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Abstract. Let G be a finite group, and let R be a discrete valuation
ring with residue field k and fraction field K. We say that G is
weakly tame at a prime p if it has no non-trivial normal p-subgroups.
By convention, every finite group is weakly tame at 0. Using this
definition, we show that if G is weakly tame at char(k), then edK(G) >
edk(G). Here edF (G) denotes the essential dimension of G over the
field F . We also prove a more general statement of this type, for a
class of étale gerbes X over R.

As a corollary, we show that if G is weakly tame at p, then edL(G) >
edk(G) for any field L of characteristic 0 and any field k of character-
istic p, provided that k contains Fp. We also show that a conjecture of
A. Ledet, asserting that edk(Z/p

nZ) = n for a field k of characteristic
p > 0 implies that edC(G) > n for any finite group G which is weakly
tame at p and contains an element of order pn. We give a number of
examples, where an unconditional proof of the last inequality is out
of the reach of all presently known techniques.
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1. Introduction

Let R be a discrete valuation ring with residue field k and fraction field K,
and let G be a finite group. In this paper we will compare edK(G) and edk(G).
More generally, we will compare edK(X ) to edk(X ) for an étale gerbe X over
R. For an overview of the theory of essential dimension, we refer the reader
to [BRV11, Mer13, Rei10].
To state our main result, we will need some definitions. Suppose S is a scheme.
By an étale gerbe X → S we mean an algebraic stack that is a gerbe in the
étale topology on S. Furthermore, we will always assume that there exists an
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étale covering {Si → S}, such that the pullback XSi
is of the form BSi

Gi,
where Gi → Si is a finite étale group scheme.
We say that a finite group G is tame (resp. weakly tame) at a prime number p
if p ∤ |G| (resp. G contains no non-trivial normal p-subgroup). Equivalently, G
is tame at p if the trivial group is the (unique) p-Sylow subgroup of G, and G
is weakly tame at p if the intersection of all p-Sylow subgroups of G is trivial.
By convention we say that every finite group is both tame and weakly tame at
0. 1

By a geometric point of S, we mean a morphism SpecΩ → S with Ω an
algebraically closed field. We say that a finite étale group scheme G over S
is tame (resp. weakly tame) if, for every geometric point SpecΩ → S, the
group G(Ω) is tame (resp. weakly tame) at charΩ. Similarly, we say that an
étale gerbe X → S is tame (resp. weakly tame) if, for every object ξ over a
geometric point Spec Ω → S, the automorphism group AutΩ ξ is tame (resp.
weakly tame) at charΩ.
A key result of [BRV11] is the so called Genericity Theorem for tame Deligne–
Mumford stacks, [BRV11, Theorem 6.1]. The proof of this result in [BRV11]
was based on the following.

Theorem 1.1 ([BRV11, Theorem 5.11]). Let R be a discrete valuation ring
(DVR) with residue field k and fraction field K, and let

X −→ SpecR

be a tame étale gerbe. Then edK(XK) > edk(Xk).

Here XK and Xk are respectively the generic fiber and the special fiber of
X → SpecR.
Unfortunately, the proof of [BRV11, Theorem 5.11] contains an error in the
case when charK = 0 and char k > 0. This was noticed by Amit Hogadi, to
whom we are very grateful. (See Remark 6.2 for an explanation of the error.)
For the applications in [BRV11] only the equicharacteristic case was needed,
so this mistake in the proof of Theorem 1.1 does not affect any other results
in [BRV11] (the genericity theorem, in particular). However, the assertion of
Theorem 1.1 in the mixed characteristic case remained of interest to us as a way
of relating essential dimension in positive characteristic to essential dimension
in characteristic 0. In this paper, our main result is the following strengthened
version of Theorem 1.1.

Theorem 1.2. Let R be a DVR with residue field k and fraction field K, and
let

X −→ SpecR

be a weakly tame étale gerbe. Then edK(XK) > edk(Xk).

1By a theorem of T. Nakayama [Nak47], G is weakly tame at p if and only if G admits a
faithful completely reducible representation over some (and thus every) field of characteristic
p. The significance of this condition in the study of essential dimension of finite groups was
first observed by R. Lötscher [Löt10]. Note that Lötscher used the term “semifaithful” in
place of “weakly tame”.
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In particular, [BRV11, Theorem 5.11] is valid as stated. Moreover, our new
proof is considerably shorter than the one in [BRV11]. And in Sections 3-5 we
will deduce some rather surprising consequences.
We will give two proofs of our main result, one for gerbes of the form where
X = BRG, where G is a (constant) finite group (Theorem 2.4) and the other
for the general case. The ideas in these two proofs are closely related; the proof
of Theorem 2.4 allows us to introduce these ideas in the elementary setting of
classical valuation theory. A separate proof of Theorem 2.4 also makes the
applications in Sections 3-5 accessible to those readers who are not familiar
with, or don’t care for, the language of gerbes.

Acknowledgements. Patrick Brosnan was partially supported by NSF grant
DMS 1361159, Zinovy Reichstein by NSERC Discovery grant 253424-2017 and
the Collaborative Research Group in Geometric and Cohomological Methods
in Algebra at the Pacific Institute for the Mathematical Sciences, and Angelo
Vistoli by research funds from the Scuola Normale Superiore.
The authors are grateful to the referee for a thorough reading and constructive
suggestions and to Alexander Duncan and Najmuddin Fakhruddin for helpful
comments.

2. Proof of Theorem 1.2 in the constant case

In this section we will prove the special case of Theorem 1.2, where X = BRG
for G a finite group (viewed as a constant group scheme over SpecR); see
Theorem 2.4.
Throughout this section we will assume that L is a field equipped with a (surjec-
tive) discrete valuation ν : L∗ → Z andK is a subfield of L such that ν(K∗) = Z.
We will denote the residue fields of L and K by l and k, respectively. Similarly,
we will denote the valuation rings by OL and OK .
The following lemma is a special case of the Corollary to Theorem 1.20
in [Vaq06]. For the convenience of the reader, we supply a short proof.

Lemma 2.1. trdegk(l) 6 trdegK(L).

Proof. Let u1, . . . , um ∈ l be algebraically independent over k. Lift each ui

to vi ∈ OL ⊆ L. It now suffices to show that v1, . . . , vm are algebraically
independent over K. Assume the contrary: f(v1, . . . , vm) = 0 for some poly-
nomial 0 6= f(x1, . . . , xm) ∈ K[x1, . . . , xm]. After clearing denominators we
may assume that every coefficient of f lies in OK , and at least one of the co-
efficients has valuation 0. If f0 is the image of f in k[x1, . . . , xm] then f0 6= 0
and f0(u1, . . . , um) = 0. This contradicts our assumption that u1, . . . , um are
algebraically independent over k. ♠

Let Lm = ν−1(m) ∪ {0} and L>m =
⋃

j>m Lj. Note that, by definition,

L>0 = OL is the valuation ring of ν, L>1 is the maximal ideal, and L>0/L>1 = l
is the residue field.
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Lemma 2.2. Assume that g is an automorphism of L of finite order d > 1
preserving the valuation ν. Let p = char(l) > 0. If g induces a trivial automor-
phism on both L>0/L>1 and L>1/L>2, then

(a) d = 1 (i.e., g = id is the identity automorphism) if p = 0, and

(b) d is a power of p, if p > 0.

Part (a) is proved in [BR97, Lemma 5.1]; a minor variant of the same argument
also proves (b). Alternatively, with some additional work, Lemma 2.2 can be
deduced from [ZS58, Theorem 25, p. 295]. For the reader’s convenience we will
give a short self-contained proof below.

Proof. In case (b), write d = mpr, wherem is not divisible by p. After replacing
g by gp

r

, we may assume that d is prime to p. In both parts we need to conclude
that g is the identity.
Let G be the cyclic group generated by g; then G is linearly reductive. Since
the action of G on l is trivial, the induced action on L>i/L>i+1 is l-linear.
Furthermore, let t ∈ L1 be a uniformizing parameter. By our assumption g(t) =
t (mod L>2). Thus multiplication by ti−1 induces the l-linear G-equivariant
isomorphism (L>1/L>2)

⊗i ≃ L>i/L>i+1. Consequently, G acts trivially on
L>i/L>i+1 for all i > 0. Since G is linearly reductive, from the exact sequence

0 −→ L>i/L>i+1 −→ L>0/L>i+1 −→ L>0/L>i −→ 0

we deduce, by induction on i, that G acts trivially on L>0/L>i for every i > 1.
Since

⋂
i>0 L>i = 0, this implies that the action of G on L>0 is trivial. But

L>0 is a domain with quotient field L, so G also acts trivially on L. Since G
acts faithfully on L, we conclude that G = {1}, and the lemma follows. ♠
Proposition 2.3. Consider a faithful action of a finite group G on L, such
that G preserves ν and acts trivially on K. Let ∆ be the kernel of the induced G-
action on l. Then ∆ = {1} if char(k) = 0 and ∆ is a p-subgroup if char(k) = p.

Proof. Assume the contrary. Then we can choose an element g ∈ ∆ of prime
order q, such that q 6= char(k). Let M be the maximal ideal of the valuation
ring OL. Since we are assuming that ν(K∗) = ν(L∗) = Z, we can choose a
uniformizing parameter t ∈ K for ν. Since g ∈ ∆, g acts trivially on both
l = OL/M and M/M2 = l · t. By Lemma 2.2, g acts trivially on L. This
contradicts our assumption that G acts faithfully on L. ♠
We are now ready to prove the main result of this section.

Theorem 2.4. Let (R, ν) be a discrete valuation ring with residue field k and
fraction field K, and G be a finite group. If p = char(k) > 0, assume that G is
weakly tame at p. Then edK(G) > edk(G).

Proof. Set d
def

= edK(G). Let R[G] be the group algebra of G and let
VR = (AR)

|G| denote the correspondingR-scheme equipped with the (left) regu-
lar action of G. By definition d is the minimal transcendence degree trdegK(L),
where L ranges over G-invariant intermediate subfields K ⊂ L ⊂ K(VK) such
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that the G-action on L is faithful; see [BR97]. Choose a G-invariant interme-
diate subfield L such that trdegK(L) = d.
We will now construct a G-invariant intermediate subfield k ⊂ l ⊂ k(Vk), where
Vk is the regular representation of G over k, as follows. Lift the given valuation
ν : K∗ → Z to the purely transcendental extension K(VK) of K in the obvious
way. That is, ν : K(VK)∗ → Z is the divisorial valuation corresponding to
the fiber of VR over the closed point in SpecR. The residue field of K(VK) is
then k(Vk). By restriction, ν is a valuation on L with ν(L∗) = Z. Let l be
the residue field of L. Clearly k ⊂ l ⊂ k(Vk) and ν is invariant under G. By
Proposition 2.3, G acts faithfully on l. Moreover, by Lemma 2.1, trdegk(l) 6 d.
Thus edk(G) 6 d = edK(G), as desired. ♠

3. Examples illustrating Theorem 2.4 and a simple application

Example 3.1. The following example shows that Theorem 2.4 fails if we do not
assume that G is weakly tame. Choose R so that charK = 0, chark = p > 0,
and K contains a p2-th root of 1. Let G = Cp2 be the cyclic group of order p2.
Since K contains a primitive p2-th root of 1, edK(G) = edK(Cp2) = 1. On the
other hand, edk(G) = edk(Cp2) = 2; this is a special (known) case of Ledet’s
conjecture, see Remark 4.2.

Example 3.2. Here is an example showing that Theorem 2.4 fails if we do not
assume that R is a DVR. Let R ⊆ C[[t]] be the subring consisting of power
series in t whose constant term is real. Then R is a one-dimensional complete
Noetherian local ring with quotient field K = C((t)) and residue field k = R,
but not a DVR. Letting G = C4 be the cyclic group of order 4, we see that
in this situation edK(G) = edC((t))(C4) = 1, while edk(G) = edR(C4) = 2; see
[BF03, Theorem 7.6].

Example 3.3. (cf. [Tos17, Remark 4.5(ii)]) This example shows that essential
dimension is not semicontinuous in any reasonable sense, even in characteristic
0. Consider the scheme

S
def

= SpecQ[u, x]/(x2 − u) .

The embedding Q[u] ⊆ Q[u, x]/(x2 − u) gives a finite map S → A1
Q. If p is an

odd prime, the inverse image of the prime (u−p) ⊆ Q[u] in S consists of a point
sp with residue field k(sp) = Q(

√
p) = Q[x]/(x2 − p). Then edQ(

√
p)(C4) = 1 if

−1 is a square modulo p, and edQ(
√
p)(C4) = 2 if −1 is not a square modulo p;

once again, see [BF03, Theorem 7.6]. Equivalently, edQ(
√
p)(C4) = 1 if p ≡ 1

(mod 4), and edQ(
√
p)(C4) = 2 is p ≡ 3 (mod 4). We conclude that the set of

points s ∈ S with edk(s)(C4) = 1 is dense in S, and likewise for the set of points
s ∈ S with edk(s)(C4) = 2 is also dense in S.

We conclude this section with an easy corollary of Theorem 2.4.

Corollary 3.4. Let p be a prime, G a finite group weakly tame at p. Then

(a) (cf. [Tos17, Corollary 4.2]) edQ(G) > edFp
(G).
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(b) If K is a field of characteristic 0 and k a field of characteristic p containing
Fp, then edK(G) > edk(G).

Proof. (a) follows directly from Theorem 2.4 by taking R to be the localization
of the ring of integers Z at a prime ideal pZ.
(b) Let K be the algebraic closure of K. Since edK(G) > edK(G), we may

replace that K by K and thus assume that K is algebraically closed. Note
that edK(G) = ed

Q
(G) and edk(G) = ed

Fp
(G); see [BRV07, Proposition 2.14]

or [Tos17, Example 4.10].
Choose a number field E ⊆ Q such that edE(G) = edQ(G) and let p ⊆ OE a

prime in the ring OE of algebraic integers in E lying over p. Set E0
def

= OE/p.
Since k contains Fp, there is an embedding E0 ⊆ k. By Theorem 2.4, edE(G) >
edE0

(G) and since E0 ⊆ k, edE0
(G) > edk(G). ♠

Example 3.5. A. Duncan pointed out to us that equality in Corollary 3.4(b)
does not always hold. For example, letG = A5 be the alternating group of order
60 and p = 2. Note that since A5 is simple, it is weakly tame at every prime. By
[BR97, Theorem 6.7], edC(A5) = 2. On the other hand, A5 ≃ SL2(F4) admits
a 2-dimensional faithful linear representation over any field k containing F4,
that is, the representation coming from the obvious inclusion of SL2(F4) into
SL2(k). The natural (A5-equivariant) projection A2 99K P1 now tells us that
edk(A5) = 1. In summary,

2 = edC(A5) > edk(A5) = 1.

Remark 3.6. The group G = A5 in Example 3.5 is weakly tame but not tame
at 2. We do not know of any such examples with G tame. We conjecture that
they do not exist. That is, if |G| is prime to p, then under the hypotheses of
Corollary 3.4(b), edK(G) = edk(G), provided that K is algebraically closed.

4. Ledet’s conjecture and its consequences

The following conjecture is due to A. Ledet [Led04].

Conjecture 4.1. If k is a field of characteristic p > 0, n is a natural number,
and Cpn is a cyclic group of order pn, then edk(Cpn) = n.

Remark 4.2. It is known that edk(Cpn) 6 n for any field k of characteristic
p and any n > 1 (see [Led04]); it is also known that edk(Cpn) > 2 if n > 2
([Led07, Theorems 5 and 7]). Thus Conjecture 4.1 holds for n = 1 and n = 2;
it remains open for every n > 3.

Combining Conjecture 4.1 with Theorem 2.4, we obtain the following surprising
result.

Proposition 4.3. Assume that a finite group G is weakly tame at a prime p
and contains an element of order pn. Let K be a field of characteristic 0. If
Conjecture 4.1 holds for Cpn , then edK(G) > n.

Proof. By Corollary 3.4(b), with k = Fp, we have edK(G) > edk(G). Since G
contains Cpn , edk(G) > edk(Cpn), and by Conjecture 4.1, edk(Cpn) = n. ♠
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Corollary 4.4. Let p be a prime and n a positive integer. Choose a positive
integer m such that q

def

= mpn + 1 is a prime. (By Dirichlet’s theorem on
primes in arithmetic progressions, there are infinitely many such m.) Let Cq

be a cyclic group of order q. Then AutCq = (Z/qZ)∗ is cyclic of order mpn;
let Cpn ⊆ (Z/qZ)∗ denote the subgroup of order pn. Set G

def

= Cpn ⋉ Cq. Then

(a) G is weakly tame at p, and

(b) if Conjecture 4.1 holds, then edK(G) > n for any field K of characteristic
0.

Proof. (a) Suppose S ⊆ G is a normal p-subgroup. Then S lies in every Sylow
p-subgroup of G, in particular, in Cpn . Our goal is to show that S = {1}. The
cyclic group Cq of prime order q acts on S by conjugation. Since q > pn > |S|,
this action is trivial. In other words, S is a central subgroup of G. In particular,
S acts trivially on Cq by conjugation. On the other hand, by the definition of
G, Cpn acts faithfully on Cq by conjugation. We conclude that S = {1}, as
desired.
(b) follows from Proposition 4.3. ♠

Remark 4.5. The inequality of Corollary 4.4(b) is equivalent to

(4.1) edC(Cpn ⋉ Cq) > n ,

where C is the field of complex numbers (once again, see [BRV07, Proposition
2.14] or [Tos17, Example 4.10]). For n = 2 and 3, this inequality can be proved
unconditionally (i.e., without assuming Conjecture 4.1) by appealing to the
classifications of finite groups of essential dimension 1 and 2 over C in [BR97,
Theorem 6.2] and [Dun13, Theorem 1.1] respectively.

Remark 4.6. Let G be a finite group. Set

edlock (G) := max {edk(G; p) | p is a prime},
where edk(G; p) denotes essential dimension of G at a prime p and the super-
script “loc” stands for “local”.
Clearly edk(G) > edlock (G). In the language of [Rei10, Section 5], computing

edlock (G) is a Type I problem. When char(k) = 0, this problem is solved, at
least in principle, by the Karpenko-Merkurjev theorem [KM08]. Computing

edk(G) in those cases, where edk(G) > edlock (G) is a Type II problem. Such
problems tend to be very hard. For more on this, see [Rei10, Section 5] or the
discussion after the statement of Theorem 2 in [Rei18].
Let us now return to the setting of Corollary 4.4, where G = Cpn⋉Cq. Since all

Sylow subgroups of G = Cpn ⋉ Cq are cyclic, one readily sees that edloc
C (G) =

1. Thus the inequality (4.1) is a “Type II problem” whenever n > 2. An
unconditional proof of this inequality is out of the reach of all currently available
techniques for any n > 3. However, it is shown in [Rei18] (unconditionally) that

lim
n→∞

edC(Cpn ⋉ Cq) −→ ∞

for any choice of q.
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Remark 4.7. It is shown in [RV18] that if G is a finite group and k is a field
of characteristic p, then

(4.2) edk(G; p) =

{
1, if p divides |G|, and
0, otherwise.

In particular, edlock (Cpn) = 1 for every n > 1. So, for n > 2, Conjecture 4.1 is
also a Type II problem. Thus the situation in Corollary 4.4(b) can be described
as follows: we deduce one Type II assertion from another, without being able
to prove either one from first principles. Another results of this type is [DR15,
Proposition 10.8]; further examples can be found in the next section.

Remark 4.8. In view of (4.2), Corollary 3.4(b) continues to hold if we replace
essential dimension by essential dimension at p, for trivial reasons. Moreover,
under the assumptions of Corollary 3.4, (a′) edQ(G; p) > edFp

(G; p) and (b′)
edK(G; p) > edk(G; p), for any finite group G, not necessarily weakly tame. In
(b′) we can also drop the requirement that k should contain Fp. Note however
that our proof of Theorem 2.4 breaks down if we replace essential dimension
by essential dimension at p.

5. Essential dimension of PSL2(q)

Let p be a prime, q = pr be a prime power and Fq be a field of q elements. Let
G = PSL2(q) = PSL(2,Fq). (To avoid confusion, we remind the reader that G
is the quotient of SL(2,Fq) by its subgroup {±1}. In general, it is not the same
thing as the group PSL2(Fq) of Fq points of the algebraic group PSL2 = PGL2.)
For q > 3, it is well known that G is simple; see, e.g., [Die71, p. 39] or [Gor80,
p. 419]. Hence, G is weakly tame at every prime. In this section we will work
over the field k = C of complex numbers and deduce lower bounds on edC(G)
from Ledet’s conjecture.
For some q, these lower bounds are Type II bounds, in the sense of Remark 4.6,
and are genuinely new. To establish this we will compute edlocC (G) in every case.
We begin with the following well-known description of the Sylow subgroups of
PSL2(q).

Lemma 5.1. Let p and ℓ be prime numbers and set q = pr for some positive
integer r. Let Gℓ denote an ℓ-Sylow subgroup of G = PSL2(q). Then

(a) For ℓ = p, we have Gℓ
∼= (Cp)

r.
(b) For ℓ 6∈ {2, p}, Gℓ is cyclic.
(c) For p odd and ℓ = 2, Gℓ is dihedral.

Proof. See [Gor80, Lemma 1.1 on page 418]. ♠

Proposition 5.2. Let p be a prime and q = pr be a prime power.

(a) edlocC (PSL2(q)) =

{
r, q even;

max(2, r), q odd.
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(b) Let ℓ be a prime and s be a nonnegative integer such that 2ℓs divides q2− 1.
If Ledet’s Conjecture 4.1 holds for cyclic groups of order ℓs in characteristic ℓ,
then edC(PSL2(q)) > s.

Note that part (b) is conditional on Ledet’s conjecture but part (a) is not.

Proof. Set G = PSL2(q). We begin by pointing out that

(5.1) |G| =
{
(q − 1)q(q + 1)/2, 2 ∤ q;

(q − 1)q(q + 1), 2|q.

(a) Recall that edC(G; ℓ) = edC(Gℓ; ℓ), where Gℓ is a Sylow ℓ-subgroup of G.
So we only need to consider the primes ℓ dividing |G|; otherwise Gℓ = {1} and
edC(Gℓ; ℓ) = 0.
If ℓ 6= 2 or p, then by Lemma 5.1(b), Gℓ is cyclic; hence, edC(Gℓ) = 1.
If ℓ = p, then by Lemma 5.1(a), Gℓ = Gp = (Cp)

r, and edC(Gp; p) = r.
If ℓ = 2 and p is odd, then by Lemma 5.1(c), Gℓ is a dihedral group; hence,
Gℓ has a 2-dimensional faithful linear representation over C. We conclude that
edC(G2; 2) 6 2. On the other hand, since G2 is not cyclic and |G2| ≡ 0 (mod 4),
edC(Gℓ) > 2 by [BR97, Theorem 6.2]. So edC(Gℓ) = 2.
This proves part (a) for the case that p is odd. The case that p is even follows
directly from Lemma 5.1 by the same method.
(b) Note that the assertion of part (b) is vacuous if ℓ = p or p = 2. So we
may assume that p is odd and ℓ 6= p. Then it follows from Lemma 5.1 that the
Sylow ℓ-subgroup of PSL2(q) is cyclic if ℓ is odd and dihedral if ℓ = 2. Thus,
by (5.1), PSL2(q) contains an element of order ℓs, and the desired inequality
follows from Proposition 4.3. ♠

Remark 5.3. Note that, for odd ℓ, Proposition 5.2(a) gives the Type I lower
bound: edC(PSL2(q)) > max{2, r}; cf. Remark 4.6. We also know which finite
simple groups have essential dimension 1, 2 or 3 from [BR97, Theorem 6.2],
[Dun13] and [Bea14], respectively. Thus the lower bound of Proposition 5.2(b)
is only of interest in those cases, where

s > max{r + 1, 5}.
In such cases an unconditional proof of the lower bound

edC(PGL2(q)) > s

(i.e., a proof that does not rely on Ledet’s conjecture) is not known.

Remark 5.4. It follows from Proposition 5.2(a) that edC(PSL2(q)) >

edlocC (PSL2(q)) > r for any q = pr. Hence, if we want to deduce an inter-
esting (Type II) lower bound on edC(PSL2(q)) from Proposition 4.3, we need
ℓs to divide q ± 1 = pr ± 1 for some prime ℓ and some integer s > r + 1. This
can only happen if ℓ < p. In particular, this method gives no new information
about edC(PSL2(q)) in the case, where q is a power of 2.
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Example 5.5. Let p = 31 and q = p2 = 961. Then (q− 1)/2 = 960 is divisible
by 26. Thus Proposition 5.2 yields

(a) edlocC (PSL2(961)) = 2 but (b) edC(PSL2(961)) > 5.

Now let q = p = 65537. Note that p is a Fermat prime, p = 216 + 1. Here
Proposition 5.2 yields

(a) edlocC (PSL2(65537)) = 2 but (b) edC(PSL2(65537)) > 15.

In both cases the inequality (b) is conditional on Ledet’s conjecture.

Remark 5.6. It follows from [Rei18, Theorem 2] that for any d > 1 there are
only finitely many non-abelian simple finite groups G such that edC(G) 6 d.
In some ways this assertion is more satisfying than the inequality of Proposi-
tion 5.2(b): it is unconditional (does not rely on Ledet’s conjecture), and it
covers all finite simple groups, not just those of the form PSL2(q). On the
other hand, it does not give an explicit lower bound on edC(G) for any partic-
ular finite simple group G.

6. Proof of Theorem 1.2

We begin by remarking that an étale gerbe X → S is weakly tame if and only
if there exists an étale cover {Si → S} such that each XSi

→ Si is equivalent
to BSi

Gi → Si with Gi weakly tame étale group schemes over Si.
Our proof of Theorem 1.2 will rely on the following Lemma 6.1. To state it,
we need the notion of versal object of an algebraic stack. This is standard for
classifying stacks of algebraic groups, but does not seem to be in the literature
in the general case, so a short discussion is in order.
Let X → SpecF be an algebraic stack of finite type over a field. Then X

preserves inductive limits, in the following sense: if {Ai} is an inductive system
of F -algebras over a filtered poset, the induced functor lim−→X (Ai) → X (lim−→Ai)
is an equivalence of categories. If L is an extension of F then we can view L as
the inductive limit of its subalgebras R ⊆ K of finite type over F ; hence, given
an object ξ ∈ X (L), there exists a finitely generated subalgebra R ⊆ K and
an object ξR ∈ X (R) whose image in X (L) is isomorphic to ξ.
We say that an object ξ ∈ X (L) is versal if it satisfies the following condition,
which expresses the fact that every object of X over an extension of F can be
obtained by specialization of ξ.
For any R and ξR as above, and any object η ∈ X (K) over an extension K of
F that is an infinite field, there exists a homomorphism of F -algebras R → K
such that the image of ξR in X (K) under the induced functor X (R) → X (K)
is isomorphic to η.
Versal object don’t exist in general; for example, they don’t exist when X

has positive-dimensional moduli space. When they do exist, however, they
control the essential dimension, that is, ξ ∈ X (L) is versal, then the essential
dimension of ξ is easily seen to be the essential dimension of X (in other words,
no object of X defined over a field can have essential dimension larger than
that of ξ).
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Lemma 6.1. Let XF → SpecF be a finite étale gerbe over a field F . Suppose
that A is a non-zero finite F -algebra, and that the morphism SpecA → SpecF
has a lifting φ : SpecA → XF . Consider the locally free sheaf φ∗OSpecA on
XF ; call V → XF the corresponding vector bundle on XF . Then V has
a non-empty open subscheme U ⊆ V . Furthermore, if k(U) is the field of
rational functions on U , the composite Spec k(U) → U ⊆ V → XF gives a
versal object of XF

(
k(U)

)
.

Proof. Let us show that V is generically a scheme. We can extend the base
field F , so that it is algebraically closed; in this case XF is the classifying space
BFG of a finite group G, and there exists a homomorphism of F -algebras
A → F . The vector bundle V → XF corresponds to a representation V
of G; by the semicontinuity of the degree of the stabilizer for finite group
actions, it is enough to show that V has a point with trivial stabilizer. The
homomorphism A → F gives a morphism SpecF → SpecA, and the composite
SpecF → SpecA → BFG corresponds to the trivial G-torsor on SpecF . If we
call W the pushforward of OSpecF to BFG, then W ⊆ V . On the other hand
W corresponds to the regular representation of G, and so the generic stabilizer
is trivial, which proves what we want.
Let us show that the composite Spec k(U) → U ⊆ V → XF is versal; the
argument is standard. Suppose that K is an extension of F that is an infinite
field, and consider a morphism SpecK → XF . It is enough to prove that for
any open subscheme U ⊆ V , the morphism SpecK → XF factors through
U ⊆ V → XF . The pullback VK → SpecK of V → XF is a vector space on
K, and the inverse image UK ⊆ VK of U ⊆ V is a non-empty open subscheme;
hence UK(K) 6= ∅, which ends the proof. ♠

Proof of Theorem 1.2. Let R̂ be the completion of R and K̂ be the fraction

field of R̂. Then clearly K ⊂ K̂ and thus edK(XK) > ed
K̂
(X

K̂
). Thus for the

purpose of proving Theorem 1.2, we may replace R by R̂. In other words, we
may (and will) assume that R is complete.
Let R → A be an étale faithfully flat algebra such that X (A) 6= ∅; since R is
henselian, by passing to a component of SpecA we can assume that R → A is
finite. An object of X (A) gives a lifting φ : SpecA → X ; this is flat and finite.
Let V → X be the vector bundle corresponding to φ∗OSpecA. If U → V is
the largest open subscheme of V , the Lemma above implies that U → SpecR
is surjective. Denote by UK and Uk respectively the generic and special fiber
of U → SpecR; call E and E0 the fields of rational functions on UK and Uk

respectively. Again because of the Lemma, the objects ξ : SpecE → XK and
ξ0 : SpecE0 → Xk are versal.
Consider the local ring OE of U at the generic point of Uk, which is a DVR. The
residue field of OE is E0, and we have a morphism Ξ: SpecOE → X whose
restrictions to SpecK and Spec k are isomorphic to ξ and ξ0 respectively.
Setm

def

= edK(XK); we need to show that ξ0 has a compression of transcendence
degree at most m.
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There exists a field of definition K ⊆ L ⊆ E for ξ such that trdegK L = m; call
θ : SpecL → X the corresponding morphism, so that we have a factorization

SpecE → SpecL
θ−→ X for ξ. Consider the intersection OL

def

= OE ∩ L ⊆ E;
then OL is a DVR with quotient field L. Call L0 it residue field; we have
L0 ⊆ E0. By Lemma 2.1, trdegk L0 6 trdegK L.
Now it suffices to show that ξ0 : SpecE0 → X factors through SpecL0. As-
sume that we have proved that the morphism θ : SpecL → X extends to

a morphism Θ: SpecOL → X . The composite SpecE ⊆ SpecOE
Ξ−→ X

is isomorphic to the composite SpecE → SpecL ⊆ SpecOL
Θ−→ X ; since

X is separated, it follows from the valuative criterion of separation that the

composite SpecOE → SpecOL
Θ−→ X is isomorphic to Ξ: SpecOE → X . By

restricting to the central fibers we deduce that ξ0 : SpecE0 → X is isomorphic
to the composite SpecE0 → SpecL0 → X , and we are done.
To prove the existence of the extension Θ: SpecOL → X , notice that the
uniqueness of such extension implies that to prove its existence we can pass to
a finite étale extension R ⊆ R′, where R′ is a DVR; it is straightforward to
check that formation of OL and OE commutes with such a base change. Hence
we can assume that X has a section, so that X = BRG, where G → SpecR is
a finite étale weakly tame group scheme. By passing to a further covering we
can assume that G → SpecR is constant, that is, the product of SpecR with a
finite group Γ. If A is an R-algebra, an action of G on SpecA corresponds to
an action of Γ.
The vector bundle V → X corresponds to a vector bundle VR → SpecR with
an R-linear action of Γ, such that the induced representations of Γ on VK and

Vk are faithful. Call Ẽ the function field of VK and Ẽ0 the function field of Vk;

then ẼΓ = E, and therefore OΓ
Ẽ
= OE . The factorization SpecE → SpecL →

X gives a Γ-torsor Spec L̃ → SpecL whose lift to SpecE is isomorphic to

Spec Ẽ → SpecE; then L̃ is a Γ-invariant subfield of Ẽ. Then O
L̃

def

= L̃∩O
Ẽ
is

a Γ-invariant DVR, and OΓ
L̃
= L̃Γ ∩ OΓ

Ẽ
= OL.

Call m
L̃

⊆ O
L̃

the maximal ideal, and set L̃0
def

= O
L̃
/m

L̃
. If t ∈ R is the

uniformizing parameter, the image of t in O
L̃
, which we denote again by t, is

a uniformizing parameter; this is Γ-invariant. The action of Γ on O
L̃
descends

to an action of Γ on L̃0. By Proposition 2.3, this action is faithful.
So the action of Γ on SpecL0 is free over k; this implies that the action of Γ on
SpecO

L̃
→ SpecR is free, so SpecO

L̃
→ (SpecO

L̃
)/G = SpecOL is a Γ-torsor.

This gives the desired morphism Θ: SpecOL → X , and ends the proof of the
Theorem. ♠

Remark 6.2. The problem with the proof of [BRV11, Theorem 5.11] was in
the last sentence of the second paragraph on page 1094. We claimed there that
the discrete valuation ring R in the proof can be replaced with the ring called
W (k(s)). Since the essential dimension of the generic point can go up when we
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make this replacement, this is, in fact, not allowable. (In effect, our mistake
boils down to using an inequality in the wrong direction.)
Note also that the proof of the characteristic 0 genericity theorem in [BRV07]
does not rely on Theorem 1.1. For that argument, which was different from
the proof of [BRV11, Theorem 6.1], see [BRV07, Theorem 4.1].
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