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1 Introduction

A homotopy limit problem asks for an equivalence between fixed points and
homotopy fixed points for a group action [36]. In some contexts, the fixed
points are easily described, and one then obtains a description of the other-
wise intractable homotopy fixed points. Many distinguished results in algebraic
topology take the form of a homotopy limit problem, e.g., the Atiyah-Segal com-
pletion theorem linking equivariant K-theory to representation theory, Segal’s
Burnside ring conjecture on stable cohomotopy, Sullivan’s conjecture on the ho-
motopy type of real points of algebraic varieties, and the Quillen-Lichtenbaum
conjecture on Galois descent for algebraic K-theory under field extensions.
In this paper we give a surprising solution of the homotopy limit problem for
effective K-theory in the stable motivic homotopy category. This is achieved
by analyzing the slice filtration for algebraic and hermitian K-theory [29], [30],
[38], and completing with respect to the Hopf element η in the Milnor-Witt
K-theory ring [19].
To provide context for our approach, recall that complex conjugation of vector
bundles gives rise to the Adams operation Ψ−1 and an action of the group C2
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of order two on the complex K-theory spectrum KU. Atiyah [1] shows there
is an isomorphism

KO
≃−→ KUhC2 (1.1)

between the real K-theory spectrum KO and the C2-homotopy fixed points of
KU. For the corresponding connectiveK-theory spectra, the homotopy cofiber
of

ko −→ kuhC2 (1.2)

is an infinite sum
∨

i<0 Σ
4iHZ/2 of suspensions of the mod-2 Eilenberg-

MacLane spectrum.
The Grothendieck-Witt group of symmetric bilinear forms, and more generally
hermitian K-groups [16], is the algebro-geometric analogue of the Grothendieck
group of real vector bundles, represented by KO. In the context of motivic
homotopy theory, algebraic and hermitian K-theory are prominent examples
of representable cohomology theories, see [9], [39]. For a geometric model for
the motivic spectrum representing hermitian K-theory, closely related to the
classical construction of the topological spaces appearing in KO, see [32]. Over
any field of characteristic not equal to two, the Grothendieck-Witt group is
isomorphic to the zeroth stable motivic homotopy group of the motivic sphere
spectrum [19]. The close connection between hermitian K-theory and stable
motivic homotopy is further exploited in the recent solution of Morel’s motivic
1-line conjecture in [30].
Motivated by Atiyah’s work and the connection with motivic stable stems we
investigate the analogues of (1.1) and (1.2) for algebraic K-theory KGL with
C2-action given by the Adams operation Ψ−1 and hermitian K-theory KQ, see
for example [29, §3,4]. Throughout we work in the stable motivic homotopy
category SH over a fixed field F of characteristic char(F ) 6= 2. Our starting
point is, somewhat unexpectedly in view of (1.2), the naturally induced map
between fixed points and homotopy fixed points

γ : kq −→ kglhC2 (1.3)

for the projections of KGL and KQ to the effective stable motivic homotopy
category SHeff . The latter is the localizing subcategory of SH generated by
suspension spectra of smooth schemes [38]. Let η be the first motivic Hopf map
induced by the natural map of algebraic varieties A2r{0} −→ P1. Recall that
η defines a non-nilpotent element in the homotopy group π1,11 of the motivic
sphere spectrum. We let π⋆E denote the bigraded coefficients of a generic
motivic spectrum E. The stable cone of η acquires a Bousfield localization
functor Lη defined on all motivic spectra [28, Appendix A]. Let vcd2(F ) denote
the mod-2 cohomological dimension of the absolute Galois group of F (

√
−1)

[33, Chapter 1,§3].
The main result of this paper solves affirmatively the homotopy limit problem
for effective K-theory (1.3) when vcd2(F ) <∞, by completing with respect to
η.
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Theorem 1.1. Suppose F is a field of char(F ) 6= 2 and virtual cohomological
dimension vcd2(F ) <∞. Then (1.3) induces an isomorphism

Lη(γ) : kq
∧
η

≃−→ kglhC2 . (1.4)

We show that the homotopy fixed point spectrum kglhC2 in (1.4) is η-complete.
The proof of Theorem 1.1 invokes the slice filtration

· · · ⊂ Σq+1
T SHeff ⊂ Σq

TSH
eff ⊂ Σq−1

T SHeff ⊂ · · · (1.5)

introduced by Voevodsky [38, §2]. Using (1.5) one associates to E an integrally
graded family of slices s∗(E) and a trigraded slice spectral sequence

π⋆s∗(E) =⇒ π⋆E. (1.6)

We show that the spectral sequence (1.6) converges conditionally for the η-
completion of kq and also for the homotopy fixed point spectrum kglhC2 .
Many of the techniques entering in the proofs are of more general interest in
the setting of the slice filtration. In contrast to the topological situation (1.1),
the coefficient rings π⋆KQ and π⋆KGL are largely unknown over general fields.
Nonetheless we obtain a proof of Theorem 1.1 by using the computations of
s∗(KQ) and s∗(KGLhC2) accomplished in [29].
Next we turn to solving the homotopy limit problem

Υ: KQ −→ KGLhC2 . (1.7)

Here KGLhC2 is η-complete essentially due to motivic orientability of alge-
braic K-theory. We proceed by comparing with the effective cocovers of KQ

and KGLhC2 . Remarkably, the first motivic Hopf map η turns Υ into an
isomorphism without altering the target in (1.7).

Theorem 1.2. Suppose F is a field of char(F ) 6= 2 and virtual cohomological
dimension vcd2(F ) <∞. Then (1.7) induces an isomorphism

Lη(Υ): KQ∧
η

≃−→ KGLhC2 . (1.8)

Supplementing our main results we note that the η-arithmetic square

KQ //

��

KW

��

KQ∧
η

// KQ∧
η [η

−1]

(1.9)

for KQ [30, §3.1] coincides up to isomorphism with the Tate diagram [11, (20)]

KQ //

��

KW

��

KGLhC2 // KGLtC2

(1.10)
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for the C2-action on KGL. Here KW denotes the higher Witt-theory and
KGLtC2 denotes the Tate K-theory spectrum. Moreover, by representability,
(1.8) implies that for every X ∈ SmF — smooth F -schemes of finite type —
there is a naturally induced isomorphism

Lη(Υ)⋆ : π⋆KQ(X)∧η
∼=−→ π⋆KGL(X)hC2 .

Remark 1.3. The earlier works [2] and [11] identified the 2-adic comple-

tion of the homotopy fixed points by showing an isomorphism π⋆KQ/2
∼=−→

π⋆KGLhC2/2. Explicit calculations are carried out over the complex numbers
C in [12]. The commonplace assumption vcd2(F ) <∞ is also used in [2], [11],
and in the context of the Quillen-Lichtenbaum conjecture for étale K-theory
[14, §4].
Remark 1.4. Drew Heard [4] has recently used ∞-categories to prove Theo-
rem 1.2 over a general base scheme with no assumption on vcd2. An alternate
proof will appear in work with Jeremiah Heller and Vesna Stojanoska using C2-
equivariant motivic homotopy theory. Marco Schlichting has indicated another
proof based on the homotopy cartesian Tate diagram of topological spectra [31,
Theorem 7.6]. It implies the Grothendieck-Witt spectrum of a dg category A
with weak equivalences and duality, assuming 1

2 ∈ A, maps by an η-equivalence
to the C2-homotopy fixed points of the algebraic K-theory K(A), for η as defined
in [31, (6.1)]. A crucial part is to show the η-completion of the Tate spectrum
K(A)tC2 is contractible. By first extending this result to presheaves of S1-
spectra and next to motivic spectra, one should recover the motivic homotopy
cartesian Tate diagram (1.10), and the motivic η-contractibility of KGLtC2 .
Thus Theorem 1.2 holds for function fields in infinitely many variables. Our
main result, Theorem 1.1, does not seem to follow from any of these approaches.
It is unclear whether the assumption vcd2(F ) < ∞ can be relaxed for the ef-
fective covers, which are natural objects to consider in the context of the slice
filtration.
The results and techniques in this paper produce calculations of hermitian K-
groups of rings of integers in number fields [17].

2 The first motivic Hopf map η

We view A2 r {0} and P1 as motivic spaces pointed at (1, 1) and [1 : 1],
respectively. The canonical projection map A2r{0} −→ P1 induces the stable
motivic Hopf map η : Gm −→ 1 for the motivic sphere spectrum 1. Iteration
of η yields the cofiber sequence

G∧n
m

ηn

−→ 1 −→ 1/ηn. (2.1)

The η-completion E∧
η of a motivic spectrum E is defined as the homotopy limit

holim
n→∞

E/ηn of the canonically induced diagram

· · · −→ E/ηn+1 −→ E/ηn −→ · · · −→ E/η. (2.2)
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By (2.1) and (2.2) there is a naturally induced map

E −→ E∧
η . (2.3)

We say that E is η-complete if the map in (2.3) is an isomorphism. The Bous-
field localization LηE of E for the cone of η coincides with E∧

η . Recall that
the algebraic cobordism spectrum MGL is the universal oriented motivic spec-
trum, see [20], [22].

Lemma 2.1. Every module over an oriented motivic ring spectrum is η-
complete.

Proof. The unit map for algebraic cobordism 1 −→ MGL factors through
the cone 1/η, see [30, Lemma 3.24] for an explicit factorization, which implies
MGL ∧ η = 0. The statement for modules follows readily.

3 The slice filtration

In this section we discuss results for the slice filtration [38] which will be applied
in the proofs of our main results in Section 5. Throughout we work over a base
field F .
To (1.5) one associates distinguished triangles

fq+1(E) −→ fq(E) −→ sq(E), (3.1)

for every motivic spectrum E, see [38, Theorem 2.2]. Here the qth effective
cover of E is the universal map fq(E) −→ E from Σq

TSH
eff to E. The qth slice

sq(E) ∈ Σq
TSH

eff is uniquely determined up to isomorphism by (3.1). Every

object of Σq+1
T SHeff maps trivially to sq(E). It is technically important for

many constructions to have a “strict model” for the slice filtration, e.g., by
means of model categories as in [7, §3.1], [24, §3.2]. We note that fqsq′ ≃ sq′ fq

follows from [7, (2.2), §6] for all q, q′ ∈ Z.

Lemma 3.1. The slice filtration is exhaustive in the sense that there is an
isomorphism

hocolim
q→−∞

fq(E)
≃−→ E. (3.2)

Proof. Each generator Σs,tX+ of SH is contained in Σq′

T SH
eff for some q′ ∈ Z.

Here s, t ∈ Z and X ∈ SmF , see for example [5, Theorem 9.1]. Recall that
fq′ preserves homotopy colimits [34, Corollary 4.5], [38, Lemma 4.2]. By the
universal property of the q′th effective cover it suffices to show there is an
isomorphism

SH(Σs,tX+, hocolim
q<q′

fq′ fq(E))
≃−→ SH(Σs,tX+, fq′ (E)).

This follows since fq′ fq ≃ fq′ for q < q′.
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Lemma 3.2. The slices of a motivic spectrum are η-complete.

Proof. Every slice sq(E) is a module over the motivic ring spectrum s0(1), cf. [7,
§6 (iv),(v)] and [24, Theorem 3.6.13(6)]. If F is a perfect field, then s0(1) is the
motivic cohomology spectrum MZ by [18, Theorem 10.5.1] and [40, Theorem
6.6]. This extends by base change; every field is essentially smooth over a
perfect field [10, Lemma 2.9], and [10, Lemma 2.7(1)] verifies the hypothesis of
[25, Theorem 2.12] for an essentially smooth map. To conclude the proof we
use Lemma 2.1 and the canonical orientation on MZ [21, §10].

Corollary 3.3. Algebraic K-theory KGL and its effective cover kgl are η-
complete.

Proof. This follows from Lemma 2.1 by using the orientation map MGL −→
KGL, see for example [23, Example 2.4] and [35, Examples 2.1, 2.2], and the
geometric fact that the algebraic cobordism spectrum is effective [34, Corollary
3.2], [38, §8].

Corollary 3.4. The homotopy fixed points spectra KGLhC2 and kglhC2 are
η-complete.

Proof. Let E be short for KGL or kgl. We use homotopy limits to model the
homotopy fixed points EhC2 for the C2-action given by the Adams operation
Ψ−1 [8, §18], [29, §3,4]. Corollary 3.3 implies there is an isomorphism

holim
C2

E
≃−→ holim

C2

holim
n→∞

E/ηn.

Thus the corollary follows by commuting homotopy limits over small categories,
i.e.,

holim
C2

holim
n→∞

E/ηn
≃−→ holim

n→∞
holim

C2

E/ηn.

The qth effective cocover f
q−1(E) of E is uniquely determined up to isomor-

phism by the distinguished triangle

fq(E) −→ E −→ f
q−1(E). (3.3)

Note that fq−1(E) is a (q− 1)-coeffective motivic spectrum, i.e., it is an object
of the right orthogonal subcategory of Σq

TSH
eff . If q ≤ q′ the isomorphism

sq′ fq(E)
≃−→ sq′(E) (3.4)

implies sq′ f
q−1(E) ≃ ∗. When q = 0, (3.3) yields a distinguished triangle for

the effective cover e ∈ SHeff of E, i.e.,

e −→ E −→ f
−1(E). (3.5)

We note that all the nonnegative slices of the coeffective motivic spectrum
f
−1(E) are trivial.
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Lemma 3.5. If E has no nontrivial negative slices then E ∈ SHeff .

Proof. Using (3.1), (3.2) and (3.5) it follows that f−1(E) ≃ ∗.

Lemma 3.6. Suppose E → F induces an isomorphism sqf
q−1(E)

≃→ sqf
q−1(F)

for all q ∈ Z. Then there is a naturally induced isomorphism f
q−1(E)

≃→
f
q−1(F).

Proof. This follows by applying (3.1) and (3.2) to the effective cocovers.

Lemma 3.7. For n > 0 there is a distinguished triangle

f−n+1f
−1(E) −→ f−nf

−1(E) −→ s−n(E). (3.6)

It follows that f−nf
−1(E) is a finite extension of the negative slices of E.

Proof. This follows from the distinguished triangles:

f−n+1(e) //

��

f−n+1(E) //

��

f−n+1f
−1(E)

��

f−n(e) //

��

f−n(E) //

��

f−nf
−1(E)

��

s−n(e) // s−n(E) // s−nf
−1(E)

(3.7)

In (3.7) the slice s−n(e) ≃ ∗ by the assumption n > 0. This implies (3.6).
We note the effective cover f0f

−1(E) ≃ ∗ since the map f0(e) −→ f0(E) is an
isomorphism. It follows that f−1f

−1(E) is isomorphic to s−1(E). The conclusion
follows from (3.6) by induction on n.

Remark 3.8. For n > 0, f−nf
−1(E) is η-complete by Lemmas 3.2 and 3.7.

Lemma 3.9. For n ≥ −q > 0 there are isomorphisms

sq(E)
≃−→ sqf

−1(E)
≃←− sqf−nf

−1(E). (3.8)

Proof. Here we use that sq(e) ≃ ∗ for q < 0. The isomorphism for f−n is a
special case of (3.4).

For every E ∈ SH the distinguished triangle (3.3) yields a commutative dia-
gram:

fq+1(E) //

��

E // f
q(E)

��

fq(E) // E // f
q−1(E)

(3.9)
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The slice completion of E is defined as the homotopy limit

sc(E) ≡ holim
q→∞

f
q−1(E). (3.10)

Using (3.9) and (3.10) we conclude there is a distinguished triangle

holim
q→∞

fq(E) −→ E −→ sc(E). (3.11)

We say that E is slice complete if the homotopy limit holim
q→∞

fq(E) in (3.11) is

contractible.

Lemma 3.10. For every E ∈ SH, both sq(E) and f
q(E) are slice complete for

all q ∈ Z.

Proof. If q < q′ there are distinguished triangles

fq+1fq′ (E)
≃−→ fqfq′(E) −→ sqfq′ (E), fq′ fq+1(E)

≃−→ fq′(E) −→ fq′ f
q(E).

(3.12)
It follows that fq′sq(E) ≃ sqfq′ (E) ≃ ∗ and fq′ f

q(E) ≃ ∗ for q < q′ by (3.12).

Lemma 3.11. Algebraic K-theory KGL and its effective cover kgl are slice
complete.

Proof. It suffices to consider KGL. The associated Nisnevich sheaf of homo-
topy groups πp,qKGL is trivial when p < 2q. Hence fq(KGL) is q-connected
by [30, Lemma 3.17], i.e., for every triple (s, t, d) of integers with s− t+ d < q
and every X ∈ SmF of dimension ≤ d, the group [Σs,tX+, fq(KGL)] is trivial.
We conclude by letting q →∞.

From Lemma 3.11 we deduce isomorphisms

KGLhC2
≃−→ sc(KGL)hC2 ,kglhC2

≃−→ sc(kgl)hC2 .

However, it is unclear whether KGLhC2 and kglhC2 are slice complete because
homotopy fixed points need not commute with effective cocovers or equivalently
with effective covers. To emphasize this issue we construct an example in §6,
see also Proposition 3.15.
For n > 0 there is a naturally induced distinguished triangle

e −→ f−n(E) −→ f−nf
−1(E). (3.13)

Lemma 3.1, (3.5), and (3.13) imply there is a naturally induced isomorphism

hocolim
n>0

f−nf
−1(E)

≃−→ f
−1(E). (3.14)

Next we make precise the vagary of identifying the homotopy fixed points
f
−1(KGL)hC2 with a homotopy colimit. That is, we identify a homotopy limit
with a homotopy colimit. Throughout we let E be a motivic spectrum equipped
with a G-action for a finite group G.
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Lemma 3.12. There is a natural isomorphism

hocolim
n>0

f−nf
−1(E)hG

≃−→ f
−1(E)hG. (3.15)

Proof. For every generator Σs,tX+ of SH there is a canonically induced map

SH(Σs,tX+, hocolim
n>0

f−nf
−1(E)hG) −→ SH(Σs,tX+, f

−1(E)hG). (3.16)

If t ≥ 0 the source and target of (3.16) are trivial. If t < 0 we show (3.16) is
an isomorphism by using the distinguished triangle

ftf
−1(E)hG −→ f

−1(E)hG −→ f
t−1(E)hG, (3.17)

obtained by applying homotopy fixed points to (3.3) for f−1(E) and identifying
f
t−1

f
−1(E) with f

t−1(E) by means of the distinguished triangles

ft(e)
≃−→ e −→ f

t−1(e), ft−1(e) −→ f
t−1(E)

≃−→ f
t−1

f
−1(E).

Since f
t−1(E)hG in (3.17) is (t − 1)-coeffective there is a canonically induced

isomorphism

SH(Σs,tX+, ftf
−1(E)hG)

∼=−→ SH(Σs,tX+, f
−1(E)hG).

On the other hand there are canonical identifications

SH(Σs,tX+, hocolim
n>0

f−nf
−1(E)hG) ∼= colim

n>0
SH(Σs,tX+, f−nf

−1(E)hG)

∼= SH(Σs,tX+, ftf
−1(E)hG).

In the following we make the standing assumption that for all q ∈ Z there is a
naturally induced isomorphism

sq(E
hG)

≃−→ sq(E)hG. (3.18)

The map in (3.18) arises from the standard adjunction between motivic spec-
tra and “naive” G-motivic spectra. That is, with the trivial G-action on the
homotopy fixed points there is a naturally induced G-map sq(E

hG) → sq(E).
Its adjoint is the map in (3.18).

Corollary 3.13. Assuming (3.18) and n > 0 there is a naturally induced
isomorphism

f−nf
−1(EhG)

≃−→ f−nf
−1(E)hG. (3.19)

Proof. Follows from Lemma 3.7 under the stated assumptions.
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Corollary 3.14. Assuming (3.18) and n ≥ −q > 0 there is a naturally in-
duced isomorphism

sq(E
hG)

≃−→ sq(hocolim
n>0

f−nf
−1(E)hG). (3.20)

Proof. From the isomorphisms (3.8) in Lemma 3.9 we obtain

sq(E
hG)

≃−→ sqf
−1(EhG)

≃←− sqf−nf
−1(EhG). (3.21)

Recall that slices commute with homotopy colimits [34, Corollary 4.5], [38,
Lemma 4.2]. Thus the target in (3.20) identifies with the homotopy colimit

hocolim
n>0

sqf−nf
−1(E)hG. (3.22)

With the assumption n ≥ −q > 0 the qth slice sqf−nf
−1(E)hG maps isomorphi-

cally to (3.22). It remains to apply the isomorphism (3.19) in Corollary 3.13
and (3.21).

Proposition 3.15. Assuming (3.18) the slices of e commute with homotopy
fixed points in the sense that there is a naturally induced isomorphism

sq(e
hG)

≃−→ sq(e)
hG (3.23)

for every q ∈ Z. Moreover, ehG is an effective motivic spectrum.

Proof. Applying homotopy fixed points to (3.3) yields the distinguished triangle

ehG −→ EhG −→ f
−1(E)hG. (3.24)

From (3.24) we deduce the commutative diagram of distinguished triangles:

sq(e
hG) //

��

sq(E
hG) //

��

sq(f
−1(E)hG)

��

sq(e)
hG // sq(E)hG // sq(f

−1(E))hG

(3.25)

When q ≥ 0 it follows that sq(f
−1(E)) ≃ sq(f

−1(E)hG) ≃ ∗ since homotopy
limits preserve coeffective motivic spectra. Since the middle vertical map in
(3.25) is an isomorphism, see the assumption (3.18), so is (3.23).
When q < 0, (3.15) and (3.20) imply that sq(E

hG) −→ sq(f
−1(E)hG) is an

isomorphism. Lemma 3.5 implies ehG ∈ SHeff and thus sq(e
hG) −→ sq(e)

hG is
an isomorphism.

Lemma 3.16. Assuming (3.18) there are naturally induced isomorphisms

f
q(ehG)

≃−→ f
q(e)hG, fq(e

hG)
≃−→ fq(e)

hG. (3.26)
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Proof. We show that all the nonnegative effective cocovers of e commute with
homotopy fixed points. With this in hand the assertion for the effective covers
of e follows from (3.3).
We claim there is a commutative diagram:

s0(e
hG)

≃
//

≃

��

f
0(ehG)

��

s0(e)
hG ≃

// f
0(e)hG

(3.27)

Proposition 3.15 shows the left vertical map in (3.27) is an isomorphism
and that ehG is an effective motivic spectrum. Hence s0(e) ≃ f

0(e) and
s0(e

hG) ≃ f
0(ehG) by comparing (3.1) and (3.3). It follows that the natu-

ral map f
0(ehG) −→ f

0(e)hG is also an isomorphism.
The cone of the left vertical map in (3.9) is the qth slice. Hence there is
a homotopy cofiber sequence sq(e) −→ f

q(e) −→ f
q−1(e), and likewise for

ehG. Proposition 3.15 and induction on q implies that f
q(e) commutes with

homotopy fixed points.

Corollary 3.17. Assuming (3.18) there is a naturally induced isomorphism

sc(ehG)
≃−→ sc(e)hG. (3.28)

If e is slice complete then so is ehG.

Proof. Lemma 3.16 and the fact that homotopy limits commute imply there
are canonical isomorphisms

holim
q→∞

f
q−1(holim

G
e) ≃ holim

q→∞
holim

G
f
q−1(e)

≃ holim
q→∞

holim
G

f
q−1(e)

≃ holim
G

holim
q→∞

f
q−1(e).

For slice completeness of ehG we use the factorization

ehG −→ sc(ehG) −→ sc(e)hG.

Corollary 3.18. Assuming (3.18) there are naturally induced isomorphisms

f
q(EhG)

≃−→ f
q(E)hG, fq(E

hG)
≃−→ fq(E)hG. (3.29)

Proof. There is a naturally induced commutative diagram of distinguished tri-
angles:

f0(E
hG) //

��

EhG // f
−1(EhG)

��

f0(E)hG // EhG // f
−1(E)hG

(3.30)
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Proposition 3.15 shows that f0(E
hG) −→ ehG is a map between effective motivic

spectra. It follows that f−1(EhG) −→ f
−1(E)hG induces an isomorphism on all

negative slices. Since it is a map between coeffective spectra, it is in fact an
isomorphism according to Lemma 3.6.
The general cases follow by using induction on (3.1) and (3.3).

We end this section by discussing G-fixed points in more detail. Let OG de-
note the orbit category of G with objects {G/H} and morphisms the G-maps
mapG(G/H,G/K) ∼= (G/K)H [37, §1.8]. Let MSS be a highly structured
model for the stable motivic homotopy category, e.g., motivic functors [6], or
motivic symmetric spectra [13]. Let MSSeff be the Bousfield colocalization of
MSS with respect to the set of objects Σp,0Σ∞

P1X+, whereX ∈ SmF and p ∈ Z

(it suffices to consider p ≤ 0). Its homotopy category is SHeff . As a model
for naive G-motivic spectra we use the functor category [Oop

G ,MSS] with the
projective model structure [8, Theorem 11.6.1]. There is a naturally induced
Quillen adjunction:

i
G
0 : [Oop

G ,MSSeff ] // [Oop
G ,MSS] : rG0oo (3.31)

Evaluating a naive G-motivic spectrum E at the orbits corresponding to G and
the identity element yields the underlying motivic spectrum E and the G-fixed
points EG, respectively. Let e be the naive G-motivic spectrum f

G
0 (E), where

f
G
0 = LiG0 ◦ rG0 . (Forgetting the G-action, e coincides with e.) Since evaluating
at the identity orbit commutes with (3.31), we obtain an isomorphism

f
G
0 (E)G ∼= f0(E

G). (3.32)

In particular, kglC2 coincides with the effective hermitian K-theory spectrum
kq, cf. (1.3).

4 The slice spectral sequence

The trigraded slice spectral sequence for E arising from (1.5) takes the form

π⋆s∗(E) =⇒ π⋆E. (4.1)

This is an upper half-plane spectral sequence with entering differentials [3, §7]
because πp,wsq(E) = 0 for q < w, cf. [38, §7]. A standard argument shows that
(4.1) converges conditionally to the motivic homotopy groups of sc(E) in the
sense of [3, Definition 5.10]. For the following result we refer to [30, Lemma
3.14].

Lemma 4.1. Suppose e ∈ SHeff and e/η is slice complete. Then there is a
naturally induced isomorphism between e∧η to sc(e).

Proposition 4.2. Suppose e ∈ SHeff and e/η is slice complete. There is a
conditionally convergent slice spectral sequence

π⋆s∗(e) =⇒ π⋆e
∧
η . (4.2)
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Proof. This follows from Lemma 4.1 and (4.1).

5 Proofs of Theorems 1.1 and 1.2

Corollary 5.1. For effective hermitian K-theory there is a conditionally con-
vergent slice spectral sequence

π⋆s∗(kq) =⇒ π⋆kq
∧
η . (5.1)

Proof. The only issue is to identify the quotient of kq by η with a slice complete
spectrum. By [29, Theorem 3.4] there is a homotopy cofiber sequence

Σ1,1KQ
η−→ KQ −→ KGL (5.2)

relating algebraic and hermitian K-theory via η. Passing to effective cov-
ers in (5.2) identifies the cofiber of f0(η : Σ

1,1KQ −→ KQ) with kgl. Hence
the cofiber of η : Σ1,1kq −→ kq is an extension of kgl by Σ1,1

s−1(KQ) ≃
s0(Σ

1,1KQ), cf. [29, Lemma 2.1], so it is slice complete by Lemmas 3.10 and
3.11. This verifies the assumptions in Proposition 4.2 for kq.

Assuming vcd2(F ) < ∞, (3.18) holds for KGL by [29, Proposition 4.24]. We
summarize some useful consequences of the results in §3.

Proposition 5.2. The following holds when vcd2(F ) <∞.

(1) The homotopy fixed points spectrum of effective K-theory kglhC2 is slice
complete. There is a conditionally convergent slice spectral sequence

π⋆s∗(kgl
hC2) =⇒ π⋆kgl

hC2 . (5.3)

(2) There is a naturally induced isomorphism fq(KGLhC2)
≃−→ fq(KGL)hC2 .

Proof. Here (1) follows from Lemma 3.11, Corollary 3.17 and the discussion of
(4.1) in §4, while (2) is a special case of Corollary 3.18.

Proof of Theorem 1.1. By [29, Theorems 4.18, 4.25, 4.27, Lemma 4.26] the
natural map Υ: KQ −→ KGLhC2 in (1.7) induces an isomorphism of slices

sq(Υ): sq(KQ)
≃−→ sq(KGLhC2) ≃

{

Σ2q,qMZ ∨
∨

i<0 Σ
2q+2i,q

MZ/2 2|q
∨

i<0 Σ
2q+2i+1,q

MZ/2 2 ∤ q.
(5.4)

From (5.4) we conclude the natural map kq −→ f0(KGLhC2) induces an iso-

morphism on slices. By composing with f0(KGLhC2)
≃−→ kgl

hC2 , see Proposi-
tion 5.2(2), we conclude there is an isomorphism

sq(γ) : sq(kq)
≃−→ sq(kgl

hC2). (5.5)
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Thus γ : kq −→ kglhC2 in (1.3) induces an isomorphism between the condi-
tionally convergent upper half-plane slice spectral sequences (5.1) and (5.3).
The induced map between the filtered target groups is thus an isomorphism
[3, Theorem 7.2]. This finishes the proof by passing to Nisnevich sheaves of
homotopy groups.

Proof of Theorem 1.2. Using (3.5) we obtain the naturally induced commuta-
tive diagram of distinguished triangles:

kq //

f0(Υ)

��

KQ //

Υ
��

f
−1(KQ)

f−1(Υ)
��

f0(KGLhC2) // KGLhC2 // f
−1(KGLhC2)

(5.6)

Lemma 3.6 and (5.4) imply that f
−1(Υ): f−1(KQ) −→ f

−1(KGLhC2) is an
isomorphism because it is a map between coeffective spectra and it induces on

isomorphism on slices. By composing with the isomorphism f0(KGLhC2)
≃−→

kgl
hC2 of Proposition 5.2(2) we obtain a commutative diagram of distinguished

triangles:

kq //

γ

��

KQ //

Υ
��

f
−1(KQ)

f−1(Υ) ≃

��

kglhC2 // KGLhC2 // f
−1(KGLhC2)

(5.7)

This shows that Lη(γ) is an isomorphism if and only if Lη(Υ) is an isomorphism.
It follows that Theorem 1.1 implies Theorem 1.2.

Corollary 5.3. If vcd2(F ) < ∞ then the η-completion of the Tate K-theory
spectrum KGLtC2 is contractible.

Proof. Recall that KGLtC2 is the cone of the norm map from the homotopy
orbits KGLhC2

to the homotopy fixed points KGLhC2 in the Tate diagram
[11, (20)]

KGLhC2

// KQ //

Υ
��

KW

��

KGLhC2

// KGLhC2 // KGLtC2

for the C2-action on KGL. Thus the assertion follows from Theorem 1.2 since
the higher Witt-theory spectrum KW can be identified with KQ[η−1], see e.g.,
[29, (7)].
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6 Appendix

By way of example we show that SHeff is not closed under homotopy fixed
points. In effect, consider the homotopy fixed points for the trivial C2-action
on the effective motivic spectrum

∨

i≥0

Σi,0MZ/2 ≃
∏

i≥0

Σi,0MZ/2. (6.1)

Here the sum and product are isomorphic by [29, Proposition A.5]. Since
C2-homotopy fixed points commute with products, [29, Lemma 4.22] yields a
naturally induced isomorphism

(

∏

i≥0

Σi,0MZ/2
)hC2 ≃−→

∏

i≥0

∏

j≥0

Σi−j,0MZ/2. (6.2)

Assuming (6.2) is an isomorphism in SHeff , the countably infinite product
∏

n∈N
MZ/2 — corresponding to indices i = j — is effective. However, we

show that
∏

n∈N
MZ/2 6∈ SHeff .

Recall from [39, §2] the adjunction between SH and the stable motivic homo-
topy category of S1-spectra SHs:

Σ∞
t : SHs

//
SH : Ω∞

t .oo

Now Ω∞
t MZ/2 is the Eilenberg-MacLane S1-spectrum HZ/2 associated with

the constant presheaf Z/2 by [39, Lemma 5.2]. It follows that Ω∞
t

∏

n∈N
MZ/2

is the Eilenberg-MacLane S1-spectrum HV associated with the constant
presheaf V, where V is a Z/2-vector space of (uncountable) infinite dimen-
sion. If

∏

n∈N
MZ/2 ∈ SHeff we would obtain

Ω∞
t Σ0,1

∏

MZ/2 ≃
∏

Ω∞
t Σ0,1MZ/2 ∈ Σ1

tSHs (6.3)

since Ω∞
t Σ0,1MZ/2 ∈ Σ1

tSHs by [18, Theorem 7.4.1] (as conjectured in [39,
Conjecture 4]). In (6.3) we use that Σ0,1, being an equivalence, commutes with
products. In SHs there is a canonically induced map

α : (
∏

n∈N

Ω∞
t MZ/2)⊗Ω∞

t
MZ/2 Ω

∞
t Σ0,1MZ/2 −→

∏

n∈N

Ω∞
t Σ0,1MZ/2. (6.4)

The tensor product in (6.4) is formed in the module category of the Eilenberg-
MacLane S1-spectrum Ω∞

t MZ/2 [15], cf. [26], [27], [39, Lemma 5.2]. In
particular, the source of α in (6.4) is 1-effective, because Ω∞

t Σ0,1MZ/2 ∈
Σ1

tSHs by [18, Theorem 7.4.1] and
∏

n∈N
Ω∞

t MZ/2 is effective, since it is
the Eilenberg-MacLane spectrum associated with V. We will prove that
SHs(Σ

n,0X+ ∧Gm, α) is an isomorphism for every X ∈ SmF and n ∈ Z; here
Gm denotes the multiplicative group scheme. In effect, choose an uncountable
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basis B ofV and expressV as the filtered colimit of finite dimensional sub-Z/2-
vector spaces V′ ⊂ V spanned by finite subsets F ⊂ B. Since Σn,0X+ ∧Gm is
compact in SHs there are isomorphisms

SHs

(

Σn,0X+ ∧Gm,
(

∏

n∈N

Ω∞
t MZ/2

)

⊗Ω∞

t
MZ/2 Ω

∞
t Σ0,1MZ/2

)

∼=

SHs

(

Σn,0X+ ∧Gm, (colimF⊂B

∏

f∈F

Ω∞
t MZ/2)⊗Ω∞

t
MZ/2 Ω

∞
t Σ0,1MZ/2

)

∼=

colimF⊂B SHs

(

Σn,0X+ ∧Gm, (
∏

f∈F

Ω∞
t MZ/2⊗Ω∞

t
MZ/2 Ω

∞
t Σ0,1MZ/2)

)

∼=

colimF⊂B SHs

(

Σn,0X+ ∧Gm,Ω
∞
t MZ/2⊗Ω∞

t
MZ/2

∏

f∈F

Ω∞
t Σ0,1MZ/2

)

∼=

colimF⊂B SHs

(

Σn,0X+ ∧Gm,
∏

f∈F

Ω∞
t Σ0,1MZ/2

)

∼=

colimF⊂B SHs

(

Σn,0X+,Ωt

(

∏

f∈F

Ω∞
t Σ0,1MZ/2

)

)

∼=

colimF⊂B SHs

(

Σn,0X+,
∏

f∈F

Ω∞
t ΩtΣ

0,1MZ/2
)

∼=

colimF⊂B SHs

(

Σn,0X+,
∏

f∈F

Ω∞
t Σ−1,0MZ/2

)

∼=

SHs

(

Σn,0X+, colimF⊂B

∏

f∈F

Ω∞
t Σ−1,0MZ/2

)

∼=

SHs

(

(Σn,0X+,
∏

n∈N

Ω∞
t Σ−1,0MZ/2

)

∼=

SHs

(

Σn,0X+,
∏

n∈N

Ω∞
t ΩtΣ

0,1MZ/2
)

∼=

SHs

(

Σn,0X+,Ωt

∏

n∈N

Ω∞
t Σ0,1MZ/2

)

∼=

SHs

(

Σn,0X+ ∧Gm,
∏

n∈N

Ω∞
t Σ0,1MZ/2

)

,

which by canonicity coincides with the map induced by α. If the target in
(6.4) is 1-effective, as implied by (6.3), it would follow that α is an isomor-
phism. One checks that α is not an isomorphism by choosing a field F such
that F ∗ ⊗ Z/2 is an infinitely generated Z/2-module, e.g., F = Q. The map
SHs(Σ

−1,0Spec(F )+, α) coincides with the canonical map

(

∏

Z/2
)

⊗Z/2 (F
∗ ⊗ Z/2) −→

∏

F ∗ ⊗ Z/2, (6.5)

which is not surjective. Hence
∏

n∈N
Ω∞

t Σ0,1MZ/2 cannot be 1-effective. As
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explained above it follows that (
∏

i≥0 Σ
0,iMZ/2)hC2 is noneffective.
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