∗I(n) −→ u∞,∗u
∗
∞φ∗I(n)

∼−→ u∞,∗π∗α
∗I(n)

−→ u∞,∗π∗α
∗(τ≥0I(n))

−→ u∞,∗π̂∗α
∗(τ≥0I(n))

−→ u∞,∗τ
>nπ̂∗α

∗(τ≥0I(n))

where the �rst map is given by adjuntion and the seond map is given by

(101). The fourth map is given by the natural transformation π∗ → π̂∗ indued
by P∗ → Z.

Definition 6.5. We onsider the following morphisms of omplexes:

σX ,Z(n) : φ∗I(n) −→ u∞,∗τ
>nπ̂∗α

∗(τ≥0I(n))

σ!
X ,Z(n)

: φ∗I(n) −→ u∞,∗π̂∗α
∗(τ≥0I(n))
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and we de�ne

Z(n)X := Cone(σX ,Z(n))[−1]
Rφ̂!Z(n) := Cone(σ!

X ,Z(n)
)[−1].

Notie that Z(n)X and Rφ̂!Z(n) are well de�ned in the derived ategoryD(X et),
i.e. they do not depend on the hoie of I(n) up to a anonial isomorphism

in D(X et).

Proposition 6.6. We have anonial morphisms of omplexes

Rφ̂!Z(n) −→ Z(n)X −→ Rφ∗Z(n)

If X (R) = ∅, these two maps are quasi-isomorphisms.

Proof. The maps are the obvious ones. The ohomology sheaves of the om-

plex Rπ̂∗α
∗(τ≥0Z(n)) are onentrated on X (R) (see Lemma 6.7 below). In

partiular, X (R) = ∅ implies that Rπ̂∗α
∗(τ≥0Z(n)) ≃ 0.

Lemma 6.7. For any n ∈ Z, we have a anonial isomorphism

Rπ̂∗(τ
≥0α∗Z(n)) ≃ Rπ̂∗((2iπ)nZ)

in the derived ategory D(X∞). For n ≥ 0 the natural map of omplexes

τ>nR(π∗α
∗)Z(n) −→ τ>nRπ̂∗(τ

≥0α∗Z(n))

is a quasi-isomorphism.

Proof. The exat triangle

α∗Z(n)→ α∗Q(n)→ α∗Q/Z(n)

indues

τ≥0α∗Z(n)→ τ≥0α∗Q(n)→ τ≥0α∗Q/Z(n)

sine α∗Q/Z(n) is onentrated in degree 0. This gives another exat triangle

Rπ̂∗(τ
≥0α∗Z(n))→ Rπ̂∗(τ

≥0α∗Q(n))→ Rπ̂∗α
∗Q/Z(n).

The spetral sequene (104) and the fat that τ≥0α∗Q(n) is bounded show that

the ohomology sheaves of Rπ̂∗(τ
≥0α∗Q(n)) are 2-primary torsion. Sine they

are also divisible, they vanish. We obtain

Rπ̂∗(τ
≥0α∗Z(n)) ≃ Rπ̂∗α∗Q/Z(n)[−1].

We have isomorphisms

α∗Q/Z(n) ≃ lim−→µ⊗nm (C)[0] ≃ (2iπ)nQ/Z[0]
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in the derived ategory of GR-equivariant abelian sheaves on X (C). We obtain

Rπ̂∗(τ
≥0α∗Z(n)) ≃ Rπ̂∗α∗Q/Z(n)[−1]

≃ Rπ̂∗((2iπ)nQ/Z)[−1] ≃ Rπ̂∗((2iπ)nZ)
where the last isomorphisms follows from the exat sequene

0→ (2iπ)nZ→ (2iπ)nQ→ (2iπ)nQ/Z→ 0

of GR-equivariant abelian sheaves and from the fat that Rπ̂∗(2iπ)
nQ ≃ 0 as

above.

We prove the seond assertion. Let Sh(Xet,Q) and Sh(X∞,Q) (respetively
Sh(Xet,Z) and Sh(X∞,Z)) be the ategories of sheaves of Q-vetor spaes

(respetively of abelian groups) on Xet and X∞ respetively. The inlusion

funtor i : Sh(Xet,Q) → Sh(Xet,Z) is exat and preserves K-injetive om-

plexes. Moreover the funtor π∗α
∗ ◦ i : Sh(Xet,Q)→ Sh(X∞,Q) is exat. We

obtain

π∗α
∗ ◦ i ≃ R(π∗α∗ ◦ i) ≃ R(π∗α∗)Ri ≃ R(π∗α∗)i

hene

R(π∗α
∗)Q(n) = π∗α

∗Q(n).

In partiular we have

Hp(R(π∗α∗)Q(n)) ≃ Hp(π∗α∗Q(n)) = 0

for p > n, sine α∗Q(n) is ayli in degrees p > n. Then we onsider the long

exat sequene

Hn(R(π∗α∗)Q(n))→ Hn(R(π∗α∗)Q/Z(n))→ Hn+1(R(π∗α
∗)Z(n))

→ 0→ Hn+1(R(π∗α
∗)Q/Z(n))→ Hn+2(R(π∗α

∗)Z(n))→ 0→ · · ·
The omplex α∗Q/Z(n) ≃ (2iπ)nQ/Z[0] is onentrated in degree zero, hene

the abelian sheaf

Hn(R(π∗α
∗)Q/Z(n)) = Hn(Rπ∗(α

∗Q/Z(n))) = Rnπ∗(α
∗Q/Z(n)) ≃ Rnπ∗((2iπ)

nQ/Z)

is killed by two for any n > 0 (see Lemma 6.1). It follows that the map

Hn(R(π∗α∗)Q(n))→ Hn(R(π∗α∗)Q/Z(n))
is the zero map for n > 0, so that the long exat sequene above gives isomor-

phisms

Hi−1(Rπ∗(α∗Q/Z(n))) ∼→ Hi(R(π∗α∗)Z(n)) for any i > n.

We obtain

τ>n(R(π∗α
∗)Z(n)) ≃ τ>n(R(π∗α

∗)Q/Z(n)[−1])
≃ τ>n(Rπ∗(α

∗Q/Z(n))[−1])
≃ τ>n(Rπ∗(2iπ)

nQ/Z[−1])
≃ τ>n(Rπ∗(2iπ)

nZ)
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for any n > 0. Note that

τ>n(R(π∗α
∗)Z(n)) ≃ τ>n(Rπ∗(2iπ)nZ) (111)

also holds for n = 0 sine Z(0) ≃ Z[0]. It follows that the omposite map

τ>nR(π∗α
∗)Z(n) −→ τ>nRπ̂∗(τ

≥0α∗Z(n))
∼−→ τ>nRπ̂∗((2iπ)

nZ)

is an isomorphism in the derived ategory. The result follows.

Corollary 6.8. For any n ∈ Z, we have exat triangles

Z(n)X → Rφ∗Z(n)→ u∞,∗τ
>nRπ̂∗(2iπ)

nZ

and

Rφ̂!Z(n)→ Rφ∗Z(n)→ u∞,∗Rπ̂∗(2iπ)
nZ.

Proof. This follows from Lemma 6.7 together with the de�nition of Z(n)X and

Rφ̂!Z(n).

In partiular we have isomorphisms

Ru!∞Z(n)X ≃
(
τ>nRπ̂∗((2iπ)

nZ)
)
[−1] (112)

and

Ru!∞(Rφ̂!Z(n)) ≃ Rπ̂∗((2iπ)nZ)[−1].

Proposition 6.9. For any n ∈ Z, we have an isomorphism in D(Xet):

φ∗Z(n)X ≃ Z(n)X .

For n ≥ 0, we have an isomorphism in D(X∞):

u∗∞Z(n)X ≃ τ≤nu∗∞Rφ∗Z(n).

Proof. Applying φ∗ to the �rst exat triangle of Corollary 6.8, we obtain

φ∗Z(n)X ≃ Z(n)X sine φ∗Rφ∗ = R(φ∗φ∗) = Id and φ∗u∞,∗ = 0. For n ≥ 0,
we have an exat triangle

Z(n)X → Rφ∗Z(n)
X → u∞,∗(τ

>nR(π∗α
∗)Z(n))

by Lemma 6.7. Applying u∗∞ to this exat triangle, we obtain

u∗∞Z(n)X → u∗∞Rφ∗Z(n)
X → τ>nu∗∞Rφ∗Z(n)

sine u∗∞u∞,∗ = Id and R(π∗α
∗) ≃ R(u∗∞φ∗) ≃ u∗∞Rφ∗.
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Proposition 6.10. Let n ≥ 0. If Hi(Z(n)X ) = 0 for any i > n then the map

Z(n)X → Rφ∗Z(n)
X

indues a quasi-isomorphism

Z(n)X
∼−→ τ≤n(Rφ∗Z(n)

X ).

This is for example the ase for X smooth over a number ring.

Proof. Reall that the family of exat funtors (φ∗, u∗∞) is onservative. More-

over, the omplex Z(n)X is ayli in degree > n, hene so is the omplex

Z(n)X by Proposition 6.9. Hene the map Z(n)X → Rφ∗Z(n)
X
fators though

Z(n)X → τ≤n(Rφ∗Z(n)
X ). This map is a quasi-isomorphism if and only if it is

a quasi-isomorphism after applying the funtors φ∗ and u∗∞. Hene the result
follows from Proposition 6.9.

Proposition 6.11. We have Z(0)X ≃ Z and Z(1)X ≃ φ∗Gm[−1], where Z

denotes the onstant sheaf on X et, and Gm denotes the multipliative group on

Xet.
Proof. In view of Z(0) ≃ Z[0] and Z(1) ≃ Gm[−1], this follows from Proposition

6.10.

6.6 Funtoriality

Let f : X → Y be an equidimensional �at map between (regular proper)

arithmeti shemes. Reall that �at pull-bak of yles indues a morphism

Z(n)Y → Rf∗Z(n)
X
. We onsider the following ommutative diagram of topoi:

Xet
f∞

��

φX

// X et
f
��

X∞
f∞

��

uX
∞oo

Yet
φX

// Yet Y∞
uX
∞oo

Proposition 6.12. For any n ∈ Z, the pull-bak map Z(n)Y → Rf∗Z(n)
X
in-

dues ompatible maps Z(n)Y → Rf∗Z(n)
X

and Rφ̂Y! Z(n)
Y → Rf∗Rφ̂

Y
! Z(n)

X

in D(Yet).
Proof. The following diagram

RφY∗ (Z(n))
Y

��

// RφY∗ Rf∗Z(n)
X

��

∼ // Rf∗Rφ
X
∗ Z(n)

X

��
uY∞,∗τ

>nRπ̂Y∗ ((2iπ)
nZ) // uY∞,∗Rf∞,∗τ

>nRπ̂X∗ ((2iπ)
nZ)

∼ // Rf∗u
X
∞,∗τ

>nRπ̂X∗ ((2iπ)
nZ)

ommutes in D(Yet), hene there exists a map

Z(n)Y −→ Rf∗Z(n)
X
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sitting in a morphism of exat triangles. If n ≥ 0, suh a map is unique

sine u∗∞Z(n))Y is onentrated in degrees ≤ n by Proposition 6.9, whereas

Rf∞,∗τ
>nRπ̂X∗ ((2iπ)

nZ) is onentrated in degrees ≥ n+ 2.

For arbitrary n ∈ Z, we represent the previous diagram by a ommutative

diagram of atual omplexes of sheaves (using Lemma 6.4 and Lemma 6.7),

and we use the fat that the one is funtorial (note that the right horizontal

maps are isomorphisms of omplexes). We de�ne similarly a anonial map

Rφ̂Y! Z(n)
Y −→ Rf∗Rφ̂

X
! Z(n)X

suh that the following diagram ommutes

Rφ̂Y! Z(n)
Y

��

// Z(n)Y

��

∼ // RφY∗ Z(n)
Y

��
Rf∗Rφ̂

X
! Z(n)X // Rf∗Z(n)

X ∼ // Rf∗Rφ
X
∗ Z(n)

X

6.7 Relationship with Milne's ohomology with ompat support

We start with the de�nition of ohomology with ompat support with respet

to the Artin-Verdier ompati�ation: we de�ne

RΓc(Xet,A) := RΓ(X et, φ!A)

for any bounded below omplex A of abelian sheaves on Xet. There is an exat

triangle

RΓc(Xet,A)→ RΓ(X et,A)→ RΓ(X∞, u∗∞A).

Proposition 6.13. We have an exat triangle

RΓc(Xet,A)→ RΓ(Xet,A)→ RΓ(GR,X (C), α∗A).

Proof. Using Lemma 6.2, we obtain an exat triangle

φ!A → Rφ∗A → u∞,∗Rπ∗(α
∗A).

The result then follows from the anonial identi�ations

RΓ(X et, u∞,∗Rπ∗(α∗A)) ≃ RΓ(X∞, Rπ∗(α∗A)) ≃ RΓ(GR,X (C), α∗A).

Doumenta Mathematia 23 (2018) 1425�1560



1524 Matthias Flah and Baptiste Morin

We now reall Milne's de�nition for étale ohomology with ompat sup-

port [69℄. Let A be an abelian sheaf on Spec(Z)et. One de�nes a omplex

RΓ̂c(Spec(Z)et, A) so that there is an exat triangle

RΓ̂c(Spec(Z)et, A)→ RΓ(Spec(Z)et, A)→ RΓ̂(GR, v
∗A)

where RΓ̂(GR,−) denotes Tate ohomology of the �nite group GR and v :
Spec(C) → Spec(Z) is the unique map. This de�nition generalizes as follows.

Let f : X → Spec(Z) be a proper sheme over Spec(Z), and let A be a omplex

of abelian sheaves on Xet whose restrition AX [1/S] to X [1/S] := X ⊗Z Z[1/S]
is bounded below, for some �nite set S of prime numbers. Then v∗Rf∗A is

bounded below, and one de�nes

RΓ̂c(Xet,A) := RΓ̂c(Spec(Z)et, Rf∗A)

so that we have an exat triangle

RΓ̂c(Xet,A)→ RΓ(Xet,A)→ RΓ̂(GR, v
∗Rf∗A).

Lemma 6.14. Let A be a omplex of abelian sheaves suh that AX [1/S] is a

bounded below omplex of loally onstant torsion abelian sheaves, for some

�nite set of primes S. Then we have an exat triangle

RΓ̂c(Xet,A)→ RΓ(Xet,A)→ RΓ̂(GR,X (C), α∗A).

Proof. By proper base hange we have an isomorphism

v∗Rf∗A ≃ RΓet(X ⊗Z C,AX⊗ZC)

where AX⊗ZC is the pull-bak of A to X ⊗Z C. Artin's omparison theorem

then gives

RΓ(X (C), α∗A) ≃ RΓet(X ⊗Z C,AX⊗ZC) ≃ v∗Rf∗A

hene

RΓ̂(GR,X (C), α∗A) ≃ RΓ̂(GR, v
∗Rf∗A).

Proposition 6.15. For any n ∈ Z and any m ≥ 1, we have an isomorphism

RΓ(X et, Rφ̂!Z(n)) ⊗L Z/mZ ≃ RΓ̂c(Xet,Z/m(n)).

Proof. By de�nition of Rφ̂!Z(n), Lemma 6.3 and Lemma 6.7, we have an exat

triangle

RΓ(X et, Rφ̂!Z(n))⊗LZ/mZ→ RΓ(Xet,Z/m(n))→ RΓ̂(GR,X (C), (2iπ)nZ/m)

whih an be identi�ed with the triangle of Lemma 6.14.
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This suggests the following

Notation 6.16. We set

RΓ̂c(Xet,Z(n)) := RΓ(X et, Rφ̂!Z(n))

and

Ĥi
c(Xet,Z(n)) := Hi(X et, Rφ̂!Z(n)).

Proposition 6.17. There are anonial exat triangles

Rφ̂!Z(n)→ Z(n)X → u∞,∗τ
≤nRπ̂∗(2iπ)

nZ

and

RΓ̂c(Xet,Z(n))→ RΓ(X et,Z(n))→ RΓ(X (R), τ≤nRπ̂∗(2iπ)nZ).

Proof. We have a ommutative diagram with exat rows and olumns:

Rφ̂!Z(n)

��

// Rφ∗Z(n) //

��

u∞,∗Rπ̂∗(2iπ)
nZ

��
Z(n)X

��

// Rφ∗Z(n) //

��

u∞,∗τ
>nRπ̂∗(2iπ)

nZ

��
u∞,∗τ

≤nRπ̂∗(2iπ)
nZ // 0 // u∞,∗τ≤nRπ̂∗(2iπ)nZ[1]

The result follows.

Corollary 6.18. For any i ≥ dim(X ) + n, there is a anonial isomorphism

Hi(X et,Z(n)) ≃ Ĥi
c(Xet,Z(n)).

Proof. This follows immediately from the exat triangle

RΓ(X (R), τ≤nRΓ̂(GR, (2iπ)
nZ))[−1]→ RΓ̂c(Xet,Z(n))→ RΓ(X et,Z(n))

sine X (R) has topologial dimension ≤ dim(X ) − 1.

Corollary 6.19. We have Hi(X et,Z(d)) = 0 for any i > 2d+ 2 and there is

a anonial trae map H2d+2(X et,Z(d))→ Q/Z.

Proof. We may assume X �at over Z. By Corollary 6.18, we have

Hi(X et,Z(d)) ≃ Ĥi
c(Xet,Z(d)) for i ≥ 2d. We have Ĥi

c(Xet,Q(d)) ≃
Hi(XZar,Q(d)) = 0 for i ≥ 2d (the ase i = 2d follows from the fat that

CHd(X ) is �nite). We get Ĥi
c(Xet,Z(d)) ≃ Ĥi−1

c (Xet,Q/Z(d)) for i > 2d. Us-

ing [39℄, we �nd Ĥi
c(Xet,Q/Z(d)) = 0 for i > 2d + 1. The push-forward map

Rf∗Z(d)[−2d]→ Z(1)[−2] indues a morphism from

Ĥ2d+1
c (X ,Z/m(d)) = Ĥ2d+1

c (Spec(Z), Rf∗Z/m(d))
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to

Ĥ3
c (Spec(Z),Z/m(1)) ≃ Z/m

where the last identi�ation follows from Z(1) ≃ Gm[−1] and lassial Artin-

Verdier duality.

6.8 Produts

We onsider below produt maps Z(n)⊗L Z(m)→ Z(n+m) in D(Xet). These
produt maps are always assumed to indue, after (−) ⊗L Z/rZ, the natural

maps µ⊗nr ⊗ µ⊗nr → µ⊗n+mr over the étale site of X ′[1/r], where X ′ ⊂ X is an

open subsheme whih is smooth over Z.

We shall use the following observation. Consider the omplete resolution P∗
and the ompleted tensor produt P∗⊗̂P∗, whih is de�ned as the total omplex

of the double omplex (Pi ⊗ Pj)i,j∈Z with respet to the diret produt on

anti-diagonals: one has (P∗⊗̂P∗)n =
∏
i+j=n Pi ⊗ Pj . The produt on Tate

ohomology is indued by a map P∗ → P∗⊗̂P∗. Let Γ∗ be the funtor whih

sends a GR-module to the orresponding onstant GR-equivariant sheaf on X∞.
Then Γ∗ ommutes with both tensor produts and diret produts. Hene the

map P∗ → P∗⊗̂P∗ indues Γ∗(P∗) → Γ∗(P∗)⊗̂Γ∗(P∗), whih in turn indues a

produt map

Rπ̂∗(2iπ)
nZ⊗L Rπ̂∗(2iπ)mZ→ Rπ̂∗(2iπ)

n+mZ (113)

for any n,m ∈ Z. Moreover, the morphism Rφ∗Z(n) → u∞,∗Rπ̂∗(2iπ)
nZ of

Corollary 6.8 is ompatible with the produts (113) and (114) de�ned below.

More preisely, the square

u∗∞Rφ∗Z(n) ⊗L u∗∞Rφ∗Z(m)
(114) //

��

u∗∞Rφ∗Z(n+m)

��
Rπ̂∗(2iπ)

nZ⊗L Rπ̂∗(2iπ)mZ
(113) // Rπ̂∗(2iπ)n+mZ

ommutes. To see this, we �rst remark that Rπ̂∗(2iπ)
n+mZ is a omplex of

sheaves of Z/2Z-modules by (119). By adjuntion, it is enough to hek that the

square above ommutes after (−)⊗LZ Z/2Z, whih follows from our assumption

on the produt Z(n)⊗L Z(m)→ Z(n+m).

Proposition 6.20. Let n,m ≥ 0 be non-negative integers. A produt map

Z(n)⊗LZ(m)→ Z(n+m) as above over X indues a unique produt map over

X :
Z(n)X ⊗L Z(m)X → Z(n+m)X .

Proof. The produt map Z(n)⊗ Z(m)→ Z(n+m) in D(Xet) indues

Rφ∗Z(n) ⊗L Rφ∗Z(m)→ Rφ∗Z(n+m) (114)
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in D(X et), and we onsider

Z(n)X ⊗L Z(m)X → Rφ∗Z(n)⊗L Rφ∗Z(m)→ Rφ∗Z(n+m). (115)

We now remark that the omposite map

Z(n)X ⊗L Z(m)X → Rφ∗Z(n+m)→ u∞,∗τ
>n+mRπ∗(2iπ)

n+mZ

is zero and that

HomD(Xet)
(Z(n)X ⊗L Z(m)X , u∞,∗τ

>n+mRπ∗(2iπ)
n+mZ[−1]) = 0

simply beause

u∗∞Z(n)X ⊗L u∗∞Z(m)X ≃ τ≤nu∗∞Rφ∗Z(n)⊗L τ≤mu∗∞Rφ∗Z(m)

is onentrated in degrees ≤ n +m by Proposition 6.9. It follows that (115)

indues a unique map

Z(n)X ⊗L Z(m)X → Z(m)X .

Remark 6.21. If Z(n), Z(m) and Z(n +m) are ayli in degrees > n, > m
and > n+m respetively, then (114) indues

τ≤nRφ∗Z(n) ⊗L τ≤mRφ∗Z(n+m)→ τ≤n+mRφ∗Z(n+m)

by adjuntion. Proposition 6.20 then follows somewhat more diretly from

Proposition 6.10. This applies for X smooth over a number ring.

Proposition 6.22. Let n,m ∈ Z be arbitrary integers. A produt map Z(n)⊗
Z(m)→ Z(n+m) over X indues in a non-anonial way produt maps

Z(n)X ⊗L Z(m)X → Z(n+m)X (116)

and

Rφ̂!Z(n)⊗L Rφ∗Z(m)→ Z(n+m)X . (117)

If n ≥ 0 these produt maps an be hosen so that the indued square

Rφ̂!Z(n) //

��

RHom(Rφ∗Z(m),Z(n +m)X )

��

Z(n)X // RHom(Z(m)X ,Z(n+m)X )

ommutes.
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Proof. We need to show that the omposite map

Z(n)X ⊗L Z(m)X → Rφ∗Z(n) ⊗L Rφ∗Z(m)

→ Rφ∗Z(n+m)→ u∞,∗τ
>n+mRπ̂∗(2iπ)

n+mZ

is the zero map. This follows from the fat that the map

Rφ∗Z(n)⊗L Rφ∗Z(m)→ u∞,∗τ
>n+mRπ̂∗(2iπ)

n+mZ

fators through

τ>n+m
(
u∞,∗Rπ̂∗(2iπ)

nZ⊗L u∞,∗Rπ̂∗(2iπ)mZ
)

on the one hand and that

Z(n)X ⊗L Z(m)X → u∞,∗Rπ̂∗(2iπ)
nZ⊗L u∞,∗Rπ̂∗(2iπ)mZ

fators through

u∞,∗τ
≤nRπ̂∗(2iπ)

nZ⊗L u∞,∗τ≤mRπ̂∗(2iπ)mZ

on the other. This gives the existene of (116), whih however is non-unique in

general beause

u∗∞Z(n)X ⊗L u∗∞Z(m)X

fails to be onentrated in degrees ≤ n+m (e.g. take n << 0). We obtain by

a similar argument a non-anonial map (117).

We now show that these produt maps (116) and (117) may be hosen to be

ompatible, at least for n ≥ 0. In view of

u∞,∗τ
>n+mRπ̂∗(2iπ)

n+mZ ≃ u∞,∗τ≥n+m+2Rπ̂∗(2iπ)
n+mZ

we see that the group

HomD(X)(u∞,∗τ
≤nRπ̂∗(2iπ)

nZ⊗L u∞,∗τ
≤mRπ̂∗(2iπ)

mZ[ǫ], u∞,∗τ
>n+mRπ̂∗(2iπ)

n+mZ)

vanishes for ǫ = 0, 1. It follows that the map

u∞,∗τ
≤nRπ̂∗(2iπ)

nZ⊗L u∞,∗Rπ̂∗(2iπ)mZ→ u∞,∗τ
>n+mRπ̂∗(2iπ)

n+mZ

obtained from (113), indues a unique map

u∞,∗τ
≤nRπ̂∗(2iπ)

nZ⊗L u∞,∗τ>mRπ̂∗(2iπ)mZ→ u∞,∗τ
>n+mRπ̂∗(2iπ)

n+mZ.
(118)

We obtain a ommutative diagram

Z(n)X ⊗L Z(m)X

��

Z(n+m)X

��
Z(n)X ⊗L Rφ∗Z(m) //

��

Rφ∗Z(n+m)

��
Z(n)X ⊗L u∞,∗τ>mRπ̂∗(2iπ)mZ // u∞,∗τ>n+mRπ̂∗(2iπ)n+mZ
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where the lower horizontal map is the omposition of (118) with

Z(n)X ⊗L u∞,∗τ
>mRπ̂∗(2iπ)

m
Z→ u∞,∗τ

≤nRπ̂∗(2iπ)
n
Z⊗L u∞,∗τ

>mRπ̂∗(2iπ)
m
Z.

The olumns are exat triangles hene one may hoose a map (116) whih turns

this diagram into a morphism of exat triangles. It follows that the square

Z(n)X

��

(116) // RHom(Z(m)X ,Z(n+m)X )

��

u∞,∗τ
≤nRπ̂∗(2iπ)

nZ // RHom(u∞,∗τ
>mRπ̂∗(2iπ)

mZ[−1],Z(n+m)X )

ommutes, where the left vertial map is indued by adjuntion

Z(n)X → u∞,∗u
∗
∞Z(n)X ≃ u∞,∗τ≤nRπ̂∗(2iπ)nZ

and the right vertial map is indued by the map u∞,∗τ
>mRπ̂∗(2iπ)

mZ[−1]→
Z(m)X whih is in turn given by the de�nition of Z(m)X (see Corollary 6.8).

Hene there exists a produt map (117) induing a morphism of exat triangles:

Rφ̂!Z(n)
(117) //

��

RHom(Rφ∗Z(m),Z(n+m)X )

��

Z(n)X

��

(116) // RHom(Z(m)X ,Z(n+m)X )

��

u∞,∗τ
≤nRπ̂∗(2iπ)

nZ // RHom(u∞,∗τ
>mRπ̂∗(2iπ)

mZ[−1],Z(n+m)X )

6.9 Artin-Verdier Duality

The following onjeture is known for X smooth proper over a number ring,

and for regular proper X as long as n ≤ 0. It is expeted to hold for arbitrary

regular proper X .
Conjeture 6.23. AV(X , n) There is a symmetri produt map

Z(n)⊗L Z(d− n)→ Z(d)

in D(Xet) suh that the indued pairing

Ĥi
c(Xet,Z/m(n))×H2d+1−i(Xet,Z/m(d− n))→ Ĥ2d+1

c (Xet,Z/m(d))→ Q/Z

is a perfet pairing of �nite abelian groups for any i ∈ Z and any positive integer

m.
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The aim of this setion is to prove the following result.

Theorem 6.24. Let n ∈ Z. Assume that X satis�es AV(X , n). Then there is

a produt map

Z(n)X ⊗L Z(d − n)X → Z(d)X

in D(X et) suh that the indued pairing

Hi(X et,Z/m(n))×H2d+1−i(X et,Z/m(d−n))→ H2d+1(X et,Z/m(d))→ Q/Z

is a perfet pairing of �nite abelian groups for any i ∈ Z and any positive integer

m.

Proof. By Proposition 6.22 there exist produt maps (116) and (117) induing

a morphism of exat triangles (see the last diagram in the proof of Proposition

6.22). Applying RΓ(X et,−) and omposing with the map

RΓ(X et,Z(d)) −→ τ≥2d+2RΓ(X et,Z(d)) ≃ Q/Z[−2d− 2]

given by Corollary 6.19, we obtain a morphism of exat triangles (setting ñ =
d− n):

RΓ̂(Xet,Z(n)) //

��

RHom(RΓ(Xet,Z(d− n)),Q/Z[−2d− 2])

��
RΓ(X et,Z(n)) //

��

RHom(RΓ(X et,Z(d− n)),Q/Z[−2d− 2])

��
RΓ(X (R), τ≤nRπ̂∗(2iπ)nZ) ∼ // RHom(RΓ(X (R), τ>ñRπ̂∗(2iπ)d−nZ[−1]),Q/Z[−2d− 2])

where the bottom horizontal map is an isomorphism by Lemma 6.25 below.

Applying the funtor (−)⊗L Z/m we obtain a morphism of exat triangles:

RΓ̂(Xet,Z/m(n))
∼ //

��

RHom(RΓ(Xet,Z/m(d− n)),Q/Z[−2d− 1])

��
RΓ(X et,Z/m(n)) //

��

RHom(RΓ(X et,Z/m(d− n)),Q/Z[−2d− 1])

��
RΓ(X (R), τ≤nRπ̂∗(2iπ)nZ/m)

∼ // RHom(RΓ(X (R), τ>ñRπ̂∗(2iπ)d−nZ/m[−1]),Q/Z[−2d− 1])

where top horizontal map is an isomorphism by assumption. The theorem

therefore follows from the following Lemma 6.25.

Lemma 6.25. The produt (2iπ)nZ ⊗ (2iπ)d−nZ → (2iπ)dZ indues a perfet

pairing

Hi(X (R), τ≤nRπ̂∗(2iπ)nZ)×H2d+1−i(X (R), τ>d−nRπ̂∗(2iπ)d−nZ)

→ Hd−1(X (R), Ĥd+2(GR, (2iπ)
dZ))→ Q/Z

of �nite 2-torsion abelian groups.
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Proof. For any integer r, one has an isomorphism

Rπ̂∗((2iπ)
rZ)|X (R) ≃ Γ∗(RΓ̂(GR, (2iπ)

rZ)),

where Γ∗ is the onstant sheaf funtor, and a anonial diret sum deomposi-

tion in D
RΓ̂(GR, (2iπ)

rZ) ≃
⊕

k∈Z

Z/2Z[−r + 2k].

We obtain an isomorphism

Rπ̂∗((2iπ)
rZ)|X (R) ≃

⊕

k∈Z

Z/2Z[−r + 2k] (119)

in D(X (R)), whih is ompatible in the obvious sense with the produt map

(113). The pairing of the lemma is indued by the omposite morphism

RΓ(X (R), τ≤nRπ̂∗(2iπ)nZ)⊗L RΓ(X (R), τ>d−nRπ̂∗(2iπ)d−nZ)
→ RΓ(X (R), τ>dRπ̂∗(2iπ)dZ)→ RΓ(X (R),Z/2Z[−d− 2])

→ Hd−1(X (R),Z/2Z)[−2d− 1]→ Q/Z[−2d− 1]

where we use (118), the diret sum deomposition (119) for r = d, and the fat

that the real manifold X (R) is (d− 1)-dimensional (we may assume X/Z �at).

We need to show that this pairing indues isomorphisms

H2d+1−i(X (R), τ>d−nRπ̂∗((2iπ)d−nZ)) ≃ Hi(X (R), τ≤nRπ̂∗((2iπ)nZ))D
(120)

where (−)D denotes the Pontryagin dual. We have

τ>d−nRπ̂∗((2iπ)
d−nZ) ≃

⊕

k≥0

Z/2Z[−(d+ 2− n)− 2k]

and

τ≤nRπ̂∗((2iπ)
nZ) ≃

⊕

k≥0

Z/2Z[−n+ 2k].

Hene Poinaré duality for the (d − 1)�dimensional real manifold X (R) with
Z/2Z-oe�ients yields

H2d+1−i(X (R), τ>d−nRπ̂∗((2iπ)d−nZ))
≃

⊕

k≥0

H2d+1−i−(d+2−n)−2k(X (R),Z/2Z)

=
⊕

k≥0

H(d−1)−(i−n+2k)(X (R),Z/2Z)

≃
⊕

k≥0

Hi−n+2k(X (R),Z/2Z)D

≃


⊕

k≥0

Hi−n+2k(X (R),Z/2Z)



D

≃ Hi(X (R), τ≤nRπ̂∗((2iπ)nZ))D
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where the sums are all �nite. Note that the manifold X (R) may very well

be non-orientable (e.g. take X = P2
Z) but Poinaré duality still holds with

Z/2Z-oe�ients. The result follows.

Corollary 6.26. Let X be a regular proper sheme of pure dimension d and

let n ≤ 0. There is a produt map Z(n)X ⊗L Z(d− n)X → Z(d)X suh that

H2d+1−i(X et,Z/m(n))×Hi(X et,Z/m(d−n))→ H2d+1(X et,Z/m(d))→ Q/Z

is a perfet pairing of �nite groups for any i ∈ Z.

Proof. The pairing Z(0) ⊗L Z(d) ≃ Z ⊗L Z(d) → Z(d) is the obvious one. By
[39℄[Thm. 7.8℄ the assumption of Theorem 6.24 for n = 0 is ful�lled. The ase

n < 0 will follow from [39℄[Thm. 7.8℄ and from an isomorphism

Z/m(d− n) ≃ RHomX [1/m](µ
⊗n
m [−1],Z(d)).

Let f : X [1/m] → Spec(Z[1/m]) be the unique map. By [39℄[Thm. 7.10℄ and

sine Z(1) ≃ Gm[−1], we have
RHomX [1/m](µ

⊗n
m [−1],Z(d)) ≃ RHomX [1/m](f

∗µ⊗n
m [−1],Z(d)) (121)

≃ Rf !RHomZ[1/m](µ
⊗n
m [−1],Z(1)[−2d+ 2]) (122)

≃ Rf !(Z/m(1− n))[−2d + 2] (123)

≃ Z/m(d− n). (124)

We obtain

Z/pν(d− n) ∼→ Rjp,∗j
∗
pZ/p

ν(d− n) ≃ RHomX (jp,!µ⊗npν [−1],Z(d))

where the �rst isomorphism follows from [39℄[Thm. 7.2(a)℄ and [39℄[Prop. 2.3℄.

Taking the limit over ν and p, we obtain the produt map

Z(d− n)→ holimZ/m(d− n)→ RHomX (Z(n),Z(d))

over X . Finally, the indued map

Ĥi
c(Xet,Z/m(n))×H2d+1−i(Xet,Z/m(d− n))→ Ĥ2d+1

c (Xet,Z/m(d))→ Q/Z

is a perfet pairing of �nite groups by [39℄[Thm. 7.8℄.

Corollary 6.27. Let X be a smooth proper sheme over a number ring and let

n ∈ Z be an arbitrary integer. There is a produt map Z(n)X ⊗L Z(d− n)X →
Z(d)X suh that

H2d+1−i(X et,Z/m(n))×Hi(X et,Z/m(d−n))→ H2d+1(X et,Z/m(d))→ Q/Z

is a perfet pairing of �nite groups for any i ∈ Z.
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Proof. It remains to treat the ase 0 ≤ n ≤ d. By [37℄, the omplex Z/pνZ(n)
is isomorphi (in the derived ategory) to Sato's omplex (see [82℄ and [79℄):

we have Z/pνZ(n) ≃ Tν(n). For general m = pν11 · · · pνss , we simply write

Z/mZ(n) ≃ Z/pν11 Z(n) × · · · × Z/pνii Z(n).

Using this identi�ation with Sato's omplex, there is a anonial produt map

Z/mZ(n)⊗ Z/mZ(d− n)→ Z/mZ(d)

whih is uniquely indued by

µ⊗n
p
νi
i

⊗ µ⊗(d−n)
p
νi
i

→ µ⊗d
p
νi
i

over X [1/pi] for i = 1, ..., s. By [89℄, this produt map is de�ned integrally:

Spitzwek de�nes motivi omplexes Z(n)S on Xet whih are anonially iso-

morphi (in the derived ategory) to Bloh's yle omplexes Z(n) on X
(sine X is assumed to be smooth over a number ring), and produt maps

Z(n)S ⊗L Z(d − n)S → Z(d)S induing the produt on Sato's omplexes. By

[79℄[10.1.3℄ the indued map

Ĥi
c(Xet,Z/m(n))×H2d+1−i(Xet,Z/m(d− n))→ Ĥ2d+1

c (Xet,Z/m(d))→ Q/Z

is a perfet pairing of �nite abelian groups for any i ∈ Z and any positive

integer m, so that Theorem 6.24 applies.

6.10 The onjeture AV(f, n)

Let f : X → Y be a �at map of relative dimension c between onneted

regular proper arithmeti shemes of dimension dX and dY respetively. We

have anonial maps

RΓ̂c(Yet,Q/Z(n)) −→ RΓ̂c(Xet,Q/Z(n)). (125)

and

RΓ(Yet,Q/Z(n)) −→ RΓ(X et,Q/Z(n)). (126)

Assume that AV(X et, n) and AV(Yet, n) hold. This yields isomorphisms

RΓ(Yet, Ẑ(dY − n)) ∼→ RHom(RΓ̂c(Yet,Q/Z(n)),Q/Z[−2dY − 1])

and

RΓ(Xet, Ẑ(dX − n)) ∼→ RHom(RΓ̂c(Xet,Q/Z(n)),Q/Z[−2dX − 1])

in D, where

RΓ(Yet, Ẑ(d− n)) := holimRΓ(Yet,Z/m(d− n)).
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Hene (125) indues a morphism

RΓ(Xet, Ẑ(dX − n)) −→ RΓ(Yet, Ẑ(dY − n))[−2c]. (127)

We obtain similarly a morphism

RΓ(X et, Ẑ(dX − n)) −→ RΓ(Yet, Ẑ(dY − n))[−2c]. (128)

Conjeture 6.28. AV(f, n) The diagram

RΓ(XZar,Z(dX − n))

��

// RΓ(Xet, Ẑ(dX − n))

(127)

��

RΓ(X et, Ẑ(dX − n))oo

(128)

��
RΓ(YZar ,Z(dY − n))[−2c] // RΓ(Yet, Ẑ(dY − n))[−2c] RΓ(Yet, Ẑ(dY − n))[−2c]oo

ommutes in D, where the horizontal maps are the evident ones and the left

vertial map is indued by proper push-forward of yles.

6.11 The projetive bundle formula

For n < 0, the omplex RΓ(X et,Z(n)) may have non-trivial ohomology in

negative degrees. The following proposition shows that this surprising fat is a

onsequene of the projetive bundle formula. We only treat the simplest (but

deisive) ase X = Spec(Z).

Proposition 6.29. There is an isomorphism

RΓ(PmZ ,et,Z) ≃
⊕

0≤n≤m

RΓ(Spec(Z)et,Z(−n))[−2n].

Proof. By proper base hange, one has

RΓ(PmZ,et,Z) ≃
⊕

0≤n≤m

RΓ(Spec(Z)et,Z(−n))[−2n].

Moreover, one has τ>0Rπ̂∗Z ≃
⊕

k>0 Z/2Z[−2k] by (119) hene

RΓ(Pm(R), τ>0Rπ̂∗Z) =
⊕

k>0

RΓ(Pm(R),Z/2Z)[−2k].

Let S
m ⊂ Rm+1

be the m-sphere endowed with its natural (antipodal) ation

of {±1}. A look at the spetral sequene for the Galois over

S
m −→ S

m/{±1} ≃ Pm(R)

shows that the anonial map

RΓ({±1},Z/2Z)≤m → RΓ({±1},Z/2Z)→ RΓ(Pm(R),Z/2Z)
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is an isomorphism. This yields

RΓ(Pm(R),Z/2Z) ≃
⊕

0≤n≤m

Z/2Z[−n].

We obtain

RΓ(Pm(R), τ>0Rπ̂∗Z) ≃
⊕

k>0

RΓ(Pm(R),Z/2Z)[−2k]

≃
⊕

k>0

⊕

0≤n≤m

Z/2Z[−n][−2k]

≃
⊕

0≤n≤m

⊕

k>0

Z/2Z[−2k + n][−2n]

≃
⊕

0≤n≤m

τ>−nRΓ̂(GR, (2iπ)
−nZ)[−2n]

We obtain an exat triangle

RΓ(Pm
X ,et

,Z)→
⊕

0≤n≤m

RΓ(Spec(Z)et,Z(−n))[−2n]→
⊕

0≤n≤m

τ
>−n

RΓ̂(GR, (2iπ)
−n

Z)[−2n]

where the seond map is the sum of the maps RΓ(Spec(Z)et,Z(−n)) →
τ>−nRΓ̂(GR, (2iπ)

−nZ). The result follows.

7 Appendix B: Motivi and syntomi ohomology

The �rst purpose of this appendix is to formulate a onjetural relation between

(p-adially ompleted ohomology of) higher Chow omplexes and syntomi

ohomology for arbitrary regular arithmeti shemes over loal integer rings,

extending results of Geisser [37℄ in the smooth ase. Whereas [37℄ applies with

integral oe�ients under the assumption 0 ≤ n < p− 1 we shall only onsider

rational oe�ients but any n ∈ Z. The seond purpose is to disuss the motivi

deomposition of p-adially ompleted motivi ohomology whih is neessary

to ompare our main onjeture to the Tamagawa Number Conjeture. This

appendix is only needed in the main body of the text in setion 5.6, and then

only in the restrited setting of smooth shemes for whih more omplete results

are known (see Prop. 7.21 and the remarks following it).

For any equidimensional sheme Y and n ∈ Z we de�ne the omplex of étale

sheaves

Z(n) = zn(−, 2n− ∗)
from Bloh's higher Chow omplex (and we retain the ohomologial indexing

even if Y is singular). For any prime number l we set

RΓ(Y,Zl(n)) = holim•RΓ(Y,Z(n)/l
•); RΓ(Y,Ql(n)) = RΓ(Y,Zl(n))Q

(129)
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where ohomology groups are always understood in the étale topology. For n <
0 we have Z(n) = 0 whih di�ers from the de�nition in setion 3.1. However,

the two de�nitions will lead to the same ohomology with Ql(n)-oe�ients in

Cor. 7.6 and Cor. 7.17 below.

In the following a regular sheme will always assumed to be (essentially) of

�nite type over a �eld or a Dedekind ring.

Conjeture 7.1. For a regular sheme X the omplex Z(n) on Xet is (oho-
mologially) onentrated in degrees ≤ n.

This onjeture is known if X is smooth over a �eld or Dedekind ring by

[37℄[Cor. 4.4℄. Note that the Bloh omplex of presheaves Z(n) is onentrated
in degrees ≤ 2n and so the onjeture says that the shea��ation (in the étale

topology) of Hi(Z(n)) vanishes for i = n + 1, ..., 2n. This should be true for

the Zariski topology as well.

Lemma 7.2. If Conjeture 7.1 holds, l is invertible on X and n ≥ 0 then

Z(n)/l• ∼= µ⊗nl• on Xet.

Proof. This is [92℄[Thm. 2.6℄, noting that trunation is unneessary under

Conjeture 7.1.

We shall usually onsider the following loal setting. For a prime p let K/Qp
be a �nite extension with maximal unrami�ed subextension K0/Qp. We set

s = Spec(k), S = Spec(OK), η = Spec(K)

and

η̄ = Spec(η̄), s̄ = Spec(k̄), Sur = Spec(OurK ), ηur = Spec(Kur)

where k is the residue �eld ofK andKur/K the maximal unrami�ed extension.

We denote by ι : s→ S and j : η → S the omplementary immersions. Finally,

we let

f : X → S

be a �at, projetive morphism of relative dimension d − 1 and we assume

throughout that X is a regular sheme. We denote the base hange of a map

by indexing it with the soure of the base hange map to its target. For example,

ιX : Xs → X is the losed immersion of the speial �bre.

7.1 l-adi ohomology

In this setion l is a prime number di�erent from p. We summarize here some

fats from l-adi ohomology in order to motivate the onjetures of the next

setion.
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7.1.1 Loalization triangles

There is a loalization triangle

RΓXs̄(XSur ,Ql)→ RΓ(XSur ,Ql)→ RΓ(Xηur ,Ql)

where we an view the �rst group as (Borel-Moore or ordinary) homology and

the seond (via proper base hange) as ohomology of the speial �bre Xs̄.

The topologial analogue of this situation is a tubular neighborhood, i.e. a

losed embedding Xs̄ → X of a ompat spae Xs̄ into a manifold X whih

is moreover a homotopy equivalene. This gives rise to a map from homology

to ohomology of Xs̄ by the same loalization sequene. Using regularity of X
and S we have f !Ql = Ql(d − 1)[2d − 2] and using regularity of s and S we

have Rι!Ql = Ql(−1)[−2]. Sine ι ◦ fs = f ◦ ιX we obtain

Rι!XQl = Rι!Xf
!Ql(−d+ 1)[−2d+ 2] = f !

sQl(−d)[−2d]

and we an rewrite the shifted loalization triangle as

RΓ(Xs̄,Ql)→ RΓ(Xηur ,Ql)→ RΓ(Xs̄, f
!
s̄Ql(−d)[−2d+ 1])→ (130)

whih we view as a omputation of the ohomology of Xηur
. The ohomology

of Xηur
an also be omputed by Galois desent from the ohomology of Xη̄.

Setting I := Gal(K̄/Kur) one has

RΓ(Xηur ,Ql) ∼= RΓ(I, RΓ(Xη̄,Ql))

but in order to bring out the analogy with p-adi ohomology in the next setion

we rewrite this slightly using Weil-Deligne representations. If (V, ρ) is a on-

tinuous l-adi representation of GK := Gal(K̄/K), a theorem of Grothendiek

guarantees that an open subgroup I1 ⊆ I ats unipotently, i.e. for σ ∈ I1
ρ(σ) = exp(tl(σ)N)

where tl : I → Zl(1) is the natural surjetion and N : V → V (−1) is a nilpotent
endomorphism. Following [19℄[8.4.2℄ one de�nes a representation (V δ, ρδ) of

the Weil group WK ⊆ GK on V = V δ by ρδ(φnσ) = ρ(φnσ) exp(−tl(σ)N) for
σ ∈ I and φ any lift of Frobenius. By Grothendiek's theorem ρδ is trivial on
the open subgroup I1 of WK , i.e. ρ

δ
is disrete. One then has with σt denoting

a topologial generator of Zl(1) and P = ker(tl)

RΓ(I, V ) ∼= RΓ(Zl(1), V
P ) ∼=

[
V P

σt−1−−−→ V P (−1)
]
∼=
[
V δ,I

N−→ V δ,I(−1)
]

where for a map of omplexes A→ B we write

[A→ B] := holim[A→ B] ∼= Cone(A→ B)[−1].

Applying these onsiderations to a deomposition [20℄

RΓ(Xη̄,Ql) ∼=
⊕

i∈Z

Hi(Xη̄,Ql)[−i] (131)
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we �nd

RΓ(Xηur ,Ql) ∼= RΓ(I, RΓ(Xη̄,Ql))

∼= holim
(
RΓ(Xη̄,Ql)

δ,I N−→ RΓ(Xη̄,Ql)
δ,I(−1)

)

for a ertain nilpotent endomorphism N of RΓ(Xη̄,Ql) and obtain the exat

triangle

RΓ(Xs̄,Ql)→
[
RΓ(Xη̄,Ql)

δ,I N
−→ RΓ(Xη̄,Ql)

δ,I(−1)
]
→ RΓ(Xs̄,Ql)

∗(−d)[−2d+ 1]

(132)

where we have used the duality RΓ(Xs̄, f
!
s̄Ql)

∼= RΓ(Xs̄,Ql)
∗
between homol-

ogy and ohomology.

7.1.2 Motivi deomposition

If f is smooth then I ats trivially, N = 0, and the omposite map

sp : RΓ(Xs̄,Ql)→ RΓ(Xηur ,Ql)→ RΓ(Xη̄,Ql)
δ,I = RΓ(Xη̄,Ql)

is an isomorphism, i.e. gives a splitting of (130) and (132). For general regu-

lar X it was shown in [27℄[Thm 10.1℄ that the monodromy weight onjeture

[52℄[Conj. 3.9℄ implies that in eah degree i there is a short exat sequene

0→ Zi → Hi(Xs̄,Ql)
sp−→ Hi(Xη̄,Ql)

I = Hi(Xη̄,Ql)
δ,I,N=0 → 0

where Zi is pure of weight i. For eah i this gives a splitting of the short exat
sequene

0→ Hi−1(Xη̄,Ql)(−1)δ,I/N → Hi(Xηur ,Ql)→ Hi(Xη̄,Ql)
δ,I,N=0 → 0

as well as a short exat sequene

0→ Hi−1(Xη̄,Ql)(−1)δ,I/N → H2d−1−i(Xs̄,Ql(d))
∗ → Zi+1 → 0 (133)

using the long exat sequene indued by (132).

Proposition 7.3. Assume the monodromy weight onjeture for the generi

�bre of the regular sheme X and set

V i := Hi(Xη̄,Ql).

Assume moreover that Frobenius ats semisimply on Hi(Xs̄,Ql) for eah i.
Then the triangle (132) is isomorphi to the diret sum over i ∈ Z of the

[−i]-shift of the exat triangles

Zi[0]⊕ V i,δ,I,N=0[0]→
[
V i,δ,I

N−→ V i,δ,I(−1)
]
→ V i,δ,I(−1)/N [−1]⊕ Zi[1]→

(134)

in the derived ategory of Wk-modules. Here we denote by Wk ⊂ Gal(k̄/k) the
Weil group of the �nite �eld k.
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Proof. If M denotes the monodromy �ltration on V := V i,δ,I [18℄[1.6.1℄ we

have an isomorphism of Wk-modules

V ∼=
⊕

n∈Z

GrMn V

sine GrMn V is pure of weight n by the monodromy weight onjeture. By

[18℄[1.6.14.2, 1.6.14.3℄ there is an isomorphism of Wk-modules

GrMn V
∼=
⊕

j≥|n|
j≡n (2)

GrM−j(V
N=0)(

n+ j

2
)

and V N=0
is a quotient of Hi(Xs̄,Ql), hene semisimple. We onlude that

Wk ats semisimply on V = V i,δ,I . Sine the ohomologial dimension of the

abelian ategory of l-adi sheaves on s = Spec(k) is equal to one, there exists

a deomposition

RΓ(Xs̄,Ql) ∼=
⊕

i∈Z

Hi(Xs̄,Ql)[−i] (135)

in the derived ategory of Wk-modules. In the following diagram the unlabeled

arrows form a ommutative diagram indued by the trunation funtors, σ0 is

the splitting given by (135), σ1 is the splitting given by (131), the (surjetive)

splitting σ2 exists by semisimpliity of V i,δ,I and the (injetive) splitting σ3 by
semisimpliity of Hi(Xs̄,Ql).

Hi(Xs̄,Ql)[−i] //

��

V i,δ,I,N=0[−i] //

σ3

ss
V i,δ,I [−i]

��

σ2
ss

τ≥iRΓ(Xs̄,Ql) //

σ0

UU

τ≥iRΓ(Xη̄,Ql)
δ,I

σ1

UU
.

Write σ0 = σZ0 ⊕ σV0 orresponding to the deomposition of Wk-modules

Hi(Xs̄,Ql) ∼= Zi ⊕ V i,δ,I,N=0

indued by σ3. After replaing σ0 by σZ0 ⊕ σ3 ◦ σ2 ◦ σ1 ◦ γ where γ = τ≥isp
is the bottom horizontal arrow, the diagram of splittings ommutes. A similar

argument applies to (133)[−1]. By an easy indution one �nds that (132) is

isomorphi to the laimed diret sum of triangles.

We reord the following Corollary whih is not needed in the rest of the paper.

Corollary 7.4. Under the assumptions of Prop. 7.3 there exists a (nonanon-

ial) deomposition

Rf∗Ql ∼=
⊕

i∈Z

Rif∗Ql[−i] ∼=
⊕

i∈Z

j∗V
i[−i]⊕ ι∗Zi[−i]

in the derived ategory of l-adi sheaves on S.
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Proof. The abelian ategory of l-adi sheaves on S an be desribed as the

ategory of diagrams V0
sp−→ V1 where V0 is an l-adi Gk-representation, V1 a

GK-representation and sp is GK-equivariant. In this desription, by proper

base hange, Rif∗Ql is given by Hi(Xs̄,Ql)
sp−→ V i, j∗V

i
by (V i)I → V i and

ι∗Z
i
by Zi → 0.

Remark 7.5. An alternative proof of Cor. 7.4 might be obtained along the

following lines. There is a perverse t-struture on the derived ategory of l-adi
sheaves on separated, �nite type S-shemes [52℄[App.℄. Assuming the mon-

odromy weight onjeture it seems plausible that one an adapt the proof of the

relative hard Lefshetz isomorphism

ℓi : pH−iRf∗Ql[d]
∼−→ pHiRf∗Ql[d](i)

from [2℄[Thm. 5.4.10℄. As explained in [20℄ this implies a (nonanonial) diret

sum deomposition

Rf∗Ql[d]
∼−→
⊕

i∈Z

(pHiRf∗Ql[d])[−i].

Sine Ql[d] is a pure omplex of weight d, so is Rf∗Ql[d]. Hene F :=
pHiRf∗Ql[d] is a pure perverse sheaf (of weight i + d) and one might be able

to adapt the proof of the diret sum deomposition [2℄[5.3.11℄

F ∼= j∗!j
∗F ⊕ ι∗pι∗F

assuming semisimpliity of Frobenius. By proper base hange j∗F ∼= V i+d and

sine S is of dimension one we have j∗!V
i+d ∼= j∗V

i+d
. Moreover

pι∗F ∼=
Zi+d+1[−1] and the isomorphism of Corollary 7.4 follows.

For any l-adi representation V of GK := Gal(K̄/K) reall the de�nition of

f -ohomology of Bloh-Kato [28℄

RΓf (K,V ) :=
(
V I

1−φ−−−→ V I
)
∼= RΓ(S, j∗V ) ∼= RΓ(s, ι∗j∗V )

and the de�nition of RΓ/f (K,V ) via the exat triangle

RΓf(K,V )→ RΓ(K,V )→ RΓ/f (K,V )→

where RΓ(K,V ) = RΓ(η, V ) is ontinuous Galois ohomology of V and φ is

the geometri Frobenius generating Gal(k̄/k).

Corollary 7.6. Assume Conjeture 7.1 and the assumptions of Prop. 7.3

for the regular sheme X. Then for any n ∈ Z there is a (nonanonial)
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isomorphism of loalization triangles

RΓ(X,Ql(n))
∼
−→ RΓ(s,Z2n(n))[−2n]⊕

⊕
i∈Z

RΓf (K,V
i(n))[−i]

y
y

RΓ(Xη,Ql(n))
∼
−→

⊕
i∈Z

RΓ(K,V i(n))[−i]

y
y

RΓ(Xs, f
!
sQl(n− d)[−2d+ 1])

∼
−→RΓ(s, Z2n(n))[−2n+ 1]⊕

⊕
i∈Z

RΓ/f (K,V
i(n))[−i]

y
y

where the Tate twist in the right hand olumn is de�ned in the usual way. For

n < 0 all omplexes in this diagram are ayli.

Proof. The left vertial triangle is isomorphi to RΓ(s,−) applied to the (n)-
Tate-twist of (130) whih agrees with the higher Chow de�nition of the left

hand olumn for n ≥ 0 if we assume Conjeture 7.1. The statement now

follows from our rewriting of (130) as (132) and

⊕
i∈Z(134)[−i] together with

the fat RΓ(s, Zi(n)) is ayli for i 6= 2n sine Zi is pure of weight i. The

ayliity of the omplexes in the right hand olumn for n < 0 follows from an

easy weight argument (see the Proof of Prop. 7.18 below). This then shows

that the higher Chow de�nition of the left hand olumn also holds for n < 0.

The middle isomorphism in the diagram of Corollary 7.6 an be interpreted

as a omputation of l-adi motivi ohomology of the generi �bre from the

geometri ohomology (�bre funtor) X 7→ Hi(Xη̄,Ql) with its natural extra

struture, i.e. the ontinuous GK-ation. Suintly, one has the isomorphism

RΓ(Xη,Ql(n)) ∼= RΓ(K,RΓ(Xη̄,Ql(n))).

Alternatively, one an ompute RΓ(Xη,Ql(n)) from the slightly di�erent �bre

funtor X 7→ Hi(Xη̄,Ql)
δ
with values in Weil-Deligne representations intro-

dued above. One has

RΓ(Xη,Ql(n)) ∼=RΓ(s,RΓ(Xηur ,Ql(n)))

∼=holim




RΓ(Xη̄,Ql)
δ,I 1−φn−−−−→ RΓ(Xη̄,Ql)

δ,I

N

y N

y

RΓ(Xη̄,Ql)
δ,I 1−φn−1−−−−−→ RΓ(Xη̄,Ql)

δ,I


 (136)

where φr = φ|k|−r.
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7.2 p-adi ohomology

The two omputations of l-adi motivi ohomology of the generi �bre Xη

given at the end of the last setion lead to di�erent absolute ohomology theo-

ries for l = p. Sine p is invertible on Xη and Xη is smooth over a �eld, one still

has the isomorphism Z(n)/p• ∼= µ⊗np• [0] on Xη,et. Hene the �rst omputation

RΓ(Xη,Qp(n)) ∼= RΓ(GK , RΓ(Xη̄,Qp(n)))

applies in the same way. The analogue of the �bre funtor X 7→ Hi(Xη̄,Ql)
δ

with values in l-adi Weil-Deligne representation is the �bre funtor

X 7→ Dpst(H
i(Xη̄,Qp))

with values in (weakly admissible) �ltered (φ,N,GK)-modules in the sense

of [29℄ (�nite dimensional Kur
0 vetor spaes with operators φ and N and a

disrete GK-ation as well as a �ltration on the salar extension to K̄. See also

[30℄ for a detailed disussion of these �bre funtors both for l = p and l 6= p).
If f is smooth then this �bre funtor is isomorphi to rystalline ohomology

of the speial �bre Xs̄, if f is log-smooth it is isomorphi to log-rystalline,

or Hyodo-Kato ohomology of Xs̄ and for general Xη (not neessarily smooth

or proper) it was onstruted by Beilinson [3℄ from the log-smooth ase by

h-desent. Following [76℄ we denote this funtor by

X 7→ HB,i
HK(Xη̄,h) ∼= Dpst(H

i(Xη̄,Qp)).

The orresponding absolute ohomology theory is log-syntomi ohomology of

Xη as de�ned by Niziol and Nekovar in [76℄. It an be omputed by a homotopy

limit similar to (136)

RΓsyn(Xη , n)

∼= holim





RΓB
HK(Xη̄,h)

GK
(1−φn,ιdR)
−−−−−−−−−→ RΓB

HK(Xη̄,h)
GK ⊕ (RΓdR(Xη̄,h)/F

n)GK

N

y (N,0)

y

RΓB
HK(Xη̄,h)

GK
1−φn−1
−−−−−−→ RΓB

HK(Xη̄,h)
GK




(137)

where φn = φp−n. There is a omparison map [76℄[Thm. A (4)℄

RΓsyn(Xη, n)
β−→ RΓ(Xη,Qp(n))

but it only indues an isomorphism in degrees i ≤ n.

7.2.1 Loalization triangles

We now disuss the loalization exat triangles for both version of p-adi mo-

tivi ohomology. We �rst establish a loalization triangle for a fairly general

regular sheme X whih uses the de�nition of Z(n) as a yle omplex.
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Lemma 7.7. Assume X is of �nite type over a disrete valuation ring D with

perfet residue �eld κ of harateristi p and fration �eld F of harateristi

0. Denote by

j : XF → X , i : Xκ → X
the omplementary open and losed immersions. Assume n ≥ 1. If X is

regular and satis�es Conjeture 7.1 then there is an exat triangle of omplexes

of sheaves on Xet

τ≤n−1(i∗Z(n− 1)/p•)[−2]→ Z(n)/p• → τ≤nRj∗µ
⊗n
p• → . (138)

If Xs is a normal rossing divisor, the trunation in front of the �rst term an

be removed.

Proof. We follow the argument in [37℄[Proof of Thm. 1.2.1℄. Sine X is of

�nite type over a disrete valuation ring one has an exat loalization triangle

on XZar [37℄[Cor. 3.3℄

i∗Z(n− 1)Zar[−2]→ Z(n)Zar → j∗Z(n)Zar →

and an isomorphism Γ(V,Z(n)) ∼= RΓ(VZar,Z(n)) for any open subsheme

V ⊆ X [37℄[Thm.3.2 b)℄. But this implies that

j∗Z(n)Zar
∼−→ Rj∗Z(n)Zar

sine the map on stalks at x ∈ X

lim−→
x∈V

Γ(V ∩ XF ,Z(n))→ lim−→
x∈V

RΓ((V ∩ XF )Zar ,Z(n))

is an isomorphism. So we obtain a loalization triangle in the Zariski topology

i∗Z(n− 1)Zar[−2]→ Z(n)Zar → Rj∗Z(n)Zar → (139)

not only on X but, by the same argument, on any étale sheme X ′ → X . Let
ǫ : Xet → XZar be the morphism from the étale topos to the topos of Zariski

sheaves on the ategory of étale shemes over X and use the same notation

for XF and Xκ. Note that ǫ∗ is the inlusion of étale into Zariski sheaves

and hene the identity map on objets whereas ǫ∗ is étale shea��ation. The
identity ǫ∗ǫ∗F ∼= F for any étale sheaf F indues isomorphisms

ǫ∗ǫ∗F• ∼−→ ǫ∗Rǫ∗F• ∼−→ F• (140)

for any omplex of étale sheaves F•. In partiular ǫ∗Z(n) = Z(n)Zar and

ǫ∗Z(n)Zar = Z(n). There is a ommutative diagram of exat triangles on Xet
ǫ∗i∗Z(n− 1)Zar[−2] −−−−→ ǫ∗Z(n)Zar −−−−→ ǫ∗Rj∗Z(n)Zar −−−−→y ‖

y

i∗Ri
!Z(n) −−−−→ Z(n) −−−−→ Rj∗Z(n) −−−−→
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where the top row is the pullbak of (139) and the bottom row is the loalization

triangle in the étale topology. The vertial maps are indued by hoosing a K-

injetive resolution Z(n)→ I(n). To see the right ommutative diagram, start

with the adjuntion id → j∗j
∗
in the ategory of omplexes of sheaves and

ompose with ǫ∗ǫ∗. Applied to Z(n) we get

ǫ∗Z(n)Zar = ǫ∗ǫ∗Z(n)→ ǫ∗ǫ∗j∗j
∗Z(n) = ǫ∗j∗ǫ∗j

∗Z(n) = ǫ∗j∗Z(n)Zar

and applied to I(n) we get

Z(n) ∼= ǫ∗ǫ∗I(n)→ ǫ∗ǫ∗j∗j
∗I(n) = ǫ∗ǫ∗Rj∗Z(n) ∼= Rj∗Z(n).

The left ommutative diagram is similarly obtained by applying ǫ∗ǫ∗i∗i
! → ǫ∗ǫ∗

to Z(n) → I(n). Taking mapping ones of multipliation by p• we obtain the

diagram

ǫ∗i∗Z(n− 1)Zar/p
•[−2] −−−−−→ ǫ∗Z(n)Zar/p

• −−−−−→ ǫ∗Rj∗Z(n)Zar/p
• −−−−−→

y ‖
y

i∗Ri
!Z(n)/p• −−−−−→ Z(n)/p• −−−−−→ Rj∗Z(n)/p

• −−−−−→ .
(141)

By the Rost-Voevodsky theorem (previously Beilinson-Lihtenbaum onjeture,

see e.g. [92℄[Thm. 2.5℄) on XF , the adjuntion

Z(n)Zar/p
• = ǫ∗Z(n)/p

• → ǫ∗I(n)/p
• = Rǫ∗Z(n)/p

•

indues a quasi-isomorphism

Z(n)Zar/p
• ∼= τ≤nRǫ∗Z(n)/p

•.

By [92℄[Lemma 2.4℄ we obtain a quasi-isomorphism

τ≤nRj∗Z(n)Zar/p
• ∼= τ≤nRj∗τ

≤nRǫ∗Z(n)/p
•

∼= τ≤nRj∗Rǫ∗Z(n)/p
• = τ≤nRǫ∗Rj∗Z(n)/p

•

and hene an isomorphism

τ≤nǫ∗Rj∗Z(n)Zar/p
• ∼= τ≤nǫ∗Rǫ∗Rj∗Z(n)/p

• ∼= τ≤nRj∗Z(n)/p
•,

i.e. the right vertial map in (141) is an isomorphism in degrees ≤ n. From

the Five Lemma and τ≤nZ(n)/p• ∼= Z(n)/p• it follows that the trunation of

the left vertial map in (141)

τ≤n+1ǫ∗i∗Z(n− 1)Zar/p
•[−2]→ τ≤n+1i∗Ri

!Z(n)/p•

is a quasi-isomorphism and that there is an exat triangle

τ≤n+1(i∗Z(n− 1)/p•[−2])→ Z(n)/p• → τ≤nRj∗Z(n)/p
• →
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using ǫ∗i∗Z(n−1)Zar/p
• ∼= i∗ǫ

∗Z(n−1)Zar/p
• ∼= i∗Z(n−1)/p•. Using Lemma

7.2 we have an isomorphism

Z(n)/p• ∼= µ⊗np• (142)

on XF and we get the exat triangle (138).

Reall that if Z is a separated, �nite type sheme over a perfet �eld κ of

harateristi p all of whose irreduible omponents are of dimension d− 1 and
r ≥ 0 there is a quasi-isomorphism on Zet [92℄[Thm. 1.1℄

Z(r)/p• = Zc(d− 1− r)/p•[−2d+ 2] ∼= ν̃Z,•(d− 1− r)[−2d+ 2]

where ν̃Z,•(d− 1− r)[−2d+2] is the Gersten omplex of logarithmi deRham-

Witt sheaves (see [80℄[1.7℄)

⊕

x∈Z0

ix,∗W•Ω
r
x,log

(−1)r∂−−−−→
⊕

x∈Z1

ix,∗W•Ω
r−1
x,log

(−1)r∂−−−−→ · · ·

onentrated in degrees [r, 2r]. Note that these omplexes are idential for Z
and Zred. If Xs is a normal rossing divisor, i.e. X is semistable, then this

omplex is ohomologially onentrated in degree r by [80℄[Cor. 2.2.5℄. Hene

the trunation in front of the �rst term in (138) an be removed.

The following onsequene of Lemma 7.7 is only needed in setion 5.6 in the

main text.

Lemma 7.8. With notation and assumptions as in Lemma 7.7 denote by D̂ the

p-adi ompletion of D and by g : XD̂ → X the natural (�at) morphism. Then

the �at pullbak on higher Chow omplexes [8℄

g∗Z(n)/p• → Z(n)/p•

is a quasi-isomorphism.

Proof. We �rst prove the following general base hange result for torsion

sheaves.

Lemma 7.9. Let X be of �nite type over a Dedekind D ring with fration �eld

of harateristi zero. Let p be a prime number and denote by D̂ the p-adi
ompletion of D. Consider the Cartesian diagram

XD̂[1/p]
ĵ−−−−→ XD̂

î←−−−− XFp

g̃

y g

y ‖

X [1/p] j−−−−→ X i←−−−− XFp .

Then for any omplex of sheaves F on Xet with torsion ohomology, the base

hange morphism

β : g∗Rj∗j
∗F → Rĵ∗g̃

∗j∗F
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as wells the natural morphism

î∗α : Ri!F → Rî!g∗F

are quasi-isomorphisms.

Proof. There is a ommutative diagram with exat rows

î∗Rî
!g∗F −−−−→ g∗F −−−−→ Rĵ∗ĵ

∗g∗F −−−−→
xα ‖

xβ

g∗i∗Ri
!F −−−−→ g∗F −−−−→ g∗Rj∗j

∗F −−−−→

where the top row is the loalization triangle for g∗F on XD̂ and the bottom

row is the pullbak of the loalization triangle for F on X . The right square

ommutes sine both maps are adjoint to the same map and similarly for the

left square. The stalk of β at a geometri point p : Spec(x̄) → XD̂ is an

isomorphism if x ∈ XD̂[1/p], i.e. p = ĵp′, in view of the isomorphism

p∗g∗Rj∗j
∗F ∼=(p′)∗ĵ∗g∗Rj∗j

∗F ∼= (p′)∗g̃∗j∗Rj∗j
∗F

∼=(p′)∗g̃∗j∗F ∼= (p′)∗ĵ∗Rĵ∗g̃
∗j∗F

∼=p∗Rĵ∗g̃∗j∗F .

For x ∈ XFp the stalk of β is the map

RΓ(A[
1

p
]et,F)→ RΓ(A′[

1

p
]et,F) (143)

where A (resp A′) is the strit Henselization of X (resp. XD̂) at x̄. By the def-

inition and elementary properties of the notion of Henselian pair [44℄[(18.5.5),

(18.5.6)℄ it follows that (A, (p)) and (A′, (p)) are Henselian pairs. By the

Gabber-Fujiwara formal base hange theorem [32℄[Cor. 6.6.4℄ the restrition

map

RΓ(A[
1

p
]et,F)→ RΓ(Â[

1

p
]et,F)

is a quasi-isomorphism, where Â is the p-adi ompletion of A. The same

holds for A′ and we have Â ∼= Â′. Hene (143) and therefore β are quasi-

isomorphisms. This implies that α is a quasi-isomorphism whih proves Lemma

7.9.

We ontinue with the proof of Lemma 7.8. There is a ommutative diagram

with exat rows where the top row is (138) on XD̂, the bottom row is the

pullbak of (138) on X and the middle row is the trunated loalization triangle
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for g∗Z(n)/p• on XD̂.

τ≤n−1 (̂i∗Z(n− 1)/p•)[−2] −−−−→ Z(n)/p• −−−−→ τ≤nRĵ∗µ
⊗n
p•xα′

xγ
xβ′

τ≤n+1 î∗Rî
!g∗Z(n)/p• −−−−→ g∗Z(n)/p• −−−−→ τ≤nRĵ∗ĵ

∗g∗Z(n)/p•
xτ≤n+1α ‖

xτ≤nβ

g∗τ≤n−1(i∗Z(n− 1)/p•)[−2] −−−−→ g∗Z(n)/p• −−−−→ g∗τ≤nRj∗µ
⊗n
p•

The maps from the middle to the top row form a ommutative diagram by

funtoriality of the (trunated) loalization triangle. By Lemma 7.9 for F :=
Z(n)/p• the middle and bottom row are quasi-isomorphi. Sine the base

hange of g to κ is an isomorphism, the map α′ ◦ τ≤n+1α is an isomorphism.

It follows that α′ is a quasi-isomorphism. Sine

ĵ∗g∗Z(n)/p• ∼= g̃∗j∗Z(n)/p• ∼= g̃∗µ⊗np•
∼= µ⊗np•

the map β′ is a quasi-isomorphism and we dedue the same for γ.

For the disussion below we �nd it most onvenient to isolate the following

statement. Lemma 7.7 shows that it holds in the semistable ase under Con-

jeture 7.1. Unfortunately we annot prove it in the general regular ase even

assuming Gersten's onjeture.

Conjeture 7.10. Assume X is of �nite type over a disrete valuation ring

D with perfet residue �eld κ of harateristi p and fration �eld F of har-

ateristi 0. Denote by

j : XF → X , i : Xκ → X

the omplementary open and losed immersions. If X is regular then there is

an exat triangle of omplexes of sheaves on Xet

i∗Z(n− 1)/p•[−2]→ Z(n)/p• → τ≤nRj∗µ
⊗n
p• → . (144)

We now return to the loal setting. Assuming Conjeture 7.10 we obtain a

ommutative diagram of exat loalization triangles where the top row is in-

dued by (144) and the bottom row is the usual loalization triangle in the

étale topology.

RΓ(Xs,Qp(n− 1))[−2] −−−−→ RΓ(X,Qp(n)) −−−−→ RΓ(X, τ≤nRj∗Qp(n))y ‖
y

RΓ(Xs, Ri
!Qp(n)) −−−−→ RΓ(X,Qp(n)) −−−−→ RΓ(Xη,Qp(n))
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Conjeture 7.11. For regular X and n ≥ 0 the period map

RΓsyn(Xη, n)
β−→ RΓ(Xη,Qp(n))

of [76℄[Thm. A (4)℄ fators through an isomorphism

RΓsyn(Xη, n) ∼= RΓ(X, τ≤nRj∗Qp(n)).

Proposition 7.12. If X is stritly semistable (in the sense of [17℄) then Con-

jeture 7.11 holds.

Proof. By [17℄[Thm.1.1℄ there is a morphism

αFMn,• : S•(n)X → i∗τ≤nRj∗µ
⊗n
p•

whose kernel and okernel are annihilated by a �xed power of p, and where

S•(n)X is the log-syntomi omplex of Fontaine-Messing-Kato [57℄. Hene

(holim•RΓ(Xs,S•(n)X))Q ∼= (holim•RΓ(Xs, i
∗τ≤nRj∗µ

⊗n
p• )Q

∼= RΓ(X, τ≤nRj∗Qp(n)).

By [76℄[Thm. 3.8℄ there is an isomorphism

αsyn : (holim•RΓ(X,S•(n)X))Q ∼= RΓsyn(Xη, n)

where RΓsyn(Xη, n) is given by the homotopy limit (137).

Corollary 7.13. For X semistable satisfying Conjeture 7.1 and n ≥ 0 there

is an exat loalization triangle

RΓ(Xs,Qp(n− 1))[−2]→ RΓ(X,Qp(n))→ RΓsyn(Xη, n)→ .

Proof. Combine Lemma 7.7 and Prop. 7.12.

Remark 7.14. The natural map Z(n)→ Z(n)/p• of (pro)-omplexes of sheaves

on Xet and Xη,et indues a ommutative diagram

Hi(X,Z(n))Q
j∗−−−−→ Hi(Xη,Z(n))Qy

yc

Hi(X,Qp(n)) −−−−→ Hi(Xη,Qp(n)).

The Chern lass maps from K-theory to motivi ohomology [8℄ indue an iso-

morphism

K2n−i(Xη)
(n)
Q
∼= Hi(Xη,Zar ,Z(n))Q ∼= Hi(Xη,Z(n))Q
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whose omposite with c is the étale Chern lass map cet. By [76℄[Thm. A

(7)℄ cet fators through Hi
syn(Xη, n), hene so does the omposite map c ◦ j∗.

Corollary 7.13 then gives another proof of the fatorization

K2n−i(X)
(n)
Q
∼= Hi(X,Z(n))Q → Hi

syn(Xη, n)→ Hi(Xη,Qp(n))

in the semistable ase.

Conerning a syntomi desription of RΓ(X,Qp(n)) we expet the following.

The geometri ohomology theory for arbitrary varieties Y/k is rigid ohomol-

ogy [5, 6℄

Y 7→ Hi
rig(Y/K0)

taking values in the (Tannakian) ategory of φ-modules (�nite dimensional

K0-vetor spaes with a Frobenius-semilinear endomorphism φ [29℄[4.2℄). We

expet the following p-adi analogue of (132) relating the geometri ohomology

of the speial and the generi �bre.

Conjeture 7.15. For regular X there is an exat triangle in the derived

ategory of φ-modules

RΓrig(Xs/K0)
sp−→
[
RΓBHK(Xη̄,h)

GK
N−→ RΓBHK(Xη̄,h)(−1)GK

]
cosp−−−→

RΓrig(Xs/K0)
∗(−d)[−2d+ 1]→ (145)

where sp indues the speialization map onstruted in [91℄ and cosp is the

omposite of the Poinare duality isomorphism

RΓBHK(Xη̄,h)(−1) ∼= RΓBHK(Xη̄,h)
∗(−d)[−2d+ 2]

on Xη̄ and sp∗.

We expet the following relation between rigid ohomology with ompat sup-

port [5℄ and p-adi motivi ohomology with ompat support as de�ned in [38℄

and between the dual of rigid ohomology with ompat support and p-adi
motivi Borel-Moore homology as de�ned in (129) above. For n ∈ Z and a

separated, �nite type k-sheme Y de�ne

RΓc(Yeh,Qp(n)) := (holim•RΓc(Yeh,Z(n)/p
•))Q

where the omplex of sheaves Z(n) on (Sch/k)eh was de�ned in [38℄[Se. 4℄. It

is expeted that the arithmeti ohomology groups Hi
c(Yar,Z(n)) of [38℄[Def.

5.4℄ are �nitely generated for all i, n ∈ Z [38℄[Conj. L(X,n)℄, and if this is the

ase we have

Hi
c(Yeh,Qp(n))

∼= Hi
c(Yar ,Z(n))⊗Z Qp

by [38℄[Thm. 5.2 (b)℄.
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Conjeture 7.16. a) For a separated, �nite type k-sheme Y and n ∈ Z there

exists an isomorphism

RΓc(Yeh,Qp(n))
∼−→
[
RΓrig,c(Y/K0)

1−φn−−−→ RΓrig,c(Y/K0)
]
.

b) For a separated, �nite type k-sheme Y , equidimensional of dimension d−1,
and n ∈ Z there exists an isomorphism

RΓ(Y,Qp(n))
∼−→
[
RΓrig,c(Y/K0)

∗ 1−φn−d+1−−−−−−−→ RΓrig,c(Y/K0)
∗

]
[−2d+ 2].

Corollary 7.17. Assume X is regular and satis�es Conjetures 7.10, 7.11,

7.15 and 7.16b) for Y = Xs and that the bottom square in the diagram below

ommutes. Then for n ≥ 0 there is an isomorphism of loalization triangles

RΓ(X,Qp(n))
∼
−→

[
RΓrig(Xs/K0)

(1−φn,sp′)
−−−−−−−−→ RΓrig(Xs/K0)⊕ RΓdR(Xη)/F

n

]

y
y

RΓsyn(Xη , n)
∼
−→





RΓB
HK(Xη̄,h)

GK
(1−φn,ιdR)
−−−−−−−−−→ RΓB

HK(Xη̄,h)
GK ⊕ RΓdR(Xη)/F

n

N

y (N,0)

y

RΓB
HK(Xη̄,h)

GK
1−φn−1
−−−−−−→ RΓB

HK(Xη̄,h)
GK





y
y

RΓ(Xs,Qp(n− 1))[−1]
∼
−→

[
RΓrig(Xs/K0)

∗
1−φn−d
−−−−−−→ RΓrig(Xs/K0)

∗

]
[−2d+ 1]

where sp′ = ιdR ◦ sp.

Corollary 7.17 implies Conjeture Dp(X , n) (Conj. 5.5 in setion 5.4) in the

presene of Conjeture 7.16a). This rather indiret way of obtaining a syntomi

desription of RΓ(X,Qp(n)) goes bak to [37℄ for smooth f and 0 ≤ n < p− 1.
A more natural way to obtain a syntomi desription of RΓ(X,Qp(n)) would
be to onstrut a yle lass map with values in syntomi ohomology, following

the onstrution of the étale yle lass map in [35℄.

Proposition 7.18. Corollary 7.17 holds unonditionally for n < 0. More

preisely, all omplexes in the right hand olumn are ayli, whereas the om-

plexes in the left hand olumn are ayli by de�nition (for RΓ(X,Qp(n)) we
an use the higher Chow de�nition or that of setion 3.1).

Proof. Sine Xs is proper of dimension d − 1 the eigenvalues of φ
[k:Fp]
n on any

Hi
rig(Xs/K0) are Weil numbers of weight w in the range −2n ≤ w ≤ 2(d −

1) − 2n [75℄. Hene for n < 0 the eigenvalue 1 of weight w = 0 annot our.

Similarly, the eigenvalues of φ
[k:Fp]
n−d on any Hi

rig(Xs/K0)
∗
have weight w in the

range −2(n− d)− 2(d− 1) ≤ w ≤ −2(n− d) and w = 0 annot our if n < 0.
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Together with the fat that RΓdR(Xη) = F 0RΓdR(Xη) = FnRΓdR(Xη) for

n < 0 this implies that two of the three omplexes in the right hand olumn

are ayli, hene so is the third. It remains to show that RΓ(X,Qp(n)) as

de�ned in setion 3.1 is ayli. We have

RΓ(X,Z(n)/p•) = RΓ(X, jX,!µ
⊗n
p• ) ∼= RΓ(S,Rf∗jX,!µ

⊗n
p• )

∼= RΓ(S, j!Rfη∗µ
⊗n
p• ) = 0

using the fat that f is proper, i.e. Rf∗ = Rf!, and the vanishing of RΓ(S, j!F)
for any sheaf F [69℄[Prop. II.1.1℄.

7.2.2 Motivi deomposition

De�ne the φ-module

Zi := ker
(
Hi
rig(Xs/K0)

sp−→ HB,i
HK(Xη̄,h)

)
.

Proposition 7.19. Assume the p-adi monodromy weight onjeture [71℄ for

the generi �bre of the regular sheme X and assume moreover that the φ-
module Hi

rig(Xs/K0) is semisimple for eah i. Assume Conjeture 7.15 holds

for X. Then the triangle (145) is the diret sum over i ∈ Z of the [−i]-shift of
the exat triangles

Zi[0]⊕HB,i
HK(Xη̄,h)

GK ,N=0[0]→
[
HB,i
HK(Xη̄,h)

GK
N−→ HB,i

HK(Xη̄,h)(−1)GK

]
→

HB,i
HK(Xη̄,h)(−1)GK/N [−1]⊕ Zi[1]→ (146)

in the derived ategory of φ-modules. Moreover Zi is pure of weight i.

Proof. The proof of [27℄[Thm 10.1℄ onsists in applying the exat weight �l-

tration funtor to the long exat sequene indued by (130), using the fat

that Hi(Xs̄,Ql) has weights ≤ i sine Xs is proper, together with the mon-

odromy weight onjeture. In view of [75℄ these arguments are available to

show surjetivity of

Hi
rig(Xs/K0)

sp−→ HB,i
HK(Xη̄,h)

GK ,N=0

as well as the fat that Zi is pure of weight i, assuming the p-adi monodromy

weight onjeture. We an then follow the proof of Prop. 7.3, using the fat

that the ategory of φ-modules has global dimension one, and that the motivi

deomposition

RΓ(Xη̄,Qp) ∼=
⊕

i∈Z

Hi(Xη̄,Qp)[−i] (147)

indues a motivi deomposition of

RΓBHK(Xη̄,h) ∼= Dpst(RΓ(Xη̄,Qp)).
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For any φ-module D set

R(φ,D) := [D
1−φ−−−→ D] = holim(D

1−φ−−−→ D).

For any p-adi representation V of GK reall the de�nition of f -ohomology of

Bloh-Kato and Fontaine Perrin-Riou [28℄

RΓf (K,V ) :=

(
Dcris(V )

(1−φ,ι)−−−−−→ Dcris(V )⊕DdR(V )/F 0

)

where ι is indued by the inlusion Dcris(V ) ⊆ DdR(V ), and the de�nition of

RΓ/f (K,V ) via the exat triangle

RΓf(K,V )→ RΓ(K,V )→ RΓ/f (K,V )→ .

De�ne

RΓst(K,V ) :=




Dst(V )
(1−φ,ι)−−−−−→ Dst(V )⊕DdR(V )/F 0

N

y N

y

Dst(V (−1)) 1−φ−−−→ Dst(V (−1))




so that there is an exat triangle

RΓf (K,V )→ RΓst(K,V )→ R(φ,Dst(V (−1))/N)[−1]→ .

Setting

V i := Hi(Xη̄,Qp)

we have an isomorphism of (φ,N)-modules, resp. φ-modules, resp. �ltered

K-vetor spaes

Dst(V
i) ∼= HB,i

HK(Xη̄,h)
GK , Dcris(V

i) ∼= HB,i
HK(Xη̄,h)

GK ,N=0,

DdR(V
i) ∼= Hi

dR(Xη)

and obtain the following motivi deomposition of both loalization triangles.

Corollary 7.20. Let X be a regular sheme satisfying the assumptions of

Cor. 7.17 and of Prop. 7.19. Then for any n ∈ Z there is an isomorphism of

loalization triangles

RΓ(X,Qp(n))
∼
−→ R(φ, Z2n(n))[−2n]⊕

⊕
i∈Z

RΓf (K,V i(n))[−i]

y
y

RΓsyn(Xη , n)
∼
−→

⊕
i∈Z

RΓst(K,V i(n))[−i]

y
y

RΓ(Xs,Qp(n− 1))[−1]
∼
−→ R(φ, Z2n(n))[−2n + 1]⊕

⊕
i∈Z

R(φ,Dst(V i(n− 1))/N)[−i − 1]

y
y
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and an isomorphism of loalization triangles

RΓ(X,Qp(n))
∼−→ R(φ, Z2n(n))[−2n]⊕⊕

i∈Z

RΓf (K,V
i(n))[−i]

y
y

RΓ(Xη,Qp(n))
∼−→ ⊕

i∈Z

RΓ(K,V i(n))[−i]
y

y

RΓ(Xs, Ri
!Qp(n))[1]

∼−→ R(φ, Z2n(n))[−2n+ 1]⊕⊕
i∈Z

RΓ/f(K,V
i(n))[−i]

y
y

Proposition 7.21. If f : X → S is smooth then Conjetures 7.1, 7.11, 7.15,

7.16 hold true, if in 7.16a) we replae RΓ(Xs,eh,Qp(n)) by (see notation 5.3)

RΓ′eh(Xs,Qp(n)) := RΓ(Xs,et,Qp(n)).

Moreover, the onlusions of Corollary 7.17, Prop. 7.19, and Cor. 7.20 hold

true, in partiular there is an isomorphism

RΓ(X,Qp(n)) ∼=

[
RΓcris(Xs/K0)

(1−φn,sp′)
−−−−−−−→ RΓcris(Xs/K0)⊕RΓdR(Xη)/F

n

]

(148)

and Conjeture Dp(X , n) in setion 5.4 holds true.

Proof. Conjeture 7.1 holds by [37℄[Cor. 4.4℄, Conjeture 7.11 by Prop. 7.12

and Conjeture 7.15 is trivial sine sp is in this ase the isomorphism

RΓrig(Xs/K0) ∼= RΓcris(Xs/K0) ∼= RΓHK(Xs/K0) ∼= RΓBHK(Xη̄,h)
GK

and N = 0. The theory of the deRham-Witt omplex [51℄[I.5.7.2℄ gives a short

exat sequene

0→W•Ω
n
Xs,log →W•Ω

n
Xs

1−F−−−→W•Ω
n
Xs
→ 0

where F is the Frobenius on the deRham-Witt omplex, and an isomorphism

RΓcris(Xs/K0) ∼=
d−1⊕

j=0

RΓ(Xs,W•Ω
j
Xs

)Q[−j]

where φj = φp−j on the left hand side indues F on RΓ(Xs,W•Ω
j
Xs

)Q. In eah

degree i the deomposition of the φ-module

Hi
cris(Xs/K0) ∼=

d−1⊕

j=0

Hi−j(Xs,W•Ω
j
Xs

)Q
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is suh that the slopes of Hi−j(Xs,W•Ω
j
Xs

)Q lie in the interval [j, j + 1). In

partiular, φ is divisible by pj , and F = φp−j has no eigenvalue 1 for n 6= j.
Hene

[
RΓcris(Xs/K0)

1−φn−−−→ RΓcris(Xs/K0)
]

(149)

∼=
[(
holim RΓ(Xs,W•Ω

n
Xs

)
)
Q
[−n] 1−F−−−→

(
holim RΓ(Xs,W•Ω

n
Xs

)
)
Q
[−n]

]

∼=
(
holim RΓ(Xs,W•Ω

n
Xs,log)

)
Q
[−n]

∼=RΓ(Xs,Qp(n))

where this last isomorphism follows from the isomorphism of étale sheaves on

Xs [34℄[Thm. 8.5℄

Z(n)/p• ∼=W•Ω
n
Xs,log[−n]. (150)

for n ≥ 0. This gives Conjeture 7.16a) with RΓ(Xs,eh,Qp(n)) replaed by

RΓ(Xs,et,Qp(n)). Conjeture 7.16b) follows from Conj. 7.16a), Poinare

duality for RΓcris(Xs/K0), Milne's duality [70℄[Thm. 1.11℄ for the sheaves

W•Ω
n
Xs,log

and the isomorphism (150).

One has a ommutative diagram of exat triangles of pro-omplexes of étale

sheaves on Xs

i∗Z(n)/p• −−−−→ i∗τ≤nRj∗µ
⊗n
p• −−−−→ (Z(n − 1)/p•[−1]) −−−−→

∼=

y ‖ ∼=

y

S ′′• (n)X −−−−→ i∗τ≤nRj∗µ
⊗n
p•

κ−−−−→ W•Ω
n−1
Xs,log

[−n] −−−−→
xα′

•

xαFM
n,• ‖

S ′•(n)X −−−−→ S•(n)X −−−−→ W•Ω
n−1
Xs,log

[−n] −−−−→

where S ′′• (n)X is de�ned as the mapping �bre of the map κ and S ′•(n)X is the

(non-logarithmi) syntomi omplex of the smooth sheme X as de�ned in [56℄.

The isomorphism of the top two rows was shown in [37℄[Se. 6℄, the exatness

of the lower triangle in [22℄[Thm. 3.2℄ and the ommutativity of the lower two

rows in [22℄[(3.10)℄. If n < p− 1 a result of Kurihara [62℄ shows that α′• is an
isomorphism, and for any n a result of Niziol and Colmez [17℄[Thm.1.1℄ shows

that αFMn,• and hene α′• have bounded kernel and okernel. In either ase, by

following the proof of [76℄[Thm. 3.8℄, one veri�es that the omposite map

(holim•RΓ(X,S
′
•(n)X))Q → (holim•RΓ(X,S•(n)X))Q

αsyn−−−→ RΓsyn(Xη, n)

→
[
RΓcris(Xs/K0)

(1−φn,sp
′)−−−−−−−→ RΓcris(Xs/K0)⊕RΓdR(Xη)/F

n

]

is an isomorphism. This implies the ommutativity of the top square in Cor.

7.17 and hene the onlusion of Cor. 7.17. Conerning Prop. 7.19, the p-
adi monodromy weight onjeture is trivially true in the smooth ase and
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semisimpliity of Hi
cris(Xs/K0) is not needed in the proof. The onlusion of

Cor. 7.17 and Prop. 7.19 then imply Corollary 7.20.

Remark 7.22. Using the theory of ohomologial desent one an show

[16℄[Prop. 5.3.3℄ that the natural maps

RΓ(Xs,et,Qp(n))→ RΓ(Xs,eh, α
∗Qp(n))→ RΓ(Xs,h, α

∗Qp(n))

are quasi-isomorphisms where α is the pullbak from the small étale site of Xs.

However, the eh-motivi ohomology de�ned by Geisser in [38℄ and ourring

in Conjeture 7.16a) is de�ned by pulling bak Voevodsky's omplex Z(n) from
the site (Sm/k)et to the site (Sch/k)eh. As already remarked before notation

5.3, one needs to assume resolution of singularities in order to prove the iso-

morphism RΓ(Xs,et,Qp(n)) ∼= RΓ(Xs,eh,Qp(n)) in this ase (see [38℄[Thm.

4.3℄).

Remark 7.23. If f is smooth and and n < p− 1 then one has an isomorphism

[10℄[Prop. 7.2 (3)℄

i∗Z(n)/pν ∼= S
′
ν(n)X

∼= Z(n)X•/p
ν

where Z(n)X• is the motivi pro-omplex de�ned in [10℄. Hene the ompat-

ibility requested after Conjeture Dp(X , n) (Conjeture 5.5 in setion 5.4) is

satis�ed. The exat triangle

RΓdR(Xη)/F
n[−1]→ RΓ(X,Qp(n))→

[
RΓcris(Xs/K0)

1−φn
−−−−→ RΓcris(Xs/K0)

]

arising from (148) an be written as the fundamental triangle

RΓdR(Xη)/F
n[−1]→ RΓ(X,Qp(n))→ RΓ(Xs,Qp(n))

by (149), and it agrees with the (rational ohomology of the) fundamental tri-

angle of [10℄[Thm. 5.4℄.
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