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Abstract. Under the assumption that a de�ning graph of a Coxeter

group admits only twists in Z2 and is of type FC, we prove Mühlherr's

Twist Conje
ture.
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1 Introduction

A Coxeter generating set S of a group W is a set su
h that (W,S) is a Coxeter
system. This means that S generates W subje
t only to relations of the form

s2 = 1 for s ∈ S and (st)mst = 1, where mst = mts ≥ 2 for s 6= t ∈ S (possibly

there is no relation between s and t, and then we put by 
onvention mst = ∞).

An S-re�e
tion (or a re�e
tion, if the dependen
e on S does not need to be

emphasised) is an element of W 
onjugate to some element of S. We say that

S is re�e
tion-
ompatible with another Coxeter generating set S′
if every S-

re�e
tion is an S′
-re�e
tion. Furthermore, S is angle-
ompatible with S′

if for

every s, t ∈ S with 〈s, t〉 �nite, the set {s, t} is 
onjugate to some {s′, t′} ⊂ S′
.

(Setting s = t shows that angle-
ompatible implies re�e
tion-
ompatible.)

Mühlherr's Twist Conje
ture predi
ts that angle-
ompatible Coxeter generating

sets of a Coxeter group di�er by a sequen
e of elementary twists. We postpone

the de�nition of an elementary twist to give a brief histori
al ba
kground. For

an exhaustive 2006 state of a�airs, see [11℄.

The Isomorphism Problem for Coxeter groups asks for an algorithm to de-

termine if Coxeter systems (W,S), (W ′, S′) de�ned by mst,m
′
st give rise to

isomorphi
 groups W and W ′
. Hen
e listing all Coxeter generating sets S of

W ′
solves the Isomorphism Problem. The arti
les of Howlett and Mühlherr

[7℄, and Marquis and Mühlherr [9℄ redu
e the question of listing all su
h sets

S to the problem of listing all S angle-
ompatible with S′
. In this way the
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Twist Conje
ture des
ribes a possible solution to the Isomorphism Problem for

Coxeter groups.

The �rst substantial work on the Twist Conje
ture is the one by Charney

and Davis [4℄, where they prove that if a group a
ts e�e
tively, properly, and


o
ompa
tly on a 
ontra
tible manifold, then all its Coxeter generating sets are


onjugate. Capra
e and Mühlherr [2℄ proved that for all mst < ∞, a Coxeter

generating set S angle-
ompatible with S′
is 
onjugate to S′

. This is what was

predi
ted by the Twist Conje
ture, sin
e S with all mst < ∞ does not admit

any elementary twist. Building on that, Capra
e and Przyty
ki [3℄ proved that

an arbitrary S not admitting any elementary twist, and angle-
ompatible with

S′
, is in fa
t 
onjugate to S′

. This should be 
onsidered as the �base 
ase� of

the Twist Conje
ture.

In a foundational arti
le [12℄ Mühlherr and Weidmann veri�ed the Twist Con-

je
ture in the 
ase where all mst ≥ 3. In that 
ase there o

ur twists in Z2 as

well as in dihedral groups. There is a more re
ent 
ontribution of Weigel [15℄

whi
h improves the result of [12℄. Rat
li�e and Ts
hantz proved the Twist Con-

je
ture for 
hordal Coxeter groups [13℄. The Twist Conje
ture is also known

for the right-angled Coxeter groups (before the 
onje
ture was stated), where

the proof is impli
it in the work of Lauren
e [8℄ and is expli
it in [10℄. In these

papers the assumptions on mst seem an artefa
t of the proposed proof. In our

paper, we propose the following �step one� of a systemati
 approa
h towards

Twist Conje
ture. Our �rst assumption below is natural from the point of view

of the statement of the 
onje
ture, sin
e it says that the o

urring elementary

twists are as simple as possible. Our se
ond assumption is that S is of type

FC meaning that for any T ⊆ S with mtr �nite for all t, r ∈ T , we have that
〈T 〉 is �nite. This assumption seems less natural from the point of view of

the 
onje
ture statement, but plays a role already in our proof of the �base


ase�. More pre
isely, [3, �3�7℄ resolve (impli
itly) the �base 
ase� under FC

assumption, and [3, �8℄ is devoted to removing FC assumption.

Main Theorem. Let S be a Coxeter generating set angle-
ompatible with S′
.

Suppose that S admits only twists in Z2, and is of type FC. Then S′
is obtained

from S by a sequen
e of elementary twists and a 
onjugation.

We �nally de�ne an elementary twist. Let (W,S) be a Coxeter system. Given

a subset J ⊆ S, we denote by WJ the subgroup of W generated by J . We 
all

J spheri
al if WJ is �nite. If J is spheri
al, let wJ denote the longest element

of WJ . We say that two elements s 6= t ∈ S are adja
ent if {s, t} is spheri
al.

This gives rise to a graph whose verti
es are S and whose edges (labelled bymst)


orrespond to adja
ent pairs of S. This graph is 
alled the de�ning graph of S.
O

asionally, when all mst are �nite, we will use another graph, whose verti
es

are still S, but (labelled) edges 
orrespond to pairs of non-
ommuting elements

of S. This graph is 
alled the Coxeter�Dynkin diagram of S. Whenever we talk

about adja
en
y of elements of S, we always mean adja
en
y in the de�ning

graph unless otherwise spe
i�ed.

Given a subset J ⊆ S, we denote by J⊥
the set of those elements of S \ J that

Documenta Mathematica 23 (2018) 2081–2100



A Step Towards Twist Conjecture 2083


ommute with J . A subset J ⊆ S is irredu
ible if it is not 
ontained in K∪K⊥

for some non-empty proper subset K ⊂ J .
Let J ⊆ S be an irredu
ible spheri
al subset. We say that C ⊆ S \ (J ∪ J⊥)
is a 
omponent, if the subgraph indu
ed on C in the de�ning graph of S is a


onne
ted 
omponent of the subgraph indu
ed on S \ (J ∪ J⊥). Assume that

we have a nontrivial partition S \ (J ∪ J⊥) = A⊔B, where ea
h 
omponent C
is 
ontained entirely in A or in B. In other words, for all a ∈ A and b ∈ B, we

have that a and b are non-adja
ent. We then say that J weakly separates S. In
the language of groups, this means that W splits as an amalgamated produ
t

over WJ∪J⊥ . Note that A and B are in general not uniquely determined by J .
We then 
onsider the map τ : S → W de�ned by

τ(s) =

{

s for s ∈ A ∪ J ∪ J⊥,
wJsw

−1
J for s ∈ B,

whi
h is 
alled an elementary twist in 〈J〉 (see [1, Def 4.4℄).
Coxeter generating sets S and S′

ofW are twist equivalent if S′

an be obtained

from S by a �nite sequen
e of elementary twists and a 
onjugation. We say

that S is k-rigid if for ea
h weakly separating J ⊂ S we have |J | < k. Thus

1-rigid means that there are no elementary twists (this was 
alled twist-rigid

in [3℄). Our Main Theorem states that if a Coxeter generating set S is 2-rigid,
of type FC, and angle-
ompatible to S′

, then it is twist equivalent to S′
. Sin
e

twists in Z2 do not 
hange the de�ning graph, it follows that S and S′
have

the same de�ning graphs. Note that right-angled Coxeter groups are 2-rigid.

Organisation. In Se
tion 2 we re
all some basi
 properties of the Davis


omplex and geometri
 sets of re�e
tions. In Se
tion 3 we re
all the notions

of bases and markings from [3℄. In Se
tion 4 we extend in two di�erent ways

a marking 
ompatibility result from [3℄. Se
tion 5 
ontains a te
hni
al result

required for the de�nition of 
omplexity in Se
tion 6. We prove the Main

Theorem in Se
tion 7.

Acknowledgements. We thank Pierre-Emmanuel Capra
e, with whom we

designed the strategy 
arried out in the paper. We also thank the referee

for many helpful suggestions. The se
ond author was partially supported by

NSERC, FRQNT, and UMO-2015/18/M/ST1/00050.

2 Preliminaries

2.1 Davis complex

Let A be the Davis 
omplex of a Coxeter system (W,S). The 1-skeleton of A
is the Cayley graph of (W,S) with vertex set W and a single edge spanned on

{w,ws} for ea
h w ∈ W, s ∈ S. Higher dimensional 
ells of A are spanned on

left 
osets in W of remaining �nite WJ . The left a
tion of W on itself extends

to the a
tion on A. Note that A 
arries a natural CAT(0) metri
; however this

metri
 will not play a role in the arti
le.
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A 
hamber is a vertex of A. Colle
tions of 
hambers 
orresponding to 
osets

wWJ are 
alled J-residues of A. A gallery is an edge-path in A. For two


hambers c1, c2 ∈ A, we de�ne their gallery distan
e, denoted by d(c1, c2),
to be the length of a shortest gallery from c1 to c2 (this 
oin
ides with the

word-metri
 w.r.t. S).
Let r ∈ W be an S-re�e
tion. The �xed point set of the a
tion of r on A
is 
alled its wall Wr. The wall Wr determines r uniquely. Moreover, Wr

separates A into two 
onne
ted 
omponents, whi
h are 
alled half-spa
es (for

r). If a non-empty K ⊂ A is 
ontained in a single half-spa
e (this happens

for example if K is 
onne
ted and disjoint from Wr), then Φ(Wr ,K) denotes
this half-spa
e. An edge of A 
rossed by Wr is dual to Wr. A 
hamber is

in
ident to Wr if it is an endpoint of an edge dual to Wr. The distan
e of a


hamber c to Wr, denoted by d(c,Wr), is the minimal gallery distan
e from c
to a 
hamber in
ident to Wr.

The following fa
t is standard, see eg. [14, Thm 2.9℄.

Theorem 2.1. Let R be a residue and let x ∈ R and y ∈ W be 
hambers.

Then there is a 
hamber x′ ∈ R on a minimal length gallery from y to x su
h

that Φ(Wr, y) = Φ(Wr, x
′) for any re�e
tion r �xing R.

2.2 Geometric set of reflections

Let (W,S) be a Coxeter system. Let Aref be the Davis 
omplex for (W,S)
(�ref� stands for �referen
e 
omplex�). For ea
h re�e
tion r, let Yr be its wall

in Aref . Note that this notation di�ers from the one in Subse
tion 2.1.

Suppose that S is angle-compatible with another Coxeter generating set

S′
. Let Aamb be the Davis 
omplex for (W,S′) (�amb� stands for �ambient


omplex�). For ea
h re�e
tion r, let Wr be its wall in Aamb. Let P ⊆ S.

Definition 2.2. Let {Φp}p∈P be a 
olle
tion of half-spa
es of Aamb for p ∈
P . The 
olle
tion {Φp}p∈P is 2-geometri
 if for any pair p, r ∈ P , the set

Φp ∩ Φr ∩ A(0)
amb is a fundamental domain for the a
tion of 〈p, r〉 on A(0)

amb.

The 
olle
tion {Φp}p∈P is geometri
 if additionally F =
⋂

p∈P Φp ∩ A(0)
amb is

non-empty.

The set P is 2-geometri
 if there exists a 2-geometri
 
olle
tion of half-spa
es

{Φp}p∈P .

Theorem 2.3 ([2, Thm 4.2℄). If {Φp}p∈P is 2-geometri
, then after possibly

repla
ing ea
h Φp by opposite half-spa
e, the 
olle
tion {Φp}p∈P is geometri
.

Theorem 2.3 justi�es 
alling 2-geometri
 P geometri
 for simpli
ity. In fa
t,

by [5℄ (see also [6, Thm 1.2℄ and [2, Fa
t 1.6℄), we have:

Proposition 2.4. If P is geometri
, then F is a fundamental domain for the

a
tion of 〈P 〉 on A(0)
amb, and for ea
h p ∈ P there is a 
hamber in F in
ident to

Wp. In parti
ular, if P = S, then S is 
onjugate to S′
.
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Note that sin
e S is angle-
ompatible with S′
, every 2-element subset of S is

geometri
. However, this does not mean that S is 2-geometri
. Nevertheless, for

S spheri
al, it is easy to indu
tively 
hoose 2-geometri
 Φs, and by Theorem 2.3

and Proposition 2.4 we obtain the following.

Lemma 2.5. If S is spheri
al, then it is 
onjugate to S′
.

Corollary 2.6. Let J ⊂ S be spheri
al. Then J is 
onjugate to a spheri
al

J ′ ⊂ S′
. In parti
ular, J is geometri
, and if it is irredu
ible, there exist exa
tly

2 fundamental domains F for the a
tion of 〈J〉 on A(0)
amb as in Proposition 2.4.

Proof. Let P ⊂ S be maximal spheri
al 
ontaining J . Then 〈P 〉 is a maximal

�nite subgroup of W . By [1, Thm 1.9℄, we have that 〈P 〉 is 
onjugate to 〈P ′〉
for a maximal spheri
al P ′ ⊂ S′

. Thus we 
an assume without loss of generality

that P = S and P ′ = S′
. It now su�
es to apply Lemma 2.5.

2.3 Decomposition lemma

For J ⊆ S let J∞
be the set of those elements of S \ J that are not adja
ent

to any element of J .

Lemma 2.7. Let S be 2-rigid. Let s, t ∈ S be adja
ent and non-
ommuting,

and let r ∈ S be neither adja
ent to s nor to t. Suppose that t and r are in

distin
t 
omponents of S \ (s∪s⊥), and that s and r are in distin
t 
omponents

of S \ (t ∪ t⊥). Let J = {s, t}. Then S = J ∪ J⊥ ∪ J∞
.

Proof. Suppose by 
ontradi
tion that the 
olle
tion of verti
es of S \ (J ∪ J⊥)
that are adja
ent to s or to t is non-empty. Sin
e S is 2-rigid, there is a shortest

edge-path γ in the subgraph indu
ed on S \(J∪J⊥) that 
onne
ts r to a vertex
p ∈ S \ (J ∪J⊥) adja
ent to s or t. We assume without loss of generality that p
is adja
ent to t. Sin
e r and t are in distin
t 
omponents of S \ (s∪ s⊥), there
is a vertex p′ of γ in s⊥. If p 6= p′, then the subpath γ′ ⊆ γ from r to p′ is
a shorter path from r to a vertex adja
ent to s or t, whi
h is a 
ontradi
tion.

If p = p′, then sin
e r and s are in distin
t 
omponents of S \ (t ∪ t⊥), there
exists a vertex p′′ of γ′ = γ in t⊥. If p′′ 6= p, then we 
an rea
h a 
ontradi
tion

as before. If p′′ = p, then p ∈ J⊥
, whi
h is impossible by our 
hoi
e of γ.

3 Bases and markings

Hen
eforth, in the entire arti
le we assume that S is irreducible, non-

spherical, and of type FC. (The redu
ible 
ase easily follows from the

irredu
ible.)

In this se
tion we re
all, in simpli�ed form, several 
entral notions from [3℄.

Let W,S,Aref ,Yr (and later S′,Aamb,Wr) be as in Se
tion 2.2. The aim is to

introdu
e several natural 
hoi
es for half-spa
es for s ∈ S in Aamb, whi
h will

be done in De�nition 3.6. Let c0 be the identity 
hamber of Aref .
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3.1 Bases

Definition 3.1. A base is a pair (s, w) with 
ore s ∈ S and w ∈ W satisfying

(i) w = j1 · · · jn where ji are pairwise distin
t elements from S \ {s},

(ii) d(w.c0,Ys) = n,

(iii) the support J = {s, j1, . . . , jn} is spheri
al.

Note that in the language of [3, Def 3.1 and 3.6℄ our base would be 
alled a sim-

ple base with spheri
al support. Indeed, Condition (ii) from [3, Def 3.1℄ saying

that every wall that separates w.c0 from c0 interse
ts Ys follows immediately

from our Condition (iii); simpli
ity from [3, Def 3.6℄ is our Condition (i). Note

that our Condition (ii) implies that J is irredu
ible.

In [3, Lem 3.7℄ and the paragraph pre
eding it, we established the following.

Remark 3.2. (i) If J ⊂ S is irredu
ible spheri
al and s ∈ J , then there

exists a base with support J and 
ore s. Namely, it su�
es to order the

elements of J \ {s} into a sequen
e (ji) so that for every 1 ≤ i ≤ n the

set {s, j1, . . . , ji} is irredu
ible. Then (s, j1 . . . jn) is a base.

(ii) The 
ore s and support J determine the base (s, w) uniquely. Hen
e we
sometimes write a base as (s, J), or even just J if the 
ore is �xed. When

J = {s}, we often write s instead of {s} for simpli
ity.

Lemma 3.3. Let J ⊂ S be irredu
ible spheri
al, and let F be a fundamental

domain for 〈J〉 in A(0)
amb guaranteed by Corollary 2.6. Let s ∈ J and de�ne

w ∈ W via (s, w) = (s, J). Then we have Φ(Ws, F ) = Φ(Ws, w.F ).

Proof. First suppose S = S′
. If c0 ∈ F , then by De�nition 3.1(ii) we have

Φ(Ws, c0) = Φ(Ws, w.c0), as desired. Otherwise, we have wJ .c0 ∈ F . The

half-spa
es Φ(Ws, wJ .c0) and Φ(Ws, wwJ .c0) are opposite to Φ(Ws, c0) and

Φ(Ws, w.c0), so they 
oin
ide as well.

If S 6= S′
, then by Corollary 2.6 we have gJg−1 = J ′

, where J ′
is a spheri-


al subset of S′
. Then (gsg−1, gwg−1) is a base for S′

, and by the previous

paragraph we have Φ(Wgsg−1 , g.F ) = Φ(Wgsg−1 , gw.F ). Translating by g−1
we

obtain the statement in the lemma.

3.2 Markings

Definition 3.4. A marking is a pair µ = ((s, J),m), where (s, J) is a base

and where the marker m ∈ S is not adja
ent to some element of J . The 
ore

and the support of the marking µ are the 
ore and the support of its base.

Our marking satis�es (but is not equivalent to the marking de�ned by) [3,

Def 3.8℄. To see that, note that by [3, Rem 3.12℄, we have that wYm is disjoint

from Ys.
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Remark 3.5. Let (s, J) be a base and m ∈ S \ (J ∪ J⊥). If J ∪ {m} is not

spheri
al, then sin
e S is of type FC, the pair ((s, J),m) is a marking. In

parti
ular, sin
e S is irredu
ible non-spheri
al, we have that for ea
h s ∈ S
there exists a marking with 
ore s, sin
e we 
an start with J ⊂ S maximal irre-

du
ible spheri
al 
ontaining s. Similarly, for ea
h s ∈ I ⊂ S with I irredu
ible

spheri
al, there exists a marking with 
ore s and support 
ontaining I.

The following pi
ks up the geometry of the walls Ws for s ∈ S inside the

ambient 
omplex for S′
.

Definition 3.6. Let µ = ((s, w),m) be a marking. Sin
e wYm is disjoint from

Ys, the element wmw−1s is of in�nite order, and hen
e also wWm is disjoint

from Ws. We de�ne Φµ
s = Φ(Ws, wWm), whi
h is the half-spa
e for s in Aamb


ontaining wWm.

The next result is essentially [3, Prop 5.2℄. Ex
ept for Lemma 2.5 this is the only

pla
e where we use angle-
ompatibility (instead of re�e
tion-
ompatibility).

Note that our markings are parti
ular markings of [3℄, but the proof of [3,

Prop 5.2℄ only uses su
h markings if S is of type FC.

Proposition 3.7. Suppose that P ⊆ S is irredu
ible and non-spheri
al. Let

p1, p2 ∈ P . Suppose that for ea
h i = 1, 2, any marking µ with 
ore pi and

support and marker in P gives the same Φpi
= Φµ

pi
. Then the pair {Φp1

,Φp2
}

is geometri
.

We summarise Proposition 3.7, Theorem 2.3, and Proposition 2.4 in the fol-

lowing.

Corollary 3.8. If for ea
h s ∈ S any marking µ with 
ore s gives rise to the

same Φµ
s , then S is 
onjugate to S′

.

Also note that sin
e S is of type FC, by [3, Lem 4.2 and Thm 4.5℄ a 1-rigid

subset P ⊆ S satis�es the hypothesis of Proposition 3.7.

Corollary 3.9. If P ⊆ S is 1-rigid, then it is geometri
.

4 Compatibility of markings

Let S, S′,W,Aref and Aamb be as in Se
tion 3. The following trivially 
oin
ides

with [3, Def 4.1℄.

Definition 4.1. Let ((s, J),m), ((s, J ′),m′) be markings with 
ommon 
ore.

We say that they are related by move

(M1) if J = J ′
, and the markers m and m′

are adja
ent;

(M2) if there is j ∈ S su
h that J = J ′ ∪ {j} and moreover m equals m′
and is

adja
ent to j.
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We will write ((s, J),m) ∼ ((s, J ′),m′) if there is a �nite sequen
e of moves of

type M1 or M2 that brings ((s, J),m) to ((s, J ′),m′).

The following is a spe
ial 
ase of [3, Lem 4.2℄.

Lemma 4.2. If markings µ and µ′
with 
ommon 
ore s are related by move M1

or M2, then Φµ
s = Φµ′

s .

The goal of this se
tion is to provide two generalisations of [3, Thm 4.5℄.

Proposition 4.3. Let I ⊂ S be irredu
ible spheri
al. Suppose that no ir-

redu
ible spheri
al I ′ ) I weakly separates S. Let µ1 = (J1,m1) and µ2 =
(J2,m2) be markings with 
ommon 
ore s ∈ I and su
h that I ⊆ J1, J2. More-

over, for i = 1, 2, de�ne Ki = Ji \ (I ∪ I⊥) when I ( Ji, and Ki = {mi} when

Ji = I. Suppose that K1 and K2 are in the same 
omponent C of S \ (I ∪ I⊥).
Then µ1 ∼ µ2. Consequently Φµ1

s = Φµ2

s .

Hen
eforth we will frequently use the FC assumption to say that J ⊂ S is

spheri
al if and only if it indu
es a 
lique in the de�ning graph. We will

not mention this ea
h time expli
itly to be able to fo
us on the main line of

reasoning.

Proof. We follow the proof of Wojtasz
zyk [3, App C℄, and argue by 
ontradi
-

tion. Let I be maximal irredu
ible spheri
al satisfying the hypothesis of the

proposition but with µ1 6∼ µ2.

The I-distan
e between µ1 and µ2 is the length of a shortest edge-path in (the

subgraph indu
ed on) C between a vertex of K1 and a vertex of K2. (Su
h

a path exists by our hypotheses.) Among pairs µ1, µ2 as above 
hoose a pair

with minimal I-distan
e.
If the I-distan
e between µ1 and µ2 is 0, then �rst 
onsider the 
ase where one

of Ji, say J1, equals I. If also J2 = I, then {m1} = K1 = K2 = {m2} yielding

µ1 = µ2, whi
h is a 
ontradi
tion. If I ( J2, then {m1} = K1 ⊆ K2 ⊂ J2 and

hen
e J1 ∪ {m1} ⊂ J2 is spheri
al, 
ontradi
tion. It remains to 
onsider the


ase where I ( J1, J2. Then J1 ∩ J2 \ (I ∪ I⊥) 6= ∅ giving a 
ontradi
tion with

the maximality of I.
Now assume that the I-distan
e between µ1 and µ2 is 1. First 
onsider the 
ase
where one of Ji, say J1, equals I. If also J2 = I, then m1 and m2 are adja
ent.

Thus µ1 and µ2 are related by move M1, whi
h is a 
ontradi
tion. If I ( J2,
then there exists k2 ∈ J2 \ (I ∪ I⊥) su
h that k2 and m1 are adja
ent. Thus µ1

is related to (I ∪ {k2},m1) by move M2. However, (I ∪ {k2},m1) ∼ µ2 by the

maximality of I, whi
h is a 
ontradi
tion. It remains to 
onsider the se
ond


ase where I ( J1, J2. Then there exist ki ∈ Ji\(I∪I⊥) su
h that k1 and k2 are
adja
ent. Note that I ∪ {k1, k2} is spheri
al and irredu
ible. By Remark 3.5,

there exists a marking ν with 
ore s and support 
ontaining I ∪ {k1, k2}. By

the maximality of I, we have µ1 ∼ ν ∼ µ2, whi
h is a 
ontradi
tion.

If the I-distan
e between µ1 and µ2 is ≥ 2, let γ be a shortest edge-path

in C 
onne
ting a vertex k1 ∈ K1 to a vertex k2 ∈ K2. Let k be the vertex
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on γ following k1. If I ∪ {k} is spheri
al, then again by Remark 3.5, there

exists a marking ν with 
ore s and support 
ontaining I ∪ {k}. Sin
e we


hose µ1 and µ2 to have minimal I-distan
e, we obtain µ1 ∼ ν ∼ µ2, whi
h

is a 
ontradi
tion. If I ∪ {k} is not spheri
al, then (I, k) is a marking, hen
e

analogously µ1 ∼ (I, k) ∼ µ2, whi
h is a 
ontradi
tion.

The following more te
hni
al proposition is used only in Case 4 of the proof of

Lemma 5.3 and we re
ommend to skip it at a �rst reading.

Definition 4.4. Let P ⊆ S be irredu
ible non-spheri
al. We say that P is

1-rigid in S if for any irredu
ible spheri
al L ⊂ S with L∩P 6= ∅, all elements

of P \ (L ∪ L⊥) are in one 
omponent of S \ (L ∪ L⊥).

Proposition 4.5. Let P ⊆ S be 1-rigid in S. Then for any markings µ1 and

µ2 with supports and markers in P and 
ommon 
ore p, we have µ1 ∼ µ2.

Consequently Φµ1

p = Φµ2

p and by Proposition 3.7, P is geometri
.

In the proof we need the following terminology.

Definition 4.6. Let P be 1-rigid in S. Note that P \ (L ∪ L⊥) 6= ∅ for any

irredu
ible spheri
al p ∈ L ⊂ S. A marking µ = ((p, J),m) is (p, P )-admissible

(or shortly admissible if p and P are �xed) if

1. p ∈ P , and

2. if L ⊂ S is irredu
ible spheri
al su
h that p ∈ L and J * L, then
J \ (L ∪ L⊥) (whi
h is non-empty) and P \ (L ∪ L⊥) are in the same


omponent of S \ (L ∪ L⊥), and

3. if L ⊂ S is irredu
ible spheri
al su
h that J ⊆ L, then m and P \(L∪L⊥)
are in the same 
omponent of S \ (L ∪ L⊥).

A base (p, J) is (p, P )-admissible (or admissible) if it satis�es Conditions (1)

and (2).

Note that markings with 
ore p and supports and markers in P , su
h as µ1, µ2

in Proposition 4.5, are (p, P )-admissible, but not vi
e-versa. The 
lass of (p, P )-
admissible markings is a 
ru
ial ingredient in the proof of Proposition 4.5. In

the remaining part of the se
tion we �x P 1-rigid in S, and we �x p ∈ P .

Lemma 4.7. Suppose that (p, J) is admissible. Let ν = ((p, J ′),m) be a marking

su
h that J ⊆ J ′
, J ′ \ J ⊂ P and m ∈ P . Then ν is admissible.

Note that su
h ν exists for ea
h J . Namely, one 
an take J ′ ⊇ J to be maximal

irredu
ible spheri
al with J ′ \J ⊂ P . Then take m inside P \ (J ′ ∪J ′⊥), whi
h
is non-empty sin
e P is irredu
ible non-spheri
al.

Proof. Condition (1) is immediate. For Condition (2), let L ⊂ S be irredu
ible

spheri
al and su
h that p ∈ L and J ′ * L. If J * L, then ∅ 6= J \ (L ∪ L⊥) ⊆
J ′ \ (L∪L⊥). Sin
e (p, J) is admissible, Condition (2) holds for su
h L and J ′

.

If J ⊆ L, then J ′ \ (L ∪ L⊥) ⊆ J ′ \ J ⊂ P , hen
e Condition (2) holds for su
h

L and J ′
. Condition (3) is immediate, sin
e we have m ∈ P .
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Proof of Proposition 4.5. Note that both µ1 and µ2 are admissible. Hen
e to

prove the proposition it su�
es to show that for any two admissible markings

µ1, µ2 with 
ommon 
ore p, we have µ1 ∼ µ2.

We argue by 
ontradi
tion. Let I ∋ p be maximal irredu
ible spheri
al su
h

that there are admissible markings µ1 = (J1,m1) and µ2 = (J2,m2) with

I ⊆ J1, J2, and µ1 6∼ µ2. We de�ne K1, K2, and the I-distan
e between µ1

and µ2 as in the proof of Proposition 4.3. Sin
e both µ1 and µ2 are admissible,

their I-distan
e is �nite (set L = I in the de�nition of admissible marking).

Among pairs µ1, µ2 as above 
hoose a pair with minimal I-distan
e.

If the I-distan
e is 0, then either µ1 = µ2, or one of Ji ∪ {mi} is spheri
al, or

there is irredu
ible I ′ ) I 
ontained in both J1 and J2, 
ontradi
tion. Suppose
now that the I-distan
e is 1. There are two 
ases to 
onsider.

Case 1: J1 = I. If J2 = I, then µ1 and µ2 are related by move M1, 
ontradi
-

tion. Now we assume I ( J2. Pi
k k2 ∈ K2 adja
ent to m1. Then I ′ = I∪{k2}
is spheri
al and irredu
ible. Moreover, µ1 ∼ (I ′,m1) by move M2. We 
laim

that (I ′,m1) is admissible. Then (I ′,m1) ∼ µ2 by the maximality of I, whi
h
yields a 
ontradi
tion. Now we prove the 
laim. For Condition (2), let p ∈ L
and I ′ * L. If I * L, it su�
es to use Condition (2) in the admissibility of

µ1. Now suppose I ⊆ L. Then I ′ \ (L ∪ L⊥) = {k2}. By Condition (2) in the

admissibility of µ2, we have that k2 is in the same 
omponent of S \ (L ∪ L⊥)
as P \ (L∪L⊥), as desired. Condition (3) follows immediately from Condition

(3) in the admissibility of µ1.

Case 2: I ( J1 and I ( J2. For i = 1, 2, pi
k ki ∈ Ki su
h that k1 and k2
are adja
ent. Then J = I ∪ {k1, k2} is spheri
al and irredu
ible. It is easy to

show that J is admissible following the argument from Case 1. Let ν be an

admissible marking 
onstru
ted from J as in Lemma 4.7. Then µ1 ∼ ν ∼ µ2

by the maximality of I, whi
h yields a 
ontradi
tion.

Finally suppose that the I-distan
e d between µ1 and µ2 is ≥ 2. Let γ be a

shortest edge-path in the subgraph indu
ed on S \ (I ∪ I⊥) starting at k1 ∈ K1

and ending at k2 ∈ K2. Let k be the vertex on γ following k1. If J = I ∪ {k}
is not spheri
al, then let ν = (I, k), otherwise let ν be de�ned from J as in

Lemma 4.7. Sin
e the I-distan
e between ν and µ1, µ2 is < d, to rea
h a


ontradi
tion it su�
es to prove that ν is admissible.

Consider �rst the 
ase where J is spheri
al. By Lemma 4.7, it su�
es to

prove that J is admissible. Let p ∈ L and J * L. If I * L, then we use the

admissibility of µ1. Otherwise, we have J\(L∪L
⊥) = {k}. Sin
e γ is a geodesi
,

γ ∩ L is empty, a vertex, or an edge. Moreover, γ ∩ L⊥ = ∅, sin
e γ ∩ I⊥ = ∅
and I ⊆ L. Thus there is a subpath of γ from k to k1 or k2 outside L ∪ L⊥

.

Sin
e µ1, µ2 were admissible, k is in the 
omponent of S \ (L∪L⊥) 
ontaining
P \ (L ∪ L⊥), as desired.

If J is not spheri
al, then ν = (I, k). Condition (2) for ν follows from the

admissibility of µ1. For Condition (3), let I ⊆ L. As before, there is a subpath
of γ from k to k1 or k2 outside L∪L

⊥
. Thus, again, sin
e µ1, µ2 were admissible,

k is in the 
omponent of S \ (L ∪ L⊥) 
ontaining P \ (L ∪ L⊥).

Documenta Mathematica 23 (2018) 2081–2100



A Step Towards Twist Conjecture 2091

5 Good vertices

In this se
tion we introdu
e the notion of a good vertex t in an irredu
ible

spheri
al J ⊂ S w.r.t. r ∈ S \ J , and the related fundamental domain Et,r for

the a
tion of J on A(0)
amb. Then in Proposition 5.2 we prove that Et,r does not

depend on t. This will be 
ru
ial for the de�nition of the 
omplexity of S w.r.t.

S′
in Se
tion 6. Let S, S′,W,Aref and Aamb be as in Se
tion 3. Throughout

the remaining part of the article, we will also assume that S is

2-rigid.

Definition 5.1. Let J ⊂ S be irredu
ible spheri
al and r ∈ S \ J . A vertex

t ∈ J is good with respe
t to r, if t is adja
ent to r, or J \ (t∪ t⊥) is non-empty

and in the same 
omponent of S \ (t∪ t⊥) as r. Note that being good depends

on J .
Let I ⊂ S be spheri
al. J is good with respe
t to I if there exist non-adja
ent

t ∈ J and r ∈ I su
h that t is good with respe
t to r. Then let Et,r be that

fundamental domain from Corollary 2.6 for the a
tion of J on A(0)
amb that is


ontained in Φ(Wt,Wr).

Proposition 5.2. Let J ⊂ S be irredu
ible spheri
al and I ⊂ S be spheri
al.

Suppose that we have pairs of non-adja
ent verti
es (t, r) and (t′, r′) in J × I
su
h that t is good with respe
t to r, and t′ is good with respe
t to r′. Then

Et,r = Et′,r′.

The proof of Proposition 5.2 is the most te
hni
al part of the arti
le, and we

re
ommend to skip it at �rst reading. We need a preparatory lemma.

Lemma 5.3. Let t, r ∈ S be non-adja
ent. Let J ⊂ S be irredu
ible spheri
al


ontaining t. Let j0 ∈ J and let ω = (j0, j1, . . .) be the geodesi
 edge-path

in the Coxeter�Dynkin diagram of J that starts at j0 and ends at t (su
h a

geodesi
 is unique sin
e the Coxeter�Dynkin diagram of a spheri
al subset is

a tree). Let jn be the �rst vertex of ω not adja
ent to r (possibly jn = j0
or jn = t). Suppose that both t, j0 ∈ J are good w.r.t. r. Then we have

Φ(jnjn−1 · · · j1Wj0 , Et,r) = Φ(jnjn−1 · · · j1Wj0 ,Wr).

Proof. We write E = Et,r to shorten the notation.

We 
laim that for any non-
ommuting j, j′ ∈ J at least one of j, j′ is good

(w.r.t. r; we will skip repeating this in this proof). To justify the 
laim, if both

j and j′ are not good, then r and j are in distin
t 
omponents of S \ (j′ ∪ j′
⊥
),

and r and j′ are in distin
t 
omponents of S \(j∪j⊥). If {j, j′} ( J , then there

is an element in S \ ({j, j′} ∪ {j, j′}⊥) adja
ent to j and j′, whi
h 
ontradi
ts

Lemma 2.7. If {j, j′} = J , then one of j, j′ equals t, whi
h was assumed to be

good, 
ontradi
tion. This justi�es the 
laim.

If j0 = t, then there is nothing to prove. Otherwise, we indu
t on the length

of ω and assume that the 
on
lusion of the lemma holds for all good ji distin
t
from j0. By the 
laim either j1 or j2 is good. We look �rst at the situation

where j1 is good. There are four 
ases to 
onsider.
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Case 1: both j0 and j1 are not adjacent to r. Sin
e j1 is good, j0
it is in the same 
omponent of S \ (j1 ∪ j⊥1 ) as r. Thus by Proposition 4.3

applied with I = {j1} and the assumption that S is 2-rigid we have (j1, r) ∼
((j1, j0), r). Analogously (j0, r) ∼ ((j0, j1), r). Let Σ ⊂ Aamb be the union

of the two se
tors of the form Φj0 ∩ Φj1 for {Φj0 ,Φj1} geometri
. Denoting

Φj1 = Φ(Wj1 ,Wr), from (j1, r) ∼ ((j1, j0), r) we obtain Φj1 = Φ(Wj1 , j0Wr),
and so j0Φj1 ⊃ Wr. Consequently Wr ⊂ Φj1 ∩ j0Φj1 ⊂ Σ ∪ j0Σ. Analogously
(j0, r) ∼ ((j0, j1), r) implies Wr ⊂ Σ ∪ j1Σ, and so Wr ⊂ Σ. By indu
tion

assumption, Φ(Wj1 , E) = Φ(Wj1 ,Wr), thus E and Wr are in the same se
tor

of Σ, and it follows that Φ(Wj0 , E) = Φ(Wj0 ,Wr).

Case 2: j1 is adjacent to r, but j0 is not adjacent to r. Then n = 0.
Let jm be the �rst vertex of ω distin
t from j0 not adja
ent to r.
First, we 
laim Φ(j0Wj1 , E) = Φ(j0Wj1 ,Wr). Indeed, sin
e (j1, j0) and

(j1, j2 · · · jm) are bases, by two appli
ations of Lemma 3.3 we have

Φ(Wj1 , j0.E) = Φ(Wj1 , E) = Φ(Wj1 , j2 · · · jm.E),

whi
h equals Φ(Wj1 , j2 · · · jmWr) by indu
tion. Furthermore, ((j1, j2 · · · jm), r)
is a marking and j2 is adja
ent to j0. Thus by Proposition 4.3 and the fa
t

that S is 2-rigid, we obtain

((j1, j2 · · · jm), r) ∼ ((j1, j0), r),

and the 
laim follows.

Let Φj0 ,Φj1 be the half-spa
es for j0, j1 
ontaining E and let Λ = Φj0 ∩ Φj1 .

Sin
e Wr interse
ts Wj1 , by the 
laim we have that Wr interse
ts Λ. It follows
that Φ(Wj0 , E) = Φ(Wj0 ,Wr).

Case 3: j0 is adjacent to r, but j1 is not adjacent to r. By in-

du
tion, we have Φ(Wj1 , E) = Φ(Wj1 ,Wr). We need to show Φ(j1Wj0 , E) =
Φ(j1Wj0 ,Wr). To do this, it su�
es to reverse the argument in the previous

paragraph.

Case 4: both j0 and j1 are adjacent to r. Let P = {j0, j1, . . . , jn, r}.
We 
laim that P is geometri
. Indeed, by Proposition 4.5, to justify the 
laim

it su�
es to prove that P is 1-rigid in S. We have that P is irredu
ible and

non-spheri
al. Now let L ⊂ S be irredu
ible spheri
al with L∩P 6= ∅. Sin
e S
is 2-rigid, it su�
es to 
onsider L = {l} a singleton in P . Note that in P the

only two non-adja
ent elements are r and jn. Thus the 
ases l = r, jn are 
lear.

It remains to 
onsider the 
ase l ∈ K = P \ {r, jn}. Sin
e K is irredu
ible and

|K| ≥ 2, we have K \ (l ∪ l⊥) 6= ∅. Consequently, {l} does not weakly separate

P , verifying the 
laim.

By Theorem 2.3 and Proposition 2.4, there are half-spa
es

{Φj0 ,Φj1 , · · · ,Φjn ,Φr} whose interse
tion 
ontains a vertex x in
ident to

Wr. Thus by indu
tion we have

Φ(jnjn−1 · · · j2Wj1 , E) = Φ(jnjn−1 · · · j2Wj1 ,Wr) = Φ(jnjn−1 · · · j2Wj1 , x).
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Let F and Fant (resp. V and Vant) be the two fundamental domains for

{j0, j1, . . . , jn} (resp. {j1, . . . , jn}) from Corollary 2.6. Assume without loss

of generality F ⊂ V . Then x and E are both inside F or Fant, say F , otherwise
they would be separated by jnjn−1 · · · j2Wj1 . It follows that both x and E
are in V . In parti
ular, Φ(jnjn−1 · · · j1Wj0 , E) = Φ(jnjn−1 · · · j1Wj0 , x), whi
h
equals Φ(jnjn−1 · · · j1Wj0 ,Wr), as desired.
Now we turn to the situation where j1 is not good, hen
e j2 is good. Sin
e

j1 is not good, it is not adja
ent to r, and furthermore r is not adja
ent to

j0, nor to j2. Sin
e j2 is good and S is 2-rigid, by Proposition 4.3 we obtain

Φ(Wj2 ,Wr) = Φ(Wj2 , j1Wr). By indu
tion, we have Φ(Wj2 ,Wr) = Φ(Wj2 , E).
Thus Lemma 5.4 below gives Φ(Wj1 , j2Wr) = Φ(Wj1 , E). Sin
e S is 2-rigid,

by Proposition 4.3 we have Φ(Wj1 , j2Wr) = Φ(Wj1 , j0j2Wr) = Φ(Wj1 , j0Wr),
and �nally Φ(Wj0 ,Wr) = Φ(Wj0 , j1Wr), sin
e j0 is good. Applying Lemma 5.4

with j0 in pla
e of j2 we obtain Φ(Wj0 ,Wr) = Φ(Wj0 , E), as desired.

Lemma 5.4. Let j1, j2 ∈ S be adja
ent and non-
ommuting. Suppose that

r ∈ S is not adja
ent to j2 and Φ(Wj2 ,Wr) = Φ(Wj2 , j1Wr). Let F be a

fundamental domain for 〈j1, j2〉 in A(0)
amb from Corollary 2.6. Then we have

Φ(Wj2 ,Wr) = Φ(Wj2 , F ) if and only if Φ(Wj1 , j2Wr) = Φ(Wj1 , F ).

Proof. Denote Φj2 = Φ(Wj2 ,Wr), and 
hoose Φj1 so that Φj2 and Φj1 are

geometri
. Let Λ = Φj2 ∩Φj1 . Sin
e Φ(Wj2 ,Wr) = Φ(Wj2 , j1Wr), as in Case 1

of the proof of Lemma 5.3 we obtain Wr ⊂ Λ ∪ j1Λ. Note that Λ ∪ j1Λ is


ontained entirely in one of the half-spa
es for Wj2 , and in one of the half-

spa
es for j2Wj1 . Thus Φ(Wj2 ,Wr) = Φ(Wj2 , F ) if and only if F ⊂ Λ if and

only if Φ(j2Wj1 ,Wr) = Φ(j2Wj1 , F ). By Lemma 3.3 the latter is equivalent to

Φ(Wj1 , j2Wr) = Φ(Wj1 , F ).

We are �nally ready for the following.

Proof of Proposition 5.2. We prove the proposition by indu
tion on the dis-

tan
e between t and t′ in the Coxeter�Dynkin diagram of J . If t = t′, then
sin
eWr∩Wr′ 6= ∅, the proposition is 
lear. If r = r′, then we apply Lemma 5.3

with j0 = t′, where n = 0. By Lemma 5.3, we have Φ(Wt′ , Et,r) = Φ(Wt′ ,Wr)
and thus Et′,r = Et,r, as desired.

Now we assume t 6= t′ and r 6= r′. If t and r′ are non-adja
ent, then t is good
with respe
t to r′ (sin
e r and r′ are adja
ent). Thus we 
an pass from (t, r)
to (t′, r′) via (t, r′) by the previous dis
ussion. The 
ase where t′ and r are

non-adja
ent is analogous. Thus it remains to 
onsider the 
ase where t and r′

are adja
ent, and t′ and r are adja
ent.

We �rst look at the 
ase where t and t′ do not 
ommute. We 
onsider

P = {t, t′, r, r′}. Note that the de�ning graph of P is a square, thus P is

1-rigid. Hen
e P is geometri
 by Corollary 3.9. Let F ⊂ A(0)
amb be the funda-

mental domain for 〈P 〉 y A(0)
amb from Proposition 2.4. Let V ⊂ A(0)

amb be the
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fundamental domain for 〈t, t′〉 that 
ontains F . Sin
e t and t′ do not 
om-

mute, V is the only fundamental domain for 〈t, t′〉 
ontained in Φ(Wt,Wr) and
the only one in Φ(Wt′ ,Wr′). Thus Et,r ⊂ V and Et′,r′ ⊂ V . It follows that

Et,r = Et′,r′.

Now we deal with the general situation. We 
onsider the geodesi
 edge-path

(ti)
n
i=0 from t0 = t to tn = t′ in the Coxeter�Dynkin diagram of J (whi
h is a

tree). Let i′ be minimal su
h that ti′ is not adja
ent to r′ and i maximal su
h

that ti is not adja
ent to r. Then ti′ is good respe
t to r′ (sin
e r′ and ti′−1

are adja
ent) and ti is good with respe
t to r (sin
e r and ti+1 are adja
ent).

Note that i′ ≥ 1 and i ≤ n− 1. If i′ ≤ n− 1, then by the indu
tion assumption

we 
an pass from (t, r) to (t′, r′) via (ti′ , r
′). The 
ase i ≥ 1 is analogous. Thus

in the remaining part of the proof we assume i′ = n and i = 0, in other words,

ti is adja
ent to both r and r′ for ea
h 1 ≤ i ≤ n− 1.
Let P = {t0, . . . , tn, r, r′}. Note that the de�ning graph of P is a join of a

4-
y
le (whose 
onse
utive verti
es are t, r′, r, t′) and a 
omplete graph (whose

verti
es are t1, . . . , tn−1). Sin
e (ti) was an edge-path in the Coxeter�Dynkin

diagram, it is easy to prove that the de�ning graph of P is 1-rigid. Thus P

is geometri
 by Corollary 3.9. Let F ⊂ A(0)
amb be the fundamental domain for

〈P 〉 y A(0)
amb from Proposition 2.4. Let V ⊂ A(0)

amb be the fundamental domain

for 〈t0, . . . , tn〉 that 
ontains F . Sin
e {t0, . . . , tn} is irredu
ible, V is the only

fundamental domain for 〈t0, . . . , tn〉 
ontained in Φ(Wt,Wr) and the only one

in Φ(Wt′ ,Wr′). Thus Et,r ⊂ V and Et′,r′ ⊂ V . Hen
e Et,r = Et′,r′ .

6 Complexity

In this se
tion, we introdu
e the 
omplexity of the Coxeter generating set S
w.r.t. S′

. We keep the setup from Se
tion 5. To start, we need to des
ribe

parti
ular subsets of pairs of maximal spheri
al residues.

Definition 6.1. Let J ⊂ S be a maximal spheri
al subset. By Corollary 2.6,

WJ stabilises a unique maximal 
ell σJ ⊂ Aamb. Let CJ be the 
olle
tion of

verti
es in σJ and let DJ be the elements of CJ in
ident to ea
h Wj for j ∈ J .

When J is irredu
ible, then by Corollary 2.6, it is easy to see that DJ 
onsists

of two antipodal verti
es. In general, let J = J1⊔· · ·⊔Jk be the de
omposition

of J into maximal irredu
ible subsets. Let σJ = σ1 × · · · × σk be the indu
ed

produ
t de
omposition of the asso
iated 
ell. Then DJ is a produ
t of pairs of

antipodal verti
es {ui, vi} for ea
h σi. Let πi : DJ → {ui, vi} be the 
oordinate
proje
tions.

Definition 6.2. For ea
h ordered pair (J, I) of maximal spheri
al subsets

of S, we de�ne the following subset EJ,I ⊆ DJ . First, for ea
h i, 
onsider
the following Ei

J,I ⊆ DJ . If Ji is not good with respe
t to I, then we take

Ei
J,I = DJ . If Ji is good, then let t and r be as in De�nition 5.1. Then we

take Ei
J,I = CJ ∩Et,r (whi
h is 
ontained in DJ and equal π−1

i (ui) or π
−1
i (vi)).
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Note that Ei
J,I does not depend on t and r by Proposition 5.2. We de�ne

EJ,I = E1
J,I ∩ · · · ∩ Ek

J,I .

Definition 6.3. We de�ne the 
omplexity of S, denoted K(S), to be the or-

dered pair of numbers

(

K1(S),K2(S)
)

=
(

∑

J 6=I d(CJ , CI),
∑

J 6=I d(EJ,I , EI,J)
)

,

where J and I range over all maximal spheri
al subsets of S, and EJ,I is de�ned

in De�nition 6.2. Note that the distan
e d is 
omputed in A(1)
amb and so we have

K1(S
′) = K2(S

′) = 0, sin
e c0 ∈ CJ , c0 ∈ EJ,I for all maximal spheri
al subsets

J, I ⊂ S′
.

For two Coxeter generating sets S and Sτ , we de�ne K(Sτ ) < K(S) if K1(Sτ ) <
K1(S), or K1(Sτ ) = K1(S) and K2(Sτ ) < K2(S).

7 Proof of the main theorem

We keep the setup from Se
tion 5. Note that sin
e S is 2-rigid, an elementary

twist does not 
hange its de�ning graph. Thus Main Theorem redu
es to the

following.

Theorem 7.1. Let S be angle-
ompatible with S′
. Suppose that S is 2-rigid

and of type FC. Assume moreover that S has minimal 
omplexity among all

Coxeter generating sets twist-equivalent to S. Then S is 
onjugate to S′
.

The proof will take the remaining part of the arti
le, and we divide it into

several steps. For µ = ((s, w),m) a marking with support J , we de�ne Kµ =
J \ (s ∪ s⊥) if J 6= {s}, and Kµ = {m} otherwise.

By Corollary 3.8, to prove Theorem 7.1 it su�
es to show that for any markings

µ and µ′
with 
ommon 
ore s ∈ S, we have Φµ

s = Φµ′

s . Note that for ea
h


omponent A of S \ (s ∪ s⊥), there exists a marking µ with Kµ ⊆ A. By

Proposition 4.3 and the fa
t that S is 2-rigid, if Kµ′ ⊆ A, then Φµ
s = Φµ′

s .

Thus ea
h 
omponent A of S \ (s ∪ s⊥) determines a half-spa
e ΦA := Φµ
s for

s. Two 
omponents A1 and A2 of S \ (s ∪ s⊥) are 
ompatible if ΦA1
= ΦA2

.

We will show that all the 
omponents of S \ (s ∪ s⊥) are 
ompatible. Fixing

s ∈ S, we shall divide these 
omponents into several 
lasses and 
ondu
t a 
ase

analysis.

7.1 Big components are compatible

Definition 7.2. A 
omponent A of S \ (s ∪ s⊥) is big if there is a ∈ A not

adja
ent to s. Otherwise A is small.

Lemma 7.3. Any two big 
omponents are 
ompatible.

Proof. We argue by 
ontradi
tion and assume that the big 
omponents of S \
(s ∪ s⊥) 
an be divided into two non-empty families {Ak} and {Bk} su
h that
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all ΦAk

oin
ide (
all that half-spa
e ΦA) and are distin
t from all ΦBk

, whi
h

also 
oin
ide (
all that half-spa
e ΦB). Let B be the union of all the Bk. Let

τ be the elementary twist that sends ea
h element b ∈ B to sbs and �xes other

elements of S. For a 
ontradi
tion, we will prove K1(τ(S)) < K1(S).
Let J ⊂ S be maximal spheri
al. J is twisted if it 
ontains an element of B
and s /∈ J . A twisted J exists, sin
e we 
an take any maximal spheri
al J

ontaining b ∈ B not adja
ent to s. Note that if J is twisted, then for ea
h

j ∈ J we have Wτ(j) = sWj , and hen
e Cτ(J) = s.CJ . Moreover, there is an

element b ∈ J \{s} not adja
ent to s, sin
e otherwise J∪{s} would be spheri
al


ontradi
ting the maximality of J . Then Φ(Ws, CJ ) = Φ(Ws,Wb) = ΦB.

Consider now maximal spheri
al I ⊂ S that is not twisted. If s ∈ I, then
Cτ(I) = s.CI = CI . If s /∈ I, then I ∩B = ∅, and we also have Cτ(I) = CI . As

before, there exists su
h I with s /∈ I. Moreover, then there is a ∈ I \ {s} not

adja
ent to s, and Φ(Ws, CI) = Φ(Ws,Wa) = ΦA.

Let J, I ⊂ S be maximal spheri
al. If both J and I are twisted or both are

not twisted, then d(CJ , CI) = d(Cτ(J), Cτ(I)). Now suppose that J is twisted

and I is not twisted. If s ∈ I, we still have d(CJ , CI) = d(Cτ(J), Cτ(I)).
If s /∈ I, then sin
e ΦB 6= ΦA, we have Φ(Ws, CJ) 6= Φ(Ws, CI). Hen
e a

minimal length gallery β from a 
hamber in CJ to a 
hamber in CI has an

edge dual to Ws. Removing this edge from β and re�e
ting β ∩ Φ(Ws, CJ )
by s, we obtain a shorter gallery from a 
hamber in s.CJ to a 
hamber in CI .

Thus d(Cτ(J), Cτ(I)) = d(s.CJ , CI) < d(CJ , CI). Consequently K1(τ(S)) <
K1(S).

7.2 Exposed components

Definition 7.4. A small 
omponent A is exposed if there is t ∈ A and r inside
a di�erent 
omponent of S\(s∪s⊥) su
h that s and r are in distin
t 
omponents

of S \ (t ∪ t⊥).

Lemma 7.5. If there exists an exposed 
omponent, then all 
omponents are


ompatible.

Proof. Let t and r be as in De�nition 7.4. Note that r is adja
ent to neither s
nor t. By Lemma 2.7, none of the elements of S \ ({s, t} ∪ {s, t}⊥) is adja
ent
to s or t. It follows that there is only one small 
omponent of S \ (s∪ s⊥), and
this small 
omponent equals {t}.
Observe that a maximal spheri
al subset J ⊂ S 
ontains s if and only if it


ontains t. Indeed, if say s ∈ J , then ea
h element of J \ {s} is adja
ent to s.
Hen
e J ⊆ {s, t} ∪ {s, t}⊥ by Lemma 2.7. If t /∈ J , then J ∪ {t} is spheri
al,

whi
h 
ontradi
ts the maximality of J . We say that J is exposed if {s, t} ⊆ J .
LetW{s,t} be the union of all the walls in Aamb for the re�e
tions in the dihedral

group 〈s, t〉. Sin
e S is 2-rigid, the graph indu
ed on S \ ({s, t} ∪ {s, t}⊥)
is 
onne
ted. Thus all the walls Wr for r ∈ S \ ({s, t} ∪ {s, t}⊥) lie in the

same 
onne
ted 
omponent Λ of Aamb \ W{s,t}. Consequently, all DJ for J
not exposed lie in Λ. Let Σ ⊂ Aamb be the union of the two se
tors of the
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form Φs ∩ Φt for {Φs,Φt} geometri
. Assume �rst Λ ⊂ Σ. Then Φ(Ws,Λ) =
Φ(Ws, tΛ), hen
e Φ(Ws,Wr) = Φ(Ws, tWr). These half-spa
es 
orrespond

to markings µ = ((s, t), r) with Kµ = {t} and µ′ = (s, r) with Kµ′ = {r}.
Consequently, the unique small 
omponent {t} of S\(s∪s⊥) is 
ompatible with

a big 
omponent. In view of Lemma 7.3, all the 
omponents are 
ompatible.

It remains to 
onsider the 
ase Λ 6⊂ Σ.

Let τs (resp. τt) be the elementary twist that sends t to sts (resp. s to tst) and
�xes other elements of S. For any w ∈ 〈s, t〉, 
omposing appropriately τs and

τt (while keeping the notation s, t for the images of s, t under the twist), we

obtain τ = τw sending s to wsw−1
, t to wtw−1

and �xing other elements of S.
We will justify the following.

1. Wτ(s) = wWs and Wτ(t) = wWt;

2. if J is maximal spheri
al that is exposed (resp. not exposed), thenDτ(J) =
w.DJ (resp. Dτ(J) = DJ);

3. if J and I are both maximal spheri
al and exposed (resp. not exposed),

then Eτ(J),τ(I) = w.EJ,I (resp. Eτ(J),τ(I) = EJ,I);

4. if J is maximal spheri
al that is exposed and I is maximal spheri
al that

is not exposed, then Eτ(J),τ(I) = w.EJ,I and Eτ(I),τ(J) = EI,J .

Here (1) is immediate and implies (2), while (3) follows from (2) and De�ni-

tion 6.2 (note that an elementary twist does 
hange the de�ning graph, so it

does not 
hange the good subsets of J and I). Now we prove (4). Note that for

ea
h j ∈ J , we have Wj ∩Wτ(j) 6= ∅. Moreover, τ �xes ea
h element of I. Thus
for non-adja
ent i ∈ I and j ∈ J , the walls Wj and Wτ(j) are in the same half-

spa
e for i = τ(i). Hen
e it follows from De�nition 6.2 that Eτ(I),τ(J) = EI,J .

It remains to verify the �rst equality of (4). Note that the elements of J \{s, t}
are �xed by τ , and {s, t} ⊂ J is maximal irredu
ible that is not good in view

of De�nition 7.4 and Lemma 2.7. Thus Eτ(J),τ(I) = Dτ(J) = w.DJ = w.EJ,I ,

�nishing the proof of (4).

Coming ba
k to the 
ase Λ 6⊂ Σ, 
hoose τ = τw a 
omposition of twists

as above so that wΣ 
ontains Λ. We will rea
h a 
ontradi
tion by show-

ing K1(τ(S)) = K1(S) and K2(τ(S)) < K2(S). The equality follows from

the fa
t that for any maximal spheri
al J ⊂ S, we have Cτ(J) = CJ . Now

we verify the inequality. Consider maximal spheri
al subsets J, I ⊂ S. If

both J and I are exposed or both are not exposed, then by (3) we have

d(Eτ(J),τ(I), Eτ(I),τ(J)) = d(EJ,I , EI,J).

Now we assume that J is exposed but I is not exposed. Let β be a shortest

gallery from a 
hamber y ∈ EI,J to a 
hamber x ∈ EJ,I . By angle-
ompatibility,

{s, t} is 
onjugate to {s′, t′} ⊂ S′
. By Theorem 2.1, we 
an assume that β is

a 
on
atenation of galleries β′
and β′′

, where β′
is a minimal gallery from y to

some 
hamber (
all it x′
) in the {s′, t′}-residue R 
ontaining x. Furthermore,

β′ ⊂ Λ. Note that x 6= x′
sin
e Λ * Σ.
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We have x′ = w.x or x′ = w.xant, where xant is the 
hamber antipodal to x
in R. Note that xant ∈ EJ,I , sin
e {s, t} is an irredu
ible 
omponent of J that

is not good with respe
t to I. Thus from (4) we dedu
e x′ ∈ Eτ(J),τ(I) and

y ∈ Eτ(I),τ(J). Consequently d(Eτ(J),τ(I), Eτ(I),τ(J)) < d(EJ,I , EI,J), giving
K2(τ(S)) < K2(S).

7.3 Non-exposed small components

To prove Theorem 7.1, it remains to 
onsider the 
ase where all 
omponents of

S \ (s ∪ s⊥) are big, or small and not exposed. We argue by 
ontradi
tion and

assume that the 
omponents of S \ (s∪ s⊥) 
an be divided into two non-empty

families {Ak} and {Bk} su
h that all ΦAk

oin
ide and are distin
t from all

ΦBk
, whi
h also 
oin
ide. Let A (resp. B) be the union of all Bk (resp. Ak).

By Lemma 7.3, we 
an assume that all the big 
omponents (if they exist) are

in A. Let τ be the elementary twist that sends ea
h element b ∈ B to sbs and
�xes other elements of S.
Let J ⊂ S be a maximal spheri
al subset. J is twisted if it 
ontains an element

of B. In that 
ase, s is adja
ent to ea
h element in J sin
e B is a union of small


omponents. Consequently J ∪ {s} is spheri
al so s ∈ J by the maximality of

J .
In parti
ular, τ preserves all CJ , and hen
e K1(S) = K1(τ(S)). For a 
ontra-

di
tion, we will prove K2(τ(S)) < K2(S).
Consider maximal spheri
al subsets J and I. If both of them are twisted or

both are not-twisted, then we have

d(Eτ(J),τ(I), Eτ(I),τ(J)) = d(EJ,I , EI,J). (7.1)

Now we assume that J is twisted and I is not twisted. If I ⊆ {s} ∪ {s}⊥,
then (7.1) holds as well. It remains to dis
uss the 
ase where I * s ∪ s⊥. We

will prove d(Eτ(J),τ(I), Eτ(I),τ(J)) < d(EJ,I , EI,J), whi
h implies K2(τ(S0)) <
K2(S0) and �nishes the proof of Theorem 7.1.

Case 1: I contains s. In that 
ase, pi
k r ∈ I \ (s ∪ s⊥). Let I1 ⊆ I be

maximal irredu
ible 
ontaining r. Then s ∈ I1, sin
e s and r do not 
ommute.

Pi
k t ∈ J \ (s ∪ s⊥). Let J1 ⊆ J be maximal irredu
ible 
ontaining t. Then

s ∈ J1. Sin
e both t and r are adja
ent to s, we have that t ∈ J1 is good with

respe
t to r, and r ∈ I1 is good respe
t to t.
We �rst justify that EJ,I and EI,J lie in distin
t half-spa
es for s. Otherwise,
{r, s, t} is geometri
. In parti
ular, we have Φ(Ws, tWr) = Φ(Ws, rWt). These
half-spa
es 
orrespond to markings µ = ((s, t), r) with Kµ = {t} and µ′ =
((s, r), t) with Kµ′ = {r}. This 
ontradi
ts the assumption that t and r belong
to in
ompatible 
omponents.

We have Dτ(J) = s.DJ . Note that τ �xes all the elements of I and J \ J1, and
hen
e Eτ(J),τ(I) = s.EJ,I in view of

Φ(sWt,Wr) = Φ(sWt,Wr ∩Ws) = sΦ(Wt,Wr ∩Ws) = sΦ(Wt,Wr).
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On the other hand, we have Eτ(I),τ(J) = EI,J , sin
e Wj ∩ Wτ(j) 6= ∅ for ea
h

j ∈ J , and hen
e Wj and Wτ(j) are in the same half-spa
e for i = τ(i) ∈ I not

adja
ent to j.
To 
on
lude Case 1, pi
k a gallery β of minimal length from x ∈ EJ,I to

y ∈ EI,J . Sin
e 
hambers x and y lie in distin
t half-spa
es for s and x is

in
ident to Ws, we 
an assume that the �rst edge of β is dual to Ws (Theo-

rem 2.1). Sin
e s.x ∈ s.EJ,I = Eτ(J),τ(I) and y ∈ EI,J = Eτ(I),τ(J), we have

d(Eτ(J),τ(I), Eτ(I),τ(J)) < d(EJ,I , EI,J), as desired.

Case 2: I contains an element not adjacent to s. Let this element

be r. Let t and J1 be as in Case 1. Sin
e t is inside a non-exposed small


omponent, t ∈ J1 is good with respe
t to r. In parti
ular, J1 is good with

respe
t to I.
Let Σ ⊂ Aamb be the union of the two se
tors of the form Φs ∩Φt for {Φs,Φt}
geometri
. We �rst justify Wr ⊂ sΣ. Indeed, note that Wr is disjoint from

any wall in W{s,t}. Sin
e s and r are in the same 
omponent of S \ (t∪ t⊥), we
have (t, r) ∼ ((t, s), r) by Proposition 4.3 and the fa
t that S is 2-rigid. Thus

Φ(Wt,Wr) = Φ(Wt, sWr). It follows that Wr ⊂ Σ∪ sΣ. Now re
all that t ∈ B
and r ∈ A, thus Φ(Ws,Wr) 6= Φ(Ws, tWr) by the in
ompatibility of A and B.

It follows that Wr ⊂ Σ is not possible, justifying Wr ⊂ sΣ.
Let Λ be the se
tor of Σ satisfying Wr ⊂ sΛ. It follows that EJ,I ⊂ Λ and

Eτ(J),τ(I) ⊂ sΛ. Consequently Eτ(J),τ(I) = sEJ,I . We also have Eτ(I),τ(J) =
EI,J as in Case 1. Note that EI,J and EJ,I are in distin
t half-spa
es for s.
Now we 
an prove d(Eτ(J),τ(I), Eτ(I),τ(J)) < d(EJ,I , EI,J ) in the same way as

in Case 1.
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