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Abstract. We give a generalisation of the character formula of
Deligne–Lusztig representations from the finite field case to the trun-
cated formal power series case. Motivated by this generalisation, we
give a definition of Green functions for these local rings, and prove
some basic properties along the lines of the finite field case, like a sum-
mation formula. As an application we show that the higher Deligne–
Lusztig characters and Gérardin’s characters agree at regular semisim-
ple elements.
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1 Introduction and notations

The family of representations introduced in Deligne and Lusztig’s work [DL76]
plays a crucial role in the representation theory of reductive groups over finite
fields, since 1976. To compute the characters of these representations, there
are roughly two steps involved: The first one is a formula expressing these
characters in terms of Green functions of smaller reductive groups, and the
second one is to compute the Green functions using generalised Springer theory
and character sheaves (Lusztig–Shoji algorithm).

In this paper we give a study on the generalisation of the above first step, from
finite fields to discrete valuation rings. There are three perspectives. In Sec-
tion 2, we prove a character formula for reductive groups over (quotients of)
complete discrete valuation rings of positive characteristics, which expresses
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the characters of higher Deligne–Lusztig representations in terms of the traces
of certain unipotent elements; see Theorem 2.1 and Theorem 3.3. This gen-
eralises the character formula from the finite field case in a natural way. In
Section 3, motivated by this generalisation, we give a definition of Green func-
tions in this ring setting; see Definition 3.1. Similar to the finite field case, these
functions are defined on unipotent elements, and are independent of the choice
of characters of the maximal torus (which are parameters of higher Deligne–
Lusztig characters). We show that they enjoy some nice properties, such as a
summation formula; see Corollary 3.4, Corollary 3.6, Corollary 3.7, and Propo-
sition 3.8. In Section 4 we focus on regular semisimple elements. Using the
Green functions we establish a formula of higher Deligne–Lusztig characters
on regular semisimple elements; see Theorem 4.1. This formula is independent
of an integer parameter involved, and as an immediate application, we deduce
that, at regular semisimple elements, the values of higher Deligne–Lusztig char-
acters are the same with that of Gérardin’s characters (constructed in [Gér75]),
thus obtaining a variation of a prediction of Lusztig [Lus04]; see Corollary 4.4
and Remark 4.5.

In the below we introduce some notations and describe some results with more
details.

Let O be a complete discrete valuation ring with a finite residue field Fq, let
π be a fixed uniformiser of O, and let G be a connected reductive group over
Or := O/πr where r is a fixed arbitrary positive integer. We want to study the
complex smooth representations of reductive groups overO, or equivalently, the
complex representations of G(Or) (for all r ∈ Z>0). One approach for studying
these representations for a general r ≥ 1, on which this paper is based, is a
geometric theory proposed by Lusztig in [Lus79] (with some missing proofs
given in [Lus04] for char(O) = 0, which were generalised in [Sta09] for all
characteristics using the Greenberg functor technique). This theory generalises
the work in the r = 1 case in [DL76], so we call it the higher Deligne–Lusztig
theory. In this paper we will be only working with char(O) > 0; we have
O = Fq[[π]].

We recall the basic settings in [Lus04]. Write G := G×Spec Or Spec O
ur
r , where

Our := Fq[[π]] is a maximal unramified extension of O and Our
r := Our/πr.

Let B = T⋉U be the Levi decomposition of a Borel subgroup of G. By Weil
restriction, we can view G(Our

r ), B(Our
r ), T(Our

r ), and U(Our
r ) as the Fq-points

of some algebraic groups G, B, T , and U , respectively, over Fq. The Frobenius
map on Fq/Fq induces a geometric Frobenius endomorphism on G, such that
GF ∼= G(Or). We only consider the case that F (T ) ⊆ T . Let L be the Lang
isogeny associated to F , namely, L(g) = g−1F (g) for all g ∈ G. We fix a
rational prime integer ℓ ∤ q; we will be working with the representations over
Qℓ.

The variety L−1(FU) ⊆ G admits a left GF -action and a right TF -action
in a natural way. These actions induce a (GF , TF )-bimodule structure
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on the compactly supported ℓ-adic cohomology groups Hi
c(L

−1(FU),Qℓ).

Let Hi
c(L

−1(FU),Qℓ)θ be the isotypic component for a given θ ∈ T̂F :=

Hom(TF ,Q
×

ℓ ), then

Rθ
T,U :=

∑

i

(−1)iHi
c(L

−1(FU),Qℓ)θ

is a virtual representation of GF , referred to as a higher Deligne–Lusztig rep-
resentation.

Denote G by Gr, then for each i ∈ [0, r] ∩ Z, there is a morphism of algebraic
groups ρr,i : Gr → Gi, called the reduction map, induced by the reduction
modulo πi. The morphism ρr,i is surjective by the smoothness of G; we denote
its kernel, a normal closed subgroup of G, by Gi. In particular, we haveG0 = G
(not to be confused with the identity component Go). Similar notation applies
to the closed subgroups of G (like B, U , and T ).

The above objects lead to the representation

Rθ
T,U,b :=

∑

i

(−1)iHi
c(L

−1(FU b,r−b),Qℓ)θ,

where b ∈ [0, r] ∩ Z and U b,r−b := U b(U−)r−b (here U− denotes the algebraic
group corresponding to the opposite of U). This construction was first studied
in [Che18]; note that it naturally generalises the representations studied in
[Lus79], [Lus04], [Sta09], [Che16], and [CS17] (as clearly Rθ

T,U = Rθ
T,U,r).

These Rθ
T,U,b are the basic objects in this paper. We prove that (see Theo-

rem 2.1)

Tr(g,Rθ
T,U,b)

=
1

|TF |
·

1

|(StabG(s)o)F |
·

∑
{

h∈GF s.t.
s∈h(T1)

F

}

∑

τ∈h(T 1)F

θ(sh · τh)

· Tr

(
(u, τ−1) |

∑

i

(−1)i ·Hi
c(StabG(s)

o ∩ L−1(hFU r−b,b),Qℓ)

)
,

where g = su ∈ GF denotes the Jordan decomposition. Recall that T 1 is a
unipotent group (and is trivial if r = 1). This suggests a definition of two-
variable Green functions QG

T,U,b(−,−) defined on some unipotent elements (see
Definition 3.1), which admit the following summation property (see Proposi-
tion 3.8)

∑

u∈(UG)F

∑

τ∈((T 1))F

QG
T,U,b(u, τ) = |GF /TF

1 |.

Documenta Mathematica 23 (2018) 2027–2041



2030 Zhe Chen

These Green functions allow us to re-write the above character formula as (see
Theorem 3.3)

Tr(g,Rθ
T,U,b) =

1

|(StabG(s)o)F |

·
∑

{

h∈GF s.t.
s∈h(T1)

F

}

∑

τ∈h(T 1)F

θ(sh · τh) ·Q
StabG(s)o

hT ,hU∩StabG(s)o,b
(u, τ−1).

Using this formula we can evaluate the values of Tr(−, Rθ
T,U,b) at regular

semisimple elements easily: (See Theorem 4.1)

Tr(s,Rθ
T,U,b) =

∑

w∈W (T )F

(wθ)(sc),

if c ∈ GF is an element conjugating s into T1. From this formula we can
derive some independence properties: One of them links Rθ

T,U to certain irre-
ducible representations constructed by Gérardin in [Gér75] (see Remark 4.3,
Corollary 4.4, and Remark 4.5).

We record here some further notation and conventions. The set of roots of T
will be denoted by Φ; for α ∈ Φ, we let Uα ⊆ U be the corresponding root
subgroup, and we let Uα ⊆ U be the corresponding algebraic group. There
is an isomorphism of finite groups NG(T )/T ∼= NG1(T1)/T1 (see [CS17, Sec-
tion 2]), thus we will use W (T ) to denote the Weyl group of T. We will use

the conjugation notation ab = b−1

a = b−1ab for suitable objects a and b. For a
character of a finite abelian group, we sometimes use the same notation for its
representation space and itself.

Acknowledgement. The author thanks Alexander Stasinski for useful com-
ments on an earlier version of this paper. This paper comes as a by-product of
the author’s study on Broué–Michel’s work [BM89]. During the preparation of
this work, the author is partially supported by the STU funding NTF17021.

2 The character formula

We will work with the general Rθ
T,U,b (see Section 1) throughout this paper; a

rewarding result for using this generality will be seen at Section 4.

We want to prove the following character formula:

Theorem 2.1. Let Rθ
T,U,b be the character of Rθ

T,U,b, then for g ∈ GF we have

R
θ
T,U,b(g) =

1

|TF |
·

1

|(StabG(s)o)F |
·

∑
{

h∈GF
s.t.

s∈h(T1)
F

}

∑

τ∈h(T 1)F

θ(sh · τh)

· Tr

(
(u, τ−1) |

∑

i

(−1)i ·Hi
c(StabG(s)

o ∩ L−1(hFU r−b,b),Qℓ)

)
,
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where g = su is the Jordan decomposition.

Proof. By Broué’s character formula on bimodule induction (see e.g. [DM91,
Chapter 4]) we have

R
θ
T,U,b(g) =

1

|TF |
·
∑

t∈TF

θ(t−1) · Tr

(
(g, t) |

∑

i

(−1)iHi
c(L

−1(FU r−b,b),Qℓ)

)
.

So, applying Deligne and Lusztig’s fixed point formula (see [DL76, 3]) to the
RHS we see R

θ
T,U,b(g) equals to

1

|TF |
·
∑

t∈TF

θ(t−1) · Tr

(
(u, t′′) |

∑

i

(−1)iHi
c(L

−1(FU r−b,b)(s,t
′),Qℓ)

)
,

where t = t′t′′ is the natural decomposition via TF ∼= (T1)
F × (T 1)F . We want

to analyse the structure of the variety L−1(FU r−b,b)(s,t
′).

If h ∈ GF conjugates t′ to s−1 (i.e. ht′h−1 = s−1), and z ∈ StabG(t
′) has

its Lang image belonging to FU r−b,b (i.e. L(z) ∈ FU r−b,b), then clearly hz ∈
L−1(FU r−b,b)(s,t

′). So we have a well-defined multiplication morphism

{h ∈ GF | ht′ = s−1h} × {z ∈ StabG(t
′)o | L(z) ∈ FU r−b,b}

L−1(FU r−b,b)(s,t
′),

φ

given by φ(h, z) = hz.

We shall show that φ is surjective. Take x ∈ L−1(FU r−b,b)(s,t
′), then by the

rationality of s and t′ we see that

sF (x)t′ = F (x) = x · L(x) = sxt′ · L(x),

which implies

L(x) · t′ = x−1F (x)t′ = x−1s−1(sF (x)t′) = x−1s−1(sxt′ · L(x)) = t′ · L(x),

namely L(x) ∈ StabG(t
′). Now write L(x) = x1x2 with x1 ∈ G1 and x2 ∈ G1,

via the product decomposition G = G1 ⋉ G1, then by taking the reduction
map we see x1 ∈ StabG1(t

′), which also implies that x2 ∈ StabG1(t′). Since
x1 ∈ FU is unipotent, we have (see e.g. [DM91, 2.5])

x1 ∈ StabG1(t
′)o. (1)

On the other hand, for a given x̃ ∈ StabG1(t′), consider the unique Iwahori
decomposition x̃ = t̃ũ (in the sense of [Sta09, 2.2]), where t̃ ∈ T 1 and ũ ∈
U1(U−)1. Clearly t̃ commutes with t′, so ũ also commutes with t′. Write
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ũ =
∏

uα, where α runs over the roots and uα ∈ (Uα)
1, then the commutativity

between t′ and ũ implies that, for each root α, either uα = 1 or α(t′) = 1.
Therefore StabG1(t′) is an affine space. (Moreover, the argument implies that
StabG(t

′)o is the Weil restriction of the base change of the connected reductive
group StabG1(t

′)o from Fq to Our
r ; see also the argument in [DM91, 2.3].) In

particular, we have
x2 ∈ StabG1(t′)o. (2)

It follows from (1) and (2) that

L(x) ∈ StabG(t
′)o,

so by the Lang–Steinberg theorem we deduce L(x) = L(z) for some z ∈
StabG(t

′)o. Let h := xz−1, then h ∈ GF and

ht′h−1 = xz−1t′zt′−1x−1s−1 = s−1,

thus φ is surjective.

Meanwhile, note that φ(h, z) = φ(h′, z′) if and only if h−1h′ = zz′−1 ∈
(StabG(t

′)o)F , so, for a fixed set of representatives of GF /(StabG(t
′)o)F , φ

induces an isomorphism

L−1(FU r−b,b)(s,t
′) ∼=

∐
{

h∈GF /(StabG(t′)o)F

s.t. ht′=s−1h

}

{z ∈ StabG(t
′)o | L(z) ∈ FU r−b,b}h,

where {z ∈ StabG(t
′)o | L(z) ∈ FU r−b,b}h is a copy of {z ∈ StabG(t

′)o | L(z) ∈
FU r−b,b} on which the action of (u, t′′) is given by z 7→ (uh) · z · t′′.

Note that

{z ∈ StabG(t
′)o | L(z) ∈ FU r−b,b} = StabG(t

′)o ∩ L−1(StabG(t
′)o ∩ FU r−b,b)

is the corresponding higher Deligne–Lusztig variety of StabG(t
′)o; let us denote

it by Lt′ . Therefore R
θ
T,U,b(g) equals to

1

|TF |
·
∑

t∈TF

θ(t−1) ·
∑

{

h∈GF /(StabG(t′)o)F

s.t. ht′=s−1h

}

Tr
(
(uh, t′′) | H∗

c (Lt′)
)

=
1

|TF |
·
∑

t∈TF

θ(t−1) ·
∑

{

h∈GF s.t.
ht′=s−1h

}

1

|(StabG(t′)o)F |
· Tr

(
(uh, t′′) | H∗

c (Lt′)
)

=
1

|TF |
·

1

|(StabG(s)o)F |
·
∑

t∈TF

∑
{

h∈GF s.t.
ht′=s−1h

}

θ(t−1) · Tr
(
(uh, t′′) | H∗

c (Lt′)
)

=
1

|TF |

1

|(StabG(s)o)F |

∑
{

h∈GF s.t.
s∈h(T1)

F

}

∑

τ∈h(T 1)F

θ((sτ)h)Tr
(
(u, τ−1) | H∗

c (
hLt′)

)
,
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where H∗
c (−) :=

∑
i(−1)iHi

c(−,Qℓ) and in the last summation we put t′ =
(sh)−1. Since StabG(t

′) = StabG(t
′−1), we complete the proof by expressing

Lt′ in terms of s.

Remark 2.2. Let s ∈ G1 be a semisimple element, then StabG1(s)
o is a con-

nected reductive group; from the proof of Theorem 2.1 we see that an ana-
logue of this property also holds for StabG(s)

o: If s ∈ T1 is a semisimple
element, and if H is the Fq-Weil restriction of StabG1(s)

o ×Spec Fq
Spec Our

r ,

then H = StabG(s)
o.

Remark 2.3. In general, if s′ ∈ G is a semisimple element, then it is contained
in a maximal torus, thus can be conjugated to be some s ∈ T1 ⊆ G1 (though,
there are lots of semisimple elements not in G1). However, in this general
situation it can happen that the property in Remark 2.2 fails for StabG(s

′)o:
Suppose s′h = s, then the Weil restriction of (StabG(s

′)o)1 ×Spec Fq
Spec Our

r

is (StabG(s)
o)ρr,1(h), which may not be equal to (StabG(s)

o)h = StabG(s
′)o.

3 Green functions

We want to give a Green function theoretic interpretation of Theorem 2.1, in
a way similar to [DL76, 4.2]; we start with the following definition.

Definition 3.1. Suppose that G is a closed subgroup of some linear algebraic
group G̃ and that the Frobenius endomorphism F is also defined on G̃. Then
for h ∈ G̃F and a quadruple (G, T, U, b), the function

QGh

Th,Uh,b : (UGh)F × ((T 1)h)F → Qℓ

defined by

(u, τ) 7→
1

|TF |
Tr

(
(u, τ) |

∑

i

(−1)i ·Hi
c(L

−1(FU r−b,b)h,Qℓ)

)

is called a Green function on (Gh)F . Here UGh is the variety of unipotent
elements in Gh.

The above definition actually includes a wider class of groups than the Weil
restrictions of reductive groups over Or, as it may happen that Gh does not
equal to the Weil restriction of (Gh)1 ×Spec Fq

Spec Our
r (see Remark 2.3).

Remark 3.2. Recall that, if r = 1 and θ a general character of TF , then
the values of Rθ

T,U at unipotent elements only depend on the dimension of θ;

however, in the general r ≥ 1 case, the values of Rθ
T,U at unipotent elements

also depend on the values of θ at non-trivial unipotent elements in TF (see
[Lus04, Section 3]). So, instead of using R1

T,U to define Green functions as in
Deligne–Lusztig’s original work [DL76], we used the above average form.
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Using the above Green functions, Theorem 2.1 can be re-written as:

Theorem 3.3. Let Rθ
T,U,b be the character of Rθ

T,U,b, then for g ∈ GF we have

R
θ
T,U,b(g) =

1

|(StabG(s)o)F |

·
∑

{

h∈GF
s.t.

s∈h(T1)
F

}

∑

τ∈h(T 1)F

θ(sh · τh) ·Q
StabG(s)o

hT ,hU∩StabG(s)o,b
(u, τ−1),

where g = su is the Jordan decomposition.

In the r = 1 case, the Green functions are Z-valued (see e.g. [Car93, 7.6]).
Based on some computations in special cases, it seems this is also true for
QG

T,U,b for any r and b; in any case, we have the following weaker version:

Corollary 3.4. The function
∑

τ∈(T 1)F QG
T,U,b(−, τ) on (UG)

F is Z-valued.

Proof. Let u ∈ GF be a unipotent element. By Theorem 3.3 we have

R
1
T,U,b(u) =

1

|GF |

∑

h∈GF

∑

τ∈h(T 1)F

QG
hT ,hU,b(u, τ

−1).

For u and τ in the above expression, consider the commutative diagram

L−1(FU r−b,b)h
−1

L−1(FU r−b,b)h
−1

L−1(FU r−b,b) L−1(FU r−b,b),

conj h

(u,τ−1)

conj h

(uh,(τ−1)h)

in which all arrows are isomorphisms, hence

QG
hT ,hU,b(u, τ

−1) = QG
T,U,b(u

h, (τ−1)h);

moreover, by definition we can view QG
T,U,b as a restriction of a class function

of GF × (T 1)F , thus QG
T,U,b(u

h, (τ−1)h) = QG
T,U,b(u, (τ

−1)h). Therefore we get

R
1
T,U,b(u) =

1

|GF |

∑

h∈GF

∑

τ∈h(T 1)F

QG
T,U,b(u, (τ

−1)h)

=
1

|GF |

∑

h∈GF

∑

τ∈(T 1)F

QG
T,U,b(u, τ

−1),

which equals to
∑

τ∈(T 1)F QG
T,U,b(u, τ

−1) =
∑

τ∈(T 1)F QG
T,U,b(u, τ).

In particular,
∑

τ∈(T 1)F QG
T,U,b(−, τ) has its values being algebraic integers.

Meanwhile, by basic properties of Lefschetz numbers (see [Lus78, 1.2]) we know
this sum also takes values in Q, so it must takes values in Z.
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Definition 3.5. Let p := char(Fq). A class function f : GF → Qℓ is called
p-constant if f(g) = f(s) for all g ∈ GF , where g = su is the Jordan decompo-
sition with s semisimple and u unipotent.

The notion of p-constant functions is very useful in the representations of Lie
type groups. (For example, see [BM89, Section 2] for an application on the rela-
tions between ℓ-blocks and Lusztig series.) The following corollary generalises
a property in the r = 1 case (see [DM87, 3.8]).

Corollary 3.6. Let f : GF → Qℓ be a p-constant class function, then

R
θ·ResG

F

TF f

T,U,b = R
θ
T,U,b · f .

Proof. Let g ∈ GF and let g = su be the Jordan decomposition. By Theo-

rem 3.3 we see that R
θ·ResG

F

TF f

T,U,b (g) equals to

1

|(StabG(s)o)F |
·

∑
{

h∈GF s.t.
s∈h(T1)

F

}

∑

τ∈h(T 1)F

θ((sτ)h) · f((sτ)h)

·Q
StabG(s)o

hT ,hU∩StabG(s)o,b
(u, τ−1).

Note that f((sτ)h) = f(sτ) = f(s) = f(g), which completes the proof.

There is also an inner product version of the above corollary (see [DL76, 7.11]
or [Car93, 7.6.3] for the r = 1 case).

Corollary 3.7. Let R be the representation space of a p-constant virtual

character of GF , then 〈R,Rθ
T,U,b〉GF = 〈ResG

F

TF R, θ〉TF .

Proof. By Corollary 3.6 and the Hom–tensor adjunction we see

〈R,Rθ
T,U,b〉GF = 〈R

θ−1·ResG
F

TF χR

T,U,b , 1〉GF , (3)

where χR means the character of R. As R
(−)
T,U,b is the induction (from the

virtual representations of TF to the virtual representations of GF ) provided
by the alternating sum of bimodules

∑
i(−1)iHi

c(L
−1(FU b,r−b),Qℓ), there is a

restriction functor ∗R
(−)
T,U,b adjoint to R

(−)
T,U,b (see [DM91, Chapter 4] for more

details); we get

(3) = 〈θ−1 ⊗ ResG
F

TF χR,
∗R1

T,U,b〉TF .

Consider the natural Lang surjection L : L−1(FU b,r−b) → FU b,r−b; as L is
finite separable with fibres isomorphic to GF , we have

GF \L−1(FU b,r−b) ∼= FU b,r−b,
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thus

∗R1
T,U,b =

∑

i

(−1)iHi
c(G

F \L−1(FU b,r−b),Qℓ) =
∑

i

(−1)iHi
c(FU b,r−b,Qℓ).

Sine FU b,r−b is an affine space,
∑

i(−1)iHi
c(FU b,r−b,Qℓ) = Qℓ; meanwhile,

as the action of TF on the affine space FU b,r−b extends to the action of the
connected algebraic group T = FT , we see that ∗R1

T,U,b = Qℓ is actually the
trivial representation (by [DL76, 6.4]), from which the assertion follows.

There is a “Green (function) integration formula”:

Proposition 3.8. Let G̃ be as in Definition 3.1. We have

∑

u∈(UGx )F

∑

τ∈((T 1)x)F

QGx

Tx,Ux,b(u, τ) = |GF /TF
1 |

for every x ∈ G̃F . (Compare the r = 1 case in [Car93, 7.6.1].)

Proof. We use an induction argument on i := | dimG/ dimT |. If i = 1, then
G = T (note that UT = T 1), hence

∑

u∈(UGx )F

∑

τ∈((T 1)x)F

QGx

Tx,Ux,b(u, τ)

=
1

|TF |

∑

u∈((T 1)x)F

∑

τ∈((T 1)x)F

Tr((u, τ) | Qℓ[(T
x)F ])

= |TF/TF
1 |,

as desired. Suppose now the assertion is true for every i ≤ n, and sup-
pose dimG/ dimT = n + 1. From the proof of Corollary 3.7 we see that
〈
∑

i(−1)iHi
c(L

−1(FU)x,Qℓ), 1〉(Gx)F = 1, that is: (Use Theorem 3.3)

1

|GF |

∑

g=su∈(Gx)F

1

|(StabGx(s)o)F |

×
∑

{

h∈(Gx)F s.t.

s∈h((T1)
x)F

}

∑

τ∈h((T 1)x)F

Q
StabGx (s)o

h(Tx),h(Ux)∩StabGx (s)o,b
(u, τ−1) = 1,

(4)

where g = su denotes the Jordan decomposition.

To proceed, we need to show that u ∈ StabGx(s)o for the Jordan decomposition
in the above summation, which is well-known when r = 1. As h ∈ (Gx)F ,
there is a ∈ GF such that h = x−1ax; put y := hx−1 = x−1a. Note that
Gxy = Gxx−1a = G. Meanwhile, since s ∈ (h(T1)

x)F , we have

sy = xh−1shx−1 ∈ xh−1(h(T1)
x)Fhx−1 = (T1)

F .
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So ρr,1(u
y) ∈ StabG(s

y)o (use e.g. Remark 2.2), thus uy ∈ StabG(s
y)o, so

u ∈ StabGx(s)o.

Therefore (4) becomes

1

|GF |

∑

s∈(Gx)F

semisimple

1

|(StabGx(s)o)F |

∑

u∈(StabGx (s)o)F

unipotent

×
∑

{

h∈(Gx)F s.t.

s∈h((T1)
x)F

}

∑

τ∈h((T 1)x)F

Q
StabGx (s)o

h(Tx),h(Ux)∩StabGx (s)o,b
(u, τ−1) = 1.

(5)

There are two cases of s, depending on whether s ∈ Zx, where Z denotes the
center of G. As StabGx(s)o = Gx if and only if s ∈ Zx, by our induction
assumption we can re-write (5) as (note that h ∈ (Gx)F )

|ZF
1 |

|GF |
·

∑

u∈(UGx )F

∑

τ∈((T 1)x)F

QGx

Tx,Ux,b(u, τ
−1)

+
1

|GF |

∑

s∈(Gx)F \(Zx)F

semisimple

∑
{

h∈(Gx)F s.t.

s∈h((T1)
x)F

}

1/|TF
1 | = 1.

Therefore

|ZF
1 |

|GF |
·

∑

u∈(UGx )F

∑

τ∈((T 1)x)F

QGx

Tx,Ux,b(u, τ
−1)

−
1

|GF |

∑

s∈(Zx)F1

∑
{

h∈(Gx)F s.t.

s∈h((T1)
x)F

}

1/|TF
1 |

+
1

|GF |

∑

s∈(Gx)F

semisimple

∑
{

h∈(Gx)F s.t.

s∈h((T1)
x)F

}

1/|TF
1 | = 1.

(6)

We can simplify the sums in the above equality in the following way: First,
for the second sum, as Zx is the centre of Gx, the condition “s ∈ h((T1)

x)F ”
is equivalent to “s ∈ ((T1)

x)F ”, thus the sum equals to −(1/|GF |) · |ZF
1 | ·

|(Gx)F | · (1/|TF
1 |) = −|ZF

1 |/|TF
1 |. Second, note that, if s ∈ h((T1)

x)F , then
s is automatically semisimple, thus in the third sum we can first count all
elements h ∈ (Gx)F , then count all elements in (h(T1)

x)F , so the sum equals
to (1/|GF |) · |(Gx)F | · |(h(T1)

x)F | · (1/|TF
1 |) = 1. Therefore (6) can be written

as

|ZF
1 |

|GF |
·

∑

u∈(UGx )F

∑

τ∈((T 1)x)F

QGx

Tx,Ux,b(u, τ
−1)−

|ZF
1 |

|TF
1 |

+ 1 = 1,

from which the proposition follows.
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4 Regular semisimple elements

In this section we focus on the values of higher Deligne–Lusztig characters at
regular semisimple elements. Recall that a semisimple element is called regular,
if its centraliser is of minimal dimension; in our situation, this is equivalent to
the saying that, a semisimple element s is regular if and only if StabG(s)

o is
isomorphic to T .

Theorem 4.1. Let s ∈ GF be a regular semisimple element. We have:
R

θ
T,U,b(s) = 0 if the conjugacy class of s in GF does not intersect T1, and

R
θ
T,U,b(s) =

∑

w∈W (T )F

(wθ)(sc)

if sc ∈ T1 for some c ∈ GF (note that this can happen even if s ∈ G\G1). Here
W (T ) := N(T )/T is isomorphic to the Weyl group W (T1) := NG1(T1)/T1; see
[CS17, Section 2].

Proof. From the character formula we only need to deal with the case that the
intersection of TF

1 and the conjugacy class of s (in GF ) is non-empty.

By regularity, the only conjugation of T containing sc is T (as otherwise
StabG(s

c)o is not isomorphic to T ), thus any connected commutative sub-
group containing sc is a subgroup of T . So the formula in Theorem 3.3 can be
simplified as

R
θ
T,U,b(s) = R

θ
T,U,b(s

c) =
1

|TF |
·

∑

h∈NG(T1)F

∑

τ∈(T 1)F

θ(sc·h · τh) ·QT
T,{1},b(1, τ

−1).

(7)
In this summation, note that the function

QT
T,{1},b(1, τ

−1) =
1

|TF |
Tr
(
(1, τ−1) | Qℓ[T

F ]
)

on (T 1)F is the characteristic function at the identity element, and note that
NG(T1) = NG1(T1)T

1 by an Iwahori decomposition argument as in the proof
of Theorem 2.1, thus

(7) =
∑

w∈W (T )F

(wθ)(sc),

as desired.

Corollary 4.2. The values of Rθ
T,U,b at regular semisimple elements are in-

dependent of the choices of U and b.

Proof. This follows immediately from Theorem 4.1.
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Remark 4.3. In [Gér75], by purely algebraic methods, whenever (G, T, θ) sat-
isfies certain conditions (namely, G is defined from an unramified split group
with the derived subgroup being simply connected, T is special in the sense of
[Gér75, 3.3.9], and θ is regular and in general position in the sense of [Lus04];
see [CS17, Remark 3.4]), Gérardin constructed an irreducible representation

R(θ) of GF of the form: If r is even, then R(θ) = IndGF

(TGr/2)F θ̃, where θ̃ is

the trivial lift of θ; if r is odd, then R(θ) = IndG
F

(TG(r−1)/2)F θ̃, where θ̃ is some

irreducible representation of (TG(r−1)/2)F of dimension q#Φ/2. Lusztig sug-
gested in [Lus04] that these algebraically constructed representations are likely
to be the same as the geometrically constructed representations Rθ

T,U ; when r
is even, this was proved in [Che17] for GLn and in [CS17] in general.

However, even when r is even, if one does not impose any restrictions on θ,
then, as can be seen from Lusztig’s computations [Lus04, Section 3], it can

happen that Rθ
T,U is not isomorphic to IndGF

(TGr/2)F θ̃ for some θ; in any case,
we show that, even though the characters of these two representations may not
be identical, they always agree at regular semisimple elements, without any
conditions on θ:

Corollary 4.4. When r is even, R
θ
T,U,b(s) = Tr(s, IndG

F

(TGr/2)F θ̃) for any

regular semisimple element s ∈ GF .

Proof. Let b = r/2, then Rθ
T,U,b

∼= IndGF

(TGr/2)F θ̃ according to [CS17, 3.3]. So
the assertion follows from Corollary 4.2.

Remark 4.5. If (G, T, θ) satisfies Gérardin’s conditions mentioned in Re-
mark 4.3, then the above equality also holds for r odd, i.e. R

θ
T,U (s) =

Tr(s,R(θ)) for any regular semisimple element s ∈ TF and any r: Indeed,
when r is odd, according to [Gér75, 4.3.4], the character value of R(θ) at s is

1
|(TG(r−1)/2)F |

∑
{h∈GF |sh∈(TG(r−1)/2)F } θ(s

h) =
∑

w∈W (T )F θ(sw).

Theorem 4.1 also implies an agreement at regular semisimple elements in an-
other direction: It is easy to see that the image of a reduction map on a
Deligne–Lusztig variety is a Deligne–Lusztig variety at a lower level (see e.g.
[Che17, Lemma 3.3.3]). In particular, the image of L−1(FU) along ρr,1 is

a classical Deligne–Lusztig variety; let R
θ1
T1

be its associated Deligne–Lusztig

character, where θ1 denotes the restriction of θ to TF
1 .

Corollary 4.6. Let s be a regular semisimple element of GF
1 , then R

θ
T,U (s) =

R
θ1
T1
(s).

Proof. This follows immediately from Theorem 4.1.

Remark 4.7. Note that the assertions in Theorem 4.1, Corollary 4.2 Corol-
lary 4.4, and Corollary 4.6 do not hold for every semisimple s, in general; for
example, they do not hold for s = 1 for some θ, as can be seen from [Lus04].
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groupe réductif fini. J. Reine Angew. Math., 395:56–67, 1989.

[Car93] Roger W. Carter. Finite groups of Lie type. Wiley Classics Library.
John Wiley & Sons Ltd., Chichester, 1993. Conjugacy classes and
complex characters, Reprint of the 1985 original, A Wiley-Interscience
Publication.

[Che16] Zhe Chen. Generic character sheaves on reductive groups over a finite
ring. Preprint 2016 arXiv 1604.02016.

[Che17] Zhe Chen. On generalised Deligne–Lusztig constructions. 2017. PhD
Thesis. Durham University.

[Che18] Zhe Chen. On the inner products of some Deligne–Lusztig-type repre-
sentations. Accepted by International Mathematics Research Notices,
2018. DOI 10.1093/imrn/rny195

[CS17] Zhe Chen and Alexander Stasinski. The algebraisation of higher
Deligne–Lusztig representations. Selecta Math. (N.S.), 23(4):2907–
2926, 2017.

[DL76] Pierre Deligne and George Lusztig. Representations of reductive
groups over finite fields. Ann. of Math. (2), 103(1):103–161, 1976.

[DM87] François Digne and JeanMichel. Foncteurs de Lusztig et caractères des
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