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Abstract. Let C be a 
urve in P4
and X be a hypersurfa
e 
ontain-

ing it. We show how it is possible to 
onstru
t a matrix fa
torization

on X from the pair (C,X) and, 
onversely, how a matrix fa
torization

on X leads to 
urves lying on X . We use this 
orresponden
e to prove

the unirationality of the Hurwitz spa
e H12,8 and the uniruledness of

the Brill�Noether spa
e W1
13,9. Several unirational families of 
urves

of genus 16 ≤ g ≤ 20 in P4
are also exhibited.
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Introdu
tion

The moduli spa
e Mg of 
urves of genus g is known to be unirational for

g ≤ 14 [Sev68, Ser81, CR84, Ver05℄, while for g = 22 or g ≥ 24 it is proved

to be of general type [HM82, EH87, Far00, Far09℄. For the 
ases in between,

only partial results are available: M23 has positive Kodaira dimension [Far00℄,

M15 is rationally 
onne
ted [CR86, BV05℄ andM16 is uniruled [CR91, Far09℄.

Similarly, the unirationality of Hurwitz spa
es Hg,d parameterizing d-sheeted
bran
hed simple 
overs of the proje
tive line by smooth 
urves of genus g is

of fundamental interest. For small values of d or g they are proven to be

unirational, but for larger values few results are known. See Se
tion 1 for a

dis
ussion on the known results.

In this paper we introdu
e a 
orresponden
e between (general) 
urves C in P4

with �xed genus and degree, together with a hypersurfa
e X ⊃ C, and the

spa
e of 
ertain matrix fa
torizations on X . This leads to a new te
hnique to


onstru
t 
urves in P4
, whi
h has been positively used by S
hreyer [S
h15℄ in

the parti
ular 
ase of 
urves of genus 15 and degree 16.
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The goal of this paper, in addition to showing how matrix fa
torizations 
an

be used to 
onstru
t 
urves in P4
, is to use this te
hnique to prove new positive

results. Our main 
ontribution is the following

Theorem (Theorem 4.3). H12,8 is unirational.

To prove this result, we 
onstru
t expli
itly a unirational dominant family of


urves of genus 12 and degree 14 in P4
by means of matrix fa
torizations,

showing thus that the Brill�Noether spa
e W4
12,14 is unirational. A general

point (C,L) inW4
12,14 gives rise to a point (C,KC−L) inW1

12,8 and 
onversely,

when
e the unirationality of W1
12,8 and H12,8.

The study of the 
orresponden
e between 
urves and matrix fa
torizations in

another parti
ular 
ase leads to a very 
heap proof of the following

Theorem (Corollary 3.5). W1
13,9 is uniruled.

The same method yields a proof of the uniruledness ofW1
12,8, already implied by

the previous theorem, and ofW1
11,7 andW

1
10,6, already known to be unirational

[Gei12, Gei13℄.

In Se
tion 1 we will formulate some spe
ulations and questions about the range

of unirational Hurwitz spa
es, whi
h partly motivates our study; we remark

that the unirationality of H12,8 and the uniruledness of W1
13,9 �t perfe
tly into

the pi
ture.

Matrix fa
torizations 
an be used 
onstru
tively more in general. We present

a way to 
onstru
t unirational families of 
urves of genus g ∈ [16, 20]; even
though these families will be far from being dominant on Mg, su
h 
on
rete

examples o�er the 
han
e to prove some other results. For instan
e, we are

able to prove the following

Theorem (Theorem 5.2). A general 
ubi
 hypersurfa
e in P4

ontains a family

of dimension 2d of 
urves of genus g and degree d for

(g, d) ∈ {(12, 14), (13, 15)}.

A general quarti
 hypersurfa
e in P4

ontains a d-dimensional family of 
urves

of genus g and degree d for

(g, d) ∈ {(16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}.

The 
onstru
tion of our families of 
urves of genus g ∈ [16, 20] relies on 
onsid-

ering parti
ular rational surfa
es arising when trying to adapt our te
hnique to

these spe
i�
 
ases. Other instan
es of results whi
h 
an be proved by looking

at spe
i�
 examples 
on
ern the stru
ture of the syzygies of general 
urves of

parti
ular genera and degrees, as mentioned in Theorem 3.2.

In the paper, we will often need to exhibit a 
on
rete example to prove that

some open 
onditions are generally satis�ed. Our expli
it 
onstru
tions are

performed by means of the software Ma
aulay2 [GS℄ and run best over a �nite

�eld. Semi
ontinuity arguments will ensure the existen
e of suitable examples

over the rational or the 
omplex �eld as well, as explained in Remark 2.2. For

the supporting do
umentation regarding the 
omputational proofs 
ontained
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in this paper, we will always refer to [ST16℄.

The paper is stru
tured as follows: in Se
tion 1 we survey the known results

about the unirationality of Hurwitz spa
es and we present some questions and

spe
ulations about what kind of general behavior 
an be expe
ted. In Se
tion

2 we re
all some basi
 de�nitions and general fa
ts about matrix fa
torizations

and we explain, starting with a motivating example, the 
orresponden
e be-

tween parti
ular matrix fa
torizations and 
urves in P4
. The key point of the


orresponden
e is the Re
onstru
tion Theorem 2.4. In Se
tion 3 we prove The-

orem 3.2, whi
h gives us an e�e
tive method to produ
e 
urves in P4
starting

from suitable matrix fa
torizations; moreover, we use the previous 
orrespon-

den
e to provide a 
heap proof of the uniruledness of W1
13,9 (Corollary 3.5). In

Se
tion 4 we prove our main result, Theorem 4.3; for this sake, we use parti
u-

lar matrix fa
torizations arising from suitable auxiliary 
urves of genus 10 and

degree 13. Finally, in Se
tion 5 we 
onstru
t unirational families of 
urves of

genus 16 ≤ g ≤ 20 lying on parti
ular rational surfa
es in P4
.

Acknowledgements. The authors would like to thank the referee for valu-

able suggestions and remarks.

Notation. In the paper we will use Ma
aulay2 notation for Betti tables. If a

module M has Betti numbers βi,j = dimTorRi (M,K)j over a ring R with base

�eld K, its Betti table will be written as

0 1 2 . . .
0 β0,0 β1,1 β2,2 . . .
1 β0,1 β1,2 β2,3 . . .
2 β0,2 β1,3 β2,4 . . .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1. Unirationality of Hurwitz spa
es

In this se
tion we brie�y survey what we know about the unirationality of the

Hurwitz spa
es Hg,d. To put the question into the right framework we re
all a

few fa
ts from Brill�Noether theory.

A general 
urve C of genus g has a linear system grd of dimension r of divisors
of degree d if and only if the Brill�Noether number

ρ = ρ(g, r, d) = g − (r + 1)(g + r − d)

is non-negative. Moreover, in this 
ase, the Brill�Noether s
heme

W r
d (C) = {L ∈ Picd(C) | h0(L) ≥ r + 1}

has dimension ρ. Re
all some notation from [ACGH85℄:

Mr
g,d = {C ∈Mg | ∃L ∈W

r
d (C)},

Wr
g,d = {(C,L) | C ∈M

r
g,d, L ∈ W

r
d (C)},

Grg,d = {(C,L, V ) | (C,L) ∈ Wr
g,d, V ⊂ H0(L), dimV = r + 1}.

Documenta Mathematica 23 (2018) 1895–1924



1898 Frank-Olaf Schreyer and Fabio Tanturri

Thus we have natural morphisms

Hg,d
α // G1g,d

β
// W1

g,d

γ
//M1

g,d;

with our notation, α is a PGL(2)-bundle over the base point free lo
us, with

�bers 
orresponding to the 
hoi
es of a basis of V , the �bers of β are Grass-

mannians G(2,H0(C,L)), and the �bers of γ are the W 1
d (C). Thus the unira-

tionality of Hg,d is equivalent to the unirationality of W1
g,d.

The unirationality of Hg,d for 2 ≤ d ≤ 5 and arbitrary g ≥ 2 has been known

for a long time. The 
ase d = 5 is due to Petri [Pet23℄, with 
lari�
ation

given by the Bu
hsbaum�Eisenbud stru
ture Theorem [BE77, S
h86℄, and in-

dependently to B. Segre [Seg28℄, with 
lari�
ation by Arbarello and Cornalba

[AC81℄.

The 
ase for g ≤ 9 is due to Mukai:

Theorem 1.1 (Mukai [Muk95℄). A general 
anoni
al 
urve C of genus g =
7, 8, 9 arises as transversal interse
tion of a linear spa
e with a homogeneous

variety:

7 C = P6 ∩ Spinor10 ⊂ P15
isotropi
 subspa
es of Q8 ⊂ P9

8 C = P7 ∩G(2, 6)8 ⊂ P14
Grassmannian of lines in P5

9 C = P8 ∩ L(3, 6)6 ⊂ P13
Lagrangian subspa
es of (C6, ω)

Stru
ture results for 
anoni
al 
urves of genus g ≤ 6 are 
lassi
al, see, e.g.,

[S
h86℄.

Corollary 1.2. The moduli spa
es Mg,g of g-pointed 
urves of genus g and

the universal Pi
ard varieties Picdg are unirational for g ≤ 9 and any d. The

spa
es M1
g,d and Hg,d are unirational for g ≤ 9 and d ≥ g.

Proof. The argument is the same as in [Ver05, �1℄. We 
an 
hoose g general

points p1, . . . , pg in the homogeneous variety and 
an take Pg−1
as their span.

Then the interse
tion of the homogeneous variety with this Pg−1
gives a smooth


urve C of genus g together with g marked points. For the line bundle, we may

take L = OC(
∑g

j=1 djpj) for integers d1, . . . , dg with
∑g
j=1 dj = d.

As for the unirationality of M1
g,d for d ≥ g + 1, with L as above we have

h0(C,L) ≥ 2. In 
ase d = g, we take L = ωC(−
∑g−2
j=1 pj), whi
h is a line

bundle L ∈ W 1
g (C) \ W

2
g (C) by Riemann�Ro
h. The unirationality of Hg,d

then follows. �

In the range d ≤ 5 or g ≤ 9, apart from a few 
ases due to Florian Geiÿ [Gei13℄,

only the unirationality of H9,8 needed to be proved. This has re
ently been

established in [DS17℄.

Outside the range d ≤ 5 or g ≤ 9 there are only �nitely many pairs (g, d) for
whi
h Hg,d is known to be unirational.

Question 1. Are there only �nitely many pairs (g, d) with g ≥ 10 and d ≥ 6
su
h that Hg,d is unirational?
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45 P G

| |
| |
40 P G

| |
| |
36 P G

35 P G

34 P

33 P G

32 P

31 P G

30 P G

29 P

28 P G

27 P G

26 P G EH

25 P G HM

24 P G EH EH

23 P G HM HM

22 P G F F F

21 P G

| | |
| | |
| | |
16 P G

15 P G V

14 P G V FV

13 P G KT ST FV CKV

12 P G G ST S FV CKV CKV

11 P G G CR FV CKV CKV CKV

10 P G G KT FV CKV CKV CKV BFV

9 P G G DS M M M M M M

8 P | G M M M M M M M

7 P | M M M M M M M M

6
|
1

g / d 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1. Color 
oding indi
ates where W1
g,d is known

to be unirational, uniruled or not unirational. Results

are due to Mukai (g ≤ 9), Petri or B. Segre (d = 5)
[Muk95, Pet23, Seg28℄, Eisenbud, Harris, Mumford, Farkas,

Bini, Casalaina-Martin, Kass, Fontanari and Viviani [BFV12,

CMKV17, EH87, Far00, Far09, FV13, HM82℄, Chang and Ran,

Verra, Geiÿ, Damadi and S
hreyer, S
hreyer and Tanturri,

Keneshlou and Tanturri [CR84, CR86, CR91, DS17, Gei13,

Gei12, KT17, S
h13, Ver05℄.

In parti
ular, we may ask

Question 2. Are the genera g su
h that Hg,6 is unirational bounded?

Florian Geiÿ [Gei12℄ proved the unirationality of Hg,6 for the values g ∈
{9, . . . , 28, 30, 31, 33, 35, 36, 40, 45} using models of 
urves in P1 × P2

of bide-

gree (6, d2) and liaison, d2 = d2(g) being the minimal number su
h that
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ρ(g, 2, d2) ≥ 0. His proof a
tually shows the unirationality of a 
overing spa
e

of W1
g,6.

Question 3. Are the genera g su
h that Hg,7 is unirational bounded?

Question 4. Is g = 14 the largest genus su
h that Hg,8 is unirational? In

other words, is Verra's 
ase [Ver05℄ extremal? Is g = 12 the largest genus su
h

that Hg,9 is unirational?

If all these questions have an a�rmative answer, then the range of pairs (g, d)
su
h that W1

g,d and Hg,d are not unirational has roughly shape as indi
ate in

Figure 1 with the 
olor red.

2. Matrix fa
torizations and the Re
onstru
tion Theorem

2.1. Matrix factorizations. Matrix fa
torizations were introdu
ed by

Eisenbud in his seminal paper [Eis80℄. We re
all here some basi
 fa
ts and

properties for matrix fa
torizations over the spe
ial 
ase of a polynomial ring

S = K[x0, . . . , xn], whi
h is the 
ase of interest for the paper. Any module will

be assumed to be �nitely generated.

Let f ∈ S be a nonzero homogeneous form of degree s. A matrix fa
torization

of f (or on the hypersurfa
e V(f)) is a pair (ϕ, ψ) of maps

ϕ : G→ F, ψ : F → G(s),

where F =
⊕r

ℓ=1 S(−aℓ) and G =
⊕r′

ℓ=1 S(−bℓ) are free S-modules, satisfying

ψ ◦ ϕ = f · idG and ϕ(s) ◦ ψ = f · idF . This 
ondition for
es the two matri
es

representing the maps to be square, i.e., r = r′.
If (ϕ, ψ) is a matrix fa
torization, then cokerϕ is a maximal Cohen�Ma
aulay

module (MCM for short) on the hypersurfa
e ring S/f . Conversely, a �nitely

generated MCM S/f -module M has a minimal free resolution over S

0←−M ←− F ←− G←− 0;

multipli
ation by f on this 
omplex is null homotopi


0 Moo

0

��

Foo

f

��

∃ψ

##

G
ϕ

oo

f

��

0oo

0 M(s)oo F (s)oo G(s)
ϕ(s)
oo 0oo

and yields therefore a matrix fa
torization (ϕ, ψ). As an S/f -module, M has

the in�nite 2-periodi
 resolution

0 Moo Foo G
ϕ

oo F (−s)
ψ(−s)
oo G(−s)

ϕ(−s)
oo . . .

ψ(−2s)
oo

where F = F ⊗ S/f and G = G ⊗ S/f . In parti
ular, this sequen
e is exa
t,

and the dual sequen
e 
orresponding to the transposed matrix fa
torization

(ψt, ϕt) is exa
t as well.
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If N is an arbitrary S/f module, then any minimal free resolution be
omes

eventually 2-periodi
. If

0←− N ←− F0 ←− F1 ←− . . .←− Fc ←− 0

is a minimal free resolution of N of length c as an S-module, then the Shamash


onstru
tion [Sha69℄ produ
es a (non-ne
essarily minimal) free resolution of N
of the form

0← N ← F 0 ← F 1 ←
F 2

⊕
F0(−s)

←
F 3

⊕
F1(−s)

←

F 4

⊕
F2(−s)
⊕

F0(−2s)

← . . . ,

whi
h be
omes 2-periodi
 after the (c − 1)-th step. This 
onstru
tion allows

us to 
ontrol to some extent the degrees of the entries of the 
orresponding

minimal matrix fa
torization of f indu
ed by an S/f -module N , if we know

the Betti numbers of N as an S-module. The Shamash 
onstru
tion has the

following pe
uliarity: at the i-th step

(1)

⊕

j≥0

F i−1−2j (−js)
⊕

j≥0

F i−2j(−js)oo

the 
omponents F i−1−2j(−js) ← F i−2j(−js) are inherited from the maps

Fi−1−2j ← Fi−2j in the resolution of N over S for any j, while the 
ompo-

nent

(2)

⊕

j≥1

F i−1−2j (−js) F ioo
is the zero map.

2.2. Curves and matrix factorizations. An easy way to produ
e matrix

fa
torizations on a hypersurfa
eX = V(f) in P4
is to 
onsider a module N over

S = K[x0, . . . , x4] annihilated by f . A matrix fa
torization of f is given by the

periodi
 part of a minimal free resolution of N as a module over SX := S/f .
Our motivating example will be a general 
urve of genus 12 and degree 14 in

P4
.

Proposition 2.1. Let C be a general linearly normal non-degenerate 
urve of

genus 12 and degree 14 in P4
. Then C is of maximal rank, and the homogeneous


oordinate ring SC = S/IC and the se
tion ring Γ∗(OC) := ⊕n∈ZH
0(OC(n))

have minimal free resolutions with the following Betti tables:

(3)

0 1 2 3 4
0 1 .
1 .
2 4
3 5 18 12 2

0 1 2 3
0 1
1 .
2 2 14 15 2
3 2
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In parti
ular, the 
ubi
 threefolds 
ontaining C form a P3
. The minimal reso-

lution of Γ∗(OC) as a module over the homogeneous 
oordinate ring of a 
ubi


threefold X ⊃ C is eventually 2-periodi
 with Betti numbers

0 1 2 3 4 . . .
0 1
1 .
2 2 13 15 2
3 2 15 15 . . .
4 2 . . .

Proof. We assume that the maps H0(P4,OP4(n))→ H0(P4,OC(n)) are of max-

imal rank, i.e., C has maximal rank. Sin
e OC(n) is non-spe
ial for n ≥ 2,
by Riemann�Ro
h we 
an 
ompute the Hilbert fun
tion of the homogeneous


oordinate ring of C and therefore the numerator of its Hilbert series

(1− t)5HC(t) = 1− 4t3 − 5t4 + 18t5 − 12t6 + 2t7.

Thus, we expe
t the Betti table of S/IC to look like the one in (3). Analo-

gously, the numerator of the Hilbert series of Γ∗(OC) under the maximal rank

assumption is

(1− t)5HΓ∗(OC)(t) = 1 + 2t2 − 14t3 + 15t4 − 2t5 − 2t6

and the expe
ted Betti table is (3).

To show that the Betti tables are indeed the expe
ted ones and that, a pos-

teriori, a general 
urve C is of maximal rank, we only need to exhibit a 
on-


rete example, whi
h we 
onstru
t via matrix fa
torizations as explained in

the proof of Theorem 4.3 and summarized in Algorithm 4.6. The fun
tion

verifyAssertionsOfThePaper(1) of [ST16℄ produ
es the Ma
aulay2 
ode

needed to verify all the above assertions. Another family of examples 
an

be obtained as explained in Corollary 3.5.

A free resolution of Γ∗(OC) as a module over the 
ubi
 hypersurfa
e ring SX

an be obtained via the Shamash 
onstru
tion, from whi
h we 
an dedu
e the

Betti numbers of the minimal SX -resolution:

βSX

1,3 (Γ∗OC) = βS1,3(Γ∗OC)− 1

sin
e the equation of X is super�uous over SX , and βSX

2,5 (Γ∗OC) =

βSX

3,5 (Γ∗OC) = 2 follows from (2). �

Remark 2.2. Throughout the paper we will sometimes need to exhibit expli
it

examples of modules de�ned over the rationals Q or 
omplex numbers C sat-

isfying some open 
onditions on their Betti numbers. Our 
onstru
tions will

involve only linear algebra, espe
ially Gröbner basis 
omputations, and will de-

pend only on the 
hoi
e of some parameters; a 
hoi
e of rational values for the

parameters thus gives rise to modules over Q, hen
e over C. An ultimate goal

would be to perform the 
omputations over the fun
tion �eld Q(t1, . . . , tN),
where N is the number of free parameters. This however is out of rea
h for


omputer algebra systems today.

Documenta Mathematica 23 (2018) 1895–1924



Matrix Factorizations and Curves in P4
1903

We have implemented our 
onstru
tions using the 
omputer algebra system

Ma
aulay2 [GS℄. A priori it would be possible to perform these 
omputations

over Q, but this might require too mu
h time, so instead we work over a �nite

prime �eld Fp. We 
an view our 
hoi
e of the initial parameters in Fp as the

redu
tion modulo p of some 
hoi
es of parameters in Z. Then, the so-obtained
module Mp 
an be seen as the redu
tion modulo p of a family of modules

de�ned over a neighborhood SpecZ[ 1b ] of (p) ∈ SpecZ for a suitable b ∈ Z with

p ∤ b. If Mp satis�es our open 
onditions, then by semi
ontinuity the generi


�ber M satis�es the same open 
onditions, and so does the general element of

the family over Q or C.

Let C be a 
urve as in Proposition 2.1. We 
an 
onsider M = Γ∗(OC) as a
SX -module, being X a generally 
hosen 
ubi
 threefold 
ontaining C. If C is

general, the periodi
 part of its minimal free resolution yields, up to twist, a

matrix fa
torization of the form

S15 ⊕ S2(−1) S2(−1)⊕ S15(−2)
ψ

oo S15(−3)⊕ S2(−4).
ϕ

oo

Definition 2.3 (Shape of a matrix fa
torization). We will 
all the Betti num-

bers of the minimal periodi
 resolution

15 2
2 15 15 2

2 15 . . .

the shape of the matrix fa
torization. When the degree s of the hypersurfa
e

ontaining the 
urve is �xed (in the 
urrent example we have s = 3), then the

shape of a matrix fa
torization is determined by the Betti numbers β(ψ) of ψ.
In the 
urrent 
ase they are

(4)

15 2
2 15

In general, starting from a 
urve C in P4

ontained in a (smooth) hypersurfa
e

X , the 2-periodi
 part of a minimal resolution of the se
tion module Γ∗(OC)
over SX will produ
e a matrix fa
torization. The shape is uniquely determined

for a general pair C ⊂ X ⊂ P4
in a 
omponent of the Hilbert s
heme of pairs.

For a given pair, di�erent 
hoi
es of the resolution yield equivalent matrix

fa
torizations. They all de�ne the same sheaf F = (cokerϕ)∼ on X , whi
h

turns out to be an ACM ve
tor bundle, see e.g. [CH04, Proposition 2.1℄.

We have thus established one way of the 
orresponden
e between 
urves and

matrix fa
torizations. In what follows we will see that, to some extent, it is

possible to re
over the original 
urve from the matrix fa
torizations it indu
es.

2.3. Monads and the Reconstruction Theorem. Let us 
onsider a pair

(C,X) of a general 
urve C of degree 14 and genus 12 in P4
and a general

(smooth) 
ubi
 hypersurfa
e X = V(f) ⊃ C. The 
urve indu
es, up to twist,

a matrix fa
torization of shape (4)

O
15
X (−1)⊕O

2
X(−2) O

2
X(−2)⊕O

2+13

X (−3)
ψ

oo O
15
X (−4)⊕O

2
X(−5).

ϕ
oo
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Here, we have distinguished in O2+13
X (−3) the two 
opies 
oming dire
tly from

the third step of the resolution of Γ∗OC as an S-module, see the Shamash


onstru
tion (1). The map ψ 
an be regarded as a blo
k matrix, with a zero

submatrix O2
X(−2)← O2

X(−2)⊕O2
X(−3) by (2).

Let F = (cokerϕ)∼; we 
an form a 
omplex

(5) 0 O2
X(−2)oo F

αoo O2
X(−2)⊕O2

X(−3)
β

oo 0.oo

We 
laim that this 
omplex is a monad for the ideal sheaf IC/X , i.e., α is

surje
tive, β inje
tive and kerα/ imβ ∼= IC/X . In other words, we 
an re
over

the original 
urve C from the 
omplex. The 
laim is a spe
ial 
ase of the

following

Theorem 2.4 (Re
onstru
tion Theorem). Let C ⊂ P4
be a non-degenerate

linearly normal 
urve of genus g and degree d ≥ g not 
ontained in any quadri


and let X = V(f) be a smooth hypersurfa
e of degree s 
ontaining C. Let F•

and G• be minimal free resolutions of Γ∗(OC) over S and S/f respe
tively, let

ϕ denote the syzygy map G3 ← G4 and F = (cokerϕ)∼(s). Then the 
omplex

of ve
tor bundles on X

(6) 0 (F ′
0)

∼oo F
αoo

(
F3(s)

)∼β
oo 0,oo

where the maps are indu
ed by G• via the Shamash 
onstru
tion and F ′
0 is the


omplement of S in F0 = S ⊕ F ′
0, is a monad for the ideal sheaf of C on X,

i.e., β is inje
tive, α is surje
tive, and kerα/ imβ ∼= IC/X . If s ≥ 4 the monad

is uniquely determined by F .

Proof. Sin
e d ≥ g the line bundle OC(2) is non-spe
ial. It follows that Γ∗(OC)
has Betti table

0 1 2 3
0 1
1 .
2 β0,2 β1,3 β2,4 β3,5
3 β0,3 β1,4 β2,5 β3,6

Indeed, β1,2 = 0 by assumption. Sin
e Hom(F•, S(−5)) resolves Γ∗(ωC), we
must have β3,n = 0 for n − 5 ≥ 2, be
ause H0(ωC(−2)) = 0. So Γ∗OC is

3-regular and non-zero Betti numbers 
an only o

ur in the indi
ated range.

Let us assume s = 3. The Shamash resolution starts with the Betti numbers

0 1 2 3
0 1
1 1
2 β0,2 β1,3 β2,4 + 0 β3,5
3 β0,3 β1,4 β2,5 + β0,2 β3,6 + β1,3
4 0 + β0,3 0 + β1,4

We see that, in the indu
ed map F1 ← F0(−3), there is a non-zero 
onstant

1× 1 submatrix; this means that in this 
ase the Shamash resolution is always

Documenta Mathematica 23 (2018) 1895–1924



Matrix Factorizations and Curves in P4
1905

non-minimal, and in a minimal resolution a 
an
ellation o

urs, 
ausing β1,3
to de
rease by one. Su
h 
an
ellation 
orresponds to the equation f of X in S
be
oming super�uous in S/f .
By de�nition, the map G2 ← G3 fa
torizes through F . As

F0 = S ⊕ Sβ0,2(−2)⊕ Sβ0,2(−3), F3 = Sβ3,5(−5)⊕ Sβ3,6(−6),

the 
omplex (6) has the form

0← O
β0,2

X (−2)⊕O
β0,3

X (−3)← F ← O
β3,5

X (−2)⊕O
β3,6

X (−3)← 0.

It is indeed a 
omplex be
ause of (2). We 
laim that the �rst map is surje
tive,

the se
ond one is inje
tive and that the homology in the middle is isomorphi


to IC/X .
The �rst 
laim follows sin
e the 
okernel of the 
omposition

O
β0,2

X (−2)⊕O
β0,3

X (−3)← F ← O
β1,3−1
X (−3)⊕O

β1,4

X (−3),

where the � − 1� represents the missing equation of X over S/f , 
oin
ides by

onstru
tion with the shea��
ation restri
ted to X of the 
okernel of F ′

0 ← F1;

su
h 
okernel is a module of �nite length (a submodule of the Hartshorne�Rao

module of C), hen
e its shea��
ation is zero.

Let G := ker(α). Being the shea��
ation of a MCM module over X , the sheaf

F is a ve
tor bundle and G is a ve
tor bundle as well. It remains to show that

G O
β3,5

X (−2)⊕O
β3,6

X (−3)
γ

oo

is inje
tive and a presentation of IC/X . To see this, we apply the fun
tor

Hom(−, ωX) to γ and obtain

G∗(−2)
γ∗(−2)

// O
β3,5

X ⊕O
β3,6

X (1).

The 
okernel of this map 
oin
ides by 
onstru
tion with the 
okernel of the

dual of the shea��
ation of the last map of F•

O
β2,4

X (−1)⊕O
β2,5

X
// O

β3,5

X ⊕O
β3,6

X (1),

whi
h is a presentation of ωC by duality on P4
. Sin
e

rankF = rankF0 − rankF1 + rankF2 + rankF0

= rankF3 + rankF ′
0 + 1,

we have rankG = β3,5 + β3,6 + 1. Hen
e both γ∗(−2) and γ drop rank in

expe
ted 
odimension 2; applying again Hom(−, ωX) to γ∗(−2) we get that γ
is inje
tive and by the Hilbert�Bur
h Theorem [Eis95, Theorem 20.15℄ it �ts

into an exa
t 
omplex

0 OC(ℓ)oo OX(ℓ)oo Goo O
β3,5

X (−2)⊕O
β3,6

X (−3)
γ

oo 0oo

for some ℓ. By applying again Hom(−, ωX) to this last exa
t sequen
e one gets
that γ∗(−2) is a presentation of ωC(−ℓ), hen
e ℓ = 0.
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The argument for s ≥ 4 is similar, the only di�eren
e being that the se
ond

and third term in the Shamash resolution of Γ∗(OC) di�er in their twist. For

example, the third term is Sβ3,5(−5)⊕Sβ3,6(−6)⊕Sβ1,3(−3−s)⊕Sβ1,4(−4−s),
and we see that for s ≥ 4 the monad is uniquely determined by F . �

3. General matrix fa
torizations and uniruledness

In the last se
tion we saw how, from a matrix fa
torization indu
ed by a 
urve

C, it is possible to re
over C itself. Within this se
tion we will show how

we 
an use the Re
onstru
tion Theorem to a
tually 
onstru
t new 
urves on

a hypersurfa
e X , starting from a general matrix fa
torization (ψ, ϕ) on X .

The key point for proving this result is exhibiting, 
ase by 
ase in the range of

interest of the paper

(g, d) ∈ {(12, 14), (13, 15), (16, 17), (17, 18), (18, 19), (19, 20), (20, 20)},

a 
on
rete example satisfying some open 
onditions.

This leads naturally to the strategy of 
onstru
ting (unirational) families of ma-

trix fa
torizations on a hypersurfa
eX to approa
h the problem of 
onstru
ting

proje
tive 
urves. In the range of interest for this paper, su
h strategy turns

out to be e�e
tive be
ause of the following 
onsiderations.

On the one hand, one 
ould have that a general hypersurfa
e of the appropriate

degree does not 
ontain a 
urve with the pres
ribed genus and degree. As

anti
ipated in the introdu
tion and proved in the last se
tion, Theorem 5.2

shows that this does not happen, so we 
an start with a general 
hoi
e of X .

On the other hand, the spa
e of matrix fa
torizations of a given shape on a

general hypersurfa
e may very well have many 
omponents. This leads to the

following

Question 5. Is the spa
e of matrix fa
torizations of shape (4) on a general


ubi
 hypersurfa
e irredu
ible?

Other similar questions 
an of 
ourse be formulated for other 
ases of interest.

Our approa
h will be to 
onstru
t unirational families of matrix fa
torizations,

dominants on some 
omponent (or union of 
omponents) of su
h spa
e; we

will then show that the points in su
h parti
ular 
omponent give rise to the

desired 
urves. This last 
laim requires further explanations, see Remark 3.1

here below.

3.1. Constructing new curves from matrix factorizations.

Remark 3.1. Let (ψ, ϕ) be a general matrix fa
torization of shape (4) over a


ubi
 hypersurfa
e X ; in parti
ular, we have a map

O15
X (−1)⊕O2

X(−2) O2
X(−2)⊕O15

X (−3).
ψ

oo

In Theorem 2.4 we 
onstru
ted, from a matrix fa
torization indu
ed by a 
urve,

a 
omplex (5). To �nd a similar 
omplex we need to �nd a rank 2 subbundle
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O2
X(−3) of O15

X (−3) su
h that the 
omposition

O2
X(−2) O15

X (−3)
δoo O2

X(−3),? _oo

where δ is the map extra
ted from ψ, is zero. The map δ is represented by

a matrix of linear forms, and has a kernel of dimension at least 5 = 15 − 2 ·
h0(OP4(1)). Having su
h kernel of dimension pre
isely 5 is an open 
ondition on
the spa
e of matrix fa
torizations whi
h is satis�ed by the 
on
rete examples we


onstru
t in [ST16℄. This means that, for a given general matrix fa
torization,

we get a 
omplex for any 
hoi
e of O2
X(−3) inside ker δ, whi
h 
orresponds

to the 
hoi
e of a p ∈ G(2, 5). A general 
hoi
e of p produ
es a 
omplex (5);

Theorem 3.2 below will show that su
h 
omplex is a monad for a smooth 
urve

of genus 12 and degree 14.

The situation is very similar in the 
ase of 
urves of genus 13 and degree 15.

Here we have to 
hoose again a rank 2 subbundle O2
X(−3) inside the kernel,

whi
h is now 3-dimensional in general. This yields many 
hoi
es parameterized

by G(2, 3) = P2
. Again, a general 
hoi
e produ
es a monad and a smooth


urve.

Theorem 3.2. Let (g, d) be in

{(12, 14), (13, 15), (16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}

and let Hd,g be the 
omponent of the Hilbert s
heme Hilbdt+1−g(P
4) dominating

Mg. Let C ∈ Hd,g be a general point, i.e., a general 
urve of genus g and degree
d in P4

.

(1) The quotient ring S/IC and the se
tion module Γ∗(OC) have expe
ted

resolutions, i.e., their Betti tables 
orrespond to the ones listed in Table

3.1 below.

(2) Let s = min{s′ | h0(IC(s′)) 6= 0} and 
onsider a general hypersurfa
e

X with equation f ∈ (IC)s. The minimal free S/f -resolution of Γ∗(OC)
is eventually 2-periodi
 and gives rise to a matrix fa
torization of f of

shape as in Table 3.2.

(3) For ea
h 
hoi
e of (g, d) above, let s be the (expe
ted) minimum degree

of a hypersurfa
e 
ontaining a general 
urve of genus g and degree d
and let X be a general hypersurfa
e of degree s. There is a 
omponent

of the spa
e of matrix fa
torizations on X of shape 
orresponding to

(g, d) in Table 3.2 whose general element gives rise to 
omplexes of the

form (6), whi
h turns out to be a monad for IC′/X , the ideal sheaf of

a smooth 
urve C′
of genus g and degree d with respe
t to X.

Proof. As in Proposition 2.1, we 
an 
ompute the expe
ted Betti tables of

the S-resolutions of S/IC and Γ∗(OC). These are summarized in Table 3.1.

In Table 3.2 we list the expe
ted shapes of the matrix fa
torizations and the


orresponding monads we 
an 
onstru
t.

For a matrix fa
torization, giving rise to a monad for the ideal sheaf of a smooth


urve with right genus and degree is an open 
ondition. When the 
omplex is

not uniquely determined, i.e. for s = 3 (see Remark 3.1), it is an open 
ondition
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on the spa
e of 
omplexes, parametrized by a rational variety. To prove the

third part of the Theorem, it is thus su�
ient to expli
itly 
onstru
t, for ea
h

of the aforementioned 
ases, a matrix fa
torization of the given shape and a


omplex of the form (6) whi
h is a monad for a smooth 
urve with assigned

genus and degree. The fa
t that a general hypersurfa
e X of the appropriate

degree s 
ontains su
h a 
urve will be proved in Theorem 5.2 and relies again

on the 
omputation of expli
it examples.

The fun
tion verifyAssertionsOfThePaper(2) of [ST16℄ provides the

Ma
aulay2 
ode useful to produ
e, for ea
h pair (g, d), a matrix fa
torization

on a hypersurfa
e X of degree s su
h that

• the shape of the matrix fa
torization is as listed in Table 3.2;

• a 
omplex built from the matrix fa
torization, a

ording to the nu-

merology of the expe
ted resolution of the se
tion module of a general


urve and the Re
onstru
tion Theorem 2.4, is a monad for a smooth


urve C of genus g and degree d;
• S/IC and Γ∗OC have expe
ted resolutions as in Table 3.1, and Γ∗OC
indu
es a matrix fa
torization on a general supporting hypersurfa
e X ′

of degree s of shape as in Table 3.2.

To prove the �rst two points of the Theorem, whi
h 
orrespond to open 
ondi-

tions on Hd,g, it is su�
ient to 
he
k the last assertion on a parti
ular example.

We use di�erent 
onstru
tions to expli
itly exhibit a matrix fa
torization sat-

isfying the statements. For g = 12 or g = 13, the pro
edure followed 
an be

found in Corollary 3.5. For g = 12, an alternative way is to use 
urves of genus

10 and degree 13, as explained in Proposition 4.2. For g ≥ 16, see Se
tion 5.2.

As mentioned in Remark 2.2, it is su�
ient to run our 
onstru
tions over a

�nite �eld. �

Remark 3.3. Theorem 3.2 holds also in the 
ase of 
urves of genus 15 and

degree 16; the study of that parti
ular 
ase allowed the �rst author to 
onstru
t

some unirational families of su
h 
urves and to show the uniruledness ofW4
16,15

[S
h15℄. The 
ase of genus 16 and degree 17 was already the topi
 of the

master's thesis [Mül14℄.

Remark 3.4. We expe
t Theorem 3.2 to hold in other 
ir
umstan
es as well.

Our interest in the 
ases above has the following reasons.

The �rst two 
ases 
orrespond to the Brill�Noether spa
es W4
12,14 and W

4
13,15,

whi
h by Serre duality are birational to W1
12,8 and W1

13,9 respe
tively.

The remaining 
ases are motivated by a (so far unsu

essful) attempt of proving

the unirationality of the moduli spa
eMg for g ≥ 16. We have 
hosen d su
h

that ρ(g, 4, d) = g − 5h1(OC(1)) takes the minimal non-negative value. See

Se
tion 5 for further details.

There are 
ases in whi
h we do not expe
t the Theorem to hold, at least not in

the formulation above. For instan
e, 
onsider the family of 
urves of genus 14

and degree 16 in P4
whi
h are 
ontained in 
ubi
 hypersurfa
es. These 
urves
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Table 3.1. Expe
ted Betti tables.

(g, d) βi,j(S/IC) βi,j(Γ∗(OC))

(12, 14)

0 1 2 3 4

0 1 .
1 .
2 4
3 5 18 12 2

0 1 2 3

0 1
1 .
2 2 14 15 2
3 2

(13, 15)

0 1 2 3 4

0 1 .
1 .
2 2
3 12 27 17 3

0 1 2 3

0 1
1 .
2 3 17 18 3
3 2

(16, 17)

0 1 2 3 4

0 1 .
1 .
2 .
3 17 29 13
4 1 1

0 1 2 3

0 1
1 .
2 4 19 18 1
3 3

(17, 18)

0 1 2 3 4

0 1 .
1 .
2 .
3 14 18
4 2 10 3

0 1 2 3

0 1
1 .
2 5 22 21 2
3 3

(18, 19)

0 1 2 3 4

0 1 .
1 .
2 .
3 11 7
4 17 19 5

0 1 2 3

0 1
1 .
2 6 25 24 3
3 3

(19, 20)

0 1 2 3 4

0 1 .
1 .
2 .
3 8
4 4 32 28 7

0 1 2 3

0 1
1 .
2 7 28 27 4
3 3

(20, 20)

0 1 2 3 4

0 1 .
1 .
2 .
3 9 .
4 26 24 6

0 1 2 3

0 1
1 .
2 6 24 21 .
3 4
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Table 3.2. Shapes of the matrix fa
torizations and 
orre-

sponding monads.

(g, d) shape of ψ monad

(12, 14)
15 2
2 15

O
2
X(−2)⊕O

2
X(−3)

� � // F // // O
2
X(−2)

(13, 15)
18 3
3 18

O
3
X(−2)⊕O

2
X(−3)

� � // F // // O
3
X(−2)

(16, 17)
19 1
. 3
4 19

OX(−1)⊕O
3
X(−2)

� � // F // // O
4
X(−2)

(17, 18)
22 2
. 3
5 22

O
2
X(−1)⊕O

3
X(−2)

� � // F // // O
5
X(−2)

(18, 19)
25 3
. 3
6 25

O
3
X(−1)⊕O

3
X(−2)

� � // F // // O
6
X(−2)

(19, 20)
28 4
. 3
7 28

O
4
X(−1)⊕O

3
X(−2)

� � // F // // O
7
X(−2)

(20, 20)
22 .
. 4
6 24

O
4
X(−2)

� � // F // // O
6
X(−2)

forms a divisor D in W4
14,16. Their matrix fa
torizations have the shape

21 4
4 21

and we would need a rank 2 subbundle inside the kernel of the map 
orrespond-

ing to the last row of the Betti table above. As the kernel of a general su
h

map is just 1-dimensional, we believe that a general matrix fa
torization of this

shape is not indu
ed by any 
urve in D.

3.2. Uniruledness results. A 
onsequen
e of Remark 3.1 and of Theorem

3.2 is that, if (g, d) = (12, 14) or (13, 15), for a �xed general matrix fa
torization

(in the sense of Theorem 3.2) on a general 
ubi
 hypersurfa
e X of shape as in

Table 3.2 we have a rational map

(7) V //❴❴❴ W4
g,d,

where V is G(2, 5), P2
respe
tively.

Corollary 3.5. W4
12,14 and W4

13,15 and the 
orresponding W1
12,8 and W1

13,9

are uniruled.
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Proof. Take a general point in W4
12,14 or W4

13,15 and 
hoose an embedding

C ⊂ P4
. Consider a general 
ubi
 hypersurfa
e X 
ontaining C and 
onsider

the indu
ed matrix fa
torization on X . The indu
ed rational map (7) sends

a general 
hoi
e of the monad to a point W4
12,14, W

4
13,15 respe
tively. The

image of this map is a rational variety; if it is not a point, then it 
ontains

a rational 
urve whi
h passes through C and whose points parametrize points

of W4
12,14, W

4
13,15 respe
tively, when
e the 
on
lusion. For the map (7), being

non-
onstant is an open 
ondition on the spa
e of matrix fa
torizations, hen
e

it is su�
ient to 
he
k it for a 
on
rete example.

To 
onstru
t the two ne
essary examples, we start from a g-nodal rational 
urve
C′

of genus g having a g12g−2−d = |D| (see [Bop13b, Bop13a℄). We embed C′

in P4
via |KC′ −D| and obtain a singular 
urve C′ ⊂ P4

of genus g and degree

d. We 
onsider the matrix fa
torization on a 
ubi
 hypersurfa
e obtained from

C′
and 
hoose a random point in V . We 
he
k that the resulting 
urve C

is smooth; sin
e C′
is a point in the boundary as a point in W

4

d,g, the map

is not 
onstant. An implementation of the 
ode is provided by the fun
tion

verifyAssertionsOfThePaper(2) in [ST16℄.

By passing to the Serre dual linear systems, this yields the uniruledness of the


orresponding spa
es W1
12,8 and W1

13,9 as well. �

4. A unirational Hurwitz spa
e

Our aim is to use all the ma
hinery developed so far to 
onstru
t a unirational

family of 
urves dominating H12,14, the 
omponent of the Hilbert s
heme of


urves of genus 12 and degree 14 in P4
whi
h dominatesW4

12,14. By 
onsidering

the dual models, this will imply the unirationality of W1
12,8 and H12,8.

The idea is to use Theorem 3.2. If we manage to produ
e a large enough

unirational family of general matrix fa
torizations, we 
an hope that the spa
e

of 
urves we obtain is dominant. In other terms, we translate the problem of


onstru
ting 
urves with �xed invariants to the problem of 
onstru
ting matrix

fa
torizations on 
ubi
 threefolds with an assigned shape.

4.1. Betti tables and auxiliary modules. Let us �x a 
ubi
 form f ∈
S. A matrix fa
torization of f with shape (4) might be hard to 
onstru
t.

Nonetheless, the Shamash 
onstru
tion gives us a way to partially predi
t the

shape of a matrix fa
torization arising as the 2-periodi
 part of the resolution of

an arbitrary S/f -module N , provided that we know the Betti numbers βi,j(N)
of N as an S-module. Thus, a possible approa
h is to 
onstru
t auxiliary S-
modules N giving rise over S/f to a matrix fa
torization of f with the desired

shape.

For su
h N , how should its Betti table βi,j(N) look like? If we assume that no


an
ellation will o

ur when taking the minimal part of the Shamash resolution,

i.e., the Shamash resolution is already minimal, a pres
ribed shape imposes

linear 
onditions on the entries of a table βi,j �lled with natural numbers. For

instan
e, if we assume pdN < 5, for the shape (4) su
h a table has the following
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form, up to twist:

0 1 2 3 4
0 β0,0 β1,1 . . .
1 β0,1 β1,2 β2,3 β3,4 .
2 . . β2,4 β3,5 β4,6
3 . . . . β4,7

s.t.






β0,0 + β2,3 + β4,6 = 15
β0,1 + β2,4 + β4,7 = 2
β1,1 + β3,4 = 2
β1,2 + β3,5 = 15

It turns out that a �nite number of 
andidate Betti tables are allowed. As the

transposed of a matrix fa
torization is again a matrix fa
torization, we 
ould

as well 
onsider Betti tables giving rise to matrix fa
torizations with the dual

shape

2 .
15 15
. 2

We might also tolerate 
an
ellations, i.e., we might assume that the Shamash

resolution is not minimal; this makes the number of 
andidate Betti tables

be
ome in�nite. However, we 
an always limit our sear
h to �nitely many 
ases,

�xing for instan
e the entries of the tables in whi
h we allow 
an
ellations and

an upper bound for their number.

By doing this, we end up with a list of tables; we 
an further limit our sear
h to

the ones lying in the Boij�Söderberg 
one, i.e., tables βi,j for whi
h there exists

a rational number q ∈ Q and an S-module M ′
su
h that q · βi,j = βi,j(M

′). It
is of 
ourse 
onvenient to let a 
omputer deal with all the possibilities.

Example 4.1. A list of tables satisfying the aforementioned 
onditions 
an be

produ
ed by a Ma
aulay2 
omputation, whose implementation is provided by

the fun
tion verifyAssertionsOfThePaper(3) in [ST16℄. An example of a

table in this list is

(8)

0 1 2 3 4
0 1 .
1 .
2 5
3 2 15 11 2

Suppose there exists an auxiliary S-module N with resolution F• with Betti

numbers (8), and 
onsider a 
ubi
 form f . If we apply the Shamash 
onstru
tion

to get a resolution of N , it is easy to see that the indu
ed map F0(−3) → F1

has a non-zero invertible part, hen
e the expe
ted shape of the indu
ed matrix

fa
torization is (4).

The following proposition shows that su
h an auxiliary module N exists and

its indu
ed matrix fa
torization has indeed the expe
ted shape.

Proposition 4.2. Let E be a general 
urve of genus 10 and degree 13 in P4

and X = V(f) a general 
ubi
 threefold 
ontaining it. Then the Betti table of

S/IE is (8), the matrix fa
torization indu
ed by S/IE on X has shape (4) and

is general enough in the sense of Theorem 3.2, i.e., it 
an be used to 
onstru
t


urves of genus 12 and degree 14.
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Proof. For su
h a 
urve E, all the statements 
orrespond to open 
onditions

and it is su�
ient to 
he
k them on a parti
ular example. An implementation of

its 
onstru
tion is provided by the fun
tion verifyAssertionsOfThePaper(4)

in [ST16℄; an explanation of the pro
edure used is to be found in the proof of

Theorem 4.3 and in Algorithm 4.6. �

4.2. Unirationality of H12,8. Summarizing, we 
an use general 
urves E of

genus 10 and degree 13 to get 
urves C of genus 12 and degree 14. Moreover,

su
h 
onstru
tion is unirational; this means that a unirational family of E's
yields a unirational family of C's. Thus, we 
an fo
us on the former in the

attempt of 
onstru
ting a family dominating the latter.

Theorem 4.3. The spa
es W4
12,14 and H12,8 are unirational.

Proof. Let H13,10 ⊂ Hilb13t+1−10(P
4) and H14,12 ⊂ Hilb14t+1−12(P

4) denote

the 
omponents whose general elements are linearly normal non-degenerate

smooth 
urves of degree and genus (d, g) = (13, 10) or (14, 12) respe
tively.

These 
omponents dominate W4
10,13 and W4

12,14.

We will exhibit a unirational family of 
urves C in H14,12 by expli
itly 
on-

stru
ting a dominant family of 
urves E. To do that, suppose we have a unira-
tional parameterization ofM10,5, the moduli spa
e of 
urves of genus 10 with 5

marked points; start from a 
urve E and an e�e
tive divisor D of degree 5. The

linear system |KE −D| embeds E in a 
urve of degree 13 in P4
by Riemann�

Ro
h. The 
onstru
tion dominates H13,10 and via matrix fa
torizations this

unirational parameterization indu
es a unirational family in H14,12.

A unirational parameterization of M10,5 
an be 
onstru
ted as follows. In

[Gei12℄, a dominant unirational family of 6-gonal 
urves E of genus 10 is 
on-

stru
ted by means of liaison of 
urves in P1 × P2
. We 
an moreover modify

the last step of the 
onstru
tion (see Algorithm 4.6 below) to impose E to pass

through �ve unirationally 
hosen points.

Thus we have produ
ed a unirational family of 
urves in H14,12, whose general

element is a smooth irredu
ible 
urve of maximal rank with expe
ted Betti table

as in Proposition 2.1. The 
orresponding 
ode is implemented in the fun
tion

randomCurveGenus12Degree14InP4 of [ST16℄, along the lines of Algorithm 4.6.

It remains to prove that the family of 
urves 
onstru
ted from pairs (E,X) with
E ∈ H13,10 and X ∈ P(H0(IE(3))) via matrix fa
torizations dominates H14,12.

For this it su�
es to prove that we 
an re
over E from a matrix fa
torization

(ϕ, ψ) of shape (4).

Proposition 4.4. Let E ∈ H13,10 be a general 
urve of genus 10 and degree

13, let X be a general 
ubi
 
ontaining E and let F be the rank 7 ve
tor bundle

on X asso
iated to the matrix fa
torization indu
ed by N = S/IE, i.e., F is

the image of ψ

O15
X (−3)⊕O2

X(−4) O2
X(−4)⊕O15

X (−5)





ψ11 ψ12

0 ψ22





oo .
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There exists an exa
t 
omplex indu
ed by the Shamash 
onstru
tion

0← IE/X ← O
4
X(−3)⊕O2

X(−4)← F ← O2
X(−4)← 0;

moreover, for a general 
hoi
e of a quotient O4
X(−3) ← O15

X (−3) whi
h 
om-

poses to zero with the 
omponent ψ1,1 of ψ, the 
omplex

(9) O4
X(−3)⊕O2

X(−4)← F ← O2
X(−4)← 0

is a lo
ally free resolution of the ideal sheaf of a smooth 
urve E′ ∈ H13,10 on

X.

Let (ψ, ϕ) be a given general matrix fa
torization on X of shape (4) and let

F be the image of ψ. Then the 
hoi
e of the quotient q as above 
orresponds

to the 
hoi
e of a point in P4
; for a general su
h 
hoi
e, (9) is a lo
ally free

resolution of the ideal sheaf of a smooth 
urve E′ ∈ H13,10 on X.

Proof. The �rst step is just reversing the Shamash 
onstru
tion of the SX -
resolution of N = SE .
Sin
e X is smooth the kernel of the map IE/X ← O

4
X(−3)⊕O2

X(−4) is already
a ve
tor bundle G on X . The bundle F surje
ts onto G with the image of

F ← O2
X(−4) 
ontained in the kernel. Sin
e the kernel of the map G ← F is a

rank 2 ve
tor bundle of the same degree as O2
X(−4), the indu
ed map between

the kernel and O2
X(−4) is an isomorphism.

The fa
t that, for a given (general) matrix fa
torization, a general 
hoi
e

of the quotient q yields a 
omplex (9) whi
h is a lo
ally free resolution of

a smooth 
urve E′ ∈ H13,10 is an open 
ondition both on matrix fa
tor-

izations and in P4
. It is thus su�
ient to 
he
k it 
omputationally on an

expli
it example, as 
an be done with the 
ode provided by the fun
tion

verifyAssertionsOfThePaper(5) in [ST16℄. �

Finally, to 
on
lude with the unirationality of H12,8 we note that a general

point in W4
12,14 gives as Serre dual model a point in W1

12,8 and 
onversely.

Moreover, the 
hoi
e of a basis of P1
is rational, and thus we get a unirational

family of P1
-
overings of degree 8. The lo
us of 
urves in H12,8 having a

smooth 
omponent of the Brill�Noether lo
us of expe
ted dimension is open

and 
ontains the points we expli
itly 
onstru
t, hen
e our family is dominant.

This 
ompletes the proof of Theorem 4.3.

The fun
tion randomGenus12Degree8CoverOfP1 in [ST16℄ is an implementa-

tion of the above unirational 
onstru
tion and produ
es a random 
anoni
al


urve of genus 12 together with two hyperplanes in P11

utting out a g18 . �

Remark 4.5. LetM15 2
2 15(X) denote the 
omponent, in the spa
e of equivalen
e


lasses of shape (4) on a given 
ubi
 X , whose general element is indu
ed by

a 
urve C ∈ H14,12. Above we have established a unirational 
orresponden
e
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between spa
es of 
urves on X

{C ⊂ X}

G(2,5) &&▼
▼▼

▼▼
▼▼

▼▼
▼

{E ⊂ X}

P
4

xxqq
qq
qq
qq
qq

M15 2
2 15(X)

whose �bers are open subsets of a G(2, 5) or P4
respe
tively. We may inter-


hange the role of C and E: sin
e SC and Γ∗(OE) have Betti tables

0 1 2 3 4
0 1 .
1 .
2 4
3 5 18 12 2

and

0 1 2 3
0 1
1 .
2 2 15 18 5
3 1

they both lead to matrix fa
torizations on X of shape

15 2
5 18

By the Re
onstru
tion Theorem 2.4, and the same argument as in Proposition

4.4, we get another 
orresponden
e

{C ⊂ X}

G(2,5) &&▼
▼▼

▼▼
▼▼

▼▼
▼

{E ⊂ X}

P
4

xxqq
qq
qq
qq
qq

M15 2
5 18(X)

.

We believe that this symmetry 
an be explained by the fa
t that 
urves C ∈
H14,12 are linked to 
urves E ∈ H13,10 via a 
omplete interse
tion of three


ubi
s:

degC + degE = 27 = 33 and gC − gE =
1

2
(C − E).((9 − 5)H) = 2.

This fa
t yields a 
orresponden
e

{
.i.C ∪ E}

P
3

xxqq
qq
qq
qq
qq G(3,5)

&&▼
▼▼

▼▼
▼▼

▼▼
▼

H14,12 H13,10

and a simpler proof that H14,12 is unirational, as further shown in [KT17,

Remark 3.3℄.

Algorithm 4.6. Summarizing, the following 
onstru
tion yields a unirational

parameterization of W4
12,14. The �rst four steps are a slight modi�
ation of

the 
onstru
tion in [Gei12℄. The algorithm is implemented by the fun
tion

randomCurveGenus12Degree14InP4 in [ST16℄.

(1) On P1 × P2
, start with a rational 
urve of degree 4 together with 3

general lines. Call E′′
their union.
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(2) Choose two general forms gi ∈ H0(IE′′(4, 2)) and 
onstru
t E′
as the

linkage of E′′
on the 
omplete interse
tion de�ned by g1, g2.

(3) Choose unirationally �ve general points {pj} in P1×P2
and 
hoose, in

the 7-dimensional spa
e H0(IE′′(3, 3)), two general forms fi vanishing
on ea
h pj .

(4) Constru
t E as the linkage of E′
in the 
omplete interse
tion de�ned

by f1, f2. By 
onstru
tion, E passes through pj , is a general 
urve of

genus 10 and D = p1 + . . .+ p5 is a general e�e
tive divisor of degree

5 on E.
(5) Embed E via |KE −D| into P4

. The 
urve E ⊂ P4
is a general 
urve

of genus 10 and degree 13.
(6) Choose a general 
ubi
 hypersurfa
e X ⊃ E and 
onsider the matrix

fa
torization on X indu
ed by S/IE .
(7) Choose a general point p ∈ G(2, 5) as in Remark 3.1, 
onstru
t the

monad (6) and the 
orresponding 
urve C ⊂ X , whi
h is a 
urve of

genus 12 and degree 14.

5. Families of 
urves on rational surfa
es

In this se
tion, we show how matrix fa
torizations 
an be used to 
onstru
t

unirational families of 
urves of genus g and degree d in P4
, with (g, d) belonging

to

{(16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}.

The main motivation for the 
hoi
e of these 
ases is the unknown unirationality

of the 
orresponding moduli spa
es of 
urves. One would like to produ
e a

unirational family of proje
tive 
urves whi
h is dominant on the underlying

moduli spa
e of 
urves. As a general expe
tation, 
urves with �xed genus

and lower degree should be easier to 
onstru
t; the degree d 
onsidered for

ea
h g above is 
hosen as the minimum su
h that the Brill�Noether number

ρ(g, 4, d) ≥ 0.

5.1. Explicit construction. We 
an try to mimi
 the te
hnique used in

Se
tion 4.1 and look for auxiliary modules whose Betti tables satisfy 
ertain


onditions. A list of 
andidate Betti tables 
an be produ
ed with the same

te
hnique and implementation used in Example 4.1. Alternatively, the fun
tion

pre
ompiledListOfCandidates in [ST16℄ prints pre
omputed lists for ea
h

genus g ∈ [16, 20].
For instan
e, the lists 
ontain the tables reported in Table 5.1. All of them


orrespond to modules N supported on a 
urve whi
h will be denoted by Z.

We will assume that L = Ñ is a line bundle on Z.
The �rst row in these Betti tables is independent of (g, d) and the 
orresponding

omplex over S, dualized and shea��ed,

(10) 0 // O6
P4(−4) // O10

P4(−3)
α // O3

P4(−2) // 0


ould be a monad for the ideal sheaf of a surfa
e Y ⊂ P4
. Two families of

smooth surfa
es of this kind are known:
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Table 5.1. Betti tables for auxiliary modules

(g, d) βi,j(N) (codim suppN, degN)

(16, 17)

0 1 2 3 4

0 6 10 3
1 3
2 1 13 9 1

(3, 19)

(17, 18)

0 1 2 3 4

0 6 10 3
1 3
2 2 16 12 2

(3, 18)

(18, 19)

0 1 2 3 4

0 6 10 3
1 3
2 3 19 15 3

(3, 17)

(19, 20)

0 1 2 3 4

0 6 10 3
1 3
2 4 22 18 4

(3, 16)

(20, 20)

0 1 2 3 4

0 6 10 3
1 4
2 16 14 3

(3, 16)

• the Alexander surfa
es Y [Ale88℄, P2
blown up in 10 general points

embedded via the linear system |14L−
∑10
i=1 Ei|, where L is the stri
t

transform of a general line in P2
and Ei are the ex
eptional divisors


orresponding to the 10 blown-up points, and

• the blow-ups Y ′
of Enriques surfa
es in a single point embedded by

|H −E|, where H is a Fano polarization and E the ex
eptional divisor

[AR92℄.

Both surfa
es have degree 9, K2
Y = −1, se
tional genus π = 6 and as

Hartshorne�Rao module H1
∗(IY ) = coker (S10(−3) → S3(−2)) a module with

Hilbert series 3t2 + 5t3 + t4. They di�er by the Betti numbers of their

Hartshorne�Rao modules, whi
h are

0 1 2 3 4 5

2 3 10 6

3 15 26 15 3

4 1 3 3 1

and

0 1 2 3 4 5

2 3 10 6

3 15 25 12

4 1
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respe
tively. Hen
e also SY and SY ′
have di�erent Betti tables:

0 1 2 3 4

0 1 .

1 .

2 .

3 .

4 15 26 15 3

5 1 3 3 1

and

0 1 2 3 4

0 1 .

1 .

2 .

3 .

4 15 25 12

5 1

The rational surfa
e Y has a 6-se
ant line and 
ontains no (−1)-line, while the
Enriques surfa
e has no 6-se
ant line and 
ontains one (−1)-line. For further

details, see [DES93℄.

Proposition 5.1. If C is a 
urve of genus g and degree d obtained via matrix

fa
torizations from an auxiliary module N with Betti table as in Table 5.1 su
h

that

(1) L = Ñ is a line bundle on a 
urve Z di�erent from C, and
(2) (10) is a monad for a smooth surfa
e Y of degree 9 as above,

then C lies on Y . More pre
isely, if f ∈ (IC)4 is any quarti
 whi
h annihilates

N and X = V(f) the 
orresponding hypersurfa
e, then

Y ∩X = C ∪ Z.

Proof. Sin
e Y does not lie on any quarti
, the interse
tion Y ∩ X is proper

and the sequen
e (10) restri
ted to X

(11) 0 // O6
X(−4) // O10

X (−3) // O3
X(−2) // 0

is a monad for the ideal sheaf IY ∩X/X of Y ∩X on X . We 
laim that (11) is

a sub
omplex of the shea��ed dual of the suitably twisted linear strand in the

Shamash resolution of N .

For example, let us fo
us on the 
ase (g, d) = (16, 17). The dual linear strand
reads

0→ O0+1
X (−5)→ O6+13

X (−4)→ O10+9
X (−3)→ O3+1

X (−2)→ 0

and the maps from a �rst to a se
ond summand are all zero by (2). Thus, we

get a 
ommutative diagram of monads

0 // O6
X(−4) //

��

O10
X (−3) //

��

O3
X(−2) //

��

0

0 // O3
X(−2)⊕OX(−1) // F // O4

X(−2) // 0

where the �rst verti
al map is up to sign a 
omponent of the dual of the �rst

map of the SX -resolution of N , and the third one is the in
lusion indu
ed by

the Shamash resolution of N . The map on homology gives us a map IY ∩X/X →
IC/X between torsion free sheaves, whose double dual is a map OX → OX .
Thus, to 
on
lude that C is a 
omponent of Y ∩ X , it su�
es to prove that
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IY ∩X/X → IC/X is not the zero map. Let J and K denote the kernels in the

monads. We get a diagram

0 // O6
X(−4) //

��

J //

��

IY ∩X/X
//

��

0

0 // O3
X(−2)⊕OX(−1) // K // IC/X // 0

of exa
t sequen
es.

If the map on the right was zero, we would get a homotopy J → O3
X(−2) ⊕

OX(−1), whi
h sin
e H1(OX(n)) = 0 for all n would lift to a map O10
X (−3)→

O3
X(−2)⊕OX(−1) su
h that

O6
X(−4) //

��

O10
X (−3)

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

O3
X(−2)⊕OX(−1)


ommutes. But this 
ontradi
ts the fa
t that the map

S6
X S10

X (−1)⊕ S3
X(−2)⊕ SX(−3)oo

is the �rst map in the minimal free resolution of N as an SX -module.

Therefore, C is a 
omponent of Y ∩X . The 
urve Z is also 
ontained in Y ∩X .

Sin
e

degC + degZ = degC + degN = 36 = deg Y degX

there are no further 
omponents, and C ∪Z = Y ∩X . The proof for the other

pairs (g, d) is similar. �

5.2. Families of curves on rational surfaces. We have two ways to

ta
kle the 
onstru
tion of our 
urves C: we 
ould try to produ
e a module

N having a Betti table as in Table 5.1, then indu
e a matrix fa
torization and

get a 
urve as des
ribed in the previous se
tions. A key observation is that the

line bundle L on the 
urve Z 
oin
ides with ωY (1)|Z . This approa
h works,

and led us to dis
over Proposition 5.1 and the fa
t that some of desired 
urves

C lie on Alexander surfa
es. An implementation of the 
onstru
tion of 
urves

on Alexander surfa
es via matrix fa
torizations is provided by the fun
tion

verifyAssertionsOfThePaper(6) in [ST16℄.

A se
ond, more 
onvenient approa
h is to look for our desired 
urves C dire
tly

on these surfa
es, e.g., the Alexander surfa
es Y . The genus and the degree

of C impose 
onditions on the divisor 
lass [C] = a0L −
∑
aiEi ∈ Pic(Y ). By

maximizing the dimension of the linear systems, we 
an maximize the dimension

of the 
orresponding unirational families of 
urves. In Table 5.2 we list the

linear systems a
hieving the maximal dimension; a general element in su
h

linear systems is a 
urve whi
h satis�es all our assertions, as one 
an verify

by 
omputing a single randomly 
hosen example, see the 
ode provided by

Documenta Mathematica 23 (2018) 1895–1924



1920 Frank-Olaf Schreyer and Fabio Tanturri

the fun
tion verifyAssertionsOfThePaper(7) in [ST16℄. In parti
ular this

proves the �rst two assertions of Theorem 3.2.

Table 5.2. Unirational families of 
urves on the Alexander surfa
e

(g, d) linear system dimension

(16, 17) 21L−
∑4

i=1
7Ei −

∑10

j=5
6Ej 26

(17, 18) 22L−
∑8

i=1
7Ei − 6E9 − 5E10 27

(18, 19) 19L−
∑

7

i=1
6Ei −

∑
10

j=8
5Ej 29

(19, 20) 20L − 7E1 − 7E2 −
∑

8

i=3
6Ei − 5E9 − 5E10 30

(20, 20) 20L− 7E1 −
∑9

i=2
6Ei − 5E10 31

Unfortunately, the so-
onstru
ted unirational families are far from being dom-

inant on the 
orresponding moduli spa
es. Curves of same degree and genus

on a blown-up Enriques surfa
e give at best families of the same dimension.

There are many other possible 
hoi
es of a 
andidate Betti table of N . For

instan
e, for g ≥ 16, other even simpler rational surfa
es show up and we 
an

produ
e other examples of 
urves lying on them. Unfortunately, all the unira-

tional families we have been able to 
onstru
t are not dominant. Nonetheless,

there is no reason why one should not be able to realize bigger families of pro-

je
tive models via matrix fa
torizations starting from di�erent Betti tables, the

biggest obsta
le being of 
ourse the 
onstru
tion of suitable auxiliary modules

N .

5.3. Curves lying on a general hypersurface. We 
on
lude by showing

that, even though the examples of 
urves of genus g ≥ 16 are far from being

general as proje
tive models, we 
an still use them, as well as the examples of


urves with lower genera 
onstru
ted in the previous se
tions, to prove that a

general hypersurfa
e 
ontains a whole family of them.

Theorem 5.2. A general 
ubi
 hypersurfa
e in P4

ontains a family of dimen-

sion 2d of 
urves of genus g and degree d for

(g, d) ∈ {(12, 14), (13, 15)}.

A general quarti
 hypersurfa
e in P4

ontains a d-dimensional family of 
urves

of genus g and degree d for

(g, d) ∈ {(16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}.

Lemma 5.3. Let C be a 
urve of genus g and degree d in Pn and X a hyper-

surfa
e of degree s 
ontaining it. Then

χ(NC/X) = d(n+ 1− s) + (1− g)(n− 4).

Proof. The Euler sequen
e of Pn restri
ted to C yields

χ(TPn |C) = (n+ 1)(d+ 1− g)− 1 + g.

Documenta Mathematica 23 (2018) 1895–1924



Matrix Factorizations and Curves in P4
1921

Sin
e NX/Pn

∣∣
C
∼= OC(s), from the sequen
e de�ning NX/Pn

restri
ted to C we

get

χ(TX |C) = (n+ 1)(d+ 1− g)− 1 + g − (ds+ 1− g).

The 
on
lusion follows by looking at the short exa
t sequen
e de�ning NC/X .
�

Proof of Theorem 5.2. Let C be a general 
urve in P4
of genus g and degree

d, and let X be a general hypersurfa
e of degree s 
ontaining it, with s 
hosen
a

ordingly to (g, d) as in the statement of the Theorem. By Lemma 5.3,

χ(NC/X) = d(5− s).
We 
laim that h1(NC/X) = 0. It is su�
ient to 
he
k this vanishing on one

example for ea
h pair (g, d), as 
an be done with the Ma
aulay2 
ode provided

by the fun
tion verifyAssertionsOfThePaper(8) in [ST16℄, and 
on
lude by

semi
ontinuity. Hen
e, h0(NC/X) = d(5− s).
Let Ts be the spa
e of threefolds of degree s 
ontaining a general 
urve C of

genus g and degree d, up to proje
tive equivalen
es. Let m := h0(P4, IC(s))−
1 =

(
4+s
4

)
− sd+ g − 2. We have

dim(Ts) = dimMg + ρ(d, 4, g) +m− h0(NC/X) =

(
4 + s

4

)
− 25. �
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