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Abstract. Given a small simplicial category C whose underlying
ordinary category is equipped with a Grothendieck topology τ , we
construct a model structure on the category of simplicially enriched
presheaves on C where the weak equivalences are the local weak equiv-
alences of the underlying (non-enriched) simplicial presheaves. We
show that this model category is a t-complete model topos and de-
scribe the Grothendieck topology [τ ] on the homotopy category of C
that corresponds to this model topos. After we first review a proof
showing that the motivic homotopy theory is not a model topos, we
specialize this construction to the category of smooth schemes of fi-
nite type, which is simplicially enriched using the standard algebraic
cosimplicial object, and compare the result with the motivic homotopy
theory. We also collect some partial positive results on the exactness
properties of the motivic localization functor.
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1 Introduction

The motivic homotopy theory introduced by Morel and Voevodsky [24] pro-
vides a convenient framework for a homotopy theory of schemes and has led
to the introduction of methods from algebraic topology with many spectacular
applications. The motivic homotopy theory is obtained from two localization
processes on the category of simplicial (pre)sheaves on SmS , the category of
smooth schemes of finite type over a base scheme S. The Nisnevich localization
is concerned with imposing descent with respect to the Nisnevich covers and
ties the category of simplicial presheaves with that of schemes, regarded as
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a Grothendieck site. The A1-localization imposes A1-invariance on simplicial
presheaves where A1 is henceforth the scheme that plays the role of an interval
object. A (fibrant) motivic space is a simplicial presheaf which is A1-homotopy
invariant and satisfies Nisnevich descent. One obtains a motivic space by
iterating these two localization processes, infinitely often in general, as each
one generally destroys the effect of the other. The intricate interaction between
the two localization processes is one of the subtle points in the theory.

The first localization taken alone corresponds to a construction that is avail-
able and well known for general Grothendieck sites. Given a Grothendieck
site (C, τ), Jardine [18, 19] constructed a model structure on the category
sPSh(C) of simplicial presheaves, called the local model structure, whose weak
equivalences are those morphisms which induce isomorphisms on the τ -sheaves
of homotopy groups. The notion of fibrant object in this local model category
encodes the property of homotopical descent with respect to hypercovers [12].
On the other hand, the second localization generalizes to categories where
there is a notion of homotopy so that one can speak of homotopy invariant
simplicial presheaves. Combining both types of structure has led to the notion
of a site with an interval as a foundational framework for motivic homotopy
theory (see [24, 2.3.1] and [35, 2.2]).

In the case of schemes, the A1-localization can alternatively be encoded by
considering the simplicial enrichment SmS of SmS from [16]. The homotopy
theory of enriched simplicial presheaves sPSh∆(SmS) consists of A

1-homotopy
invariant objects and moreover, it is equivalent to the A1-localization of
sPSh(SmS) (see Proposition 4.1). In other words, one of the localizations
for the motivic homotopy theory can be skipped by encoding A1-invariance
directly into the objects of the category sPSh∆(SmS). Motivated by this
example, we consider in this paper a mixed setup which combines descent with
respect to an ordinary Grothendieck topology with a simplicial enrichment.
More precisely, the setup consists of a simplicial category C whose underlying
ordinary category C0 is equipped with a Grothendieck topology τ . We prove
that the category of simplicially enriched simplicial presheaves sPSh∆(C)
admits a model structure where a morphism is a weak equivalence if it is a
local weak equivalence when regarded as a morphism between (non-enriched)
simplicial presheaves in sPSh(C0) (see Theorem 3.1). We call the result-
ing model category, denoted sPSh∆(C)Uτ , the U-local model category where
U : sPSh∆(C) → sPSh(C0) is the forgetful functor. This type of homotopy
theory is related to homotopy theories that arise from a site with an interval,
but there are some interesting and important differences, too. When applied
to the simplicial category SmS with the Nisnevich topology Nis, this construc-
tion gives a model category sPSh∆(SmS)UNis which is not equivalent to the
motivic homotopy theory - the latter is obtained by a further (non-trivial) left
Bousfield localization.
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One of the properties that the motivic homotopy theory fails to satisfy is that
of being a model topos. The notion of a model topos was introduced and
studied by Rezk [31] and Toën–Vezzosi [34] and forms the model categorical
analogue of an ordinary Grothendieck topos. The definition of a model topos
involves homotopical descent properties and the theory of model topoi is
intimately connected with homotopical sheaf theory. An argument for the
failure of the motivic homotopy theory to form a model topos was sketched in
[33], but we will review it here too in some more detail (see Proposition 4.12).
This fact can be considered as a residual effect of the complications that arise
when the Nisnevich and A1-localization processes are combined. Each of the
two localizations taken separately does indeed define a model topos. The
failure of this property for the motivic homotopy theory implies in particular
that the motivic localization functor does not preserve homotopy pullbacks in
general. Based on results of Asok–Hoyois–Wendt [3] and Rezk [32], we prove a
positive result which says that a homotopy pullback whose lower right corner
is πaff

0 -A1-local (see Definition 4.15) is also a motivic homotopy pullback (see
Theorem 4.20).

On the other hand, the U-local model category sPSh∆(C)Uτ is a model topos
(see Theorem 3.3). In particular, sPSh∆(SmS)UNis is a model topos. As in
classical topos theory, there is a close connection between model topoi, de-
fined as homotopy left exact left Bousfield localizations of enriched simplicial
presheaves, and Grothendieck topologies. This was explored and studied in
detail by Toën–Vezzosi [34] for simplicial categories and by Lurie [22] for ∞-
categories. In these homotopical contexts, a Grothendieck topology on a sim-
plicial category (or ∞-category) C corresponds to an ordinary Grothendieck
topology τ̄ on the homotopy category of C. We emphasize that this differs
from our basic setup where the simplicial enrichment and the Grothendieck
topology are independent of each other. Toën–Vezzosi [34] proved the exis-
tence of local model structures associated with a simplicial category C equipped
with a Grothendieck topology τ̄ in this homotopical sense. This local model
category sPSh∆(C, τ̄ ) is a model structure on the category of enriched simpli-
cial presheaves sPSh∆(C) where the weak equivalences are those morphisms
which induce isomorphisms on the τ̄ -sheaves of homotopy groups (see Theo-
rem 3.6). Moreover, Toën and Vezzosi proved that this construction recovers
all (t-complete) model topoi (see Theorem 3.8). Thus, the (t-complete) model
topos sPSh∆(C)Uτ also arises in this way from a Grothendieck topology [τ ] on
Ho(C). We study this induced Grothendieck topology and compare it with τ
(see Subsection 3.3). Then we specialize this comparison to the case of SmS

equipped with the Nisnevich topology and give an interpretation as to what
type of descent, necessarily weaker than Nisnevich descent, is encoded in the U-
local model topos sPSh∆(SmS)UNis. While this particular U-local model topos
and its connection with the motivic homotopy theory is our main motivation
for considering U-local model structures in this paper, the general construction
may be useful for a comparative study also in other contexts where there are
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two localization processes in interaction, one for descent and one for homotopy
invariance. For example, the study of two such localization processes is also
central in the context of differential cohomology (see [8]).

The paper is organized as follows. In Section 2, we review the theory of model
topoi and discuss some of their properties. In Section 3, we prove the existence
of the U-local model structure on sPSh∆(C) and show that it is a model topos
(Theorems 3.1 and 3.3). In Subsection 3.3, we identify the associated topology
[τ ] on the homotopy category of C that corresponds to this model topos, and
discuss the comparison between the τ - and [τ ]-sheaf conditions.

In Section 4, we recall from [16] the simplicial enrichment of the category
SmS that is defined by the standard algebraic cosimplicial object. We show
that the A1-localization of the projective model category sPSh(SmS) is Quillen
equivalent to the projective model category sPSh∆(SmS) on enriched simplicial
presheaves (Proposition 4.1). Thus, it defines a model topos - even though
A1-localization is not homotopy left exact. Then we recall the definition of
(several known models for) the motivic homotopy theory and prove that it is
not a model topos (Subsection 4.3). In Subsection 4.4, we collect some positive
results on the exactness properties of motivic localization.

The U-local model structure sPSh∆(SmS)UNis and its relationship with the
motivic homotopy theory are discussed in Section 5. We construct a useful
Quillen equivalent model for this U-local model category using non-enriched
simplicial presheaves (Theorem 5.3). We also discuss the Grothendieck topol-
ogy [Nis] on Ho(SmS) that is associated with sPSh∆(SmS)UNis and explain
the difference between Nisnevich descent and [Nis]-descent (Subsection 5.2). Fi-
nally, Subsection 5.3 contains a diagram which summarizes the different model
categories and Quillen adjunctions that arise in the case of SmS equipped with
the Nisnevich topology.

2 Model Topoi

2.1 Projective model structures

Let sSet denote the simplicial model category of simplicial sets. Let C be a
small simplicial (i.e., simplicially enriched) category and let sPSh∆(C) denote
the functor category of simplicial functors Cop → sSet. A morphism η : F → G
in sPSh∆(C) is an objectwise weak equivalence (respectively, objectwise fibra-
tion) if for every c ∈ Ob(C), the map ηc : F (c) → G(c) is a weak equivalence
(respectively, fibration) of simplicial sets. A morphism η : F → G is a projec-
tive cofibration if it has the left lifting property with respect to all morphisms
which are objectwise weak equivalences and fibrations. The category sPSh∆(C)
is enriched, tensored and cotensored over sSet with the (co)tensor structure
defined objectwise using the simplicial structure of the category of simplicial
sets. The following theorem is well known.
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Theorem 2.1. The classes of projective cofibrations, objectwise weak equiva-
lences and objectwise fibrations define a proper simplicial combinatorial model
structure on the category sPSh∆(C).

This model category is called the projective model category. We recall a precise
definition of sets of generating cofibrations and trivial cofibrations. A set of
generating cofibrations is defined by the morphisms

mapC(−, c)× ∂∆n →֒ mapC(−, c)×∆n,

for every c ∈ Ob(C) and n ≥ 0, and a set of generating trivial cofibrations is
defined by the morphisms

mapC(−, c)× Λk
n →֒ mapC(−, c)×∆n,

for every c ∈ Ob(C), n > 0, and 0 ≤ k ≤ n. The model category is lifted
from the product (cofibrantly generated) model category

∏
Ob(C) sSet along

the simplicially enriched (Quillen) adjunction

i! : sSet
Ob(C)

⇄ sSet
Cop

: i∗

where i∗ is the restriction functor along the inclusion i : Ob(C)→ Cop.

By regarding a set as a constant simplicial set, a small ordinary category C can
be considered as a (discrete) simplicially enriched category where the mapping
spaces are constant simplicial sets. In this case, the category sPSh∆(C) is just
the category of ordinary simplicial presheaves, denoted sPSh(C), and the model
structure in Theorem 2.1 is the standard projective model structure. On the
other hand, any simplicial category C has an underlying ordinary category C0,
obtained by forgetting the simplicial enrichment. We emphasize the simplicial
enrichment of C in the notation sPSh∆(C) because we are interested in the
comparison between the projective model categories sPSh∆(C) and sPSh(C0)
and their left Bousfield localizations. There is a Quillen adjunction

H : sPSh(C0) ⇄ sPSh∆(C) : U (1)

where U denotes the forgetful functor and H is the colimit-preserving (simpli-
cially enriched) Kan extension of the functor

H|C : C0 → sPSh∆(C), c 7→ mapC(−, c).

We note that the right adjoint U preserves colimits.

2.2 Small presentations

We denote by MS the left Bousfield localization of a left proper combinatorial
model category M at a set of morphisms S. We recall that this localized model
category always exists in the context of combinatorial model categories (see [22,
A.3.7]). The model category MS is again cofibrantly generated and left proper.
It is also simplicial if M is. The weak equivalences (respectively, fibrations) in
MS are called S-local equivalences (respectively, S-local fibrations).
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Definition 2.2. A small presentation (C, S) consists of a small simplicial cate-
gory C and a set of morphisms S in sPSh∆(C). A small presentation of a model
category M is a triple (C, S, F ) where (C, S) is a small presentation and F is
the left adjoint of a Quillen equivalence

F : sPSh∆(C)S ⇄ M : G.

A model category M is called presentable if it has a small presentation.

Every presentable model category has a small homotopically dense subcategory
of homotopically presentable objects. Therefore, not every model category can
be presentable. For example, discrete model categories which do not have a
small dense subcategory provide examples of non-presentable model categories.
The following theorem of Dugger [14] identifies a large class of presentable
model categories (see also [27]).

Theorem 2.3 (Dugger [14]). Every combinatorial model category is pre-
sentable.

Remark 2.4. The definition of a small presentation in [14] requires that C is
an ordinary category. Our definition of a presentable model category is there-
fore seemingly more general than the definition in [14] - ours allows C to be a
non-discrete simplicial category. However, as the model category sPSh∆(C) is
always combinatorial, Dugger’s theorem shows that it admits a small presenta-
tion defined by an ordinary category. Hence, the two definitions are equivalent.

Remark 2.5. The property of being presentable is invariant under Quillen equiv-
alences. If M is presentable and F : N→M is a left Quillen equivalence, then
N admits a small presentation as well (see [13, Prop. 5.10, Cor. 6.5]).

2.3 Model topoi

We review the basic theory of model topoi as introduced by Rezk [31] and
Toën–Vezzosi [34]. Using the correspondence between presentable model
categories and presentable ∞-categories, this theory is the model categorical
counterpart of ∞-topos theory as developed by Lurie [22].

A left Quillen functor F : M → N is called homotopy left exact if it preserves
finite homotopy limits. The proof of the following proposition is straightfor-
ward.

Proposition 2.6. Let M be a left proper combinatorial model category, T a
set of morphisms in M, and S a set of T -local equivalences. Consider the left
Bousfield localizations

idT : M
idS−−→MS

idT/S
−−−→MT .

(a) If idS and idT/S are homotopy left exact, then so is idT .
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(b) If idT is homotopy left exact, then so is idT/S .

Definition 2.7. A small presentation (C, S) is called a model site if the left
Quillen functor

idS : sPSh∆(C)→ sPSh∆(C)S

is homotopy left exact. A model category M is called a model topos if it is
Quillen equivalent to sPSh∆(C)S for some model site (C, S).

We have the following useful criterion for a small presentation (C, S) to define
a model site.

Proposition 2.8. The left Quillen functor idS : sPSh
∆(C) → sPSh∆(C)S is

homotopy left exact if and only if the class of S-local equivalences is closed
under homotopy pullbacks in sPSh∆(C).

Proof. See [31, Prop. 5.6], [22, Prop. 6.2.1.1].

We recall an intrinsic characterization of model topoi in terms of descent prop-
erties which is due to Rezk [31].

Definition 2.9. We say that a model categoryM satisfies homotopical descent
if given the following data:

(a) a small category I,

(b) Y : I⊲ →M a homotopy colimit diagram, where I⊲ denotes the category
I with an added terminal object ∞ ∈ I⊲,

(c) X : I⊲ →M a functor,

(d) φ : X → Y a natural transformation such that for every i → j in I the
diagram

X(i) //

��

X(j)

��

Y (i) // Y (j)

is a homotopy pullback,

then the following hold:

(HD1) If for every i ∈ ObI the diagram

X(i) //

��

X(∞)

��

Y (i) // Y (∞)

is a homotopy pullback, then X is a homotopy colimit diagram.
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(HD2) If X is a homotopy colimit diagram, then the diagram

X(i) //

��

X(∞)

��

Y (i) // Y (∞)

is a homotopy pullback for every i ∈ ObI.

Example 2.10 (Mather’s second cube theorem (see [23, Thm. 25])). Suppose
that a model category M satisfies (HD1). Consider a cube in M

A //

}}④④
④④
④

B

��

}}④④
④④
④

C

��

//

��

D

��

A′

}}⑤⑤
⑤⑤
⑤

// B′

}}④④
④④
④

C′ // D′

where the bottom face is a homotopy pushout and all the side faces are homo-
topy pullbacks. Then the top face is a homotopy pushout.

Example 2.11. Let M be a model category which satisfies (HD1). Let X ∈M

be a pointed object in M and let F,E : I → M be two diagrams in M such
that there are natural transformations F → E → cX with the property that

F (i)→ E(i)→ X

is a homotopy fiber sequence for all i ∈ I. Then also

hocolim
i∈I

F (i)→ hocolim
i∈I

E(i)→ X

is a homotopy fiber sequence. To see this, let us suppose for simplicity that M
is cofibrantly generated and E is a cofibrant-fibrant diagram in the projective
model category MI . Then consider the solid diagram

F (i) //❴❴❴

||②
②
②
②

. . . //❴❴❴ F (j)

||①
①
①
①

//❴❴❴ A

~~~~⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

��

E(i) //

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
. . . // E(j)

��

// hE

��

∗̄

}}}}④④
④④
④④
④④
④

X X

where hE denotes the (homotopy) colimit, ∗̄ is obtained by a factorization
∗

∼
−→ ∗̄։ X and A is the pullback of hE → X along ∗̄։ X . We may assume
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that X and hE are fibrant, so this pullback is the homotopy fiber of hE → X .
Let F : I → M be the diagram defined by the pullbacks of E(i) → hE along
A→ hE. These pullbacks are also homotopy pullbacks, hence F (i) is a model
for the homotopy fiber of E(i)→ X . Then the claim follows as an application
of (HD1).

Example 2.12. Let M be a model category which satisfies (HD1). Let X and Y
be pointed objects of M and consider a homotopy fiber sequence F → E → X .
Then we have:

1. Σ(X × Y ) ≃ (X ∗ Y ) ∨ ΣX ∨ ΣY .

2. There is a homotopy fiber sequence ΣΩX → X ∨X → X .

3. There is a homotopy fiber sequence ΩX ∗ ΩY → X ∨ Y → X × Y .

4. There is a homotopy fiber sequence F ∗ ΩX → hocofib(F → E)→ X .

5. There is a homotopy fiber sequence ΩX ∗ ΩX → ΣΩX → X .

Here Σ denotes S1 ∧ − and all functors are assumed to be derived. These
statements are consequences of Mather’s second cube theorem (Example 2.10),
as explained in [11], and Example 2.11. The authors in op.cit. consider the cube
theorem as an axiom and study its consequences. More precisely, assertion (1)
is [11, Cor. 2.13] and (2) follows directly from Example 2.11 applied to the
diagram X ← ∗ → X over X . The statement (3) is [11, Prop. 4.6] and (4)
is [11, Cor. 4.3]. Finally, (5) follows from (4) applied to the fiber sequence
ΩX → ∗ → X .

Example 2.13 (groupoids are effective). Let Top be the standard model cate-
gory of topological spaces. It is classically known thatTop satisfies homotopical
descent. As an instance of (HD2), let X• be a Reedy cofibrant simplicial space
such that for each u : [n]→ [m], the square

Xm+1

dm+1

��

ū∗

// Xn+1

dn+1

��

Xm
u∗

// Xn

is a homotopy pullback. Here ū(i) = u(i) for i ≤ n and ū(n+1) = m+1. Then
the square

X1
d0

//

d1

��

X0

��

X0
// |X•|

is also a homotopy pullback. Similar assertions hold for more general model
categories satisfying (HD2).
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Example 2.14. Since sSet satisfies (HD1) and (HD2), so do also the model
categories sPSh∆(C) for any small simplicial category C. It is easy to see that
these properties are invariant under homotopy left exact Bousfield localizations.
Therefore every model topos satisfies homotopical descent.

Theorem 2.15 (Rezk [31]). A presentable model category is a model topos if
and only if it satisfies homotopical descent.

Proof. See [31, Thm. 6.9].

Remark 2.16. There is an analogue of this characterization as well as a Giraud-
type theorem for ∞-topoi in [22, Thm. 6.1.0.6]. In the setting of model cate-
gories, Giraud theorems are also obtained by Rezk [31] and Toën–Vezzosi [34].

Example 2.17 (disjoint coproducts). Let M be a model topos, 0 denote the ini-
tial object, and Y, Z be cofibrant objects in M. Then the (homotopy) pushout
square

0 //

��

Y

��

Z // Y
⊔
Z

is also a homotopy pullback. The proof is analogous to [22, Prop. 6.1.3.19(iii)]
or can easily be derived directly from Definition 2.7.

2.4 Forcing model topoi via localization

Let M be a model topos and S a set of morphisms in M. While the left
Bousfield localization MS is not a model topos in general, there is a closest
model topos associated with (M, S). This is simply given by localizing further
at the smallest class generated by the S-local equivalences which is closed under
homotopy pullbacks in M. The set-theoretical problem of the existence of this
Bousfield localization can be solved similarly as for the analogous statement
about ∞-topoi [22, Prop. 6.2.1.2].

Theorem 2.18. Let M be a model topos and S a set of morphisms in M.
Suppose that M is a left proper combinatorial model category. Then there is a
set of morphisms S̃ in M such that:

1. The class of S̃-local equivalences contains the S-local equivalences.

2. The left Quillen functors

idS̃ : M→MS̃

idS̃/S : MS →MS̃

are homotopy left exact. As a consequence, MS̃ is again a model topos.
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3. For every other set of morphisms T in M satisfying (1)-(2), the functor
idT/S̃ : MS̃ →MT is a homotopy left exact left Quillen functor.

Proof. It suffices to show that the smallest class of morphisms which satisfies
the properties:

(i) it contains S and the weak equivalences in M,

(ii) it has the 2-out-of-3 property,

(iii) it is closed under homotopy pushouts in M,

(iv) it is closed in M→ under homotopy colimits in M,

and

(v) it is closed under homotopy pullbacks in M,

is generated by a set of morphisms S̃ with respect to properties (i)-(iv) only
(since these properties specify the classes of weak equivalences of left Bousfield
localizations). This is proved for ∞-topoi in [22, Prop. 6.2.1.2]. The proof for
model topoi is similar or can easily be obtained indirectly by passing to the
associated ∞-topos and back.

We emphasize the special dependence of S̃ on M that comes from property (v).
It is easy to conclude that this homotopy left exact Bousfield localization also
has the following universal property and therefore may be regarded as a kind
of “topofication” of the pair (M, S).

Proposition 2.19. Let M be a model topos and S a set of morphisms. Suppose
that F : M → N is a left Quillen functor which is homotopy left exact. Then
F descends to a left Quillen functor on MS̃ if and only if it descends to a left
Quillen functor on MS, that is, if and only if the left derived functor of F sends
S to isomorphisms in Ho(N). In this case, the induced left Quillen functors
are again homotopy left exact.

Proof. Suppose that F descends to a left Quillen functor on MS . Let T be the
class of morphisms in M which map under F ◦ (−)c to weak equivalences in
N. Here (−)c denotes a cofibrant replacement functor in M. Then the class T
satisfies the properties (i)-(v) listed in the proof of Theorem 2.18: (i) holds by
assumption, (ii) is obvious, (iii)-(iv) hold because F is a left Quillen functor,
and property (v) is satisfied because F is homotopy left exact. Thus, S̃ ⊆ T
and the result follows.

2.5 Slice categories and restricted homotopical descent

Let M be a model topos and X ∈ M. By [31, Cor. 6.10], the slice model
category M/X is again a model topos. On the other hand, the slice model
category X/M is not a model topos in general. (For a quick verification of
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this claim, simply choose a homotopy pushout with upper left corner X , which
is not a homotopy pullback, and apply Example 2.17.) However, this slice
model category still satisfies the homotopical descent properties if we restrict
to diagrams over contractible categories.

Proposition 2.20. Let M be a model topos and X a cofibrant object in M.
Then the model category X/M satisfies the homotopical descent properties
(HD1) and (HD2) of Definition 2.9 for each category I whose nerve is weakly
contractible.

Proof. We claim that the forgetful functor U : X/M→M preserves and detects
all homotopy limits and homotopy colimits over contractible categories. U is
right Quillen and it is easy to see that it preserves and detects (homotopy)
limits. Note that U does not preserve colimits in general (but it preserves
connected colimits). Without loss of generality, we may assume that M is
simplicial. Then the standard model for the homotopy colimit functor gives
the following comparison: for a diagram F : I → X/M, there is a homotopy
pushout in M

X ⊗N(I) //

��

X

��

hocolimI(UF ) // hocolimIF.

As a consequence, U preserves and detects homotopy colimits when N(I) is
weakly contractible. Then the required result is a direct consequence of the
homotopical descent properties of M.

The following proposition shows that a stable model category automatically
fulfills the restricted descent properties of the previous proposition.

Proposition 2.21. A stable model category M satisfies the homotopical de-
scent properties (HD1) and (HD2) of Definition 2.9 for each category I whose
nerve is weakly contractible.

Proof. According to the defining property of stable model categories, a com-
mutative square is a homotopy pushout if and only if it is a homotopy pullback.
Suppose that Y : I⊲ → M is a homotopy colimit diagram, X : I⊲ → M is a
functor and φ : X → Y is a natural transformation such that for every i → j
in I the diagram

X(i) //

��

X(j)

��

Y (i) // Y (j)

is a homotopy pushout. Hence, the diagram Z : I → M which consists of
the (weakly equivalent) vertical homotopy cofibers hocofib(X(i) → Y (i)) is
homotopically constant. First, we note that X is a homotopy colimit diagram
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if and only if the canonical map hocolimZ → hocofib(X(∞) → Y (∞)) is a
weak equivalence. Secondly, the diagram

X(i) //

��

X(∞)

��

Y (i) // Y (∞)

is a homotopy pushout if and only if Z(i) → hocofib(X(∞) → Y (∞)) is a
weak equivalence. Hence, it remains to show that Z(i)→ hocolimZ is a weak
equivalence for all i ∈ I. This follows from [9, Lemma 27.8] given that the
nerve of I is weakly contractible.

2.6 Right properness and (HD1)

The defining property of a model topos is partially related to the existence of a
right proper small presentation sPSh∆(C)S . Right properness is equivalent to
the property that for every weak equivalence f : X → Y , the Quillen adjunction

f! : M/X ⇄ M/Y : f∗,

which is defined by composition with f and pullback respectively, is a Quillen
equivalence. In particular, right properness depends only on the underlying
category with weak equivalences. We emphasize that right properness is not
invariant under Quillen equivalences (for example, the Bergner model struc-
ture on simplicially enriched categories is right proper, whereas the Quillen
equivalent Joyal model structure on simplicial sets is not right proper).

Proposition 2.22. Every model topos admits a right proper small presenta-
tion.

Proof. Let M be a model topos and (C, S, F ) a small presentation of M where
(C, S) is a model site. Consider a pullback square in sPSh∆(C)S

X
g′

//

��

E

p

��

A
g

// B

where p is an S-local fibration and g an S-local equivalence. Then p is also a
fibration in sPSh∆(C). Since sPSh∆(C) is right proper, it follows that the square
is also a homotopy pullback in sPSh∆(C). Then it is also a homotopy pullback
in sPSh∆(C)S and therefore g′ is an S-local equivalence, as required.

The following partial converse shows that (HD1) is also a consequence of right
properness. We note that (HD1) asserts that homotopy colimits commute
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with homotopy pullbacks and thus can be regarded as a homotopy theoretic
analogue of the property that colimits are universal. We note that (HD2) does
not follow from the existence of a right proper small presentation in general
(see, e.g., Proposition 4.12 for an example).

Theorem 2.23. A presentable model category M satisfies (HD1) if and only
if it admits a right proper small presentation.

Proof. A direct proof of the “if”-part can be given along the lines of [30]. A
complete proof can be found in [15, Prop. 7.8 and Thm. 7.10].

3 Local model structures

3.1 The U-local model structure

Let C be a small simplicial category whose underlying ordinary category C0 is
endowed with a Grothendieck topology τ . For technical convenience, we shall
assume that the associated topos of sheaves on C0 has enough points. Let
Sh(C0) denote the Grothendieck topos of sheaves on (the ordinary site) C0 and
fix a small collection of enough points x∗

i : Sh(C0) → Set. We consider the
composite functors

x̂∗
i : PSh(C0)

α
−→ Sh(C0)

x∗

i−→ Set

where α denotes the sheafification functor for the τ -topology. Each functor x̂∗
i

induces a functor sPSh(C0)→ sSet which we denote by the same symbol.

We recall that U : sPSh∆(C) → sPSh(C0) denotes the forgetful functor. A
morphism η : F → G in sPSh∆(C) is called a local weak equivalence if it induces
weak equivalences of simplicial sets

(x̂∗
iU)(η) : (x̂

∗
iU)(F )→ (x̂∗

iU)(G)

for every point x̂∗
i . This class of weak equivalences does not depend on the

choice of points x∗
i and it can be equivalently defined in terms of sheaves of

homotopy groups (see [19]). An objectwise weak equivalence is also a local
weak equivalence [19, Lemma 9].

A morphism η : F → G is a global fibration if it has the right lifting property
with respect to all morphisms which are projective cofibrations and local weak
equivalences. If η : F → G is a global fibration, then it is also an objectwise
fibration and (x̂∗

iU)(η) is a fibration of simplicial sets for each x̂∗
i . This follows

from the fact that x̂∗
iU preserve finite limits and epimorphisms. If C is an

ordinary site, the corresponding notion of a globally fibrant object essentially
encodes the property of being a homotopy sheaf (with respect to τ -hypercovers).
We refer to [12] and [19] for background on homotopical sheaf theory in the
case where C is an ordinary (non-simplicial) category.
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Theorem 3.1. Let C be a small simplicial category whose underlying ordinary
category C0 is endowed with a Grothendieck topology τ . Then the classes of
projective cofibrations, local weak equivalences and global fibrations define a
proper simplicial combinatorial model structure on the category sPSh∆(C).

Proof. We show that the conditions of Smith’s recognition theorem for
model structures on locally presentable categories are satisfied (see [22,
Prop. A.2.6.10], [29, Thm. 4.1]).
The class of local weak equivalences is the intersection of the preimages of the
class of weak equivalences between simplicial sets along the small collection
of accessible functors x̂∗

iU for each point x̂∗
i . The class of weak equivalences

between simplicial sets, regaded as a full subcategory of sSet→, is accessible
and acccessibly embedded [22, Cor. A.2.6.8], [28]. It follows that the class of
local weak equivalences is accessible and accessibly embedded in sPSh∆(C)→,
regarded as a full subcategory. It also has the 2-out-of-3 property.
A morphism which has the right lifting property with respect to the projective
cofibrations is an objectwise weak equivalence and therefore also a local weak
equivalence. Lastly, the class of local weak equivalences which are monomor-
phisms is cofibrantly closed (that is, it is closed under pushouts, transfinite
compositions and retracts), since the functors of points x̂∗

iU preserve colim-
its, monomorphisms and weak equivalences, and the corresponding property
is valid in sSet. Hence the intersection of projective cofibrations and local
weak equivalences is also cofibrantly closed. This completes the proof of the
existence of the model structure.
The compatibility with the simplicial structure and left properness follow easily
from Theorem 2.1. Right properness follows from the right properness of sSet
given that the functors x̂∗

iU preserve pullbacks and send global fibrations to
fibrations of simplicial sets.

This model category will be denoted by sPSh∆(C)Uτ . We will refer to it as the
U-local model structure on sPSh∆(C) in order to emphasize that the simplicial
structure and the Grothendieck topology are given independently of each
other. We note that it is a left Bousfield localization of the projective model
category sPSh∆(C) at the class of local weak equivalences.

In the case of Theorem 3.1 where C is an ordinary category, we will usually
denote the model category sPSh∆(C)Uτ by sPSh(C, τ) and refer to it as the
local model structure (see [7, 19]).

Remark 3.2. As the proof of Theorem 3.1 suggests, it is also possible to choose
larger classes of cofibrations. Any set of monorphisms which contains the gen-
erating projective cofibrations generates a class of cofibrations for a model
structure on sPSh∆(C) where the weak equivalences are the local weak equiv-
alences.

We show next that the U-local model structures are model topoi. This is well
known in the case of ordinary Grothendieck sites (see [30]).
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Theorem 3.3. Let C be a small simplicial category whose underlying ordinary
category C0 is endowed with a Grothendieck topology τ . Then the U-local model
category sPSh∆(C)Uτ is a model topos.

Proof. By Proposition 2.8, it suffices to show that for every pullback square in
sPSh∆(C)

X
g′

//

��

Y

p

��

X ′ g
// Y ′

where p is a objectwise fibration and g is a local weak equivalence, then g′ is
also a local weak equivalence. This is a consequence of the right properness of
sSet using the fact that the functors of points x̂∗

i preserve pullbacks and send
objectwise fibrations to fibrations of simplicial sets.

Remark 3.4. (Naturality) Let C and C′ be small simplicial categories whose
underlying categories C0 and C′0 are equipped with Grothendieck topologies τ
and τ ′. Let F : C → C′ be a simplicial functor which restricts to a morphism of
sites F0 : (C0, τ) → (C′0, τ

′). There is a Quillen adjunction between projective
model categories

F! : sPSh
∆(C) ⇄ sPSh∆(C′) : F ∗.

However, the functor sPSh∆(C)Uτ
F!−→ sPSh∆(C′)Uτ ′ is not a left Quillen functor

in general. To see this, let C be a simplicial category with underlying category
C0 considered as a discrete simplicial category. There is a canonical simplicial
functor

F : C0 → C

which is the identity on objects. The associated adjunction (F!, F
∗) can be

identified with the adjunction (H ,U). But the adjunction

H : sPSh(C0, τ) ⇄ sPSh∆(C)Uτ : U

is not a Quillen adjunction in general (see Corollary 5.7).

Remark 3.5. The functor U : sPSh∆(C)Uτ → sPShinj(C0, τ) is a left Quillen
functor if we use to the local injective model category sPShinj(C0, τ) where the
cofibrations are the monomorphisms and the weak equivalences are the local
weak equivalences defined as before. U has a right adjoint and it preserves
monomorphisms and weak equivalences. Moreover, U preserves and detects
homotopy pullbacks. To see this, it suffices to note that homotopy pullbacks
in these model categories can be calculated by replacing morphisms by local
fibrations, that is, morphisms which restrict to fibrations of simplicial sets at
every point x∗

i of Sh(C0).

Documenta Mathematica 23 (2018) 1757–1797



Model Topoi and Motivic Homotopy Theory 1773

3.2 Model topoi from Grothendieck topologies on Ho(C)

General constructions of model topoi (or ∞-topoi) that arise from a
Grothendieck topology were introduced and studied in [34] and [22]. In that
context, a Grothendieck topology on a simplicial category (or ∞-category) C
is a Grothendieck topology on the associated homotopy category Ho(C). This
context differs from our main example of a model topos, the U-local model
topos (see Theorem 3.3), because there the Grothendieck topology and the
simplicial enrichment are given independently. The purpose of this subsection
is to review some parts of the theory of model topoi from [34] before we discuss
the connection with the U-local model topoi in the next subsection.

Let C be a small simplicial category with a Grothendieck topology τ̄ on Ho(C).
For each simplicial presheaf F ∈ sPSh∆(C), there is an associated sheaf of con-
nected components π̃0(F ) on Ho(C) and sheaves of homotopy groups π̃n(F, s) on
Ho(C/x), for n ≥ 1 and s ∈ π̃0(F (x)). (These are denoted π0(F ) and πn(F, s),
respectively, in [34].) These are the τ̄ -sheaves associated to taking homotopy
groups objectwise. A morphism η : F → G in sPSh∆(C) is a π̃∗-equivalence if
it induces isomorphisms of sheaves

π̃0(F )→ π̃0(G)

π̃n(F, s)→ π̃n(G, η(s))

for all n ≥ 1 and sections s ∈ π̃0(F (x)) (see [34, Sect. 3]). We say that
η : F → G is a global fibration if it has the right lifting property with respect
to all morphisms which are projective cofibrations and π̃∗-equivalences. The
corresponding notion of a globally fibrant object encodes the property of being
a homotopy sheaf with respect to hypercovers defined by τ̄ (see [34, 3.4]).

Theorem 3.6 (Toën–Vezzosi [34]). Let C be a small simplicial category with a
Grothendieck topology τ̄ on Ho(C). Then the classes of projective cofibrations,
π̃∗-equivalences and global fibrations define a proper simplicial combinatorial
model structure on the category sPSh∆(C).

Proof. See [34, Thm. 3.4.1].

We denote this model category by sPSh∆(C, τ̄ ). The left Quillen functor

id: sPSh∆(C)→ sPSh∆(C, τ̄)

is homotopy left exact and therefore sPSh∆(C, τ̄) is a model topos [34,
Prop. 3.4.10].

Remark 3.7. Let C be an ordinary category, considered as a discrete simplicial
category, and let τ = τ̄ be a Grothendieck topology on C = Ho(C). In this
case, the model structure sPSh∆(C, τ̄) from Theorem 3.6 agrees with the U-
local model structure sPSh∆(C)Uτ from Theorem 3.1 and both agree with the
local model structure on sPSh(C). In particular, there is no conflict with the
notation sPSh(C, τ) introduced before Remark 3.2.
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Moreover, we have the following classification theorem.

Theorem 3.8 (Toën–Vezzosi [34]). Let C be a small simplicial category. Then
there is a bijective correspondence between Grothendieck topologies τ̄ on Ho(C)
and homotopy left exact left Bousfield localizations of sPSh∆(C) which are t-
complete.

Proof. See [34, Thm. 3.8.3].

The notion of t-completeness (or hypercompleteness [22]) refers to hyperdescent
as opposed to plain descent with respect to the Čech covers. In other words, it
means that the class of weak equivalences can be specified in terms of homotopy
sheaves or, equivalently, that it can be detected by truncated objects. We refer
to [34, 22] for more details.

Remark 3.9. The ∞-topoi of sheaves in [22] are defined in terms of Čech de-
scent, that is, they are obtained as localizations of∞-categories of presheaves at
the collection of covering sieves that define the Grothendieck topology. These
∞-topoi define topological localizations [22, Def. 6.2.1.4, Prop. 6.2.2.7]. Lurie
[22] proved a related classification result saying that there is a bijective cor-
respondence between Grothendieck topologies τ̄ on Ho(C) and topological lo-
calizations of the presentable ∞-category of presheaves associated to C [22,
Prop. 6.2.2.17]. The model topos of Theorem 3.6 corresponds to the hyper-
completion (or t-completion) of the ∞-topos of sheaves in the sense of Lurie
[22].

Remark 3.10. We recall the definition of the bijective correspondence in The-
orem 3.8. One direction is given by the construction of Theorem 3.6. For the
other direction, consider a homotopy left exact left Bousfield localization

idS : sPSh
∆(C)→ sPSh∆(C)S

from which we want to extract a Grothendieck topology τ̄ on Ho(C). The
adjunction (π0 ⊣ discrete) of functors between simplicial sets and sets gives
rise to a natural simplicial functor

C
η
−→ Ho(C)

and hence to an adjunction

η! : sPSh
∆(C) ⇄ sPSh∆(Ho(C)) ∼= sPSh(Ho(C)) : η∗

between the categories of simplicially enriched presheaves on the respective
simplicial categories. Consider the full subcategory PSh(Ho(C)) ⊆ sPSh(Ho(C))
of set-valued presheaves. Then, a sieve on X ∈ Ho(C),

U  yHo(C)(X),

is a τ̄ -covering sieve if
η∗(U)  η∗(yHo(C)(X))

is an S-local equivalence in sPSh∆(C). Here y denotes the Yoneda embedding.
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3.3 Comparing Grothendieck topologies

Let C be a small simplicial category. The purpose of this subsection is to
compare Grothendieck topologies τ on the underlying category C0 of C with
Grothendieck topologies τ̄ on Ho(C), as considered by Toën–Vezzosi [34]
and Lurie [22], with a view towards comparing the U-local model topos
sPSh∆(C)Uτ of Theorem 3.3 with the Toën–Vezzosi model topos sPSh∆(C, τ̄ )
of Theorem 3.6. These two constructions of model topoi differ in general
because in the first case the definition of the covering sieves does not take into
account the simplicial enrichment.

First, using the bijective correspondence from Theorem 3.8, we can identify the
Grothendieck topology τ̄ on Ho(C) that is associated with the U-local model
topos. Let C be a small simplicial category whose underlying ordinary category
C0 is endowed with a Grothendieck topology τ . The triple of functors (π0 ⊣
discrete ⊣ −0) between simplicial sets and sets induces two natural simplicial
functors

C0
ǫ
−→ C

η
−→ Ho(C)

whose composition is the localization functor γ : C0 → Ho(C). We obtain two
simplicially enriched adjunctions of the associated presheaf categories

sPSh(C0) ∼= sPSh∆(C0)
ǫ!
−−→←−−
ǫ∗

sPSh∆(C)
η!

−−→←−−
η∗

sPSh∆(Ho(C)) ∼= sPSh(Ho(C))

(2)
with composite adjunction

γ! : sPSh(C0) ⇄ sPSh(Ho(C)) : γ∗

where the right adjoints are given by precomposition with (the opposite of) the
respective functor. We use the same notation to denote the restriction of this
last adjunction to the set-valued presheaf categories

γ! : PSh(C0) ⇄ PSh(Ho(C)) : γ∗

Note that the adjunction (ǫ!, ǫ
∗) is identified with the adjunction (H ,U) from

(1), and that the adjunction (η!, η
∗) was already considered in Remark 3.10.

Following the description of the bijection in Theorem 3.8 as explained in Re-
mark 3.10, we say that a sieve on X ∈ Ho(C), U  yHo(C)(X), is a [τ ]-covering
sieve if

η∗(U)  η∗(yHo(C)(X))

is a U-local equivalence in sPSh∆(C). Let [τ ] denote the collection of
[τ ]-covering sieves. By Theorem 3.3 and using similar arguments as in the defi-
nition of the bijection in Theorem 3.8, it follows that [τ ] defines a Grothendieck
topology. Indeed the left exact Bousfield localization from Theorem 3.3 induces
a left exact localization of the category of presheaves on Ho(C) after restricting
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to the 0-truncated objects. By definition, this left exact localization corre-
sponds to the Grothendieck topology [τ ] (see also [34]).
We write ατ for the τ -sheafification functor on PSh(C0) and call a morphism in
PSh(C0) a τ-isomorphism if it becomes an isomorphism after τ -sheafification.
Likewise, we write α[τ ] to denote the [τ ]-sheafification functor on PSh(Ho(C))
and say that a morphism in PSh(Ho(C)) is a [τ ]-isomorphism if it becomes an
isomorphism after [τ ]-sheafification.

Remark 3.11. Using the composite adjunction (2) and the identification U ∼=
ǫ∗, a sieve U  yHo(C)(X) is a [τ ]-covering sieve if and only if γ∗(U) 

γ∗(yHo(C)(X)) is a τ -isomorphism.

Lemma 3.12. Let C be a small simplicial category whose underlying ordinary
category C0 is endowed with a Grothendieck topology τ . Then a morphism
f : F → G in PSh(Ho(C)) is a [τ ]-isomorphism if and only if the morphism in
PSh(C0)

γ∗(f) : γ∗(F )→ γ∗(G)

is a τ-isomorphism.

Proof. This follows from unwinding the definitions. The [τ ]-sheafification func-
tor α[τ ] : PSh(Ho(C)) → Sh(Ho(C), [τ ]) is identified by definition with the re-

striction of the homotopy left exact left Bousfield localization sPSh∆(C) →
sPSh∆(C)Uτ to the 0-truncated objects. Thus, f : F → G is a [τ ]-isomorphism
if and only if η∗(f) : η∗(F ) → η∗(G) is a weak equivalence in sPSh∆(C)Uτ ,
that is, if and only if the morphism γ∗(f) : γ∗(F ) → γ∗(G) is a local weak
equivalence in sPSh(C0), which means that γ∗(f) is a τ -isomorphism.

Remark 3.13. Using [21, Prop. C2.3.18], the previous Lemma 3.12 implies
that the Grothendieck topology [τ ] makes the functor γ : C0 → Ho(C) cover-
reflecting. This means that given a [τ ]-covering sieve U  yHo(C)(X), then the
sieve on X ∈ C which consists of all f : V → X in C such that [f ] ∈ U is a
τ -covering sieve. Moreover, the right Kan extension

γ∗ : PSh(C0)→ PSh(Ho(C))

sends τ -sheaves to [τ ]-sheaves (see [21, Prop. C2.3.18], [2, III.2]).

Proposition 3.14. Let C be a small simplicial category whose underlying ordi-
nary category C0 is endowed with a Grothendieck topology τ . Then the U-local
model category sPSh∆(C)Uτ is the same as sPSh∆(C, [τ ]).

Proof. We recall that a morphism f : F → G in sPSh∆(C) is a U-local weak
equivalence if U(f) is a π̃∗-equivalence in sPSh(C0, τ). We need to compare
this class of morphisms with the class of π̃∗-equivalences in sPSh∆(C, [τ ]).
For our purposes here, it will be more convenient to use the characteriza-
tion of π̃∗-equivalences in sPSh∆(C, [τ ]) which does not involve basepoints [34,
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Lemma 3.3.3]. According to this, an objectwise fibration F → G between ob-
jectwise fibrant objects in sPSh∆(C, [τ ]) is a π̃∗-equivalence if for any n ≥ 0,
the induced morphism

F∆n

→ F ∂∆n

×G∂∆n G∆n

is a π̃0-isomorphism (with respect to [τ ]). Note that there is a similar char-
acterization of the weak equivalences in sPSh(C0, τ). Then it follows from
Lemma 3.12 that a morphism F → G in sPSh∆(C) is a π̃∗-equivalence in
sPSh∆(C, [τ ]) if and only if it is a U-local weak equivalence. The result fol-
lows.

The Grothendieck topology [τ ] on Ho(C) admits a more explicit description as
follows. Given a τ -covering sieve J : U  yC0(X) on X ∈ C0 which is generated
by {fα : Xα → X}, let

[J ] : [U ]  yHo(C)(X)

denote the sieve on X ∈ Ho(C) which is generated by {γ(fα) : Xα → X}.

Lemma 3.15. Let C be a small simplicial category whose underlying ordinary
category C0 is endowed with a Grothendieck topology τ . A sieve j : U 

yHo(C)(X) is a [τ ]-covering sieve if and only if it is of the form [J ] for some

τ-covering sieve J : Ũ  yC0(X).

Proof. Suppose that j is a [τ ]-covering sieve. Consider the pullback of
presheaves on C0,

Ũ
��

J

��

// // γ∗(U)
��

γ∗(j)

��

yC0(X) // // γ∗(yHo(C)(X))

and apply τ -sheafification to obtain a new pullback square

ατ (Ũ)
��

∼=

��

// // ατγ
∗(U)

∼=

��

ατ (yC0(X)) // // ατγ
∗(yHo(C)(X))

whence it follows that J is a τ -covering sieve (cf. Remark 3.13). Note that the

composite morphism Ũ → γ∗(yHo(C)(X)) factors as follows

Ũ ։ γ∗[Ũ ]  γ∗(yHo(C)(X))

where the first morphism is an epimorphism. Comparing with the factorization
in the first diagram above, it follows that [J ] = j.
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For the converse, suppose that J : U  yC0(X) is a τ -covering sieve. Consider
the pullback U∆ of the following presheaves on C0,

U
""

J
""❊

❊❊
❊❊

❊❊
❊❊
// //❴❴❴❴

'' ''

U∆
��

J∆

��

// // γ∗([U ])
��

γ∗[J]

��

yC0(X) // // γ∗(yHo(C)(X))

The sieve J∆ is again a τ -covering sieve since it contains J . Applying τ -
sheafification ατ , we obtain a pullback as follows

ατ (U∆)
��

∼=

��

// // ατγ
∗(([U ])
��

ατγ
∗[J]

��

ατ (yC0(X)) // // ατγ
∗(yHo(C)(X))

So ατ (γ
∗[J ]) is an isomorphism and therefore γ∗[J ] is a τ -covering sieve, as

required.

The correspondence J 7→ J∆ that appears in the proof of Lemma 3.15 can
be used to elucidate the main difference between the topologies τ and [τ ].
This correspondence sends a covering sieve J to a larger covering sieve which
consists of all elements which are homotopic to an element in J . It may be
considered as a kind of homotopical thickening of J . Note that [J ] = [J∆]
and every [τ ]-covering sieve is [J∆] for a unique covering sieve of the form J∆.
In particular, [τ ] depends only on the homotopical thickenings of τ -covering
sieves, i.e., the covering sieves of the form J∆. Moreover, the Grothendieck
topology generated by the sieves of the form J∆, for a τ -covering sieve J , is
the unique smallest Grothendieck topology on C0 such that γ : C0 → Ho(C) is
cover-reflecting (see [21, Lemma C2.3.19]).

Furthermore, Lemma 3.15 shows that [τ ] is the smallest Grothendieck topology
such that the localization functor γ : C0 → Ho(C) preserves covering sieves (see
[21, Lemma C2.3.12]). But γ is not a morphism of sites in general because it
fails to satisfy the necessary flatness conditions (see, e.g., [21, Rem. C2.3.7]).
We have the following results about the comparison between the different sheaf
conditions.

Proposition 3.16. Let C be a small simplicial category whose underlying or-
dinary category C0 is endowed with a Grothendieck topology τ . Let F be an
object of PSh(Ho(C)). If γ∗(F ) is a τ-sheaf (resp. τ-separated presheaf) on C0,
then the presheaf F is a [τ ]-sheaf (resp. [τ ]-separated presheaf). Conversely, if
F is a [τ ]-separated presheaf, then γ∗F is a τ-separated presheaf.
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Proof. Let [J ] : [U ]  yHo(C)(X) be a [τ ]-covering sieve on X ∈ Ho(C). We
need to show that the top map in the diagram

F (X) ∼= hom(yHo(C)(X), F ) // hom([U ], F )

��

(γ∗F )(X) ∼= hom(yC0(X), γ∗F )
∼=

// hom(U, γ∗F )

is an isomorphism (resp. monomorphism). The vertical maps are induced by γ∗

and the morphisms yC0(X) → γ∗yHo(C)(X) and U → γ∗[U ], respectively. The
bottom map is an isomorphism (resp. monomophism) because γ∗F is a τ -sheaf
(resp. τ -separated presheaf). Therefore the top map is a monomorphism. Since
γ∗ is fully faithful and U → γ∗[U ] is an epimorphism, the right vertical map is
injective and the result follows. Conversely, if the top map is a monomorphism,
then so is the bottom map as well.

Remark 3.17. The converse statement for the sheaf condition is false in general,
that is, γ∗ : PSh(Ho(C)) → PSh(C) does not preserve sheaves in general (see
Example 3.19 below). Given a presheaf F on Ho(C), then γ∗F is a τ -sheaf if
and only if F is orthogonal with respect to the set of morphisms γ!(τ) where

γ! : PSh(C0)→ PSh(Ho(C))

is the left adjoint of γ∗ (see also [2, III.1]). But note that for a τ -covering sieve
J : U  yC0(X), the induced epimorphism

q : γ!(U) ։ [U ]

is not a monomorphism in general. In general, the [τ ]-sheaf condition, i.e.,
orthogonality with respect to [τ ], is weaker than the τ -sheaf condition.

Remark 3.18. We note the following immediate consequence of Lemma 3.12
and Proposition 3.16. If F is a presheaf on Ho(C), then γ∗(α[τ ](F )) is a τ -sheaf
if and only if it is the τ -sheafification of γ∗(F ).

Example 3.19. Let C be a simplicial category with only two objects x and y and
non-identity morphisms only from x to y. Suppose that τ is the Grothendieck
topology on C0 which is given by the sieve generated by all the morphisms
{fα : x → y}. If the simplicial set mapC(x, y) is connected, then Ho(C) is
equivalent to [1] = {0 < 1}, regarded as a category. In this case, a presheaf
F : Ho(C)op → Set is a [τ ]-sheaf if and only if the restriction map F (y)→ F (x)
is an isomorphism. On the other hand, a constant presheaf F : Cop0 → Set is
not a τ -sheaf in general.

4 Motivic spaces

4.1 The enriched category SmS

Let S be a noetherian scheme of finite Krull dimension. Let SmS be the cate-
gory of smooth schemes of finite type over S. The category SmS is essentially
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small and we implicitly fix a small skeleton.

Consider the cosimplicial object ∆∆(-) : ∆→ SmS defined by

∆∆n = SpecS[X0, . . . , Xn]/(1−
∑

Xi)

and the usual coface and codegeneracy maps. This defines the structure of a
simplicial category SmS on SmS by [16, Lemma 1.1] where

mapSmS
(A,B)n = homSmS

(A×∆∆n, B).

It was observed in [16, Lemma 1.4] that the unit of the Quillen adjunction

H : sPSh(SmS) ⇄ sPSh∆(SmS) : U (3)

is given by the Sing-construction of [24], and we have

UH (F )(U)n = Sing(F )(U)n = F (U ×∆∆n)n

for F ∈ sPSh(SmS) and U ∈ SmS .
We emphasize that every enriched simplicial presheaf F ∈ sPSh∆(SmS) is
A1-(homotopy) invariant, i.e.,

F (U)
pr∗

−−→ F (U × A
1)

is a weak equivalence of simplicial sets for every U ∈ SmS [16, Lemma 2.8].

Consider the set of morphisms {U×A1 pr
−→ U | U ∈ SmS} and let sPSh(SmS)A1

be the left Bousfield localization of the projective model category sPSh(SmS) of
Theorem 2.1 at this set of morphisms. An object F ∈ sPSh(SmS)A1 is fibrant
if and only if it is objectwise fibrant and A1-invariant.

Proposition 4.1. There is a Quillen equivalence

H : sPSh(SmS)A1 ⇄ sPSh∆(SmS) : U .

The right adjoint U detects weak equivalences and fibrations.

Proof. The adjunction (H ,U) is a simplicial adjunction by construction and
the respective model structures in the Proposition are both simplicial and left
proper. To see that it defines a Quillen adjunction, it suffices to show that H

preserves cofibrations and U preserves fibrant objects (see [22, Cor. A.3.7.2]).
The first is clear as left Bousfield localizations do not change the cofibrations
and (H ,U) is a Quillen adjunction between the projective model structures.
The right adjoint U sends fibrant objects to A1-invariant fibrant objects. Hence
there is an induced Quillen adjunction as claimed.
This Quillen adjunction is also a Quillen equivalence because the canonical map
A→ Sing(A) is an A1-equivalence as implied by [24, Cor. 2.3.8].
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Remark 4.2. As a consequence of the last proposition, there is an equivalence
between the homotopy category of sPSh∆(SmS) and the full subcategory of the
homotopy category of sPSh(SmS) consisting of objects of the form Sing(X) for
some X ∈ sPSh(SmS). In particular, this means that a natural transformation
between two such simplicial presheaves is equivalent to a simplicially enriched
one, uniquely up to homotopy. This observation extends to show also a weak
equivalence (i.e., DK-equivalence) between the associated simplicial categories
of fibrant-cofibrant objects.

Remark 4.3. Since sPSh∆(SmS) is a model topos so is sPSh(SmS)A1 , too.
However, the left Bousfield localization

idA1 : sPSh(SmS)→ sPSh(SmS)A1 (4)

is not homotopy left exact. This can be seen as a consequence of the fact that
the motivic homotopy theory is not a model topos (see Proposition 4.12 below).
Note that a fibrant replacement functor for sPSh(SmS)A1 is given by the Sing-
functor (post-composed with an objectwise fibrant replacement functor).

4.2 Models for the motivic homotopy theory

The motivic homotopy category H was constructed by Morel and Voevodsky
in [24]. Although they worked with an injective local model structure on the
category of simplicial sheaves on SmS , the motivic homotopy category H can
be equivalently established by performing two left Bousfield localizations on
the projective model category sPSh(SmS) of Theorem 2.1 (see also [7]). The
first localization of sPSh(SmS) yields the model category sPSh(SmS)A1 which
was already considered in Proposition 4.1. In order to describe the second
localization, we recall the definition of a Nisnevich distinguished square.

Definition 4.4. A Nisnevich distinguished square is a pullback diagram in
SmS

α =




W

��

// Y

p

��

U
i

// X




such that i is an open immersion, p is an étale morphism and the induced

morphism p−1((X \ i(U))red)
∼=
−→ (X \ i(U))red is an isomorphism.

For each Nisnevich distinguished square α as above, let P (α) → X in
sPSh(SmS) be the morphism from the pushout P in sPSh(SmS) of the up-
per part U ← W → Y of the square to its lower right corner X . Here all
schemes are identified with the associated representable presheaves. Consider
the set of morphisms

Nis = {(P (α)→ X)}α (5)

for each Nisnevich distinguished square α.
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Let sPSh(SmS)A1,Nis denote the left Bousfield localization of the model cate-
gory sPSh(SmS)A1 at the set Nis. Following Blander [7], the model category
sPSh(SmS)A1,Nis is Quillen equivalent to the model category of motivic spaces
as defined by Morel–Voevodsky in [24]. We will refer to sPSh(SmS)A1,Nis as the
motivic model category. Accordingly, the meaning of motivic fibrant objects,
etc., will refer to this particular choice of model category for motivic homotopy
theory. Furthermore, Lmot will denote a fibrant replacement functor for this
model structure.

Proposition 4.5. The motivic model category satisfies the homotopical descent
condition (HD1).

Proof. This model category is right proper by [7, Lemma 3.4]. Then the result
follows from Theorem 2.23.

Instead of the two-step left Bousfield localization

sPSh(SmS)→ sPSh(SmS)A1 → sPSh(SmS)A1,Nis,

we may likewise first localize the objectwise projective model category
sPSh(SmS) at the set Nis from (5) to obtain a model category sPSh(SmS)Nis

and afterwards invert the A1-equivalences. We will refer to sPSh(SmS)Nis as
the Nisnevich local model category. The functor LNis will denote a fibrant
replacement functor for this model structure.

We record the following well known theorem whose proof follows from [36,
Thm. 2.2] and [36, Prop. 2.17] together with [7, Lemma 4.3].

Theorem 4.6. The Nisnevich local model category sPSh(SmS)Nis is the same
as the local model structure sPSh(C, τ) (see Theorem 3.6) applied to the Nis-
nevich site SmS. The left Bousfield localization sPSh(SmS) → sPSh(SmS)Nis

is homotopy left exact.

Yet another model for the motivic homotopy theory was constructed in [16,
Thm. 2.4]. This is defined by a model structure on the category sPSh∆(SmS)
which is Quillen equivalent to sPSh(SmS)A1,Nis. More precisely, it is the model
structure which is transported from sPSh(SmS)A1,Nis along the adjunction

(H ,U). In this model category, which we denote by sPSh∆(SmS)Umot, a
morphism is a weak equivalence (respectively, fibration) if it is a weak equiva-
lence (respectively, fibration) in sPSh(SmS)A1,Nis after applying the functor U .
There is a Quillen equivalence

H : sPSh(SmS)A1,Nis ⇄ sPSh∆(SmS)Umot : U .

This model category should not be confused with the U-local model category
sPSh∆(SmS)U loc from Theorem 3.1.
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Proposition 4.7. The model category sPSh∆(SmS)Umot is the same as the
left Bousfield localization of the model category sPSh∆(SmS) from Theorem 2.1
at the set H (Nis).

Proof. By [17, Thm. 3.3.10.1b] and Proposition 4.1, there is a Quillen equiva-
lence

H : sPSh(SmS)A1,Nis ⇆ sPSh∆(SmS)H (Nis) : U

where the model category on the right-hand side is the left Bousfield localization
in question. As the cofibrations of the model categories sPSh∆(SmS)Umot and
sPSh∆(SmS)H (Nis) are the same, it suffices to show that they have the same

fibrant objects. An object F ∈ sPSh∆(SmS)Umot is fibrant if and only if U(F )
is fibrant in sPSh(SmS)A1,Nis. This is the case if and only if U(F ) is fibrant in
sPSh(SmS)A1 and

map(X,U(F ))→ map(P (α),U(F ))

is a weak equivalence for all P (α) → X in Nis. As the adjunction (3) is a
simplicial adjunction, the latter is equivalent to the requirement that the map

map(H (X), F )→ map(H (P (α)), F )

is a weak equivalence for all P (α) → X in Nis. But these are exactly the
conditions for F to be a fibrant in sPSh∆(SmS)H (Nis). The result follows.

4.3 The motivic homotopy theory is not a model topos

In this subsection, we provide some details of an argument showing that the
motivic homotopy theory is not a model topos. This was sketched in [33,
Rem. 3.5].

Recall that a simplicial presheaf is called A1-local, if it is A1-homotopy invariant
after a Nisnevich local fibrant replacement (or, in other words, if its fibrant
replacement in sPSh(SmS)Nis is already motivic fibrant). This property is
clearly invariant under Nisnevich local weak equivalences.

Example 4.8. A discrete simplicial presheaf is Nisnevich local fibrant if and only
if it is a sheaf. Hence, a Nisnevich sheaf (considered as a discrete simplicial
presheaf) is A1-local if and only if it is A1-invariant.

A Nisnevich sheaf of groups G is called strongly A1-invariant, if its classifying
space BG is A

1-local (or, in other words, if the Nisnevich cohomology groups
H0

Nis(−;G) and H1
Nis(−;G) are A1-invariant).

Example 4.9. Let S be a regular base scheme. The Nisnevich sheaf of groups
Gm is clearly A

1-invariant. It is also strongly A
1-invariant as regular schemes

have an A1-invariant Picard group Pic(−) ∼= H1
Nis(−;Gm).

Documenta Mathematica 23 (2018) 1757–1797



1784 Georgios Raptis and Florian Strunk

For a pointed simplicial presheaf X and an integer n ≥ 0, let π̃n(X) be the
Nisnevich sheafification of the presheaf πn(X) given by

[Sn ∧ (−)+, X ]

where the brackets denote hom-sets in the pointed homotopy category of the
projective model structure.

Assumption. We assume for the rest of the subsection that S is the spectrum
of a perfect infinite field.

Theorem 4.10 (Morel [25]). Let X be a pointed simplicial presheaf. Then the
sheaf

π̃1(LmotX) = aNis[(−)+,ΩLmotX ]

is strongly A1-invariant. (Here aNis denotes the Nisnevich sheafification func-
tor.)

Proof. See [25, Thm. 1.9].

The sheaf of groups Gm is A1-invariant. Hence, so is the free abelian presheaf
of groups Z[Gm]. Consider the basepoint 1 : ∗ → Gm and the Nisnevich sheaf
of abelian groups Z(Gm) = aNis(Z[Gm]/Z[∗]).

Proposition 4.11 (Choudhury [10]). The Nisnevich sheaf of groups Z(Gm) is
A

1-invariant but not strongly A
1-invariant.

Proof. See [10, Lemma 4.6].

Combining these results we can now conclude that the motivic homotopy theory
cannot be a model topos.

Proposition 4.12. The motivic model category is not a model topos.

Proof. Suppose that the motivic model category sPSh(SmS)A1,Nis is a model
topos. Using (HD2), we will show that this implies a weak equivalence
G ≃ ΩLmotBG for each A1-invariant Nisnevich sheaf of groups G (see Ex-
ample 2.13). This leads to a contradiction because then we would have isomor-
phisms of sheaves of groups

G ≃ π̃0(G) ≃ π̃0(ΩLmotBG) ≃ π̃1(LmotBG),

contradicting Theorem 4.10 and Proposition 4.11.
Consider the multiplication m : G × G → G and the simplicial object in
sPSh(SmS)

BG• =

(
· · · G×m23

//
m12×G //

pr12 //

pr23 //

G×G
pr1 //
m //
pr2 //

G //
//
∗

)
.
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This receives a morphism, by projecting away from the first factor in each
simplicial degree, from the simplicial object in sPSh(SmS)

EG• =

(
· · · G×G×m23

//
G×m12×G //

pr012 //

m01×G×G //

G×G×G
pr01 //

G×m12
//

m01×G //

G×G
m //

pr0 // G

)
.

The fiber of the morphism EG• → BG• is the constant simplicial object G
in sPSh(SmS). It is easily verified that for each morphism [n] → [m] in the
simplex category ∆, the diagram

EGm

��

// EGn

��

BGm
// BGn

is a pullback in sPSh(SmS). The corners of this square are motivic fibrant
because they are finite products of the A1-invariant discrete Nisnevich sheaf G.
Moreover, the square is a homotopy pullback in the objectwise model category
sPSh(SmS) since EGn → BGn is a fibration. We conclude that the square
above is also a motivic homotopy pullback for every morphism [n]→ [m]. But
then, if property (HD2) were satisfied, it would follow that the diagram

G ≃ EG0

��

// hocolimEG• ≃ EG ≃ ∗

��

∗ ≃ BG0
// hocolimBG• ≃ BG

(6)

is a motivic homotopy pullback. As explained above, this leads to a contradic-
tion.

4.4 Motivic homotopy pullbacks

In this subsection, we collect some results on the interaction between Nisnevich
fibrant replacement and the Sing-functor, especially in relation with homotopy
pullbacks.

Consider the left Bousfield localization sPSh(SmS) → sPSh(SmS)Nis from the
projective to the Nisnevich local model structure and let LNis be a fibrant re-
placement functor. Recall that a commutative squareQ of simplicial presheaves
is a Nisnevich local homotopy pullback if and only if the square LNis(Q) is an
objectwise homotopy pullback. As this Bousfield localization is homotopy left
exact by Theorem 4.6, an objectwise homotopy pullback square Q is also a
Nisnevich local homotopy pullback.
Now consider the Bousfield localization sPSh(SmS) → sPSh(SmS)A1,Nis to
the motivic model structure and let Lmot be a fibrant replacement functor.
Again, a commutative square Q is a motivic homotopy pullback if and only
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if the square Lmot(Q) is an objectwise homotopy pullback. However, as this
Bousfield localization is not left exact by Proposition 4.12, there exists an
objectwise homotopy pullback which is not a motivic homotopy pullback (see,
e.g., Diagram (6)).

In this subsection we will identify some objectwise homotopy pullbacks which
are also motivic homotopy pullbacks. We will make use of the notion of an
A1-local simplicial presheaf from the beginning of the previous Subsection 4.3.

Proposition 4.13. Let X ∈ sPSh(SmS) be A1-local and let

Y ′

��

// X ′

��

Y // X

be an objectwise homotopy pullback. Then it is also a motivic homotopy pull-
back.

Proof. This follows directly from [20, Lemma A.3].

Corollary 4.14. Let X be pointed and A1-local and Y ′ → X ′ → X an ob-
jectwise homotopy fiber sequence. Then it is also a motivic homotopy fiber
sequence.

In the rest of this subsection, we want to replace the A
1-locality condition in

Proposition 4.13 by a weaker property. We denote by

i : Smaff
S →֒ SmS

the full subcategory of affine schemes (in the absolute sense). Precomposition
yields the left adjoint i∗ of a Quillen adjunction

i∗ : sPSh(SmS) ⇄ sPSh(Smaff
S ) : i∗ (7)

with respect to the projective model structures. When both sides are Bousfield
localized at the Nisnevich local weak equivalences, this adjunction becomes a
Quillen equivalence by [3, Lemma 3.3.2].

Definition 4.15. A simplicial presheaf X ∈ sPSh(SmS) is called πaff
0 -A1-local

if its π0-presheaf is A1-invariant on affine smooth schemes after a Nisnevich
local fibrant replacement, i.e., if the presheaf i∗(π0(LNisX)) is A1-invariant.

Remark 4.16. The property of πaff
0 -A1-locality is clearly invariant under Nis-

nevich local weak equivalences. If a simplicial presheaf is A
1-local, it is also

πaff
0 -A1-local.
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Example 4.17 (see the proof of [3, Thm. 5.2.3]). Fix an integer r ≥ 1 and let
Vectr : Sm

op
S → sSet denote a functorial version of the groupoid Vectr(U) of

vector bundles on the scheme U of fixed rank r. An objectwise application of the
classifying space functor B yields a simplicial presheaf BVectr ∈ sPSh(SmS)
whose π0-presheaf assigns to a scheme U the set π0(B Vectr)(U) of isomorphism
classes of vector bundles of rank r over U . This presheaf π0(BVectr) is A1-
invariant on afffine smooth schemes U if U satisfies the Bass–Quillen conjecture
(e.g., if S is the spectrum of a field). Since BVectr is always Nisnevich local
fibrant, it follows, in this case, that it is also πaff

0 -A1-local.

The Sing-functor does not preserve Nisnevich local fibrancy. In fact, the Sing-
functor does not even preserve A1-locality, even for discrete Nisnevich local
fibrant objects, i.e., sheaves of sets [24, Ex. 3.2.7]. It was an open question
(see [5, Rem. 2.2.9] whether Sing(−) would at least send schemes to A1-local
objects. This was answered negatively in [6]. However, we have the following
partial results in this direction which are instances of the π∗-Kan condition.

Theorem 4.18 (Asok–Hoyois–Wendt [3]). Let X ∈ sPSh(SmS) be πaff
0 -A1-

local. Then LNisSing(LNisX) is already motivic fibrant.

Proof. See [3, Thm. 5.1.3].

There is the following strengthening of [3, Lemma 4.2.1].

Lemma 4.19. Let

Y ′

��

// X ′

��

Y // X

(8)

be a commutative diagram of bisimplicial sets (with indices p and q) such that
for each q ≥ 0, the diagram

Y ′
q

��

// X ′
q

��

Yq
// Xq

is a homotopy pullback of simplicial sets. If the simplicial set ([q] 7→ π0(Xq)) is
constant, then the diagonal applied to (8) is a homotopy pullback of simplicial
sets.

Proof. This is [32, Prop. 5.4]. The statement in op.cit. uses simplicial spaces:
Here p is the ‘space direction’ and q is the ‘simplicial direction’. In [32], a
morphism X ′ → X of simplicial spaces is called a realization fibration, if the
conclusion of the lemma is valid for all commutative diagrams (8) which are
homotopy pullbacks in each degree q.
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The previous lemma can be used to prove a strengthening of Proposition 4.13.
The proof is similar to parts of [3, Thm. 4.2.3].

Theorem 4.20. Let X ∈ sPSh(SmS) be πaff
0 -A1-local and let

Y ′

��

// X ′

��

Y // X

(9)

be an objectwise homotopy pullback. Then it is also a motivic homotopy pull-
back.

Proof. By homotopy left exactness of the Nisnevich localization functor, we
may assume that all objects are Nisnevich local fibrant. By Theorem 4.18 and
Proposition 4.13 it suffices to show that LNisSing(9) is an objectwise homo-
topy pullback. We know from [3, Lemma 3.3.2] that this square LNisSing(9)
is objectwise equivalent to the square i∗LNis,aff i

∗Sing(9). As Quillen right ad-
joints preserve homotopy pullbacks, it suffices to show that the square i∗Sing(9)
is an objectwise homotopy pullback. In other words, we have to show that
Sing(9)(U) is a homotopy pullback square of simplicial sets for every affine
scheme U ∈ Smaff

S . We fix such a scheme U and consider the diagram

Y ′
p(∆∆

q × U)

��

// X ′
p(∆∆

q × U)

��

Yp(∆∆
q × U) // Xp(∆∆

q × U)

of bisimplicial presheaves whose diagonal is the square Sing(9)(U) in question.
Now, the simplicial set [q] 7→ π0(X(∆∆q×U)) is constant by assumption. Hence
Sing(9)(U) is an objectwise homotopy pullback by Lemma 4.19.

Corollary 4.21 (see [4, Thm. 2.1.5]). Let X ∈ sPSh(SmS) be pointed and
πaff
0 -A1-local and let Y ′ → X ′ → X be an objectwise homotopy fiber sequence.

Then it is also a motivic homotopy fiber sequence.

Corollary 4.22. Let X ∈ sPSh(SmS) be a pointed objectwise fibrant simpli-
cial presheaf which is πaff

0 -A1-local. Then

ΩLmot(X) ≃ LmotΩ(X). (10)

Remark 4.23. Over the spectrum of a perfect infinite field, Morel showed in [25,
Thm. 6.46] that for a pointed and stalkwise connected Nisnevich local fibrant
X , the equivalence (10) holds if and only if the sheaf of groups π̃0(LmotΩX) is
strongly A1-invariant.
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5 The U-local model category for SmS

Applying Theorem 3.1 to SmS equipped with the Nisnevich topology on SmS ,
denoted Nis, we obtain the U-local model category sPSh∆(SmS)UNis. By The-
orem 3.3, this model category is a model topos. In this section, we compare
this model topos with the model sPSh∆(SmS)Umot for the motivic homotopy
theory from Proposition 4.7. We note that even though we restrict here en-
tirely to the case of the U-local model structure associated with SmS with the
Nisnevich topology, it may also be interesting to consider the corresponding
homotopy theory for other Grothendieck topologies on SmS as well.

5.1 The model topos sPSh∆(SmS)UNis.

Using Proposition 3.14, we can identify the Grothendieck topology on Ho(SmS)
that gives rise to the model topos sPSh∆(SmS)UNis. A sieve on X ∈ Ho(SmS)

U  yHo(SmS)(X)

is a [Nis]-covering sieve if

γ∗(U)  γ∗(yHo(C)(X))

is an isomorphism after Nisnevich sheafification. As shown in Lemma 3.15,
this corresponds to a sieve which is generated by the image of a Nisnevich
sieve on SmS under γ : SmS → Ho(SmS). Let [Nis] denote the collection of
[Nis]-covering sieves in Ho(SmS). The following proposition is a special case
of Proposition 3.14.

Proposition 5.1. The collection of sieves [Nis] defines a Grothendieck topology
on Ho(SmS). The model topos sPSh∆(SmS , [Nis]) (see Theorem 3.6) is the
same as sPSh∆(SmS)UNis.

Remark 5.2. (Naturality revisited) We observed in Remark 3.4 that for two
small simplicial categories C and C′ whose underlying categories C0 and C′0
are equipped with Grothendieck topologies τ and τ ′ and a simplicial functor
F : C → C′ restricting to a morphism of sites, the adjunction (F!, F

∗) is not
necessarily a Quillen adjunction for the U-local model structures. However, this
is true in the following special case: Let f : R→ S be a morphism of noetherian
schemes of finite Krull dimension. The pullback functor F : SmS → SmR,
U 7→ U ×S R is a simplicial functor inducing a Quillen adjunction

f∆,∗ : sPSh∆(SmS) ⇆ sPSh∆(SmR) : f
∆
∗

between the projective model categories (it is common to write (f∗, f∗) for
(F!, F

∗)). The right adjoint is given by f∆
∗ (G) = G(F (−)) = G(− ×S R) and

the left adjoint is determined via enriched left Kan extension by mapS(−, U) 7→
mapR(−, U ×S R).
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The pair (f∆,∗, f∆
∗ ) is a Quillen adjunction for the U-local model structures if

f∆,∗ preserves U-local weak equivalences. This holds if the diagram

sPSh∆(SmS)

U

��

f∆,∗

// sPSh∆(SmR)

U

��

sPSh(SmS)
f∗

// sPSh(SmR)

commutes (for which it suffices to check only on representables mapS(−, U))
and f∗ preserves Nisnevich local weak equivalences. In the case of a smooth
morphism f , this diagram commutes since we have an isomorphism

f∗(mapS(−, U)) ∼= mapR(−, U ×S R)

and f∗ is both a left and a right Quillen functor.

The model topos sPSh∆(SmS)UNis can also be modelled in terms of non-
enriched simplicial presheaves. This can be done by trasporting the U-local
model structure of sPSh∆(SmS)UNis to sPSh(SmS)A1 along the Quillen equiv-
alence of Proposition 4.1. We call a morphism η : F → G in sPSh(SmS) a Sing-
Nisnevich local weak equivalence if the induced morphism Sing(F ) → Sing(G)
is a Nisnevich local weak equivalence.

Theorem 5.3. There is a left proper simplicial combinatorial model structure

sPSh(SmS)Sing-Nis

on the category sPSh(SmS) where the cofibrations are the projective cofibrations
and the weak equivalences are the Sing-Nisnevich local weak equivalences. This
is a left Bousfield localization of the model category sPSh(SmS)A1 and a model
topos. The adjunction

H : sPSh(SmS)Sing-Nis ⇄ sPSh∆(SmS)UNis : U

is a Quillen equivalence.

Proof. This is induced from the Quillen equivalence of Proposition 4.1 after lo-
calizing the right-hand side at the U-local weak equivalences and the left-hand
side at the inverse image of this class under the (derived) functor H , that
is, the Sing-Nisnevich local weak equivalences. Note that this class contains
the weak equivalences of sPSh(SmS)A1 . The class of U-local weak equivalences
is accessible and accessibly embedded because it is the class of weak equiv-
alences of a combinatorial model category [22, Cor. A.2.6.8], [26]. Therefore
its inverse image under the accessible functor H is also accessible and acces-
sibly embedded. This shows the existence of the left Bousfield localization
sPSh(SmS)Sing-Nis, using [22, Prop. A.2.6.10]. The Quillen equivalence is an
immediate consequence of Proposition 4.1.
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Remark 5.4. A fibrant replacement functor for the model topos
sPSh(SmS)Sing-Nis of the previous Theorem 5.3 is not given by the func-
tor LNisSing(−) as the latter is not A1-invariant in general (see, e.g., [24,
Ex. 3.2.7]).

5.2 Comparison with sPSh∆(SmS)Umot

First, we observe that there is a left Bousfield localization

id: sPSh∆(SmS)UNis → sPSh∆(SmS)Umot.

This Quillen adjunction however is not a Quillen equivalence since the left-hand
side is a model topos (see Theorem 3.3) while the right-hand side is not (see
Proposition 4.12). Similarly, the comparison between these two homotopy the-
ories, represented by sPSh∆(SmS)UNis and sPSh∆(SmS)Umot respectively, can
also be studied on the ‘non-enriched side’ using the left Bousfield localization

id: sPSh(SmS)Sing-Nis → sPSh(SmS)A1,Nis.

Note that neither of these two left Quillen functors is homotopy left exact since
the motivic homotopy theory is not a model topos.

Example 5.5. We give an example of a motivic weak equivalence which is not a
Sing-Nisnevich local weak equivalence. Consider the Nisnevich sheaf of groups
G = Z(Gm) from Proposition 4.11 and the motivic weak equivalence

f : LSing-NisBG→ LmotLSing-NisBG

where LSing-Nis is a fibrant replacement functor for the model topos
sPSh(SmS)Sing-Nis of Theorem 5.3. Consider the canonical commutative tri-
angle

G

||①①
①①
①①
①①
①

%%❑
❑❑

❑❑
❑❑

❑❑
❑

ΩLSing-NisBG
Ω(f)

// ΩLmotLSing-NisBG.

The left diagonal morphism is a Sing-Nisnevich local weak equivalence since
the model category sPSh(SmS)Sing-Nis is a model topos. Hence it is also a
motivic weak equivalence. We observed in the proof of Proposition 4.12 that
the right diagonal morphism is not a motivic weak equivalence. Therefore,
also Ω(f) cannot be a motivic equivalence. This implies that f cannot be a
Sing-Nisnevich local weak equivalence.

The comparison between sPSh∆(SmS)Sing-Nis and the motivic homotopy the-
ory is essentially about the question of how much of Nisnevich descent is en-
coded in the U-local model structure. We discuss the comparison between the
sPSh(SmS)Nis and the model category sPSh(SmS)Sing-Nis and then identify the
descent condition in question based on the results of Section 3.
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Proposition 5.6. Let S be a regular scheme. The functor Sing : sPSh(SmS)→
sPSh(SmS) does not preserve Nisnevich local weak equivalences.

Proof. Since for a scheme Spec(A) ∈ SmS the units of the ring A are the same
as the units of the ring A[T0, . . . , Tn], we have an isomorphism

homsPSh(U,A
1 \ {0}) ∼= homsPSh(U ×∆∆n,A1 \ {0})

for every n ≥ 0. Therefore A1 \ {0} ∼= Sing(A1 \ {0}) and likewise A1 \ {1} ∼=
Sing(A1 \ {1}) and A1 \ {0, 1} ∼= Sing(A1 \ {0, 1}). Consider the Zariski distin-
guished square

A1 \ {0, 1}

g

��

f
// A1 \ {0}

��

A
1 \ {1} // A

1

and let P be the pushout of f and g in sPSh(SmS). The induced morphism
P → A

1 is a Nisnevich local weak equivalence. The Sing-functor preserves all
limits and colimits, therefore Sing(P ) is the pushout of Sing(f) and Sing(g).
Since Sing(f) is a monomorphism, Sing(P ) is also the homotopy pushout in
sPSh(SmS)Nis and therefore P → Sing(P ) is a Nisnevich local weak equiva-
lence.
Suppose that the Sing-functor preserves all Nisnevich local weak equivalences
between cofibrant objects. Then Sing(P )→ Sing(A1) is a Nisnevich local weak
equivalence and hence A1 → Sing(A1) is a Nisnevich local weak equivalence.
This is a contradiction since Sing(A1) is objectwise contractible by [16, Cor. 1.6]
and therefore also contractible in the Nisnevich local model structure. But this
is not the case for A1, which is the contradiction. Therefore the Sing-functor
does not preserve Nisnevich local weak equivalences.

Corollary 5.7. The adjunction H : sPSh(SmS)Nis ⇄ sPSh∆(SmS)UNis : U
is not a Quillen adjunction. In particular, H does not send Nisnevich squares
to homotopy pushouts in general.

Proof. The functor Sing ≃ UH does not preserve Nisnevich local weak equiv-
alences between cofibrant objects by the proof of Proposition 5.6.

Remark 5.8. An alternative proof of Corollary 5.7 is given as follows. Let
F ∈ sPSh∆(SmS)UNis be a fibrant simplicial presheaf. If the functor U to the
Nisnevich local model category were a right Quillen functor, U(F ) would be
Nisnevich local fibrant. This implies that U(F ) is motivic fibrant since it is
also A1-invariant. However, sPSh∆(SmS)UNis is not a model for the motivic
homotopy theory (see, e.g., Proposition 4.12).

Another way of comparing sPSh∆(SmS)UNis with the motivic homotopy theory
is obtained from the functor U regarded as a left Quillen functor (see Remark
3.5):

U : sPSh∆(SmS)UNis ⇄ sPShinj(SmS)Nis : G.
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Here sPShinj(SmS)Nis denotes the injective local model structure where the
cofibrations are the monomorphisms (see [19]) and G denotes the right ad-
joint. More expicitly, given F ∈ sPShinj(Sms)Nis and U ∈ SmS , the right Kan
extension G is defined as an end by the formula

G(F )(U) = mapsPSh(SmS)(U
(
map(U,−)

)
, F (−)).

Composing this with the Bousfield localization at the class of A1-equivalences,
we obtain a Quillen adjunction

U : sPSh∆(SmS)UNis ⇄ sPShinj(SmS)A1,Nis : G.

As a consequence, we have the following way of constructing U-local fibrant
objects (cf. Remark 3.13).

Proposition 5.9. Let F ∈ sPShinj(SmS)Nis be a fibrant object. Then G(F ) is
fibrant in sPSh∆(SmS)UNis.

The comparison between sPSh∆(SmS)Umot and sPSh∆(SmS)UNis can be
specified further by identifying an explicit set of morphisms which defines this
Bousfield localization. To describe this, it will be convenient to pass to the
associated presentable ∞-categories and use the ∞-categorical notion of a
covering sieve as considered by Lurie [22].

Let Sm∞
S denote the ∞-category associated with the simplicial category SmS .

Explicitly, this is given by applying the coherent nerve functor to a fibrant re-
placement of SmS . Then, the∞-category of presheaves P(Sm∞

S ) is equivalent
to the presentable∞-category associated with sPSh∆(SmS) [22, Prop. 4.2.4.4].
Let H ∞(Nis) denote the set of morphisms in P(Sm∞

S ) that corresponds to
H (Nis). This is defined by morphisms of presheaves as follows

ySm∞

S
(U) ∪ySm∞

S
(W ) ySm∞

S
(Y ) −→ ySm∞

S
(X) (11)

for every Nisnevich distinguished square

α =




W

��

// Y

p

��

U
i

// X




where y = ySm∞

S
denotes the Yoneda embedding.

Following Proposition 4.7, the localization of P(Sm∞
S ) at H ∞(Nis) is equiva-

lent to the presentable ∞-category, denoted P(Sm∞
S )mot, associated with the

motivic model category sPSh∆(SmS)Umot. We may factorize the morphism
in (11) into an effective epimorphism followed by a monomorphism (see [22,
6.2.3]):

y(U) ∪y(W ) y(Y )
Qα

։ [y(U) ∪y(W ) y(Y )]
Jα

 y(X).
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The collection of monomorphisms Jα in P(Sm∞
S ) that arises this way, for every

Nisnevich covering sieve α, can be identified with the Grothendieck topology on
Sm∞

S associated with the Grothendieck topology [Nis] on Ho(Sm∞
S ) (see [22,

Rem. 6.2.2.3]). Indeed, if α is generated by a collection of maps {Uα,i → X},
then the monomorphism Jα corresponds to the (∞-)sieve on X ∈ Sm

∞
S that

is generated by the same maps (see Remark 3.17). Let [Nis∞] denote the
collection of monomorphisms Jα that are obtained this way. Every [Nis∞]-local
equivalence in P(Sm∞

S ) is also an equivalence in the (hypercomplete)∞-topos
P(Sm∞

S )[Nis∞] that is associated with the model topos sPSh∆(SmS , [Nis]). As
a consequence, the motivic ∞-category

P(Sm∞
S )mot ≃ P(Sm

∞
S )[H ∞(Nis)−1]

is the localization of the ∞-topos P(Sm∞
S )[Nis∞] at the set of morphisms

{Qα : α Nisnevich covering sieve}.

5.3 Summary

We summarize the connections between the different model categories and
Quillen adjunctions in the following diagram.

(sPSh(SmS)Sing-Nis)Ñis

≃
// (sPSh∆(SmS)UNis)

H̃ (Nis)

sPSh(SmS)
A1,Nis

≃
//

lex

OO

sPSh∆(SmS)Umot

lex

OO

sPSh(SmS)Sing-Nis
≃

//

¬lex

OO

sPSh
∆
(SmS)UNis = sPSh

∆
(SmS , [Nis])

¬lex

OO

sPSh(SmS)Nis

¬lex

55

77♦
♦

♦
♦

♦
♦

sPSh(SmS)
A1

lex

OO

≃
// sPSh∆(SmS)

lex

OO

sPSh(SmS)
¬lex

//

¬lex

77♦♦♦♦♦♦♦♦♦♦♦♦

lex

OO

sPSh∆(SmS)

The boxes indicate that the corresponding model categories are model topoi.
The label ‘lex’ (respectively, ‘¬lex’) means that the left Quillen functor is
homotopy left exact (respectively, ‘not homotopy left exact’). The second row
consists of models for the motivic homotopy theory. The top row is obtained
by applying Theorem 2.18 to sPSh(SmS)Sing-Nis and sPSh∆(SmS)UNis and
the respective classes of motivic weak equivalences. The dotted arrow is not a
Quillen adjoint by Corollary 5.7.
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We remark that for purely formal reasons every functor which is (homotopi-
cally) representable in the motivic homotopy theory sPSh∆(SmS)Umot, it is
also representable in the U-local homotopy theory sPSh∆(SmS)UNis. In addi-
tion, if it descends to the homotopy theory

(
sPSh∆(SmS)UNis

)
H̃ (Nis)

, then it

will again be representable there.
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