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ABSTRACT. Given a locally compact group G, we study the smallest
exact crossed-product functor (A, G, ) — A xg G on the category of
G-C*-dynamical systems. As an outcome, we show that the small-
est exact crossed-product functor is automatically Morita compati-
ble, and hence coincides with the functor xg as introduced by Baum,
Guentner, and Willett in their reformulation of the Baum-Connes
conjecture (see [2]). We show that the corresponding group algebra
C#(G) always coincides with the reduced group algebra, thus show-
ing that the new formulation of the Baum-Connes conjecture coincides
with the classical one in the case of trivial coefficients.
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1 INTRODUCTION

The construction of crossed products (A, G, a) — A %, G provides a major
source of examples in C*-algebra theory and plays an important réle in many
applications of C*-algebras in other fields of mathematics, such as group rep-
resentation theory and topology. Classically, there were two crossed products
attached to a given action a : G — Aut(4) of a locally compact group G
on a C*-algebra A: the maximal crossed product A X, max G, which is uni-
versal for covariant representations (m,u) of the underlying dynamical system
(A, G, «), and the reduced crossed product A X, G, which can be defined
as the image of A X4 max G under the regular covariant representation of the
system. Both crossed products are completions of the algebraic crossed prod-
uct A Xa G = Co(G, A) by C*-norms | - |max and | - ||, respectively and the
fact that the identity map on C.(G, A) induces a quotient from A X, G onto
A %, G means that | f|max = | f|- for all f € C.(G, A).

DOCUMENTA MATHEMATICA 23 (2018) 2043-2077



2044 Buss, ECHTERHOFF, AND WILLETT

More recently, the study of exotic crossed-product functors (4, G, o) = Axq .
G came into the focus of research. Here A %, , G is a completion of C.(G, A)
with respect to a C*-norm | - |, satisfying

| f lmax = [ £l = 1 £l

for all f € C.(G,A). The identity on C.(G,A) then induces surjective -
homomorphisms

AXpax G Ax, G- Ax,. G

for every G-algebra A.
The interest in exotic crossed products is motivated in a good part by the
failure of the classical Baum-Connes conjecture, which predicted that a certain
assembly map

as” 1 KyP(G; A) — Ky(A %, G) (1)

for the K-theory of the reduced crossed product should always be an isomor-
phism. However, it was shown by Higson, Lafforgue, and Skandalis in [15] that
the conjecture fails for certain groups discovered by Gromov [14] (see [18] for
a concrete construction). This failure is due to the fact that these groups are
not exact in the sense that the sequence of reduced crossed products

0——=IxG—=Ax,G——=(A/]) x,G——=10 (2)

for a G-invariant ideal I of A may fail to be exact in general, even in a way
that is detectable by K-theory. This led to the idea that one should replace the
reduced crossed product by the smallest exact crossed-product functor which is
compatible with Morita equivalences (at least in some weak sense — see Section
4 below for the precise definition). Indeed, it has been shown in [2] that for
every locally compact group G a smallest exact Morita compatible functor
A — A xg¢ G always exists; moreover, if we replace the reduced crossed product
by A xg G in (1) getting a new assembly map

as® : Ki*P(G5 A) — Ky (A xg G), (3)

then the known counterexamples for the Baum-Connes conjecture disappear,
some counterexamples become confirming examples, and the known confirming
examples remain as such. Note that for exact groups, i.e., groups for which
(2) is always exact, we have A xg G = A x,. G, and hence the new conjecture
coincides with the old one for those groups.

The smallest exact Morita compatible crossed-product functor xg has been
studied further in [8,9], where it has been shown (among other things), that for
second countable G, its restriction to the category of separable G-C*-algebras
enjoys other good functorial properties: It is functorial for G-equivariant cor-
respondences and it allows a descent in equivariant K K-theory. On the other
hand, in many respects our understanding of the functor x¢ has been very
limited. Important questions are (among others):
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Q1. What is the group algebra C¥(G) := Cx¢G? Do we always have CE(G) =
C*(@Q), the reduced group algebra?

Q2. Is the smallest exact Morita compatible crossed-product functor x ¢ iden-
tical to the smallest exact crossed-product functor?

Q3. Can we give concrete descriptions or constructions of the functor xg¢?

Q4. How can we relate the smallest exact Morita compatible functor xg, for
a group G to the same functor xg,, for a closed subgroup H of G?

Note that a positive answer to Question Q1 would imply that the new Baum-
Connes conjecture coincides with the classical one in the case of the trivial
coefficient algebra A = C, which would fit with the fact that so far there are no
known counterexamples for the classical Baum-Connes conjecture in this case.
In this paper we will give positive answers to Questions Q1 and Q2 and give at
least partial answers to Questions Q3 and Q4. Given any fixed crossed-product
functor x, for a group G (which will be the reduced crossed-product functor in
our main applications), we start in Section 2 with the construction of a crossed-
product functor x¢(,) which is the smallest half-exvact crossed-product functor
(i.e., the analogue of sequence (3.8) is exact at the middle term) that dominates
X, in the sense that |fllgy = |f]u for all f e C.(G,A). We show (see
Proposition 2.6) that the corresponding group algebra C;‘(M)(G) =Cxgp G
always coincides with the group algebra Cj(G) := C x, G. In particular,
In Section 3, building on ideas developed around Archbold’s and Batty’s prop-
erty C (see [1] and the treatment of this property in [7, Chapter 9]) and work
of Matsumura [17], we prove

THEOREM 1.1 (see Theorem 3.5). Let %, be a crossed-product functor for the
locally compact group G. Then the following are equivalent:

1. %, is half-evact;
2. for every G-algebra A there is a canonical *-homomorphism
A 3, G — (Ax, G)**
where A¥* denotes the G-continuous part of the double dual A* of A;
3. x, is exact.

This theorem not only gives a new characterization of exact groups (when ap-
plied to the reduced crossed-product functor), it also shows that the functor
X gy of Section 2 is indeed the smallest exact exotic crossed-product functor.
In Section 4 we then show that xg(,) is Morita compatible, which gives a posi-
tive answer to Question Q2 (i.e., xg(y = x¢), and, since C%(G) = C;"(T)(G) =
C*(G), also to Question Q1.
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In Section 5 we study certain equivariant lifting properties for G-algebras, which
give rise to more concrete descriptions of the smallest exact functor xg. In
particular, we say that a G-algebra C has the weak equivariant lifting property
(WELP), if for any diagram of equivariant maps of the form

7
o 7
/ ™
7
/G'
C2-B/J

with o a *-homomorphism and 7 a quotient map, the dashed arrow can always
be filled in with a G-equivariant ccp map . If G is discrete, it is not difficult
to see that for any G-algebra A, there always exists a short exact sequence
0—1I1—C5 A— 0 with C satisfying (WELP), and it then follows that

Cx,. G

A><15G= I><1TG'

If G is discrete and A is unital, then C' can always be chosen to be the maximal
group algebra C*(Fnxq) of a free group generated by a set N x G with G-
action induced by the translation action on the second factor on the generating
set N x G. Tt follows in particular that for all G-algebras satisfying (WELP) we
have C' xg G = C' x,. G. These include all equivariantly projective G-algebras
C' as defined in [19].

Finally, in Section 6 we show that for an open subgroup H of G, the minimal
exact functor xg,, is always the restriction (see Section 6 for the definition) of
the minimal exact functor xg, for G. This implies in particular, that validity
of the reformulated Baum-Connes conjecture for a locally compact group G
passes to all open subgroups of G. Note that an analogue of this result for
closed normal subgroups of G has been obtained in [8].

CONVENTIONS: The phrase G-algebra will always mean a C*-algebra equipped
with a continuous action by #-automorphisms of a locally compact group G. If
A is a C*-algebra equipped with a not-necessarily-continuous action

a: G — Aut(A)
of a locally compact group G, then the continuous part of A is defined to be
A, :={ae€ A|g— ay4(a) is norm continuous},

and is a G-algebra with the restricted action. For a locally compact group G
and a G-algebra A, C.(G, A) denotes the collection of all compactly supported
continuous functions from G to A, equipped with the usual #-algebra operations.
The reduced and maximal completions of C.(G, A) will be denoted A x, G and
A Xmax G. A general crossed product functor as in [8, Definition 3.2] will be
denoted %, and the associated completion of C.(G, A) by A x, G. For most of
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the paper, there should be no ambiguity about which particular action a given
C*-algebra is equipped with; as such, we will not label crossed products with
the name of the action unless it seems necessary to avoid confusion. Finally,
if g € G, then we denote the canonical associated unitary in the multiplier
algebra M(A %, G) of a crossed product by 4.

ACKNOWLEDGMENTS: This work was prompted by a suggestion of Narutaka
Ozawa to consider norms induced by quotient maps from G-algebras of the
form C*(Fnx¢) as discussed above. We are very grateful to Professor Ozawa
for this initial suggestion. The authors would also like to thank Erik Guentner
and Hannes Thiel for useful conversations on some of the issues in this paper.
Most of the work on this paper was carried out during a visit of the first and
third authors to the second author at the Westfélische Wilhelms-Universitat
Miinster; these authors would like to thank the second author, and that insti-
tution, for their hospitality.

The authors were supported by Deutsche Forschungsgemeinschaft (SFB 878,
Groups, Geometry & Actions), by CNPq/CAPES — Brazil, and by the US
NSF (DMS 1401126 and DMS 1564281).

2 HALF EXACT CROSSED PRODUCTS

Throughout this section, G' denotes a locally compact group, and x, a fixed
crossed-product functor for G as in [8, Definition 3.2]. At this point, we do not
assume that », has any other properties beyond those in this basic definition;
however we will need to specialize to crossed product functors satisfying more
stringent conditions later, and will make clear when this comes up. Our goal
is to define a new crossed-product functor x¢(,), which should be thought of
as the ‘best exact approximation to x,’, and indeed in Section 3 we will prove
that it is the smallest exact crossed product that is larger than x,. We will
spend most of this section proving some basic properties of xg ).

The reader unfamiliar with exotic crossed products is encouraged to just as-
sume that x, = x, throughout, which is certainly the most important special
case. Nonetheless, it seemed worthwhile to work in general as this causes no
extra difficulties, and as it clarifies the ‘formal’ nature of the constructions and
proofs; by ‘formal’” we mean that they rely on general C*-algebra theory and
functorial properties of x,, and have nothing to do with the specific construc-
tion underlying the definition of .

We first need some ancillary notation.

DEFINITION 2.1. Let B € A be an equivariant inclusion of C*-algebras. Then
B x,, 4 G denotes the completion of C.(G,B) for the norm it inherits as a
subalgebra of A x,, G.

Here is the main definition of this section.

DEFINITION 2.2. Let A be a G-algebra, and let
0 I C—=A 0

DOCUMENTA MATHEMATICA 23 (2018) 2043-2077



2048 Buss, ECHTERHOFF, AND WILLETT

be an equivariant short exact sequence. Then we get a short exact sequence

Cx,G 0
INM,CG :

0——Ix,cG—=Cx,G

This gives rise to a (dense) x-algebra inclusion

Cx,G

CC(G, A) — m
M

The m-norm' on C.(G, A), denoted | - ||, is the norm induced by the above
inclusion, and the corresponding completion is denoted A x, G.
The E(p)-norm on C.(G, A) is defined by

lalg () = sup{falx [ 7 : C — A an equivariant surjection}
and the corresponding completion of C.(G, A) is denoted A x¢(,, G.

Note that the supremum defining the £(u)-norm is over a non-empty set: in-
deed, it contains the m-norm associated to the identity function 7 : A — A.
Moreover, the supremum is finite as if we have an equivariant short exact se-
quence

0 I C—Zs4A 0

then exactness of the maximal crossed product gives rise to a quotient map

C Crtp G Cx, G
T T Xpax G Ix,cG

A Xmax G

whence [|a]r < [a]max for all a € C.(G, A). On the other hand, functoriality of
X, gives rise to a quotient map
Cx,G

7[>4H,CGHA>Q“G

so that [af, < |a|~ for all a € C.(G,A). Moreover, every crossed-product
norm is assumed to satisfy |a|, < |a,, where || - |, denotes the reduced norm.
Hence we get the inequalities

lall- < flally < llaleqy < lalmax  for all ae Ce(G, A). (4)

PROPOSITION 2.3. Let ¢ : A — B be an equivariant x-homomorphism. Then
the integrated form

oxG:C.(G,A) > C.(G,B); a—¢goa

extends (uniquely) to a x-homomorphism Axg )G — Bxg,)G. In particular,
X e @8 a crossed-product functor in the sense of [8, Definition 3.2].

1Of course, the m-norm also depends on the fixed crossed product Xy, but the ‘parent’
crossed product should always be clear from context, so we do not include it in the notation.
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Proof. Let
0 I C—=B 0

be an arbitrary equivariant short exact sequence. Let P = {(c,a) e C® A |
7(c) = ¢(a)} be the pullback over the diagram

TA
P——

o

C—Z+B

(the maps labeled w4 and 7p are the restrictions of the coordinate projections
from C @ A to P). The direct sum G-action on C' @ A restricts to an action
on P and we thus obtain a commutative diagram of equivariant short exact
sequences

0 J P24 0,
Lo
0 I C—>B 0

where the map J — I, which is an isomorphism, exists by commutativity.
Taking crossed products thus induces a map
Px,G Cx,G
—
Jx,pG Ix,cG

that agrees with ¢ x G on C.(G, A). This implies that for all a € C.(G, A) we
have

¢ > Gla)|x < llalz, < lalleq:

Taking the supremum over all such m now gives that |¢ x G(a)llg(.) < lla]e(
and thus that ¢ x G extends as claimed. That xg(,) is a crossed-product
functor follows from functoriality of algebraic descent

(p:A—-B) — (pxG:C.(G,A)— C.(G,B))
and the inequality in Equation (4). O
We now show that the supremum defining the £(p)-norm is always attained.

PROPOSITION 2.4. Let G be a locally compact group, let x,, be a crossed product
for G, and let A be a G-algebra. Then there exists an equivariant quotient map
7. C — A such that |a|g,y = |alx for all a € C.(G, A). If A is unital, then

C' can be chosen to be unital as well.

Proof. Let S be a set of equivariant quotient maps ms : Cs — A such that for
every a € C.(G, A),
lalle(.) = sup lafx..
seS
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Define
Cp = {(Cs) € HCS | ms(cs) = mi(cy) for all s,t € S},
seS

and let C' be the continuous part of Cy, i.e., for all ¢ = (¢5)ses € C the map

G—C; g (e) = (vg(cs))ses

is continuous, where v* : G — Aut(Cs) denotes the action of G on C;. For any
fixed t € S let 0y : Cy — C} denote the projection. We claim that its restriction
to C is surjective. For each f € C.(G) and ¢ = (¢s)ses € Cp, we define

[rei= (f *Cs)ses  With f ¢ = JG f(g)ﬁ(cs)dg-

We claim first that f +c e C for all ¢ € Cy. To see this, it suffices to show that
if (g;) is a net converging to the identity in G, then

li§nsup HV; (f #Cs) — [ xcs H = 0.
S
Note however that for any s € S, if §;, denotes the Dirac mass at g, then

g, (f # cs) = Frocsl = [(0g; % ) cs = f # csl < [bg; # f = Fllrrialesl
< [0g, * f = fllzaca)lel;

as f and ¢ = (cg)ses are fixed, this tends to zero as j tends to infinity at
a rate independent of s as required. It follows that the image 0+(C) < Ci
contains all elements of the form {f = ¢; : f € C.(G), ¢t € Ct}; hence to show
surjectivity of oy, it suffices to show that this set is dense in Cy. To see this,
let V be a neighbourhood base of e € G and for each V € V let fy € C.(G) be
a positive symmetric function with supp fiy € V and SG fv(g)dg = 1. Then
fv # ¢ converges in norm to ¢; for any ¢; € Cy, t € S. This proves the claim.
For any fixed t € S, there is thus a surjective quotient map

C— A; (cs)ses — mi(cr).

The definition of C' € Cy implies that this map does not depend on the choice
of t, so we just denote it .

We now have that C' is a G-algebra equipped with an equivariant surjection
7 : C — A, so it remains to show that |a|¢(,) = |a|x for all a € C.(G, A). For
s € S, recall that o, : C' — (5 denotes the coordinate projection. Then we get
an equivariant commutative diagram

0 I C—=A 0,
0 I, Cy——s A 0

DOCUMENTA MATHEMATICA 23 (2018) 2043-2077



THE MINIMAL ExacT CROSSED PRODUCT 2051

where I and I, are the kernels of m and 7y, respectively. This gives rise to a
x-homomorphism

Cx,G Cs %, G

IxuycG IS X,u,CSG

that restricts to the identity on C.(G, A); as this #-homomorphism is contrac-
tive, this implies that |a]r = |a|x, for all a € C.(G,A). As s was arbitrary,
the choice of S then gives that |a|, > |alg(,). By definition of ||afg(,), this
implies equality. Suppose now that A is unital. Let

0 I C—>A 0.

be a short exact sequence such that | - [ = |- [¢(,) on Cc(G, A) as above. Let
C' denote the unitization of C (even if C is already unital) with the extended
G-action that necessarily fixes the unit. Let 7 : C — A denote the unique
(equivariant) unital extension of w to C, and let J be the kernel of 7. Noting
that I is an ideal in J with quotient C, and taking crossed products, we get a
commutative diagram

0——=IxcG——Cx,G——=Ax,G——=0

0—>J><1M~G—>C>4HG—>A>4%G—>O

0——Cx

0 0 0

The middle column is exact since the unit inclusion o : C — 6‘, which is a G-
homomorphism, induces a splitting homomorphism ¢ x G : Cx, G — C %, G.
Let now I : C' x, G — C x, G be defined by

E:=1d— (e xG)o(d x GQ),

where § : C' — C denotes the canonical quotient map. Then FE is a bounded
linear idempotent operator with norm at most two. Note that the definition
of E only needs functoriality of x, for #-homomorphisms. Moreover, it is
straightforward to check that F restricts to a map C.(G,J) — C.(G, I), whence
it takes J x  ~ G onto I x, ¢ G (it has closed range as it is an idempotent),
and acts as the identity on I e G. Tt follows from a diagram chase that if
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aeJx, & G goes to zero under the quotient map to C %, G, then E(a) = a,
and thus that a € I x, ¢ G. Hence the left hand vertical column is also exact.
To complete the proof, note that we now have that the left two columns in
diagram (5) above are exact, while the rows are all exact by definition. Tt
follows from a diagram chase that the map Ax,G — Ax3 G is an isomorphism,
and thus that for any a € C.(G, A) we have

lallz = llalx = laleqw.
and we are done. O

Remark 2.5. Note that the algebra C' constructed above depends strongly on A
and we have no idea about its general structure as a C*-algebra. For instance, it
is not clear whether we can always find a C with the property in the proposition
that is o-unital if we assume that A is o-unital.

For discrete G we shall see in Section 5 below that we can get much more
concrete descriptions of algebras C' and surjective morphisms 7 : C — A which
attain the norm || - |¢(, for G.

Using the above result, we can compute C ¢,y G.

PROPOSITION 2.6. The canonical quotient map C xg(,y G — C %, G is an
isomorphism.

Proof. Lemma 2.4 implies in particular that there is a unital G-algebra C' and
a G-invariant character 7 : C'— C such that |a|¢(,) = |a| for alla € C.(G) =
C.(G,C).

Any unital equivariant surjection 7 : C' — C splits equivariantly by the unit
inclusion #-homomorphism C — C', which implies that the induced sequence

0——=Ix,cG——Cx,G—Cx,G——=0

is exact, and thus that |- [g) = |- [x = |- | on Cc(G). The result follows. [

Our next aim is to show that £(u) is always half-exact as in the next defini-
tion, and is in fact minimal amongst all half-exact crossed-product functors
dominating .

DEFINITION 2.7. A crossed-product functor A +— A x,, G is called half-ezact if
for every short exact sequence of G-algebras

0 I Ao B 0

the sequence
G
0——1Ix,.G——A X#GLB X, G——=0
is exact, where I x, 4 G is as in Definition 2.1.
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Remark 2.8. A half-exact functor is exact if and only if it has the ideal property
of [9, Definition 3.2]: This means that if I € A is a G-invariant ideal, then the
induced map I x, G — A x,, G is injective. The image of this homomorphism
is I x, 4 G sothat I x, 4 G = I x, G canonically in this case.

PROPOSITION 2.9. The functor xg(, is half-exact.

Proof. Fix a G-invariant ideal I in a G-algebra A and write o : A — A/I for
the quotient map. Let

0 J C—>A 0.

be any equivariant short exact sequence such that [afg(,) = [af~ for all a €
C.(G, A), as exists by Proposition 2.4. This fits into a commutative diagram

0 0 0
0 J J 0 0
0 ——= 7 1(I) C 27 AT 0
T ™
0 I A—"= A/l 0
0 0 0

with all rows and columns exact, where 7; denotes the restriction of 7 to 7! (I).
Taking crossed products gives a commutative diagram

0 0 0

0—J %0 G——>J x,0G 0 0

0——=7"'I) %pc G ——Cxy G —— (A)]) Xpor G ————0

7 )%, cG
Ix, 0G

Axs(“)G
(7= (D)xp,cG) [ (Ixu,cG)

A ><lg(u) G
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where the first two columns and first two rows (at least) are exact. The

canonical isomorphisms
Cx,G N (Cx,G) /) (JxucG)
T I) e G () 20 G) /(T 20 G)
~ A ><lg(#) G
- (T D) e G) ) (I %pe G)

identify the bottom right term with A x,., G, and a diagram chase shows that

the map

(A/I) X gorn G =

a1 (I) Xy, G
J ><1M7C G
is injective. Thus in fact all the rows and columns in the above diagram are

exact.
-1
Now, it follows that % identifies with the completion I x¢(,y 4 G of
™S

= Ang G

C.(G,I) inside A x¢g(,) G, and that we have a canonical identification

AXe @

= (A/]) Xgor G.
Toie1 G (A/T)

From this, we see that for any a € C.(G, A/I),

lall(axenG) / (1xeqn.a6) = lalla/nx,o.c < laleq.

where the right hand inequality follows from the definition of the £(u)-norm

on C.(G, A/I).

To see the opposite inequality observe that the fact that x¢(,) is a functor gives

a quotient map A o
()

Tucgna@ D 7ew @

so we are done. O

PROPOSITION 2.10. The crossed product xg(, is minimal amongst all half-
exact crossed products that dominate x .

Proof. It is shown in Proposition 2.9 that x¢(, is half-exact, and it dominates
X, by the inequalities in Equation (4).

Let », be any other half exact crossed-product functor that dominates . Let
A be a G-algebra, and let

0 J C—= A 0

be a short exact sequence of G-algebras as in Proposition 2.4. We thus get a
commutative diagram

0

0——JxycG——=Cx, G Ax, G

o

0——=J ¥, cG—=0Cx, G—=Axg,) G—=0
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of short exact sequences. As the rows are exact, the dashed arrow can be filled
in with a (necessarily surjective) #-homomorphism which extends the identity
on C.(G, A), and we are done. O

Remark 2.11. Tt is shown in [5, Theorem A] that a locally compact? group G
is exact if and only if the sequence

0 ——Cy(G) ¥ G ——= Cp(G) x, G —— C(0G) x, G ——=10

is exact, where Cy(G) is the C*-algebra of bounded left uniformly con-
tinuous functions endowed with the left translation G-action, that is, the
continuous part of the translation G-action on Cy(G) = M(Cy(G)), and
C(0G) = Cuw(G)/Co(G) is the quotient G-algebra. A simple chase with the
diagram

0—— Co(G) ><lg(r) G —— Cub(G) Ng(r) G —— C(&G) ><lg(r) G——=0

l l |

00— Co(G) % G —— Co(G) 3, G ——> C(3G) %, G ——0

together with fact that Co(G) x ¢y G = Co(G) %, G shows that G is exact iff
C(0G) xgqy G = C(0G) %, G, that is, the right vertical arrow in the above
diagram is an isomorphism. For a general crossed-product functor x,, one

can follow exactly the same idea and prove part of the analogous result: if
C(0G) %, G = C(0G) xg(,) G, then the sequence

0——=Co(G) ¥, G——=Cwp(G) x, G ——=C(0G) x, G —=0

is exact. It is, however, not clear whether the exactness of a general x,, can be
detected by this sequence alone.

3 THE IDEAL PROPERTY AND EXACTNESS

Throughout this section, G again denotes a locally compact group, and >, a
crossed product functor for G. We will mainly be interested in the case that
My, = Xg(py Or X, = X, and the reader is encouraged to bear those two cases
in mind; nonetheless, working in general is no more difficult, and seemed more
conceptual, so we do this.

Our goal is to prove a necessary and sufficient condition for x, to be exact.
As a consequence we shall see that every half-exact crossed-product functor in
the sense of Definition 2.7 is exact and, in particular, that the functor xg,)
as constructed in the previous section is always exact. It follows from this and

2The reference given assumes that G is second countable for this result; however, Kang
Li has pointed out to us that one can use the structure theory of locally compact groups to
deduce the general case from this.

DOCUMENTA MATHEMATICA 23 (2018) 2043-2077



2056 Buss, ECHTERHOFF, AND WILLETT

Proposition 2.10 that if x, = x,, then xg(,) is the minimal exact crossed-
product functor.

The formulation and proof of our main theorem (see Theorem 3.5 below) is
inspired in part by work of of Matsumura [17], which is in turn inspired by the
equivalence between property C” of Archbold and Batty [1] and exactness of
the minimal tensor product as discussed in [7, Chapter 9].

We need some conventions, which are set up as follows.

DEFINITION 3.1. Let A be a G-algebra with action o : G — Aut(A4). Let
txu: Ax, G — B(H) be a faithful and nondegenerate representation of
A %, G on some Hilbert space H and let A” := ((A)” and (A %, G)"” denote
the double commutants of A and A x, G respectively in B(H). We write
'+ A" — (A %, G)" for the canonical inclusion; note that this is the unique
normal extension of ¢ to A”.

Now let I be a large directed set such that every element a € A” can be
obtained as a limit of a bounded net (a;);e; over the directed set I in the strong*
topology (for example, Kaplansky’s density theorem implies that letting I be a
neighbourhood base of 0 € B(H) for the strong™* topology would work). Then

Al = {(a)ier | (ai)icr is a strong* convergent net} < H A

iel

is a C*-algebra, because multiplication and involution are strong*-continuous
on bounded subsets of B(H). There is moreover a #-homomorphism

p: Al - A" p((a;)) = strong*lima; € A”,

which is surjective by the choice of I. Since (¢, u) is a covariant representation
it follows that for each g € G the automorphism oy of A = ((A) extends to A”
via the automorphism oy := Aduy on A”. Moreover, for each g € G, we get a
s-automorphism o of [T.; A defined componentwise by a((a;)) := (cg(as)),
and the fact that the underlying unitary representation u : G — U(H) is
strong™ continuous implies that aé preserves A’; we use the same notation for

the restricted #-automorphism of A/. We thus get homomorphisms
o G — Aut(A”), o : G — Aut(A"), (6)

neither of which is necessarily continuous for the point-norm topologies on the
right hand side. The map p is equivariant for these (not-necessarily-continuous)
actions by strong* continuity of u again. Finally, we denote by AL and A” the
C*-subalgebras of AT and A” consisting of continuous elements for the actions
in line (6), and note that p restricts to an equivariant map

p: AL A"
of G-algebras.
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LEMMA 3.2. With notation as in Definition 5.1, the map p : AL — A" is
surjective.

Proof. We first claim that if (a;);er is a bounded net which converges to a € A”
in the strong™ topology, then for each compact subset K < H and € > 0 there
exists an ig € I such that

VE € K, Vi = o : [[(a; — a)é], [ (a;i — a)*¢] <e.

Indeed, let € > 0 and let R := sup, |a;|. Then there exist finitely many vectors
€1,...,& € H such that K < |J;_, B5(&) with 6 = ;5. Choose ig € I such
that for all 7 > ig and all 1 <[ < k we have

I(a: = a)éal, (i — )&l < 5.

Then for all £ € K there exists [ € {1,...,k} such that || — ] < ;% and then
for all i = iy we get

[(ai —a)¢]| < ai(€ = &)l + (ai — a)&i ]| + lla(& — )| < e

and similarly [(a; — a)*¢| < e for all i = ig, completing the proof of the claim.
For a € A? and f € C.(G) define

fra= L f(9)a'(a)dg.

As in the proof of Lemma 2.4 it follows from the existence of an approximate
identity for L!(G) in C.(G) that the collection

{fxal|feC(G),aeAl}

is norm-dense in A”. We now show that all such elements f = a lie in the image
of p: AL — A" which will complete the proof.

Fix then f € C.(G) and a € A”. Since the representation v : G — U(H)
is strong™® continuous, it follows that for all £ € H the set K¢ := {u,€ : g €

supp f U (supp f)~'} is compact in H. Hence, given an element (a;)ic;r € A’

with a; strope” a, then for all g € supp(f) we have

[£(9)eg(ai)§ = fg)ag(a)E] = [ f(g)ug(ai — a)uge]|

<|fllo sup  [(a; — a)ugé]
gesupp(f)

and by the claim at the start of the proof, the right hand side converges to zero,
whence the left hand side converges to zero uniformly for g in the support of
f. Thus it follows that for all £ € H we have

(Fra)e= | foayfadeds — | rloajieds = (f «a
G G
and, similarly, (f % a;)*¢ — (f * a)*¢. Hence p((f #a;);) = f *a. Now, as

in the proof of Lemma 2.4 we see that (f = a;); is a G-continuous element of
[1.c; A (and hence of A”), which completes the proof. O
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LEMMA 3.3. With notation as in Definition 5.1, the %-homomorphism
(" op)xu:Cu(G,AL) — (A%, G)
extends to a x-homomorphism
Al %, G — (Ax, Q).
Proof. Tt will suffice to show that if f € C.(G, AL), then
[" 0 po flan,cyr < Iflatx,c-

Write f: G — AL € [],.; A as a net (f;) of functions f; : G — A; note that
the net (f;); is equicontinuous, uniformly bounded, and all the f; have support
in some fixed compact subset of G. Computing, we get

Vopof "= HJ strong®-lim f;(g)u dgH .
| P H(AN#G) . g -t (9)ug B(H)

Write
Jn(g) = strong™-lim f(g), (7)

80 fo : G = A” is a (norm) continuous and compactly supported function. We
first claim that

J strong™®-lim f;(g)ugdg = strong™*- limf fi(g)ugdg.
G v v Ja

Fix € > 0. Using uniform boundedness, uniform compact support, and equicon-
tinuity of the net (f;), there is a finite subset {gi,...,gn} of G and scalars
{t1,...,tn} such that

<€,

HJ-G filg)ugdg = ' tifilgn)ug,

k=1

for all 4, and similarly for the limit function f, € C.(G, A?) as in line (7) above
we have

<e. (8)

N
f Fo(9)ugdg — 3 ti foo (g )tig,
G k=1

Hence, using that strong* limits do not increase norms,

<€,

N

strong®- lim (f filg)ugdg — > tifi (gk)ugk)
e k=1

and so using that strong* limits commute with finite linear combinations

<e

N
strong*-lim L il ugdg — 3 tifoo (g g,
k=1

DOCUMENTA MATHEMATICA 23 (2018) 2043-2077



THE MINIMAL ExacT CROSSED PRODUCT 2059

Combining this with the inequality in line (8), we get that

’J foo(g)ugdg — strong*—limf fi(g)ugdg’ < 2¢;
G ? G

as € was arbitrary, this completes the proof of the claim.
Now, using the claim,

" n = t *—1' J‘ [ d H
Il 0 po flliax,a) Hs rong™-lim Gf(g)ug -

< sup H L fi(g)ugdgH 9)

B(H)’
where the inequality follows again as strong* limits do not increase norms.
On the other hand, the evaluations ev; : AL — A induce norm-decreasing
#-homomorphisms ev; xG : AL X, G— Ax, G forallie I, and therefore

Flarmsc > sup | filan,c = H ( [ ﬁ-(g)ugdg) ] o)

HiEI B(H)

where the equality follows as the representation of A %, G into B(H) is faithful.
The norm on the right in line (9) is the norm of the net (SG fi(9)ugdg), , in

iel

the product [ [,.; B(H), whence combining line (9) with line (10) gives that

leopofliax.ay < H (JG fi(g)ugdg)

as desired. O

<
|y sy < M latme

LEMMA 3.4. Suppose that x, is a half-exact crossed-product functor in the
sense of Definition 2.7. Then with notation as in Definition 3.1, the -
homomorphism

3w Co(GAY) — (Ax, G)'

extends to a x-homomorphism
Al %, G— (Ax,G)".

Proof. Write J for the kernel of the *-homomorphism p : AL — A”. Lemma
3.2 says that p is surjective, so we have a short exact sequence

0 J AL pr 0.
Note that the #-homomorphism A! x, G — (A x,, G)" of Lemma 3.3 contains
C.(G,J) in its kernel, and so in the notation of Definition 2.1 it induces a
x-homomorphism
Alx, G
—<< P - 5 (Ax,G).
J Xl,u,Ai G ( 12 )
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Since x, is half-exact, this translates to a #-homomorphism
(A/J) %, G — (Ax, Q)

and using the canonical isomorphism AZL/J = A” this gives the desired homo-
morphism

Al %, G— (Ax,G)",
so we are done. O

Look now at the special case of Definition 3.1 where ¢ x u: A x,, G — B(H) is
the universal representation of A x, G. Then (A %, G)” is the enveloping von
Neumann algebra of A %, G, which identifies with the double dual (A x,, G)**.
Let o** : A** — (A x, G)** denote the normal extension of the representa-
tion v : A — (A x, G)** < B(H), and abusing notation, use ¢** also for the
restriction of this map to the continuous part A**. Then (¢**,u) is a covari-
ant representation of the C*-dynamical system (A}*, Q) into (A x, G)** and
therefore integrates to a *-homomorphism

K xu s Cu(GAYY) — (A x, G)*F. (11)

Notice that the map o** : A** — (A %, G)** is injective: indeed, if H, is the
universal representation for A, then we have a sequence of canonical maps

LEF

AT = (A%, G)F —— (A%, G — B(HA ® L*(G))

where the last map is the normal extension of the regular representation as-
sociated to the universal representation of A, and whose composition is easily
seen to be injective. A similar reasoning shows that the integrated form (11) is
injective, but we shall not use this fact. Thus (** is a special case of the map
/" from Definition 3.1.

THEOREM 3.5. Let x, be a crossed-product functor for the locally compact
group G. Then the following are equivalent:

1. x, is half-exact;

2. for every G-algebra A and every faithful representation ¢ x p: Ax, G —
B(H), with notation as in Definition 3.1 we have a #-homomorphism

Uxu A x, G- (Ax, G)
3. for every G-algebra A, the map of line (11) extends to a x-homomorphism
R AT %, G — (A Xy, G
4. Xy s ezact.

DOCUMENTA MATHEMATICA 23 (2018) 2043-2077



THE MINIMAL ExacT CROSSED PRODUCT 2061

Proof. The implication (1) = (2) follows from Lemma 3.4, and (3) is a special
case of (2).

Suppose now that (3) holds and let 0 - J — C — A — 0 be any short exact
sequence of G-algebras. We need to show that this sequence descends to a
short exact sequence

0—Jx,G—=Cx,G—=Ax,G——=0.

It is clear that the map C' x, G — A x,, G is surjective. Consider the commu-
tative diagram

0—— Jx,G ——> Cx,G —— Ax,G —0

l | |

0 —— J¥x,G —— C¥x,G —— A¥x,G — 0

J | |

0 —— (5, G)** —— (Cx, G)** —— (A%, G)*™* —— 0

(12)
where the top three vertical arrows are induced by functoriality of x,, and the
bottom three vertical arrows are as in assumption (3); note that the vertical
compositions are just the canonical inclusions of each algebra into its double
dual. Since the inclusion J %, G — (J %, G)** is injective (and similarly for
C and A), it follows that the upper vertical arrows are all injective. Since C**
decomposes as the direct sum of the G-algebras J** and (C/J)** = A** it
follows that the map J** x, G — C¥* %, G is split injective. Hence the upper

left square
Jx, G —— Cx,G

l l

JF* %, G —— CFF %, G

of diagram (12) implies injectivity of J x, G — C %, G.

Suppose now that x € C' x,, G goes to 0 in A x,, G. Then its image in C* %, G
is mapped to 0 € A¥* x, G, and hence must lie in J** %, G by exactness of the
middle horizontal sequence. Therefore, z lies in the intersection (J %, G)** n
C %, G inside (C' %, G)**. By [7, Lemma 9.2.6] this intersection equals J x,, G,
and we are done.

The implication (4) = (1) is trivial. O

Remark 3.6. Property (3) in Theorem 3.5 is a direct analogue of property C’
of Archbold and Batty [7, Definition 2.2]. Hence the equivalence of (3) and (4)
is an analogue for crossed-product functors of the fact that property C’ for a
C*-algebra B is equivalent to exactness of the functor A — A ® B (that is,
the exactness of B); see [7, Proposition 9.2.7] for a proof of this. The proof of
Theorem 3.5 above is (indirectly) inspired by the proof of the cited proposition.
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We were directly inspired by work of Matsumura [17], who proved (4) implies (3)
for the special case when G is discrete and x, is the reduced crossed product.

Remark 3.7. Inspection of the proof of Theorem 3.5 shows that if the map
¥ xu s A¥* 3. G — (A x,. G)** exists, then any short exact sequence of the
form 0 - I - A — B — 0 descends to a short exact sequence

0——=Ix,G——=Ax,G——=Bx,G——0,

or in other words, that A is an exact G-algebra in the sense of [20, Definition
1.2]. In particular, if A = Cyup(G), then using Remark 2.11, existence of the
map t** xu : Cup(G)E* %, G — (Cup(G) %, G)** is equivalent to exactness of
G.

As an immediate corollary of this discussion and Theorem 3.5, we get the
following characterization of exact groups.

COROLLARY 3.8. Let G be a locally compact group. Then the following are
equivalent:

1. for every G-algebra A and every faithful representation t x p: A x,. G —
B(H), with notation as in Definition 3.1 we have a #-homomorphism

U xus A3, G — (A x, Q)

2. for every G-algebra A, the map of line (11) extends to a #-homomorphism
G xus AR . G — (A 3. G)FF

3. for the G-algebra A = Cyu(G), the map of line (11) extends to a *-
homomorphism

3w Op(G)EF %, G — (Cup(G) 3, G)**;

c

4. G 1is exact. O

Finally, we have the following immediate corollary of Theorem 3.5, Proposition
2.9, and Proposition 2.10.

COROLLARY 3.9. For a given crossed product x,, g,y is the minimal evact
crossed-product functor that dominates x,,. In particular, g, is the minimal
exact crossed-product functor among all crossed-product functors for G. O

4 MORITA COMPATIBILITY

Throughout this section, G' denotes a locally compact group, and x, a crossed
product functor. As before, the reader is encouraged to assume that », = X,
which is the most important special case, but the general case causes no extra
difficulties.
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Our goal is to show that Morita compatibility as defined in [2, Definition 3.3]
(see also Definition 4.1 below) passes from x,, to x¢(,), as long as the input x,
has the ideal property. In particular, x¢(,) is Morita compatible. From this,
it follows readily that x¢(,) agrees with the minimal erxact Morita compatible
functor xg of [2, Theorem 3.13] on the category of all G-algebras, and, if G
is second countable, with the minimal exact correspondence functor xg,, .. of
[9, Corollary 8.8] on the category of separable G-algebras ([9, Corollary 8.13]).
To state the definition of Morita compatibility, we need some notation. Let
H be a Hilbert space equipped with a G-action u, and let Adu denote the
induced action by conjugation on the compact operators K = IC(H). Let A be
a G-algebra, and equip A ® K with the tensor product action. Consider the
x-homomorphism defined on the level of pre-completed crossed products and
algebraic tensor products by the formula

Vg 0 Ce(G,A) OK - C(G,ARK), V(a®Fk)(g) :=alg) ® kuj.

Completing to the maximal crossed products and spatial tensor product, we
get a s-homomorphism

Winax : (A Nmax G) QK — (A®IC) Xmax G. (13)

which is well-known to be a =-isomorphism. An explicit inverse to Wi .y is
constructed as follows. Consider the x-homomorphism

T ARQK > M((A Xmax G) ®K); a®k — 1(a) K,

where ¢ : A > M(A Xmax G) denotes the canonical inclusion, and the unitary
representation

V:G = M(AXnax G)®K); g 63 @uy.

Then the pair (7, v) is readily checked to be covariant. The integrated form
gives a *-homomorphism

Prax : (A®IC) Xmax G — (A Nmax G) ®’C7 (14)

which one can check is the inverse to W ..

Now, let x, be an arbitrary crossed-product functor. Then postcomposing
Pax and ¥y, with the canonical quotient maps from maximal to p-crossed
products gives *-homomorphisms

\Pmax,,u : (A N'max G) QK — (A®’C) Xy G (15)
q)max”u : (A®’C) Xmax G — (A i G)@IC

DEFINITION 4.1. Let x, be a crossed-product functor, and let H be a Hilbert
space equipped with a G-action u. The functor x, is u-Morita compatible if
for any G-algebra A the #-homomorphism

\I]max,u : (A N'max G)®IC - (A®’C) m G.
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from line (15) above descends to a #-isomorphism
U,: (A%, G)®K - (A®K) x, G

Following [2, Definition 3.3], %, is Morita compatible if it is u-Morita compati-
ble with u the tensor product of the left regular and trivial representations on

L2(G) ® 2(N).

Note that the maximal and reduced crossed products are u-Morita compatible
for any wu.

Remark 4.2. One can separate checking u-Morita compatibility into two ques-
tions as follows.

(i) Does ¥pax,, descend to a s-homomorphism

U,: (A%, G)®K - (A®K) x,G?

(ii) Does ®max,, descend to a x-homomorphism

D,: (ARQK) %, G— (A%, G)RK?

The crossed product x, is u-Morita compatible if and only if the answer to both
of these questions is ‘yes’, and in that case the descended #-homomorphisms
®,, and ¥, will automatically be mutually inverse (as they are mutually inverse
on dense subalgebras).

One can at least always answer question (i) positively in the presence of the
ideal property: recall this means that x, takes an equivariant inclusion I < A
of an ideal to an injective map I x, G — A x, G.

LEMMA 4.3. Let H be a Hilbert space equipped with a G-action u, let A be a
G-algebra, and let x,, be a crossed product with the ideal property. Then the
x-homomorphism
Unax,p (A Xmax G) @K = (AQK) %, G

of line (15) above descends to a =-homomorphism

U,: (A%, G)®K - (A®K) x,G.
Proof. We have an equivariant *-homomorphism

A-> M(ARK) %, G); a—a®]l
and a unitary representation

G—->M(ARK) %, G); g 0.
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These form a covariant pair for (A, G), which integrates to a *-homomorphism
Ce(G,A) > M((A®K) %, G).

As %, has the ideal property, [9, Lemma 3.3] implies that the integrated form
extends to a s-homomorphism

Up:Ax, G- M(ARK) %, Q).
On the other hand, we have a *-homomorphism
K-> M(AXmax G) ®K); k— 1®E.

Postcomposing this with the map induced on multipliers by Wy,.x gives a #-
homomorphism

K-> M(ARK) Xmax G)

and postcomposing again with the map on multipliers induced by the canonical
quotient map (A @ K) Xmax G = (AQ K) %, G gives a *-homomorphism

U K-> M(A®K) %, G).

The images of ¥, and Wx commute, so they combine to give a -
homomorphism

Vy0Tk: (Ax, G)OK > M(ARK) x, G)

on the algebraic tensor product. Checking on generators, this *-homomorphism
actually takes image in (A ® K) %, G, not just in the multiplier algebra. It
moreover extends to the spatial tensor product by nuclearity of K, giving us

U, :(Ax,G)OK - (A®K) %, G,
and one checks on generators that this is exactly the desired map. O

PROPOSITION 4.4. Fiz a unitary G-representation u, and let %, be a u-Morita
compatible crossed product with the ideal property. Then the crossed product
Mgy is u-Morita compatible. In particular, if x, has the ideal property and
is Morita compatible, then so is X g (-

Proof. Let A be a G-algebra. The crossed product xg(,) is exact by Corollary
3.9, whence in particular has the ideal property. Hence Lemma 4.3 implies that
we have a s-homomorphism

\IIS(M) : (A Ng(u) G) ®’C d (A@’C) Ng(u) G.

To complete the proof, it suffices as in Remark 4.2 to show that the =-
homomorphism @, ¢(,,) descends to a *-homomorphism

(I)g(u) : (A@’C) Ng(u) G — (A Ng(u) G) @IC
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Let

0 I C—=A 0

be an equivariant short exact sequence such that A x; G = A xg(,) G (this
exists by Proposition 2.4). Tensoring the above sequence by the G-algebra K
(equipped as always with the action Adu, with the tensor products given the
tensor product action) and taking crossed products gives a short exact sequence

0——=(I®K) %, G —>(CRK) %, G T 0;

here we have used the ideal property for x, to identify the closure of
C.(G,I ® K) inside (C ®K) %, G with (I ® K) x, G. The definition of
(A®K) xg(,) G implies that the identity map on C.(G, A) extends to a (sur-
jective) #-homomorphism

(C®K)x, G

(AQK) 3y G — IT®K) %, G

(16)

On the other hand, the assumption that x, is u-Morita compatible gives iso-
morphisms

D, (COK)%,G— (Cx,)®K and &, : (IQK)x,G — (Ix,G)®K,

which together with exactness of the functor B — B ® I, the definition of the
m-norm, and the choice of 7 : C' — A, give rise to a map

(COK)x,G (CNHG

(I ®K) ¢ \Tx G)®K:(AX”G)®’C=(Axg(u)G)(@lC. (17)
s B

Composing the maps from lines (16) and (17) thus gives a *-homomorphism
(ARK) xg(y G — (A xg) G)®K;

checking on generators, one sees that this is the desired *-homomorphism ®g (),
so we are done.

The next corollary is immediate from [9, Proposition 8.10].

COROLLARY 4.5. Suppose that x,, is a Morita compatible crossed product func-
tor with the ideal property. Then the restriction of xg(,) to the category of
o-unital G-algebras is strongly Morita compatible in the sense of [9, Definition

4.17. O

The following corollary is immediate from Proposition 4.4 and Corollary 3.9
above.

COROLLARY 4.6. The crossed product xg () is the same as the minimal exact
Morita compatible functor xg of [2, Theorem 3.13]. O
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The following corollary is immediate from Corollary 4.6 and [9, Corollary 8.14].

COROLLARY 4.7. Let G be second countable. Then, on the category of separable
G-algebras, the crossed-product functor xg(,y agrees with the minimal exact
correspondence functor xg,. . of [9, Corollary 8.8]. O

Note that this answers [2, Questions 8.5, (iv) and (v)]. Indeed, question (iv)
asks whether Cx¢G equals C*(G), and Proposition 2.6 and Corollary 4.6 imply
that this is always true. On the other hand, question (v) asks whether x¢ can
be a KLQ functor for non-exact G; as a KLQ functor is uniquely determined
by what it does on C and as %, # Xg(,) for a non-exact group G, the answer
‘always’ to question (iv) shows that the answer to question (v) is ‘never’.

To finish this section, we discuss which group algebras (i.e., C*-algebra comple-
tions of C,(G)) can appear as C x, G for certain types of crossed product func-
tors x,. Asdiscussed in [8, Section 2], every group algebra can be viewed as the
group C*-algebra C}(G) associated to a G-invariant weak*-closed G-invariant
subspace E of the Fourier-Stietjes algebra B(G) containing the Fourier algebra
A(G).

The Brown-Guentner construction [6] (see also the discussion in [8, Section 3])
shows that any such C%(G) arises as the group algebra associated to an exact
crossed product xg,.. On the other hand, the Kaliszewiski-Landstad-Quigg
construction [16] (see also the discussion in [8, Section 3] again) shows that if
E is an ideal in B(G), then C%(G) arises as the group C*-algebra of a functor
X B o that is u-Morita compatible for any u, and that has the ideal property;
conversely [9, Corollary 5.7]% shows that if C%(G) arises as the group algebra
of any functor with these properties, then E must be an ideal.

However, Brown-Guentner crossed products are generally not Morita compati-
ble, and Kaliszewiski-Landstad-Quigg crossed products are generally not exact
(see the discussion in [8, Section 4]). Thus it was not previously clear which
group algebras can arise as C x, G for a functor that is both exact and Morita
compatible; this is a natural question, as such functors seem to behave best
with respect to the Baum-Connes assembly map.

COROLLARY 4.8. Let G be a locally compact group. Then a group algebra
C%(G) is of the form C %, G for a functor x, that is exact and u-Morita
compatible for any u if and only if E is an ideal in B(Q).

Proof. Take the Kaliszewiski-Landstad-Quigg functor x, associated to £ and
consider xg(,). This is an exact Morita compatible crossed-product functor by
Theorems 3.5 and Proposition 4.4; and it has the same group algebra C%(G)
as the original functor x, by Proposition 2.6. The converse follows from [9,
Corollary 5.7] again, noting that the conditions in the statement give what is
needed for the proof of that corollary to work. O

319, Corollary 5.7] is written for correspondence functors, but inspection of the proof shows
that it holds in this slightly more general setting.
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5 LIFTING PROPERTIES AND ATTAINING NORMS

Throughout this section, G is a locally compact group (although we will need
to assume that G is discrete for some results), and x, an associated crossed
product.

Recall from Lemma 2.4 that the £(u)-norm is always attained via a fixed G-
equivariant surjection m : C — A. Our goal in this section is to get further
information about possible choices for such surjections, at least in the case
when G is discrete. The following definition, due to Phillips, Sgrensen, and
Thiel [19], will be very useful here.

DEFINITION 5.1. A G-algebra C' is equivariantly projective if whenever B is a
G-algebra, J € B is a G-invariant ideal, and ¢ : C' — B/.J is an equivariant
s-homomorphism, there is an equivariant *-homomorphism Zs : C' — B that
lifts ¢ (in other words, if 7 : B — B/J is the quotient map, then the diagram

B

y l
s
@

C——B/J
commutes).
We say that C' is equivariantly projective in the unital category if it has the
above property, but with all C*-algebras and maps appearing above assumed

unital.

PROPOSITION 5.2. Let x,, be a crossed product. Let A be a G-algebra, and let C
be an equivariantly projective G-algebra equipped with an equivariant quotient
map 7 : C — A. Then for any a € C.(G, A), |a]|x = |a]e(-

Moreover, if A is unital, the same conclusion follows if we assume that C
is equivariantly projective in the unital category and equipped with a unital
quotient map 7 : C — A.

Proof. We need to show that if 0 : B — A is any other equivariant quotient
map, then for any a € C.(G, A), |a|» < ||a|~. Consider the diagram

B

7
7 g
v

—_—

BT
a N\

Equivariant projectivity for C' implies that the dashed arrow can be filled in by
an equivariant =-homomorphism 7 : C' — B. Letting I and J be the kernels of
m and o respectively, we get a commutative diagram

0 I C—"+=A 0 (18)
0 J B—2-A 0.
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Commutativity of this diagram gives that 7 restricts to a map from I to J.
Hence we get a commutative diagram

Cx,G
0——=TIx,cG—=Cx, G s 0
[{%]NTG [%NTG
Bx,G
0——=Jx,5G—=DBx,G SE e 0.

Commutativity implies that 7 x,. G induces a *-homomorphism on quotients

Cx,G Bx, G
Ix,cG Jx,pG’

which by commutativity of the diagram in line (18) restricts to the identity on
the #-subalgebra C.(G, A) of both sides. This implies that

lalls < falx

for any a € C.(G, A) and we are done in the general case.
The statement in the unital case follows from essentially the same argument as
by Lemma 2.4 we may assume B to be unital as well. |

As it gives some interesting examples, we will also explore a weakening of
equivariant projectivity. To explain the terminology, recall (see, e.g. [7, Defi-
nition 13.1.1]) that a C*-algebra C has the lifting property (LP) if whenever
¢ : C — B/J is a contractive completely positive (ccp) map into a quotient
C*-algebra, there exists a ccp lift ¢ : C' — B.

DEFINITION 5.3. A G-algebra C has the weak equivariant lifting property
(WELP) if whenever B is a G-algebra, J < B is a G-invariant ideal, and
¢ : C — B/J is an equivariant *-homomorphism, then there is an equivariant
ccp map (5 : C'— B that lifts ¢ (in other words, if 7 : B — B/J is the quotient
map, then the diagram

B

¢ T
S,

commutes).
We say that C has the unital weak equivariant lifting property (UWELP) if it
has the above property, but with all maps and C*-algebras assumed unital.

Remark 5.4. Tt would be natural to define a stronger equivariant lifting property
(ELP): by analogy with the LP, one would here ask for equivariant ccp lifts
of equivariant ccp maps ¢ as in the above, rather than just for equivariant =-
homomorphic ¢. We do not know if any non-trivial examples of ELP G-algebras
exist for non-compact GG, however. This seems an interesting question.
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Even for the trivial group the WELP is, a priori, weaker than the ordinary LP,
although both are equivalent for separable C*-algebras by an application of
Stinespring’s dilation theorem as in the proof of [7, Theorem 13.1.3].

The proof of the following result is the same as that of Proposition 5.2 — with
equivariant ccp maps replacing equivariant s-homomorphisms at appropriate
points — and thus omitted.

PROPOSITION 5.5. Let x, be a crossed product which is functorial for com-
pletely positive maps*. Let A be a G-algebra, and let C be a G-algebra with the
WELP, and equipped with an equivariant quotient map © : C — A. Then for
any a € Cel(G, A), [l = laleq-

Moreover, if A is unital, the same conclusion follows if we assume that C' has
the UWELP and is equipped with a unital quotient map w: C — A. O

The following corollary gives a way to compute xg(,) in some special cases.
Note that C is clearly equivariantly projective in the unital category, so this
gives a slightly different approach to proving Proposition 2.6.

COROLLARY 5.6. If %, is a crossed-product functor, and if A is equivariantly
projective, or equivariantly projective in the unital category, then A x, G =
A Xg(#) G.

If %, is a crossed-product functor which is functorial for completely positive

maps, and if A has either the WELP or the UWELP, then Ax, G = Axg,)G.

Proof. In either case, Proposition 5.2 or Proposition 5.5 implies that the &(u)-
norm on C.(G, A) equals the m-norm where m : A — A is the identity map;
clearly this is just the x,-norm, however. |

Having got through the above, it is maybe not clear that interesting equiv-
ariantly projective, or even WELP, G-algebras exist. Moreover, to get much
use out of the above results, we would need to show that for any G-algebra
A there exists an equivariant surjection 7 : C — A, where C' has the WELP.
Unfortunately, we can only prove this in the discrete case, and must leave the
general locally compact case as a question for now.

The following result is essentially a special case of [19, Proposition 2.4]; we
nonetheless give a direct proof for the reader’s convenience.

PRrROPOSITION 5.7. Let G be a discrete group, let X be a set, and let C' be
the universal C*-algebra generated by a set {cy 4 | (x,9) € X x G} of positive
contractions indexed by the set X x G. Equip C' with the G-action induced by
the set action
g: (x,h)— (z,gh)

and universality. Then C is equivariantly projective, and admits a surjective
equivariant *-homomorphism onto any G-algebra generated by a set of positive
contractions of cardinality at most that of X .

4For example, the reduced crossed product. See [9, Theorem 4.9] for some equivalent
conditions.
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Proof. We first show that C is equivariantly projective. Let then ¢ : C' —
B/J be an equivariant #-homomorphism. For each x € X, choose a positive
contraction b, € B that lifts ¢(c, ). Write § for the action of G on B, and let

q~$ : C' —> B be the *-homomorphism uniquely defined by the map

Cz,g > Bg(bz)

on generators. Clearly this is equivariant and lifts ¢ on the generators; as it is
a #-homomorphism it is thus equivariant and lifts ¢ on all of C.
Now, let A have a generating set S of positive contractions of cardinality at
most that of X. Write « for the action of G on A. Choose a surjective map
f:X — S. Let now 7 : C — A be the #-homomorphism uniquely determined
by the map

Corg > g (F(2)).

This is equivariant on generators, so everywhere, and is surjective as .S generates

A. O

Another interesting example (and the one that originally inspired this work) is
as follows.

PROPOSITION 5.8. Let G be a discrete group, let X be a set, let Fx g be the free
group on X x G, and let C := C¥ . (Fxx¢) be the maximal group C*-algebra
of Fx«xq. Equip C with the G-action induced by the set action

g: (z,h) — (z,9h)

and universality. Then C has the UWELP, and admits a surjective unital
equivariant =-homomorphism onto any unital G-algebra generated by a set of
unitaries of cardinality at most that of X.

Proof. The statement about the existence of a quotient map C' — A follows
from essentially the same construction as in the proof of Proposition 5.7: we
leave the details to the reader. It remains to show that C has the UWELP, so let
¢ : C — B/J be a unital equivariant #-homomorphism. For each (z,¢g) € X x G,
let u, 4 be the corresponding generating unitary for C', and choose a contractive
lift b, € B of ¢(uy,e) € B/J. Now define

by 1 — byb¥)?
o= (e IR o

which is unitary. Let § denote the action on B. Universality implies that the
map defined on generators by

Ug,g = Bg(vz)

extends to an equivariant #*-homomorphism C' — Ms(B). The top left corner
of this x-homomorphism is the desired ucp equivariant lift of ¢. O
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Remark 5.9. Tt is proved in [19, Proposition 2.4] that the Bernoulli shift G-
actions on free products of the form A = * B are always G-equivariantly
projective if the base C*-algebra B is (non-equivariantly) projective. This
result contains Proposition 5.7 as a special case by taking B =~ Cy(0,1], the
universal C*-algebra generated by a positive contraction, which is a projective
C*-algebra. Similarly, one can show that A = *,gB has the WELP for the
Bernoulli shift G-action provided that B has the WELP for the trivial group
action. An analogous version of the UWELP holds for unital free products (i.e.,
amalgamated over C), generalising Proposition 5.8. To prove these assertions
one can use Boca’s result from [3, Theorem 3.1] on free products of ccp (or ucp)
maps. Indeed, in the non-equivariant situation, this idea has already been used
by Boca to prove that certain lifting properties are preserved by free products
in [4].

6 RESTRICTION

Suppose that H is a closed subgroup of a locally compact group G and that
x,, is a crossed-product functor for G. Our goal in this section is to study the
relationship between the minimal exact crossed products for H and G, with a
view to applications to the (reformulated) Baum-Connes conjecture.

For an  H-algebra  (A,a) consider the induced  G-algebra
(Ind% (A, o), Ind @) in which

_ _ap(F(gh)) = F(g) Vg€ G,he H,
Indiz (4, 0) = {F € oG A hd (gH v | Flg)]) € ColG/H) } '

The G-action on Ind$(A,a) is given by (Inday(F))(k) = F(g7'k).
Green’s imprimitivity theorem (see [13, Theorem 17] or [l12, Sec-
tion 2.6]) provides a mnatural equivalence bimodule X(A,a) between
Indg(A, @) NInda,max G and A Xg max H. Let

I, = ker (Indfl(A,a) X max G — Id$ (A, a) x, G).

By the Rieffel correspondence between ideals in Ind$ (A4, &) ¥ max G and ideals
in A X max H there is a unique ideal I,,,, © A X max H such that X (4, «) factors

through an equivalence bimodule X, (A4, a) between Ind% (A, o) x, G and the
quotient

AXIM‘HH:Z (A X]maxH)/ImH' (19)
The following definition is taken from [3]:

DEFINITION 6.1. Let x, be a crossed-product functor for G. Then the assign-
ment (A4, ) — A x,, H with A x,, H constructed as above is called the
restriction of %, to H.
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In [8, Proposition 6.6] we also observed that for a second countable locally
compact group G, the Baum-Connes assembly map

as{p KPP (H, A) = Ku(A x,), H)

is an isomorphism if and only if the assembly map

38100 4,0 K (G,Indf; A) — Ky(Indf; A xinda,u G)

is an isomorphism. In particular, if G satisfies the analogue of the Baum-Connes
conjecture for the x,-crossed product, then H satisfies the conjecture for the
X | -crossed product. Thus, it is interesting to study the question whether the
restriction x ¢, of the minimal exact crossed-product functor xg, for G to a
closed subgroup H will always be the minimal exact functor x¢g,, for H, since
this would imply that the new conjecture of Baum, Guentner, and Willett (as
explained in the introduction) passes to closed subgroups. In [8, Theorem 7.13]
we showed this for the case where H is normal or cocompact in G.° Below we
shall give a proof of this fact if H is open in G. We need the following result,
which follows by the same arguments as used in the proof of [8, Lemma 7.6]. In
what follows, we denote by ip : B - M(Bx,G) and i¢ : G — M(B %, G) the
canonical embeddings into the multiplier algebra of a crossed product B %, G.

LEMMA 6.2. Let H be a closed subgroup of G, and let B be a G-algebra. Then
the canonical mapping ip % ig|m: B Xmax H — M(B Xmax G) factors to a
well-defined *-homomorphism

i % iE¢ g B xg, H— M(B xg, G). O

Note that if H is open in G, the above homomorphism extends the canonical
inclusion of C.(H, B) into C.(G, B), and hence it takes its image in B xg, G.
We are now ready for

THEOREM 6.3. Suppose that H is an open subgroup of the locally compact group
G. Then Xgg|, = Xgy-

Proof. For the proof we shall use a special form of Green’s imprimitivity theo-
rem in case where H is open in G. For this let .y denote the characteristic
function of the coset {eH} < G/H, viewed as a projection in the multiplier al-
gebra M(Ind% A) in the canonical way, and let p € M(Ind$ A 3 yax G) denote
its image in the crossed product. Then it is shown in [12, Proposition 2.6.8]
that p is a full projection such that p(Indg A Xax G)p = A Xax H and the
resulting Indg A Xpax G-A Xmax H equivalence bimodule (Indg A Xmax G)p
is isomorphic to Green’s equivalence bimodule X (A, ). This implies that the

5In fact, we showed this for the smallest exact correspondence functor XEgore Which
coincides with x¢ on the category of separable G-algebras if G is second countable. But the
same arguments as used in the proof of [8, Theorem 7.13] apply directly to the smallest exact
functors considered here.
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image of p in M(Ind A x ¢, G) (which we also denote by p) is a full projection
such that A xg|, G = p(Ind§j A xg, G)p. It follows from [3, Theorem 6.3]
that g, is an exact functor for H. Thus, by minimality of £, the identity
on C.(G, A) induces a quotient map g : A xg,|, H — A xg, H.

We now construct an inverse for g. Indeed, by Lemma 6.2 we have a canonical
+-homomorphism ¢ : Ind§ Ax¢,, H — Ind$ A x¢., G which extends the canon-
ical inclusion of C.(H,Ind$ A) into C.(G,Ind% A). As an H-algebra, Ind$ A
decomposes as a direct sum A @ I, where we identify A with the functions in
Ind$ A which live on the coset eH and I with the functions which vanish on
eH. This implies a decomposition Ind% Axg, H =~ (Axg, H)®(I x¢, H) and
it is easily verified on functions in C.(H, A) that the homomorphism ¢ maps
the summand A x¢,, H into the corner p(Ind% A xg. G)p =~ A Mgy H, thus
providing an inverse for q. O

Remark 6.4. Using [8, Lemma 7.6] instead of Lemma 6.2 in the above proof,
the same arguments as used above also show that the restriction of the minimal
exact correspondence functor x £ of G to an open subgroup H of G coincides
with the minimal exact correspondence functor x en of H.

7 SOME QUESTIONS

There are still many important open questions about the smallest exact crossed-
product functor x¢. Here are some of them:

QUESTION 7.1. Is it true that the smallest exact crossed-product functor for
G is automatically a correspondence functor?

Since exact functors automatically satisfy the ideal property, it follows from
[9, Theorem 4.9] that being a correspondence functor is equivalent to any of
the following assertions:

1. For each G-algebra A and G-equivariant projection p € M(A), the canon-
ical map pAp xg G — A x¢ G is injective.

2. For each G-algebra A and G-equivariant full projection p € M(A), the
canonical map pAp xg G — A x¢ G is injective.

3. For each (full) G-invariant hereditary subalgebra B of a G-algebra A, the
canonical map B xg G — A xg G is injective.

4. xg is strongly Morita compatible in the sense that for any G-equivariant
Morita equivalence bimodule (X,~) between two G-algebras A and B,
the canonical C.(G, A)-C.(G, B) bimodule C.(G, X) completes to give
an A x¢ G-B x¢ G equivalence bimodule.

5. The functor x¢ is functorial for G-equivariant ccp maps.

Note that it is shown in Corollary 4.5 above that all this holds on the category
of o-unital G-algebras.

DOCUMENTA MATHEMATICA 23 (2018) 2043-2077



THE MINIMAL ExacT CROSSED PRODUCT 2075

QUESTION 7.2. Is the smallest exact crossed-product functor x¢ injective?

We say that a crossed-product functor x, is injective, if for every injective G-
equivariant *-homomorphism ¢ : A — B the descent px,G : Bx, G — Ax,G
is injective as well. The reduced crossed-product functor %, is well known to
be injective but lacks exactness in general. At some early point of the project
we thought we could show that injectivity holds for x¢, but our argument had
a serious gap. We then thought we had an argument proving that xg is not
injective in general, but again found a gap in the proof. So right now, we have
no clue about the correct answer to this question. Indeed, in the moment we
do not know of any example of an exact and injective crossed-product functor
for a non-exact group.

Note that injectivity of xg, if true, would imply some nice properties of this
functor: It would be continuous for general inductive limits of G-algebras, i.e.,
we would get (lim; A;) xg G = lim;(A; xg G) for every directed system of
G-algebras (A;, vi)ier. It would also imply that the functor xg preserves con-
tinuous fields of C*-algebras in the sense that if G acts fibrewise on the section
algebra A of a continuous field of C*-algebras over a base space X with fibres
A, x € X, then A xg G would be the section algebra of a continuous field of
C*-algebras with fibres A, x¢ G.

QUESTION 7.3. Suppose that G = N x H is the product of two groups. Can
we decompose the crossed product A xg, G = A xg, (N x H) as an iterated
crossed product (A xgy N) xg,, H? Does it hold for discrete groups N and H?

A positive answer would give the first step for proving that for general closed
normal subgroups N € G we could write Ax ¢, G as an iterated crossed product
(A xg N) xg,,, G/N, where in general the outer crossed product has to be
viewed as a twisted crossed product compatible with the functor xg , for
the quotient group G/N. Such a decomposition would give a major step for
a proof that the new formulation of the Baum-Connes conjecture enjoys the
same permanence properties as were shown for the classical conjecture in [10]
and [11]. We refer to [8, Section 8] for a discussion of this problem.

QUESTION 7.4. Let H be a closed subgroup for G. Can we always show that
the smallest exact crossed-product functor xg, restricts to the minimal exact
crossed-product functor xg,, for H?

So far, we only know this if H is open in G (by Section 6) above, and for normal
and cocompact subgroups H of G (by [8, Theorem 7.13]). A positive answer
would imply that the validity of the new formulation of the Baum-Connes
conjecture for a group G would pass to all closed subgroups of G.
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