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Abstract. The classical Hurwitz space Hn,b is a fine moduli space
for simple branched coverings of the Riemann sphere P1 by compact
hyperbolic Riemann surfaces. In the article we study a generalized
Weil-Petersson metric on the Hurwitz space, which was introduced in
[ABS15]. For this purpose, Horikawa’s deformation theory of holo-
morphic maps is refined in the presence of hermitian metrics in order
to single out distinguished representatives. Our main result is a cur-
vature formula for a subbundle of the tangent bundle on the Hurwitz
space obtained as a direct image. This covers the case of the curvature
of the fibers of the natural map Hn,b →Mg.
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1 Introduction

1.1 Hurwitz spaces

The classical Hurwitz space Hn,b parametrizes isomorphism classes of simple
branched coverings

f : X → P
1

of degree n with b branching points, where X is a compact hyperbolic Riemann
surface. These spaces first appeared in the works of Clebsch [Cl72] and Hurwitz
[Hu91], where they showed that Hn,b is connected. Further investigations using
the language of modern algebraic geometry were made by Fulton [Fu69] as
well as Harris and Mumford [HM82]. Originally, Hurwitz spaces were used as
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auxiliary objects to study the moduli spaceMg of compact Riemann surfaces
of genus g > 1. For example, the existence of a natural holomorphic map

Hn,b →Mg,

which is surjective for n > g ([Sev21]), gives a more elementary proof of the
fact thatMg is irreducible. The algebraic geometers studied the geometry of
the Hurwitz space by means of the finite topological covering

Hn,b → Symb(P1) \∆.

In this article, we take a deformation theoretic point of view and study the
Hurwitz space by means of its universal family

X → P
1 ×Hn,b.

Inspired by the theory of families of Kähler-Einstein manifolds in higher di-
mensions, we equip the fibers Xs with hyperbolic metrics and P1 with the
Fubini-Study metric. This allows us to introduce a generalized Weil-Petersson
metric on Hn,b, which turned out to be Kähler ([ABS15]). The metric reflects
the variation of the meromorphic maps as well as the variation of the underlying
complex structures. Since the methods of Kähler geometry are now available,
we are able to study the differential geometric properties of the Hurwitz space.
The main focus lies on the curvature of the Weil-Petersson metric.

1.2 Differential geometric setup and statement of results

The geometric study of the Hurwitz space using methods from differential ge-
ometry starts with the work of Axelsson, Biswas and Schumacher in [ABS15],
where they had a deformation theoretic point of view. We first recall their
setup and definitions.
We consider a holomorphic family of coverings

(β, f) : X → Y × S

of compact hyperbolic Riemann surfaces Xs and a fixed compact Riemann
surface Y . (Note that this leads to generalized Hurwitz stacks Hn,b(Y ), see
[HGS02]). Choose local coordinates (z, s = s1, . . . , sr) on X and w on Y such
that

β(z, s) = w and f(z, s) = s.

The fibers Xs carry unique hyperbolic metrics

ωXs
=
√
−1 g(z, s) dz ∧ dz

of constant Ricci curvature −1. Let vs be the horizontal lift of a tangent
vector ∂s on S at s introduced by Schumacher in [Sch93], which are special

Documenta Mathematica 23 (2018) 1829–1861



Kähler Geometry on Hurwitz Spaces 1831

canonical lifts in the sense of [Siu86]. The harmonic representative of the
Kodaira-Spencer map ρs : TS,s → H1(Xs, TXs

) is given by

µs = (∂̄vs)|Xs
.

Set
ϕ := 〈vs, vs〉ωX

where ωX :=
√
−1∂∂̄ log g(z, s).

According to [Sch93] we have

(�ωs
+ 1)ϕ = ‖µs‖2.

Define
us := β∗(vs) = β∗(∂s + azs∂z) = (ξws + azsζ

w
z )∂w,

where

ξws =
∂β(z, s)

∂s
and ζwz =

∂β(z, s)

∂z
.

In this article, we give a more conceptual definition of the vector fields us.
Refining Horikawa’s theory of deformations of holomorphic maps in the pres-
ence of hermitian metrics, the vector fields us|Xs

∈ A0,0(Xs, β
∗
sTY ) turn out

to be generalized harmonic representatives of the characteristic map (Kodaira-
Spencer map for deformations of maps) τs : TS,s → H0(Xs, Nβs

). Here Nβs

is the normal sheaf of the map βs : Xs → Y . Moreover, we will apply these
general results to the case of coverings of Riemann surfaces. Remembering that
the branching points give local coordinates on the Hurwitz space, we can give
an answer to the question which infinitesimal movements of branching points
actually change the complex structure of the overlying hyperbolic Riemann sur-
face. After providing the reader with the basic properties of Hurwitz spaces in
the next section, these deformation theoretic aspects are the content of section
3.
After introducing the necessary objects, the Weil-Petersson metric can be de-
fined as follows:

Definition 1. [ABS15] Let ωY be a metric on Y of constant Ricci curvature
equal to ǫ = 0 or ±1 depending on its genus. The Weil-Petersson inner product
on the tangent space TS of the base S is defined by its norm

‖∂s‖2WP := GWP
ss (s)

:=

∫

Xs

(�ωs
+ 1)−1(‖µs‖2(z, s))β∗

sωY

+

∫

Xs

‖us‖2(z, s) ωXs
.

Proposition 1 ([ABS15]). The product is positive definite if the family (β, f) :
X → Y × S is effectively parametrized. Furthermore, the Weil-Petersson form
satisfies the fiber integral formula

ωWP =

∫

X/S

ωX ∧ β∗ωY .
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In particular, the Weil-Petersson form is Kähler.

In section 4, we will study the Weil-Petersson metric on the base of a family
of coverings. We provide a list of useful identities for later computations.
Moreover, we will reprove the Kähler identity by a direct computation.

In section 5, we consider the universal family (β, f) : X → P1 × Hn,b. Under
the assumption b > 4g − 4, the coherent sheaf f∗β

∗TP1 is locally free and a
holomorphic subbundle of the tangent bundle THn,b on the Hurwitz space. As
our main result, we obtain

Main Theorem. The induced Weil-Petersson metric on the subbundle
f∗β

∗TP1 (which is fiberwise the natural L2-metric on H0(Xs, β
∗
sTP1)) has cur-

vature

RWP
ikl

(s) = −
∫

Xs

Dk(u
w
i )Dl(u

w
 )hww g dA

+

∫

Xs

uwi u
w
 (ξ

w
k + azkζ

w
z )(ξw

l
+ az

l
ζwz )h2ww g dA

+

∫

Xs

�ϕklu
w
i u

w
 hww g dA,

where u1, . . . , ur ∈ Γ(U, f∗β
∗TP1) are local holomorphic sections, Dk is the co-

variant derivative in the direction of the horizontal lift vk, ωY =
√
−1hww dw∧

dw, dA =
√
−1 dz ∧ dz and ωXs

= g dA.

The first summand can be split up into four terms such that the explicit deriva-
tives in base direction completely disappear. Note that we are dealing with a
coupled situation where the complex structure on Xs as well as the hermitian
bundle (β∗

sTP1, β∗
sh) varies. The difficulty in the computation of the curvature

arises from the fact that we have two competing hermitian metrics ωXs
and

ωP1 both contributing to the Weil-Petersson metric. But there is no intimate
relation between those two metrics.

In the situation b > 4g − 4, the canonical map Hn,b → Mg is a submersion
onto the smooth open subset of the moduli space belonging to curves having
trivial automorphism group. Writing M0

g for this part and replacing Hn,b by

the open subset Hn,b
0 lying overM0

g, we can write

K−1

Hn,b
0

/M0
g

∼= det(f∗β
∗TP1),

where we have restricted the family to Hn,b
0 . We denote the fiber of a class

[X ] under Hn,b
0 →M0

g by HX . Thus, HX is a complex submanifold of Hn,b of
dimension (2n− g + 1). We have the relation

f∗β
∗TP1 |HX

= THX
.
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Corollary. The curvature of the restricted Weil-Petersson metric is given by

Rikl(s) = −
∫

G∂̄ (ψik) · ψl g dA

+

∫

(ξi · ξ) (ξk · ξl) g dA,

where
ψik dz ⊗ ∂w :=

(

ξwi ξ
w
k ζ

w
z hww

)

dz ⊗ ∂w.

Although stated as a corollary, we will provide a separate proof of this state-
ment.
The results in this article are from the author’s dissertation [Na16].

Acknowledgements. The author would like to sincerely thank his for-
mer advisor Georg Schumacher for introducing him to the field of complex
and Kähler geometry and his guidance over the years. He would also like to
thank the referee for detailed reading of the manuscript and the suggestions
for improvement.

2 Construction of Hurwitz spaces and first properties

It is very classical to study compact Riemann surfaces by branched coverings
of the Riemann sphere. The generic case is one of a simple branched covering
with only two sheets meeting over each branch point. The number b of branch
points for a simple covering of degree n with total space of genus g is given by
the Riemann-Hurwitz formula

b = 2n+ 2g − 2.

The classical Hurwitz space Hn,b is the set of equivalence classes of simple
branched coverings f : X → P1 of compact Riemann surfaces X of degree n
with b branch points, (n, b)-covering for short, where X is considered to be
hyperbolic. Here we say that two coverings f : X → P1 and g : X ′ → P1 are
equivalent iff there is an isomorphism ϕ : X → X ′ such that g ◦ ϕ = f . A
covering map is given by the b-tuple of its branch points and a finite number
of certain monodromy data. This gives a map from the Hurwitz space to the
set of unordered b-tuples of b distinct points of P1, which can be identified
with Pb \ ∆ where ∆ is the discriminant locus. We can put a topology on
Hn,b such that this map becomes a finite unbranched topological covering:
Given a (n, b)-covering f : X → P1 with branching points B = (y1, . . . , yb),
we can move these points inside disjoint open discs around the points yj by a
homeomorphism of P1 to obtain a new covering of degree n with b branching
points, which is a priori just continuous. After removing the branching points
and the corresponding fibers of this map, we can complete it by the Riemann
Existence Theorem to a holomorphic (n, b)-covering fB′ : X → P1, where the
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complex structure on the surface X may change. Using the correspondence
between topological coverings and subgroups of the fundamental group, we see
that fB′ only depends on f and the new positions B′ = (y′1, . . . , y

′
b) of the

branch points and not on the chosen homeomorphism. For that reason, Hn,b

can be equipped with a complex structure, so that the Hurwitz space becomes
an affine complex manifold of dimension b. Relying on calculations of Clebsch
[Cl72], Hurwitz showed in [Hu91] that Hn,b is connected. Due to Fulton and
his fundamental article [Fu69], there is a universal family for n > 2:

(β, f) : X → P
1 ×Hn,b.

This family can be constructed analytically: First using the process of con-
structing open neighborhoods in Hn,b just described, we can construct them
locally. By the fact that there are no non-trivial automorphisms of simple
branched (n, b)-coverings for n > 2, it follows that the isomorphisms between
two equivalent (n, b)-coverings are unique. (An automorphism ϕ : X → X of a
covering with ϕ 6= id would yield an unbranched covering X/ϕ→ P1 and thus
X/ϕ ∼= P1, which means n = 2.) Therefore, the local families can be glued
together to give a global family over Hn,b.
Now we discuss briefly the Kobayashi hyperbolicity of the Hurwitz space, since
we are especially interested in differential geometric properties of this space.
For a simple branched (n, b)-covering β0 : X → P1 and an automorphism
α : P1 → P

1, the map α◦β0 : X → P
1 is again a simple branched (n, b)-covering,

which cannot be equivalent to β0 for α 6= id. Therefore, the 3-dimensional Lie-
group Aut(P1) = PGL(2) acts on the Hurwitz space Hn,b. Hence, we have
that the Hurwitz space Hn,b is not hyperbolic (in the sense of Kobayashi). But
what if we eliminate the action of Aut(P1)? We move our point of view to
a different category of coverings: Two branched coverings f : X → P1 and
f ′ : X ′ → P1 are considered to be equivalent iff there exist biholomorphic
maps ϕ : X → X ′ and ψ : P1 → P1 such that f ′ ◦ ϕ = ψ ◦ f . Now consider
the branch points P1, . . . , Pb as an ordered b-tuple. Because the Möbius group
acts exactly threefold transitively on P1, we can reach Pb−2 = 0, Pb−1 = 1 and
Pb =∞. Now we construct the so called reduced Hurwitz space Hn,b

red as a finite
unbranched topological covering of

[(P1)b \
⋃

i<j

∆ij ]/PGL(2) ∼= (P1 \ {0, 1,∞})b−3 \∆b−3,

where ∆b−3 is the weak diagonal. This is the point of view in [HM82]. Now
the space P1 \ {0, 1,∞} is hyperbolic as well as (P1 \ {0, 1,∞})b−3 \ ∆b−3

and we get that the reduced Hurwitz space Hn,b
red is hyperbolic. This space

is now a complex manifold of dimension 2n + 2g − 5, compare [Na79, Th.
3.4.17]. The notion reduced Hurwitz space first appeared in the arithmetic
theory ([DF99, BF02, Ca08]). But there the branch points are unordered.
Sometimes one studies the Hurwitz space by definition as reduced modulo
Aut(P1), see [Pa13].
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Originally, the Hurwitz space was used as an auxiliary object to study the
moduli spaceMg of compact Riemann surfaces of genus g > 1. The existence
of the universal family X → Hn,b gives a natural holomorphic map

Hn,b →Mg

by mapping a simple covering X → P1 to the isomorphism class of X . Using
appropriate linear systems and Riemann-Roch (see [Fu69]), one can show that
this map is even surjective for n > g. By studying the fibers of this map, which
have dimension 2n− g + 1, Riemann obtained for the dimension ofMg in his
famous moduli count [Ri57]:

dimMg = b− (2n− g + 1) = (2n+ 2g − 2)− (2n− g + 1) = 3g − 3.

We will compute the curvature of the fibers of the map Hn,b →Mg.

3 Methods of deformation theory

3.1 Horikawa’s theory

In this section, we introduce the Kodaira-Spencer map for deformations of holo-
morphic maps with fixed target. This goes back to Horikawa ([Ho73, Ho74]).
For the classical theory of deformations of complex structures, which is not
recalled here, we refer to [Ma05]. Let Y be a fixed compact complex manifold.

Definition 2. A family of holomorphic maps to Y consists of a family
(X , p, S) = (Xs)s∈S of compact complex manifolds parametrized by a connected
complex manifold S together with a holomorphic map F : X → Y . We collect
these data in the quadrupel (X , p, S, F ). We set fs = F |Xs

: Xs → Y and also
denote the family by (Xs, fs)s∈S.

Now let (X , p, S, F ) be such a family of holomorphic maps to Y and s0 ∈ S
a fixed point. We set X = Xs0 and f := F |X : X → Y . We have an exact
sequence of coherent sheaves

0→ TX/Y → TX
df−→ f∗TY

P−→ Nf → 0, (1)

where Nf is the normal sheaf on f , i.e. the cokernel of df . After restricting to
a neighborhood of s0 ∈ S if necessary, we have the following setting:

(i) S is an open subset in C
r with coordinates s = (s1, . . . , sr) and s0 =

(0, . . . , 0).

(ii) X is covered by a finite number of Stein coordinate neighborhoods
Ui together with coordinates (zi, s) = (z1i , . . . , z

n
i , s

1, . . . , sr) such that
p(zi, s) = s.
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(iii) Y is covered by a finite subset of Stein coordinate neighborhoods Vi with
local coordinates wi = (w1

i , . . . , w
m
i ) such that F (Ui) ⊂ Vi and F is given

by
wi = F (zi, s).

(iv) On Ui ∩ Uj , we have holomorphic transition functions

zi = fij(zj , s).

(v) On Vi ∩ Vj , we have holomorphic transition functions

wi = gij(wj).

Then we get the relation

F (fij(zj , s), s) = gij(F (zj , s)). (2)

For any tangent vector ∂/∂s ∈ TS,0 we set

τi :=
m
∑

γ=1

∂F γ
i

∂s

∣

∣

∣

s=0

∂

∂wγ
i

∈ Γ(Ui, f
∗TY ) (Ui = Ui ∩ X ).

Then from equality 2 we infer that

τj − τi = f∗

(

∑

σ

∂fσ
ij

∂s

∂

∂zσi

)

,

where

θij :=
∑

σ

∂fσ
ij

∂s

∣

∣

∣

s=0

∂

∂zσi

is a representative of the Kodaira-Spencer class at s = 0 of the family p : X →
S. Therefore, the 0-cochain (Pτi) defines an element of H0(X,Nf ). Thus we
can define a linear map

τ : TS,0 → H0(X,Nf ),

the so called characteristic map for the family of holomorphic maps. The space
H0(X,Nf ) describes the infinitesimal deformations of the holomorphic map f ,
see [Se06]. To get a better description of the elements of this space, we define
as in [Ho74, Definition 4.1]:

Definition 3.

DX/Y :=
{(τ, θ) ∈ C0(U , f∗TY )× Z1(U , TX) : δτ = f∗θ}

{(f∗σ, δσ) : σ ∈ C0(U , TX)} .

Lemma 1. [Ho74, Lemma 4.2]
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(i) DX/Y does not depend on the choice of the Stein covering.

(ii) DX/Y is a finite dimensional vector space.

(iii) We have the following two exact sequences:

H0(X,TX)
df−→ H0(X, f∗TY )→ DX/Y → H1(X,TX)→ H1(X, f∗TY ),

(3)
0→ H1(X,TX/Y )→ DX/Y → H0(X,Nf )→ H2(X,TX/Y ). (4)

Corollary 1. (i) If f is non-degenerate (i.e. TX/Y = 0), we have DX/Y
∼=

H0(X,Nf).

(ii) If f is smooth, we have DX/Y
∼= H1(X,TX/Y ).

There is also a Dolbeault-type description of the space DX/Y :

Proposition 2. [Ho74, Lemma 4.6]

DX/Y
∼= {(ξ, ϑ) ∈ A

0,0(X, f∗TY )× A0,1(TX) : ∂̄ξ = f∗ϑ, ∂̄ϑ = 0}
{(f∗ζ, ∂̄ζ) : ζ ∈ A0,0(X,TX)} =: D′

X/Y .

After recalling the work of Horikawa, we would like to give a constructive de-
scription of how to produce representatives of the characteristic map in D′

X/Y :

Proposition 3. Let (X , p, S, F ) be a family of non-degenerate holomorphic
maps to Y . For a point s0 ∈ S, we set X = Xs0 and f = F |X : X → Y .
Let ∂/∂s ∈ TS,s0 be a tangent vector. Extend this vector to a local holomorphic
vector field in a neighborhood V ⊂ S of s0 ∈ S. Let χ ∈ Γ(p−1(V ),A0,0(TX )) be
a differentiable lift of this vector field. Then the class τs0(∂/∂s) is represented
in D′

X/Y by the pair (F∗(χ)|X , ∂̄(χ)|X).

Proof. Let U = (Ui) be a locally finite Stein open covering of p−1(V ) by coor-
dinate neighborhoods in which p is just a projection. Then τ(∂/∂s) ∈ DX/Y is
given by the pair (τ, θ) ∈ C0(U , f∗TY ) × Z1(U , TX), where δτ = f∗θ. In local
coordinates, τ = (τi) has the form

τi =
∑

γ

∂F γ
i

∂s

∣

∣

∣

s=s0

∂

∂wγ
i

∈ Γ(Ui, f
∗TY ) (Ui = Ui ∩X).

We note that τi = F∗(∂/∂s)|X , where we view s as a local coordinate on Ui.
The cocycle θ = (θij) defined by

θij =
∑

σ

∂fσ
ij

∂s

∣

∣

∣

s=s0

∂

∂zσi

is representing the Kodaira-Spencer class ρ(∂/∂s). We already know that
∂̄(χ)|X is a Dolbeault representative of θ (see [Ma05]). Write χ locally as

χ =
∑

α

χα
i (zi, s)

∂

∂zαi
+

∂

∂s
in Ui.
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Since ∂̄(χ− ∂/∂s) = ∂̄(χ), the 0-cochain η = (ηi) defined by

ηi =
∑

α

χα
i (zi, s)

∂

∂zαi
∈ Γ(Ui,D(TX/S))

yields a differentiable splitting of θ. After the proof of the preceding proposi-
tion, τ(∂/∂s) ∈ D′

X/Y is thus given by the pair (ξ, ϑ), where

ϑ = ∂̄(ηi) and ξ = τi + f∗ηi in Ui.

From this it finally follows ξ = F∗(χ)|X .

3.2 Refining Horikawa’s theory in the presence of hermitian met-

rics

In this subsection, we consider more specifically families of non-degenerate
holomorphic maps fs : Xs → Y , where the fibers Xs are compact hermitian
manifolds. In this case, any Dolbeault class in H1(Xs, TXs

) has a unique har-
monic representative (with respect to �∂̄). We fix a point s0 ∈ S and the
corresponding fiber X = Xs0 together with the map f = fs0 . The monomor-
phism of sheaves f∗ : TX → f∗TY induces a monomorphism

f∗ : A0,1(TX)→ A0,1(f∗TY )

of global C∞-forms of type (0, 1). By means of this map f∗, we can view in
particular the harmonic (0, 1)-forms on X with values in TX as (0, 1)-forms
with values in f∗TY . (Note that the images in A0,1(f∗TY ) are in general no
longer harmonic with respect to a hermitian metric on Y .) We denote the space
of harmonic forms by H0,1(X,TX).

Proposition 4.

D′
X/Y

∼= {χ ∈ A
0,0(f∗TY ) : ∂̄χ ∈ f∗(H0,1(X,TX))}
{f∗(ζ) : ζ ∈ H0(X,TX)} =: HX/Y .

Proof. Since f is non-degenerate, we can simplify D′
X/Y to

D′
X/Y

∼= {ξ ∈ A
0,0(X, f∗TY ) : ∂̄ξ ∈ f∗(A0,1(TX))}
{f∗(ζ) : ζ ∈ A0,0(TX)} =: D′′

X/Y .

Then there is a natural map from HX/Y to D′′
X/Y . We have to show that

this map is indeed bijective. Let ξ ∈ A0,0(f∗TY ) such that ∂̄ξ = f∗ϑ for a
ϑ ∈ A0,1(TX). There exists a ζ ∈ A0,0(TX) such that ϑ′ = ϑ+ ∂̄ζ is harmonic.
Then χ = ξ+f∗ζ lies in the same class as ξ in D′′

X/Y and we have ∂̄χ = f∗ϑ
′. If

χ, χ′ ∈ A0,0(f∗TY ) are given such that ∂̄χ = f∗ϑ and ∂̄χ′ = f∗ϑ
′ for harmonic

forms ϑ, ϑ′ ∈ A0,1(TX) and χ′ = χ + f∗ζ, then it follows by f∗ϑ
′ = ∂̄χ′ =

∂̄(χ + f∗ζ) = f∗(ϑ + ∂̄ζ) and the injectivity of f∗ that ϑ′ = ϑ + ∂̄ζ. Thus
the two harmonic forms ϑ and ϑ′ are Dolbeault equivalent, hence coincide. It
follows ∂̄ζ = 0, i.e. ζ is a global holomorphic vector field on X . Therefore, the
vector fileds χ and χ′ determine the same class in HX/Y .
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Remark 1. We consider the case H0(X,TX) = 0. We get

DX/Y
∼= {χ ∈ A0,0(f∗TY ) : ∂̄χ ∈ f∗(H0,1(X,TX))} = HX/Y

and we write the exact sequence 3 in the form

0→ H0(X, f∗TY )
α−→ HX/Y

β−→ f∗(H0,1(X,TX))
γ−→ H1(X, f∗TY ).

Now all maps have a very simple description: α can be read as an inclusion.
The map β is simply ∂̄ and γ assigns to a form f∗(ϑ) ∈ A0,1(X, f∗TY ) its
Dolbeault class in H1(X, f∗TY ). The exactness comes immediately.

From now on let also Y be equipped with a hermitian metric h. The pullback
(f∗TY , f

∗h) is then a hermitian bundle on X . We denote the adjoint operator
of ∂̄ with respect to f∗h on the space A0,1(X, f∗TY ) by ∂̄∗h. On the space
A0,0(X, f∗TY ) and A

0,1(X, f∗TY ), we denote the harmonic projection and the
Green operator by H and G respectively. It is well-kown that G commutes
with ∂̄ and ∂̄∗h.

Proposition 5. Let H0(X,TX) = 0 = H1(X, f∗TY ). We interpret the exact
sequence

0→ H0(X, f∗TY )→ H0(X,Nf )→ H1(X,TX)→ 0

as

0 → H0(X, f∗TY )
ι−→ {χ ∈ A0,0(f∗TY ) : ∂̄χ ∈ f∗(H0,1(X,TX))}

∂̄−→ f∗(H0,1(X,TX))→ 0.

Then we have a splitting by means of the following maps:

0←− H0(X, f∗TY )
H←− HX/Y

G∂̄∗

h←−−− f∗(H0,1(X,TX))←− 0.

Proof. We have the identity id = H + G�∂̄ , where �∂̄ = ∂̄∗h∂̄ for elements in
A0,0(X, f∗TY ).

Remark 2. Since H1(X, f∗TY ) = 0, there are no harmonic (0, 1)-forms with
values in f∗TY . Hence, the Laplace operator �∂̄ = ∂̄∗h∂̄ is invertible on
the space A0,1(X, f∗TY ) and the inverse operator is the Green operator on
A0,1(X, f∗TY ). Therefore, we have in particular u = G∂̄∂̄∗hu = ∂̄G∂̄∗hu for all
u ∈ f∗(H0,1(X,TX)).

Proposition 6. Now let H0(X,TX) = 0 = H0(X, f∗TY ). We write the exact
sequence

0→ H0(X,Nf )→ H1(X,TX)→ H1(X, f∗TY )→ 0

as

0 → {χ ∈ A0,0(f∗TY ) : ∂̄χ ∈ F (H0,1(X,TX))} ∂̄−→ f∗(H0,1(X,TX))
H−→ H0,1(X, f∗TY )→ 0.
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Then we have a splitting by means of the following maps:

0←− HX/Y
∂̄∗

hG←−−− f∗(H0,1(X,TX))
ι←− H0,1(X, f∗TY )←− 0.

Proof. We have the identity id = H + �∂̄G, where �∂̄ = ∂̄∂̄∗h for elements in
A0,1(f∗TY ).

Remark 3. Proposition 5 asserts that one can assign on the infinitesimal level
to a deformation of f : X → Y , i.e. an element of HX/Y , an element of
H0(X, f∗TY ), i.e. a deformation where the complex structure remains un-
changed. The second proposition 6 means that one can assign to an infinitesi-
mal deformation of X an infinitesimal deformation of f : X → Y .

Remark 4. It is not difficult to generalize the results of this section to the case
of general deformations of holomorphic maps which do not fix the target space
Y .

3.3 Movement of branching points

We end this section with a rather concrete infinitesimal consideration of the
Hurwitz space. For this, we consider the universal family X → P1 ×Hn,b. As
we have seen in the introduction, the complex structure on Hn,b is given by
the finite unbranched topological covering

br : Hn,b → Symb
P
1 \∆ =: P1

b \∆.

This map assigns to a branched covering its set of branching points on P1,
which we read as a divisor on P1. We write for short H = Hn,b and consider
an arbitrary point s0 ∈ H as well as the corresponding covering β = βs0 :
X = Xs0 → P

1. We write B = br(s0) for the branching divisor. Then the
differential

br∗ : Ts0(H)→ TB(P
1
b)

is an isomorphism. There is an intrinsic isomorphism (see [ACGH85, p. 160])

TB(P
1
b)
∼= H0(P1,OB(B)).

The space H0(P1,OB(B)) is known as the space of infinitesimal deformations
of the effective divisor B on P1, see [HM98, p. 94]. We take the geometric
point of view and interpret a tangent vector at s0 ∈ H as an equivalence class
of smooth curves in H through the point s0 under the equivalence of first order
approximation. These correspond via the map br to curves in the space of
branching points or differently speaking: The infinitesimal movement of the
b branching points in P1

b corresponds to an infinitesimal deformation of the
covering β : X → P1. But we have seen that these infinitesimal deformations
are in turn described by the space

Ts0(H) ∼= H0(X,Nβ) ∼= HX/P1 ,
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which appears in the tangent sequence

0→ H0(X, β∗TP1)→ HX/P1 → H1(X,TX)→ 0.

An element in H0(X,Nβ) is represented by a differentiable vector field on
X , which is meromorphic in a neighborhood of the ramification points with
simple poles there (compare also the presentation in [NR11, pp. 126-128]). If
z1, . . . , zb are local coordinates centered around the branching points x1, . . . , xb,
this vector field has the local expression

∞
∑

ν=−1

ajvz
v
j

around the point xj . Let cj = aj−1 be the residue of this vector field at the
point xj with respect to the coordinate zj. By means of this coordinates we
can identify H0(X,OR) with C

b. The vector field then represents the value
(c1, c2, . . . , cb). The subspace H0(X, β∗TP1) ⊂ HX/P1 stands for the infinites-
imal deformations of β : X → P1, where the complex structure of X remains
(infinitesimal) unchanged. This means that the complex structure remains in-
finitesimally unchanged along directions of vectors, which are residues of holo-
morphic vector fields with simple poles in the ramification points. The residue
of a meromorphic vector field depends on the chosen coordinates. However, the
property c = 0 and c 6= 0 respectively does not! Now we can ask the question
which movements of branching points keep the structure on X fixed or not.
One result in this direction is the following statement:

Proposition 7. If one moves less than 2g − 2 branching points on P1, the
complex structure on X changes.

Proof. Let

R =
b
∑

i=1

pi

be the ramification divisor of β on X and

B =

b
∑

i=1

qi

the branching divisor on P
1, where β(pi) = qi. Since we have a simple covering

β : X → P1, there is an one-to-one correspondence between the ramification
points on X and the branching points on P1. An infinitesimal movement of
the points q1, . . . , qb is an element of H0(P1,OB(B)). In local coordinates zi
centered around the points qi, such a section can be written as

η =
b
∑

i=1

ηi,
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where

ηi = ai
1

zi
.

If the k-th point is not moved, we have (in all such coordinates) ak = 0. By
means of the identifications

H0(P1,OB(B)) ∼= TB(P
1
b)
∼= Ts0(H) ∼= H0(X,Nβ) ∼= H0(X,OR)

such a section gives a differentiable vector field on X , which is meromorphic
in a neighborhood of the ramification points. In this situation we have a pole
(that means the ”residue” is different from zero in all centered coordinates) if
and only if the corresponding branching point moves. Now the question is the
following: Is there a meromorphic vector field on X , which has simple poles in
only r < b of the b branching points? For r < 2g − 2 the answer is negative,
since the line bundle TX(R′) has negative degree for a divisor R′ < R of degree
r and hence has no non-trivial holomorphic sections.

Remark 5. The statement of the proposition can already be found in the note
[Fr12]. There, using methods from Teichmüller theory, the statement is proved
by assigning a Beltrami differential to each movement of branching points. This
leads to a Riemann-Roch discussion of the space H0(X,KX(−B)), the Serre
dual of the space H1(X,TX(B)).

4 The Weil-Petersson metric

4.1 Families of coverings

We apply the deformation theory developed in the last section to the case of
branched coverings of compact Riemann surfaces. We fix a compact Riemann
surface Y of arbitrary genus. We use the notation and definitions from [ABS15].

Definition 4. A holomorphic family of coverings of Riemann surfaces is a
holomorphic map Φ = (β, f) : X → Y × S, where the maps βs : Xs → Y are
non-constant holomorphic maps of a compact Riemann surface Xs to Y .

Now let (β, f) : X → Y ×S be a holomorphic family of coverings with g(Xs) >
1, i.e. Xs is hyperbolic. We fix a point s0 ∈ S together with the fiber X = Xs0

and the corresponding map β0 = βs0 : X → Y . Let z be a local holomorphic
coordinate on the fibers and s = (s1, . . . , sr) be local holomorphic coordinates
on S, which we use as coordinates on X such that f(z, s) = s. Then every fiber
Xs carries an unique hyperbolic metric

ωXs
=
√
−1g(z, s)dz ∧ dz

of constant Ricci curvature−1, which is C∞ and also depends C∞-differentiable
on the parameter s. It therefore holds

∂2

∂z∂z
log g(z, s) = g(z, s). (5)
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The Kähler forms on the fibers of f yield a hermitian metric g−1(z, s) on the
relative canonical bundle KX/S. We denote its curvature form by

ωX =
√
−1∂∂̄ log g(z, s).

Because of 5 we have
ωX |Xs

= ωXs
.

Let
ρs : TsS → H1(Xs, TXs

)

be the Kodaira-Spencer map of the deformation f : X → S at s ∈ S. Let
∂/∂s = ∂s be a tangent vector in TsS. Harmonic representatives of ρ(∂s) with
respect to the hyperbolic metrics on Xs are harmonic Beltrami differentials,
which we denote by µs = µz

sz∂sdz. These objects can be obtained by horizon-
tal lifts of ∂s (see [Sch93]), which are also canonical lifts in the sense of Siu
([Siu86]). This lift can be computed as

vs = ∂s + azs∂s where azs = −gzzgsz , (6)

which indeed gives a lift of ∂s perpendicular to the fibers with respect to ωX .
In this notation gsz is the component of ωX in the direction of z and s. The
harmonic Beltrami differential is given by

µs = (∂̄vs)|Xs
= ∂z(a

z
s)∂zdz.

Now we consider the characteristic map

τs : TsS → H0(Xs, Nβs
).

Since we have chosen a Kähler metric ωXs
on Xs and there are no non-trivial

holomorphic vector fields on Xs, we can identify H0(Xs, Nβs
) with

HXs/Y = {χ ∈ A0,0(β∗
sTY ) : ∂̄χ ∈ βs,∗(H0,1(X,TX))}

by the results of the last section. One obtains a representative of τs(∂s) in
HXs/Y also by using the horizontal lift vs:

us := β∗vs = β∗(∂s + azs∂z) =
∂β

∂s

∂

∂w
+ azs

∂β

∂z

∂

∂w
= (ξws + azsζ

w
z )

∂

∂w
,

where we introduced the notation

ξwz = ∂β/∂s, ζwz = ∂β/∂z.

This gives a differentiable vector field Xs with values in β∗
sTY such that

∂̄(us) = µsζ
w
z ∂wdz ∈ βs,⋆(H0,1(Xs, TXs

)).

By Proposition 3 and the proof of Proposition 4 we have τs(∂s) = us ∈ HXs/Y .
We call the elements of HXs/Y (by abuse of notation) generalized harmonic
representatives of the characteristic map. We also state this as a result:
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Proposition 8. The pushforward of horizontal lifts of tangent vectors give
generalized harmonic representatives of the characteristic map.

Remark 6. The vector fields us have already been constructed in the work
[ABS15] without being aware of their deformation theoretic meaning. These
objects were used for defining the Weil-Petersson metric, see below.

4.2 Definition of the metric

We keep the notation from the previous subsection. Using the harmonic repre-
sentatives of the characteristic map, we are able to introduce a metric on any
smooth base S of an effectively parametrized family (β, f) : X → Y × S of
coverings of Riemann surfaces. Let s = (s1, · · · , sr) be again local holomorphic
coordinates on S, which we use together with a coordinate z on the fiber as
coordinates on X such that f(z, s) = s. Moreover, let w be a local holomorphic
coordinate on Y so that β(z, s) = w. The Kähler metric on Y of constant Ricci
curvature (+1, 0 or -1 depending on g(Y )) reads as

ωY =
√
−1hww dw ∧ dw.

For the pullback of this metric we get

β∗ωY =
√
−1hww(β(z, s))

(

ζwz ζ
w
z dz ∧ dz + ζwz ξ

w
 dz ∧ ds + ξwi ζ

w
z ds

i ∧ dz + ξwi ξ
w
 ds

i ∧ ds
)

.

Here and in the following we are using Einstein’s convention of summation.
The explicit expression for ωX =

√
−1∂∂̄ log g(z, s) gives

ωX =
√
−1(gzzdz ∧ dz + gzdz ∧ ds + gizds

i ∧ dz + gids
i ∧ ds).

For a tangent vector ∂i = ∂/∂si, 1 ≤ i ≤ r, we set ui := u∂/∂si . For any s ∈ S
the space HXs/Y ⊂ A0,0(Xs, β

∗
sTY ) carries a natural scalar product. Thus we

define

GWP
1,i  (s) :=

∫

Xs

ui · uj gdA

=

∫

Xs

(ξwi + azi ζ
w
z )(ξw + az ζ

w
 )hww(β(z, s))

√
−1gzz(z, s) dz ∧ dz.

Here we were writing gdA =
√
−1gzz(z, s)dz ∧ dz for the area element with

respect to the hyperbolic metric on the fiber Xs. As we will see soon, already
this product gives a hermitian metric on the base S if the family is effectively
parametrized as a family of maps. But for obtaining a Kähler metric, we need
a second term, see [ABS15]. We set

GWP
0,i  :=

∫

Xs

ϕi β
∗
sωY

=

∫

Xs

ϕi (z, s)hww(β(z, s))ζ
w
z (z, s)ζwz (z, s)

√
−1dz ∧ dz.
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Here we used the function

ϕi  := 〈vi, vj〉ωX
= gi − gizgzgzz,

which is the inner product of the horizontal lifts in the direction of i and j with
respect to the form ωX . One should compare the expression for GWP

0 with the
easier expression

∫

Xs

ϕi gdA =

∫

Xs

ϕi ωXs

of the Weil-Petersson metric for the family of compact Riemann surfaces f :
X → S (see [LSY04]). We define the Weil-Petersson inner product for two
tangent vectors ∂/∂si and ∂/∂sj at the point s by

〈∂/∂si, ∂/∂js〉WP := GWP
i  (s) := GWP

0,i  (s) +GWP
1,i  (s).

4.3 Positivity of the pairing

Proposition 9. [ABS15] The Weil-Petersson product is positive definite if the
family

(β, f) : X → Y × S
is effectively parametrized.

Proof. We present a more conceptional proof than in [ABS15]. We prove the
property at a point s ∈ S and choose a tangent vector ∂s ∈ TsS such that
GWP

ss (s) vanishes. First, we consider

GWP
0,ss (s) =

∫

Xs

ϕss(z, s)hww(β(z, s))ζ
w
z (z, s)ζwz (z, s)

√
−1dz ∧ dz.

From the equality
(�ωs

+ 1)ϕss = ||µs||2

and the fact that the operator �ωs
+1 is strictly positive (see [Sch12]), it follows

that ϕss is non-negative. Since also the second term GWP
1,ss (s) is non-negative,

we have
GWP

0,ss (s) = 0 = GWP
1,ss (s).

Now it follows from

GWP
1,ss (s) =

∫

Xs

||us||2 gdA = 0

that us = 0 as an element of HXs/Y ⊂ A0,0(Xs, β
∗
sTY ). Hence, τs(∂s) = 0

and since τs is injective for a effectively parametrized family, we finally get
∂s = 0.

Remark 7. The vanishing of us means for the local expression ξws +azsζ
w
z = 0,

i.e. azs = −ξws /ζwz . Since azs is everywhere differentiable and hence does not
have any poles, azs must therefore be holomorphic. Then the family of complex
structures f : X → S is infinitesimal trivial at the point s in the direction of ∂s
and us is an element of H0(Xs, β

∗
sTY ). But this element is zero, so the family

of coverings β : X → Y is also infinitesimal trivial at s in the direction of ∂s.
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4.4 The choice of coordinates

We consider the case of families of coverings (β, f) : X → Y × S of compact
hyperbolic Riemann surfaces Xs over an one-dimensional base 0 ∈ S ⊂ C. We
assume that the horizontal lift

vs = ∂s + azs∂z

of the coordinate vector field ∂s is a holomorphic vector field on X . By inte-
grating this vector field (after a shrinking of S), we obtain a trivialization

Φ : X0 × S → X , (z̃, s) 7→ (z(z̃, s), s)

such that
∂z

∂s
(z̃, s) = azs(z(z̃, s), s).

We now compute the family of metric tensors in these new trivializing coordi-
nates z̃, s:

g(z, s) = g(z(z̃, s), s) =: g̃(z̃, s).

We obtain for the derivatives log g̃

∂ log g̃

∂s
=
∂ log g

∂z

∂z

∂s
+
∂ log g

∂s

and further

g̃sz̃ =
∂2 log g̃

∂z̃∂s
=

∂2 log g

∂z∂z

∂z

∂z̃

∂z

∂s
+
∂2 log g

∂z∂s

∂z

∂z̃

= (gzza
z
s + gsz)∂z/∂z̃

= 0,

since
azs = −gzzgsz.

Hence, we have in the new coordinates az̃s = 0, i.e. vs = ∂s. Now we compute
us in these trivializing coordinates. We set

β(z, s) = β(z(z̃, s), s) =: β̃(z̃, s) =: w̃(z̃, s).

Then

ξ̃w̃s =
∂β̃

∂s
=
∂β

∂s
+
∂β

∂z

∂z

∂s
= ξws + ζwz a

z
s

and us = ξ̃w̃s ∂w̃. We observe

Proposition 10. A family (β, f) : X → Y × S is locally trivial as a family
of coverings at a point s0 ∈ S, that means the restriction of the family to a
neighborhood of s0 ∈ S′ ⊂ S is isomorphic to (βs0 × pr2) : X0 × S′ → Y × S′

if and only if us(z, s) = 0 entirely on X|S′ .
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4.5 Preparations and useful identities

In this subsection, we recall briefly the calculus of covariant derivatives, which
we apply to global C∞-sections of the hermitian bundle (β∗TY , β

∗h). Fur-
thermore, we collect some useful formulas for the further computations, which
already appear in the computation of the curvature of the Weil-Petersson met-
ric on the Teichmüller space.
By keeping the notation from the previous subsections, we use the symbol |
for ordinary and ; for covariant derivatives. We set ∂z = ∂/∂z, ∂z = ∂/∂z

and ∂k = ∂/∂sk, ∂l = ∂/∂sl for coordinate directions 1 ≤ k, l ≤ r on the r-
dimensional base S. Let u = uw(z, s)∂w and v = vw(z, s)∂w be vector fields
along the fibers of X → S, i.e. us := u(z, s) and vs = v(z, s) are differentiable
families of vector fields with values in β∗

sTY . Then

∂z(u, v) = ∂z(u · v)
= ∂z(u

wvwhww)

= uw|zv
whww + uwvw|zhww + uwvwhww|z

= uw|zv
whww + uwvw|zhww + uwvwΓwζ

w
z hww

= uw;zvhww + uwv;zhww

= ∇z(u) · v + u · ∇z(v)

= (∇z(u), v) + (u, ∂z(v)),

where we introduced the covariant derivatives

∇z(u) = (uw|z + Γwζ
w
z u

w)∂w

and
∇z(v) = (vw|z)∂w.

Here we set

Γw = Γw(β(z, s)) = (h(β(z, s)))−1(∂wh)(β(z, s)).

Analogously we have for 1 ≤ k ≤ r
∂k(u, v) = (∇k(u), v) + (u, ∂k(v)),

where
∇k(u) = (uw|k + Γwξ

w
k u

w)∂w.

Lemma 2. ∇z(hww) = ∇k(hww) = 0.

Proof. We compute

hww;z = hww|z − Γwζ
w
z hww = Γwζ

w
z hww − Γwζ

w
z hww = 0.

Analogously

hww;k = hww|k − Γwξ
w
k hww = Γwξ

w
k hww − Γwξ

w
k hww = 0.
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Furthermore, we need some useful formulas for the computations in the next
sections, which already appear in the computation of the curvature of the Weil-
Petersson metric on the Teichmüller space:

Lemma 3. The following equations hold (see [LSY04, proof of Lemma 3.3]):

∂zai = −Γzai − ∂i log g, (7)

∂za = −Γza − ∂ log g, (8)

∂lai = −Aial − g−1∂zϕil, (9)

∂ka = −Aak − g−1∂zϕk. (10)

Here we have Γz = g−1∂zg.

Moreover, we have the following results (see [Sch93, Sch12]):

Lemma 4. We write Lk for the Lie derivative with respect to the vector field
vk. Then

∂k

∫

Xs

η =

∫

Xs

Lk(η) and ∂l

∫

Xs

η =

∫

Xs

Ll(η)

for any smooth (1, 1)-form η on X .

Lemma 5. Lk(gzz dz ∧ dz) = 0.

Lemma 6. ϕi = gi − gaia.

Lemma 7. (�+ 1)ϕi = Ai ·A.

The form Az
iz(z, s)∂zdz = ∂̄vi|Xs

is the harmonic representative of the Kodaira-
Spencer class ρ(∂i).
The fact that the operator (� + 1) is invertible gives

Corollary 2. A deformation f : X → S is infinitesimal trivial at a point
s0 ∈ S in the direction of 1 ≤ i ≤ r or 1 ≤ j ≤ r if and only if ϕi(z, s0) = 0
for all z ∈ Xs0 .

Remark 8. For simplicity we consider an one-dimensional base S with a local
coordinate s. It follows from equation (4.5) of Lemma 3 and the preceding
corollary: If f : X → S is infinitesimal trivial at s0 ∈ S, then ∂zas = 0 = ∂sas.
Thus, the horizontal lift vs = ∂s + azs∂z is holomorphic with respect to z and
s if the family f : X → S is infinitesimal trivial entirely on S. By integrating
this holomorphic horizontal lift, we obtain a local trivialization of the family.

The vector field vk is a horizontal lift of ∂k with respect to the form ωX . Now
we ask for a horizontal lift with respect to β∗ωY . Since this form has zeros, we
obtain a vector field with poles:

Proposition 11. The horizontal lift ṽk of ∂k with respect to the form β∗ωY is
given by

ṽk = ∂k − (ξwk /ζ
w
z )∂z = ∂k − ξwk ∂w.
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Proof. For

ṽk = ∂k + bzk∂z,

the condition

〈∂k + bzk∂z , ∂z〉β∗ωY
= 0

leads to bzk = −ξwk /ζwz .

Analogously to Lemma 5 we get

Lemma 8. Lṽk(hwwζ
w
z ζ

w
z dz ∧ dz) = 0.

Proof. We write hzz = hwwζ
w
z ζ

w
z and | for an ordinary derivative. Then

Lṽk(hzz)zz = [∂k − (ξwk /ζ
w
z ), hzz]zz

= hzz|k − (ξwk /ζ
w
z )hzz|z − (ξwk /ζ

w
z )|zhzz

= ξwk hwwΓwζ
w
z ζ

w
z + hwwζ

w
z|kζ

w
z

− ξwk hwwΓwζ
w
z ζ

w
z − (ξwk /ζ

w
z )hwwζ

w
z|zζ

w
z

+ ξwk|zhwwζ
w
z + (ξwk /ζ

w
z )hwwζ

w
z ζ

w
z|z

= 0.

Remark 9. The generalized harmonic representative uk is the difference of the
classical horizontal lift vs and the horizontal lift ṽk.

4.6 Kähler property

Very often, the Kähler property of the Weil-Petersson metric follows from a
fiber integral formula, because the exterior differential commutes with the fiber
integral. In this subsection, we prove the Kähler symmetry by a direct compu-
tation, which gives us the insight that the single expression GWP

1 alone does
not yield a Kähler metric on the Hurwitz space.

The Kähler property means that dωWP = 0. This is equivalent to the Kähler
symmetry

∂kG
WP
i (s) = ∂iG

WP
k (s)

for all 1 ≤ i, j, k ≤ r = dimS and s ∈ S. We compute by using the Lie
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derivative Lk with respect to the vector field vk and Lemma 4:

∂kG
WP
ij

(s) = ∂kG
WP
0,ij

(s) + ∂kG
WP
1,ij

(s)

= ∂k

∫

Xs

ϕiβ
∗
s (ωY ) + ∂k

∫

Xs

ui · ugdA

=

∫

Xs

Lk(ϕi)β
∗
s (ωY ) +

∫

Xs

ϕiLk(β
∗
s (ωY ))

+

∫

Xs

Lk(ui · u)gdA+

∫

Xs

ui · uLk(gdA)

=

∫

Xs

Lk(ϕi)β
∗
s (ωY ) +

∫

Xs

ϕiLk(β
∗
s (ωY ))

+

∫

Xs

Dk(ui) · ugdA+

∫

Xs

ui ·Dk(u)gdA,

where we introduced the notation

Dk(ui) := (∇k + azk∇z)(ui)

for the covariant derivative in the direction of the horizontal lift vk. We also
made use of Lemma 5. Now Lk(ϕi) = vk(ϕi) = vi(ϕk) = Li(ϕk) (see
[LSY04, Lemma 3.2]). Furthermore, also the third summand is symmetric in i
and k:

Dk(ui) = (∇k + azk∇z)(ξ
w
i + azi ζ

w
z )

= ξki|k + Γwξ
w
k ξ

w
i + azkξ

w
i|z + azkΓwζ

w
z ξ

k
i + azi|kζ

w
z + azi ζ

w
z|k +

+ Γwξ
w
k aiζ

w
z a

z
kai|zζ

w
z + azka

z
i ζ

w
z|z + azkΓwζ

w
z aiζ

w
z .

Because of azka
z
i|z − azi a

z
k|z = ∂k log(g)ai − ∂i log(g)ak and azi|k − azk|i =

∂i log(g)ak − ∂k log(g)ai the assertion follows. For the second and the fourth
summand we prove the following proposition, which gives a completely new
and non-trivial identity:

Proposition 12.
∫

Xs

ϕiLk(β
∗
s (ωY )) =

∫

Xs

uk ·Di(u)gdA.

Proof. We write
hzz = hwwζ

w
z ζ

w
z .

It holds

Lk(β
∗
s (ωY ))zz = [∂k + azk∂z, hzz] = hzz|k + azkhzz|z + azk|zhzz

= hww|kζ
w
z ζ

w
z + hwwζ

w
z|kζ

w
z + azkhww|zζ

w
z ζ

w
z

+ azkhwwζ
w
z|zζ

w
z + azk|zhzz

= Γwhwwξ
w
k ζ

w
z ζ

w
z + hwwζ

w
z|kζ

w
z + azkΓwhwwζ

w
z ζ

w
z ζ

w
z

+ azkhwwζ
w
z|zζ

w
z + azk|zhzz.
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Moreover,

∇vi(u) = (∇i + azi∇z)(ξ
w
 + az ζ

w
z ) = az|iζ

w
z + aiA

z
zζ

w
z = −gzz∂zϕiζ

w
z .

We rewrite the form hwwζ
w
z ζ

w
z dz ∧ dz as hwwζ

w
z dw ∧ dz and contract it with

the vector field (ξwk + azkζ
w
z )∂w. We obtain in this way that the tensor ζwz (ξwk +

azkζ
w
z )hww and thus also ϕiζ

w
z (ξwk +azkζ

w
z )hww is well-defined. Stokes’ theorem

applied to this globally defined (0, 1)-form ϕiζ
w
z (ξwk + azkζ

w
z )hww yields

∫

∇z(ϕiζ
w
z (ξwk + azkζ

w
z )hww)dA = 0

and thus

−
∫

∂zϕiζ
w
z (ξwk + azkζ

w
z )hwwdA =

∫

ϕiζ
w
z (ξwk + azkζ

w
z );zhwwdA.

Now

(ξwk + azkζ
w
z );z = ξwk|z + Γwζ

w
z ξ

w
k + azk|zζ

w
z + azkζ

w
z|z + Γwζ

w
z a

z
kζ

w
z ,

so

(ξwk + azkζ
w
z );zζ

w
z hww = ξwk|zζ

w
z hww + Γwζ

w
z ξ

w
k ζ

w
z hww

+ azkΓwζ
w
z hwwζ

w
z ζ

w
z + azkhwwζ

w
z|zζ

w
z + azk|zζ

w
z ζ

w
z hww

= Lk(hwwζ
w
z ζ

w
z )zz.

This proves the proposition.

5 Computation of the curvature

The computation of the curvature of the Weil-Petersson metric on the base
of a general effectively parametrized family (β, f) : X → Y × S of coverings
of Riemann surfaces seems to be difficult and leads to overflowed expressions
with hardly any interpretation. The reason for this relies on the fact that in
general there is no intimate relation between the hyperbolic metrics on the
fibers Xs and the metric on Y . But both hermitian metrics contribute to the
expression for the Weil-Petersson metric, because it measures the variation of
the complex structure on the fibers Xs as well as the variation of the covering
maps βs : Xs → Y . It is in particular the term GWP

0 which is quite difficult
to deal with in this context. However, this term disappears if the underlying
family of complex structures is locally trivial. We can give a curvature formula
for such families. This covers the case of complex subspaces of the Hurwitz
space Hn,b, which parametrize families of coverings βs : Xs → P1 where the
complex structure of Xs is fixed. Moreover, we can give a curvature formula
for the bundle f∗β

∗TP1 , which is then a bundle on the entire Hurwitz space and
gives the curvature formula of the subspaces by restriction.
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5.1 Curvature for a subspace

We consider the universal family (β, f) : X = (Xs) → P1 × Hn,b over the
Hurwitz space. Let b > 4g − 4. By Serre duality and deg(KXs

⊗ (β∗
sTP1)) < 0,

the space H1(Xs, β
∗
sTP1) is trivial. Thus we obtain the short exact sequence

0→ H0(Xs, β
∗
sTP1)→ H0(Xs, Nβs

)→ H1(Xs, TXs
)→ 0.

This is the tangent sequence belonging to the map Hn,b → Mg. For this to
be true, we have to restrict to the open part M0

g which parametrizes Rie-
mann surfaces with trivial automorphism group. Denoting the corresponding
inverse image by Hn,b

0 , we get a submersion Hn,b
0 → M0

g. Alternatively, we

can move to the universal covering ˜Hn,b and get a submersion ˜Hn,b → Tg onto
the Teichmüller space. A fixed compact Riemann surface X of genus g > 1
without non-trivial automorphisms represents the isomorphism class of a com-
plex structure [X ], that is a point in M0

g. We denote the corresponding fiber

under the submersion Hn,b → M0
g by HX . This subspace is a (maybe non

connected) complex submanifold of dimension r := b− (3g− 3) = 2n− (g− 1).
By construction, the fibers of the restricted family

f |f−1(HX) → HX

are all isomorphic and by a result of Grauert and Fischer, the family is complex
analytic locally trivial. The points of this subspace now parametrize isomor-
phism classes of simple branched (n, b)-coverings where the surface X (i.e. its
complex structure) is fixed. Let s0 ∈ HX be given by a covering β0 : X → P1.
We choose local holomorphic coordinates s1, . . . , sb so that the subspace HX is
locally given by

{s ∈ Hn,b | sr+1 = · · · = sb = 0},
and thus we can take s1, . . . , sr as local coordinates on HX . Because our
computations are local in the base, we can restrict our family to a possibly
smaller base S ⊂ HX and assume that the family XS = X×S is in fact trivial.
We study the metric tensor GWP

i for the base S and the family

(β, f) : X × S → P
1 × S.

The family of complex structures is trivial, so in particular infinitesimal trivial.
Hence by Corollary 2 ϕi(z, s) = 0 on X × S for 1 ≤ i, j ≤ r. Thus the first
summand GWP

0,i does not contribute to the metric. Furthermore, we have on
X × S the constant family of metric tensors g(z, s) = g(z), where g is the
hyperbolic metric of constant Ricci curvature −1 on X . The coordinate vector
fields (∂i)1≤i≤r hence exist on X ×S and coincide with the horizontal lifts (vi)
(that means ai = 0 for all 1 ≤ i ≤ r). The expression for the metric tensor
thus reduces to

Gi(s0) =

∫

X

ξwi ξ
w
 hww gdA.
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We start computing by using again Lie derivatives:

∂kGi(s0) =

∫

X

Lk(ξ
w
i ξ

w
 hww gdA)

=

∫

∂k(ξ
w
i ξ

w
 hww) gdA.

Since

∂k(ξ
w
i ξ

w
 hww) = ξwi|kξ

w
 hww + ξwi ξ

w
 ∂k(h(β(z, s))) (11)

and

∂k(h(β(z, s))) =
∂h

∂w
(β(z, s)) · ∂β

∂sk

= (∂wh)(β(z, s))ξ
w
k

= (h(β(z, s)))−1(∂wh)(β(z, s))ξ
w
k (z, s)h(β(z, s))

= Γwξ
w
k hww

if we set Γw = β∗Γh where Γh = ∂w log(h) = (∂wh)h
−1, we identify (11) as a

covariant derivative and write

∂k(ξ
w
i ξ

w
 hww) = (∇kξ

w
i )ξ

w
 hww.

Thus as a first result we obtain

Lemma 9.

∂kGi(s0) =

∫

X

(∇kξ
w
i )ξ

w
 hww gdA.

We continue computing

∂l∂kGi(s0) = ∂l

∫

X

(∇kξ
w
i )ξ

w
 hww gdA

=

∫

X

∂l
(

(∇kξ
w
i )ξ

w
 hww

)

gdA.

Analogously to above we get

∂l
(

(∇kξ
w
i )ξ

w
 hww

)

= ∂l(∇kξ
w
i )ξ

w
 hww +∇kξ

w
i ∇l(ξ

w
 )hww,

where

∂(∇kξ
w
i ) = ∂l

(

ξwi|k + Γwξ
w
k ξ

w
i

)

= ∂lΓwξ
w
k ξ

w
i .

But now

∂lΓw = ∂l
(

h(β(z, s))−1(∂wh)(β(z, s))
)

= −(∂wh) (β(z, s)) ξwl (∂wh)(β(z, s))h(β(z, s))
−2

+ h(β(z, s))−1(∂w∂wh)(β(z, s))ξ
w
l
.
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Since

∂w∂w log h = ∂w
(

(∂wh)h
−1
)

= (∂w∂wh)h
−1 − (∂wh)(∂w)h

−2

= −Kh,

we have ∂lΓw = −Kwwξ
w
l
, where we set

Kww := β∗(Kh) = β∗(−∂w∂w log h) = KP1hww.

(Of course we have KP1 = 1, but we prefer to write KP1 for keeping track of
the influence of KP1.) Altogether we obtain

Lemma 10.

∂l∂kG
WP
i (s0) =

∫

X

(∇kξ
w
i )(∇lξ

w
 )hww gdA−KP1

∫

X

ξwi ξ
w
 ξ

w
k ξ

w
l
h2ww gdA.

Now we choose normal coordinates around the point s0, that means coordinates
such that

∂kGi(s0) = 0 = ∂lGi(s0),

that is
∫

X

(∇kξ
w
i )ξ

w
 )hww gdA = 0.

Since the vector fields {ξwk }∂w for 1 ≤ k ≤ r form a base of H0(X, β∗
0(TY )),

this means that
(∇kξ

w
i )⊥ H0(X, β∗

0 (TY )).

Since �∂̄ = ∂̄∗∂̄ on the space of differentiable vector fields with values in β∗
0(TY )

and because of the identity id = H∂̄ +G∂̄�∂̄ , we can now write
∫

X

(∇kξ
w
i )(∇lξ

w
 )hww gdA =

〈

∇kξ
w
i ,∇lξ

w
j

〉

=
〈

G∂̄�∂̄ (∇kξ
w
i ) ,∇lξ

w
j

〉

=
〈

∂̄∗G∂̄ ∂̄ (∇kξ
w
i ) ,∇lξ

w
j

〉

=
〈

G∂̄ ∂̄ (∇kξ
w
i ) , ∂̄∇lξ

w
j

〉

.

Since
∇kξ

w
i = ξwi|k + Γwξ

w
k ξ

w
i ,

we have
∂̄ (∇kξ

w
i ) = −Kwwξ

w
k ξ

w
i ζ

w
z dz

and thus
∫

X

(∇kξ
w
i )(∇lξ

w
 )hww gdA =

〈

G∂̄ ∂̄ (∇kξ
w
i ) , ∂̄∇lξ

w
j

〉

= K2
P1

〈

G∂̄(ξ
w
i ξ

w
k ζ

w
z hwwdz), ξ

w
j ξ

w
l ζ

w
z hwwdz

〉

.
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Introducing for abbreviating

ψikdz ⊗ ∂w :=
(

ξwi ξ
w
k ζ

w
z hww

)

dz ⊗ ∂w,

we can now write
∫

X

(∇kξ
w
i )(∇lξ

w
 )hww gdA = K2

P1

∫

X

G∂̄ (ψik)
w
z (ψl)

w
z hww dz ∧ dz

= K2
P1

∫

X

G∂̄ (ψik) · ψl gdA.

The full curvature tensor Rikl of the Kähler metric Gi at a point s ∈ S is
given by

Rikl(s) = −
∂2Gi

∂sl∂sk
(s) +Gqp(s)

∂Gkq

∂si
(s)

∂Gpl

∂s
(s).

Here Gqp denotes the inverse. In our normal coordinates this reduces at the
point s0 to

Rikl(s0) = −
∂2Gi

∂sl∂sk
(s0) = −∂l∂kGi(s0).

Thus we arrive at

Corollary. The curvature of the Weil-Petersson metric for the subspace
HX ⊂ Hn,b is given by

Rikl(s0) = −
∫

X

G∂̄ (ψik) · ψl gdA

+

∫

X

(ξi · ξ) (ξk · ξl) gdA

where ψik dz ⊗ ∂w :=
(

ξwi ξ
w
k ζ

w
z hww

)

dz ⊗ ∂w.

5.2 Curvature of f∗β
∗TP1

We consider the universal family of simple (n, b)-coverings over the Hurwitz
space (β, f) : X → P1×Hn,b for b > 4g(Xs)−4. By Serre duality and deg(KXs

⊗
(β∗

sTY )
∗) < 0 we get h1(Xs, β

∗
sTP1) = 0 for all s ∈ Hn,b in this case. Hence

the dimension of H0(Xs, β
∗
sTP1) is constant on Hn,b and different from 0 by

the theorem of Riemann-Roch. Thus, the sheaf f∗β
∗TP1 is locally free on Hn,b,

that is a vector bundle. We denote its rang by r := h0(Xs, β
∗
sTP1). The fiber of

this bundle over s ∈ Hn,b is just the space H0(Xs, β
∗
sTP1). For a neighborhood

U ⊂ Hn,b, we identify the space of holomorphic sections Γ(U, f∗β
∗TP1) over

U with Γ(f−1(U), β∗TP1), that is the space of holomorphic vector fields on
f−1(U) =: XU with values in the pullback of the tangent bundle β∗TP1. For
a base of local holomorphic sections u1, . . . , ur ∈ H0(XU , β

∗TP1), the natural
L2-metric is given by

Gi(s) =

∫

Xs

ui(z, s)uj(z, s)h(β(z, s))g(z, s)dA.
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This metric coincides with the induced Weil-Petersson metric GWP
1 on the

subbundle of the tangent bundle

f∗β
∗TP1 ⊂ THn,b .

Remark 10. The bundle f∗β
∗TY and the corresponding metric are also defined

for a family (β, f) : X → Y × S when Y is a torus. In this case TY is trivial.
Hence also β∗TY is trivial on X and thus f∗β

∗TY is the trivial line bundle
OS on the base S, because f has connected fibers. Taking a global trivializing
section u ≡ 1 on S, we obtain a constant metric on the bundle S ×C. For the
case g(Y ) > 1 we have h0(Xs, β

∗
sTY ) = 0, since deg β∗TY < 0. In this case,

the direct image sheaf R1f∗β
∗TY is always a vector bundle on S.

We start computing the curvature of the bundle f∗β
∗TP1 on the base Hn,b of

dimension b > 4g(Xs) − 4. For this, we choose local coordinates s1, . . . , sb on
Hn,b in a neighborhood of a fixed point s and an orthogonal frame u1, . . . , ur
of local holomorphic sections such that

Gi(s) = δi

and
∂kGi(s) = 0

for all 1 ≤ k ≤ b and 1 ≤ i, j ≤ r. The curvature form R of the Chern
connection on E := f∗β

∗TP1 is an element of A1,1(S,End(E)), which is locally
given by

R =

√
−1
2π

Rm
ik ds

i ∧ ds ⊗ uk ⊗ um,

where Rm
ik = GlmRikl and

RWP
ikl

(s) := Rikl(s) = −
∂2Gi

∂sk∂sl
(s) = −∂l∂kGi(s).

We start computing and will use Lk(g dA) = 0 (see Lemma 5) several times.
We get for the first derivative

∂kGi(s) =

∫

Xs

Lk(u
w
i u

w
 hww gdA) =

∫

Xs

Dk(u
w
i )u

w
 hww gdA,

where Dk = ∇k + azk∇z and azk is now in general only differentiable. Here
we used that u is anti-holomorphic in z and s = (s1, . . . , sb). For the second
derivative we obtain

∂l∂kGi(s) =

∫

Xs

Dk(u
w
i )Dl(u

w
 )hww gdA

+

∫

Xs

DlDk(u
w
i )u

w
 hww gdA,

Documenta Mathematica 23 (2018) 1829–1861



Kähler Geometry on Hurwitz Spaces 1857

where

Dk(ui) = ui;k + azkui;z

= ui,k + Γwξ
w
k ui + azk(ui,z + Γwζ

w
z ui).

Since ak is in general not holomorphic, we have

DlDk(ui) = (∂l + az
l
∂z)Dkui

= −Kwwξ
w
l
ξwk ui − azlKwwζ

w
z ξ

w
k ui

− (Az
kza

z
l
+ g−1∂zϕkl)ui;z

+ az
l
Az

kzui;z

− azkKwwξ
w
l
ζwz ui − azl a

z
kKwwζ

w
z ζ

w
z ui

= −Kww(ξ
w
l
+ az

l
ζwz )(ξwk + azkζ

w
z )ui

− g−1∂zϕklui;z.

Here we used equation (4.5) of Lemma 3. Altogether we obtain

−∂l∂kG
WP,1
i (s) = −

∫

Xs

Dk(u
w
i )Dl(u

w
 )hww gdA

+ KP1

∫

Xs

(ξwk + azkζ
w
z )(ξw

l
+ az

l
ζwz )uwi u

w
 h

2
ww gdA

+

∫

Xs

g−1∂zϕklu
w
i;zu

w
 hww gdA.

Using Stokes’ theorem, the third term can be rewritten as

∫

Xs

g−1∂zϕklu
w
i;zu

w
 hww gdA

= −
∫

Xs

g−1∂z∂zϕklu
w
i u

w
 hww gdA

=

∫

Xs

�ϕklu
w
i u

w
 hww gdA
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or alternatively as

∫

Xs

g−1∂zϕklu
w
i;zu

w
 hww gdA

=

∫

Xs

g−1ϕklKwwζ
w
z ζ

w
z u

w
i u

w
 hww gdA

−
∫

Xs

g−1ϕklu
w
i;zu

w
;zhww gdA

= KP1

∫

Xs

ϕklu
w
i u

w
 hww β∗

s (ωY )

−
∫

Xs

ϕkl(u
w
i;z/ζ

w
z )(u

w
;z/ζ

w
z ) β∗

s (ωY ).

Main Theorem. The curvature of the Weil-Petersson metric on the subbundle
f∗β

∗TP1 ⊂ THn,b is given by

RWP
ikl

(s) = −
∫

Xs

Dk(u
w
i )Dl(u

w
 )hww gdA

+

∫

Xs

uwi u
w
 (ξ

w
k + azkζ

w
z )(ξw

l
+ az

l
ζwz )h2ww gdA

+

∫

Xs

�ϕklu
w
i u

w
 hww gdA.

The last term can be rewritten by using Stokes’ theorem as

∫

�ϕklu
w
i u

w
 hww gdA

= −
∫

g−1∂z∂zϕklu
w
i u

w
 hww gdA

=

∫

g−1∂zϕklu
w
i;zu

w
 hww gdA

=

∫

g−1ϕklKwwζ
w
z ζ

w
z u

w
i u

w
 hww gdA−

∫

g−1ϕklu
w
i;zu

w
;zhww gdA

= KP1

∫

ϕklu
w
i u

w
 hww β∗

s (ωY )−
∫

ϕkl(u
w
i;z/ζ

w
z )(uw;z/ζ

w
z ) β∗

s (ωY ).

Using the identity id = H + �∂̄G∂̄ = H + ∂̄∗G∂̄ ∂̄, the first term can be split
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up as

−
∫

Dk(u
w
i )Dl(u

w
 )hww gdA

= − K2
P1

∫

G∂̄(u
w
i (ξ

w
k + azkζ

w
z )ζwz hww)(u

w
 (ξ

w
l
+ az

l
ζwz )ζwz hww)hww dA

− KP1

∫

G∂̄(u
w
i;zA

z
kz)(u

w
 (ξ

w
l
+ az

l
ζwz )ζwz hww)hww dA

− KP1

∫

G∂̄(u
w
i (ξ

w
k + azkζ

w
z )ζwz hww)(u

w
;zA

z
lz
)hww dA

−
∫

G∂̄(u
w
i;zA

z
kz)(u

w
;zA

z
lz
)hww dA.

Remark 11. In his article [Be09], Berndtsson computes the curvature of the
bundle f∗(L ⊗ KX/S) for a general holomorphic fibration (submersion) f :
X → S and a line bundle L on the Kähler manifold X . He proves that the
direct image f∗(L ⊗ KX/S) is Nakano (semi-)positive if L is (semi-)positive

on X (compare also [LSY13, LY14]). For the Hurwitz space Hn,b, the bundle
L := β∗TP1⊗K−1

X/S is positive along the fibers for b > 4g−4. But fiberwise, the

curvature of the metric β∗h · g on the line bundle β∗TP1 ⊗K−1
X/S is not positive

everywhere, because it is negative in the ramification points.
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