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Abstract. Let C be a urve in P4
and X be a hypersurfae ontain-

ing it. We show how it is possible to onstrut a matrix fatorization

on X from the pair (C,X) and, onversely, how a matrix fatorization

on X leads to urves lying on X . We use this orrespondene to prove

the unirationality of the Hurwitz spae H12,8 and the uniruledness of

the Brill�Noether spae W1
13,9. Several unirational families of urves

of genus 16 ≤ g ≤ 20 in P4
are also exhibited.
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Introdution

The moduli spae Mg of urves of genus g is known to be unirational for

g ≤ 14 [Sev68, Ser81, CR84, Ver05℄, while for g = 22 or g ≥ 24 it is proved

to be of general type [HM82, EH87, Far00, Far09℄. For the ases in between,

only partial results are available: M23 has positive Kodaira dimension [Far00℄,

M15 is rationally onneted [CR86, BV05℄ andM16 is uniruled [CR91, Far09℄.

Similarly, the unirationality of Hurwitz spaes Hg,d parameterizing d-sheeted
branhed simple overs of the projetive line by smooth urves of genus g is

of fundamental interest. For small values of d or g they are proven to be

unirational, but for larger values few results are known. See Setion 1 for a

disussion on the known results.

In this paper we introdue a orrespondene between (general) urves C in P4

with �xed genus and degree, together with a hypersurfae X ⊃ C, and the

spae of ertain matrix fatorizations on X . This leads to a new tehnique to

onstrut urves in P4
, whih has been positively used by Shreyer [Sh15℄ in

the partiular ase of urves of genus 15 and degree 16.
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The goal of this paper, in addition to showing how matrix fatorizations an

be used to onstrut urves in P4
, is to use this tehnique to prove new positive

results. Our main ontribution is the following

Theorem (Theorem 4.3). H12,8 is unirational.

To prove this result, we onstrut expliitly a unirational dominant family of

urves of genus 12 and degree 14 in P4
by means of matrix fatorizations,

showing thus that the Brill�Noether spae W4
12,14 is unirational. A general

point (C,L) inW4
12,14 gives rise to a point (C,KC−L) inW1

12,8 and onversely,

whene the unirationality of W1
12,8 and H12,8.

The study of the orrespondene between urves and matrix fatorizations in

another partiular ase leads to a very heap proof of the following

Theorem (Corollary 3.5). W1
13,9 is uniruled.

The same method yields a proof of the uniruledness ofW1
12,8, already implied by

the previous theorem, and ofW1
11,7 andW

1
10,6, already known to be unirational

[Gei12, Gei13℄.

In Setion 1 we will formulate some speulations and questions about the range

of unirational Hurwitz spaes, whih partly motivates our study; we remark

that the unirationality of H12,8 and the uniruledness of W1
13,9 �t perfetly into

the piture.

Matrix fatorizations an be used onstrutively more in general. We present

a way to onstrut unirational families of urves of genus g ∈ [16, 20]; even
though these families will be far from being dominant on Mg, suh onrete

examples o�er the hane to prove some other results. For instane, we are

able to prove the following

Theorem (Theorem 5.2). A general ubi hypersurfae in P4
ontains a family

of dimension 2d of urves of genus g and degree d for

(g, d) ∈ {(12, 14), (13, 15)}.

A general quarti hypersurfae in P4
ontains a d-dimensional family of urves

of genus g and degree d for

(g, d) ∈ {(16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}.

The onstrution of our families of urves of genus g ∈ [16, 20] relies on onsid-

ering partiular rational surfaes arising when trying to adapt our tehnique to

these spei� ases. Other instanes of results whih an be proved by looking

at spei� examples onern the struture of the syzygies of general urves of

partiular genera and degrees, as mentioned in Theorem 3.2.

In the paper, we will often need to exhibit a onrete example to prove that

some open onditions are generally satis�ed. Our expliit onstrutions are

performed by means of the software Maaulay2 [GS℄ and run best over a �nite

�eld. Semiontinuity arguments will ensure the existene of suitable examples

over the rational or the omplex �eld as well, as explained in Remark 2.2. For

the supporting doumentation regarding the omputational proofs ontained
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in this paper, we will always refer to [ST16℄.

The paper is strutured as follows: in Setion 1 we survey the known results

about the unirationality of Hurwitz spaes and we present some questions and

speulations about what kind of general behavior an be expeted. In Setion

2 we reall some basi de�nitions and general fats about matrix fatorizations

and we explain, starting with a motivating example, the orrespondene be-

tween partiular matrix fatorizations and urves in P4
. The key point of the

orrespondene is the Reonstrution Theorem 2.4. In Setion 3 we prove The-

orem 3.2, whih gives us an e�etive method to produe urves in P4
starting

from suitable matrix fatorizations; moreover, we use the previous orrespon-

dene to provide a heap proof of the uniruledness of W1
13,9 (Corollary 3.5). In

Setion 4 we prove our main result, Theorem 4.3; for this sake, we use partiu-

lar matrix fatorizations arising from suitable auxiliary urves of genus 10 and

degree 13. Finally, in Setion 5 we onstrut unirational families of urves of

genus 16 ≤ g ≤ 20 lying on partiular rational surfaes in P4
.

Acknowledgements. The authors would like to thank the referee for valu-

able suggestions and remarks.

Notation. In the paper we will use Maaulay2 notation for Betti tables. If a

module M has Betti numbers βi,j = dimTorRi (M,K)j over a ring R with base

�eld K, its Betti table will be written as

0 1 2 . . .
0 β0,0 β1,1 β2,2 . . .
1 β0,1 β1,2 β2,3 . . .
2 β0,2 β1,3 β2,4 . . .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1. Unirationality of Hurwitz spaes

In this setion we brie�y survey what we know about the unirationality of the

Hurwitz spaes Hg,d. To put the question into the right framework we reall a

few fats from Brill�Noether theory.

A general urve C of genus g has a linear system grd of dimension r of divisors
of degree d if and only if the Brill�Noether number

ρ = ρ(g, r, d) = g − (r + 1)(g + r − d)

is non-negative. Moreover, in this ase, the Brill�Noether sheme

W r
d (C) = {L ∈ Picd(C) | h0(L) ≥ r + 1}

has dimension ρ. Reall some notation from [ACGH85℄:

Mr
g,d = {C ∈Mg | ∃L ∈W

r
d (C)},

Wr
g,d = {(C,L) | C ∈M

r
g,d, L ∈ W

r
d (C)},

Grg,d = {(C,L, V ) | (C,L) ∈ Wr
g,d, V ⊂ H0(L), dimV = r + 1}.
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Thus we have natural morphisms

Hg,d
α // G1g,d

β
// W1

g,d

γ
//M1

g,d;

with our notation, α is a PGL(2)-bundle over the base point free lous, with

�bers orresponding to the hoies of a basis of V , the �bers of β are Grass-

mannians G(2,H0(C,L)), and the �bers of γ are the W 1
d (C). Thus the unira-

tionality of Hg,d is equivalent to the unirationality of W1
g,d.

The unirationality of Hg,d for 2 ≤ d ≤ 5 and arbitrary g ≥ 2 has been known

for a long time. The ase d = 5 is due to Petri [Pet23℄, with lari�ation

given by the Buhsbaum�Eisenbud struture Theorem [BE77, Sh86℄, and in-

dependently to B. Segre [Seg28℄, with lari�ation by Arbarello and Cornalba

[AC81℄.

The ase for g ≤ 9 is due to Mukai:

Theorem 1.1 (Mukai [Muk95℄). A general anonial urve C of genus g =
7, 8, 9 arises as transversal intersetion of a linear spae with a homogeneous

variety:

7 C = P6 ∩ Spinor10 ⊂ P15
isotropi subspaes of Q8 ⊂ P9

8 C = P7 ∩G(2, 6)8 ⊂ P14
Grassmannian of lines in P5

9 C = P8 ∩ L(3, 6)6 ⊂ P13
Lagrangian subspaes of (C6, ω)

Struture results for anonial urves of genus g ≤ 6 are lassial, see, e.g.,

[Sh86℄.

Corollary 1.2. The moduli spaes Mg,g of g-pointed urves of genus g and

the universal Piard varieties Picdg are unirational for g ≤ 9 and any d. The

spaes M1
g,d and Hg,d are unirational for g ≤ 9 and d ≥ g.

Proof. The argument is the same as in [Ver05, �1℄. We an hoose g general

points p1, . . . , pg in the homogeneous variety and an take Pg−1
as their span.

Then the intersetion of the homogeneous variety with this Pg−1
gives a smooth

urve C of genus g together with g marked points. For the line bundle, we may

take L = OC(
∑g

j=1 djpj) for integers d1, . . . , dg with
∑g
j=1 dj = d.

As for the unirationality of M1
g,d for d ≥ g + 1, with L as above we have

h0(C,L) ≥ 2. In ase d = g, we take L = ωC(−
∑g−2
j=1 pj), whih is a line

bundle L ∈ W 1
g (C) \ W

2
g (C) by Riemann�Roh. The unirationality of Hg,d

then follows. �

In the range d ≤ 5 or g ≤ 9, apart from a few ases due to Florian Geiÿ [Gei13℄,

only the unirationality of H9,8 needed to be proved. This has reently been

established in [DS17℄.

Outside the range d ≤ 5 or g ≤ 9 there are only �nitely many pairs (g, d) for
whih Hg,d is known to be unirational.

Question 1. Are there only �nitely many pairs (g, d) with g ≥ 10 and d ≥ 6
suh that Hg,d is unirational?
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45 P G

| |
| |
40 P G

| |
| |
36 P G

35 P G

34 P

33 P G

32 P

31 P G

30 P G

29 P

28 P G

27 P G

26 P G EH

25 P G HM

24 P G EH EH

23 P G HM HM

22 P G F F F

21 P G

| | |
| | |
| | |
16 P G

15 P G V

14 P G V FV

13 P G KT ST FV CKV

12 P G G ST S FV CKV CKV

11 P G G CR FV CKV CKV CKV

10 P G G KT FV CKV CKV CKV BFV

9 P G G DS M M M M M M

8 P | G M M M M M M M

7 P | M M M M M M M M

6
|
1

g / d 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1. Color oding indiates where W1
g,d is known

to be unirational, uniruled or not unirational. Results

are due to Mukai (g ≤ 9), Petri or B. Segre (d = 5)
[Muk95, Pet23, Seg28℄, Eisenbud, Harris, Mumford, Farkas,

Bini, Casalaina-Martin, Kass, Fontanari and Viviani [BFV12,

CMKV17, EH87, Far00, Far09, FV13, HM82℄, Chang and Ran,

Verra, Geiÿ, Damadi and Shreyer, Shreyer and Tanturri,

Keneshlou and Tanturri [CR84, CR86, CR91, DS17, Gei13,

Gei12, KT17, Sh13, Ver05℄.

In partiular, we may ask

Question 2. Are the genera g suh that Hg,6 is unirational bounded?

Florian Geiÿ [Gei12℄ proved the unirationality of Hg,6 for the values g ∈
{9, . . . , 28, 30, 31, 33, 35, 36, 40, 45} using models of urves in P1 × P2

of bide-

gree (6, d2) and liaison, d2 = d2(g) being the minimal number suh that
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ρ(g, 2, d2) ≥ 0. His proof atually shows the unirationality of a overing spae

of W1
g,6.

Question 3. Are the genera g suh that Hg,7 is unirational bounded?

Question 4. Is g = 14 the largest genus suh that Hg,8 is unirational? In

other words, is Verra's ase [Ver05℄ extremal? Is g = 12 the largest genus suh

that Hg,9 is unirational?

If all these questions have an a�rmative answer, then the range of pairs (g, d)
suh that W1

g,d and Hg,d are not unirational has roughly shape as indiate in

Figure 1 with the olor red.

2. Matrix fatorizations and the Reonstrution Theorem

2.1. Matrix factorizations. Matrix fatorizations were introdued by

Eisenbud in his seminal paper [Eis80℄. We reall here some basi fats and

properties for matrix fatorizations over the speial ase of a polynomial ring

S = K[x0, . . . , xn], whih is the ase of interest for the paper. Any module will

be assumed to be �nitely generated.

Let f ∈ S be a nonzero homogeneous form of degree s. A matrix fatorization

of f (or on the hypersurfae V(f)) is a pair (ϕ, ψ) of maps

ϕ : G→ F, ψ : F → G(s),

where F =
⊕r

ℓ=1 S(−aℓ) and G =
⊕r′

ℓ=1 S(−bℓ) are free S-modules, satisfying

ψ ◦ ϕ = f · idG and ϕ(s) ◦ ψ = f · idF . This ondition fores the two matries

representing the maps to be square, i.e., r = r′.
If (ϕ, ψ) is a matrix fatorization, then cokerϕ is a maximal Cohen�Maaulay

module (MCM for short) on the hypersurfae ring S/f . Conversely, a �nitely

generated MCM S/f -module M has a minimal free resolution over S

0←−M ←− F ←− G←− 0;

multipliation by f on this omplex is null homotopi

0 Moo

0

��

Foo

f

��

∃ψ

##

G
ϕ

oo

f

��

0oo

0 M(s)oo F (s)oo G(s)
ϕ(s)
oo 0oo

and yields therefore a matrix fatorization (ϕ, ψ). As an S/f -module, M has

the in�nite 2-periodi resolution

0 Moo Foo G
ϕ

oo F (−s)
ψ(−s)
oo G(−s)

ϕ(−s)
oo . . .

ψ(−2s)
oo

where F = F ⊗ S/f and G = G ⊗ S/f . In partiular, this sequene is exat,

and the dual sequene orresponding to the transposed matrix fatorization

(ψt, ϕt) is exat as well.
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If N is an arbitrary S/f module, then any minimal free resolution beomes

eventually 2-periodi. If

0←− N ←− F0 ←− F1 ←− . . .←− Fc ←− 0

is a minimal free resolution of N of length c as an S-module, then the Shamash

onstrution [Sha69℄ produes a (non-neessarily minimal) free resolution of N
of the form

0← N ← F 0 ← F 1 ←
F 2

⊕
F0(−s)

←
F 3

⊕
F1(−s)

←

F 4

⊕
F2(−s)
⊕

F0(−2s)

← . . . ,

whih beomes 2-periodi after the (c − 1)-th step. This onstrution allows

us to ontrol to some extent the degrees of the entries of the orresponding

minimal matrix fatorization of f indued by an S/f -module N , if we know

the Betti numbers of N as an S-module. The Shamash onstrution has the

following peuliarity: at the i-th step

(1)

⊕

j≥0

F i−1−2j (−js)
⊕

j≥0

F i−2j(−js)oo

the omponents F i−1−2j(−js) ← F i−2j(−js) are inherited from the maps

Fi−1−2j ← Fi−2j in the resolution of N over S for any j, while the ompo-

nent

(2)

⊕

j≥1

F i−1−2j (−js) F ioo
is the zero map.

2.2. Curves and matrix factorizations. An easy way to produe matrix

fatorizations on a hypersurfaeX = V(f) in P4
is to onsider a module N over

S = K[x0, . . . , x4] annihilated by f . A matrix fatorization of f is given by the

periodi part of a minimal free resolution of N as a module over SX := S/f .
Our motivating example will be a general urve of genus 12 and degree 14 in

P4
.

Proposition 2.1. Let C be a general linearly normal non-degenerate urve of

genus 12 and degree 14 in P4
. Then C is of maximal rank, and the homogeneous

oordinate ring SC = S/IC and the setion ring Γ∗(OC) := ⊕n∈ZH
0(OC(n))

have minimal free resolutions with the following Betti tables:

(3)

0 1 2 3 4
0 1 .
1 .
2 4
3 5 18 12 2

0 1 2 3
0 1
1 .
2 2 14 15 2
3 2

Documenta Mathematica 23 (2018) 1895–1924



1902 Frank-Olaf Schreyer and Fabio Tanturri

In partiular, the ubi threefolds ontaining C form a P3
. The minimal reso-

lution of Γ∗(OC) as a module over the homogeneous oordinate ring of a ubi

threefold X ⊃ C is eventually 2-periodi with Betti numbers

0 1 2 3 4 . . .
0 1
1 .
2 2 13 15 2
3 2 15 15 . . .
4 2 . . .

Proof. We assume that the maps H0(P4,OP4(n))→ H0(P4,OC(n)) are of max-

imal rank, i.e., C has maximal rank. Sine OC(n) is non-speial for n ≥ 2,
by Riemann�Roh we an ompute the Hilbert funtion of the homogeneous

oordinate ring of C and therefore the numerator of its Hilbert series

(1− t)5HC(t) = 1− 4t3 − 5t4 + 18t5 − 12t6 + 2t7.

Thus, we expet the Betti table of S/IC to look like the one in (3). Analo-

gously, the numerator of the Hilbert series of Γ∗(OC) under the maximal rank

assumption is

(1− t)5HΓ∗(OC)(t) = 1 + 2t2 − 14t3 + 15t4 − 2t5 − 2t6

and the expeted Betti table is (3).

To show that the Betti tables are indeed the expeted ones and that, a pos-

teriori, a general urve C is of maximal rank, we only need to exhibit a on-

rete example, whih we onstrut via matrix fatorizations as explained in

the proof of Theorem 4.3 and summarized in Algorithm 4.6. The funtion

verifyAssertionsOfThePaper(1) of [ST16℄ produes the Maaulay2 ode

needed to verify all the above assertions. Another family of examples an

be obtained as explained in Corollary 3.5.

A free resolution of Γ∗(OC) as a module over the ubi hypersurfae ring SX
an be obtained via the Shamash onstrution, from whih we an dedue the

Betti numbers of the minimal SX -resolution:

βSX

1,3 (Γ∗OC) = βS1,3(Γ∗OC)− 1

sine the equation of X is super�uous over SX , and βSX

2,5 (Γ∗OC) =

βSX

3,5 (Γ∗OC) = 2 follows from (2). �

Remark 2.2. Throughout the paper we will sometimes need to exhibit expliit

examples of modules de�ned over the rationals Q or omplex numbers C sat-

isfying some open onditions on their Betti numbers. Our onstrutions will

involve only linear algebra, espeially Gröbner basis omputations, and will de-

pend only on the hoie of some parameters; a hoie of rational values for the

parameters thus gives rise to modules over Q, hene over C. An ultimate goal

would be to perform the omputations over the funtion �eld Q(t1, . . . , tN),
where N is the number of free parameters. This however is out of reah for

omputer algebra systems today.
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We have implemented our onstrutions using the omputer algebra system

Maaulay2 [GS℄. A priori it would be possible to perform these omputations

over Q, but this might require too muh time, so instead we work over a �nite

prime �eld Fp. We an view our hoie of the initial parameters in Fp as the

redution modulo p of some hoies of parameters in Z. Then, the so-obtained
module Mp an be seen as the redution modulo p of a family of modules

de�ned over a neighborhood SpecZ[ 1b ] of (p) ∈ SpecZ for a suitable b ∈ Z with

p ∤ b. If Mp satis�es our open onditions, then by semiontinuity the generi

�ber M satis�es the same open onditions, and so does the general element of

the family over Q or C.

Let C be a urve as in Proposition 2.1. We an onsider M = Γ∗(OC) as a
SX -module, being X a generally hosen ubi threefold ontaining C. If C is

general, the periodi part of its minimal free resolution yields, up to twist, a

matrix fatorization of the form

S15 ⊕ S2(−1) S2(−1)⊕ S15(−2)
ψ

oo S15(−3)⊕ S2(−4).
ϕ

oo

Definition 2.3 (Shape of a matrix fatorization). We will all the Betti num-

bers of the minimal periodi resolution

15 2
2 15 15 2

2 15 . . .

the shape of the matrix fatorization. When the degree s of the hypersurfae
ontaining the urve is �xed (in the urrent example we have s = 3), then the

shape of a matrix fatorization is determined by the Betti numbers β(ψ) of ψ.
In the urrent ase they are

(4)

15 2
2 15

In general, starting from a urve C in P4
ontained in a (smooth) hypersurfae

X , the 2-periodi part of a minimal resolution of the setion module Γ∗(OC)
over SX will produe a matrix fatorization. The shape is uniquely determined

for a general pair C ⊂ X ⊂ P4
in a omponent of the Hilbert sheme of pairs.

For a given pair, di�erent hoies of the resolution yield equivalent matrix

fatorizations. They all de�ne the same sheaf F = (cokerϕ)∼ on X , whih

turns out to be an ACM vetor bundle, see e.g. [CH04, Proposition 2.1℄.

We have thus established one way of the orrespondene between urves and

matrix fatorizations. In what follows we will see that, to some extent, it is

possible to reover the original urve from the matrix fatorizations it indues.

2.3. Monads and the Reconstruction Theorem. Let us onsider a pair

(C,X) of a general urve C of degree 14 and genus 12 in P4
and a general

(smooth) ubi hypersurfae X = V(f) ⊃ C. The urve indues, up to twist,

a matrix fatorization of shape (4)

O
15
X (−1)⊕O

2
X(−2) O

2
X(−2)⊕O

2+13

X (−3)
ψ

oo O
15
X (−4)⊕O

2
X(−5).

ϕ
oo
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Here, we have distinguished in O2+13
X (−3) the two opies oming diretly from

the third step of the resolution of Γ∗OC as an S-module, see the Shamash

onstrution (1). The map ψ an be regarded as a blok matrix, with a zero

submatrix O2
X(−2)← O2

X(−2)⊕O2
X(−3) by (2).

Let F = (cokerϕ)∼; we an form a omplex

(5) 0 O2
X(−2)oo F

αoo O2
X(−2)⊕O2

X(−3)
β

oo 0.oo

We laim that this omplex is a monad for the ideal sheaf IC/X , i.e., α is

surjetive, β injetive and kerα/ imβ ∼= IC/X . In other words, we an reover

the original urve C from the omplex. The laim is a speial ase of the

following

Theorem 2.4 (Reonstrution Theorem). Let C ⊂ P4
be a non-degenerate

linearly normal urve of genus g and degree d ≥ g not ontained in any quadri

and let X = V(f) be a smooth hypersurfae of degree s ontaining C. Let F•

and G• be minimal free resolutions of Γ∗(OC) over S and S/f respetively, let

ϕ denote the syzygy map G3 ← G4 and F = (cokerϕ)∼(s). Then the omplex

of vetor bundles on X

(6) 0 (F ′
0)

∼oo F
αoo

(
F3(s)

)∼β
oo 0,oo

where the maps are indued by G• via the Shamash onstrution and F ′
0 is the

omplement of S in F0 = S ⊕ F ′
0, is a monad for the ideal sheaf of C on X,

i.e., β is injetive, α is surjetive, and kerα/ imβ ∼= IC/X . If s ≥ 4 the monad

is uniquely determined by F .

Proof. Sine d ≥ g the line bundle OC(2) is non-speial. It follows that Γ∗(OC)
has Betti table

0 1 2 3
0 1
1 .
2 β0,2 β1,3 β2,4 β3,5
3 β0,3 β1,4 β2,5 β3,6

Indeed, β1,2 = 0 by assumption. Sine Hom(F•, S(−5)) resolves Γ∗(ωC), we
must have β3,n = 0 for n − 5 ≥ 2, beause H0(ωC(−2)) = 0. So Γ∗OC is

3-regular and non-zero Betti numbers an only our in the indiated range.

Let us assume s = 3. The Shamash resolution starts with the Betti numbers

0 1 2 3
0 1
1 1
2 β0,2 β1,3 β2,4 + 0 β3,5
3 β0,3 β1,4 β2,5 + β0,2 β3,6 + β1,3
4 0 + β0,3 0 + β1,4

We see that, in the indued map F1 ← F0(−3), there is a non-zero onstant

1× 1 submatrix; this means that in this ase the Shamash resolution is always
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non-minimal, and in a minimal resolution a anellation ours, ausing β1,3
to derease by one. Suh anellation orresponds to the equation f of X in S
beoming super�uous in S/f .
By de�nition, the map G2 ← G3 fatorizes through F . As

F0 = S ⊕ Sβ0,2(−2)⊕ Sβ0,2(−3), F3 = Sβ3,5(−5)⊕ Sβ3,6(−6),

the omplex (6) has the form

0← O
β0,2

X (−2)⊕O
β0,3

X (−3)← F ← O
β3,5

X (−2)⊕O
β3,6

X (−3)← 0.

It is indeed a omplex beause of (2). We laim that the �rst map is surjetive,

the seond one is injetive and that the homology in the middle is isomorphi

to IC/X .
The �rst laim follows sine the okernel of the omposition

O
β0,2

X (−2)⊕O
β0,3

X (−3)← F ← O
β1,3−1
X (−3)⊕O

β1,4

X (−3),

where the � − 1� represents the missing equation of X over S/f , oinides by
onstrution with the shea��ation restrited to X of the okernel of F ′

0 ← F1;

suh okernel is a module of �nite length (a submodule of the Hartshorne�Rao

module of C), hene its shea��ation is zero.

Let G := ker(α). Being the shea��ation of a MCM module over X , the sheaf

F is a vetor bundle and G is a vetor bundle as well. It remains to show that

G O
β3,5

X (−2)⊕O
β3,6

X (−3)
γ

oo

is injetive and a presentation of IC/X . To see this, we apply the funtor

Hom(−, ωX) to γ and obtain

G∗(−2)
γ∗(−2)

// O
β3,5

X ⊕O
β3,6

X (1).

The okernel of this map oinides by onstrution with the okernel of the

dual of the shea��ation of the last map of F•

O
β2,4

X (−1)⊕O
β2,5

X
// O

β3,5

X ⊕O
β3,6

X (1),

whih is a presentation of ωC by duality on P4
. Sine

rankF = rankF0 − rankF1 + rankF2 + rankF0

= rankF3 + rankF ′
0 + 1,

we have rankG = β3,5 + β3,6 + 1. Hene both γ∗(−2) and γ drop rank in

expeted odimension 2; applying again Hom(−, ωX) to γ∗(−2) we get that γ
is injetive and by the Hilbert�Burh Theorem [Eis95, Theorem 20.15℄ it �ts

into an exat omplex

0 OC(ℓ)oo OX(ℓ)oo Goo O
β3,5

X (−2)⊕O
β3,6

X (−3)
γ

oo 0oo

for some ℓ. By applying again Hom(−, ωX) to this last exat sequene one gets
that γ∗(−2) is a presentation of ωC(−ℓ), hene ℓ = 0.
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The argument for s ≥ 4 is similar, the only di�erene being that the seond

and third term in the Shamash resolution of Γ∗(OC) di�er in their twist. For

example, the third term is Sβ3,5(−5)⊕Sβ3,6(−6)⊕Sβ1,3(−3−s)⊕Sβ1,4(−4−s),
and we see that for s ≥ 4 the monad is uniquely determined by F . �

3. General matrix fatorizations and uniruledness

In the last setion we saw how, from a matrix fatorization indued by a urve

C, it is possible to reover C itself. Within this setion we will show how

we an use the Reonstrution Theorem to atually onstrut new urves on

a hypersurfae X , starting from a general matrix fatorization (ψ, ϕ) on X .

The key point for proving this result is exhibiting, ase by ase in the range of

interest of the paper

(g, d) ∈ {(12, 14), (13, 15), (16, 17), (17, 18), (18, 19), (19, 20), (20, 20)},

a onrete example satisfying some open onditions.

This leads naturally to the strategy of onstruting (unirational) families of ma-

trix fatorizations on a hypersurfaeX to approah the problem of onstruting

projetive urves. In the range of interest for this paper, suh strategy turns

out to be e�etive beause of the following onsiderations.

On the one hand, one ould have that a general hypersurfae of the appropriate

degree does not ontain a urve with the presribed genus and degree. As

antiipated in the introdution and proved in the last setion, Theorem 5.2

shows that this does not happen, so we an start with a general hoie of X .

On the other hand, the spae of matrix fatorizations of a given shape on a

general hypersurfae may very well have many omponents. This leads to the

following

Question 5. Is the spae of matrix fatorizations of shape (4) on a general

ubi hypersurfae irreduible?

Other similar questions an of ourse be formulated for other ases of interest.

Our approah will be to onstrut unirational families of matrix fatorizations,

dominants on some omponent (or union of omponents) of suh spae; we

will then show that the points in suh partiular omponent give rise to the

desired urves. This last laim requires further explanations, see Remark 3.1

here below.

3.1. Constructing new curves from matrix factorizations.

Remark 3.1. Let (ψ, ϕ) be a general matrix fatorization of shape (4) over a

ubi hypersurfae X ; in partiular, we have a map

O15
X (−1)⊕O2

X(−2) O2
X(−2)⊕O15

X (−3).
ψ

oo

In Theorem 2.4 we onstruted, from a matrix fatorization indued by a urve,

a omplex (5). To �nd a similar omplex we need to �nd a rank 2 subbundle
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O2
X(−3) of O15

X (−3) suh that the omposition

O2
X(−2) O15

X (−3)
δoo O2

X(−3),? _oo

where δ is the map extrated from ψ, is zero. The map δ is represented by

a matrix of linear forms, and has a kernel of dimension at least 5 = 15 − 2 ·
h0(OP4(1)). Having suh kernel of dimension preisely 5 is an open ondition on
the spae of matrix fatorizations whih is satis�ed by the onrete examples we

onstrut in [ST16℄. This means that, for a given general matrix fatorization,

we get a omplex for any hoie of O2
X(−3) inside ker δ, whih orresponds

to the hoie of a p ∈ G(2, 5). A general hoie of p produes a omplex (5);

Theorem 3.2 below will show that suh omplex is a monad for a smooth urve

of genus 12 and degree 14.

The situation is very similar in the ase of urves of genus 13 and degree 15.

Here we have to hoose again a rank 2 subbundle O2
X(−3) inside the kernel,

whih is now 3-dimensional in general. This yields many hoies parameterized

by G(2, 3) = P2
. Again, a general hoie produes a monad and a smooth

urve.

Theorem 3.2. Let (g, d) be in

{(12, 14), (13, 15), (16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}

and let Hd,g be the omponent of the Hilbert sheme Hilbdt+1−g(P
4) dominating

Mg. Let C ∈ Hd,g be a general point, i.e., a general urve of genus g and degree
d in P4

.

(1) The quotient ring S/IC and the setion module Γ∗(OC) have expeted

resolutions, i.e., their Betti tables orrespond to the ones listed in Table

3.1 below.

(2) Let s = min{s′ | h0(IC(s′)) 6= 0} and onsider a general hypersurfae

X with equation f ∈ (IC)s. The minimal free S/f -resolution of Γ∗(OC)
is eventually 2-periodi and gives rise to a matrix fatorization of f of

shape as in Table 3.2.

(3) For eah hoie of (g, d) above, let s be the (expeted) minimum degree

of a hypersurfae ontaining a general urve of genus g and degree d
and let X be a general hypersurfae of degree s. There is a omponent

of the spae of matrix fatorizations on X of shape orresponding to

(g, d) in Table 3.2 whose general element gives rise to omplexes of the

form (6), whih turns out to be a monad for IC′/X , the ideal sheaf of

a smooth urve C′
of genus g and degree d with respet to X.

Proof. As in Proposition 2.1, we an ompute the expeted Betti tables of

the S-resolutions of S/IC and Γ∗(OC). These are summarized in Table 3.1.

In Table 3.2 we list the expeted shapes of the matrix fatorizations and the

orresponding monads we an onstrut.

For a matrix fatorization, giving rise to a monad for the ideal sheaf of a smooth

urve with right genus and degree is an open ondition. When the omplex is

not uniquely determined, i.e. for s = 3 (see Remark 3.1), it is an open ondition
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on the spae of omplexes, parametrized by a rational variety. To prove the

third part of the Theorem, it is thus su�ient to expliitly onstrut, for eah

of the aforementioned ases, a matrix fatorization of the given shape and a

omplex of the form (6) whih is a monad for a smooth urve with assigned

genus and degree. The fat that a general hypersurfae X of the appropriate

degree s ontains suh a urve will be proved in Theorem 5.2 and relies again

on the omputation of expliit examples.

The funtion verifyAssertionsOfThePaper(2) of [ST16℄ provides the

Maaulay2 ode useful to produe, for eah pair (g, d), a matrix fatorization

on a hypersurfae X of degree s suh that

• the shape of the matrix fatorization is as listed in Table 3.2;

• a omplex built from the matrix fatorization, aording to the nu-

merology of the expeted resolution of the setion module of a general

urve and the Reonstrution Theorem 2.4, is a monad for a smooth

urve C of genus g and degree d;
• S/IC and Γ∗OC have expeted resolutions as in Table 3.1, and Γ∗OC
indues a matrix fatorization on a general supporting hypersurfae X ′

of degree s of shape as in Table 3.2.

To prove the �rst two points of the Theorem, whih orrespond to open ondi-

tions on Hd,g, it is su�ient to hek the last assertion on a partiular example.

We use di�erent onstrutions to expliitly exhibit a matrix fatorization sat-

isfying the statements. For g = 12 or g = 13, the proedure followed an be

found in Corollary 3.5. For g = 12, an alternative way is to use urves of genus

10 and degree 13, as explained in Proposition 4.2. For g ≥ 16, see Setion 5.2.

As mentioned in Remark 2.2, it is su�ient to run our onstrutions over a

�nite �eld. �

Remark 3.3. Theorem 3.2 holds also in the ase of urves of genus 15 and

degree 16; the study of that partiular ase allowed the �rst author to onstrut

some unirational families of suh urves and to show the uniruledness ofW4
16,15

[Sh15℄. The ase of genus 16 and degree 17 was already the topi of the

master's thesis [Mül14℄.

Remark 3.4. We expet Theorem 3.2 to hold in other irumstanes as well.

Our interest in the ases above has the following reasons.

The �rst two ases orrespond to the Brill�Noether spaes W4
12,14 and W

4
13,15,

whih by Serre duality are birational to W1
12,8 and W1

13,9 respetively.

The remaining ases are motivated by a (so far unsuessful) attempt of proving

the unirationality of the moduli spaeMg for g ≥ 16. We have hosen d suh

that ρ(g, 4, d) = g − 5h1(OC(1)) takes the minimal non-negative value. See

Setion 5 for further details.

There are ases in whih we do not expet the Theorem to hold, at least not in

the formulation above. For instane, onsider the family of urves of genus 14

and degree 16 in P4
whih are ontained in ubi hypersurfaes. These urves
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Table 3.1. Expeted Betti tables.

(g, d) βi,j(S/IC) βi,j(Γ∗(OC))

(12, 14)

0 1 2 3 4

0 1 .
1 .
2 4
3 5 18 12 2

0 1 2 3

0 1
1 .
2 2 14 15 2
3 2

(13, 15)

0 1 2 3 4

0 1 .
1 .
2 2
3 12 27 17 3

0 1 2 3

0 1
1 .
2 3 17 18 3
3 2

(16, 17)

0 1 2 3 4

0 1 .
1 .
2 .
3 17 29 13
4 1 1

0 1 2 3

0 1
1 .
2 4 19 18 1
3 3

(17, 18)

0 1 2 3 4

0 1 .
1 .
2 .
3 14 18
4 2 10 3

0 1 2 3

0 1
1 .
2 5 22 21 2
3 3

(18, 19)

0 1 2 3 4

0 1 .
1 .
2 .
3 11 7
4 17 19 5

0 1 2 3

0 1
1 .
2 6 25 24 3
3 3

(19, 20)

0 1 2 3 4

0 1 .
1 .
2 .
3 8
4 4 32 28 7

0 1 2 3

0 1
1 .
2 7 28 27 4
3 3

(20, 20)

0 1 2 3 4

0 1 .
1 .
2 .
3 9 .
4 26 24 6

0 1 2 3

0 1
1 .
2 6 24 21 .
3 4
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Table 3.2. Shapes of the matrix fatorizations and orre-

sponding monads.

(g, d) shape of ψ monad

(12, 14)
15 2
2 15

O
2
X(−2)⊕O

2
X(−3)

� � // F // // O
2
X(−2)

(13, 15)
18 3
3 18

O
3
X(−2)⊕O

2
X(−3)

� � // F // // O
3
X(−2)

(16, 17)
19 1
. 3
4 19

OX(−1)⊕O
3
X(−2)

� � // F // // O
4
X(−2)

(17, 18)
22 2
. 3
5 22

O
2
X(−1)⊕O

3
X(−2)

� � // F // // O
5
X(−2)

(18, 19)
25 3
. 3
6 25

O
3
X(−1)⊕O

3
X(−2)

� � // F // // O
6
X(−2)

(19, 20)
28 4
. 3
7 28

O
4
X(−1)⊕O

3
X(−2)

� � // F // // O
7
X(−2)

(20, 20)
22 .
. 4
6 24

O
4
X(−2)

� � // F // // O
6
X(−2)

forms a divisor D in W4
14,16. Their matrix fatorizations have the shape

21 4
4 21

and we would need a rank 2 subbundle inside the kernel of the map orrespond-

ing to the last row of the Betti table above. As the kernel of a general suh

map is just 1-dimensional, we believe that a general matrix fatorization of this

shape is not indued by any urve in D.

3.2. Uniruledness results. A onsequene of Remark 3.1 and of Theorem

3.2 is that, if (g, d) = (12, 14) or (13, 15), for a �xed general matrix fatorization

(in the sense of Theorem 3.2) on a general ubi hypersurfae X of shape as in

Table 3.2 we have a rational map

(7) V //❴❴❴ W4
g,d,

where V is G(2, 5), P2
respetively.

Corollary 3.5. W4
12,14 and W4

13,15 and the orresponding W1
12,8 and W1

13,9

are uniruled.
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Proof. Take a general point in W4
12,14 or W4

13,15 and hoose an embedding

C ⊂ P4
. Consider a general ubi hypersurfae X ontaining C and onsider

the indued matrix fatorization on X . The indued rational map (7) sends

a general hoie of the monad to a point W4
12,14, W

4
13,15 respetively. The

image of this map is a rational variety; if it is not a point, then it ontains

a rational urve whih passes through C and whose points parametrize points

of W4
12,14, W

4
13,15 respetively, whene the onlusion. For the map (7), being

non-onstant is an open ondition on the spae of matrix fatorizations, hene

it is su�ient to hek it for a onrete example.

To onstrut the two neessary examples, we start from a g-nodal rational urve
C′

of genus g having a g12g−2−d = |D| (see [Bop13b, Bop13a℄). We embed C′

in P4
via |KC′ −D| and obtain a singular urve C′ ⊂ P4

of genus g and degree

d. We onsider the matrix fatorization on a ubi hypersurfae obtained from

C′
and hoose a random point in V . We hek that the resulting urve C

is smooth; sine C′
is a point in the boundary as a point in W

4

d,g, the map

is not onstant. An implementation of the ode is provided by the funtion

verifyAssertionsOfThePaper(2) in [ST16℄.

By passing to the Serre dual linear systems, this yields the uniruledness of the

orresponding spaes W1
12,8 and W1

13,9 as well. �

4. A unirational Hurwitz spae

Our aim is to use all the mahinery developed so far to onstrut a unirational

family of urves dominating H12,14, the omponent of the Hilbert sheme of

urves of genus 12 and degree 14 in P4
whih dominatesW4

12,14. By onsidering

the dual models, this will imply the unirationality of W1
12,8 and H12,8.

The idea is to use Theorem 3.2. If we manage to produe a large enough

unirational family of general matrix fatorizations, we an hope that the spae

of urves we obtain is dominant. In other terms, we translate the problem of

onstruting urves with �xed invariants to the problem of onstruting matrix

fatorizations on ubi threefolds with an assigned shape.

4.1. Betti tables and auxiliary modules. Let us �x a ubi form f ∈
S. A matrix fatorization of f with shape (4) might be hard to onstrut.

Nonetheless, the Shamash onstrution gives us a way to partially predit the

shape of a matrix fatorization arising as the 2-periodi part of the resolution of

an arbitrary S/f -module N , provided that we know the Betti numbers βi,j(N)
of N as an S-module. Thus, a possible approah is to onstrut auxiliary S-
modules N giving rise over S/f to a matrix fatorization of f with the desired

shape.

For suh N , how should its Betti table βi,j(N) look like? If we assume that no

anellation will our when taking the minimal part of the Shamash resolution,

i.e., the Shamash resolution is already minimal, a presribed shape imposes

linear onditions on the entries of a table βi,j �lled with natural numbers. For

instane, if we assume pdN < 5, for the shape (4) suh a table has the following
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form, up to twist:

0 1 2 3 4
0 β0,0 β1,1 . . .
1 β0,1 β1,2 β2,3 β3,4 .
2 . . β2,4 β3,5 β4,6
3 . . . . β4,7

s.t.






β0,0 + β2,3 + β4,6 = 15
β0,1 + β2,4 + β4,7 = 2
β1,1 + β3,4 = 2
β1,2 + β3,5 = 15

It turns out that a �nite number of andidate Betti tables are allowed. As the

transposed of a matrix fatorization is again a matrix fatorization, we ould

as well onsider Betti tables giving rise to matrix fatorizations with the dual

shape

2 .
15 15
. 2

We might also tolerate anellations, i.e., we might assume that the Shamash

resolution is not minimal; this makes the number of andidate Betti tables

beome in�nite. However, we an always limit our searh to �nitely many ases,

�xing for instane the entries of the tables in whih we allow anellations and

an upper bound for their number.

By doing this, we end up with a list of tables; we an further limit our searh to

the ones lying in the Boij�Söderberg one, i.e., tables βi,j for whih there exists

a rational number q ∈ Q and an S-module M ′
suh that q · βi,j = βi,j(M

′). It
is of ourse onvenient to let a omputer deal with all the possibilities.

Example 4.1. A list of tables satisfying the aforementioned onditions an be

produed by a Maaulay2 omputation, whose implementation is provided by

the funtion verifyAssertionsOfThePaper(3) in [ST16℄. An example of a

table in this list is

(8)

0 1 2 3 4
0 1 .
1 .
2 5
3 2 15 11 2

Suppose there exists an auxiliary S-module N with resolution F• with Betti

numbers (8), and onsider a ubi form f . If we apply the Shamash onstrution

to get a resolution of N , it is easy to see that the indued map F0(−3) → F1

has a non-zero invertible part, hene the expeted shape of the indued matrix

fatorization is (4).

The following proposition shows that suh an auxiliary module N exists and

its indued matrix fatorization has indeed the expeted shape.

Proposition 4.2. Let E be a general urve of genus 10 and degree 13 in P4

and X = V(f) a general ubi threefold ontaining it. Then the Betti table of

S/IE is (8), the matrix fatorization indued by S/IE on X has shape (4) and

is general enough in the sense of Theorem 3.2, i.e., it an be used to onstrut

urves of genus 12 and degree 14.
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Proof. For suh a urve E, all the statements orrespond to open onditions

and it is su�ient to hek them on a partiular example. An implementation of

its onstrution is provided by the funtion verifyAssertionsOfThePaper(4)

in [ST16℄; an explanation of the proedure used is to be found in the proof of

Theorem 4.3 and in Algorithm 4.6. �

4.2. Unirationality of H12,8. Summarizing, we an use general urves E of

genus 10 and degree 13 to get urves C of genus 12 and degree 14. Moreover,

suh onstrution is unirational; this means that a unirational family of E's
yields a unirational family of C's. Thus, we an fous on the former in the

attempt of onstruting a family dominating the latter.

Theorem 4.3. The spaes W4
12,14 and H12,8 are unirational.

Proof. Let H13,10 ⊂ Hilb13t+1−10(P
4) and H14,12 ⊂ Hilb14t+1−12(P

4) denote

the omponents whose general elements are linearly normal non-degenerate

smooth urves of degree and genus (d, g) = (13, 10) or (14, 12) respetively.

These omponents dominate W4
10,13 and W4

12,14.

We will exhibit a unirational family of urves C in H14,12 by expliitly on-

struting a dominant family of urves E. To do that, suppose we have a unira-
tional parameterization ofM10,5, the moduli spae of urves of genus 10 with 5

marked points; start from a urve E and an e�etive divisor D of degree 5. The

linear system |KE −D| embeds E in a urve of degree 13 in P4
by Riemann�

Roh. The onstrution dominates H13,10 and via matrix fatorizations this

unirational parameterization indues a unirational family in H14,12.

A unirational parameterization of M10,5 an be onstruted as follows. In

[Gei12℄, a dominant unirational family of 6-gonal urves E of genus 10 is on-

struted by means of liaison of urves in P1 × P2
. We an moreover modify

the last step of the onstrution (see Algorithm 4.6 below) to impose E to pass

through �ve unirationally hosen points.

Thus we have produed a unirational family of urves in H14,12, whose general

element is a smooth irreduible urve of maximal rank with expeted Betti table

as in Proposition 2.1. The orresponding ode is implemented in the funtion

randomCurveGenus12Degree14InP4 of [ST16℄, along the lines of Algorithm 4.6.

It remains to prove that the family of urves onstruted from pairs (E,X) with
E ∈ H13,10 and X ∈ P(H0(IE(3))) via matrix fatorizations dominates H14,12.

For this it su�es to prove that we an reover E from a matrix fatorization

(ϕ, ψ) of shape (4).

Proposition 4.4. Let E ∈ H13,10 be a general urve of genus 10 and degree

13, let X be a general ubi ontaining E and let F be the rank 7 vetor bundle

on X assoiated to the matrix fatorization indued by N = S/IE, i.e., F is

the image of ψ

O15
X (−3)⊕O2

X(−4) O2
X(−4)⊕O15

X (−5)





ψ11 ψ12

0 ψ22





oo .
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There exists an exat omplex indued by the Shamash onstrution

0← IE/X ← O
4
X(−3)⊕O2

X(−4)← F ← O2
X(−4)← 0;

moreover, for a general hoie of a quotient O4
X(−3) ← O15

X (−3) whih om-

poses to zero with the omponent ψ1,1 of ψ, the omplex

(9) O4
X(−3)⊕O2

X(−4)← F ← O2
X(−4)← 0

is a loally free resolution of the ideal sheaf of a smooth urve E′ ∈ H13,10 on

X.

Let (ψ, ϕ) be a given general matrix fatorization on X of shape (4) and let

F be the image of ψ. Then the hoie of the quotient q as above orresponds

to the hoie of a point in P4
; for a general suh hoie, (9) is a loally free

resolution of the ideal sheaf of a smooth urve E′ ∈ H13,10 on X.

Proof. The �rst step is just reversing the Shamash onstrution of the SX -
resolution of N = SE .
Sine X is smooth the kernel of the map IE/X ← O

4
X(−3)⊕O2

X(−4) is already
a vetor bundle G on X . The bundle F surjets onto G with the image of

F ← O2
X(−4) ontained in the kernel. Sine the kernel of the map G ← F is a

rank 2 vetor bundle of the same degree as O2
X(−4), the indued map between

the kernel and O2
X(−4) is an isomorphism.

The fat that, for a given (general) matrix fatorization, a general hoie

of the quotient q yields a omplex (9) whih is a loally free resolution of

a smooth urve E′ ∈ H13,10 is an open ondition both on matrix fator-

izations and in P4
. It is thus su�ient to hek it omputationally on an

expliit example, as an be done with the ode provided by the funtion

verifyAssertionsOfThePaper(5) in [ST16℄. �

Finally, to onlude with the unirationality of H12,8 we note that a general

point in W4
12,14 gives as Serre dual model a point in W1

12,8 and onversely.

Moreover, the hoie of a basis of P1
is rational, and thus we get a unirational

family of P1
-overings of degree 8. The lous of urves in H12,8 having a

smooth omponent of the Brill�Noether lous of expeted dimension is open

and ontains the points we expliitly onstrut, hene our family is dominant.

This ompletes the proof of Theorem 4.3.

The funtion randomGenus12Degree8CoverOfP1 in [ST16℄ is an implementa-

tion of the above unirational onstrution and produes a random anonial

urve of genus 12 together with two hyperplanes in P11
utting out a g18 . �

Remark 4.5. LetM15 2
2 15(X) denote the omponent, in the spae of equivalene

lasses of shape (4) on a given ubi X , whose general element is indued by

a urve C ∈ H14,12. Above we have established a unirational orrespondene
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between spaes of urves on X

{C ⊂ X}

G(2,5) &&▼
▼▼

▼▼
▼▼

▼▼
▼

{E ⊂ X}

P
4

xxqq
qq
qq
qq
qq

M15 2
2 15(X)

whose �bers are open subsets of a G(2, 5) or P4
respetively. We may inter-

hange the role of C and E: sine SC and Γ∗(OE) have Betti tables

0 1 2 3 4
0 1 .
1 .
2 4
3 5 18 12 2

and

0 1 2 3
0 1
1 .
2 2 15 18 5
3 1

they both lead to matrix fatorizations on X of shape

15 2
5 18

By the Reonstrution Theorem 2.4, and the same argument as in Proposition

4.4, we get another orrespondene

{C ⊂ X}

G(2,5) &&▼
▼▼

▼▼
▼▼

▼▼
▼

{E ⊂ X}

P
4

xxqq
qq
qq
qq
qq

M15 2
5 18(X)

.

We believe that this symmetry an be explained by the fat that urves C ∈
H14,12 are linked to urves E ∈ H13,10 via a omplete intersetion of three

ubis:

degC + degE = 27 = 33 and gC − gE =
1

2
(C − E).((9 − 5)H) = 2.

This fat yields a orrespondene

{.i.C ∪ E}

P
3

xxqq
qq
qq
qq
qq G(3,5)

&&▼
▼▼

▼▼
▼▼

▼▼
▼

H14,12 H13,10

and a simpler proof that H14,12 is unirational, as further shown in [KT17,

Remark 3.3℄.

Algorithm 4.6. Summarizing, the following onstrution yields a unirational

parameterization of W4
12,14. The �rst four steps are a slight modi�ation of

the onstrution in [Gei12℄. The algorithm is implemented by the funtion

randomCurveGenus12Degree14InP4 in [ST16℄.

(1) On P1 × P2
, start with a rational urve of degree 4 together with 3

general lines. Call E′′
their union.
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(2) Choose two general forms gi ∈ H0(IE′′(4, 2)) and onstrut E′
as the

linkage of E′′
on the omplete intersetion de�ned by g1, g2.

(3) Choose unirationally �ve general points {pj} in P1×P2
and hoose, in

the 7-dimensional spae H0(IE′′(3, 3)), two general forms fi vanishing
on eah pj .

(4) Construt E as the linkage of E′
in the omplete intersetion de�ned

by f1, f2. By onstrution, E passes through pj , is a general urve of

genus 10 and D = p1 + . . .+ p5 is a general e�etive divisor of degree

5 on E.
(5) Embed E via |KE −D| into P4

. The urve E ⊂ P4
is a general urve

of genus 10 and degree 13.
(6) Choose a general ubi hypersurfae X ⊃ E and onsider the matrix

fatorization on X indued by S/IE .
(7) Choose a general point p ∈ G(2, 5) as in Remark 3.1, onstrut the

monad (6) and the orresponding urve C ⊂ X , whih is a urve of

genus 12 and degree 14.

5. Families of urves on rational surfaes

In this setion, we show how matrix fatorizations an be used to onstrut

unirational families of urves of genus g and degree d in P4
, with (g, d) belonging

to

{(16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}.

The main motivation for the hoie of these ases is the unknown unirationality

of the orresponding moduli spaes of urves. One would like to produe a

unirational family of projetive urves whih is dominant on the underlying

moduli spae of urves. As a general expetation, urves with �xed genus

and lower degree should be easier to onstrut; the degree d onsidered for

eah g above is hosen as the minimum suh that the Brill�Noether number

ρ(g, 4, d) ≥ 0.

5.1. Explicit construction. We an try to mimi the tehnique used in

Setion 4.1 and look for auxiliary modules whose Betti tables satisfy ertain

onditions. A list of andidate Betti tables an be produed with the same

tehnique and implementation used in Example 4.1. Alternatively, the funtion

preompiledListOfCandidates in [ST16℄ prints preomputed lists for eah

genus g ∈ [16, 20].
For instane, the lists ontain the tables reported in Table 5.1. All of them

orrespond to modules N supported on a urve whih will be denoted by Z.

We will assume that L = Ñ is a line bundle on Z.
The �rst row in these Betti tables is independent of (g, d) and the orresponding
omplex over S, dualized and shea��ed,

(10) 0 // O6
P4(−4) // O10

P4(−3)
α // O3

P4(−2) // 0

ould be a monad for the ideal sheaf of a surfae Y ⊂ P4
. Two families of

smooth surfaes of this kind are known:
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Table 5.1. Betti tables for auxiliary modules

(g, d) βi,j(N) (codim suppN, degN)

(16, 17)

0 1 2 3 4

0 6 10 3
1 3
2 1 13 9 1

(3, 19)

(17, 18)

0 1 2 3 4

0 6 10 3
1 3
2 2 16 12 2

(3, 18)

(18, 19)

0 1 2 3 4

0 6 10 3
1 3
2 3 19 15 3

(3, 17)

(19, 20)

0 1 2 3 4

0 6 10 3
1 3
2 4 22 18 4

(3, 16)

(20, 20)

0 1 2 3 4

0 6 10 3
1 4
2 16 14 3

(3, 16)

• the Alexander surfaes Y [Ale88℄, P2
blown up in 10 general points

embedded via the linear system |14L−
∑10
i=1 Ei|, where L is the strit

transform of a general line in P2
and Ei are the exeptional divisors

orresponding to the 10 blown-up points, and

• the blow-ups Y ′
of Enriques surfaes in a single point embedded by

|H −E|, where H is a Fano polarization and E the exeptional divisor

[AR92℄.

Both surfaes have degree 9, K2
Y = −1, setional genus π = 6 and as

Hartshorne�Rao module H1
∗(IY ) = coker (S10(−3) → S3(−2)) a module with

Hilbert series 3t2 + 5t3 + t4. They di�er by the Betti numbers of their

Hartshorne�Rao modules, whih are

0 1 2 3 4 5

2 3 10 6

3 15 26 15 3

4 1 3 3 1

and

0 1 2 3 4 5

2 3 10 6

3 15 25 12

4 1
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respetively. Hene also SY and SY ′
have di�erent Betti tables:

0 1 2 3 4

0 1 .

1 .

2 .

3 .

4 15 26 15 3

5 1 3 3 1

and

0 1 2 3 4

0 1 .

1 .

2 .

3 .

4 15 25 12

5 1

The rational surfae Y has a 6-seant line and ontains no (−1)-line, while the
Enriques surfae has no 6-seant line and ontains one (−1)-line. For further

details, see [DES93℄.

Proposition 5.1. If C is a urve of genus g and degree d obtained via matrix

fatorizations from an auxiliary module N with Betti table as in Table 5.1 suh

that

(1) L = Ñ is a line bundle on a urve Z di�erent from C, and
(2) (10) is a monad for a smooth surfae Y of degree 9 as above,

then C lies on Y . More preisely, if f ∈ (IC)4 is any quarti whih annihilates

N and X = V(f) the orresponding hypersurfae, then

Y ∩X = C ∪ Z.

Proof. Sine Y does not lie on any quarti, the intersetion Y ∩ X is proper

and the sequene (10) restrited to X

(11) 0 // O6
X(−4) // O10

X (−3) // O3
X(−2) // 0

is a monad for the ideal sheaf IY ∩X/X of Y ∩X on X . We laim that (11) is

a subomplex of the shea��ed dual of the suitably twisted linear strand in the

Shamash resolution of N .

For example, let us fous on the ase (g, d) = (16, 17). The dual linear strand
reads

0→ O0+1
X (−5)→ O6+13

X (−4)→ O10+9
X (−3)→ O3+1

X (−2)→ 0

and the maps from a �rst to a seond summand are all zero by (2). Thus, we

get a ommutative diagram of monads

0 // O6
X(−4) //

��

O10
X (−3) //

��

O3
X(−2) //

��

0

0 // O3
X(−2)⊕OX(−1) // F // O4

X(−2) // 0

where the �rst vertial map is up to sign a omponent of the dual of the �rst

map of the SX -resolution of N , and the third one is the inlusion indued by

the Shamash resolution of N . The map on homology gives us a map IY ∩X/X →
IC/X between torsion free sheaves, whose double dual is a map OX → OX .
Thus, to onlude that C is a omponent of Y ∩ X , it su�es to prove that
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IY ∩X/X → IC/X is not the zero map. Let J and K denote the kernels in the

monads. We get a diagram

0 // O6
X(−4) //

��

J //

��

IY ∩X/X
//

��

0

0 // O3
X(−2)⊕OX(−1) // K // IC/X // 0

of exat sequenes.

If the map on the right was zero, we would get a homotopy J → O3
X(−2) ⊕

OX(−1), whih sine H1(OX(n)) = 0 for all n would lift to a map O10
X (−3)→

O3
X(−2)⊕OX(−1) suh that

O6
X(−4) //

��

O10
X (−3)

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

O3
X(−2)⊕OX(−1)

ommutes. But this ontradits the fat that the map

S6
X S10

X (−1)⊕ S3
X(−2)⊕ SX(−3)oo

is the �rst map in the minimal free resolution of N as an SX -module.

Therefore, C is a omponent of Y ∩X . The urve Z is also ontained in Y ∩X .

Sine

degC + degZ = degC + degN = 36 = deg Y degX

there are no further omponents, and C ∪Z = Y ∩X . The proof for the other

pairs (g, d) is similar. �

5.2. Families of curves on rational surfaces. We have two ways to

takle the onstrution of our urves C: we ould try to produe a module

N having a Betti table as in Table 5.1, then indue a matrix fatorization and

get a urve as desribed in the previous setions. A key observation is that the

line bundle L on the urve Z oinides with ωY (1)|Z . This approah works,

and led us to disover Proposition 5.1 and the fat that some of desired urves

C lie on Alexander surfaes. An implementation of the onstrution of urves

on Alexander surfaes via matrix fatorizations is provided by the funtion

verifyAssertionsOfThePaper(6) in [ST16℄.

A seond, more onvenient approah is to look for our desired urves C diretly

on these surfaes, e.g., the Alexander surfaes Y . The genus and the degree

of C impose onditions on the divisor lass [C] = a0L −
∑
aiEi ∈ Pic(Y ). By

maximizing the dimension of the linear systems, we an maximize the dimension

of the orresponding unirational families of urves. In Table 5.2 we list the

linear systems ahieving the maximal dimension; a general element in suh

linear systems is a urve whih satis�es all our assertions, as one an verify

by omputing a single randomly hosen example, see the ode provided by
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the funtion verifyAssertionsOfThePaper(7) in [ST16℄. In partiular this

proves the �rst two assertions of Theorem 3.2.

Table 5.2. Unirational families of urves on the Alexander surfae

(g, d) linear system dimension

(16, 17) 21L−
∑4

i=1
7Ei −

∑10

j=5
6Ej 26

(17, 18) 22L−
∑8

i=1
7Ei − 6E9 − 5E10 27

(18, 19) 19L−
∑

7

i=1
6Ei −

∑
10

j=8
5Ej 29

(19, 20) 20L − 7E1 − 7E2 −
∑

8

i=3
6Ei − 5E9 − 5E10 30

(20, 20) 20L− 7E1 −
∑9

i=2
6Ei − 5E10 31

Unfortunately, the so-onstruted unirational families are far from being dom-

inant on the orresponding moduli spaes. Curves of same degree and genus

on a blown-up Enriques surfae give at best families of the same dimension.

There are many other possible hoies of a andidate Betti table of N . For

instane, for g ≥ 16, other even simpler rational surfaes show up and we an

produe other examples of urves lying on them. Unfortunately, all the unira-

tional families we have been able to onstrut are not dominant. Nonetheless,

there is no reason why one should not be able to realize bigger families of pro-

jetive models via matrix fatorizations starting from di�erent Betti tables, the

biggest obstale being of ourse the onstrution of suitable auxiliary modules

N .

5.3. Curves lying on a general hypersurface. We onlude by showing

that, even though the examples of urves of genus g ≥ 16 are far from being

general as projetive models, we an still use them, as well as the examples of

urves with lower genera onstruted in the previous setions, to prove that a

general hypersurfae ontains a whole family of them.

Theorem 5.2. A general ubi hypersurfae in P4
ontains a family of dimen-

sion 2d of urves of genus g and degree d for

(g, d) ∈ {(12, 14), (13, 15)}.

A general quarti hypersurfae in P4
ontains a d-dimensional family of urves

of genus g and degree d for

(g, d) ∈ {(16, 17), (17, 18), (18, 19), (19, 20), (20, 20)}.

Lemma 5.3. Let C be a urve of genus g and degree d in Pn and X a hyper-

surfae of degree s ontaining it. Then

χ(NC/X) = d(n+ 1− s) + (1− g)(n− 4).

Proof. The Euler sequene of Pn restrited to C yields

χ(TPn |C) = (n+ 1)(d+ 1− g)− 1 + g.
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Sine NX/Pn

∣∣
C
∼= OC(s), from the sequene de�ning NX/Pn

restrited to C we

get

χ(TX |C) = (n+ 1)(d+ 1− g)− 1 + g − (ds+ 1− g).

The onlusion follows by looking at the short exat sequene de�ning NC/X .
�

Proof of Theorem 5.2. Let C be a general urve in P4
of genus g and degree

d, and let X be a general hypersurfae of degree s ontaining it, with s hosen
aordingly to (g, d) as in the statement of the Theorem. By Lemma 5.3,

χ(NC/X) = d(5− s).
We laim that h1(NC/X) = 0. It is su�ient to hek this vanishing on one

example for eah pair (g, d), as an be done with the Maaulay2 ode provided

by the funtion verifyAssertionsOfThePaper(8) in [ST16℄, and onlude by

semiontinuity. Hene, h0(NC/X) = d(5− s).
Let Ts be the spae of threefolds of degree s ontaining a general urve C of

genus g and degree d, up to projetive equivalenes. Let m := h0(P4, IC(s))−
1 =

(
4+s
4

)
− sd+ g − 2. We have

dim(Ts) = dimMg + ρ(d, 4, g) +m− h0(NC/X) =

(
4 + s

4

)
− 25. �
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