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Abstract. We study stacks of truncated Barsotti–Tate groups and

the G-zips defined by Pink, Wedhorn & Ziegler. The latter occur

naturally when studying truncated Barsotti–Tate groups of height 1

with additional structure. By studying objects over finite fields and

their automorphisms we determine the zeta functions of these stacks.

These zeta functions can be expressed in terms of the Weyl group of

the reductive group G and its action on the root system. The main

ingredients are the classification of G-zips over algebraically closed

fields and their automorphism groups by Pink, Wedhorn & Ziegler,

and the study of truncated Barsotti-Tate groups and their automor-

phism groups by Gabber & Vasiu.
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1 Introduction

Throughout this article, let p be a prime number. Over a field k of characteristic

p, the truncated Barsotti–Tate groups of level 1 (henceforth BT1) were first

classified in [8]. The main examples of BT1 come from p-kernels A[p] of abelian
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varieties A over k. As such, these results (independently obtained) were used in

[12] to define a stratification on the moduli space of polarised abelian varieties.

In [9] the first step was made towards generalising this relation to Shimura

varieties of PEL type, by classifying Barsotti–Tate groups of level 1 with the

action of a fixed semisimple Fp-algebra and/or a polarisation. The classification

of these BT1 with extra structure over an algebraically closed field k̄ turned

out to be related to the Weyl group of an associated reductive group over

k̄. These BT1 with extra structure were then generalised in [11] to so-called

F -zips, that generalise the linear algebra objects that arise when looking at

the Dieudonné modules corresponding to BT1. Over an algebraically closed

field the classification of these F -zips is also related to the Weyl group of a

certain reductive group that depends on the chosen extra structure. In [14] and

[13] this was again generalised to so-called Ĝ-zips, taking the (not necessarily

connected) reductive group Ĝ as the primordial object.1 For certain choices

of Ĝ these Ĝ-zips correspond to F -zips with some additional structure. Again

their classification over an algebraically closed field is expressed in terms of the

Weyl group of Ĝ.

These classifications suggest two possible directions for further research. First,

one could try to study Ĝ-zips over non-algebraically closed fields; the first

step would then be to understand the classification over finite fields. Another

direction would be to study BTn for general n, either over finite fields or over

algebraically closed fields. One may approach both these problems by looking at

their moduli stacks. For a reductive group Ĝ over a finite field k, a cocharacter

χ : Gm,k′ → Ĝk′ defined over some finite extension k′ of k, and a subgroup

scheme Θ ⊂ π0(Ĝk′ ) one can consider the stack Ĝ-Zipχ,Θk′ of Ĝ-zips of type

(χ,Θ) (see Section 4); it is an algebraic stack of finite type over k′. Similarly, for

two nonnegative integers h ≥ d one can consider the stack BTh,d
n of truncated

Barsotti–Tate groups of level n, height h and dimension d; this is an algebraic

stack of finite type over Fp (see [19, Prop. 1.8]). One way to study these stacks

is via their zeta function. For an algebraic stack of finite type X over a finite

field Fq, and an integer v ≥ 1, the Fqv -point count of X is defined as

#X(Fqv ) =
∑

x∈[X(Fqv )]

1

#Aut(x)
,

where [C] denotes the set of isomorphism classes of a category C. The zeta

1Here we follow the notation of [14] and [13] in writing Ĝ for the reductive group, and G

for its identity component.
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function of X is defined to be the element of QJtK given by

Z(X, t) = exp





∑

v≥1

qv

v
#X(Fqv )



 .

By definition the zeta function encodes information about the point counts

of X. Furthermore, the zeta function is related to the cohomology of ℓ-adic

sheaves on X (see [1] and [17]). As a power series in t, it defines a meromorphic

function that is defined everywhere (as a holomorphic map C → P1(C)), but

it is not necessarily rational; the reason for this is that for stacks, contrary to

schemes, the ℓ-adic cohomology algebra is in general not finite dimensional (see

[17, 7.1]).

The aim of this article is to calculate the zeta functions of stacks of the form

Ĝ-Zipχ,Θk′ and BTh,d
n . The results are stated below. In the statement of Theorem

1.1, the finite set Ξχ,Θ classifies the set of isomorphism classes in Ĝ-Zipχ,Θ(F̄q);

this classification turns out to be related to the Weyl group of Ĝ (see Proposi-

tion 4.5). For ξ ∈ Ξχ,Θ, let a(ξ) be the dimension of the automorphism group

of the corresponding object in Ĝ-Zipχ,Θ(F̄q), and let b(ξ) be the minimal in-

teger b such that this object has a model over Fqb . It turns out that Ξχ,Θ

has a natural action of Γ := Gal(F̄q/Fq), and that the functions a and b are

Γ-invariant. In the statement of Theorem 1.2 the notation is the same, applied

to the group Ĝ = GLh,Fp (with suitable χ; as a subgroup of π0(Ĝ)k′ the group

Θ is necessarily trivial for connected Ĝ).

Theorem 1.1. Let q0 be a power of p, and let Ĝ be a reductive group over Fq0 .

Let q be a power of q0, let χ : Gm,Fq → ĜFq be a cocharacter, and let Θ be a

subgroup scheme of the group scheme π0(CentĜFq
(χ)). Let Ξχ,Θ and Γ be as in

Section 4 and let a, b : Γ\Ξχ,Θ → Z≥0 be as in Notation 5.6. Then

Z(Ĝ-Zipχ,Θ
Fq

, t) =
∏

ξ̄∈Γ\Ξχ,Θ

1

1− (q−a(ξ̄)t)b(ξ̄)
.

Theorem 1.2. Let h, n > 0 and 0 ≤ d ≤ h be integers. Let Ξ and a : Ξ → Z≥0

be as in Notation 6.1. Then

Z(BTh,d
n , t) =

∏

ξ∈Ξ

1

1− p−a(ξ)t
.

In particular the zeta function of the stack BTh,d
n does not depend on n.

As we will see later on, for split groups we have b(ξ̄) = 1 for all ξ̄ ∈ Γ\Ξχ,Θ =

Ξχ,Θ. In particular, the zeta function of BTh,d
n as determined in Theorem 1.2
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coincides with that of GLh-Zip
χ as determined in Theorem 1.1 (for a suitable

χ).

All the terminology used in the statements above will be introduced in due

time. For now let us note that the functions a and b can also be expressed

in terms of the action of the Weyl group of Ĝ on the root system, and are

readily calculated for a given (Ĝ, χ,Θ) (see Example 4.7). Furthermore, [13,

§8] shows how to construct isomorphisms (on categories of k-points for perfect

k) between moduli stacks of G-zips, and moduli stacks of F -zips and BT1 with

additional structure. One can use this and Theorem 1.1 to calculate the zeta

functions of the latter.

We will spend some time developing theory about nonconnected algebraic

groups, and much of the discussion would be simplified considerably when only

considering connected Ĝ. However, we choose to tackle the problem in this gen-

erality because the nonconnected case is interesting in its own right: Ĝ-zips for

nonconnected Ĝ appear, for instance, when studying F -zips with symmetric bi-

linear forms (see [13, §8.5]), which in turn appear when considering reductions

of Shimura varieties attached to orthogonal groups.

Acknowledgements: The research of which this paper is a result was car-

ried out as part of a Ph.D. project at Radboud University supervised by Ben

Moonen, to whom I am grateful for comments and guidance. I also thank

Johan Commelin, Torsten Wedhorn, and an anonymous reviewer for further

comments. All remaining errors are, of course, my own.

2 The zeta function of quotient stacks

Throughout this section we let k be a finite field of characteristic p. In this

section we study the point counts and zeta functions of categories associated

to quotient stacks. The main results (Propositions 2.14 and 2.19) are quite

technical in nature, but we need them in this form in order to prove Theorems

1.1 and 1.2.

Let G be a smooth algebraic group over k. Let X be a variety over k, by which

we mean a reduced k-scheme of finite type. Suppose X has a left action of G.

Recall that the quotient stack [G\X ] is defined as follows: If S is a k-scheme,

then the objects of the category [G\X ](S) are pairs (T, f), where T is a left

G-torsor over S in the étale topology, and f : T → XS is a GS-equivariant

morphism of S-schemes. A morphism (T, f) → (T ′, f ′) in [G\X ](S) is an

isomorphism of G-torsors ϕ : T ∼−→ T ′ such that f = f ′ϕ. In order to calculate

point counts and zeta functions we first need to set up a bit of notation.
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Notation 2.1. Suppose G is a smooth algebraic group over k, and let z be

a cocycle in Z1(k,G). Recall that this means that z is a continuous map

z : Gal(k̄/k) → G(k̄) (where the right hand side has the discrete topology) for

which the following equation is satisfied for all γ, γ′ ∈ Gal(k̄/k):

z(γγ′) = z(γ) · γz(γ′). (2.2)

Let X be a k-variety with a left action of G, and let z be a cocycle in Z1(k,G).

We define the twisted algebraic space Xz as follows: Let Xz,k̄ be isomorphic to

Xk̄ as k̄-algebraic spaces with a Gk̄-action via an isomorphism ϕz : Xz,k̄
∼−→ Xk̄.

We define the Galois action on Xz(k̄) by taking

γx := ϕ−1
z (z(γ) · γϕz(x))

for all x ∈ Xz,k̄(k̄) and all γ ∈ Gal(k̄/k); this defines an algebraic space Xz

over k. Its isomorphism class only depends on the class of z in H1(k,G). Two

cases deserve special mention:

• We let G act on itself on the left by defining g · x := xg−1. Then Gz is a

left G-torsor, and H1(k,G) classifies the left G-torsors in this way.

• We let G act on itself on the left by inner automorphisms. The twist is

denoted Gin(z), and this is again an algebraic group. If X is a k-variety

with a left G-action, then Xz naturally has a left Gin(z)-action.

Remark 2.3. Since the algebraic space Xz is in particular an algebraic stack,

we have a notion of the point count #Xz(k
′) for any finite extension k′ of k.

Since the objects of Xz(k̄) have no nontrivial automorphisms, we can regard

Xz(k
′) as a set, and its point count as the cardinality of this set.

This terminology enables us to formulate the following proposition.

Proposition 2.4. Let k′ be a finite extension of k. Let G be a smooth algebraic

group over k, and let X be a k-variety equipped with a left action of G. Then

#[G\X ](k′) =
∑

z∈H1(k′,G)

#Xz(k
′)

#Gin(z)(k′)
.

Proof. It suffices to show this for k′ = k. Let T be a left G-torsor over k, and let

z ∈ Z1(k,G) be such that T ∼= Gz . Then the automorphism group scheme of T

as a left G-torsor is Gin(z), which acts by right multiplication on Gz . As such,

we may consider T as a (G,Gin(z))-bitorsor. If we look at the left G-action, we
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can define a variety Tz as in Notation 2.1. This naturally has the structure of

a (Gin(z), Gin(z))-bitorsor; in fact, a straightforward calculation using Notation

2.1 shows that it is a trivial bitorsor. If f : T → Xk is a (left) G-equivariant

map, then the map fk̄ : Tk̄ → Xk̄ is defined over k when considered as a map

Tz,k̄ → Xz,k̄, and we denote the resulting map Tz → Xz by fz; it is (left) Gin(z)-

equivariant. This gives a one-to-one correspondence between HomG(T,X) and

HomGin(z)
(Tz, Xz). Let t0 be an element of Tz(k), which exists since Tz is a

trivial Gin(z)-torsor. We may identify the sets HomGin(z)
(Tz, Xz) and Xz(k) by

identifying a map with its image of t0, and two maps fz, f
′
z ∈ HomGin(z)

(Tz, Xz)

correspond to isomorphic objects (T, f), (T, f ′) in [G\X ](k) if and only if fz(t0)

and f ′
z(t0) are in the same Gin(z)(k)-orbit in Xz(k). On the other hand, the

automorphism group of (T, f) is identified with StabGin(z)(k)(fz(t0)). From the

orbit-stabiliser formula we find

∑

(T ′,f ′)∈[[G\X](k)],
T ′∼=T

1

#Aut(T ′, f ′)
=

∑

x∈Gin(z)(k)\Xz(k)

1

#StabGin(z)(k)(x)

=
#Xz(k)

#Gin(z)(k)
.

Summing over all cohomology classes in H1(k,G) now proves the proposition.

While Proposition 2.4 gives a direct formula for the point count of a quotient

stack over a given field extension k′ of k, it is not as useful in a context where

k′ varies, as it is a priori unclear how H1(k′, G) varies with it. In Propositions

2.14 and 2.19 we give formulas for the point counts [G\X ](k′) that do not

involve determining the cohomology set H1(k′, G), under some (quite technical)

conditions on G and X . We first set up some notation.

Notation 2.5. As before let G be a smooth algebraic group over k, and let

γ ∈ Gal(k̄/k) be the #k-th power Frobenius. We let G(k̄) act on itself on the

left by defining

g · x := gx(γg)−1. (2.6)

Its set of orbits is denoted Conjk(G).

Lemma 2.7. Let G be a smooth algebraic group over k. Let γ ∈ Gal(k̄/k) be

the #k-th power Frobenius. Then the map

Z1(k,G) → G(k̄)

z 7→ z(γ)
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is a bijection, and it induces a bijection H1(k,G) ∼−→ Conjk(G).

Proof. Let Γ be the Galois group Gal(k̄/k). Since 〈γ〉 ⊂ Γ is a dense subgroup,

the map is certainly injective. To show that it is surjective, fix a g ∈ G(k̄), and

define a map z : 〈γ〉 → G(k̄) by

z(γn) =

{

g · (γg) · · · (γ
n−1

g), if n ≥ 0;

(γ
−1

g−1) · · · (γ
n

g−1) if n < 0.

This satisfies the cocycle condition (2.2) on 〈γ〉. Let e be the unit element of

G(k̄). To show that we can extend z continuously to Γ, we claim that there

is an integer n such that z(γN) = e for all N ∈ nZ. To see this, let k′ be

a finite extension of k such that g ∈ G(k′). Then from the definition of the

map z we see that z maps 〈γ〉 to G(k′). The latter is a finite group, and hence

there must be two nonnegative integers m < m′ such that z(γm) = z(γm
′

). Set

n = m′ −m. From the definition of z we see that

z(γm
′

) = z(γm) · (γ
m

g) · · · (γ
m′

−1

g),

hence (γ
m

g) · · · (γ
m′

−1

g) = e; but the left hand side of this is equal to γm

z(γn),

hence z(γn) = e. The cocycle condition (2.2) now tells us that z(γN) = e for

every multiple N of n; furthermore, we see that for general f ∈ Z the value

z(γf) only depends on f̄ ∈ Z/nZ. Hence we can extend z to all of Γ via the

composite map

Γ ։ Γ/nΓ ∼−→ 〈γ〉/〈γn〉
z
−→ G(k̄),

and this is an element of Z1(k,G) that sends γ to g; hence the map in the

lemma is surjective, as was to be shown. This map is alsoG(k̄)-equivariant with

respect to the actions that give rise to the quotients H1(k,G) and Conjk(G),

which proves the second statement of the lemma.

Recall that the classifying stack of an algebraic groupG is defined to be B(G) :=

[G\∗], where ∗ = Spec(k) (with the trivial G-action).

Lemma 2.8. Let G be a finite étale group scheme over k. Then for every finite

extension k′ of k we have #B(G)(k′) = 1.

Proof. It suffices to show this for k = k′. The category B(G)(k) is the category

of G-torsors over k; its objects are classified by H1(k,G). Let γ ∈ Gal(k̄/k)

be the #k-th power Frobenius, and let z ∈ H1(k,G). Then the automorphism
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group (as an abstract group) of the torsorGz is equal to Gin(z)(k), which equals

Gin(z)(k) ∼=
{

g ∈ G(k̄) : g = z(γ) · γg · z(γ)−1
}

=
{

g ∈ G(k̄) : z(γ) = g · z(γ) · (γg)−1
}

= StabG(k̄)(z(γ)),

where the action of G(k̄) on itself in the last line is the one in (2.6). For

every orbit C ∈ Conjk(G) choose an element xC ∈ C; then the orbit-stabiliser

formula and Lemma 2.7 yield

∑

z∈H1(k,G)

1

#Aut(Gz)
=

∑

C∈Conjk(G)

1

#StabG(k̄)(xC)

=
∑

C∈Conjk(G)

#C

#G(k̄)

= 1.

Lemma 2.9. Let 1 → A → B → C → 1 be a short exact sequence of smooth

algebraic groups over k. Suppose that A is connected.

1. The natural map H1(k,B) → H1(k, C) is bijective.

2. For z ∈ H1(k,B) = H1(k, C), let Az be the twist of A induced by the

image of z under the natural map H1(k,B) → H1(k,Aut(Ak̄)). Then

#Bin(z)(k) = #Az(k) ·#Cin(z)(k).

Proof. The short exact sequence of algebraic groups over k

1 → A→ B → C → 1

induces an exact sequence of pointed cohomology sets

1 → A(k) → B(k) → C(k) → H1(k,A) → H1(k,B) → H1(k, C).

From Lang’s theorem we know that H1(k,A) is trivial. By [16, III.2.4.2 Cor. 2]

the last map is surjective, so by exactness it is bijective, which proves the

first statement. Furthermore for a z ∈ H1(k,B) the inclusion map Az(k̄) →

Bin(z)(k̄) is Galois-equivariant, and the quotient of Bin(z)(k̄) by the image of

this map is isomorphic to Cin(z)(k̄). This shows that we get a twisted short

exact sequence

1 → Az → Bin(z) → Cin(z) → 1.
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Since Az is connected, we find H1(k,Az) = 1, and then a long exact sequence

analogous to the one above proves the second statement.

Definition 2.10. Let X be an algebraic stack over a field k. Let k′ ⊂ k′′ be

two field extensions of k, and let x ∈ X(k′′). Then a model of x over k′ is an

object y ∈ X(k′) such that yk′′
∼= x.

Lemma 2.11. Let G be a smooth algebraic group over k, and let X be a variety

over k. Then there is a bijection [G\X ](k̄) ∼−→ G(k̄)\X(k̄) with the following

property: let k′ be a finite extension of k, and let ξ be an element of G(k̄)\X(k̄),

corresponding to a (T, f) ∈ [G\X ](k̄). Then (T, f) has a model over k′ if and

only if ξ is fixed under the action of Gal(k̄/k′) on G(k̄)\X(k̄).

Proof. Over k̄ every torsor is trivial, and a G-equivariant map f : Gk̄ → Xk̄ is

determined by its image of the unit element e ∈ G(k̄). Furthermore, two maps

f, f ′ : Gk̄ → Xk̄ yield isomorphic elements (Gk̄, f), (Gk̄, f
′) of [G\X ](k̄) if and

only if f(e) and f ′(e) lie in the same G(k̄)-orbit. Since f(G(k̄)) is a G(k̄)-orbit

in X(k̄), we get a bijection:

Φ: [[G\X ](k̄)] ∼−→ G(k̄)\X(k̄) (2.12)

(Gk̄, f) 7→ f(G(k̄)).

Now suppose (T, f) is an element of [G\X ](k′). Then f : T (k̄) → X(k̄) is

Gal(k̄/k′)-equivariant. Hence ξ := f(T (k̄)) is an element of G(k̄)\X(k̄) that

is invariant under the action of Gal(k̄/k′). On the other hand, suppose a

ξ ∈ G(k̄)\X(k̄) is Gal(k̄/k′)-invariant. Let γ ∈ Gal(k̄/k′) be the #k′-th power

Frobenius. Let x ∈ ξ; then there exists a g ∈ G(k̄) such that g · γ(x) = x. Let

z ∈ Z1(k′, G) be the unique cocycle such that z(γ) = g as in Lemma 2.7. Then

the G-equivariant map

Gk̄ → Xk̄

g 7→ g · x

descends to a G-equivariant map of k′-varieties f : Gz → Xk′ (where we identify

Gz,k̄ with Gk̄ via ϕz as in Notation 2.1), and Φ(Gz, f) = ξ.

Remark 2.13. Let ξ be a G(k̄)-orbit in X(k̄), and let x be an element of ξ.

Then the automorphism group of the object of [G\X ](k̄) corresponding to ξ by

Lemma 2.11 is isomorphic to StabGk̄
(x). In particular its isomorphism class

does not depend on the choice of x in ξ. We write A(ξ) for the algebraic group

StabGk̄
(x) over k̄.

Documenta Mathematica 23 (2018) 1799–1828



1808 Milan Lopuhaä-Zwakenberg

While in general the point count #Gin(z)(k) depends on the choice of the cocycle

z ∈ H1(k,G), reduced unipotent groups are always isomorphic (as varieties) to

affine space. Under suitable conditions on X and G this allows us to simplify

the expression in Proposition 2.4.

Proposition 2.14. Let G be an algebraic group over k. Let X be a k-variety

with an action of G, such that for every ξ ∈ G(k̄)\X(k̄) the identity component

of the algebraic group A(ξ)red is unipotent. Define a(ξ) := dim(A(ξ)), and

Y := G(k̄)\X(k̄).

1. Let k′ be a finite field extension of k. Then

#[G\X ](k′) =
∑

ξ∈Y Gal(k̄/k′)

(#k′)−a(ξ).

2. Write k = Fq and suppose that Y := G(k̄)\X(k̄) is finite. Let Γ :=

Gal(F̄q/Fq), and for ξ ∈ Y , let b(ξ) be the cardinality of the orbit Γ · ξ in

Y . Then a, b : Y → Z≥0 are Γ-invariant, and

Z(X, t) =
∏

ξ̄∈Γ\Y

(1− (q−a(ξ̄)t)b(ξ̄))−1.

Proof. 1. As before it suffices to show this for k = k′. Let Φ be as in

(2.12). We may then define the full subcategory S(ξ) of [G\X ](k), the

isomorphism classes of whose objects form the set
{

x ∈ [[G\X ](k)] : xk̄ = Φ−1(ξ)
}

.

By Lemma 2.11 this category is nonempty if and only if ξ ∈

(G(k̄)\X(k̄))Gal(k̄/k). Suppose this is true for ξ, and let x0 be an ob-

ject of S(ξ). Then the algebraic group Aut(x0) is a k-form of A(ξ). By

[6, Thm. III.2.5.1] S(ξ) is equivalent to the category B(Aut(x0))(k); its

elements are classified by H1(k, Aut(x0)) = H1(k, Aut(x0)
red). Write

L := Aut(x0)
red; we now find for the point count

#S(ξ) :=
∑

x∈[S(ξ)]

1

#Aut(x)
=

∑

z∈H1(k,L)

1

#Lin(z)(k)
. (2.15)

Let L0 be the identity component of L; this is a connected unipotent

group of dimension dim(A(ξ)). Let π0(L) be the component group of L.

By Lemma 2.9, applied to the short exact sequence

1 → L0 → L→ π0(L) → 1,
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we see that the natural map H1(k, L) → H1(k, π0(L)) is a bijection. On

the other hand, let z ∈ H1(k, L); then the same lemma tells us that

#Lin(z)(k) = (#L0
in(z)(k)) · (#π0(Lin(z))(k)). (2.16)

By [15, Thm. 5] we get an equality

#L0
in(z)(k) = (#k)a(ξ) (2.17)

which does not depend on the choice of z. Furthermore, if we identify

H1(k, L) and H1(k, π0(L)) as above, we find π0(Lin(z)) ∼= π0(L)in(z). Ap-

plying Lemma 2.8 to the finite étale group scheme π0(L) yields

∑

z∈H1(k,π0(L))

1

#π0(L)in(z)(k)
= #B(π0(L)) = 1. (2.18)

Combining (2.15), (2.16), (2.17), and (2.18) now gives us

#S(ξ) =
∑

z∈H1(k,L)

1

#Lin(z)(k)

=
∑

z∈H1(k,π0(L))

1

#π0(L)in(z)(k) · (#k)a(ξ)

= (#k)−a(ξ).

Summing over all ξ ∈ (G(k̄)\X(k̄))Gal(k̄/k) now proves the statement.

2. From the definition it is clear that b is Γ-invariant. To see that a is

Γ-invariant, note that a(ξ) = dim(G) − dim(ξ) (remember that ξ is a

G-orbit in X), and note that dim(γ · ξ) = dim(ξ) for all γ ∈ Γ. For a

ξ ∈ Y we have that the object in [G\X ](k̄) has a model over Fqv if and

only if ξ is fixed under the action of Gal(F̄q/Fqv ); this happens if and
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only if b(ξ) | v. As such we find

Z([G\X ], t) = exp





∑

v≥1

tv

v
#[G\X ](Fqv )





= exp





∑

v≥1

tv

v

∑

ξ∈Y
Gal(F̄q/Fqv )

q−a(ξ)v





= exp









∑

v≥1

∑

ξ∈Y :
b(ξ)|v

(q−a(ξ)t)v

v









= exp





∑

ξ∈Y

∑

w≥1

(q−a(ξ)t)b(ξ)w

b(ξ)w





=
∏

ξ∈Y



exp





∑

w≥1

(q−a(ξ)t)b(ξ)w

w









1
b(ξ)

=
∏

ξ∈Y

(1 − (q−a(ξ)t)b(ξ))−
1

b(ξ)

=
∏

ξ̄∈Γ\Y

(1− (q−a(ξ̄)t)b(ξ̄))−1.

Proposition 2.19. Let G be a smooth algebraic group over k with a unipotent

identity component. Let X be a variety over k isomorphic to An
k for some

nonnegative integer n. Suppose that the action of G on X factors through a

connected group G̃. Let k′ be a finite field extension of k. Then

#[G\X ](k′) = (#k′)dim(V )−dim(G).

If k = Fq, then

Z([G\X ], t) = (1− qdim(V )−dim(G)t)−1.

Proof. As for the first statement, it suffices to prove this for k′ = k. Lang’s

theorem tells us that H1(k, G̃) = 1. Since the action of G on X factors through

G̃, we find that Xz
∼= X for all z ∈ H1(k,G). If we denote the identity

component of G by G0 and its component group by π0(G), and apply Lemma

2.9 to the short exact sequence

1 → G0 → G→ π0(G) → 1,
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we get the following from Proposition 2.4 and Lemma 2.8:

#[G\X ](k) =
∑

z∈H1(k,G)

#Xz(k)

#Gin(z)(k)

=
∑

z∈H1(k,π0(G))

#X(k)

#G0
z(k) ·#π0(G)in(z)(k)

= (#k)dim(X)−dim(G) ·
∑

z∈H1(k,π0(G))

1

#π0(G)in(z)(k)

= (#k)dim(X)−dim(G) ·#B(π0(G))(k)

= (#k)dim(X)−dim(G).

The statement on the zeta function is then a straightforward calculation.

3 Weyl groups and Levi decompositions

In this section we briefly review some relevant facts about Weyl groups and

Levi decompositions, in particular those of nonconnected reductive groups.

3.1 The Weyl group of a connected reductive group

Let G be a connected reductive algebraic group over a field k. For any

pair (T,B) of a Borel subgroup B ⊂ Gk̄ and a maximal torus T ⊂ B, let

ΦT,B be the based root system of G with respect to (T,B), and let WT,B

be the Weyl group of this based root system, i.e. the Coxeter group gen-

erated by the set ST,B of simple reflections. As an abstract group WT,B

is isomorphic to NormG(k̄)(T (k̄))/T (k̄). If (T ′, B′) is another choice of a

Borel subgroup and a maximal torus, then there exists a g ∈ G(k̄) such that

(T ′, B′) = (gTg−1, gBg−1). Furthermore, such a g is unique up to right multi-

plication by T (k̄), which gives us a unique isomorphism ΦT,B
∼−→ ΦT ′,B′ . As

such, we can simply talk about the based root system Φ of G, with correspond-

ing Coxeter system (W,S). By these canonical identifications Φ, W and S

come equipped with an action of Gal(k̄/k).

The set of parabolic subgroups of Gk̄ containing B is classified by the power

set of S, by associating to I ⊂ S the parabolic subgroup P = L · B, where

L is the reductive group with maximal torus T whose root system is ΦI , the

root subsystem of Φ generated by the roots whose associated reflections lie in

I. We call I the type of P . Let U := RuP be the unipotent radical of P ; then

P = L⋉U is the Levi decomposition of P with respect to T (see Subsection 3.3).
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For every subset I ⊂ S, let WI be the subgroup of W generated by I; it is the

Weyl group of the root system ΦI , with I as its set of simple reflections.

For w ∈ W , define the length ℓ(w) of w to be the minimal integer such that

there exist s1, s2, . . . , sℓ(w) ∈ S such that w = s1s2 · · · sℓ(w). Since Gal(k̄/k)

acts on W by permuting S, the length is Galois invariant. Let I, J ⊂ S; then

every (left, double, right) cosetWIw,WIwWJ or wWJ has a unique element of

minimal length, and we denote the subsets of W of elements of minimal length

in their (left, double, right) cosets by IW, IW J , and W J .

Proposition 3.1. (See [3, Prop. 4.18]) Let I, J ⊂ S. Let x ∈ IW J , and

set Ix = J ∩ x−1Ix ⊂ W . Then for every w ∈ WIxWJ there exist unique

wI ∈ WI , wJ ∈ IxWJ such that w = wIxwJ . Furthermore ℓ(w) = ℓ(wI) +

ℓ(x) + ℓ(wJ ).

Lemma 3.2. (See [14, Prop. 2.8]) Let I, J ⊂ S. Every element w ∈ IW can

uniquely be written as xwJ for some x ∈ IW J and wJ ∈ IxWJ .

Lemma 3.3. (See [14, Lem. 2.13]) Let I, J ⊂ S. Let w ∈ IW and write

w = xwJ with x ∈ IW J , wJ ∈ WJ . Then

ℓ(x) = #
{

α ∈ Φ+\ΦJ : wα ∈ Φ−\ΦI

}

.

3.2 The Weyl group of a nonconnected reductive group

Now let us drop the assumption that our group is connected. Let Ĝ be a

reductive algebraic group and write G for its connected component. Let B

be a Borel subgroup of Gk̄, and let T be a maximal torus of B. Define the

following groups:

W = NormG(k̄)(T )/T (k̄);

Ŵ = NormĜ(k̄)(T )/T (k̄);

Ω = (NormĜ(k̄)(T ) ∩ NormĜ(k̄)(B))/T (k̄).

Lemma 3.4. 1. One has Ŵ =W ⋊ Ω.

2. The composite map Ω →֒ G(k̄)/T (k̄) ։ π0(G)(k̄) is an isomorphism of

groups.

Proof. 1. First note that W is a normal subgroup of Ŵ , since it consists of

the elements of Ŵ that have a representative in G(k̄), and G is a normal

subgroup of Ĝ. Furthermore, Ŵ acts on the set X of Borel subgroups
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of Gk̄ containing T . The stabiliser of B under this action is Ω, whereas

W acts simply transitively on X ; hence Ω ∩W = 1 and WΩ = Ŵ , and

together this proves Ŵ =W ⋊ Ω.

2. By the previous point, we see that

Ω ∼= Ŵ/W ∼= NormĜ(k̄)(T )/NormG(k̄)(T ),

so it is enough to show that every connected component of Ĝk̄ has an

element that normalises T . Let x ∈ Ĝ(k̄); then xTx−1 is another maxi-

mal torus of Gk̄, so there exists a g ∈ G(k̄) such that xTx−1 = gTg−1.

From this we find that T = (g−1x)T (g−1x)−1, and g−1x is in the same

connected component as x.

We call Ŵ the Weyl group of Ĝ with respect to (T,B). Again, choosing a

different (T,B) leads to a canonical isomorphism, so we may as well talk about

the Weyl group of Ĝ. The two statements of Lemma 3.4 are then to be un-

derstood as isomorphisms of groups with an action of Gal(k̄/k). Note that we

can regard W as the Weyl group of the connected reductive group G; as such

we can apply the results of the previous subsection to it. Let S ⊂ W be the

generating set of simple reflections.

Now let us define an extension of the length function to a suitable subset of

Ŵ . First, let I and J be subsets of the set S of simple reflections in W , and

consider the set IŴ := IWΩ. Define a subset IŴ J of IŴ as follows: every

element w ∈ IŴ can uniquely be written as w = w′ω, with w′ ∈ IW and

ω ∈ Ω. We rewrite this as w = ωw′′, with w′′ = ω−1w′ω ∈ ω−1IωW ; then per

definition w ∈ IŴ J if and only if w′′ ∈ ω−1IωW J . Note that the set IW J is a

subset of the set IŴ J .

Now let w ∈ IŴ ; write w = ωw′′ with ω ∈ Ω and w′′ ∈ ω−1IωW as above. Since

w′′ is an element of ω−1IωW , we can uniquely write w′′ = ywJ by Lemma 3.2,

with y ∈ ω−1IωW J and wJ ∈ IωyWJ . Then define the extended length function

ℓI,J :
IŴ → Z≥0 by

ℓI,J(w) := #
{

α ∈ Φ+\ΦJ : ωyα ∈ Φ−\ΦI

}

+ ℓ(wJ ). (3.5)

Remark 3.6. 1. By Proposition 3.1 and Lemma 3.3 the map ℓI,J :
IŴ →

Z≥0 extends the length function ℓ : IW → Z≥0.

2. Analogously to Proposition 3.1 we see that every w ∈ IŴ can be uniquely

written as xwJ with x ∈ IŴ J , wJ ∈ IxWJ , and ℓI,J(w) = ℓI,J(x)+ℓ(wJ ).
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3. In general ℓI,J depends on J . It also depends on I, in the sense that if

I, I ′ ⊂ S, then ℓI,J(w) and ℓI′,J(w) for w ∈ IŴ ∩ I′

Ŵ = I∩I′

Ŵ need not

coincide. As an example, consider over any field the group G = SL2. Let

Ω = 〈ω〉 be cyclic of order 2, and let Ĝ = G⋊Ω be the extension given by

ωgω−1 = gT,−1. Then ω acts as −1 on the root system, and S has only

one element. A straightforward calculation shows ℓ∅,∅(ω) = 1, whereas

ℓ∅,S(ω) = ℓS,S(ω) = ℓS,∅(ω) = 0.

3.3 Levi decomposition of nonconnected groups

Let P be a connected smooth linear algebraic group over a field k. A Levi

subgroup of P is the image of a section of the map P ։ P/RuP , i.e. a subgroup

L ⊂ P such that P = L⋉RuP . In characteristic p, such a Levi subgroup need

not always exist, nor need it be unique. However, if P is a parabolic subgroup

of a connected reductive algebraic group, then for every maximal torus T ⊂ P

there exists a unique Levi subgroup of P containing T (see [4, Prop. 1.17]).

The following proposition generalises this result to the non-connected case.

Proposition 3.7. Let Ĝ be a reductive group over a field k, and let P̂ be a

subgroup of Ĝ whose identity component P is a parabolic subgroup of G. Let

T be a maximal torus of P . Then there exists a unique Levi subgroup of P̂

containing T , i.e. a subgroup L̂ ⊂ P̂ such that P̂ = L̂⋉ RuP .

Proof. Let L be the Levi subgroup of P containing T . Then any L̂ satisfying the

conditions of the proposition necessarily has L as its identity component, hence

L̂ ⊂ NormP̂ (L). On the other hand we know that NormP (L) = L, so the only

possibility is L̂ = NormP̂ (L), and we have to check that π0(NormP̂ (L)) = π0(P̂ ),

i.e. that every connected component in P̂k̄ has an element normalising L. Let

x ∈ P̂ (k̄). Then xTx−1 is another maximal torus of Pk̄, so there exists a

y ∈ P (k̄) such that xTx−1 = yTy−1. Then y−1x is in the same connected com-

ponent as x, and (y−1x)T (y−1x)−1 = T . Since L is the unique Levi subgroup

of P containing T , and (y−1x)L(y−1x)−1 is another Levi subgroup of P , we

see that y−1x normalises L, which completes the proof.

4 G-zips

In this section we give the definition of G-zips from [13] along with their clas-

sification and their connection to BT1. We will need the discussion on Weyl

groups from Subsection 3.2. As before, we denote the component group of a

nonconnected algebraic group A by π0(A).
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Let q0 be a power of p. Let Ĝ be a reductive group over Fq0 , and write G for

its identity component. Let q be a power of q0, and let χ : Gm,Fq → GFq be a

cocharacter of GFq . Let L = CentGFq
(χ), and let U+ ⊂ GFq be the unipotent

subgroup defined by the property that Lie(U+) ⊂ Lie(GFq ) is the direct sum

of the weight spaces of positive weight; define U− similarly. Note that L is

connected (see [4, Prop. 0.34]). This defines parabolic subgroups P± = L⋉U±

of GFq . Now take an Fq-subgroup scheme Θ of π0(CentĜFq
(χ)), and let L̂ be

the inverse image of Θ under the canonical map CentĜFq
(χ) → π0(CentĜFq

(χ));

then L̂ has L as its identity component and π0(L̂) = Θ. We may regard Θ as

a subgroup of π0(Ĝ) via the inclusion

π0(CentĜFq
(χ)) = CentĜFq

(χ)/L →֒ π0(ĜFq ).

We may then define the algebraic subgroups P̂± := L̂ ⋉ U± of ĜFq , whose

identity components P± are equal to L ⋉ U±. Let γ ∈ Gal(F̄q0/Fq0) be the

q0-th power Frobenius. Then Ĝ and Ĝγ are canonically isomorphic; as such

we can regard P̂±,γ , L̂±,γ , etc. as subgroups of Ĝ. They correspond to the

parabolic and Levi subgroups associated to the cocharacter ϕ ◦ χ of Ĝk and

the subgroup ϕ(Θ) of π0(Ĝ), where ϕ : Ĝ → Ĝ is the relative q0-th Frobenius

isogeny.

Definition 4.1. Let A be an algebraic group over a field k, and let B be a

subgroup of A. Let T be an A-torsor over some k-scheme S. A B-subtorsor of

T is an S-subscheme Y of T , together with an action of BS , such that Y is a

B-torsor over S and such that the inclusion map Y →֒ T is equivariant under

the action of BS .

Definition 4.2. Let S be a scheme over Fq. A Ĝ-zip of type (χ,Θ) over S is

a tuple Y = (Y, Y+, Y−, υ) consisting of:

• A right-ĜFq-torsor Y over S;

• A right-P̂+-subtorsor Y+ of Y ;

• A right-P̂−,γ-subtorsor Y− of Y ;

• An isomorphism υ : Y+,γ/U+,γ
∼−→ Y−/U−,γ of right-L̂γ-torsors.

Together with the obvious notions of pullbacks and morphisms we get a fibred

category Ĝ-Zipχ,Θ
Fq

over Fq. If Ĝ is connected there is no choice for Θ, and we

will omit it from the notation.
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Proposition 4.3. (See [13, Prop. 3.2 & 3.11]) The fibred category Ĝ-Zipχ,Θ
Fq

is

a smooth algebraic stack of finite type over Fq.

Now let q0, q, Ĝ, χ,Θ, L̂, U± and P̂± be as above. As in subsection 3.2 let

Ŵ = W ⋊ Ω be the Weyl group of Ĝ. Let I ⊂ S be the type of P+ and

let J be the type of P−,γ . If w0 ∈ W is the unique longest word, then J =

γ(w0Iw
−1
0 ) = w0γ(I)w

−1
0 . Let w1 ∈ JW γ(I) be the element of minimal length

in WJw0Wγ(I), and let w2 = γ−1(w1); then we may write this relation as

J = γ(w2Iw
−1
2 ) = w1γ(I)w

−1
1 .

The group Θ can be considered as a subgroup of Ω ∼= π0(Ĝ). Let ψ̂ be the

automorphism of Ŵ given by ψ̂ = inn(w1) ◦ γ = γ ◦ inn(w2), and let Θ act on

Ŵ by

θ · w := θwψ̂(θ)−1.

Lemma 4.4. The subset IŴ ⊂ Ŵ is invariant under the Θ-action.

Proof. Since L̂ normalises the parabolic subgroup P+ of GFq , the subset I ⊂ S

is stable under the action of Θ by conjugation; hence for each θ ∈ Θ one has

θ(IW )θ−1 = IW , so

θ(IŴ )ψ̂(θ)−1 = (θ(IW )θ−1) · (θΩψ̂(θ)−1) = IWΩ = IŴ .

Let us write Ξχ,Θ := Θ\IŴ .

Proposition 4.5. (See [13, Rem. 3.21]) There is a natural bijection between

the sets Ξχ,Θ and [Ĝ-Zipχ,Θ
Fq

(F̄q)].

This bijection can be described as follows. Choose a Borel subgroup B of

G
F̄q

contained in P−,γ , and let T be a maximal torus of B. Let γ ∈ G(F̄q)

be such that (γBγ−1)γ = B and (γTγ−1)γ = T . For every w ∈ Ŵ =

NormĜ(F̄q)
(T )/T (F̄q), choose a lift ẇ to NormĜ(F̄q)

(T ), and set g = γẇ2. Then

ξ ∈ Ξχ,Θ corresponds to the Ĝ-zip Yw = (Ĝ, P̂+, gẇP̂−,γ , gẇ·) for any repre-

sentative w ∈ IŴ of ξ; its isomorphism class does not depend on the choice

of the representatives w and ẇ. Note that this description differs from the

one given in [13, Rem. 3.21], as that description seems to be wrong. Since

there it is assumed that B ⊂ P−,K rather than that B ⊂ P−,γ,K , the choice

of (B, T, g) presented there will not be a frame for the connected zip datum

(GK , P+,K , P−,γ,K , ϕ : LK → Lγ,K). Also, the choice for g given there needs

to be modified to account for the fact that P+,K and P−,γ,K might not have a

common maximal torus.
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The rest of this subsection is dedicated to the extended length functions ℓI,J de-

fined in Subsection 3.2. We need Lemma 4.6 in order to show a result on the di-

mension of the automorphism group of a Ĝ-zip that extends [13, Prop. 3.34(a)]

to the nonconnected case (see Proposition 5.7.2).

Lemma 4.6. The length function ℓI,J :
IŴ → Z≥0 is invariant under the semi-

linear conjugation action of Θ.

Proof. Let w ∈ IŴ , let θ ∈ Θ, and let w̃ = θwψ̂(θ)−1. Let w = ωywJ be

the decomposition as in subsection 3.2. A straightforward computation shows

w̃ = ω̃w̃′′ = ω̃ỹw̃J with

ω̃ = θωψ̂(θ)−1 ∈ Ω;

w̃′′ = ψ̂(θ)w′′ψ̂(θ)−1 ∈ ω̃−1Iω̃W ;

ỹ = ψ̂(θ)yψ̂(θ)−1 ∈ ω̃−1Iω̃W J ;

w̃J = ψ̂(θ)wJ ψ̂(θ)
−1 ∈ Iω̃ỹWJ ,

since conjugation by ψ̂(θ) fixes J . Furthermore, ψ̂(Θ) fixes ΦJ (as a subset of

Φ) and Θ fixes ΦI , and Ω fixes Φ+ and Φ−, hence

ℓI,J(w̃) = #
{

α ∈ Φ+\ΦJ : ω̃ỹα ∈ Φ−\ΦI

}

+ ℓ(w̃J)

= #
{

α ∈ Φ+\ΦJ : θωyψ̂(θ)−1α ∈ Φ−\ΦI

}

+ ℓ(w̃J )

= #
{

α ∈ Φ+\ΦJ : ωyα ∈ Φ−\ΦI

}

+ ℓ(wJ)

= ℓI,J(w).

Example 4.7. Let p be an odd prime, let V be the Fp-vector space F4
p, and

let ψ be the symmetric nondegenerate bilinear form on V given by the matrix











0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0











.

Let Ĝ be the algebraic group O(V, ψ) over Fp; it has two connected components.

The Weyl group W of its identity component G = SO(V, ψ) is of the form

W ∼= {±1}2 (with trivial Galois action), and its root system is of the form

Ψ ∼= {r1, r2,−r1,−r2}, where the i-th factor of W acts on {ri,−ri}. The set

of generators of W is S = {(−1, 1), (1,−1)}. Furthermore, #Ω = 2, and the
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nontrivial element σ of Ω permutes the two factors of W (as well as e1 and e2);

hence Ŵ ∼= {±1}2 ⋊ S2.

Let χ : Gm → G be the cocharacter that sends t to diag(t, t, t−1, t−1). Its

associated Levi factor L is isomorphic to GL2; the isomorphism is given by the

injection GL2 →֒ Ĝ that sends a g ∈ GL2 to diag(g, g−1,T). The associated

parabolic subgroup P+ is the product of L with the subgroup B ⊂ Ĝ of upper

triangular orthogonal matrices. The type of P+ is a singleton subset of S;

without loss of generality we may choose the isomorphism W ∼= {±1}2 in such

a way that P+ has type I = {(−1, 1)}. Recall that J denotes the type of the

parabolic subgroup P−,γ of G. Since W is abelian and has trivial Galois action,

the formula J = w0γ(I)w
−1
0 shows us that J = I. Furthermore, since CentĜ(χ)

is connected, the group Θ has to be trivial.

An element of Ŵ is of the form (a, b, c), with a, b ∈ {±1} and c ∈ S2 = {1, σ};

then IŴ is the subset of Ŵ consisting of elements for which a = 1. Also, note

that Φ+ \ΦJ = {e2}, Φ
− \ΦI = {−e2}, so to calculate the length function ℓI,J

as in (3.5) we only need to determine ℓ(wJ ) and whether ωy sends e2 to −e2

or not. If we use the terminology ω, w′′, y, wJ from subsection 3.2, we get the

following results:

w

(1, 1, 1) (1,−1, 1) (1, 1, σ) (1,−1, σ)

ω (1, 1, 1) (1, 1, 1) (1, 1, σ) (1, 1, σ)

w′′ (1, 1, 1) (1,−1, 1) (1, 1, 1) (−1, 1, 1)

y (1, 1, 1) (1,−1, 1) (1, 1, 1) (1, 1, 1)

wJ (1, 1, 1) (1, 1, 1) (1, 1, 1) (−1, 1, 1)

ωye2 = −e2? no yes no no

ℓ(wJ) 0 0 0 1

ℓI,J(ŵ) 0 1 0 1

5 Zeta functions of stacks of G-zips

We fix q0, G, q, χ and Θ as in Section 4. The aim of this section is to calculate

the point counts and the zeta function of the stack Ĝ-Zipχ,Θ
Fq

. Before proving

Theorem 1.1 we first need to introduce some auxiliary results. Let ϕ be as in

Section 4, and let r± : P̂± → L̂ denote the natural projection. Then to the

triple (Ĝ, χ,Θ) we can associate the reduced algebraic group over Fq whose set
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of F̄q-points is defined as

E(F̄q) =
{

(y+, y−) ∈ P̂+(F̄q)× P̂−(F̄q) : ϕ(r+(y+)) = r−(y−)
}

.

Then E acts on ĜFq by (y+, y−) · g
′ = y+g

′y−1
− , and this action allows us to

represent stacks of Ĝ-zips as quotient stacks:

Proposition 5.1. (See [13, Prop. 3.11]) There is an isomorphism Ĝ-Zipχ,Θ
Fq

∼=

[E\ĜFq ] of Fq-stacks.

The next step is to connect the quotient stack [E\ĜFq ] to the Weyl group of

G. To make the discussion more explicit, we define the Weyl group using a

maximal torus T and a Borel subgroup B of G satsifying some nice properties.

Lemma 5.2. Let B ⊂ P−,γ be a Borel subgroup defined over Fq containing

Lγ, and let T ⊂ B be a maximal torus defined over Fq. Then there exists an

element g ∈ G(Fq) such that:

• gBg−1 is a Borel subgroup of P+ containing L;

• ϕ(gTg−1) = T .

Proof. Let B′ ⊂ P+ be a Borel subgroup of G containing L. Consider the

algebraic subset

X =
{

g ∈ G(F̄q) : gBg
−1 = B′, ϕ(gTg−1) = T

}

of G(F̄q). Since NormG(B) ∩ NormG(T ) = T , we see that X forms a T -torsor

over Fq. By Lang’s theorem such a torsor is trivial, hence X has a rational

point.

For the rest of this section we fix B, T , g as above, and we use T and B to

define the Weyl group of Ĝ.

Lemma 5.3. Choose, for every w ∈ Ŵ = NormĜ(F̄q)
(T (F̄q))/T (F̄q), a lift ẇ of

w to the group NormĜ(F̄q)
(T (F̄q)). Then the map

Ξχ,Θ → E(F̄q)\Ĝ(F̄q)

Θ · w 7→ E(F̄q) · gẇ

is well-defined, and it is an isomorphism of Gal(F̄q/Fq)-sets that does not de-

pend on the choices of w and ẇ.
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Proof. In [14, Thm. 10.10] it is proven that this map is a well-defined bijection

independent of the choices of w and ẇ (applied to the zip datum from [13,

Def. 3.6] and the frame (B, T, g) from Lemma 5.2). Furthermore, if τ is an

element of Gal(F̄q/Fq), then the fact that T and g are defined over Fq implies

that τ(ẇ) is a lift of τ(w) to NormĜ(T ); this shows that the map is Galois-

equivariant.

Remark 5.4. Together with the identification [[E\ĜFq ](F̄q)] ∼= E(F̄q)\Ĝ(F̄q)

from Lemma 2.11.1 the isomorphism above gives the natural bijection in Propo-

sition 4.5.

The following proposition gives an explicit formula for the orbits of Ĝ under

the action by E. It is proven in the case that Ĝ is connected in [14, Thm. 7.5c

& Thm. 8.1], applied to the zip datum from [13, Def. 3.6]. While the proof is

long (it requires most of sections 3–8 of [14]), a lot of it carries over essentially

unchanged to the nonconnected case. The few modifications that are needed

for the proof are discussed in Remark 5.10.

Proposition 5.5. Let w ∈ IŴ , and let ẇ be a lift of w to NormĜ(F̄q)
(T (F̄q)).

Then the orbit E
F̄q
· (gẇ) ⊂ Ĝ

F̄q
has dimension dim(P+)+ ℓI,J(w). The reduced

stabiliser StabE
F̄q
(gẇ)red has a unipotent identity component.

We are now in a position to define the functions a and b in the statement of

Theorem 1.1.

Notation 5.6. Let Γ = Gal(F̄q/Fq). We define functions a, b : IŴ → Z≥0 on
IŴ as follows:

• a(w) = dim(G/P+)− ℓI,J(w);

• b(w) is the cardinality of the Γ-orbit of Θ · w in Ξχ,Θ, i.e.

b(w) = #
{

ξ ∈ Ξχ,Θ : ξ ∈ Γ · (Θ · w)
}

.

The fact that a(w) is nonnegative for every w ∈ IŴ is a consequence of the

following proposition.

Proposition 5.7. For ξ ∈ Ξχ,Θ, let Yξ be the Ĝ-zip over F̄q corresponding to

ξ. Then one has dim(Aut(Yξ)) = a(ξ) and the identity component of the group

scheme Aut(Yξ)
red is unipotent.
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Proof. Note that dim(E) = dim(G). Let w ∈ IŴ be such that ξ = Θ · w. By

Remark 2.13 and Proposition 5.5 we have

dim(Aut(Yξ)) = dim(StabE
Ẑ
(gẇ))

= dim(E)− dim(E · gẇ)

= dim(G) − dim(E · gẇ)

= dim(G) − dim(P+)− ℓI,J(ξ)

= a(ξ).

By Proposition 5.5 the identity component of Aut(Yξ)
red is unipotent.

Remark 5.8. The formula dim(Aut(Yξ)) = dim(G/P ) − ℓI,J(ξ) from Propo-

sition 5.7 apparently contradicts the proof of [13, Thm. 3.26]. There an ex-

tended length function ℓ : Ŵ → Z≥0 is defined by ℓ(wω) = ℓ(w) for w ∈ W ,

ω ∈ Ω. It is stated that the codimension of E · (gẇ) in Ĝ is equal to

dim(G/P+) − ℓ(w). In other words, if this were correct, dim(Aut(Yξ)) would

be equal to dim(G/P+) − ℓ(w) rather than dim(G/P+) − ℓI,J(w). However,

the proof seems to be incorrect (and the theorem itself as well). The dimension

formula is based on [14, Thm. 5.11], but that result only treats the connected

case. It fails in the nonconnected case, as there ℓ(w) and ℓI,J(w) do not gener-

ally coincide. One can construct a counterexample by taking Ĝ as in Remark

3.6.3, and taking the cocharacter χ : Gm → G given by

x 7→
(

x 0
0 x−1

)

.

Then a straightforward calculation shows that ℓ(ω) = 0 and ℓI,J(ω) = 1 do not

coincide.

Remark 5.9. In general Aut(Yξ) will not be reduced; see [10, Rem. 3.1.7] for

the first found instance of this phenomenon, or [13, Rem. 3.35] for the general

case.

Proof of Theorem 1.1. By Proposition 5.1 we can consider Ĝ-Zipχ,Θ
Fq

as a quo-

tient stack, and by Propositions 4.5 and 5.7 the assumptions of Proposition

2.14.2 are satisfied. Furthermore, in the notation of this proposition, we find

Y = Ξχ,Θ, and a, b : Y → Z≥0 are as in Notation 5.6 by Proposition 5.7. The

theorem is now a direct consequence of Proposition 2.14.2.

Remark 5.10. Although the proof of Proposition 5.5 over from the connected

case without much difficulty, we feel compelled to make some comments about
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what exactly changes in the non-connected case, since the proofs of these theo-

rems require most of the material of [14]. The key change is that in [14, Section

4] we allow x to be an element of IŴ J , rather than just IW J ; however, one

can keep working with the connected algebraic zip datum Z, and define from

there a connected algebraic zip datum Zẋ as in [14, Constr. 4.3]. There, one

needs the Levi decomposition for non-connected parabolic groups; but this is

handled in our Proposition 3.7. The use of non-connected groups does not give

any problems in the proofs of most propositions and lemmas in [14, §4–8]. In

[14, Prop. 4.8], the term ℓ(x) in the formula will now be replaced by ℓI,J(x).

The only property of ℓ(x) that is used in the proof in the connected case is that

if x ∈ IW J , then ℓ(x) = #{α ∈ Φ+\ΦJ : xα ∈ Φ−\ΦI}. In our case, we have

x ∈ IŴ J , and ℓI,J :
IŴ J → Z≥0 is the extension of ℓ : IW J → Z≥0 that gives

the correct formula. Furthermore, in the proof of [14, Prop. 4.12] the assump-

tion x ∈ IW J is used, to conclude that xΦ+
J ⊂ Φ+. However, the same is true

for x ∈ IŴ J : write x = ωx′ with ω ∈ Ω and x′ ∈ ω−1IωW J ; then x′Φ+
J ⊂ Φ+,

and ωΦ+ = Φ+, since Ω acts on the based root system. Finally, the proofs of

both [14, Thm. 7.5c] and [14, Thm. 8.1] rest on an induction argument, where

the authors use that an element w ∈ IW can uniquely be written as w = xwJ ,

with x ∈ IW J , wJ ∈ IxWJ , and ℓ(w) = ℓ(x)+ ℓ(wJ). The analogous statement

that we need to use is that any w ∈ IŴ can uniquely be written as w = xwJ ,

with x ∈ IŴ J , wJ ∈ IxWJ , and ℓI,J(w) = ℓI,J(x) + ℓ(wJ ), see Remark 3.6.2.

The proofs of the other lemmas, propositions and theorems work essentially

unchanged.

6 Stacks of truncated Barsotti–Tate groups

The aim of this section is to prove Theorem 1.2. We fix integers h > 0 and

0 ≤ d ≤ h, and we want to determine the zeta function of the stack BTh,d
n over

Fp for every integer n ≥ 1. This turns out to be related to the theory of Ĝ-zips

and their moduli stacks. Our strategy will be to interpret the results of [18]

and [5], which concern the set of BTn+1 over k̄ extending a given BTn, in a

‘stacky’ sense over a finite k. This allows us to invoke the results of Section 2.

Notation 6.1. For the rest of this section, let G be the reductive group GLh,Fp .

Let χ : Gm,Fp → G be a cocharacter that induces the weights 0 with multiplicity

d and weight 1 with multiplicity h − d on the standard representation of G.

Employing the notation of sections 3 and 4, we see that W is the permutation

group on h elements (with trivial Galois action), S = {(1 2), (2 3), ..., (h−1 h)},
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and I = S \ {(d d+ 1)}. Note that Θ has to be trivial, as we can regard it as

a subgroup of Ω ∼= π0(G), which is trivial. Hence Ξ := Γ\Ξχ,Θ is equal to IW ,

and the map a : Ξ → Z≥0 from Notation 5.6 is given by a(ξ) = dim(G/P+) −

ℓ(ξ) = d(h− d)− ℓ(ξ).

For general n, let Dh,d
n be the stack over Fp of truncated Dieudonné crystals

D of level n that are locally of rank h, for which the map F : D → D(p) has

rank d locally (see [7, Rem. 2.4.10]). Then Dieudonné theory (see [2, 3.3.6 &

3.3.10]) tells us that there is a morphism of stacks over Fp

Dn : BT
h,d
n → Dh,d

n

that is an equivalence of categories over perfect fields; hence Z(BTh,d
n , t) =

Z(Dh,d
n , t). As such, we are interested in the categories Dh,d

n (Fq). An object in

this category is a Dieudonné module of level n, i.e. a triple (D,F, V ) where:

1. D is a free module of rank h over Wn(Fq), the Witt vectors of length n

over Fq;

2. F is a σ-semilinear endomorphism of D of rank d, where σ is the auto-

morphism of Wn(Fq) lifting the automorphism Frp of Fq;

3. V is a σ−1-semilinear endomorphism of D satisfying FV = V F = p.

Now fix h and d, and choose a (non-truncated) Barsotti–Tate group G of height

h and dimension d over Fp. Let (Dn, Fn, Vn) be the Dieudonné module of

G[pn], and choose a basis for every Dn in a compatible manner (i.e. the

basis of Dn is the image of the basis of Dn+1 under the natural reduction

map Dn+1/p
nDn+1

∼−→ Dn). Then for every power q of p, every element in

Dh,d
n (Fq) is isomorphic to Dn,g := (Dn ⊗Z/pnZ Wn(Fq), gFn, Vng

−1) for some

g ∈ GLh(Wn(Fq)) (See [18, 2.2.2]).

For a smooth affine group scheme G over Spec(W(Fp)), let Wn(G) be the group

scheme over Spec(Fp) defined by Wn(G)(R) = G(Wn(R)) (see [18, 2.1.4]); it

is again smooth and affine. For every n there is a natural reduction morphism

Wn+1(G) ։ Wn(G).

Proposition 6.2. Let Dn := Wn(GLh). Then there exists a smooth affine

group scheme H over Zp and for every n an action of Hn := Wn(H) on Dn,

compatible with the reduction maps Hn+1 ։ Hn and Dn+1 ։ Dn, such that

for every power q of p, there exists for every g, g′ ∈ Dn(Fq) an isomorphism of

Fq-group varieties

ϕg,g′ : TranspHn,Fq
(g, g′)red ∼−→ Isom(Dn,g, Dn,g′)red
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that is compatible with compositions in the sense that for every g, g′, g′′ ∈

Dn(Fq) the following diagram commutes, where the horizontal maps are the

natural composition morphisms:

TranspHn,Fq
(g′, g′′)red × TranspHn,Fq

(g, g′)red TranspHn,Fq
(g, g′′)red

Isom(Dn,g′ , Dn,g′′)red × Isom(Dn,g, Dn,g′)red Isom(Dn,g, Dn,g′′)red

ϕg′,g′′×ϕg′ g′ ϕg,g′′

Proof. The group H and the action Hn × Dn → Dn are defined in [18, 2.1.1

& 2.2] over an algebraically closed field k of characteristic p, but the defi-

nition still makes sense over Fp. The isomorphism of groups ϕg,g is given

on k-points in [18, 2.4(b)]. The definition of the map there shows that it is

algebraic and defined over Fp. Since it is an isomorphism on F̄p-points, it

is an isomorphism of reduced group schemes over Fp. Furthermore, a mor-

phism TranspHn,Fq
(g, g′) → Isom(Dn,g, Dn,g′) is given in the proof of [18,

2.2.1]. It is easily seen that this map is compatible with compositions in the

sense of the diagram above, and that it is equivariant under the action of

StabHn(g)(F̄p) ∼= Isom(Dn,g)(F̄p). Since both varieties are torsors under this

action, this must be an isomorphism as well.

Corollary 6.3. For every power q of p the categories Dh,d
n (Fq) and

[Hn\Dn](Fq) are equivalent.

Proof. For every object D ∈ Dh,d
n (Fq) choose a gD ∈ Dn(Fq) such that D ∼=

Dn,gD . Define a functor

E : Dh,d
n (Fq) → [Hn\Dn](Fq)

that sends a D to the pair (Hn, fD), where fD : Hn → Dn is given by fD(h) =

h · gD. We send an isomorphism from D to D′ to the corresponding element of

Isom((Hn, fD), (Hn, fD′)) = TranspHn(Fq)(gD, gD′).

From the description of H in [18] it is clear that each Hn is connected, hence

every Hn-torsor is trivial, and E is essentially surjective. By Proposition 6.2 it

is also fully faithful, hence it is an equivalence of categories.

By [13, 9.18, 8.3 & 3.21] (and before by [8] and [9]) the set of isomorphism

classes of Dieudonné modules of level 1 over an algebraically closed field of

characteristic p are classified by Ξ as in Notation 6.1. For each ξ ∈ Ξ, let Dh,d,ξ
n
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be the substack of Dh,d
n consisting of truncated Barsotti–Tate groups of level

n, locally of rank h, and with F locally of rank d, whose reduction to a BT1 is

of type ξ at all geometric points. Then over fields k of characteristic p one has

Dh,d
n (k) =

⊔

ξ∈ΞDh,d,ξ
n (k) as categories, hence

Z(Dh,d
n , t) =

∏

ξ∈Ξ

Z(Dh,d,ξ
n , t).

From Proposition 2.11.1, or directly from the description in [8, §5], each isomor-

phism class over F̄p has a model over Fp. For every ξ ∈ Ξ choose a g1,ξ ∈ D1(Fp)

such that the isomorphism class of D1,g1,ξ ⊗ F̄p corresponds to ξ. For every n,

let Dn,ξ be the preimage of g1,ξ under the reduction map Dn ։ D1. Let Hn,ξ

be the preimage of StabH1(g1,ξ) in Hn; then analogous to Corollary 6.3 for

every power q of p we get an equivalence of categories (see [5, 3.2.3 Lem. 2(b)])

Dh,d,ξ
n (Fq) ∼= [Hn,ξ\Dn,ξ](Fq).

Proof of Theorem 1.2. By the discussion above we see that

Z(BTh,d
n , t) =

∏

ξ∈Ξ

Z([Hn,ξ\Dn,ξ], t).

By [13, 9.18 & 8.3] there is an isomorphism of stacks over Fp

D
h,d
1,p

∼
→ G-Zipχ,Θ

Fp
,

where G,χ,Θ are as in Notation 6.1. By Proposition 5.7, or earlier by [10,

2.1.2(i) & 2.2.6], the group scheme StabH1(g1,ξ)
red ∼= Aut(D1,g1,ξ)

red has an

identity component that is unipotent of dimension a(w). The reduction mor-

phism Hn → H1 is surjective and its kernel is unipotent of dimension h2(n−1),

see [5, 3.1.1 & 3.1.3]. This implies that Hn,ξ has a unipotent identity compo-

nent of dimension h2(n − 1) + a(ξ). Now fix a gn,ξ ∈ Dn,ξ(Fp); then we can

identify Dn,ξ with the affine group X = Wn−1(Math×h), by sending an x ∈ X

to gn,ξ + ps(x), where s : Wn−1(Math×h) ∼−→ pWn(Math×h) ⊂ Wn(Math×h) is

the canonical identification. Furthermore, the action of an element h ∈ Hn,ξ

on (gn,ξ + ps(x)) ∈ Dn,ξ is given by f(h)(gn,ξ + ps(x))f ′(h) for some algebraic

f, f ′ : Hn,ξ → Wn(GLh) (see [18, 2.2.1a]). From this we see that the induced

action of Hn,ξ on the variety X is given by

h · x = f(h)xf ′(h) +
1

p
(f(h)gn,ξf

′(h)− gn,ξ),

which makes sense because f(h)gn,ξf
′(h) is equal to gn,ξ modulo p. If we regard

X as Wn−1(G
h2

a ) via its canonical coordinates, this shows us that the action of
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Hn,ξ on X factors through the canonical action of Wn−1(G
h2

a ) ⋊Wn−1(GLh2)

on Wn−1(G
h2

a ). This algebraic group is connected, so we can apply Proposition

2.19, from which we find

Z([Hn,ξ\Dn,ξ], t) = 1

1−pdim(Dn,ξ)−dim(Hn,ξ)

= 1
1−ph2(n−1)−(h2(n−1)+a(ξ))t

= 1
1−p−a(ξ)t

,

which completes the proof.

Remark 6.4. Since the zeta function Z(BTh,d
n , t) does not depend on n, one

might be tempted to think that the stack BTh,d of non-truncated Barsotti–Tate

groups of height h and dimension d has the same zeta function. However, this

stack is not of finite type. For instance, every Barsotti–Tate group G over Fq

has a natural injection Z×
p →֒ Aut(G), which shows us that its zeta function is

not well-defined.
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rigid geometry”. In: Publications Mathématiques de l’Institut des Hautes
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