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Abstract. In this paper, we consider bounded strictly pseudoconvex
domains D ⊂ C

2 with smooth boundary M = M3 := ∂D, and the
asymptotic expansion of the Bergman kernel on the diagonal

KB ∼
φB
ρn+1

+ ψB log ρ,

where ρ > 0 is a Fefferman defining equation for D. The Ramadanov
Conjecture states that if the log term ψB vanishes to infinite order on
M , then M is locally spherical. In C2, the validity of this conjecture
is known and follows from work of Boutet de Monvel, Burns, and
Graham; indeed, it suffices that ψB = O(ρ2) locally onM to conclude
that M is locally spherical. On the other hand, it is also known that
the boundary values alone of the log term bψB := (ψB)|M on M does
not determine the CR geometry of M locally; e.g., the vanishing of
bψB on an open subset ofM does not imply thatM is locally spherical
there. The main result in this paper, however, is that if D ⊂ C2 is
assumed to have transverse symmetry, then the global vanishing of
bψB on M implies that M is locally spherical. A similar result is
proved for the Szegő kernel.
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1. Introduction

Let D ⊂ C
n be a bounded strictly pseudoconvex domain with smooth bound-

ary ∂D, and assume that D is defined by ρ > 0, where ρ ∈ C∞(D) is a defining
function for the boundary ∂D, i.e., ρ|∂Ω = 0 and dρ|∂D 6= 0. Fefferman pro-
posed ([Fef76], [Fef79]) investigating the biholomorphic geometry ofD (e.g., the
Bergman kernel) and the CR geometry of the boundary M = M2n−1 := ∂D
via invariants obtained by restricting to a class of special defining functions ρ
normalized by J(ρ) = 1 + O(ρn+1), where J is the complex Monge-Ampère
operator

(1) J(u) := (−1)n det

(

u uz̄k
uzj uzj z̄k

)

.

Fefferman showed in [Fef76] that such a smooth defining function exists, and
that it is unique mod O(ρn+2). A defining function ρ satisfying this normaliza-
tion is called a Fefferman defining function. The work of Cheng–Yau [CY80],
combined with the subsequent work of Lee–Melrose [LM82], shows that the
Dirichlet problem

(2) J(u) = 1, u|M = 0

has a unique non-negative solution u ∈ C∞(D) ∩ Cn+2−ǫ(D), which has an
asymptotic expansion of the form

(3) u ∼ ρ
∞
∑

k=0

ηk(ρ
n+1 log ρ)k, ηk ∈ C∞(D).

One observes that in the case of the unit ball D = Bn ⊂ Cn, the solution
u to (2) coincides with the standard defining function ρ = 1 − ||z||2; thus,
there is no singularity in this case and we can take ηk = 0 for k ≥ 1. Graham
([Gra87a], [Gra87b]) showed that the boundary value problem (2) can be solved
locally (formally) near a point on M , yielding a family of formal solutions
u of the form (3) that depend on one additional parameter function (which
adds a condition on a normal derivative, to complete the Cauchy data for the
local problem (2)). Moreover, the functions ηk for k ≥ 1, which make up
the singularity of the solution, are uniquely determined mod O(ρn+1) by the
local CR geometry of the boundary M only (independent of the additional
parameter function and choice of Fefferman defining function ρ). In particular,
the functions bηk := ηk|M are uniquely determined smooth functions on the
boundary M . Indeed, Graham proved that the bηk are local CR invariants of
weight (n+ 1)k; (see, e.g., [Gra87a], [Gra87b] for the formal definition of this
notion; see also below). Graham also showed, on the one hand, that if bη1 = 0
on M , then all the functions ηk, k ≥ 1, vanish to infinite order on M and,
hence, there is a smooth function (ρη0 in the expansion (3)) that agrees with
the solution u to infinite order (as in the case of the unit ball Bn); on the other
hand, he showed that there are strictly pseudoconvex hypersurfaces M ⊂ Cn

such that bη1 = 0, but M is not locally spherical (i.e., not locally equivalent to
the sphere ∂Bn). In other words, information about the function bη1 locally on
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the boundary M determines completely the singularity (mod O(ρn+1)) of the
solution u nearM , but does not determine the CR geometry ofM . It may still
be the case, however, that information about bη1 globally may determine the
CR geometry of M . The main result in this paper is a result along these lines
in C

2 for domains with transverse symmetry. The function bη1 is sometimes
referred to as the obstruction function, and is an important invariant related
also, e.g., to the so-called Q′-curvature of M (cf., [Hir14a], [Hir14b]).
The solution u to (2) is intimately related to the Bergman and Szegő kernels
of the domain D ⊂ Cn; these are the reproducing kernels of the holomorphic
functions, respectively the boundary values of holomorphic functions, in L2(D)
and L2(M,σ), where σ denotes some choice of surface element onM . We recall
([Fef74], [BdMS76]) that the Bergman and Szegő kernels, KB(Z) and KS(Z),
of D on the diagonal have asymptotic expansions of the form

(4) KB ∼
φB
ρn+1

+ψB log ρ, KS ∼
φS
ρn

+ψS log ρ, φB , φS , ψB, ψS ∈ C∞(D),

in terms of a Fefferman defining function ρ. To make the Szegő kernel KS

biholomorphically invariant, we have chosen here the invariant surface element
onM = ∂Ω as in [HKN93] (see also [Lee88], [Hir93]). The functions φB, φS are
determined mod O(ρn+1), O(ρn), respectively, and ψB , ψS are determined up
to infinite order. In the special caseD = B

n, both ψB and ψS vanish identically
(and φB, φS are constants). The Ramadanov Conjecture [Ram81] predicts the
converse (for the Bergman kernel, although the conjecture has also been stated
for the Szegő kernel): If ψB (or ψS) vanishes to infinite order at M , then D
is biholomorphic to the unit ball Bn. The conjecture is known to be true in C2

(at least if D is assumed simply connected with connected boundary) due to
the work of Graham (who attributes it to Burns) and also Boutet de Monvel,
but is still open for n ≥ 3 (although it is known to fail in higher dimensions for
domains in general complex manifolds; see [LMZ14]; see also [EZ10], [ALZ13])
for the case of the Szegő kernel). The solution in C2 hinges on the result,
proved in [Gra87b] (see also [BdM88]), that the asymptotic expansion of ψB in
this case is as follows:

(5) ψB = a1η1 + a2Qρ+O(ρ2), a1, a2 ∈ C \ {0},

where Q is E. Cartan’s 6th order (umbilical) invariant. Thus, if ψB is O(ρ2),
then we may conclude that Q = 0 (by using the result of Graham that
bη1 = 0 =⇒ η1 = 0), which is well known [Car33] to imply that M is lo-
cally spherical. This proves that D is biholomorphic to B2 if D is assumed
simply connected with connected boundary by the Riemann mapping theorem
of Chern–Ji [CJ96] (cf., also [NS05]). In subsequent work, Nakazawa [Nak94]
(see also Boichu–Coeuré [BC83]) proved that for complete Reinhardt domains,
it suffices to assume that ψB|M = bη1 = 0 to conclude that D is biholomorphic
to B2; the latter result is an example of a situation where global vanishing of bη1
forces M to be locally spherical. Analogous results hold for the Szegő kernel,
normalized by the invariant surface element on M , in view of the expansion of
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ψS for n = 2 due to Hirachi–Komatsu–Nakazawa [HKN93]:

(6) ψS = c1η1ρ+ c2Qρ
2 +O(ρ3), c1, c2 ∈ C \ {0}.

The reader is also referred to subsequent work on CR invariants and the ex-
pansions of the Bergman and Szegő kernels by, e.g., Bailey–Eastwood–Graham
[BEG94], Hirachi [Hir93], [Hir00], [Hir06], and others.
In this note, we shall consider the case n = 2, i.e., bounded strictly pseudocon-
vex domains D ⊂ C2. The boundary M = M3 = ∂D is then a compact three
dimensional strictly pseudoconvex CR manifold. As illustrated by the result of
Graham mentioned above, the vanishing of bη1 on an open subset U ⊂M does
not imply that U is locally spherical in general. Our main result, however, is
that if D has transverse symmetry, then the vanishing of bη1 globally on M
implies that M is locally spherical.
We recall that D has transverse symmetry if there is a 1-parameter family
of biholomorphisms of D such that its infinitesimal generator is transverse to
the CR tangent space on the boundary M := ∂D. Examples include circular
domains, i.e., those for which Z ∈ D if and only if the whole circle TZ :=
{eitZ : t ∈ R}, is contained in D. In particular any Reinhardt domain is
circular and, hence, has transverse symmetry. Our main result is the following:

Theorem 1.1. Let D ⊂ C2 be a smooth bounded strictly pseudoconvex domain,
and assume further that D has transverse symmetry. Then, bη1 = 0 on M :=
∂D if and only if M is locally spherical. If D is simply connected and M
connected, then bη1 = 0 on M if and only if D is biholomorphic to the unit ball
B2 ⊂ C2.

In view of the expansions (5) and (6) of the log terms in the Bergman and
Szegő kernels, we obtain the following direct corollaries of Theorem 1.1:

Corollary 1.2. Let D ⊂ C2 be a smooth bounded strictly pseudoconvex do-
main, and assume further that D has transverse symmetry. Let KB denote the
Bergman kernel of D with asymptotic expansion given by (4). Then, the log
term ψB|M = 0 on M := ∂D if and only if M is locally spherical. If D is
simply connected and M connected, then ψB|M = 0 on M if and only if D is
biholomorphic to the unit ball B2 ⊂ C

2.

Corollary 1.3. Let D ⊂ C2 be a smooth bounded strictly pseudoconvex do-
main, and assume further that D has transverse symmetry. Let KS denote the
Szegő kernel of D, normalized by the invariant surface element on M := ∂D,
with asymptotic expansion given by (4). Then, the log term ψS = O(ρ2) on
M if and only if M is locally spherical. If D is simply connected and M con-
nected, then ψS = O(ρ2) on M if and only if D is biholomorphic to the unit
ball B2 ⊂ C2.

We should briefly mention the role of the choice of surface element onM in the
Szegő kernel KS , since Corollary 1.3 in the special case of complete circular
domains appears similar to a result in [LT04]. For each choice of contact form
θ on M , one obtains a Szegő kernel Kθ

S corresponding to the surface element
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σ[θ] := θ ∧ dθ on M . The invariant surface element ([HKN93]; see also [Lee88]
and [Hir93]) corresponds to the unique choice of θ = θ0 such that

(7) σ[θ0] ∧ dρ = J(ρ)1/(n+1)dV, dV =
1

−2i

n
∧

j=1

dzj ∧ dz̄j .

It is shown in [HKN93] that for the invariant surface element on M in C2, it

holds that ψS |M = 0, where ψS = ψθ0
S . This leads to the form of the expansion

indicated in (6). Hirachi further showed [Hir93] that in fact

(8) ψθ
S |M =

1

24π
(∆bR− 2 ImA11;

11),

where ∆b, R, A11 are the sublaplacian, the Tanaka–Webster scalar curvature,
and the Tanaka-Webster torsion, respectively, of the pseudohermitian structure
corresponding to θ (see [Web78]). Moreover, he showed that ifM has transverse
symmetry then ψθ

S |M = 0 if and only if θ = e2fθ0 for some pluriharmonic
function f on M .
In some situations, there may also be natural choices of surface element on M ,
other than the invariant one. For instance, if D is the unit disk bundle in a
negative holomorphic line bundle L∗ over a Riemann surface X , then a natural
surface element is σ = ω∧dt, where −ω is the Kähler form on X obtained from
the curvature form of L∗ and t 7→ (z, eitℓ) the circle action on M := ∂D. The
Szegő kernel corresponding to this surface element on the disk bundle (also over
higher dimensional Kähler manifolds) is closely related to canonical metrics
and has been considered by many authors. We mention here only [Tia90],
[Zel98], [Don01], [Don96], [Cat99], [LT04], and refer to these papers for further
references. In particular, in [LT04] the analog of Ramadanov’s Conjecture
above was considered for the Szegő kernel in a disk bundle D over the complex
projective plane P1 corresponding to the surface element σ[θ] = ω ∧ dt. The
result in this case is that if the log term ψθ

S vanishes onM , then ω is the Fubini-
Study form on P1 (up to an automorphism P1 → P1), which is equivalent to the
statement that D is the blow-up of the origin in the unit ball B2 ⊂ C2 (up to an
automorphism). We wish to emphasize that while a complete circular domain
in C2, a special case of the class of domains considered in the main results
in this paper, is the blow-down of a disk bundle over P1, the assumptions in
Corollary 1.3 (for this special case) and in [LT04] are different, as the Szegő
kernels are taken with respect to a priori different surface measures.
The paper is organized as follows. In Section 2 we establish a correspondence
between the obstruction function bη1 and the classical invariants of E. Cartan
and Chern–Moser. In Section 3 we consider the special case of disk bundles in
(duals of) positive holomorphic line bundles. The calculations in this case are
classical, and require no prior experience with pseudohermitian geometry. In
the subsequent section, we explain how the calculation in a CR manifold with
transverse symmetry can be reduced to that in the disk bundle case. The final
section, Section 5, is then devoted to the proof of the main result, Theorem
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1.1, from which Corollaries 1.2 and 1.3 readily follow by the expansions (5) and
(6).

2. The weight κ = 3 invariant

LetM =M3 be a three dimensional strictly pseudoconvex CR manifold, which
we shall always assume to be locally embeddable as a real hypersurface in Cn,
for some n. Recall that a CR invariant of a positive weight κ is a polynomial in
”data” associated with the CR structure that transforms under CR diffeomor-
phisms by scaling with the Jacobian of the diffeomorphism to the power 2κ/3
(see, e.g., [Gra87a], [Gra87b]). Typical ”data” are the covariant derivatives of
the components of the Tanaka–Webster curvature and torsion, in which case
CR invariants are special cases of pseudohermitian invariants (see e.g., [Hir93]).

Another approach is to use the coefficients Aj
kl in the Chern–Moser normal form

[CM74] in (local or formal) coordinates (z, w) ∈ C2:
(9)

Imw = |z|2+
∑

k,l≥2

∞
∑

j=1

Aj
klz

kz̄l(Rew)j ; Aj
22 = Aj

23 = Aj
33 = 0, j = 0, 1, 2, . . . .

It was shown by R. C. Graham [Gra87b] that there are no (nontrivial) CR
invariants of weight κ = 1, 2, and that the space of CR invariants of weight
3 and 4, respectively, is 1-dimensional and spanned by A0

44 and |A0
24|

2. It
is well known that the coefficient A0

24, while not a CR invariant of a positive
weight in the sense of Graham (but rather of a ”complex weight” of type (2,4)),
represents E. Cartan’s ”6th order invariant” Q = Q1

1̄ obtained in his solution
to the CR equivalence problem for three dimensional strictly pseudoconvex CR
manifolds [Car33]. We shall show here that the weight 3 invariants, spanned
in the Chern–Moser setup by A0

44, can be also represented by a second order
covariant derivative of Cartan’s invariant Q. To explain this, we recall here
E. Cartan’s solution to the equivalence problem, following the exposition of
Jacobowitz [Jac90] (but with slightly different notation).
As above, let M =M3 be a 3-dimensional strictly pseudoconvex CR manifold.
There is an 8-dimensional bundle π : B →M and an invariantly defined coframe

(10) {Ω,Ω1,Ω1̄,Ω2,Ω2̄,Ω3,Ω3̄,Ω4},

with Ω,Ω4 real-valued, Ωl̄ := Ωl for l = 1, 2, 3, such that the following structure
equations hold:

(11)

dΩ = iΩ1 ∧ Ω1̄ − Ω ∧ (Ω2 +Ω2̄)

dΩ1 = −Ω1 ∧ Ω2 − Ω ∧ Ω3

dΩ2 = 2iΩ1 ∧ Ω3̄ + iΩ1̄ ∧ Ω3 − Ω ∧ Ω4

dΩ3 = −Ω1 ∧ Ω4 − Ω2̄ ∧ Ω3 −QΩ ∧Ω1̄

dΩ4 = iΩ3 ∧ Ω3̄ − (Ω2 +Ω2̄) ∧ Ω4 − SΩ ∧ Ω1 − S̄Ω ∧ Ω1̄,
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where Q (Cartan’s invariant) and S are functions on B. Cartan showed thatM
is spherical near a point p ∈ M if and only if Q vanishes over a neighborhood
of p in M . We may now construct new invariant functions on B by taking
”covariant” differentiations of the invariant functions Q and R with respect to
the invariant coframe (10), e.g.,

(12) dQ = Q;0Ω +

3
∑

l=1

(Q;lΩ
l +Q;l̄Ω

l̄) +Q;4Ω
4.

An easy calculation, differentiating the structure equation for dΩ3, reveals that

S̄ = Q1,

and hence repeated covariant differentiation of Q will yield all invariant func-
tions. We claim that Q;11 is a CR invariant of weight κ = 3. We will first
need to explain how a choice of contact form θ near a point p ∈ M leads to
a a polynomial expression in the Chern-Moser normal form coefficients in (9).
In order to carry this out, we shall compute Q;11 in a special local coordinate
system on B, following the book by Jacobowitz [Jac90]. Let θ be a contact
form onM , x = (z, t) ∈ U ⊂ C×R a local chart onM =M3 such that {θ, θ1},
with θ1 := dz, defines the CR structure on M . We shall normalize the choice
of contact form θ so that the Levi form of M with respect to θ1 = dz is one,
i.e.,

(13) dθ = iθ1 ∧ θ1̄ + bθ ∧ θ1 + b̄θ ∧ θ1̄,

for some function b = b(x) onM . As in [Jac90], we may then choose coordinates
(x, λ, µ, ρ) ∈ U × C× C× R on π−1(U) ⊂ B such that

(14)

Ω = |λ|2θ

Ω1 = λ(θ1 + µθ)

Ω2 =
dλ

λ
+Aθ1 +Bθ1̄ + Cθ

Ω3 =
1

λ̄

(

dµ+Dω1 + Eθ1̄ + Fθ
)

Ω4 =
1

|λ|2

(

dρ+
i

2
(µdµ̄− µ̄dµ) +Hθ1 + H̄θ1̄ +Gθ

)

,

where A,B,C,D,E, F,G,H are functions in x, λ, µ, ρ explicitly computed in
[Jac90]. To compute Q;11, we shall only require the expressions for A,B,E,
which we reproduce here

(15) A = −(b+ 2iµ̄), B = −iµ, E = −µ(b̄− iµ).

Next, we recall from [Jac90] that in the coordinates (x, λ, µ, ρ),

(16) Q =
r

λλ̄3
, r = r(x).
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We let L1 be the (1, 0) vector field and T the transversal vector field in U ⊂M

such that the frame {T, L1, L1̄} is dual to the coframe {θ, θ1, θ1̄} and compute

(17) dQ = r

(

−
dλ

λ2λ̄3
− 3

dλ̄

λλ̄4

)

+
1

λλ̄3
(L1r θ

1 + L1̄r θ
1̄ + Tr θ)

and obtain, using (14),

(18) dQ =
1

λλ̄3

(

−rΩ2 + rA
Ω1

λ
− 3rΩ2̄ + 3rB̄

Ω1

λ
+ L1r

Ω1

λ

)

mod Ω,Ω1̄.

Consequently, by using also (15), we conclude

(19) Q;1 =
1

λ2λ̄3
(L1r + r(−b+ iµ̄)) =

1

λ2λ̄3
(L1r − rb + irµ̄).

We differentiate again and obtain

(20) dQ;1 = (L1r − rb+ irµ̄)

(

−2
dλ

λ3λ̄3
− 3

dλ̄

λ2λ̄4

)

+
ir

λ2λ̄3
dµ̄

+
1

λ2λ̄3
(L2

1r − L1(rb) + iL1r µ̄)θ
1 mod θ, θ1̄.

Using again (14), we obtain

(21) dQ;1 =
1

λ2λ̄3

{

(L1r − rb + irµ̄)

(

−2Ω2 + 2A
Ω1

λ
− 3Ω2̄ + 3B̄

Ω1

λ

)

+ ir

(

λΩ3̄ − Ē
Ω1

λ

)

+ (L2
1r − L1(rb) + iL1r µ̄)

Ω1

λ

}

mod Ω,Ω1̄.

Thus, we obtain

(22) Q;11 =
1

λ3λ̄3
(L2

1r−L1(rb) + iL1r µ̄+ (L1r− rb+ irµ̄)(2A+3B̄)− irĒ).

Applying again (15), we find that

(23) (L1r − rb + irµ̄)(2A+ 3B̄)− irĒ = −2(L1r)b + 2rb2 − i(L1r)µ̄,

and hence we obtain from (22)

(24) Q;11 =
1

λ3λ̄3
(

L2
1r − 3(L1r)b + r(2b2 − L1b)

)

.

We note in particular that Q;11 is of the form

(25) Q;11 =
s(x)

|λ|6
,

where, in the special fiber coordinates (λ, µ, ρ) corresponding to the choice of
{θ, θ1} above,

(26) s(x) = L2
1r(x) − 3(L1r(x))b(x) + r(x)(2b(x)2 − L1b(x)).
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Now, we note that if (z, w) ∈ C2 are formal Chern–Moser coordinates for M
centered at p = (0, 0) so that M is formally given by an equation of the form
(9), which we write temporarily as

(27) Imw = Φ(z, z̄,Rew), Φ(z, z̄, t) := |z|2 +
∑

k,l≥2

∞
∑

j=1

Aj
klz

kz̄ltj ,

then we may choose x = (z, t) with t := Rew as local coordinates, and we may
use the contact form (cf. [BER99])

(28) θ =

(

∂

∂z

Φz̄

1 + iΦt
−

∂

∂z̄

Φz

1− iΦt

)−1 (

dt− i
Φz

1− iΦt
dz + i

Φz̄

1 + iΦt
dz̄

)

in the calculations carried out above. We obtain an evaluation of Q;11 on the
contact form θ in (28) by evaluating (24) at λ = 1; we denote this evaluation
by Q;11[θ]. We now note that by the form of Φ(z, z̄, t) given by (27),

(29)

(

∂

∂z

Φz̄

1 + iΦt
−

∂

∂z̄

Φz

1− iΦt

)
∣

∣

∣

∣

(z,t)=(0,0)

= 1,

and, hence, it follows from (24) that Q;11[θ], evaluated at p = (0, 0), is a

polynomial in the Chern–Moser coefficients Aj
kl. In fact, our main result in

this section is the following:

Theorem 2.1. There is a universal constant c 6= 0, such that

(30) Q;11[θ] = cA0
44,

where θ is given by (28) and (27), and A0
44 is the z4z̄4 coefficient in the Chern–

Moser normal form (9).

Proof. To prove Theorem 2.1, we shall show that Q;11 is a (nontrivial) CR
invariant of weight 3. In view of Theorem 2.1 in [Gra87b], which states that
the space of CR invariants of weight 3 is 1-dimensional and spanned by A0

44, we
can then conclude that there exists a constant c such that (30) holds. To prove
that c 6= 0, it suffices to show that Q;11 is not zero for some CR manifold M .
We shall in fact show (Corollary 3.3 below) that for unit circle bundles M over
compact Riemann surfaces, the identity Q;11 = 0 characterizes those that are
locally spherical. Since there clearly are such M (these include all boundaries
of complete circular domains) that are not locally spherical, we deduce that
c 6= 0.
Recall now (e.g., [Gra87b], [Hir93]) that a pseudohermitian invariant I(θ) (com-
puted as a polynomial in covariant derivatives of the curvature and torsion of
the pseudohermitian structure given by a contact form θ, or as a polynomial
in the Chern–Moser coefficients Aj

kl) is a CR invariant of weight κ if for any

other contact form θ̃ = euθ, u ∈ C∞(M), we have

I(θ̃) = e−κuI(θ).

Since Q;11 is an invariant function on the bundle B of the form (25), it is
clear, by taking |λ|2 = eu, that Q;11 is a CR invariant of weight κ = 3. As
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mentioned above, it follows from Corollary 3.3 that this invariant is nontrivial.
This completes the proof of Theorem Thm-wt3. �

We may also reformulate the result of the discussion above as follows:

Theorem 2.2. The invariant function Q;11 is a nontrivial CR invariant of
weight κ = 3.

3. Circle bundles over Riemann surfaces

Let X be a Riemann surface (complex manifold of dimension 1) and π : L→ X
a positive holomorphic line bundle, with (·, ·) a positively curved metric on L,
and endow X with the Kähler metric ds2 induced by the curvature of L. Let
L∗ be the dual line bundle, equipped with the dual metric, and D the unit
disk bundle in L∗. It is well known that D is a strictly pseudoconvex domain.
We shall mainly be interested in its boundary M := ∂D, the unit circle bundle
in L∗, which is then a strictly pseudoconvex, three dimensional CR manifold
given by

M = {(x, ℓ∗) ∈ L∗ : |ℓ∗|2x = 1}.

If s0 : U ⊂ X → L is a nonvanishing local holomorphic section, then in the
induced local trivialization L∗|U ∼= U ×C with coordinates (z, τ) ∈ U ×C, the
three dimensional CR manifold M is given by

(31) |τ |2h(z, z̄)−1 = 1,

where h(z, z̄) = |s0|
2
z. The assumption that the curvature of L is positive means

that

(32) iΘ := −i∂∂̄ log h > 0.

If we use polar coordinates τ = reit in the fibers and (z, t) ∈ C × R as local
coordinates on M , then

(33) θ̂ = dt+
i

2
(∂ log h− ∂̄ log h)

is a contact form on M that is compatible with the CR structure, and

(34) dθ̂ =
i

2
(∂̄∂ log h− ∂∂̄ log h) = −i∂∂̄ log h.

We shall use the notation

(35) D :=
∂

∂z
, ∆ := 4DD̄,

so that
dθ̂ = −iDD̄ log h dz ∧ dz̄ = ia−1 dz ∧ dz̄

where a = a(z, z̄) is the function

(36) a := (−DD̄ log h)−1 =

(

−
1

4
∆ log h

)−1

> 0.

Thus, with

(37) θ := aθ̂, θ1 := dz
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we have

(38) dθ = i θ1 ∧ θ1̄ − θ ∧
da

a
.

In other words, we can use x = (z, t) and the forms in (37) to set up Cartan’s
bundle B as described in the previous section. In this case, the function b = b(x)
in (13) is independent of the circle coordinate t, and

(39) b = b(z, z̄) = −Da/a = −D log a(z, z̄) = D log (−DD̄ log h).

Next, recall the invariant function Q (Cartan’s tensor) in (16). The direct
computation in [Jac90] shows that (see pp. 126 and 140 in [Jac90]), in the
chosen coordinate system x = (z, t), the function r = r(x) in (16) is a function
of z alone, explicitly computed from the function b = b(z, z̄) in (39). In fact, r
is obtained by applying a third order differential operator to b̄ (see [Jac90], eq.
(47) on p. 126):

(40) r =
1

6
(D̄2Db̄− 3b̄DD̄b̄+ 2b̄2Db̄−Db̄D̄b̄).

Recall that the Riemann surface X is calibrated by the positive holomorphic
line bundle L, i.e., equipped with the Kähler metric induced by the curvature
of metric (·, ·) on L. In the local chart x = (z, t) in U ⊂ X , we then have

ds2 = e2φ|dz|2, 2φ := log(−DD̄ log h) = − log a.

We shall denote by K the Gauss curvature of ds2,

(41) K := −e−2φ∆φ = −4e−2φDD̄φ.

For a smooth, real-valued function f , we shall denote by f;z, f;z̄, fz2 := f;zz,
. . . , f;zkz̄k , etc., the repeated covariant derivatives with respect to z (in the

(1, 0) direction) and z̄ (in the (1, 0) direction) in the unitary coframe eφdz; i.e.,
since the (dual) connection form in this case equals −(∂ − ∂̄)φ (e.g., [GH94],
p. 77), we have f;z = e−φDf , f;z̄ = e−φD̄f and inductively

(42)
f;zkz̄lz = e−φ(Df;zk z̄l + (l − k)(Dφ)f;zk z̄l) = e(k−l−1)φD(e(l−k)φf;zkz̄l)

f;zkz̄lz̄ = e−φ(D̄f;zkz̄l + (k − l)(D̄φ)f;zk z̄l) = e(l−k−1)φD̄(e(k−l)φf;zkz̄l)

Theorem 3.1. The invariant functions Q and Q;11 are related to the Gauss
curvature K of (X, ds2) via:

(43) Q = −
e4φ

12

K;z̄z̄

λλ̄3
, Q;11 = −

e6φ

12

K;z̄z̄zz

|λλ̄|3
.

Proof. The first identity in (62) was already observed in [ED], Proposition 4.1
(but note that in that paper the complex conjugate of Q was considered). The
proof is a direct computation of K;z̄z̄, using the expressions

K = −4e−2φD̄Dφ, K;z̄z̄ = D̄(e−φ(e−φD̄K)) = e−2φ(D̄2K − 2(D̄φ)D̄K),
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and comparing the result with (40), recalling that b̄ = 2D̄φ. To obtain the
second identity in (62), we recall that Q;11 is of the form (25), where s in this
case is a function of z alone, s = s(z, z̄), given by (26), which becomes

(44) s = D2r − 3(Dr)b + r(2b2 −Db).

We also have

(45)
K;z̄z̄zz = e−2φD(eφ(e−3φD(e2φK;z̄z̄)))

= e−2φD(e−2φD(e2φK;z̄z̄)).

By the first identity in (62), we have

K;z̄z̄ = −12e−4φr

and, hence, by (45)

(46) −
1

12
K;z̄z̄zz = e−2φD(e−2φD(e2φ(e−4φr))) = e−2φD(e−2φD(e−2φr))

By expanding this, comparing with (44) and recalling b = 2Dφ, we conclude
that the second identity in (62) holds. �

Remark 3.2. We note that there is a similar local divergence form in general
for s(x) in (26) provided we can find a function u such that b = L1u. It can be
verified by direct calculation that

(47) s = e2uL1(e
−uL1(e

−ur)).

This fact is used in the next section.

We may now prove the following result, which has been alluded to above.

Corollary 3.3. Let X be a compact Riemann surface, (L, h) → X a holo-
morphic line bundle with positively curved metric h = (·, ·), and D the unit disk
bundle in the dual line bundle (L∗, h−1) → X. Then CR invariant function
Q;11 vanishes on the unit circle bundle M := ∂D if and only if M is locally
spherical.

Proof. By Theorem 3.1, Q;11 vanishes on M if and only if K;z̄z̄zz = 0 on X .
Calabi proved ([Cal82], Lemma on p. 273) that this implies (and of course
follows from) K;z̄z̄ = 0 on M , which implies (and follows from), again by
Theorem 3.1, that Cartan’s 6th order invariant Q vanishes on M . The latter
is well known to be equivalent to M being locally spherical. �

4. CR manifolds with transverse symmetry

Let M =M3 be a three dimensional, strictly pseudoconvex CR manifold with
transverse symmetry. In other words, there is a smooth real vector field T 0 on
M such that

(a) T 0 is an infinitesimal CR automorphism, i.e., generates locally a 1-
parameter family of CR automorphisms of M ; and

(b) T 0 is transverse to the complex tangent space Hp := ReT 1,0
p M at every

point p ∈M .
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It is well known (see [BER99]) that (a) is equivalent to T 0 having the property
that [T 0, L1] is a (1, 0)-vector field for every (1, 0)-vector field L1. In particular,
T 0 is the Reeb vector field for a uniquely determined contact form θ0, i.e., there
is a contact form θ0 such that

(48)
〈

θ0, T
0
〉

= 1, T 0
ydθ0 = 0.

Indeed, it was proved in [BRT85] that near a point p ∈ M , one can find local
coordinates x = (z, t) ∈ C×R, vanishing at p, and a local (1, 0)-vector field L0

1

spanning T 1,0M near p such that

(49) T 0 =
∂

∂t
, L0

1 =
∂

∂z
− f

∂

∂t
, θ0 = dt+ fdz + f̄dz̄,

for some smooth function f near p = (0, 0) such that f(p) = 0 and f is a
function of z alone, f = f(z, z̄). Thus, we have

(50) dθ0 = (Df̄ − D̄f)dz ∧ dz̄.

The strict pseudoconvexity implies that the purely imaginary function Df̄−D̄f
is nonzero. By replacing T 0 by −T 0 if necessary, we may assume that we have

(51) Df̄ − D̄f = ie2φ,

where φ = φ(z, z̄) is a smooth real-valued function. Thus, we may rewrite (50)
as

(52) dθ0 = ie2φθ1 ∧ θ1̄, θ1 := dz.

The contact form θ0 defines a pseudohermitian structure [Web78] on M and

(θ0, θ
1, θ1̄) is a local admissible coframe in this pseudohermitian structure; the

reader is referred to [Web78] and [Lee88] for basic facts regarding pseudo-
hermitian structures. The fact that the Reeb vector field is an infinitesimal
automorphism implies that the torsion τ1 = A11θ

1 vanishes, and thus the con-
nection form ω1

1 is identified via the structure equation for dθ1 and symmetry
requirement following from (52), respectively,

(53) dθ1 = ω1
1 ∧ θ1, ω11̄ + ω1̄1 = dh11̄,

where θ1 = dz, ω1̄1 = ω11̄ and we use the Levi form h11̄ := e2φ to raise and
lower indices. Since dθ1 = d2z = 0 and

(54) dh11̄ = d(e2φ) = e2φ(2Dφdz + 2D̄φ dz̄)

we conclude then from (53) that

(55) ω11̄ := h11̄ω1
1 = 2e2φDφθ1,

or equivalently

(56) ω1
1 = 2Dφdz = 2Dφθ1.

The following proposition is then a direct consequence of the structure equation
for dω1

1:
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Proposition 4.1. The pseudohermitian scalar curvature R := R1
1
1
1 of θ0 is

given by

(57) R = −2e−2φDD̄φ.

To be able to compare with the computations in Section 2, we renormalize
θ := e−2φθ0 so that (13) holds (still with θ1 = dz) with

(58) b = 2Dφ, b = b(z, z̄).

We observe at this point that we have an identity for b = b(z, z̄) of the same
form as in Section 3 with 2φ in (58) playing the role of − log a in (39). Next, in
order to compare with the computations in Section 3, we change the admissible

coframe for the pseudohermitian structure of θ0 by θ̂1 := eφdz = eφθ1. This
normalizes the Levi form in this structure to h11̄ = 1. To compute the connec-
tion form ω̂1

1 with respect to this coframe, we must consider the equations

(59) dθ̂1 = dφ ∧ θ̂1 = ω̂1
1 ∧ θ̂1, ω̂11̄ + ω̂1̄1 = 0,

which is easily seen to have the implication

(60) ω̂1
1 = −(∂φ− ∂̄φ) = e−φ(D̄φ θ̂1̄ −Dφ θ̂1).

Next, we note that the dual (1, 0) vector field L̂1 corresponding to θ̂1 equals
e−φL1. Thus, for any function f that is independent of t, i.e., f = f(z, z̄), we

have L̂1f = e−φDf . We therefore observe that covariant differentiation of such

f with respect to the Tanaka–Webster connection in the coframe θ̂1, in the the
pseudohermitian structure of θ0 is the same as covariant differentiation of f =
f(z, z̄) on the Riemann surface X with coordinate z and metric ds2 = e2φ|dz|2

as in Section 3; E.g., if f = f(z, z̄) is a function on M near p = (0, 0), then

(61) f;1 = L̂1f = e−φDf, f;11 = e−2φ(D2f − 2(Dφ)Df), . . . .

With this observation, combined with Proposition 4.1 and the calculations
yielding Theorem 3.1, we conclude that the following holds:

Theorem 4.2. The invariant functions Q and Q;11 are related to the pseudo-
hermitian scalar curvature R of M given by θ0 via:

(62) Q = −
e4φ

6

R;1̄1̄

λλ̄3
, Q;11 = −

e6φ

6

R;1̄1̄11

|λλ̄|3
.

5. Proof of main result

In this section, we shall prove the result stated in the introduction.
Proof of Theorem 1.1. It suffices to show that bη1 = 0 on M implies that M
is locally spherical, since the converse is clear, and moreover, if D is simply
connected and M connected, it follows from the Riemann mapping theorem of
Chern–Ji [CJ96] that D is biholomorphic to the unit ball B2. Thus, to complete
the proof of Theorem 1.1 it suffices to show thatM is locally spherical, provided
bη1 = 0 on M . Graham [Gra87b] showed that the space of CR invariants of
weight 3 is one dimensional, spanned by A0

44, and in particular bη1 = 4A0
44.

Thus, if bη1 = 0 onM , then it follows from Theorem 2.1 that Q;11 also vanishes

Documenta Mathematica 23 (2018) 1659–1676



The Log Term in the Bergman and Szegő Kernels 1673

on M . By Theorem 4.2, we then conclude that R;1̄1̄11 = R;1̄1̄
1̄1̄ = 0 on M . We

shall need the analog of Calabi’s result used in the proof of Corollary 3.3:

Proposition 5.1. If f is a smooth function on a compact strictly pseudoconvex
CR manifold M =M3, and f;1̄1̄

1̄1̄ = 0, then f;1̄1̄ = 0.

Proof. This is a simple integration by parts argument, using the divergence
lemma (a.k.a. Stokes Theorem) in [Lee88]:

(63)

∫

M

|f1̄1̄|
2θ ∧ dθ =

∫

M

f1̄1̄f̄
;1̄1̄θ ∧ dθ = −

∫

M

f1̄1̄
1̄f̄ ;1̄θ ∧ dθ

=

∫

M

f1̄1̄
1̄1̄f̄ θ ∧ dθ = 0,

which proves the proposition. �

Proposition 5.1 with f = R now completes the proof of Theorem 1.1, in view
of the first identity in (62) of Theorem 4.2. �
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