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Abstract. We study duality theorems for the relative logarithmic
de Rham-Witt sheaves on semi-stable schemes X over a local ring
Fq[[t]], where Fq is a finite field. As an application, we obtain a
new filtration on the maximal abelian quotient πab

1 (U) of the étale
fundamental groups π1(U) of an open subscheme U ⊆ X , which gives
a measure of ramification along a divisor D with normal crossing and
Supp(D) ⊆ X −U . This filtration coincides with the Brylinski-Kato-
Matsuda filtration in the relative dimension zero case.
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Introduction

The motivation of this paper is to study ramification theory for higher-
dimensional schemes of characteristic p > 0. In the light of class field theory,
we want to define a filtration on the abelianized étale fundamental group of
an open subscheme U of a regular scheme X , which measures the ramification

1The author is supported by the DFG through CRC 1085 Higher Invariants (Universität
Regensburg).
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of a finite étale covering of U along the complement D = X − U . More pre-
cisely, let D =

⋃s
i=1 Di be a reduced effective Cartier divisor on X such that

Supp(D) has simple normal crossing, where D1, · · · , Ds are the irreducible
components of D, and let U be its complement in X . We want to define a
quotient group πab

1 (X,mD)/pn of πab
1 (U)/pn, for a divisor mD =

∑s
i=1 miDi

with each mi ≥ 1, which classifies the finite étale coverings of degree pn over
U with ramification bounded by mD along the divisor D.
We define the quotient group πab

1 (X,mD)/pn by using the relationship between
πab
1 (U)/pn and H1(U,Z/pnZ), and by then applying a duality theorem for

certain cohomology groups. For this we assume some finiteness conditions on
the scheme X . The first is to assume that X is smooth and proper of dimension
d over the finite field Fq. For a finite étale covering of U of degree ℓn, where
ℓ is a prime different from p, this was already done by using duality theory in
ℓ-adic cohomology [SGA4 [AGV72]]. The Poincaré-Pontryagin duality theorem
[Sai89] gives isomorphisms

πab
1 (U)/ℓn ∼= Hom(H1(U,Z/ℓn),Q/Z) ∼= Hd

c (U,Z/ℓ
n(d)).

The case of degree pn coverings is more subtle, as we deal with wild ramification
and there is no obvious analogue of cohomology with compact support for
logarithmic de Rham-Witt sheaves. In [JSZ18], we proposed a new approach.
That duality theorem, based on Serre’s coherent duality and Milne’s duality
theorems, together with Pontryagin duality give isomorphisms

πab
1 (U)/pn ∼= Hom(H1(U,Z/pnZ),Q/Z) ∼= lim

←−
m

Hd(X,WnΩ
d
X|mD,log),

where WnΩ
d
X|mD,log (see Definition 3.3.1) is the relative logarithmic de Rham-

Witt sheaf with respect to the divisor mD. Using these isomorphisms, we
define a quotient πab

1 (X,mD)/pn of πab
1 (U)/pn, ramified of order mD where

m is the smallest value such that the above isomorphism factors through
Hd(X,WnΩ

d
X|mD,log). We may think of πab

1 (X,mD)/pn as the quotient of

πab
1 (U) classifying abelian étale coverings of U whose degree divides pn with

ramification bounded by mD. In [KS14][KS16], Kerz and Saito also defined a
similar quotient group by using curves on X .
The second finiteness condition is to assume that X is proper (or projective)
over a discrete valuation ring R. More precisely, we may assume that X is a
proper semi-stable scheme over Spec(R). Then there are two cases: mixed and
equi-characteristic. In the mixed characteristic case, instead of logarithmic de
Rham-Witt sheaves, Sato [Sat07b] defined the p-adic Tate twists, and proved
an arithmetic duality theorem for X . In [Uzu16], Uzun proved that over the
p-adic field πab

1 (U)/n is isomorphic to some motivic homology groups, for all
n > 0.
In this paper, we treat the equi-characteristic case, where the wildly ramified
case has not been considered before. We follow the approach suggested by
Jannsen and Saito in [JSZ18]. The main result of this paper is the following
theorem.

Documenta Mathematica 23 (2018) 1925–1967



Duality on Semistable Schemes 1927

Theorem A (see Theorem 3.4.2). Let X → Spec(Fq[[t]]) be a projective strictly
semistable scheme of relative dimension d, and let Xs be its special fiber. Let
D be an effective Cartier divisor on X such that Supp(D) has simple normal
crossing, and let U be its open complement. Then there is a perfect pairing of
topological Z/pnZ-modules

Hi(U,WnΩ
r
U,log)× lim

←−
m

Hd+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log)

Tr
−→ Z/pnZ

where the Hd+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log) is endows with the discrete topology, and

Hi(U,WnΩ
r
U,log) is endowed with the direct limit topology of compact-open

groups.

Therefore, we can define a filtration Fil• on Hi(U,WnΩ
r
U,log) via the inverse

limit (see Definition 3.4.9). This theorem and Pontryagin duality give isomor-
phisms

πab
1 (U)/pn ∼= Hom(H1(U,Z/pnZ),Q/Z) ∼= lim

←−
m

Hd+1
Xs

(X,WnΩ
d+1
X|mD,log),

and so we may define πab
1 (X,mD)/pn as the dual of FilmH1(U,Z/pnZ) (see

Definition 3.4.9).
This paper is organized as follows.
In the first section, we will prove a new purity theorem on certain regular
schemes. Its cohomological version will be used later for the trace map in the
above duality theorem.

Theorem B (see Theorem 1.4.4 ). Assume X is as before, and i : Xs →֒ X
is the special fiber, which is a reduced divisor and has simple normal crossing.
Then there is a canonical isomorphism

Gyslogi,n : νdn,Xs
[−1]

∼=
−−−−−→ Ri!WnΩ

d+1
X,log

in D+(Xs,Z/p
nZ), where

νdn,Xs
= ker(

⊕

x∈X0
s

ix∗WnΩ
d
x,log →

⊕

x∈X1
s

ix∗WnΩ
d−1
x,log)

and X i
s is the set of codimension i points on Xs, for i = 0, 1.

Our goal in the second section is to develop an absolute coherent duality on X .
This can be achieved by combining an absolute coherent duality on the local
ring B = Spec(Fq[[t]]) and a relative duality for f . For the former, we use the
Grothendieck local duality, and the latter is following theorem.

Theorem C (see Theorem 2.3.1). Let f : X → B = Spec(Fq[[t]]) be a projective
strictly semistable scheme. Then there is a canonical trace isomorphism

Trf : Ωd+1
X [d]

∼=
−→ f !Ω1

B.
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In the third section, we study the duality theorems of logarithmic de Rham-
Witt sheaves on our projective semistable scheme. In fact, we will prove two
duality theorems. The first one is for Hi(X,WnΩ

j
X,log), which we call unrami-

fied duality.

Theorem D (see Theorem 3.1.1). The natural pairing

Hi(X,WnΩ
j
X,log)×Hd+2−i

Xs
(X,WnΩ

d+1−j
X,log )→ Hd+2

Xs
(X,WnΩ

d+1
X,log)

Tr
−−→ Z/pnZ

induces an isomorphism

Hi(X,WnΩ
j
X,log)

∼=
−→ HomZ/pnZ(H

d+2−i
Xs

(X,WnΩ
d+1−j
X,log ),Z/pnZ).

of Z/pnZ-modules.

The second is the above main Theorem A for Hi(U,WnΩ
j
U,log). We call it

ramified duality. To define the pairing, we do further studies on the sheaves
WnΩ

r
X|mD,log in the middle two subsections.

In the last section, we will compare our new filtration with previously known
filtrations in some special cases. The first interesting case would be the fil-
tration in local ramification theory. We can show that for the local field
K = Fq((t)) our filtration agree with the non-log version of Brylinski-Kato
filtration fil•H

1(K,Z/pnZ) [Bry83] [Kat89] defined by Matsuda [Mat97]:

Proposition E (Proposition 4.2.3). For any integer m ≥ 1, we have
FilmH1(K,Z/pnZ) = filmH1(K,Z/pnZ).

Acknowledgments The author would like to thank heartily Uwe Jannsen
for his advice and support over the past few years, and thank Shuji Saito
for his insightful discussions and encouragement. The author also want to
thank Moritz Kerz for numerous constructive comments, to Georg Tamme,
Patrick Forré, Florian Strunk and Yitao Wu for helpful conversations, and to
the anonymous Referee for her/his valuable comments.

1 Purity

1.1 Logarithmic de Rham-Witt sheaves

Let X be a scheme of dimension d over a perfect field k of characteristic p > 0,
and let Wn(k) be the ring of Witt vectors of length n.
Based on ideas of Lubkin, Bloch and Deligne, Illusie defined the de Rham-Witt
complex [Ill79]. Recall the de Rham-Witt complex WΩ•

X/k is the inverse limit

of an inverse system (WnΩ
•
X/k)n≥1 of complexes

WnΩ
•
X/k := (WnΩ

0
X/k

d
−→WnΩ

1
X/k → · · ·

d
−→WnΩ

i
X/k

d
−→ · · · )

Documenta Mathematica 23 (2018) 1925–1967



Duality on Semistable Schemes 1929

of sheaves of WnOX -modules on the Zariski site of X . The complex WnΩ
•
X/k

is called the de Rham-Witt complex of level n.
This complexWnΩ

•
X/k is a strictly anti-commutative differential gradedWn(k)-

algebra. In the rest of this section, we will omit the subscript /k to simplify
the notation.
We have the following operators on the de Rham-Witt complex ([Ill79, I]):

(i) The projection R : WnΩ
•
X → Wn−1Ω

•
X , which is a surjective homomor-

phism of differential graded algebras.

(ii) The Verschiebung V : WnΩ
•
X → Wn+1Ω

•
X , which is an additive homo-

morphism.

(iii) The Frobenius F : WnΩ
•
X → Wn−1Ω

•
X , which is a homomorphism of

differential graded algebras.

Proposition 1.1.1 ([Ill79, I 1.13,1.14]).

(i) For each n ≥ 1, and each i, WnΩ
i
X is a quasi-coherent WnOX-module.

(ii) For any étale morphism f : X → Y , f∗WnΩ
i
Y →WnΩ

i
X is an isomorphism

of WnOX -modules.

Remark 1.1.2. Let F be a quasi-coherent on X , we denote its associated sheaf
on Xét by Fét, then we have Hi(XZar,F ) = Hi(Xét,Fét), for all i ≥ 0[Mil80,
III 3.7]. By the above proposition, we may also denote WnΩ

i
X as sheaf on Xét,

and its étale and Zariski cohomology groups are agree.

Cartier operators are another type of operators on the de Rham-Witt complex.
Before stating the theorem, we set

ZWnΩ
i
X := Ker(d : WnΩ

i
X →WnΩ

i+1
X );

BWnΩ
i
X := Im(d : WnΩ

i−1
X →WnΩ

i
X);

H
i(WnΩ

•
X) := ZWnΩ

i
X/BWnΩ

i
X ;

Z1WnΩ
i
X : = Im(F : Wn+1Ω

i
X →WnΩ

i
X)

= Ker(Fn−1d : WnΩ
i
X

d
−→WnΩ

i+1
X

Fn−1

−−−→ Ωi+1
X ).

Since W1Ω
i
X
∼= Ωi

X , ZW1Ω
i
X(resp. BW1Ω

i
X) is also denoted by ZΩi

X(resp.
BΩi

X). Note that ZΩi
X , BΩi

X , and H i(Ω•
X) can be given OX -module struc-

tures via the absolute Frobenius morphism F on OX .

Theorem 1.1.3 (Cartier, [Kat70, Thm. 7.2], [Ill96, Thm. 3.5]). Suppose X
is of finite type over k. Then there exists a unique p-linear homomorphism of
graded OX-algebras

C−1 :
⊕

Ωi
X −→

⊕

H
i(Ω•

X)

satisfying the following two conditions:
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(i) For a ∈ OX , C−1(a) = ap;

(ii) For dx ∈ Ω1
X , C−1(dx) = xp−1dx.

If X is moreover smooth over k, then C−1 is an isomorphism. It is called
inverse Cartier isomorphism. The inverse of C−1 is called Cartier operator,
and is denoted by C.

Higher Cartier operators can be defined as follows, which comes back to the
above theorem in the case n = 1.

Proposition 1.1.4 ([IR83, III], [Kat85, § 4]). If X is smooth over k, then
there is a unique higher Cartier morphism C : Z1Wn+1Ω

i
X →WnΩ

i
X such that

the diagram

Z1WnΩ
i
X

C %%❑❑
❑❑

❑❑
❑❑

❑❑

V // Wn+1Ω
q
X

WnΩ
i
X

p

99sssssssss

is commutative. We have an isomorphism

WnΩ
i
X

F
−→
∼=

Z1Wn+1Ω
i
X/dV n−1Ωi−1

X ,

and an exact sequence

0→ dV n−1Ωi−1
X → Z1Wn+1Ω

i
X

C
−→WnΩ

i
X .

For a smooth variety X over k, the composite morphism

Wn+1Ω
i
X

F
−→WnΩ

i
X ։ WnΩ

i
X/dV n−1Ωi−1

X

is trivial on Ker(R : Wn+1Ω
i
X → WnΩ

i
X) = V nΩi

X + dV nΩi−1
X . Therefore F

induces a morphism

F : WnΩ
i
X →WnΩ

i
X/dV n−1Ωi−1

X .

Definition 1.1.5. Let X be a smooth variety over k. For any positive integer
n, and any non-negative integer i, we define the i-th logarithmic de Rham-Witt
sheaf of length n as

WnΩ
i
X,log := Ker(WnΩ

i
X

1−F
−−−→WnΩ

i
X/dV n−1Ωi−1

X ).

For any x ∈ X, we denote WnΩ
i
x,log := WnΩ

i
κ(x),log, where κ(x) is the residue

field at x.
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Remark 1.1.6. (Local description ofWnΩ
i
X,log [Ill79, I 1.3]) The i-th logarithmic

de Rham-Witt sheafWnΩ
i
X,log is the additive subsheaf ofWnΩ

i
X , which is étale

locally generated by sections d log[x1]n · · · d log[xi]n, where xi ∈ O
×
X , [x]n is

the Teichmüller representative of x in WnOX , and d log[x]n := d[x]n
[x]n

. In other

words, it is generated by the image of

d log : (O×
X)⊗i −→ WnΩ

i
X

(x1, · · · , xi) 7−→ d log[x1]n · · · d log[xi]n

Proposition 1.1.7 ([CTSS83],[GS88a],[Ill79]). For a smooth variety X over
k, we have the following exact sequences of étale sheaves on X:

(i) 0→WnΩ
i
X,log

pm

−−→Wn+mΩi
X,log

R
−→WmΩi

X,log → 0;

(ii) 0→WnΩ
i
X,log →WnΩ

i
X

1−F
−−−→WnΩ

i
X/dV n−1Ωi−1

X → 0;

(iii) 0→WnΩ
i
X,log → Z1WnΩ

i
X

C−1
−−−→ WnΩ

i
X → 0.

Proof. The first assertion is Lemma 3 in [CTSS83], and the second is Lemma
2 in loc.cit.. The last one is Lemma 1.6 in [GS88a], which can easily be deduce
from (ii). In particular, for n = 1, (iii) can be also found in [Ill79].

The logarithmic de Rham-Witt sheaves WnΩ
i
X,log are Z/pnZ-sheaves, which

have a similar duality theory as the Z/ℓnZ-sheaves µ⊗n
ℓ with ℓ 6= p for a smooth

proper variety:

Theorem 1.1.8. (Milne duality [Mil86, 1.12]) Let X be a smooth proper variety
over k of dimension d, and let n be a positive integer. Then the following holds:

(i) There is a canonical trace map trX : Hd+1(X,WnΩ
d
X,log)→ Z/pnZ. It is

bijective if X is connected;

(ii) For any integers i and r with 0 ≤ r ≤ d, the natural pairing

Hi(X,WnΩ
r
X,log)×Hd+1−i(X,WnΩ

d−r
X,log)→ Z/pnZ

is a non-degenerate pairing of finite Z/pnZ-modules.

Remark 1.1.9. The proof can be obtained in the following way: using the exact
sequence (i) in Proposition 1.1.7, we reduce to the case n = 1, which can be
obtained from Serre’s coherent duality via the exact sequence (ii) and (iii) in
the same proposition.
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1.2 Normal crossing varieties

In [Sat07a], Sato generalized the definition of logarithmic de Rham-Witt
sheaves from smooth varieties to more general varieties, and proved that they
share similar properties on normal crossing varieties.
Let Z be a variety over k of dimension d. For a non-negative integer m and a
positive integer n > 0, we denote by C•

n(Z,m) the following complex of étale
sheaves on X

⊕

x∈Z0

ix∗WnΩ
m
x,log

(−1)m·∂
−−−−−→

⊕

x∈Z1

ix∗WnΩ
m−1
x,log

(−1)m·∂
−−−−−→ · · ·

(−1)m·∂
−−−−−→

⊕

x∈Zc

ix∗WnΩ
m−c
x,log

(−1)m·∂
−−−−−→ · · ·

where ix is the natural map x→ Z, Zi is the set of codimension i points, and
∂ denotes the sum of Kato’s residue maps (see [JSS14, 1.7][Kat86]).

Definition 1.2.1. (i) The mth homological logarithmic Hodge-Witt sheaf
is defined as the 0-th cohomology sheaf H 0(C•

n(Z,m)) of the complex
C•

n(Z,m), and denoted by νmn,Z .

(ii) The mth cohomological Hodge-Witt sheaf is the image of

d log : (O×
Z )

⊗m −→
⊕

x∈Z0

ix∗WnΩ
m
x,log,

and denoted by λm
n,Z .

Remark 1.2.2. If Z is smooth, then νmn,Z = λm
n,Z = WnΩ

m
Z,log, but in general

λm
n,Z ( νmn,Z [Sat07a, Rmk. 4.2.3].

Definition 1.2.3. The variety Z is called normal crossing variety if it is ev-
erywhere étale locally isomorphic to

Spec(k[x0, · · · , xd]/(x0 · · ·xa))

for some integer a ∈ [0, d], where d = dim(Z). A normal crossing variety is
called simple if every irreducible component is smooth.

Proposition 1.2.4. ([Sat07a, Cor. 2.2.5(1)]) For a normal crossing variety
Z, the natural map νmn,Z −→ C•

n(Z,m) is a quasi-isomorphism of complexes.

Theorem 1.2.5. ([Sat07a, Thm. 1.2.2]) Let Z be a normal crossing variety
over a finite field, and proper of dimension d. Then the following holds:

(i) There is a canonical trace map trZ : Hd+1(Z, νdn,Z) → Z/pnZ. It is
bijective if Z is connected.

(ii) For any integers i and j with 0 ≤ j ≤ d, the natural pairing

Hi(Z, λj
n,Z)×Hd+1−i(Z, νd−j

n,Z )→ Hd+1(Z, νdn,Z)
trZ−−→ Z/pnZ

is a non-degenerate pairing of finite Z/pnZ-modules.
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1.3 Review on purity

In the ℓ-adic setting, the sheaf µ⊗r
ℓn on a regular scheme has purity. This was

called Grothendieck’s absolute purity conjecture, and it was proved by Gabber
and can be found in [Fuj02]. In the p-adic case, we may ask if purity holds
for the logarithmic de Rham-Witt sheaves. But these sheaves only have semi-
purity(see Remark 1.3.3 below).

Proposition 1.3.1. ([Gro85]) Let i : Z →֒ X be a closed immersion of smooth
schemes of codimension c over a perfect field k of characteristic p > 0. Then,
for r ≥ 0 and n ≥ 1, Rmi!WnΩ

r
X,log = 0 if m 6= c, c+ 1.

For the logarithmic de Rham-Witt sheaf at top degree, i.e., WnΩ
d
X,log where

d = dim(X), the following theorem tells us Rc+1i!WnΩ
d
X,log = 0.

Theorem 1.3.2. ([GS88b, Mil86, Suw95]) Assume i : Z →֒ X is as above. Let
d = dim(X). Then, for n ≥ 1, there is a canonical isomorphism (called Gysin
morphism)

Gysdi : WnΩ
d−c
Z,log[−c]

∼=
−−−−−→ Ri!WnΩ

d
X,log

in D+(Z,Z/pnZ).

Remark 1.3.3. Note that the above theorem is only for the d-th logarithmic
de Rham-Witt sheaf. For m < d, the Rc+1i!WnΩ

m
X,log is non zero in general

[Mil86, Rem. 2.4]. That’s the reason why we say they only have semi-purity.

Sato generalized the above theorem to normal crossing varieties.

Theorem 1.3.4. ([Sat07a, Thm. 2.4.2]) Let X be a normal crossing varieties
of dimension d, and i : Z →֒ X be a closed immersion of pure codimension
c ≥ 0. Then, for n ≥ 1, there is a canonical isomorphism(also called Gysin
morphism)

Gysdi : νd−c
n,Z [−c]

∼=
−−−−−→ Ri!νdn,X

in D+(Z,Z/pnZ).

Remark 1.3.5. The second Gysin morphism coincides with the first one, when
X and Z are smooth [Sat07a, 2.3,2.4]. In loc.cit., Sato studied the Gysin
morphism of νrn,X for 0 ≤ r ≤ d. In fact the above isomorphism for νdn,X was
already proved by Suwa [Suw95, 2.2] and Morse [Mos99, 2.4].

Corollary 1.3.6. If i : Z →֒ X is a normal crossing divisor(i.e normal
crossing subvariety of codimension 1 in X) and X is smooth, then we have

Gysdi : νd−1
n,Z [−1]

∼=
−−−−−→ Ri!WnΩ

d
X,log

in D+(Z,Z/pnZ).

Proof. This follows from the fact that WnΩ
d
X,log = νdn,X , when X is smooth

over k.
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We want to generalize this corollary to the case where X is regular. For this,
we need a purity result of Shiho [Shi07], which is a generalization of Theorem
1.3.2 for smooth schemes to regular schemes.

Definition 1.3.7. Let X be a scheme over Fp, and i ∈ N0, n ∈ N. Then we
define the i-th logarithmic de Rham-Witt sheaf WnΩ

i
X,log as the subsheaf of

WnΩ
i
X , which is generated by the image of

d log : (O×
X)⊗i −→WnΩ

i
X ,

where d log is defined by

d log(x1 ⊗ · · · ⊗ xi) = d log[x1]n · · · d log[xi]n,

and [x]n is the Teichmüller representative of x in WnOX .

Remark 1.3.8. Note that this definition is a simple generalization of the classical
definition for smooth X , by comparing with the local description of logarithmic
de Rham-Witt sheaves in Remark 1.1.6.

As in Theorem 1.1.3, we can define the inverse Cartier operator similarly for a
scheme over Fp. Using the Néron-Popescu approximation theorem [Swa98](see
Theorem 3.2.10 below) and Grothendieck’s limit theorem (SGA 4 [AGV72, VII,
Thm. 5.7]), Shiho showed the following results.

Proposition 1.3.9. ([Shi07, Prop. 2.5] ) If X is a regular scheme over Fp,
the inverse Cartier homomorphism C−1 is an isomorphism.

Using the same method, we can prove:

Theorem 1.3.10. The results of Proposition 1.1.4 also hold for a regular
scheme over Fp.

Proposition 1.3.11. ([Shi07, Prop. 2.8, 2.10, 2.12]) Let X be a regular
scheme over Fp. Then we have the following exact sequences:

(i) 0→WnΩ
i
X,log

pm

−−→Wn+mΩi
X,log

R
−→WmΩi

X,log → 0;

(ii) 0→WnΩ
i
X,log →WnΩ

i
X

1−F
−−−→WnΩ

i
X/dV n−1Ωi−1

X → 0;

(iii) 0→WnΩ
i
X,log → Z1WnΩ

i
X

C−1
−−−→ WnΩ

i
X → 0.

Proof. The claim (iii) is easily obtained from (ii), as in the smooth case. When
n = 1, this is Proposition 2.10 in loc.cit..

Let C be a category of regular schemes of characteristic p > 0, such that, for
any x ∈ X , the absolute Frobenius OX,x → OX,x of the local ring OX,x is
finite. Shiho showed the following cohomological purity result.
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Theorem 1.3.12. ([Shi07, Thm. 3.2]) Let X be a regular scheme over Fp,
and let i : Z →֒ X be a regular closed immersion of codimension c. Assume
moreover that [κ(x) : κ(x)p] = pN for any x ∈ X0, where κ(x) is the residue
field at x. Then there exists a canonical isomorphism

θq,m,log
i,n : Hq(Z,WnΩ

m−c
Z,log)

∼=
−−−−−→ Hq+c

Z (X,WnΩ
m
X,log)

if q = 0 holds or if q > 0,m = N,X ∈ ob(C ) hold.

Remark 1.3.13. In [Shi07, Cor. 3.4], Shiho also generalized Proposition 1.3.1 to
the case that Z →֒ X is a regular closed immersion, and without the assumption
on the residue fields.

Corollary 1.3.14. Let X be as in Theorem 1.3.12, ix : x→ X be a point of
codimension c. Then the canonical morphism

θlogix,n
: WnΩ

N−c
x,log[−c]

∼=
−−−−−→ Ri!xWnΩ

N
X,log

is an isomorphism in D+(x,Z/pnZ).

Proof. Let Xx be the localization of X at x. The assertion is a local prob-
lem, hence we may assume X = Xx. By the above Remark 1.3.13, we
have Rji!xWnΩ

N
X,log = 0 for j 6= c, c + 1. The natural map WnΩ

N−c
x,log[−c] →

Rci!xWnΩ
N
X,log[0] induces the desired morphism θlogix,n

, and the above theorem
tells us this morphism induces isomorphisms on cohomology groups. An alter-
native way is to show Rc+1i!xWnΩ

N
X,log = 0 directly as Shiho’s arguments in

the proof of Theorem 1.3.12.

1.4 A new result on purity for semistable schemes

We recall the following definitions.

Definition 1.4.1. For a regular scheme X and a divisor D on X, we say that
D has normal crossing if it satisfies the following conditions:

(i) D is reduced, i.e. D =
⋃

i∈I Di (scheme-theoretically), where {Di}i∈I is
the family of irreducible components of D;

(ii) For any non-empty subset J ⊂ I, the (scheme-theoretically) intersec-
tion

⋂

j∈J Dj is a regular scheme of codimension #J in X, or otherwise
empty.

If moreover each Di is regular, we called D has simple normal crossing.

Let R be a complete discrete valuation ring, with quotient field K, residue field
k, and the maximal ideal m = (π), where π is a uniformizer of R.

Definition 1.4.2. Let X → Spec(R) be a scheme of finite type over Spec(R).
We call X a semistable (resp. strictly semistable) scheme over Spec(R), if it
satisfies the following conditions:
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(i) X is regular, X → Spec(R) is flat, and the generic fiber Xη := XK :=
X ×Spec(R) Spec(K) is smooth;

(ii) The special fiber Xs := Xk := X×Spec(R)Spec(k) is a divisor with normal
crossings (resp. simple normal crossings) on X.

Remark 1.4.3 (Local description of semistable schemes). Let X be a semistable
scheme over Spec(R), then it is everywhere étale locally isomorphic to

Spec(R[T0, · · · , Td]/(T0 · · ·Ta − π))

for some integer a with a ∈ [0, d], where d denotes the relative dimension of X
over Spec(R). In particular, this implies the special fiber of a semistable(resp.
strictly semistable) scheme is a normal (resp. simple normal) crossing variety.

Let k be a perfect field of characteristic p > 0, and let B := Spec(k[[t]]) be the
affine scheme given by the formal power series with residue field k. Our new
purity result is the following theorem.

Theorem 1.4.4. Let X → B be a projective strictly semistable scheme of
relative dimension d, and let i : Xs →֒ X be the natural morphism. Then,
there is a canonical isomorphism

Gyslogi,n : νdn,Xs
[−1]

∼=
−−−−−→ Ri!WnΩ

d+1
X,log

in D+(Xs,Z/p
nZ).

We will use Shiho’s cohomological purity result (Theorem 1.3.12) in the proof,
and the following lemma guarantees our X satisfies the assumption there.

Lemma 1.4.5. Let X be as in Theorem 1.4.4.

(i) Let A be a ring of characteristic p > 0. If the absolute Frobenius F : A →
A, a 7→ ap is finite, then the same holds for any quotient or localization.

(ii) For any x ∈ X, the absolute Frobenius F : OX,x → OX,x is finite. In
particular, our X is in the category C .

(iii) For any x ∈ X0, we have [κ(x) : κ(x)p] = pd+1.

Proof. (i) By the assumption, there is a surjection of A-modules
⊕m

i=1 A ։ A
for some m, where the A-module structure in the target is twisted by F . For
the quotienting out by an ideal I, then tensoring with A/I, we still have a
surjection

⊕m
i=1 A/I ։ A/I . If S is a multiplicative set, then tensoring with

S−1A still gives a surjection
⊕m

i=1 S
−1A ։ S−1A .

(ii) Note that k[[t]] as k[[t]]p-module is free with basis {1, t, · · · , tp−1}. The
absolute Frobenius on the polynomial ring k[[t]][x1, · · · , xn] is also finite. Now
the local ring OX,x is obtained from a polynomial ring over k[[t]] after passing
to a quotient and a localization. Hence the assertion follows by (i).
(iii) For x ∈ X0, the transcendence degree tr.degk((t))κ(x) = d, and κ(x) is a
finitely generated extension over k((t)). So the p-rank of κ(x) is the p-rank of
k((t)) increased by d, and we know that [k((t)) : k((t))p] = p.
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We need the following result of Moser.

Proposition 1.4.6. ([Mos99, Prop. 2.3]) Let Y be a scheme of finite type
over a perfect field of characteristic p > 0, let ix : x→ Y be a point of Y with
dim({x})= c. Then we have Rqix∗WnΩ

c
x,log = 0, for all n ≥ 1 and q ≥ 1.

With the help of the above preparations, we can now prove the theorem.

Proof of Theorem 1.4.4. By [JSS14, 1.5], we have the following local-global
spectral sequence of étele sheaves on Z := Xs:

Eu,v
1 =

⊕

x∈Zu

Ru+vıx∗(Ri!xWnΩ
d+1
X,log) =⇒ Ru+vi!(WnΩ

d+1
X,log)

where, for x ∈ Z, ı (resp. ix = i ◦ ı) denotes the natural map x → Z (resp.
x→ X).
For x ∈ Zu, we have an isomorphism

θlogix,n
: WnΩ

d−u
x,log[−u− 1]

∼=
−−−−−→ Ri!xWnΩ

d+1
X,log,

by Corollary 1.3.14. Then

Eu,v
1 =

⊕

x∈Zu

Rv−1ıx∗WnΩ
d−u
x,log = 0, if v 6= 1.

where the last equality follows from Proposition 1.4.6. Hence the local-global
spectral sequence degenerates at the E1-page, i.e., R

ri!WnΩ
d+1
X,log is the (r− 1)-

th cohomology sheaf of the following complex

⊕

x∈Z0

ıx∗R
1i!xWnΩ

d+1
X,log

d00
1−−→
⊕

x∈Z1

ıx∗R
2i!xWnΩ

d+1
X,log → · · ·

· · · →
⊕

x∈Zr−1

ıx∗R
ri!xWnΩ

d+1
X,log

dr−1,0
1−−−−→

⊕

x∈Zr

ıx∗R
r+1i!xWnΩ

d+1
X,log → · · ·

· · · →
⊕

x∈Zd

ıx∗R
d+1i!xWnΩ

d+1
X,log.

We denote this complex by B•
n(Z, d). Then Corollary 1.3.14 implies that, θlogix,n

gives an isomorphism Cs
n(Z, d)

∼= Bs
n(Z, d), for any s, i.e., a term-wise isomor-

phism between the complexes C•
n(Z, d) and B•

n(Z, d). The following theorem

will imply that θlogix,n
induces an isomorphism of complexes.

Theorem 1.4.7. Let X,Z := Xs be as in Theorem 1.4.4. For x ∈ Zc and
y ∈ Zc−1 with x ∈ {y}, then the following diagram

Hq(y,WnΩ
r−c
y,log)

(−1)r∂val
y,x //

θlog
iy,n

��

Hq(x,WnΩ
r−c−1
x,log )

θlog
ix,n

��
Hc+q

y (X,WnΩ
r
X,log)

δlocy,x(WnΩr
X,log)

// Hc+1+q
x (X,WnΩ

r
X,log)
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commutes if q = 0 or (q, r) = (1, d+ 1), where ∂val
y,x is Kato’s residue map and

δlocy,x(WnΩ
r
X,log) is defined in [JSS14, 1.7].

Theorem 1.4.7 implies 1.4.4. By Theorem 1.4.7, under the Gysin isomor-
phisms θlog, the morphisms dr,01 coincide with the boundary maps of loga-
rithmic de Rham-Witt sheaves. Hence C•

n(Z, d) coincides with B•
n(Z, d). And

Proposition 1.2.4 said the complex C•
n(Z, d) is acyclic at positive degree, and

isomorphic to νdn,Z at zero degree. This shows the claim.

We are now turning to the proof of commutativity of the above diagram .

Proof of Theorem 1.4.7. We may assume y ∈ Zj for some irreducible compo-
nent Zj of Z. Note that Zj is smooth by our assumption. Then we have a
commutative diagram:

Hq(y,WnΩ
r−c
y,log)

θlog
iy,n //

Gysiy

��

Hc+q
y (X,WnΩ

r
X,log)

Hc−1+q
y (Zj ,WnΩ

r−1
Zj ,log

)
θZj →֒X

// Hc−1+q
y (Zj ,H

1
Zj
(WnΩ

r
X,log)),

OO

where the right-vertical morphism is the edge morphism of Leray spectral se-
quence.
Hence we have the following diagram:

Hq(y,WnΩ
r−c
y,log)

(−1)r∂val
y,x //

Gysy→Zj

��

Hq(x,WnΩ
r−c−1
x,log )

Gysx→Zj

��

(1)

Hc−1+q
y (Zj ,WnΩ

r−1
Zj ,log

)
δlocy,x(WnΩ

r−1
Zj,log

)
//

θZj →֒X

��

Hc+q
x (Zj ,WnΩ

r−1
Zj ,log

)

θZj →֒X

��

(2)

Hc−1+q
y (Zj ,H

1
Zj
(WnΩ

r
X,log))

δlocy,x(H
1
Zj

(WnΩ
r
X,log))

//

��

Hc+q
x (Zj ,H

1
Zj
(WnΩ

r
X,log))

��

(3)

Hc+q
y (X,WnΩ

r
X,log)

δlocy,x(WnΩ
r
X,log) // Hc+1+q

x (X,WnΩ
r
X,log).

The square (1) is (−1)-commutative if q = 0 or (q, r) = (1, d + 1). This is
Theorem 4.1.1 for q = 0 and Corollary 4.4.1 for (q, r) = (1, d + 1) in [JSS14].
The square (2) is commutative by the functoriality of δlocy,x. The square (3) is
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(−1)-commutative by the functoriality of the Leray spectral sequences: here the
sign (−1) arise from the difference of degrees. Therefore the desired diagram
is commutative.

Remark 1.4.8. In [Shi07, Thm. 5.4], Shiho proved this compatibility for more
general regular schemes X over Fq where the residue fields of x, y are not
necessarily to be finite or perfect, but assuming that n = 1.

Corollary 1.4.9 (Cohomological purity). Assume X and Z := Xs are as
before. For any integer i ≤ d+ 1, there is a canonical isomorphism

Gysi,n : Hd+1−i(Z, νdn,Z)
∼=

−−−−−→ Hd+2−i
Z (X,WnΩ

d+1
X,log)

Proof. This follows from the spectral sequence

Eu,v
1 = Hu(Z,Rvi!WnΩ

d+1
X,log)⇒ Hu+v

Z (X,WnΩ
d+1
X,log)

and the above purity theorem.

Corollary 1.4.10. Assume that the residue field k = Fq. Then there is a
canonical map, called the trace map:

Tr : Hd+2
Z (X,WnΩ

d+1
X,log) −→ Z/pnZ.

It is bijective if Z is connected.

Proof. We define this trace map as trZ ◦Gys−1
i,n, where trZ is the trace map in

Theorem 1.2.5.

We conclude this chapter with the following compatibility result.

Proposition 1.4.11. Let X,Z be as in Theorem 1.4.4, and let W be a smooth
closed subscheme of Z of codimension r, giving the following commutative di-
agram:

W � � ı //
p�

iW   ❇
❇❇

❇❇
❇❇

❇ ZoO

i~~⑦⑦
⑦⑦
⑦⑦
⑦

X

Then the following diagram:

WnΩ
d−r
W,log

GysW →֒Z //

θW →֒X ''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

Rrı!νdn,Z

GysZ →֒Xww♦♦♦
♦♦
♦♦
♦♦
♦♦

Rr+1i!WWnΩ
d+1
X,log

commutes. Recall that θW →֒X is the Gysin morphism defined by Shiho in The-
orem 1.3.12, GsyW →֒Z be the Gysin morphism defined by Sato in Theorem
1.3.4, and GysZ →֒X is the Gysin morphism in Theorem 1.4.4.
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Proof. We may assume W ⊆ Zj, for some irreducible component Zj of Z. We
denote the natural morphisms as in the following diagram:

W
ıW //

iW   ❆
❆❆

❆❆
❆❆

❆ Zi

ıZj //

iZj

��

Z

i~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

X

Then we have

WnΩ
d−r
W (1)

//

**❱❱❱❱
❱❱❱

❱❱❱

(2)

##❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍
❍

Rrı!νdn,Z

(3)

{{✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

Rrı!WWnΩ
d
Zj

44❤❤❤❤❤❤❤❤❤❤

��
Rr+1i!WWnΩ

d+1
X,log

Sato’s Gysin morphisms satisfy a transitivity property, which implies the square
(1) commutes. So does (2) due to Shiho’s remark in [Shi07, Rem. 3.13].
It’s enough to show the square (3) commute. Hence we reduced to the case
r = 0. Then we may write WnΩ

d
W,log as the kernel of ⊕x∈W 0ix∗WnΩ

d
x,log →

⊕y∈W 1iy∗WnΩ
d−1
y,log. Then Sato’s Gysin morphism will be the identity, and our

definition of Gysin morphism locally is exactly that given by Shiho(see the
proof of Theorem 1.4.4).

2 Coherent duality

From now on, we fix the notation as in the following diagram.

Xs
� � i //

fs

��

X

f

��

Xη

fη

��

? _
joo

s
� � is // B = Spec(k[[t]]) η?

_jηoo

where f is a projective strictly semistable scheme, Z = Xs is the special fiber,
Xη is the generic fiber, and k is a perfect field of characteristic p > 0.

2.1 The absolute differential sheaf Ω1
X

We recall some lemmas on local algebras.
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Lemma 2.1.1. Let (A,m, k) → (A′,m′, k′) be a local morphism of Noetherian
local rings. If A′ is regular and flat over A, then A is regular.

Proof. Note that flat base change commutes with homology. Hence, for q >

dim(A′), we have TorAq (k, k) ⊗A A′ = TorA
′

q (k ⊗ A′, k ⊗ A′) = 0. Since A′ is

faithful flat over A, this implies TorAq (k, k) = 0, for q > dim(A′). Therefore,
the global dimension of A is finite. Thanks to Serre’s theorem [MR89, Thm.
19.2], A is regular.

Lemma 2.1.2. Let A be a regular local ring of characteristic p > 0 such that
Ap → A is finite. Then Ω1

A is a free A-module.

Proof. By [Kun69, Thm. 2.1], regularity implies that Ap → A is flat, so faith-
fully flat. The above lemma implies that Ap is regular as well. Then we use a
conjecture of Kunz, which was proved in [KN82], that there exists a p-basis of
A. Therefore the assertion follows.

Proposition 2.1.3. The absolute differential sheaf Ω1
X is a locally free OX-

module of rank d+ 1.

Proof. Note that we have an exact sequence

f∗Ω1
B → Ω1

X → Ω1
X/B → 0.

Both f∗Ω1
B and Ω1

X/B are coherent, so is Ω1
X . Then we may reduce to local

case, and the assertion is clear by the above lemma.

Corollary 2.1.4. The sheaves Ωi
X , ZΩi

X (via F), Ωi
X/BΩi

X (via F) are locally
free OX-modules.

Proof. As in the smooth case, using Cartier isomorphisms, we can show this
inductively.

2.2 Grothendieck duality theorem

The Grothendieck duality theorem studies the right adjoint functor of Rf∗ in
D+

qc(X), the derived category of OX -modules with bounded from below quasi-
coherent cohomology sheaves. There are several approaches to this functor.
In our case, we follow a more geometric approach, which was given by
Hartshorne in [Har66]. Here we only use the Grothendieck duality theorem
for projective morphisms.

Definition 2.2.1. A morphism g : M → N of schemes is called projectively
embeddable if it factors as

M
g //

p

!!❇
❇❇

❇❇
❇❇

❇ N

Pn
N

q

>>⑥⑥⑥⑥⑥⑥⑥⑥
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for some n ∈ N, where q is the natural projection, p is a finite morphism.

Remark 2.2.2. In our case, the projectivity of the scheme f : X → B =
Spec(k[[t]]) and the fact that the basis is affine imply that f factors through a
closed immersion X →֒ Pn

S for some n ∈ N [EGA, II 5.5.4 (ii)].

Theorem 2.2.3. (Grothendieck duality theorem [Har66, §11]) Let g : M → N
be a projectively embeddable morphism of noetherian schemes of finite Krull
dimension. Then, there exists a functor f ! : D+

qc(N) → D+
qc(M) such that the

following holds:

(i) If h : N → T is a second projectively embeddable morphism, then (g◦h)! =
h! ◦ g!;

(ii) If g is smooth of relative dimension n, then g!(G ) = f∗(G )⊗ Ωn
M/N [n];

(iii) If g is a finite morphism, then g!(G ) = ḡ∗RHomON (g∗OM ,G ), where ḡ
is the induced morphism (M,OM )→ (N, g∗OM );

(iv) There is an isomorphism

θg : Rg∗RHomOM (F , g!G )
∼=
−→ RHomON (Rf∗F ,G ),

for F ∈ D−
qc(M), G ∈ D+

qc(N).

2.3 Relative coherent duality

In this subsection, we fix a base scheme B = Spec(k[[t]]), and prove the follow-
ing relative duality result.

Theorem 2.3.1. Let Y be a regular scheme and let f : Y → B = Spec(k[[t]])
be a projective morphism of relative dimension d. There exists a canonical
isomorphism

Trf : Ωd+1
Y [d]

∼=
−→ f !Ω1

B.

This theorem can be obtained by some explicit calculations.

Lemma 2.3.2. Let ι : Y →֒ PN
B be a regular closed immersion with the defining

sheaf I. Then the sequence of OY -modules

0→ ι∗I/I2 → ι∗Ω1
P
N
B
→ Ω1

Y → 0

is exact.

Proof. We only need to show that the left morphism is injective. Let K be the
kernel of the canonical morphism ι∗Ω1

P
N
B
→ Ω1

Y . Since both ι∗Ω1
P
N
B

and Ω1
Y are

coherent and locally free, the kernel K is coherent and flat. Then it follows that
K is also locally free. By counting the ranks, we have rank(I/I2)=rank(K).
Thus, the induced surjective morphism ι∗I/I2 → K is an isomorphism.
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Proof of Theorem 2.3.1. By Remark 2.2.2, we have a decomposition of maps

Y
� � ι //

f

��

PN
B

p
~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

B

for some N ∈ N. Here ι is a regular closed immersion. Using Koszul resolution
of OY with respect to the closed immersion ι, we have

ι!ΩN+1
P
N
B

∼= ι∗ΩN+1
P
N
B

⊗ ι∗det(I/I2)∨[d−N ].

By Lemma 2.3.2, we have

ι∗ΩN+1
P
N
B

⊗ ι∗det(I/I2)∨ ∼= Ωd+1
Y .

Since p is smooth, we have isomorphisms

p!Ω1
B
∼= p!OB ⊗ p∗Ω1

B
∼= ΩN

P
N
B/B[N ]⊗ p∗Ω1

B
∼= ΩN+1

P
N
B

[N ].

Noting that
f !Ω1

B = ι!p!Ω1
B,

the theorem follows.

Remark 2.3.3. From the proof, we can see Theorem 2.3.1 is still true in more
general situations. In the light of our application, we just proof this simple
case and remark that we only use the case that the residue field k of the base
scheme is a finite field Fq.

2.4 Grothendieck local duality

Let (R,m) be a regular local ring of dimension n with maximal ideal m, and
R/m ∼= Fq is a finite field of characteristic p. For any finite R-module M , we
have a canonical pairing

Hi
m
(Spec(R),M)×Extn−i

R (M,Ωn
R)→ Hn

m
(Spec(R),Ωn

R)
Res
−−→ Fq

trFq/Fp
−−−−→ Z/pZ.

(2.1)

Theorem 2.4.1 (Grothendieck local duality). For each i ≥ 0, the pairing (2.1)
induces isomorphisms

Extn−i
R (M,Ωn

R)⊗R R̂ ∼= HomZ/pZ(H
i
m
(Spec(R),M),Z/pZ),

Hi
m
(Spec(R),M) ∼= Homcont(Ext

n−i
R (M,Ωn

R),Z/pZ),

where Homcont denotes the set of continuous homomorphisms with respect to
m-adic topology on Ext group.
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Proof. This is slightly different from the original form of Grothendieck lo-
cal duality in [GH67, Thm. 6.3]. But, in our case, the dualizing mod-
ule I = Hn

m
(Spec(R),Ωn

R) can be written as lim
−→
n

HomZ/pZ(R/mn,Z/pZ) ⊂

HomZ/pZ(A,Z/pZ)(cf. Example 3 on Page 67 in loc.cit.). Then we identify

HomR(H
i
m
(Spec(R),M), I)

= HomR(H
i
m
(Spec(R),M), lim

−→
n

HomZ/pZ(R/mn,Z/pZ))

= HomR(H
i
m
(Spec(R),M), HomZ/pZ(R,Z/pZ))

= HomZ/pZ(H
i
m
(Spec(R),M),Z/pZ),

where the second equality follows from the fact that each element of
Hi

m
(Spec(R),M) is annihilated by some power of m. The second isomorphism

in the theorem follows from the definition of continuity.

2.5 Absolute coherent duality

In our case, the base scheme B = Spec(k[[t]]) is a complete regular local ring of
dimension 1. We assume k = Fq. Combining Grothendieck local duality on the
base scheme B with the relative duality theorem 2.3.1, we obtain an absolute
duality on X .

Proposition 2.5.1. Let F be a locally free OX-module on X, and let F t be
the sheaf given by Hom(F ,Ωd+1

X ). Then we have

Hi
m
(B,Rf∗F ) ∼= Hi

Xs
(X,F ); (2.2)

Ext1−i
OB

(Rf∗F ,Ω1
B)
∼= Hd+1−i(X,F t). (2.3)

Proof. For the first equation, we have the following canonical identifications:

Hi
m
(B,Rf∗F ) = Hi(B, is∗Ri!sRf∗F )

= Hi(B, is∗Rfs∗Ri!F )
= Hi(Fq, Rfs∗Ri!F ) (is∗is exact)
= Hi(Xs, Ri!F )
= Hi

Xs
(X,F )

where the second equality follows from Rfs∗Ri!
∼=
−→ Ri!sRf∗ in [Sta18, Tag

0A9K]. For the second, we have

Ext1−i
OB

(Rf∗F ,Ω1
B) = R1−iΓ(B,RHomOB (Rf∗F ,Ω1

B))

= R1−iΓ(B,Rf∗RHomOX (F , f !Ω1
B)) (adjunction)

= R1−iΓ(B,Rf∗RHomOX (F ,Ωd+1
X [d])) (Theorem 2.3.1)

= R1−iΓ(B,Rf∗F
t[d]) (definition of F

t)

= Hd+1−i(X,F t)
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By taking different F in the above theorem and using Grothendieck local
duality, we obtain the following corollaries.

Corollary 2.5.2. The natural pairing

Hi(X,Ωj
X)×Hd+1−i

Xs
(X,Ωd+1−j

X )→ Hd+1
Xs

(X,Ωd+1
X )

tr
−→ Z/pZ

induces isomorphisms

Hi(X,Ωj
X) ∼= HomZ/pZ(H

d+1−i
Xs

(X,Ωd+1−j
X ),Z/pZ),

Hd+1−i
Xs

(X,Ωd+1−j
X ) ∼= Homcont(H

i(X,Ωj
X),Z/pZ).

i.e., it is a perfect pairing of topological Z/pZ-modules if we endow Hi(X,Ωj
X)

with the m-adic topology and Hd+1−i
Xs

(X,Ωd+1−j
X ) with the discrete topology.

Remark 2.5.3. For the first isomorphism, we may ignore the topological struc-
ture on cohomology groups, and view it as an isomorphism of Z/pZ-modules.
In the next chapter, we only use this type of isomorphisms(cf. Proposition
3.4.5).

Corollary 2.5.4. The natural pairing

Hi(X,ZΩj
X)×Hd+1−i

Xs
(X,Ωd+1−j

X /BΩd+1−j
X )→ Hd+1

Xs
(X,Ωd+1

X )
tr
−→ Z/pZ

is a perfect pairing of topological Z/pZ-modules, if we endow the cohomology
groups with the topological structures as in the above corollary.

Proof. The fact that ZΩj
X is dual to Ωd+1−j

X /BΩd+1−j
X is similar as [Mil76,

Lem. 1.7].

Furthermore, we can do the same thing for twisted logarithmic Kähler differ-
ential sheaves.
Let X be as before , and let  : U →֒ X be the complement of a reduced
divisorD onX with simple normal crossings. LetD1, · · · , Ds be the irreducible
components of D. For m = (m1, · · · ,ms) with mi ∈ Z let

mD = mD =

s
∑

i=1

miDi (2.4)

be the associated divisor.

Definition 2.5.5. For the above defined D on X and j ≥ 0, m = m ∈ Zs , we
set

Ωj
X|mD = Ωj

X(logD)(−mD) = Ωj
X(logD)⊗OX(−mD) (2.5)

where Ωj
X(logD) denotes the sheaf of absolute Kähler differential j-forms on X

with logarithmic poles along |D|. Similarly, we can define ZΩj
X|mD, BΩj

X|mD.
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Remark 2.5.6. Note that Ωd+1
X|D = Ωd+1

X ⊗OX(D)⊗OX(−D) = Ωd+1
X , where d

is the relative dimension of X over B.

Corollary 2.5.7. The natural pairing

Hi(X,Ωj
X|−mD)×Hd+1−i

Xs
(X,Ωd+1−j

X|(m+1)D)→ Hd+1
Xs

(X,Ωd+1
X )

tr
−→ Z/pZ

is a perfect pairing of topological Z/pZ-modules, if we endow the cohomology
groups with the topological structures as before.

Proof. Note that the pairing

Ωj
X(logD)(mD)⊗ Ωd+1−j

X (logD)((−m− 1)D)→ Ωd+1
X (2.6)

is perfect.

Similarly, we define

ZΩj
X|−mD = ker(d : Ωj

X|−mD → ∗Ω
j+1
U ); (2.7)

BΩj
X|mD = Image(d : Ωj−1

X|mD → Ωj
X). (2.8)

We have the following result.

Corollary 2.5.8. The natural pairing

Hi(X,ZΩj
X|−mD)×Hd+1−i

Xs
(X,Ωd+1−j

X|(m+1)D/BΩd+1−j
X|(m+1)D)→ Z/pZ

is a perfect pairing of topological Z/pZ-modules, if we endow the cohomology
groups with the topological structures as before.

3 Duality

In the rest of this paper, we assume the residue field k of the base scheme
B is a finite field Fq. Recall that f : X → B = Spec(Fq[[t]]) is a projective
strictly semistable scheme of relative dimension d. In this section, we will prove
two duality theorems. The first one is for Hi(X,WnΩ

j
X,log), which we call

unramified duality. The second is for Hi(U,WnΩ
j
U,log), where U is the open

complement of a reduced effective Cartier divisor with Supp(D) has simple
normal crossing. We call it the ramified duality.

3.1 Unramified duality

The product on logarithmic de Rham-Witt sheaves

WnΩ
j
X,log ⊗WnΩ

d+1−j
X,log →WnΩ

d+1
X,log

induces a pairing

i∗WnΩ
j
X,log ⊗

L Ri!WnΩ
d+1−j
X,log → Ri!(WnΩ

j
X,log ⊗WnΩ

d+1−j
X,log )→ Ri!WnΩ

d+1
X,log,
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where the first morphism is given by the adjoint map of the diagonal map φ in
the following diagram

Ri∗(i
∗WnΩ

j
X,log ⊗

L Ri!WnΩ
d+1−j
X,log )

∼= //

φ ++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
WnΩ

j
X,log ⊗

L Ri∗Ri!WnΩ
d+1−j
X,log

adj

��
WnΩ

j
X,log ⊗WnΩ

d+1−j
X,log .

Here the isomorphism is given by the projection formula.
Apply RΓ(Xs, ·) and the proper base change theorem(SGA4 1

2 , [Del77, Arcata
IV]), we have a pairing

Hi(X,WnΩ
j
X,log)×Hd+2−i

Xs
(X,WnΩ

d+1−j
X,log )→ Hd+2

Xs
(X,WnΩ

d+1
X,log)

Tr
−−→ Z/pnZ,

(3.1)
where the trace map Tr is given by Corollary 1.4.10.

Theorem 3.1.1. The pairing (3.1) induces an isomorphism

Hi(X,WnΩ
j
X,log)

∼=
−→ HomZ/pnZ(H

d+2−i
Xs

(X,WnΩ
d+1−j
X,log ),Z/pnZ).

of Z/pnZ-modules. If we endow Hd+2−i
Xs

(X,WnΩ
d+1−j
X,log ) with the discrete topol-

ogy, and endow Hi(X,WnΩ
j
X,log) with the compact-open topology, we get an

isomorphism, by the Pontryagin duality

Hd+2−i
Xs

(X,WnΩ
d+1−j
X,log )

∼=
−→ HomZ/pnZ,cont(H

i(X,WnΩ
j
X,log),Z/p

nZ).

Proof. By the exact sequence (i) in Proposition 1.3.11, the problem is reduced
to the case n = 1. In this case, we use the classical method as in [Mil86],
i.e., using the exact sequence (ii) and (iii) in Proposition 1.3.11, we reduce
the problem to coherent duality. Before we do this, we have to check the
compatibility between the trace maps. It is enough to do this on the base
scheme B, by the definitions of trace map and residue map(cf. (2.1)).

Proposition 3.1.2. The following diagram

H2
m
(B,Ω1

B,log)
Tr // Z/pZ

H1
m
(B,Ω1

B)

δ

OO

Res // Z/pZ

commutes, where δ is the connection map induced by the following exact se-
quence

0→ Ω1
B,log → Ω1

B → Ω1
B → 0.

Documenta Mathematica 23 (2018) 1925–1967



1948 Yigeng Zhao

Proof. We have the following diagram

H2
m
(B,Ω1

B,log)
Tr // Z/pZ

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

(1)

H1(Fq,Ω
0
Fq,log

)

Gysis

∼=

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖
∼= // Z/pZ

(2) (3)

H0(Fq,Ω
0
Fq
)

Gysix

{{✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

δ

OO

trFq/Fp // Z/pZ

ϕyysss
s

✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺

✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺

(4) Ω1
K/Ω1

B

∼=

tt❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤

Tate Residue

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆

(5)

(6)

H1
m
(B,Ω1

B)

δ

OO

Res // Z/pZ

where the morphism ϕ : a 7→ ad log(t), and K = Fq((t)).
The diagrams (1) and (6) are commutative by the definition of Tr and Res. (2)
is commutative by the functoriality of δ. That classical Milne duality is com-
patible with coherent duality implies (3) is commutative. The local description
of the Gysin map will imply that the diagram (4) commutes [Shi07, Lem. 3.5]
, [Gro85, II (3.4)]. The diagram (5) commutes by the explicit definition of ϕ
and the definition of the Tate residue map.

Proof of Theorem 3.1.1(cont.) By taking the cohomolgy groups of the exact
sequences (ii) and (iii) in Proposition 1.3.11, we have the following commutative
diagram with exact rows:

// Hi(X,Ωj
X,log)

//

��

Hi(X,ZΩj
X ) //

∼=
��

Hi(X,Ωj
X ) //

∼=
��

// Hd+2−i
Xs

(X,Ωd+1−j
X,log )∗ // Hd+1−i

Xs
(X,Ωd+1−j

X /BΩd+1−j
X )∗ // Hd+1−i

Xs
(X,Ωd+1−j

X )∗ //

where M∗ means HomZ/pZ(M,Z/pZ), for any Z/pZ-module M .

The isomorphisms for cohomology groups of ZΩj
X and Ωj

X are from the coherent
duality theorem, see Corollary 2.5.4 and 2.5.2. Hence, we have

Hi(X,Ωj
X,log)

∼=
−→ Hd+2−i

Xs
(X,Ωd+1−j

X,log )∗.

Remark 3.1.3. (i) Note that Hi(X,WnΩ
r
X,log) is not finite in general. In

Theorem 3.1.1, if Hd+2−i
Xs

(X,WnΩ
d+1−j
X,log ) is finite (e.g., j = 0), then we

get a perfect pairing of finite Z/pnZ-modules.
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(ii) For the case of j = 0, all the cohomology groups in Theorem 3.1.1 are
finite, by using the purity theorem 1.4.4, the above pairing agrees with
that in [Sat07a, Thm. 1.2.2 ].

3.2 Relative Milnor K-sheaf

On a smooth variety over a field, the logarithmic de Rham-Witt sheaves are
closely related to the Milnor K-sheaves via the Bloch-Gabber-Kato theorem
[BK86]. In this section, we first recall some results on the Milnor K-sheaf on
a regular scheme, and then define the relative Milnor K-sheaf with respect to
some divisor D as in [RS18, §2.3]. At last, we show the Bloch-Gabber-Kato
theorem still holds on a regular scheme over Fp. This result is well known to
the experts but due to the lack of reference, we give a detailed proof.
In this section, we fix Y to be a connected regular scheme over Fp of dimension
d (cf. Remark 3.2.2 below).

Definition 3.2.1. For any integer r, we define the rth-Milnor K-sheaf KM
r,YZar

to be the sheaf

T 7→ Ker

(

iη∗K
M
r (κ(η))

∂
−→

⊕

x∈Y 1∩T

ix∗K
M
r−1(κ(x)

)

on the Zariski site of Y , where T is any open subset of Y , η is the generic
point of Y , ix : x → T is the natural map and ∂ is the sheafified residue map
of Milnor K-theory of fields (cf. §1.3.2). The sheaf KM

r,Y is the associated sheaf

of KM
r,YZar

on the (small) étale site of Y .

In particular, KM
r,Y = 0 for r < 0, KM

0,Y = Z and KM
1,Y = O×

X .

Remark 3.2.2. The connectedness assumption on Y is just for simplification
our notations. In case Y is not connected, we write Y =

∐

j Yj as disjoint
union of its connected components. Then define

KM
r,Y :=

⊕

j

iYj∗K
M
r,Yj

where iYj : Yj → Y be the natural map. The results in this section still hold
for non-connected Y .

We define KM,naive
∗,Y to be the sheaf on the étale site of Y associated to the

functor

A 7→
⊕

i≥0

(A×)⊗i/ < a⊗ b|a+ b = 1 >

from commutative rings to graded rings.

Theorem 3.2.3. ([Ker09, Thm. 1.3], [Ker10, Thm. 13, Prop. 10]) Let Y be
a connected regular scheme over Fp.
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(i) The natural homomorphism KM,naive
r,Y → KM

r,Y is surjective;

(ii) If the residue fields at all point of Y are infinite, the map KM,naive
r,Y → KM

r,Y

is an isomorphism;

(iii) The Gersten complex

0→ KM
r,Y → iη∗K

M
r (κ(η))→

⊕

x∈Y 1

ix∗K
M
r−1(κ(x))

→
⊕

x∈Y 2

ix∗K
M
r−2(κ(x))→ · · ·

is universally exact(see Definition 3.2.4 below) on the étale site of Y .

Definition 3.2.4. Let A′ → A→ A′′ be a sequence of abelian groups. We say
this sequence is universally exact if F (A′)→ F (A)→ F (A′′) is exact for every
additive functor F : Ab→ B which commutes with filtered small limit. Here Ab
is the category of abelian groups and B is an abelian category satisfying AB5
(see [Gro57]).

Remark 3.2.5.

(i) Another way to define the Milnor K-sheaf [Ker10] is to first define the naive

K-sheaf KM,naive
r,Y as above, and then the (improved) Milnor K-sheaf as the

universal continuous functor associated to the naive K-sheaf. By Theorem
3.2.3 (iii), this definition agree with ours.

(ii) Theorem 3.2.3 (i) implies that KM
r,Y is étale locally generated by the symbols

of the form {x1, · · · , xr} with all xi ∈ O
×
Y .

(iii) The functor −⊗ZZ/p
nZ is an additive functor and it commutes with filter-

ing small limit, so the universal exactness property of Gersten complex implies
the following sequence

0→ KM
r,Y /p

n → iη∗K
M
r (κ(η))/pn →

⊕

x∈Y (1)

ix∗K
M
r−1(κ(x))/p

n → · · ·

is exact.

Let D = ∪si=1Di be a reduced effective Cartier divisor on Y such that Supp(D)
has simple normal crossing, let D1, · · · , Ds be the irreducible components of D,
and let  : U := Y −D →֒ Y be the open complement. For m = (m1, · · · ,ms)
with mi ∈ N let

mD = mD =

s
∑

i=1

miDi

be the associated divisor. On Ns, we define a semi-order as follows:

m′ ≥ m′ if m′
i ≥ mi for all i.
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Using this semi-order, we denote

m′D ≥ mD if m′ ≥ m.

By the above theorem, we may define the relative Milnor K-sheaves with re-
spect to mD using symbols(cf. [RS18, Def. 2.7]):

Definition 3.2.6. For r ∈ Z,m ∈ Ns, we define the Zariski sheaf KM
r,Y |mD,Zar

to be the image of the following map

Ker(O×
Y → O

×
mD)⊗Z ∗K

M
r−1,UZar

→ ∗K
M
r,UZar

x⊗ {x1, · · · , xr−1} 7→ {x, x1, · · · , xr−1}

and define KM
r,Y |mD to be its associated sheaf on the étale site.

By this definition, it is clear that ∗K
M
r,Y |mD = KM

r,U , for any m ∈ Ns.

Proposition 3.2.7. ([RS18, Cor. 2.13]) If m′ ≥ m, then we have the inclu-
sions of étale sheaves

KM
r,X|m′D ⊆ K

M
r,X|mD ⊆ K

M
r,X .

Proof. The statement in [RS18] is on the Zariski and Nisnevich sites, and in
particular, works on the étale site.

Now we recall the Bloch-Gabber-Kato theorem on regular schemes.

Lemma 3.2.8. There is a natural map d log [−]n : KM
r,Y →WnΩ

r
Y .

Proof. If all the residue fields of Y are infinite, this is clear by Theorem 3.2.3.
If not, we can still construct this map via the following local computations. We
first define this for any ring A. Recall that the (improved) Milnor K-theory of
A can be defined by the first row of the following diagram [Ker10]:

0 // K̂M
r (A) // KM

r (A(t))
i1∗−i2∗//

d log[−]n

��

KM
r (A(t1, t2))

d log[−]n

��
0 // Mn

// WnΩ
r
A(t)

i1∗−i2∗ // WnΩ
r
A(t1,t2)

Here A(t) is the rational function ring over A, that is A[t]S the localization
of the one variable polynomial ring with respect to the multiplicative set S =
{
∑

i∈I ait
i| 〈ai〉i∈I = A}. The assertion follows from the following claim.

Claim Mn = WnΩ
r
A.

Once we have the d log map for any ring, we will get a map on the Zariski site
by sheafification. The desired map is obtained by taking the associated map
on the étale site. Now it suffices to prove the above Claim.
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Proof of Claim. We first assume n = 1, and in this case we have

A(t)⊗A Ω1
A ⊕A(t)

∼=
−→ Ω1

A(t)

(a⊗ w, b) 7→ a · w + b · dt

Using this explicit expression, we can show the kernel of i1∗ − i2∗ is Ωr
A. For

general n, we first noted that WnΩ
r
A ⊆ Mn, and we can prove the claim by

induction on n via the exact sequence

0→ V nΩr
A + dV nΩr−1

A →Wn+1Ω
r
A

R
−→WnΩ

r
A → 0

as i1∗ and i2∗ commute with R and V .

By Definition 1.3.7, the image of d log[−]n contains in WnΩ
r
Y,log. It is clear that

the map d log[−]n factors through KM
r,Y /p

n. Therefore we have the following
result.

Proposition 3.2.9. The natural map in Lemma 3.2.8 induces an isomorphism

d log [−] : KM
r,Y /p

n ∼=
−→WnΩ

r
Y,log.

Proof. It is enough to show this map is injective. This is a local question, so we
may assume Y = Spec(A) is a regular local ring over Fp. The Néron-Popescu
desingularization theorem below tells us that we can assume Y = Spec(A) is
smooth over Fp. Then we have the following commutative diagram

KM
r,Y /p

n �
� //

d log[−]n

��

iη∗K
M
r (κ(η))/pn

∼=

��
WnΩ

r
X,log

� � // iη∗WnΩ
r
η,log

of étale sheaves on Y . The injection on the first row follows from Theorem
3.2.3(iii), and Remark 1.2.2 implies the injection on the second row. Therefore
the assertion follows from the fact that the right vertical map is an isomorphism,
which is given by the classical Bloch-Gabber-Kato theorem[BK86].

Theorem 3.2.10 (Néron-Popescu, [Swa98]). Any regular local ring A of char-
acteristic p can be written as a filtering colimit lim

−→
i

Ai with each Ai is smooth

(of finite type) over Fq.

3.3 Relative logarithmic de Rham-Witt sheaves

Assume X → Spec(Fq[[t]]) is as before, i.e., a projective strictly semistable
scheme over B = Spec(Fq[[t]]). Let D = ∪si=1Di be a reduced effective Cartier
divisor on Y such that Supp(D) has simple normal crossing, let D1, · · · , Ds be
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the irreducible components of D, and let  : U := Y − D →֒ Y be the open
complement of D. For m = (m1, · · · ,ms) with mi ∈ N let

mD = mD =

s
∑

i=1

miDi (3.2)

be the associated divisor. In the previous section, we defined a semi-order on
Ns and denoted

m′D ≥ mD if m′ ≥ m. (3.3)

Definition 3.3.1. For r ≥ 0, n ≥ 1, we define

WnΩ
r
X|mD,log ⊂ ∗WnΩ

r
U,log

to be the étale additive subsheaf generated étale locally by sections

d log[x1]n∧· · ·∧d log[xr]n with xi ∈ ∗O
×
U , for all i, and x1 ∈ ker(OX → OD)

where [x]n = (x, 0, · · · , 0) ∈ Wn(OX) is the Teichmüller representative of x ∈

OX , and the symbol d log[x]n = d[x]n
[x]n

as before.

Corollary 3.3.2. For any m ∈ Ns, ∗WnΩ
r
X|mD,log = WnΩ

r
U,log. If m′ ≥ m,

then we have the inclusions of étale sheaves

WnΩ
r
X|m′D,log ⊆WnΩ

r
X|mD,log ⊆WnΩ

r
X,log.

Proof. By definition, WnΩ
r
X|mD,log is the image ofKM

r,X|mD under the d log[−]n.
Hence the first claim is clear and the second follows from Proposition 3.2.7 and
3.2.9.

Theorem 3.3.3. ([JSZ18, Thm. 1.1.6]) There is an exact sequence of étale
sheaves on X:

0→Wn−1Ω
r
X|[m/p]D,log

p
−→WnΩ

r
X|mD,log

R
−→ Ωr

X|mD,log → 0,

where [m/p]D =
∑s

i=1[mi/p]Di, and [mi/p] = min{m ∈ N|m ≥ mi/p}.

Proof. This is a local problem, and the local proof in [JSZ18] also works in our
situation. The idea is reduced to a similar result for Milnor K-groups by the
Bloch-Gabber-Kato theorem. Then the graded pieces (with respect to m) on
Milnor K-groups can be represented as differential forms, which will give the
desired exactness.

If m′D ≥ mD , then the relation OX(−m′D) ⊆ OX(−mD) induces a natural
transitive map WnΩ

r
X|m′D,log →֒ WnΩ

r
X|mD,log. This gives us a pro-system of

abelian étale sheaves “ lim
←−
m

”WnΩ
r
X|mD,log.
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Corollary 3.3.4. The following sequence is exact

0→ “ lim
←−
m

”Wn−1Ω
r
X|mD,log → “ lim

←−
m

”WnΩ
r
X|mD,log → “ lim

←−
m

”Ωr
X|mD,log → 0

as pro-objects, where “ lim
←−
m

” is the pro-system of sheaves defined by the ordering

between the D’s, which is defined in (3.3).

In [JSZ18], using the filtered de Rham-Witt complexes, we define a pairing be-
tween WnΩ

r
U,log and the pro-system “ lim

←−
m

”WnΩ
d+1−r
X|mD,log. This pairing induces

a pairing on the cohomology groups. In this paper, we give an alternative way to
define the pairing between Hi(U,WnΩ

r
U,log) and lim

←−
m

Hd+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log),

which can be done without introducing the filtered de Rham-Witt complexes
[JSZ18, §2].

Theorem 3.3.5. The wedge product on de Rham-Witt complexes induces nat-
ural maps

∗WnΩ
r
U → Hom(“ lim

←−
m

”WnΩ
d+1−r
X|mD,log,WnΩ

d+1
X )

= lim
−→
m

Hom(WnΩ
d+1−r
X|mD,log,WnΩ

d+1
X );

(3.4)

∗Z1WnΩ
r
U → lim

−→
m

Hom(WnΩ
d+1−r
X|mD,log,WnΩ

d
X). (3.5)

For the proof, we need some calculations with Witt vectors.

Lemma 3.3.6. ([GH06, Lem. 1.2.3]) Let R be any ring, and t ∈ R, then
[1 + t]m − [1]m = (y0, · · · , ym−1) with yi ≡ t mod t2R for 0 ≤ i ≤ m− 1. Here
[x]m = (x, 0, · · · , 0) ∈Wm(R) is the Teichmüller representative of x ∈ R.

As a consequence, we have

Corollary 3.3.7. Let A be an Fq-algebra, and let a, t ∈ A. Then

[1 + ta]m − [1]m = (y0, · · · , ym−1)

with yi ∈ tA for 0 ≤ i ≤ m− 1.

Corollary 3.3.8. With the notations as above, we have d[1 + tA]m =
d(y0, . . . , ym) with yi ∈ tA.

Proof. We have dx = 0 for x ∈Wm(Fp).

Corollary 3.3.9. With the notations above we have the following formula,
for t ∈ A

d[1 + tp
(m−1)n]m = d(tp

(m−1)ny0, · · · , t
p(m−1)nym−1) = d([t]nm · (c0, · · · , cm−1)).
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Proof. The last equality is due to the fact that [t]m · (y0, . . . , ym−1) =

(ty0, t
py1, . . . , t

pm−1

ym−1).

Proof of Theorem 3.3.5. Let α be a given local section of WnΩ
r
U , we need to

find a suitable m such that, for any local section β of WnΩ
d+1−r
X|mD,log, α ∧ β is a

local section of WnΩ
d+1
X . This is equivalent to show that we can find m such

that, for any a1 ∈ 1+OX(−mD) the coefficient (with respect to a local basis)
of

α ∧
d[1 + a1]n
[1 + a1]n

∧
d[a2]n
[a2]n

∧ · · · ∧
d[ad+1−r]n
[ad+1−r]n

lies in Wn(OX). By the above Corollary, this is possible if we take m big
enough to eliminate the “poles” of α along D. This gives us the map 3.4, and
the map 3.5 is defined similarly.

In [Mil76], Milne defined a pairing of two-term complexes as follows:
Let

F
• = (F 0 dF−−→ F

1), G
• = (G 0 dG−−→ G

1)

and
H

• = (H 0 dH−−→H
1)

be two-term complexes. A pairing of two-term complexes

F
• × G

• →H
•

is a system of pairings

< ·, · >0
0,0: F

0 × G
0 →H

0;

< ·, · >1
0,1: F

0 × G
1 →H

1;

< ·, · >1
1,0: F

1 × G
0 →H

1,

such that

dH (< x, y >0
0,0) =< x, dG (y) >

1
0,1 + < dF (x), y >1

1,0 (3.6)

for all x ∈ F 0, y ∈ G 0. Such a pairing is the same as a mapping

F
• ⊗ G

• →H
•.

In our situation, we set

WnF
• := [∗Z1WnΩ

r
U

1−C
−−−→ ∗WnΩ

r
U ];

WnG
•
−m := [WnΩ

d+1−r
X|mD,log → 0];

WnH
• := [WnΩ

d+1
X

1−C
−−−→WnΩ

d+1
X ].

Corollary 3.3.10. We have a natural map of complexes

WnF
• → lim

−→
m

Hom(WnG
•
−m,WnH

•). (3.7)
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3.4 Ramified duality

Lemma 3.4.1. Let D be a normal crossing divisor on X. Then the induced
open immersion  : U := X − |D| → X is affine.

Proof. To be an affine morphism is étale locally on the target, and étale locally
D is given by one equation.

By Proposition 1.3.11 (iii), in Db(X,Z/pnZ) we have

R∗WnΩ
r
U,log

∼= [∗Z1WnΩ
r
U

1−C
−−−→ ∗WnΩ

r
U ] = WnF

•. (3.8)

Then we have Hi(X,WnF •) ∼= Hi(U, [Z1WnΩ
r
U → WnΩ

r
U ])

∼=
Hi(U,WnΩ

r
U,log), by the above lemma and Proposition 1.3.11 (iii). Therefore

the map (3.7) induces a map of cohomology groups, by taking hypercohomolgy,

Hi(U,WnΩ
r
U,log)→ lim

−→
m

Hi(X,Hom(WnG
•
−m,WnH

•). (3.9)

Note that we also have a natural evaluation map of two-term complexes:

Hom(WnG
•
−m,WnH

•)⊗WnG
•
−m →WnH

•. (3.10)

As the construction of the pairing (3.1) in §3.1, this induces a cup product in
hypercohomology of complexes

Hi(X,Hom(WnG
•
−m,WnH

•))⊗Hd+2−i
Xs

(X,WnG
•
−m)→ Hd+2

Xs
(X,WnH

•).
(3.11)

Therefore, it induces a map

Hi(X,Hom(WnG
•
−m,WnH

•))

→ HomZ/pnZ(H
d+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log), H

d+2
Xs

(X,WnΩ
d+1
X,log))

(3.12)

Now combining the maps (3.9), (3.12) and the trace map in Corollary 1.4.10 ,
we get the desired map

Hi(U,WnΩ
r
U,log)→ lim

−→
m

HomZ/pnZ(H
d+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log),Z/p

nZ); (3.13)

Now our main theorem in this paper is the following result.

Theorem 3.4.2. For each i, r ∈ N, the above map (3.13) is an isomorphism.
If we endow Hd+2−i

Xs
(X,WnΩ

d+1−r
X|mD,log) with the discrete topology, and endow

Hi(U,WnΩ
r
U,log) with the direct limit topology of compact-open groups, then the

Pontryagin duality gives us an isomorphism of topological groups

lim
←−
m

Hd+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log)

∼=
−→ HomZ/pnZ,cont(H

i(U,WnΩ
r
U,log),Z/p

nZ).

In the rest of this section, we focus on the proof of this theorem.
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Proof. We can proceed analogously to the proof of Theorem 3.1.1. First, we
reduce this theorem to the case n = 1, then using Cartier operator, we will
study the relation between this theorem and coherent duality theorems.

Step 1: Reduction to the case n = 1. We denote t = d + 2 − i and
M∨ means Homcont(M,Q/Z), i.e., its Pontryagin dual, for any locally compact
topological abelian group M . We have the following commutative diagram,
where the first row is the long exact sequence induced by the short exact
sequence in Proposition 1.3.11 (i), and the second row is an long exact sequence
induced by Corollary 3.3.4.

Hi(U,Wn−1Ω
r
U,log)

//

��

Hi(U,WnΩ
r
U,log)

��

// Hi(U,Ωr
U,log)

��
lim
−→
m

Ht
Xs

(X,Wn−1Ω
d+1−r
X|mD,log

)∨ // lim
−→
m

Ht
Xs

(X,WnΩd+1−r
X|mD,log

)∨ // lim
−→
m

Ht
Xs

(X,Ωd+1−r
X|mD,log

)∨

By the five lemma and induction, our problem is reduced to the case n = 1.
Step 2: Proof of the case n = 1. In this special case, using the relation
between the relative logarithmic de Rham-Witt and coherent sheaves, we can
reformulate our pairing.

Theorem 3.4.3. ([JSZ18, Thm. 1.2.1]) We have the following exact sequence

0→ Ωd+1−r
X|mD,log → Ωd+1−r

X|mD

C−1−1
−−−−→ Ωd+1−r

X|mD /BΩd+1−r
X|mD → 0,

where Ωj
X|mD = Ωj

X(logD)⊗OX(−mD) is defined in (2.5).

Proof. This is again a local problem, and the local proof in [JSZ18] also works
in our situation. The key ingredient is to show Ωi

X|mD,log = Ωi
X,log ∩ Ωi

X|mD.

This can be obtained by a refinement of [Kat82, Prop. 1].

Lemma 3.4.4. For any m ∈ Ns, we denote mD = mD as in (3.2), and

Ωj
X|mD = Ωj

X(logD)(−mD) = Ωj
X(logD)⊗OX(−mD)

as before. The parings

< α, β >0
0,0= α ∧ β : ZΩr

X|−mD × Ωd+1−r
X|(m+1)D → Ωd+1

X|D;

< α, β >1
0,1= −C(α ∧ β) : ZΩr

X|−mD × Ωd+1−r
X|(m+1)D/BΩd+1−r

X|(m+1)D → Ωd+1
X|D;

< α, β >1
1,0= α ∧ β : Ωr

X|−mD × Ωd+1−r
X|(m+1)D → Ωd+1

X|D,

define a paring of (two-term) complexes

F
•
m × G

•
−m →H

• (3.14)
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with

F
•
m = (ZΩr

X|−mD
1−C
−−−→ Ωr

X|−mD)

G
•
−m = (Ωd+1−r

X|(m+1)D

C−1−1
−−−−→ Ωd+1−r

X|(m+1)D/BΩd+1−r
X|(m+1)D)

H
• = (Ωd+1

X|D

1−C
−−−→ Ωd+1

X|D) = (Ωd+1
X

1−C
−−−→ Ωd+1

X ).

Proof. This is easy to verify.

By taking hypercohomology, the pairing (3.14) induces a pairing of hypercoho-
mology groups:

Hi(X,F •
m)×Hd+2−i

Xs
(X,G •

−m)→ Hd+2
Xs

(X,H •) ∼= Hd+2
Xs

(X,Ωd+1
X,log)

Tr
−→ Z/pZ.

(3.15)
Now by Corollary 2.5.7 and 2.5.8, we can show

Proposition 3.4.5. The pairing (3.15) induces the following isomorphism.

Hi(X,F •
m)

∼=
−→ HomZ/pZ(H

d+2−i
Xs

(X,G •
−m),Z/pZ)

∼= HomZ/pZ(H
d+2−i
Xs

(X,WnΩ
d+1−r
X|(m+1)D,log),Z/pZ).

(3.16)

Proof. This can be done by using the hypercohomology spectral sequences

IEp,q
1 = Hq(X,F p

m)⇒ Hp+q(X,F •
m);

IIEp,q
1 = Hq

Xs
(X,G p

−m)⇒ H
p+q
Xs

(X,G •
−m).

Corollary 2.5.7 and 2.5.8 tell us that

IEp,q
1
∼= HomZ/pnZ(

IIEd+1−q,1−p
1 ,Z/pnZ),

and this isomorphism is compatible with d1. Hence we still have this kind of
duality at the E2-pages. Note that, by definition, p 6= 0, 1, IEp,q

1 =II Ep,q
1 = 0.

Hence both spectral sequences degenerate at the E2-pages. Therefore we have
the isomorphism in the claim.

Up to now, we haven’t used any topological structure on the (hyper-
)cohomology group. Note that Hd+2−i

Xs
(X,WnΩ

d+1−r
X|(m+1)D,log) is not a finite

group in general, and we endow it with discrete topology. Hence we endow
Hi(X,F •

m) with the compact-open topology via the isomorphism (3.16). Now
the Pontryagin duality theorem implies:

Proposition 3.4.6. There is a perfect pairing of topological Z/pZ-modules:

lim
−→
m

Hi(X,F •
m)× lim

←−
m

Hd+2−i
Xs

(X,Ωd+1−r
X|(m+1)D,log)→ Z/pZ (3.17)

where the first term is endowed with direct limit topology, and the second with
the inverse limit topology.
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Proof. Note that the Pontryagin dual Homcont(·,Z/pZ) commutes with direct
and inverse limits. Then the proof is straightforward.

Remark 3.4.7. In case that the groups Hd+2−i
Xs

(X,Ωd+1−r
X|(m+1)D,log) are finite for

all m(e.g.,d = 0 or r = 0), then the direct limit topology of finite (compact-
open) topological spaces is discrete, and the inverse limit topololgy of finite
discrete topological spaces is profinite.

We still need to calculate the direct limit term in the above proposition.

Proposition 3.4.8. The direct limit lim
−→
m

Hi(X,F •
m) ∼= Hi(U,Ωr

U,log).

Proof. First, direct limits commute with (hyper-)cohomology, hence

lim
−→
m

Hi(X,F •
m) = Hi(X, lim

−→
m

F
•
m).

Note that
lim
−→
m

F
•
m = [∗ZΩr

U
1−C
−−−→ ∗Ω

r
U ].

For coherent sheaves, the affine morphism  (see Lemma 3.4.1) gives an exact
functor ∗. Hence we have

Hi(X, [∗ZΩr
U

1−C
−−−→ ∗Ω

r
U ]) = Hi(U, [ZΩr

U
1−C
−−−→ Ωr

U ]) = Hi(U,Ωr
U,log),

where the last equality follows from the special case n = 1 of Proposition 1.3.11
(iii).

Proof of Step 2. The duality theorem in case n = 1 directly follows from the
above two propositions.

Now the proof of our main Theorem 3.4.2 is complete.
We denote

Φ : Hi(U,WnΩ
r
U,log)

∼=
−→ Homcont(lim←−

m

Hd+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log),Z/p

nZ);

∼= lim
−→
m

Hom(Hd+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log),Z/p

nZ)

Ψ : lim
←−
m

Hd+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log)

∼=
−→ Homcont(H

i(U,WnΩ
r
U,log),Z/p

nZ).

Using this duality theorem, we may at last define a filtration as follows:

Definition 3.4.9. Assume X,Xs, D, U are as before. For any χ ∈
Hi(U,WnΩ

r
U,log), we define the higher Artin conductor

ar(χ) := min{m ∈ Ns
0 | Φ(χ) factors through Hd+2−i

Xs
(X,WnΩ

d+1−r
X|mD,log)}.
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For m ∈ Ns, we define

FilmHi(U,WnΩ
r
U,log) := {χ ∈ Hi(U,WnΩ

r
U,log)| ar(χ) ≤ m},

and
πab
1 (X,mD)/pn := Hom(FilmH1(U,Z/pnZ),Q/Z)

endowed with the usual profinite topology of the dual.

It is clear that Fil• is an increasing filtration with respect to the semi-order on
Ns. We have

FilmHi(U,WnΩ
r
U,log)

= Image(HomZ/pnZ(H
d+2−i
Xs

(X,WnΩ
d+1−r
X|mD,log),Z/p

nZ)→ Hi(U,WnΩ
r
U,log)).

The quotient πab
1 (X,mD)/pn can be thought of as classifying abelian étale

coverings of U whose degree divides pn with ramification bounded by the divisor
mD.

4 Comparison with the classical case

In this section, we want to compare our filtration with the classical one in the
local ramification theory.

4.1 Local ramification theory

Let K be a local field, i.e., a complete discrete valuation field of characteristic
p > 0, let OK be its ring of integers, let k be its finite residue field, and let νK
be its valuation. We fix a uniformizer π ∈ OK , which generates the maximal
ideal m ∈ OK .
The local class field theory [Ser79] gives us an Artin reciprocity homomorphism

ArtK : K× → Gal(Kab/K),

where Kab is the maximal abelian extension of K. Note that both K× and
Gal(Kab/K) are topological groups. Recall the topological structure on K× is
given by the valuation onK, and Gal(Kab/K) is the natural profinite topology.
For any m ∈ N, the Atrin map induces an isomorphism of topological groups

ArtK ⊗ 1 : K× ⊗ Z/mZ
∼=
−→ Gal(Kab/K)⊗ Z/mZ.

In particular, take m = pn, it gives:

ArtK ⊗ 1 : K×/(K×)p
n ∼=
−→ Gal(Kab/K)⊗ Z/pnZ. (4.1)

For n ≥ 1, the Artin-Schreier-Witt theory tells us there is a natural isomor-
phism

δn : Wn(K)/(1− F )Wn(K)
∼=
−→ H1(K,Z/pnZ), (4.2)
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where Wn(K) is the ring of Witt vector of length n and F is the Frobenius.
Note thatH1(K,Z/pnZ) is dual toGal(Kab/K)⊗Z/pnZ, the interplay between
(4.1) and (4.2) gives rise to the following theorem.

Theorem 4.1.1 (Artin-Schreier-Witt). There is a perfect pairing of topological
groups, that we call the Artin-Schreier-Witt symbol

Wn(K)/(1− F )Wn(K)×K×/(K×)p
n

−→ Z/pnZ (4.3)

(a, b) 7→ [a, b) := (b, L/K)(α)− α

where (1 − F )(α) = a, for some α ∈ Wn(K
sep), L = K(α), (b, L/K) is the

norm residue of b in L/K, and the topological structure on the first term is
discrete, on the second term is induced from K×.

Proof. This pairing is non-degenerate [Tho05, Prop. 3.2]. Taking the topolog-
ical structure into account, we get the perfectness by Pontryagin duality.

We have filtrations on the two left terms in the pairing (4.3). On Wn(K),
Brylinski [Bry83] and Kato [Kat89] defined an increasing filtration, called the
Brylinski-Kato filtration, using the valuation on K:

fillogm Wn(K) = {(an−1, · · · , a1, a0) ∈Wn(K)| piνK(ai) ≥ −m}.

We also have its non-log version introduced by Matsuda [Mat97].

filmWn(K) = fillogm−1Wn(K) + V n−n′

fillogm Wn′(K), (4.4)

where n′ = min{n, ordp(m)} and V : Wn−1(K)→ Wn(K) is the Verscheibung
on Witt vectors.
Both of them induce filtrations on the quotient Wn(K)/(1−F )Wn(K), and we
define

fillogm H1(K,Z/pnZ) = δn(fil
log
m (Wn(K)/(1− F )Wn(K))) = δn(fil

log
m Wn(K)),

(4.5)
filmH1(K,Z/pnZ) = δn(film(Wn(K)/(1− F )Wn(K))) = δn(filmWn(K)).

(4.6)
We have the following fact on the relation of two above filtrations.

Lemma 4.1.2. ([Kat89], [Mat97]) For an integer m ≥ 1, we have

(i) filmH1(K,Z/pnZ) ⊂ fillogm H1(K,Z/pnZ) ⊂ film+1H
1(K,Z/pnZ),

(ii) filmH1(K,Z/pnZ) = fillogm−1H
1(K,Z/pnZ) if (m, p) = 1.

Remark 4.1.3. The non-log version of Brylinski-Kato filtration is closely related
to the Kähler differential module Ω1

K [Mat97], and it has an higher analogy on
H1(U), where U is an open smooth subscheme of a normal variety X over
a perfect field with (X − U)red is the support of an effective Cartier divisor
[KS14].
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On K×, we have a natural decreasing filtration given by:

U−1
K = K×, U0

K = O×
K , Um

K = {x ∈ O×
K | x ≡ 1 mod πm}.

The following theorem says the paring (4.3) is compatible with these filtrations.

Theorem 4.1.4. ([Bry83, Thm. 1]) Underling the Artin-Schreier-Witt

symbol (4.3), the orthogonal complement of fillogm−1H
1(K,Z/pnZ) is Um

K ·

(K×)p
n

/(K×)p
n

, for any integer m ≥ 1.

Proof. A more complete proof can be found in [Tho05, §5].

Corollary 4.1.5. The Artin-Schreier-Witt symbol (4.3) induces a perfect
pairing of finite groups

film(Wn(K)/(1− F )Wn(K))×K×/(K×)p
n

· Um
K −→ Z/pnZ.

Proof. First, note that the filtration {Um
K }m has no jump greater or equal to

0 that divisible by p, as the residue field of K is perfect. Then, we may as-
sume (m, p) = 1. By Lemma 4.1.2 (ii) and the above Brylinski’s theorem, we

have, the orthogonal complement of filmH1(K,Z/pnZ) = fillogm−1H
1(K,Z/pnZ)

is Um
K ·(K

×)p
n

/(K×)p
n

. The rest follows easily from the fact that the Pontrya-
gin dual H∧ of an open subgroup of a locally compact group G is isomorphic
to G∧/H⊥, where H⊥ is the orthogonal complement of H .

4.2 Comparison of filtrations

Let X = B = SpecFq[[t]], D = s = (t) be the unique closed point. Then
U = Spec(Fq((t))). Our duality theorem 3.4.2 in this setting is:

Corollary 4.2.1. The pairing

Hi(K,WnΩ
j
U,log)× lim

←−
m

H2−i
s (B,WnΩ

1−j
B|mD,log)→ Z/pnZ

is a perfect paring of topological groups.

In particular, we take i = 1, j = 0, and get

H1(U,Z/pnZ)× lim
←−
m

H1
s (B,WnΩ

1
B|mD,log)→ Z/pnZ. (4.7)

We want to compare this pairing (4.7) with the Artin-Schreier-Witt symbol
(4.3).

Lemma 4.2.2. We have H1
s (B,WnΩ

1
B|mD,log)

∼= K×/(K×)p
n

· Um
K . The dia-

gram

H1
s (B,WnΩ

1
B|(m+1)D,log)

��

K×/(K×)p
n

· Um+1
K

��

∼=oo

H1
s (B,WnΩ

1
B|mD,log) K×/(K×)p

n

· Um
K

∼=oo
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commutes, where the left vertical arrow is induced by the morphism of sheaves,
and the right vertical arrow is given by projection. In particular,

lim
←−
m

H1
s (B,WnΩ

1
B|mD,log)

∼= K×/(K×)p
n

.

Proof. We prove this by induction on n. If n = 1, the localization sequence
gives the following exact sequence

0→H0
s (B,Ω1

B|mD,log)→H0(B,Ω1
B|mD,log)→H0(U,Ω1

U,log)→H1
s (B,Ω1

B|mD,log)→0.

The Bloch-Gabber-Kato theorem [BK86] says K×/(K×)p
∼=
−→ H0(U,Ω1

U,log),

and by definition, it is easy to see that Um
K ·(K

×)p/(K×)p
∼=
−→ H0(B,Ω1

B|mD,log).

For the induction process, we use the exact sequence in Theorem (3.3.3):

0→ Wn−1Ω
1
B|[m/p]D,log

p
−→WnΩ

1
B|mD,log

R
−→ Ω1

X|mD,log → 0.

Note that the first term involves dividing by p. But for the filtration {Um
K }m,

there are no jump greater or equal to 0 that divisible by p, as the residue field
of K is perfect. The commutativity of the diagram follows also directly from
the above computation.

Now our main result in this section is the following:

Proposition 4.2.3. The filtration we defined in Definition 3.4.9 is same as
the non-log version of Brylinski-Kato filtration, i.e., for any integer m ≥ 1,

FilmH1(U,Z/pnZ) = filmH1(U,Z/pnZ).

Proof. We have the following isomorphisms

FilmH1(U,Z/pnZ) = HomZ/pnZ(H
1
s (B,Ω1

B|mD,log),Z/p
nZ)

= HomZ/pnZ(K
×/(K×)p

n

· Um
K ,Z/pnZ)

= filmH1(U,Z/pnZ),

where the first identification is due to the fact that the transition maps are
surjective, the second equality is given by Lemma 4.2.2, and the last is Corollary
4.1.5.
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