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Abstract. We introduce the concept of an embedding of a quadratic
space in an associative algebra. Using Clifford Algebras we derive
some fundamental properties that any embedding should satisfy. Con-
versely, there is a simple description of the Clifford Algebra and
the corresponding Spin groups in terms of the algebra in which the
quadratic space is embedded.

Though Clifford Algebras have been studied in detail, they may not
always be easy to work with. Sometimes it may be useful to switch to
a more concrete embedding to study low dimensional Spin and Epin
(or Elementary Spin) groups.
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1 Introduction

In this paper, we examine the concept of an embedding of a quadratic space
and analyze its connection to Spin groups.

The special case of the Hyperbolic space has been studied in [CV] using what
are called Suslin Matrices. This paper generalizes the results of [CV] to any
quadratic space, while at the same time giving a simpler “basis-free” route
to the main theorem (using Lemmas 4.3 - 4.6). These lemmas, as we shall
see, help characterize a norm function and capture the Spin representation
(Theorem 4.7).

By a quadratic space (V, q), we mean a free module V , over a commutative
ring, equipped with a quadratic form q. Without further ado,
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Definition 1.1. Let (V, q) be a quadratic space and A be an associative algebra.
We will say that (V, q) is embedded in A if V ⊆ A and

q(v) = vα(v) = α(v)v

where α is an isometry of (V, q).

Familiar examples of embeddings are given by the Composition algebras, Clif-
ford Algebras and Suslin matrices. Using Clifford Algebras we derive some
fundamental properties that any embedding should satisfy. Conversely, we can
describe the Clifford Algebra and the corresponding Spin groups in terms of
the algebra in which the quadratic space is embedded. It turns out that when
there is an involution of A that acts trivially on the underlying quadratic space
(V, q), the Spin group acts faithfully.

The connection between the Clifford Algebra Cl(V, q) and a general embedding
V ⊆ A is made by interpreting Cl as a subalgebra of M2(A). This is achieved
with the help of a structure theorem, about the graded ideals in Clifford alge-
bras (Theorem 2.7), that holds for any non-degenerate quadratic space.

Though Clifford Algebras have been studied in detail, they may not always be
easy to work with. Sometimes it can be useful to switch to a more concrete
embedding (as in the case of Suslin Matrices) to study low dimensional Spin
and Epin (or Elementary Spin) groups. For instance, one can easily compute
using Suslin Matrices, the exceptional isomorphisms Spin(H(R3)) ∼= SL4(R)
(Theorem 7.1, [CV]) and Epin(H(R3)) ∼= E4(R) (Theorem 8.4, [CV]). We
conclude this paper with a brief description of Suslin matrices and use them
to give an explicit set of generators of the Clifford algebras of some quadratic
spaces.

1.2 Notation

Let R be a commutative ring and V be a free R-module with basis {v1, · · · vn}.
In addition, V is equipped with a quadratic form q. Then there is a bilinear
form associated to (V, q), given by 〈v, w〉 = q(v+w)−q(v)−q(w), for v, w ∈ V .

We say that (V, q) is non-singular if the matrix corresponding to the bilinear
form, B =

(

〈vi, vj〉
)

is invertible.

A quadratic space (V, q) is said to be non-degenerate when 〈x, v〉 = 0 holds for
all v ∈ V , if and only if x = 0.

Suppose (V, q) is degenerate. Then there exists a x ∈ V , x 6= 0 such that
〈x, vi〉 = 0 for i ∈ {1, · · · , n}. Writing x = (x1, · · · , xn), this is equivalent to
saying that there is a non-trivial solution to the matrix equation xB = 0, where
B =

(

〈vi, vj〉
)

. When R is a commutative ring, the matrix equation xB = 0

has a non-trivial solution if and only if the determinant of B =
(

〈vi, vj〉
)

is a
zero divisor ([MD], Corollary I.30.). In other words, (V, q) is non-degenerate if
and only if det

(

〈vi, vj〉
)

is a non-zero divisor.
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Unless otherwise stated, all quadratic spaces in the paper are assumed to be
non-degenerate. All modules considered are free-modules over a commutative
ring R.

1.3 General References

For general literature on Clifford algebras and Spin groups over a commutative
ring, the reader is referred to [B2], [K]. To learn more about Suslin Matrices,
see [RJ] and Chapter III.7, [L].

2 Preliminaries on Clifford Algebras

Perhaps the most important example of an embedding of a quadratic space is
given by the Clifford algebra. Given any quadratic space (V, q), its Clifford
algebra Cl(V, q) (or simply, Cl) is the “freest” algebra generated by V subject
to the condition x2 = q(x) for all x ∈ V .
More precisely, the Clifford algebra Cl(V, q) is the quotient of the tensor algebra

T (V ) = R⊕ V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗n ⊕ · · ·

by the two sided ideal I(V, q) generated by all x⊗ x− q(x) with x ∈ V .

2.1 Basic Properties of the Clifford Algebra Cl(V, q) :

• Z2 Grading of Cl : The Clifford algebra Cl(V, q) is an associative algebra
(with unity) over R with a linear map i : V → Cl(V, q) such that i(x)2 =
q(x). The terms x ⊗ x and q(x) appearing in the generators of I(V, q)
have degrees 0 and 2 in the grading of T (V ). By grading T (V ) modulo
2 by even and odd degrees, it follows that the Clifford algebra has a Z2-
grading Cl = Cl0 ⊕Cl1 such that V ⊆ Cl1 and Cli Clj ⊆ Cli+j (i, j mod
2).

• Universal Property : The Clifford algebras has the following universal
property. Given any associative algebra A over R and any linear map
j : V → A such that

j(x)2 = q(x) for all x ∈ V ,

there is a unique algebra homomorphism f : Cl(V, q) → A such that
f ◦ i = j.

• Basis of Cl : The elements of V generate the Clifford algebra. Further-
more, the following result implies that if rank(V ) = n, then rank(Cl) =
2n.

Theorem 2.2. (Poincaré-Birkhoff-Witt)
Let {v1, · · · , vn} be a basis of (V, q). Then {ve11 · · · venn : ei = 0, 1} is a
basis of Cl(V, q).
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For a simple proof, see Theorem IV. 1.5.1, [K].

The above theorem implies in particular that the map i : V → Cl(V, q) is
injective. Since i(v)2 = q(v) for v ∈ V , it is clear that i(V ) ⊆ Cl is an
embedding. We will refer to this as the Clifford embedding of (V, q).

2.3 Structure of Clifford algebras

To analyze general embeddings, we need one more result about Clifford alge-
bras, and this will be stated in Theorem 2.7. The theorem says that a graded
homomorphism from Cl is injective whenever its restriction on R is injective.
The reader may assume that and jump ahead to the next section.

For any Z2-graded-algebra A = A0 +A1, the elements in h(A) = A0 ∪ A1 will
be called the homogeneous elements of A. If a ∈ h(a), we write ∂(A) = i if
a ∈ Ai, (i = 0, 1).
The graded tensor product of two algebras A⊗̂B is defined as :

(a⊗̂b)(a′⊗̂b′) = (−1)∂(b)∂(a
′)aa′⊗̂bb′

for all homogeneuos elements a, a′ ∈ A and b, b′ ∈ B.

One can use the universal property of Clifford Algebras to compute the Clifford
algebra of an orthogonal sum of quadratic spaces, (see [K], Theorem IV.1.3.1.).

Theorem 2.4. The map f : (V1, q1) ⊥ (V2, q2) → Cl(V1, q1)⊗̂Cl(V2, q2) defined
by f(x1 + x2) = x1⊗̂1 + 1⊗̂x2 induces an isomorphism

Cl(V1 ⊥ V2, q1 ⊥ q2) ∼= Cl(V1, q1)⊗̂Cl(V2, q2).

The hyperbolic module H(V ) = V ⊕ V ∗ is equipped with a quadratic form
q(x, f) = f(x). This quadratic space will be referred to as the hyperbolic
space. We will return to them in the final section of the paper.

Theorem 2.5. Let (V, q) be a non-singular quadratic space where V is a free
module with rank n. Then (V, q) ⊥ (V,−q) ∼= H(V ) and

Cl(V, q)⊗̂Cl(V,−q) ∼= M2n(R)

Proof. For a proof that (V, q) ⊥ (V,−q) and H(V ) are isomorphic as quadratic
spaces, see [B1], Ch. 5, Lemma 2.2.
It is also known that Cl(H(V )) ∼= M2n(R) (Theorem 7.1.10, [HOM]). The
result follows using Theorem 2.4.

An ideal J ⊆ Cl is said to be graded if it is a direct sum of the intersections
Ji = J ∩Cli. A homomorphism between two Z2- graded algebras is said to be
graded if it preserves the grading. The kernel of a graded homomorphism is a
graded ideal.
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Theorem 2.6. Let (V, q) be a non-degenerate quadratic space. Let J be a
graded ideal of Cl(V, q) such that J ∩R = {0}. Then J = {0}.

Proof. Case 1 : (V, q) is non-singular.

Consider the graded homomorphism φ : Cl(V, q) → Cl(V, q)/J . By Theo-
rem 2.5, the map φ extends to a graded homomorphism φ′ : M2n(R) →
Cl(V, q)/J ⊗̂ Cl(V,−q). Now every ideal of M2n(R) is of the form M2n(I)
for some ideal I in R. Since J ∩R = {0}, this is possible only if I = {0}.

Case 2 : (V, q) is non-degenerate.

When (V, q) is non-degenerate, d = det
(

〈vi, vj〉
)

is a non-zero divisor in R
(see Section 1.2). Then V ⊗ R[d−1] is a non-singular quadratic space and so
J ⊗R[d−1] is the zero ideal by Case 1. Therefore J = {0}.

Theorem 2.7. Let (V, q) be a non-degenerate quadratic space. Let φ :
Cl(V, q) → A be a graded (algebra) homomorphism such that ker(φ)∩R = {0}.
Then φ is injective.

Proof. The kernel of φ is a graded ideal in Cl(V, q). The result follows imme-
diately from Theorem 2.6.

Observe that Theorem 2.7 allows the possibility of d = det
(

〈vi, vj〉
)

being a
zero divisor in A, even though d is a non-zero divisor in R.

3 Basic properties of Embeddings

3.1 Connecting two different embeddings :

Let Cl denote the Clifford algebra of (V, q). To avoid any confusion, we will
denote the copy of V in its Clifford algebra by VCl.

Let (V, q) ⊆ A be an embedding with q(v) = vv = vv, for some isometry v → v,
for v ∈ V .

Let φ : VCl → M2(A) defined by vCl →
(

0 v
v 0

)

. As φ2(vCl) = q(v) for all v ∈ V ,
the map φ extends to an R-algebra homomorphism φ : Cl → M2(A). This is
in fact a graded homomorphism, where the even and odd elements of M2(A)
correspond to matrices of the form ( ∗ 0

0 ∗
) and ( 0 ∗

∗ 0 ).
Let ker(φ) denote the kernel of φ. Since φ restricts to an injective map on VCl,
we have ker(φ) ∩ R = {0}. Therefore it follows from Theorem 2.7 that φ is
injective.

From here on, we will identify Cl with its image in M2(A).

Theorem 3.2. Let (V, q) be a quadratic space embedded in an algebra A. Let
v, w ∈ V . Then vwv ∈ V and vwv = v · w · v.

Proof. We will first prove the theorem for the Clifford embedding. Let z1, z2 ∈
VCl. Then

〈z1, z2〉 := (z1 + z2)
2 − z21 − z22 = z1z2 + z2z1
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is an element in R. Multiplying by z1 we get

z1〈z1, z2〉 = z21z2 + z1z2z1.

Since z21 = q(z1), it follows that z1z2z1 ∈ VCl. For any embedding V ⊆ A,
there is a map φ : Cl → M2(A) given by vCl →

(

0 v
v 0

)

.

Take z1 →
(

0 v
v 0

)

and z2 →
(

0 w
w 0

)

. Then z1z2z1 →
(

0 vwv
vwv 0

)

.

Given an embedding, one can also treat (V, q) as a non-associative algebra, with
its multiplication given by v •w = vwv for v, w ∈ V . Under this multiplication,
(V, q) becomes a Quadratic Jordan algebra. By the above theorem, v • w =
v • w. Then the bijection v → v in (V, q) is not only an isometry, but also an
algebra automorphism of (V, q). In addition, if 1 ∈ V , then (1+v)w(1+v) ∈ V ,
and so vw + wv ∈ V . A general theory of Quadratic Jordan algebras can be
found in [J, M].

3.3 The Standard involution

The map vCl → −vCl can be viewed as an inclusion of VCl in the opposite
algebra of Cl. By the universal property of the Clifford algebra, this map
extends to an involution ∗ of Cl. This is called the standard involution on Cl.
In terms of the algebra M2(A), we have ( 0 v

v 0 )
∗ = ( 0 −v

−v 0 ). We will see below
that under certain circumstances, the standard involution on Cl restricts to an
involution of A.

One might also wonder if the map v → −v or the isometry α(v) = v (for v ∈ V )
extends to an involution of A. We will keep returning to similar questions in
the paper. For now it is not even clear what values, the order of α can take.
In the Clifford embedding, the isometry of V is simply the identity map. For
Composition algebras and (as we’ll see later) Suslin matrices, the isometry
corresponding to the embedding has order 2. This is not an accident and we
will now show that this is true whenever 1A ∈ V and 1A = 1A.

Suppose 1A ∈ V and 1A = 1A. Then we have the following nice implications :

• Let v ∈ V . Since q(1 + v) = (1 + v)(1 + v) is a scalar, so is v + v.

• We have

α2(x)α(x) = α(x)x, α2(x+ 1)α(x + 1) = α(x + 1)(x+ 1).

Using the fact that α is linear and cancelling terms, it follows that α2(x) =
x for all x ∈ V , i.e. α has order 2.

• Now suppose A ⊆ Cl, i.e., Cl contains all elements ( a 0
0 a ) with a ∈ A;

Then we will show that the standard involution restricts to A.

First notice that the even part of the Clifford algebra Cl0 is closed under
the standard involution, and its image in M2(A) consists of matrices of
the form ( x 0

0 y ). We will simply write (x, y) instead of ( x 0
0 y ).

Documenta Mathematica 23 (2018) 1621–1634



Embeddings of Quadratic Spaces 1627

Let (a, a)∗ = (x, y). For A to be closed under the involution, we need
x = y.

Let e = ( 0 1
1 0 ). We have e∗ = −e as e ∈ VM2(A). Since e(a, a)e = (a, a),

we have e∗(a, a)∗e∗ = (a, a)∗. Therefore

(y, x) = e · (a, a)∗ · e = (x, y)

and so the standard involution on Cl restricts to A.

Conversely, given an involution of A, one might ask if it can be extended to the
standard involution on Cl. To explore this possibility, let us write M =

(

a b
c d

)

as a 2 × 2 matrix and analyze its conjugate in terms of its blocks. The table
below illustrates, for a few examples, how the action of an involution ∗ on A
can be extended to the standard involution in Cl, which is seen as a sub-algebra
of M2(A).
Note that in order to show that an involution corresponds to the standard
involution of the Clifford algebra, it is enough to check that its action on the
elements of VCl is multiplication by −1. In other words, if z =

(

0 v
v 0

)

, then we
need z∗ = −z. This is clearly the case for both the involutions defined in the
table below.

Standard Involution on M =
(

a b
c d

)

Form 1: v∗ = u · v u2 = 1 , u ∈ R M∗ =
(

d∗
−ub∗

−uc∗ a∗

)

Form 2 : v∗ = u · v u2 = 1 , u ∈ R M∗ =
(

a∗
−uc∗

−ub∗ d∗

)

Since the involution acts trivially on scalar matrices, notice that if 1A ∈ V , and
v∗ = uv or v∗ = uv, then it follows that u = 1.

4 The Spin Representation: When v∗ = v for all v ∈ V

Motivated by the discussion in the previous section, we will now analyze em-
beddings (V, q) ⊆ A with the following conditions:

1. 1A ∈ VA and 1A = 1A.

2. There is an involution ∗ of A that restricts to the identity map on V , i.e,
v∗ = v for all v ∈ V .

We will continue to identify Cl as a sub-algebra of M2(A). Let M =
(

a b
c d

)

∈

M2(A). Then M∗ =
(

d∗
−b∗

−c∗ a∗

)

gives us the standard involution on Cl.

In particular,
(

g1 0
0 g2

)∗
=

( g∗

2
0

0 g∗

1

)

. For convenience, we will sometimes write

(g1, g2) instead of ( g1 0
0 g2

).
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4.1 Spin group

The following groups are relevant to our discussion :

U0(V ) := {x ∈ Cl0 |xx∗ = 1}

Spin(V ) := {x ∈ U0(R) |xVClx
−1 = V }.

Notice that the action of the Spin group on V is an isometry of V .

4.2 The Spin representation :

We will define a group SG(A) ⊂ A and show that it is isomorphic to the Spin
group, when v∗ = v for all v ∈ V .

Let (g1, g2) ∈ Spin(V ). Since (g1, g2)
∗ = (g∗2 , g

∗
1), we have g2 = g∗−1

1 .

Now take any (g, g∗−1) ∈ Spin(V ) and v ∈ V . By definition, there exists an
element w ∈ V such that (g, g∗−1)

(

0 v
v 0

)

(g−1, g∗) =
(

0 w
w 0

)

, i.e.,

(

0 gvg∗

g∗−1vg−1 0

)

=

(

0 w
w 0

)

.

Let g • v = gvg∗ for g ∈ A. Then g • v ∈ V when (g, g∗−1) ∈ Spin(V ).

Let A× denote the invertible elements of A. Consider the set

G(A) = { g ∈ A× | g • v ∈ V ∀ v ∈ V }.

Since the action • is bijective, it is easy to see that G(A) is a group and is
closed under the involution ∗. One has the homomorphism

χ : Spin(V ) → G(A)

given by (g, g∗−1) → g.

Next, we will use the quadratic form q on V to define a ‘norm’ on G(A). The
Spin group will turn out to be isomorphic to the subgroup of G(A) whose
elements have unit norm.

Let us begin with three simple lemmas which help us show that

q(g • v) = q(gg∗)q(v), for g ∈ G(A).

Lemma 4.3. Let v ∈ V such that {v, 1} are linearly independent. Suppose there
exists an element v′ ∈ V such that v + v′ and vv′ are scalars. Then v′ = v.

Proof. Since v + v ∈ R, it follows that v = v′ + r for some r ∈ R. Since
vv = q(v), it follows that v(v′ + r) ∈ R, implying rv ∈ R. Therefore r = 0 and
v′ = v.
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Lemma 4.4. Suppose v1, v2 ∈ V and q(v2) = v2v2 = 1. Then v1+v2v1v2 ∈ v2R.

Proof. Since (v1 + v2)(v1 + v2) ∈ R, it follows that

〈v1, v2〉 = v1 · v2 + v2v1 ∈ R.

Multiplying by v2 on the right, this implies that

v1 + v2v1v2 ∈ v2R.

Lemma 4.5. Let g ∈ G(A). If q(gg∗) = 1, then q(g∗g) = 1.

Proof. Let X = g∗g.

If X ∈ R, then gg∗ = g∗g and we are done. Suppose X /∈ R. We will show
that X +X−1 ∈ R and infer from Lemma 4.3 that X−1 = X. Now,

X−1 = g−1g∗−1 = g∗ • (g∗−1g−1)2.

Since q(gg∗) = 1, we have q(g∗−1g−1) = q(gg∗) = 1. Therefore (using Lemma
4.4),

X +X−1 = g∗ • (1 + (g∗−1g−1)2)

= g∗ • (rg∗−1g−1), for some r ∈ R.

= r ∈ R

Lemma 4.6. Let g ∈ G(A). For all v ∈ V , we have

q(g • v) = q(gg∗)q(v).

Proof. Case 1 : q(gg∗) = 1.

Let w = g • v and w′ = g∗−1 • v. Since w · w′ = vv, it is enough to prove that
w = w′.

Let us assume for now that {w, 1} are linearly independent. We will first show
that w + w′ ∈ R and use it to prove that w′ = w.

Let X = g∗g. Since q(gg∗) = 1, it follows from Lemma 4.5 that q(X) = 1. We
have

w = gvg∗

= g∗−1(XvX)g−1

= g∗−1 • (XvX).

Since q(X) = 1, we know (from Lemma 4.4) that v + XvX = rX for some
r ∈ R. Therefore

w′ + w = g∗−1 • (v +XvX)

= g∗−1 • rg∗g

= r ∈ R
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Since w′ + w and ww′ are scalars, it follows from Lemma 4.3 that

w′ = w.

Now suppose {w, 1} are linearly dependent. Then we can write w = (w0+w)−
w0, where {w0, 1} are linearly independent. As • is a linear action it follows
that w′ = w.

Case 2 : q(gg∗) = a.

Clearly a is invertible since g ∈ G(A).
Suppose there is an x ∈ R such that x2 = a−1. Take h = xg. Then q(h • v) =
x2 · q(g • v) and q(hh∗) = 1. The result follows immediately from Case 1.

Now suppose x2 = a−1 has no solutions in R. Then one has the identity

q(g • v) = q(gg∗)q(v) over the ring R[x]
(x2−a−1) ; Since each term of the equation

lies in R, the result follows in this case too.

We can now describe the Spin group as a group inside A. Let R× denote the
group of invertible elements in R.

Theorem 4.7. Define d : G(A) → R× as d(g) = q(gg∗).

Then d is a group homomorphism and

ker(d) = SG(A) ∼= Spin(V ).

Proof. As a consequence of Lemma 4.6 we have, for g, h ∈ G(A),

d(gh) = q(ghh∗g∗) = q(gg∗)q(hh∗) = d(g)d(h).

Thus d is a group homomorphism and

ker(d) = SG(A) ∼= Spin(V )

in the case when the identity map on V can be lifted to an involution of A.

5 The Suslin embedding

Let R be any commutative ring and H(Rn) := Rn ⊕Rn∗. By fixing a basis of
Rn, one can then write the quadratic form on H(Rn) as

q(v, w) = v · wT = a1b1 + · · ·+ anbn.

for v = (a1, · · · , an), w = (b1, · · · , bn). This quadratic space (H(Rn), q) is
referred to as the hyperbolic space. We will now define Suslin matrices which
give an embedding of the hyperbolic space into the ring of matrices M2n−1(R).

The Suslin matrix Sn(v, w) of size 2
n× 2n is constructed from two vectors v, w

in Rn+1 as follows :
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Let v = (a0, v1), w = (b0, w1) where v1, w1 are vectors in Rn. Define

S1(v, w) =

(

a0 v1
−w1 b0

)

S1(v, w) =

(

b0 −v1
w1 a0

)

Sn(v, w) =

(

a0I2n−1 Sn−1(v1, w1)

−Sn−1(v1, w1) b0I2n−1

)

and

Sn(v, w) =

(

b0I2n−1 −Sn−1(v1, w1)

Sn−1(v1, w1) a0I2n−1

)

It easily follows that Sn = Sn(v, w) satisfies the following properties:

1. SnSn = SnSn = (v · wT )I2n ,

2. detSn = (v · wT )2
n−1

, for n ≥ 1.

In his paper [S], A. Suslin then describes a sequence of matrices Jn ∈ M2n(R)
such that JJT = I,

Jn−1S
T
n−1J

T
n−1 =











Sn−1 for n odd,

Sn−1 for n even.

(1)

Clearly M∗ = JMTJT is an involution of M2n(R) (as JJT = 1).Thus there
are two types of involution for the Suslin embedding, depending on the parity
of rank(V ) = n.

The map φ : H(Rn) → M2n(R) defined by φ(v, w) =
( 0 Sn−1(v,w)

Sn−1(v,w) 0

)

induces an R-algebra homomorphism φ : Cl → M2n(R). In fact φ is an isomor-
phism (Section 3.1, [CV]); the elements φ(v, w) give a set of generators of the
Clifford algebra.

Remark 5.1. There cannot be two involutions ∗1, ∗2 of M2n(R) (for a fixed n)
such that S∗1 = S and S∗2 = S. Otherwise both involutions can be lifted to
the standard involution as in Table 3.3. This is not possible as the two (lifted)

involutions act differently on
( S(v,w) 0

0 S(v,w)

)

∈ Cl, when S(v, w) 6= S(v, w).

Remark 5.2. When v · wT = 1, the kernel of the map Rn → R, defined by
w → v · wT , is a projective module. This projective module is not isomorphic
to its dual when the row v has odd size > 3. However, these projective modules
are self-dual when n is even. (See [NRS]).
Perhaps this difference in duality in the odd and even cases can give a deeper
explanation for the corresponding behavior of the Suslin Matrices, described
above in Equation 1.

Documenta Mathematica 23 (2018) 1621–1634



1632 Vineeth Chintala

To learn more about the connection between Suslin Matrices and Clifford Alge-
bras, see [CV]. Suslin matrices were first introduced by A. Suslin in his paper
[S], in connection with unimodular rows and K-Theory. The recent work of A.
Asok and J. Fasel (see [AF]) uses Suslin Matrices in the context of A1-homotopy
theory and Bott periodicity.

5.3 Applications to Quadratic Spaces

In a similar fashion, using Suslin Matrices, one can construct an explicit set of
generators of the Clifford Algebra for other classes of quadratic spaces. Here
are a few examples :

Quadratic Space (V, q) Clifford Embedding Cl

(R2n,
n
∑

i=1

viwi) (v,w) →
( 0 S(v,w)

S(v,w) 0

)

M2n (R)

(R2n+1,−v20 +
n
∑

i=1

viwi) (x, v, w) →
( v0λ1 S(v,w)

S(v,w) −v0λ1

)

M2n (R[λ1])

(R2n+2
,−v

2
0−w

2
0+

n
∑

i=1

viwi)

(x, y, v, w)

→

(

v0λ1+w0λ2 S(v,w)

S(v,w) −v0λ1−w0λ2

)
M2n (R[λ1, λ2])

(In the above table, we have λ2
1 = λ2

2 = −1 and λ1λ2 + λ2λ1 = 0.)

6 Conclusion

We have analyzed general embeddings of quadratic spaces by connecting them
to their respective Clifford algebras. Given an embedding (V, q) ⊆ A, we know
that vwv ∈ V and so V becomes a Quadratic Jordan algebra. It would be very
interesting to learn the conditions under which the identity map on V ⊆ A (or
more generally, maps of the type v∗ = uv, u ∈ R) can be lifted to an involution
of A. We know that this is not always the case for Suslin matrices (see Remark
5.1).

The classification and structure of Special Jordan algebras has been worked
out in the 20th century (see [M] for a survey). But their relationship with the
overlying associative algebras, in different embeddings, remains to be explored
further.

Acknowledgements. I would like to thank the referee for their suggestions
which greatly improved the clarity of the paper. In particular, the referee made
some crucial points that were overlooked in the initial draft.
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