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Abstract. According to Courant’s theorem, an eigenfunction associated with
the n-th eigenvalue λn has at most n nodal domains. A footnote in the book
of Courant and Hilbert, states that the same assertion is true for any linear
combination of eigenfunctions associated with eigenvalues less than or equal to
λn. We call this assertion the Extended Courant Property.
In this paper, we propose simple and explicit examples for which the extended
Courant property is false: convex domains in Rn (hypercube and equilateral
triangle), domains with cracks in R2, on the round sphere S2, and on a flat
torus T

2.
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1 Introduction

Let Ω ⊂ Rd be a bounded open domain or, more generally, a compact Rieman-
nian manifold with boundary.

Consider the eigenvalue problem
{

−∆u = λu in Ω ,

b(u) = 0 on ∂Ω ,
(1)

where b(u) is some homogeneous boundary condition on ∂Ω, so that we have
a self-adjoint boundary value problem (including the empty condition if Ω is
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a closed manifold). For example, we can choose d(u) = u|∂Ω for the Dirichlet
boundary condition, or n(u) = ∂u

∂ν
|∂Ω for the Neumann boundary condition.

Call H(Ω, b) the associated self-adjoint extension of −∆, and list its eigenvalues
in nondecreasing order, counting multiplicities, and starting with the index 1,
as

0 ≤ λ1(Ω, b) < λ2(Ω, b) ≤ λ3(Ω, b) ≤ · · · , (2)

with an associated orthonormal basis of eigenfunctions {uj, j ≥ 1}.
For any eigenvalue λ of (Ω, b), define the index

κ(Ω, b, λ) = min{k | λk(Ω, b) = λ}. (3)

Notation. If λ is an eigenvalue of (Ω, b), we denote by E(Ω, b, λ) the
eigenspace associated with the eigenvalue λ.
We skip Ω or b from the notations, whenever the context is clear.
Given a real continuous function v on Ω, define its nodal set

Z(v) = {x ∈ Ω | v(x) = 0} , (4)

and call β0(v) the number of connected components of Ω\Z(v) i.e., the number
of nodal domains of v.

Theorem 1.1. [Courant, 1923]
For any nonzero eigenfunction u associated with λn(Ω, b),

β0(u) ≤ κ
(

λn(Ω, b)
)

≤ n . (5)

Courant’s nodal domain theorem can be found in [13, Chap. V.6].

A footnote in [13, p. 454] (second footnote in the German original [12, p. 394])
indicates: Any linear combination of the first n eigenfunctions divides the do-
main, by means of its nodes, into no more than n subdomains. See the Göt-
tingen dissertation of H. Herrmann, Beiträge zur Theorie der Eigenwerte und
Eigenfunktionen, 1932.

For later reference, we write a precise statement. Given λ ≥ 0, denote by
L(Ω, b, λ) the space of linear combinations of eigenfunctions of H(Ω, b) associ-
ated with eigenvalues less than or equal to λ,

L(Ω, b, λ) =







∑

λj (Ω,b)≤λ

cj uj | cj ∈ R, uj ∈ E(Ω, b, λj)







. (6)

Statement 1.2. [Extended Courant Property]
Let v ∈ L (λn(Ω, b)) be any linear combination of eigenfunctions associated
with the n first eigenvalues of the eigenvalue problem (1). Then,

β0(v) ≤ κ
(

λn(Ω, b)
)

≤ n . (7)

We call both Statement 1.2, and Inequality (7), the Extended Courant Property,
and refer to them as the ECP(Ω), or as the ECP(Ω, b) to insist on the boundary
condition b.
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1.1 Known results and conjectures

We begin by recalling previously known results, and conjectures.

1. Statement 1.2 is true for a finite interval, with either the Dirichlet or the
Neumann boundary conditions, as well as for the periodic boundary conditions.
In dimension 1, one can actually replace the operator d2

dx2 by a general Sturm-
Liouville operator d

dx

(

K d
dx

)

+L, where K > 0 and L are functions, see [7] and
[10] for more details.

2. In [1], see also [2, 22], Arnold points out that Statement 1.2 is particularly
meaningful in relation to Hilbert’s 16th problem. Indeed, let p be a homoge-
neous real polynomial in (N+1) variables, of even degree n. When restricted to
the sphere SN , or equivalently to the real projective space RPN , p can be writ-
ten as a sum of spherical harmonics of even degrees less than or equal to n, i.e.,
as a sum of eigenfunctions of the Laplace-Beltrami operator on RPN equipped
with the round metric g0. Arnold observes that should ECP(RPN , g0) be true,
then the number of connected components of the complement to the algebraic
hypersurface Vn = p−1(0) can be bounded from above by

dimRH0(RPN \Vn,R) ≤ CNN+n−2 + 1 (1)

The estimate (1) is known to be true1 when N = 2. It is known to be true when
N = 3 and n = 4, and false when N = 3 and n ≥ 6, with counterexamples
constructed by O. Viro [30].

It follows that ECP(RPN , g0) is true for N = 2, and false for N = 3. Arnold
also mentions that ECP is false for a generic metric g on the sphere, but does
not provide any precise statement, nor proof.

Remark. As mentioned above, ECP(RP 3, g0) is true when restricted to linear
combinations of spherical harmonics of degree less than or equal to 4. Given
any λ0 > 0, it is easy to construct a surface (M,h) such that ECP(M,h) is true
for linear combinations of eigenfunctions with eigenvalues less than or equal to
λ0. Indeed, let (S1, ga) be the circle with length 2aπ. The eigenvalues are the
numbers 0 (with multiplicity 1), and n2/a2, for n ≥ 1 (with multiplicity 2).
Consider the torus (M,ha) = (S1, g1) × (S1, ga). Fix some λ0 > 0. Then, for
a small enough, the eigenfunctions of (M,ha), associated with eigenvalues less
than or equal to λ0, correspond to eigenfunctions of the first factor (S1, g1), for
which the extended Courant property is true.

Fix some λ0 > 0. Using the Hopf fibration S3 → S2, and letting the length
of the fiber tend to zero as in [11], one can find a metric gλ0

on S3, such that
ECP(S3, gλ0

) is true when restricted to linear combinations of eigenfunctions
associated with eigenvalues less than or equal to λ0.

1We are aware of only one reference for a proof, namely J. Leydold’s thesis [23], partially
published in [24], using real algebraic geometry.
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3. In [16], Gladwell and Zhu investigate Statement 1.2 (which they call the
Courant-Herrmann conjecture) for domains in RN , with the Dirichlet boundary
condition. For the Euclidean square C, they show that ECP(C) is true when
restricted to linear combinations of eigenfunctions associated with the first 13
eigenvalues. They make the conjectures that ECP is true for the square, for
rectangles and, more generally for convex domains in R2.

They also give numerical evidence that the ECP is false for more complicated
domains (rectangles with perturbed boundary). More precisely, they numer-
ically determine the nodal sets of some linear combinations c1u1 + c2u2 of
the first two Dirichlet eigenfunctions in such domains, and conclude from the
numerical computations that there exist domains for which the linear combi-
nations c1u1 + c2u2 have up to 5 nodal domains. Finally, they also make the
conjecture that given any integer m ≥ 2, there exist a domain, and a linear
combination c1u1 + c2u2, with m nodal domains.

Remark. Fix any λ0 > 0. Then, for a small enough, ECP([0, 1] × [0, a]) is
true when restricted to eigenfunctions associated with eigenvalues less than or
equal to λ0. The reasoning is similar to the one used in the preceding remark.

4. Finally, we would like to point out that sums of eigenfunctions appear
naturally in several contexts. (i) Using the Faber-Krahn inequality, Pleijel
improved Courant’s estimate for the Dirichlet Laplacian. In the case of the
hypercube, an extension to the Neumann Laplacian could be achieved provided
the extended Courant property be true, see [28]. (ii) As far as their vanishing
properties are concerned, eigenfunctions behave like polynomials with degree
of the order of the square root of the eigenvalue. From this point of view, as
pointed out in [21], it is natural to investigate the vanishing properties of sums
of eigenfunctions as well. (iii) What is the number of nodal domains of a
“typical” eigenfunction? One can answer this question, in a probabilistic sense,
when eigenspaces have large multiplicities. In a more general framework, one
can consider sums of eigenfunctions. We refer to [27, 29] and the references
in these papers. (iv) A similar approach can be made in the framework of
Hilbert’s 16th problem, see the paper [15] and its bibliography.

1.2 Main examples and organization of this paper

The purpose of the present paper is to provide simple counterexamples to the
Extended Courant Property.

In this subsection, we briefly describe the main examples given in this paper.
Each of them is directly motivated by a result or by a conjecture mentioned in
the previous subsection.

1. Let Cn := [0, π]n be the hypercube. In Section 2, we show that ECP(Cn, d)
is false for n ≥ 3, and that ECP(Cn, n) is false for n ≥ 4. This provides convex
counterexamples to the ECP in higher dimensions, for both the Dirichlet or
the Neumann boundary conditions.
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2. Let Te denote the equilateral triangle. In Section 3, we prove that ECP(Te)
is false for both the Dirichlet and the Neumann boundary conditions. This
provides a convex counterexample to the ECP in dimension 2, and therefore
a counterexample to one of the conjectures in [16]. The description of the
eigenvalues and eigenfunctions of the equilateral triangle is summarized in Ap-
pendix A.

Remark. By perturbing this example, one can show that there exists a family
of smooth strictly convex domains Da in R

2 such that ECP(Da, n) is false,
see [8]. We refer to [10] for other counterexamples related to the equilateral
triangle.

3. In Section 4, we use cracks to perturb the rectangle, or the unit disk. We
obtain non-convex, yet simply-connected domains of R2 which are counterex-
amples to the ECP. Similarly, in Sections 5 and 6, we use cracks to perturb a
flat 2-torus, or the round 2-sphere, and obtain further counterexamples to the
ECP.

In both cases, we can prescribe the number of nodal domains of the linear
combination of eigenfunctions under consideration, thus answering a conjecture
in [16].

Remark. By considering domains with cracks, we are able to provide a rigorous
proof of the conjecture proposed in Gladwell and Zhu, based on numerical com-
putations for some domains, and to extend it to the case of non-planar surfaces
such as T2 and S2. These examples with cracks also contradict other natural
conjectures (such as replacing the minimal labeling κ(λ) in Statement 1.2, by
a maximal labeling), for which the equilateral triangle is not a counterexample
anymore.

4. Finally, we would like to point out that some of our examples are rele-
vant to the question of counting the number of connected components of the
complement of a level line of the second Neumann eigenfunction, see [4].

Acknowledgements

The authors are very much indebted to Virginie Bonnaillie-Noël who produced
some simulations and pictures at an early stage of their work on this subject.
They thank the referee for his comments.

2 The hypercube

2.1 Preparation

Let Cn(π) :=]0, π[n be the hypercube of dimension n, with either the Dirichlet
or the Neumann boundary condition on ∂Cn(π). A point in Cn(π) is denoted
by x = (x1, . . . , xn).
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A complete set of eigenfunctions of −∆ for (Cn(π), d) is given by the functions

n
∏

j=1

sin(kj xj) , with eigenvalue
n

∑

j=1

k2
j , for kj ∈ N\{0} . (8)

A complete set of eigenfunctions of −∆ for (Cn(π), n) is given by the functions

n
∏

j=1

cos(kj xj) , with eigenvalue
n

∑

j=1

k2
j , for kj ∈ N . (9)

2.2 Hypercube with Dirichlet boundary condition

In this section, we make use of the classical Chebyshev polynomials Uk(t), k ∈
N, defined by the relation,

sin ((k + 1)t) = sin(t)Uk (cos(t)) ,

and in particular,

U0(t) = 1, U1(t) = 2t, U2(t) = 4t2 − 1 .

The first Dirichlet eigenvalues of Cn(π) (as points in the spectrum) are listed
in the following table, together with their multiplicities, and eigenfunctions.

Table 1: First Dirichlet eigenvalues of Cn(π)
Eigenv. Mult. Eigenfunctions

n 1 φ1(x) :=
∏n

j=1 sin(xj)

n+ 3 n φ1(x)U1 (cos(xi)), for 1 ≤ i ≤ n

n+ 6 n(n−1)
2 φ1(x)U1 (cos(xi)) U1 (cos(xj)), for 1 ≤ i < j ≤ n

n+ 8 n φ1(x)U2 (cos(xi)), for 1 ≤ i ≤ n

For the above eigenvalues, the index defined in (3) is given by,

κ(n+ 3) = 2, κ(n+ 6) = n+ 2, κ(n+ 8) =
n(n+ 1)

2
+ 2 . (10)

In order to study the nodal set of the above eigenfunctions or linear combina-
tions thereof, we use the diffeomorphism

(x1, . . . , xn) 7→ (ξ1 = cos(x1), . . . , ξn = cos(xn)) , (11)

from ]0, π[n onto ]−1, 1[n, and factor out the function φ1 which does not vanish
in the open hypercube. We consider the function

Ξa(ξ1, . . . , ξn) = ξ2
1 + · · · + ξ2

n − a
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Figure 1: 3-dimensional cube

which corresponds to a linear combination Φa in

E(Cn(π), d, n) ⊕ E(Cn(π), d, n+ 8).

Given some a, with (n−1) < a < n, the function Φa has 2n+1 nodal domains,
see Figure 1 in dimension 3. For n ≥ 3, we have 2n + 1 > κ(n + 8). The
function Φa therefore provides a counterexample to the ECP for the hypercube
of dimension at least 3, with Dirichlet boundary condition.

Proposition 2.1. For n ≥ 3, the ECP(Cn(π), d) is false.

Remark. An interesting feature of this example is that we get counterexamples
to the ECP for linear combinations which involve eigenvalues with higher index
when n increases. This is also in contrast with the fact that, in dimension 3,
Courant’s nodal domain theorem is sharp only for δ1 and δ2, [19].

2.3 Hypercube with Neumann boundary condition

In this section, we make use of the classical Chebyshev polynomials Tk(t), k ∈
N, defined by the relation,

cos(kt) = Tk (cos(t)) ,

and in particular,

T0(t) = 1 , T1(t) = t , T2(t) = 2t2 − 1 .

The first Neumann eigenvalues (as points in the spectrum) are listed in the
following table, together with their multiplicities, and eigenfunctions.
For these Neumann eigenvalues, the index defined in (3) is given by,

κ(2) = n+ 2 , κ(3) =
n(n+ 1)

2
+ 2 , κ(4) =

n(n2 + 5)
6

+ 2 . (12)
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Table 2: First Neumann eigenvalues of Cn(π)
Eigenv. Mult. Eigenfunctions

0 1 ψ1(x) := 1

1 n cos(xi), for 1 ≤ i ≤ n

2 n(n−1)
2 cos(xi) cos(xj), for 1 ≤ i < j ≤ n

3 n(n−1)(n−2)
6 cos(xi) cos(xj) cos(xk), for 1 ≤ i < j < k ≤ n

4 n+
(

n
4

)

T2 (cos(xi)), for 1 ≤ i ≤ n and . . .

In order to study the nodal set of the above eigenfunctions or linear combina-
tions thereof, we again use the diffeomorphism (11) and the function Ξa, which
here corresponds to a linear combination Ψa in E(Cn(π), n, 0) ⊕ E(Cn(π), n, 4).
Given some a, with (n − 1) < a < n, the function Ψa has 2n + 1 nodal do-
mains. For n ≥ 4, we have 2n + 1 > κ(4). The function Ψa therefore provides
a counterexample to the ECP for the hypercube of dimension at least 4, with
Neumann boundary condition.

Proposition 2.2. For n ≥ 4 , the ECP(Cn(π), n) is false.

2.4 A stability result for the cube

According to Subsection 2.2, the ECP(C3(π), d) is false. Consider the rectan-
gular parallelepiped Pb :=]0, b1π[×]0, b2π[×]0, b3π[, with b = (b1, b2, b3), bi > 0,
and define the ai by

√
ai bi = 1.

The Dirichlet eigenvalues δi(Pb) are the numbers a1k
2
1 + a2k

2
2 + a3k

2
3 , with

associated eigenfunctions

3
∏

i=1

sin (ki
√
aixi) , ki ∈ N\{0}. (13)

The eigenvalues are clearly continuous in the parameters ai. For a generic triple
(a1, a2, a3) close enough to (1, 1, 1), the first 12 Dirichlet eigenvalues δi(Pb) are
simple, and correspond to the same type of eigenfunctions as for the ordinary
cube (same choices of triples (k1, k2, k3)). This is for example the case if we
take a1 = 1, a2 = 1 +

√
2/100 and a3 = 1 +

√
3/100, see the numerical values

in Table 2.4, where the Dirichlet eigenvalues are denoted δi.

One can then repeat the arguments of Subsection 2.2, and conclude that
ECP(Cb, d) is false, so that one has some kind of stability.

Proposition 2.3. For b := (b1, b2, b3) close enough to (1, 1, 1), the ECP(Pb, d)
is false.
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Table 3: Eigenvalues for (C3(π), d) and (Pb, d)
Index Triple δi(C3(π)) δi(Pb)

1 (1, 1, 1) 3 3.016

2 (2, 1, 1) 6 6.016

3 (1, 2, 1) 6 6.037

4 (1, 1, 2) 6 6.042

5 (2, 2, 1) 9 9.037

6 (2, 1, 2) 9 9.042

7 (1, 2, 2) 9 9.063

8 (3, 1, 1) 11 11.016

9 (1, 3, 1) 11 11.072

10 (1, 1, 3) 11 11.085

11 (2, 2, 2) 12 12.063

12 (3, 2, 1) 14 14.037

Clearly, the same kind of argument can be applied in higher dimension, or for
the Neumann boundary condition.

Remark. Note that the preceding examples still leave open the conjecture
made by Gladwell and Zhu that ECP is true for convex domains in dimension 2.
A counterexample will be given in the next section.

3 The equilateral triangle

Let Te denote the equilateral triangle with sides equal to 1, see Figure 2. The
eigenvalues and eigenfunctions of Te, with either the Dirichlet or the Neumann
condition on the boundary ∂Te, can be completely described, see [5, 26, 25], or
[6]. We provide a summary in Appendix A.

In this section, we show that the equilateral triangle provides a counterexample
to the Extended Courant Property for both the Dirichlet and the Neumann
boundary conditions, contradicting the conjecture of Gladwell and Zhu in di-
mension 2.
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Figure 2: Equilateral triangle Te = [OAB]

3.1 Neumann boundary condition

The sequence of Neumann eigenvalues of the equilateral triangle Te begins as
follows,

0 = λ1(Te, n) <
16π2

9
= λ2(Te, n) = λ3(Te, n) < λ4(Te, n) . (14)

The second eigenspace has dimension 2, and contains one eigenfunction ϕn
2

which is invariant under the mirror symmetry with respect to the median OM ,
and another eigenfunction ϕn

3 which is anti-invariant under the same mirror
symmetry, see Appendix A.

More precisely, according to (50), the function ϕn
2(x, y) can be chosen to be,

{

ϕn
2(x, y) = cos(4π

3 x) + cos(2π
3 (−x+

√
3y))

+ cos(2π
3 (x +

√
3y)) ,

(15)

or, more simply,

ϕn

2(x, y) = 2 cos
(

2πx
3

) (

cos
(

2πx
3

)

+ cos
(

2πy√
3

))

− 1 . (16)

The set {ϕn
2 + 1 = 0} consists of the two line segments {x = 3

4 } ∩ Te and

{x+
√

3y = 3
2 } ∩ Te, which meet at the point (3

4 ,
√

3
4 ) on ∂Te.

The sets {ϕn
2 + a = 0}, with a ∈ {0 ; 1 − ε ; 1 ; 1 + ε}, and small positive ε, are

shown in Figure 3. When a varies from 1 − ε to 1 + ε, the number of nodal
domains of ϕn

2 + a in Te jumps from 2 to 3, with the jump occurring for a = 1.
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Figure 3: Level sets {ϕn
2 + a = 0} for a ∈ {0 ; 0.7 ; 0.8 ; 0.9 ; 1 ; 1.1 ; 1.2 ; 1.3}

It follows that ϕn
2 + a = 0, for 1 ≤ a ≤ 1.1, provides a counterexample to the

Extended Courant Property for the equilateral triangle with Neumann boundary
condition.

Proposition 3.1. The ECP(Te, n) is false.

Remark. The eigenfunction ϕn
2 restricted to the hemiequilateral triangle is

the second Neumann eigenfunction of Th = [OAM ]. The restriction of ϕn
3 to

the hemiequilateral triangle is an eigenfunction of Th with mixed boundary
condition (Dirichlet on OM and Neumann on the other sides).

3.2 Dirichlet boundary condition

The sequence of Dirichlet eigenvalues of the equilateral triangle Te begins as
follows,

λ1(Te, d) =
16π2

3
< λ2(Te, d) = λ3(Te, d) =

112π2

9
< λ4(Te, d). (17)

More precisely, according to (52), the function ϕd
1(x, y) can be chosen to be,

ϕd
1(x, y) = −8 sin 2πy√

3
sin π(x+ y√

3
) sinπ(x − y√

3
) , (18)

which shows that ϕd
1 does not vanish inside Te .

The second eigenvalue has multiplicity 2. It admits one eigenfunction, ϕd
2,

which is symmetric with respect to the median OM , and given in (54), and
another one, ϕd

3, which is anti-symmetric.
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We now consider the linear combination ϕd
2 + aϕd

1, with a close to 1. The
following lemma is the key for reducing the question to the previous analysis.

Lemma 3.2. With the above notation, the following identity holds,

ϕd

2 = ϕd

1ϕ
n

2 .

Proof. We express the above eigenfunctions in terms of X := cos 2π
3 x and

Y := cos 2π√
3
y.

First we observe from (16) that

ϕn

2(x, y) = 2X(X + Y ) − 1 .

Secondly, we have from (18)

ϕd

1(x, y) = 2 sin
2πy√

3
(8X3 − 6X − 2Y ) .

Finally, it remains to compute ϕd
2. We start from (54), and first factorize

sin 2πy√
3

in each line. More precisely, we write,

sin 2π
3 (5x+

√
3y) − sin 2π

3 (5x−
√

3y) = 2 sin(2πy√
3

) cos(5 2πx
3 ) ,

sin 2π
3 (x− 3

√
3y) − sin 2π

3 (x+ 3
√

3y) = −2 sin(3 2πy√
3

) cos(2πx
3 ) ,

sin 4π
3 (2x+

√
3y) − sin 4π

3 (2x−
√

3y) = 2 sin(2 2πy√
3

) cos(4 2πx
3 ) .

(19)

We now use the classical Chebyshev polynomials Tn, Un, and the relations
cos(nθ) = Tn(cos θ) and sin(n+ 1)θ = sin(θ)Un(cos θ).

This gives,

ϕd
2 = 2 sin 2πy√

3

(

T5(X) −XU2(Y ) + T4(X)U1(Y )
)

=: 2 sin 2πy√
3
Q(X,Y ) .

We find that

Q(X,Y ) = 16X5 − 20X3 + 6X + 2Y (8X4 − 8X2 + 1) − 4XY 2 ,

and it turns out that the polynomial Q(X,Y ) can be factorized as

Q(X,Y ) =
(

2X(X + Y ) − 1
)

(8X3 − 6X − 2Y ) ,

so that ϕd
2 = ϕd

1ϕ
n
2 .

In the above computation, we have used the relations,

T4(X) = 8X4 − 8X2 + 1 , T5(X) = 16X5 − 20X3 + 5X ,
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and
U1(Y ) = 2Y , U2(Y ) = 4Y 2 − 1 .

Observing that
ϕd

2 + aϕd

1 = ϕd

1(ϕn

2 + a) ,

we deduce immediately from the Neumann result that the function ϕd
2 + aϕd

1,
for 1 ≤ a ≤ 1.1, provides a counterexample to the Extended Courant Property
for the equilateral triangle with the Dirichlet boundary condition.

Proposition 3.3. The ECP(Te, d) is false.

Remark 3.4. Lemma 3.2 is quite puzzling. However, other such identities do
exist. Indeed, consider the square C2(π). The first eigenfunction has the form

(x, y) 7→ α0 sin x sin y ,

with α0 6= 0 , and the second eigenfunctions take the form

(x, y) 7→ α sin 2x sin y + β sin 2y sin x ,

with |α| + |β| 6= 0 . We can then observe that

α sin 2x sin y + β sin 2y sinx = 2 sinx sin y (α cosx+ β cos y) ,

and that α cosx+β cos y is a Neumann eigenfunction of the square. For C2(π),
more general relations between Dirichlet and Neumann eigenfunctions follow
from the identity 2Tn = Un − Un−2 between Chebyshev polynomials.
One can also prove the identity ϕd

2 = aϕd
1 ϕ

n
2 between the eigenfunctions of the

right isosceles triangle (for some constant a depending on the normalization of
eigenfunctions).

4 Rectangle with a crack

Let R be the rectangle ]0, 4π[×]0, 2π[. For 0 < a ≤ 1, let Ca :=]0, a] × {π}
and Ra := R \ Ca. In this section, we only consider the Neumann boundary
condition on Ca, and either the Dirichlet or the Neumann boundary condition
on ∂R. The setting is the one described in [14, Section 8].

We call










0 < δ1(0) < δ2(0) ≤ δ3(0) ≤ · · ·
resp.

0 = ν1(0) < ν2(0) ≤ ν3(0) ≤ · · ·
(20)

the eigenvalues of −∆ in R, with the Dirichlet (resp. the Neumann) boundary
condition on ∂R. They are given by the numbers m2

16 + n2

4 , for pairs (m,n)
of positive integers for the Dirichlet problem (resp. for pairs of non-negative
integers for the Neumann problem). Corresponding eigenfunctions are products
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Figure 4: Rectangle with a crack (Neumann condition)

of sines (Dirichlet) or cosines (Neumann). The eigenvalues are arranged in non-
decreasing order, counting multiplicities.

Similarly, call










0 < δ1(a) < δ2(a) ≤ δ3(a) ≤ · · ·
resp.

0 = ν1(a) < ν2(a) ≤ ν3(a) ≤ · · ·
(21)

the eigenvalues of −∆ in Ra, with the Dirichlet (resp. the Neumann) boundary
condition on ∂R, and the Neumann boundary condition on Ca.

The first three Dirichlet (resp. Neumann) eigenvalues for the rectangle R are
as follows.

Eigenvalue Value Pairs Dirichlet eigenfunctions

δ1(0) 5
16 (1, 1) φ1(x, y) = sin(x4 ) sin(y2 )

δ2(0) 1
2 (2, 1) φ2(x, y) = sin(x2 ) sin(y2 )

δ3(0) 13
16 (3, 1) φ3(x, y) = sin(3x

4 ) sin(y2 )

(22)

Eigenvalue Value Pairs Neumann eigenfunctions

ν1(0) 0 (0, 0) ψ1(x, y) = 1

ν2(0) 1
16 (1, 0) ψ2(x, y) = cos(x4 )

ν3(0) (0, 1) ψ3(x, y) = cos(y2 )

ν4(0) 1
4 (2, 0) ψ4(x, y) = cos(x2 )

(23)

We summarize [14], Propositions (8.5), (8.7), (9.5) and (9.9), into the following
theorem.

Theorem 4.1 (Dauge-Helffer).
With the above notation, the following properties hold.

1. For i ≥ 1, the functions [0, 1] ∋ a 7→ δi(a), resp. [0, 1] ∋ a 7→ νi(a), are
non-increasing.
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2. For i ≥ 1, the functions ]0, 1[∋ a 7→ δi(a), resp. ]0, 1[∋ a 7→ νi(a), are
continuous.

3. For i ≥ 1, lima→0+ δi(a) = δi(0) and lima→0+ νi(a) = νi(0).

It follows that for a positive, small enough, we have
{

0 < δ1(a) ≤ δ1(0) < δ2(a) ≤ δ2(0) < δ3(a) ≤ δ3(0) , and

0 = ν1(a) = ν1(0) < ν2(a) ≤ ν2(0) < ν3(a) ≤ ν4(a) ≤ ν3(0) .
(24)

Observe that for i = 1 and 2, ∂φi

∂y
(x, π) = 0 and ∂ψi

∂y
(x, y) = 0. It follows that

for a small enough, the functions φ1 and φ2 (resp. the functions ψ1 and ψ2)
are the first two eigenfunctions for Ra with the Dirichlet (resp. Neumann)
boundary condition on ∂R, and the Neumann boundary condition on Ca, with
associated eigenvalues 5

16 and 1
2 (resp. 0 and 1

16 ).

We have

αφ1(x, y) + βφ2(x, y) = sin(
x

4
) sin(

y

2
)

(

α+ 2β cos(
x

4
)
)

,

and
αψ1(x, y) + βψ2(x, y) = α+ β cos(

x

4
).

We can choose the coefficients α, β in such a way that these linear combinations
of the first two eigenfunctions have two (Figure 4 left) or three (Figure 4 right)
nodal domains in Ra .

Proposition 4.2. The ECP(Ra) is false with the Neumann condition on Ca,
and either the Dirichlet or the Neumann condition on ∂R.

Remark 4.3. In the Neumann case, we can introduce several cracks
{(x, bj) | 0 < x < aj}kj=1 in such a way that for any d ∈ {2, 3, . . . k + 2}
there exists a linear combination of 1 and cos(x4 ) with d nodal domains.

Remark 4.4. Numerical simulations, kindly provided by Virginie Bonnaillie-
Noël, indicate that the Extended Courant Property does not hold for a rectangle
with a crack, with the Dirichlet boundary condition on both the boundary of the
rectangle, and the crack, [9]. Dirichlet cracks appear in another context in [17]
(see also references therein)

Remark 4.5. It is easy to make an analogous construction for the unit disk
(Neumann case) with radial cracks. As computed for example in [20] (Subsec-
tion 3.4), the second radial eigenfunction has labelling 6 (λ6 ≈ 14, 68), and we
can introduce six radial cracks to obtain a combination of the two first radial
Neumann eigenfunctions with seven nodal domains, see Figure 5.
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Figure 5: Disk with cracks, Neumann condition

5 The rectangular flat torus with cracks

Consider the flat torus T := R
2/ (4πZ ⊕ 2πZ). Arrange the eigenvalues in

nondecreasing order,
λ1(0) < λ2(0) ≤ λ3(0) ≤ · · · (25)

The eigenvalues are given by the numbers m2

4 + n2 for (m,n) pairs of integers,
with associated complex eigenfunctions

exp(im
x

2
) exp(iny) (26)

or equivalently, with real eigenfunctions

cos(mx
2 ) cos(ny), cos(mx

2 ) sin(ny),

sin(mx
2 ) cos(ny), sin(mx

2 ) sin(ny),
(27)

where m,n are non-negative integers. Accordingly, the first eigenpairs of T are
as follows.

Eigenvalue Value Pairs Eigenfunctions

λ1(0) 0 (0, 0) ω1(x, y) = 1

λ2(0) ω2(x, y) = cos(x2 )

λ3(0) 1
4 (1, 0) ω2(x, y) = sin(x2 )

λ4(0) ω3(x, y) = cos(y)

λ5(0) 1 (0, 1) ω4(x, y) = sin(y)

(28)

A typical linear combination of the first three eigenfunctions is of the form
α+ β sin(x2 − θ)

Take the torus T, and perform two (or more) cracks parallel to the x axis,
and with the same length a. Call Ta the torus with cracks, see Figure 6, and
choose the Neumann boundary condition on the cracks. For a small enough,

Documenta Mathematica 23 (2018) 1561–1585



Courant Nodal Domain Property 1577

Figure 6: Flat torus with two cracks

the first three eigenfunctions of the torus T remain eigenfunctions of the torus
with cracks, Ta, with the same κ(Ta, 3) = 2. The proof is the same as in [14].
We can choose the length a such that the nodal set of α+β sin(x2 − θ) and the
two cracks determine three nodal domains.

Proposition 5.1. The Extended Courant Property is false for the flat torus
with cracks (Neumann condition on the cracks).

6 Sphere S
2 with cracks

According to [24, Theorem 1, p. 305], the ECP is true on the round sphere
S2 for sums of spherical harmonics of even (resp. of odd) degree. We consider
the geodesic lines z 7→ (

√
1 − z2 cos θi,

√
1 − z2 sin θi, z) through the north pole

(0, 0, 1), with distinct θi ∈ [0, π[. For example, removing the geodesic segments
θ0 = 0 and θ2 = π

2 with 1 − z ≤ a ≤ 1, we obtain a sphere S
2
a with a crack in

the form of a cross. We choose the Neumann boundary condition on the crack.
We can then easily produce a function, in the space generated by the two first
eigenspaces of the sphere with a crack, having five nodal domains.

The first eigenvalue of S2 is λ1(0) = 0, with corresponding eigenspace of
dimension 1, generated by the function 1. The next eigenvalues of S2 are
λ2(0) = λ3(0) = λ4(0) = 2 with associated eigenspace of dimension 3, gener-
ated by the functions x, y, z. The following eigenvalues of S2 are larger than or
equal to 6.
As in [14], the eigenvalues of S2

a (with Neumann condition on the crack) are
non-increasing in a, and continuous to the right at a = 0. More precisely











0 = λ1(a) < λ2(a) ≤ λ3(a) ≤ λ4(a) ≤ 2 < λ5(a) ≤ 6 ,

lima→0+ λi(a) = 2 for i = 2, 3, 4,

lima→0+ λ5(a) = 6 .

(29)

The function z is also an eigenfunction of S2
a with eigenvalue 2. It follows from

(29) that for a small enough, λ4(a) = 2, with eigenfunction z. For 0 < b < a,
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Figure 7: Sphere with crack, five nodal domains

the linear combination z − b has five nodal domains in S
2
a, see Figure 7 in

spherical coordinates.

Proposition 6.1. The Extended Courant Property is false for the round 2-
sphere with cracks (Neumann condition on the cracks).

Remark 6.2. (1) Removing more geodesic segments around the north pole, we
can obtain a linear combination z− b with as many nodal domains as we want.
(2) The sphere with cracks, and Dirichlet condition on the cracks, has been
considered for another purpose in [18].

A Eigenvalues of the equilateral triangle

In this appendix, we recall the description of the eigenvalues of the equilateral
triangle. For the reader’s convenience, we retain the notation of [6, Section 2].

A.1 General formulas

Let E2 be the Euclidean plane with the canonical orthonormal basis {e1 =
(1, 0), e2 = (0, 1)}, scalar product 〈·, ·〉 and associated norm | · |.
Consider the vectors

α1 = (1,− 1√
3

), α2 = (0,
2√
3

), α3 = (1,
1√
3

) = α1 + α2 , (30)

and

α∨
1 = (

3
2
,−

√
3

2
), α∨

2 = (0,
√

3), α∨
3 = (

3
2
,

√
3

2
) = α∨

1 + α∨
2 . (31)

Then
α∨
i =

3
2
αi, |αi|2 =

4
3
, |α∨

i |2 = 3. (32)

Define the mirror symmetries

si(x) = x− 2
〈x, αi〉
〈αi, αi〉

αi = x− 2
3

〈x, α∨
i 〉α∨

i , (33)
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whose axes are the lines

Li = {x ∈ E
2 | 〈x, αi〉 = 0}. (34)

Let W be the group generated by these mirror symmetries. Then,

W = {1, s1, s2, s3, s1 ◦ s2, s1 ◦ s1} , (35)

where s1 ◦ s2 (resp. s2 ◦ s1) is the rotation with center the origin and angle 2π
3

(resp. − 2π
3 ).

Remark. The above vectors are related to the root system A2 and W is the
Weyl group of this root system.

Let
Γ = Zα∨

1 ⊕ Zα∨
2 (36)

be the (equilateral) lattice. The set

DΓ = {sα∨
1 + tα∨

2 | 0 ≤ s, t ≤ 1} (37)

is a fundamental domain for the action of Γ on E2. Another fundamental
domain is the closure of the open hexagon (see Figure 8)

H = [A,B,C,D,E, F ] , (38)

whose vertices are given by

{

A = (1, 0);B = (1
2 ,

√
3

2 );C = (− 1
2 ,

√
3

2 );

D = (−1, 0);E = (− 1
2 ,−

√
3

2 );F = (1
2 ,−

√
3

2 ) .
(39)

Figure 8: The hexagon H

Call Te the equilateral triangle

Te = [O,A,B] , (40)
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where O = (0, 0).
Let Γ∗ be the dual lattice of the lattice Γ, defined by

Γ∗ = {x ∈ E
2 | ∀γ ∈ Γ, 〈x, γ〉 ∈ Z} . (41)

Then,
{

Γ∗ = Z̟1 ⊕ Z̟2 ,

where ̟1 = (2
3 , 0) and ̟2 = (1

3 ,
1√
3
) .

(42)

Define the set C (an open Weyl chamber of the root system A2),

C = {x̟1 + y̟2 | x, y > 0} , (43)

and let Te denote the equilateral torus E2/Γ.

A complete set of orthogonal (not normalized) eigenfunctions of −∆ on Te is
given (in complex form) by the exponentials

φp(x) = exp(2iπ〈x, p〉) where x ∈ E
2 and p ∈ Γ∗ . (44)

Furthermore, for p = m̟1 + n̟2, with m,n ∈ Z, the multiplicity of the
eigenvalue λ̂(m,n) = 4π2|p|2 = 16π2

9 (m2 +mn+ n2) is equal to the number of
points (k, ℓ) in Z2 such that k2 + kℓ+ ℓ2 = m2 +mn+ n2.

The closure of the equilateral triangle Te is a fundamental domain of the action
of the semi-direct product Γ⋊W on E2 or equivalently, a fundamental domain
of the action of W on T2

e.

For the following proposition, we refer to [5].

Proposition A.1. Complete orthogonal (not normalized) sets of eigen-
functions of the equilateral triangle Te in complex form are given, respectively
for the Dirichlet (resp. Neumann) boundary condition on ∂Te, as follows.

1. Dirichlet boundary condition on ∂Te. The family is

Φd

p(x) =
∑

w∈W
det(w)exp(2iπ〈x,w(p)〉) (45)

with p ∈ C ∩ Γ∗. Furthermore, for p = m̟1 + n̟2, with m,n positive
integers, the multiplicity of the eigenvalue 4π2|p|2 is equal to the number
of solutions q ∈ C ∩ Γ∗ of the equation |q|2 = |p|2.

2. Neumann boundary condition on ∂Te. The family is

Φn

p(x) =
∑

w∈W
exp(2iπ〈x,w(p)〉) (46)

with p ∈ C ∩ Γ∗. Furthermore, for p = m̟1 + n̟2, with m,n non-
negative integers, the multiplicity of the eigenvalue 4π2|p|2 is equal to the
number of solutions q ∈ C ∩ Γ∗ of the equation |q|2 = |p|2.
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Remark. To obtain corresponding complete orthogonal sets of real eigenfunc-
tions, it suffices to consider the functions

Cp = ℜ(Φp) and Sp = ℑ(Φp) .

For p = m̟1 + n̟2, with m,n ∈ N \ {0} for the Dirichlet boundary condi-
tion (resp. m,n ∈ N for the Neumann boundary condition), we denote these
functions by Cm,n and Sm,n.

In order to give explicit formulas for the first eigenfunctions, we have
to examine the action of the group W on the lattice Γ∗. A sim-
ple calculation yields the following table in which we simply denote
m̟1 + n̟2 by (m,n).

w (m,n) w(m,n) det(w)

1 (m,n) (m,n) 1

s1 (m,n) (−m,m+ n) −1

s2 (m,n) (m+ n,−n) −1

s3 (m,n) (−n,−m) −1

s1 ◦ s2 (m,n) (−m− n,m) 1

s2 ◦ s1 (m,n) (n,−m− n) 1

(47)

Remark. The above table should be compared with [6, Table], in which there
is a slight unimportant error (the lines s1 ◦ s2 and s2 ◦ s1 are interchanged).

Remark. Using the above chart, one can easily prove the following relations.

{

Cd
n,m = −Cd

m,n and Sd
n,m = Sd

m,n ,

Cn
n,m = Cn

m,n and Sn
n,m = −Sn

m,n .
(48)

A.2 Neumann boundary condition, first three eigenfunctions

The first Neumann eigenvalue of Te is 0, corresponding to the point 0 = (0, 0) ∈
Γ∗, with first eigenfunction ϕ1 ≡ 1 up to scaling.

The second Neumann eigenvalue corresponds to the pairs (1, 0) and (0, 1).
According to the preceding remark, it suffices to consider Cn

1,0 and Sn
1,0. Using

Proposition A.1, and the table (47), we find that, at the point [s, t] = sα∨
1 +tα∨

2 ,
{

Cn
1,0([s, t]) = 2 (cos(2πs) + cos(2π(−s+ t)) + cos(2πt)) ,

Sn
1,0([s, t]) = 2 (sin(2πs) + sin(2π(−s+ t)) − sin(2πt)) .

(49)
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Up to a factor 2, this gives the following two independent eigenfunctions
for the Neumann eigenvalue 16π2

9 , in the (x, y) variables, with (x, y) =
(

3
2s,−

√
3

2 s+
√

3t
)

or (s, t) =
(

2
3x,

1
3x+ 1√

3
y
)

,























ϕn
2(x, y) = cos(4π

3 x) + cos(2π
3 (−x+

√
3y))

+ cos(2π
3 (x+

√
3y)) ,

ϕn
3(x, y) = sin(4π

3 x) + sin(2π
3 (−x+

√
3y))

− sin(2π
3 (x+

√
3y)) .

(50)

The first eigenfunction is invariant under the mirror symmetry with respect to
the median OM of the equilateral triangle, see Figure 2. The second eigenfunc-
tion is anti-invariant under the mirror symmetry with respect to this median.
Its nodal set is equal to the median itself.

A.3 Dirichlet boundary condition, first three eigenfunctions

The first Dirichlet eigenvalue of Te is δ1(Te) = 16π2

3 . A first eigenfunction is
given by Sd

1,1. Using Proposition A.1 and Table 47, we find that this eigenfunc-
tion is given, at the point [s, t] = sα∨

1 + tα∨
2 , by the formula

{

ϕd
1([s, t]) = 2 sin 2π(s+ t) + 2 sin 2π(s− 2t)

+2 sin 2π(t− 2s) .
(51)

Substituting the expressions of s and t in terms of x and y, one obtains the
formula,

ϕd
1(x, y) = 2 sin

(

2π(x+ y√
3
)
)

− 2 sin
(

4π y√
3

)

−2 sin
(

2π(x− y√
3
)
)

,
(52)

The second Dirichlet eigenvalue has multiplicity 2,

δ2(Te) = δ3(Te) =
112π2

9
.

The eigenfunctions Cd
2,1 and Sd

2,1 are respectively anti-invariant and invariant
under the mirror symmetry with respect to [OM ], with values at the point
[(s, t)] given by the formulas,







































ϕd
2([s, t]) = sin 2π(2s+ t) + sin 2π(s+ 2t)

+ sin 2π(2s− 3t) − sin 2π(3s− 2t)

+ sin 2π(s− 3t) − sin 2π(3s− t) ,

ϕd
3([s, t]) = cos 2π(2s+ t) − cos 2π(s+ 2t)

− cos 2π(2s− 3t) + cos 2π(3s− 2t)

+ cos 2π(s− 3t) − cos 2π(3s− t) .

(53)
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Substituting the expressions of s and t in terms of x and y, one obtains the
formulas,

ϕd
2(x, y) = sin

(

2π
3 (5x+

√
3y)

)

− sin
(

2π
3 (5x−

√
3y)

)

+ sin
(

2π
3 (x − 3

√
3y)

)

− sin
(

2π
3 (x+ 3

√
3y)

)

+ sin
(

4π
3 (2x+

√
3y)

)

− sin
(

4π
3 (2x−

√
3y)

)

.

(54)

and
ϕd

3(x, y) = cos
(

2π
3 (5x+

√
3y)

)

− cos
(

2π
3 (5x−

√
3y)

)

+ cos
(

2π
3 (x − 3

√
3y)

)

− cos
(

2π
3 (x+ 3

√
3y)

)

+ cos
(

4π
3 (2x+

√
3y)

)

− cos
(

4π
3 (2x−

√
3y)

)

.

(55)
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