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1 INTRODUCTION

A Cozxeter generating set S of a group W is a set such that (W, .S) is a Coxeter
system. This means that S generates W subject only to relations of the form
52 =1for s € S and (st)™t = 1, where my = mys > 2 for s #t € S (possibly
there is no relation between s and ¢, and then we put by convention mg = 00).
An S-reflection (or a reflection, if the dependence on S does not need to be
emphasised) is an element of W conjugate to some element of S. We say that
S is reflection-compatible with another Coxeter generating set S’ if every S-
reflection is an S’-reflection. Furthermore, S is angle-compatible with S’ if for
every s,t € S with (s, t) finite, the set {s,t} is conjugate to some {s’,t'} C 5’.
(Setting s = ¢ shows that angle-compatible implies reflection-compatible.)
Miihlherr’s Twist Conjecture predicts that angle-compatible Coxeter generating
sets of a Coxeter group differ by a sequence of elementary twists. We postpone
the definition of an elementary twist to give a brief historical background. For
an exhaustive 2006 state of affairs, see [11].

The Isomorphism Problem for Coxeter groups asks for an algorithm to de-
termine if Coxeter systems (W,S), (W', S’) defined by ms:, m’, give rise to
isomorphic groups W and W’. Hence listing all Coxeter generating sets S of
W' solves the Isomorphism Problem. The articles of Howlett and Miihlherr
[7], and Marquis and Miihlherr [9] reduce the question of listing all such sets
S to the problem of listing all S angle-compatible with S’. In this way the
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Twist Conjecture describes a possible solution to the Isomorphism Problem for
Coxeter groups.

The first substantial work on the Twist Conjecture is the one by Charney
and Davis [1], where they prove that if a group acts effectively, properly, and
cocompactly on a contractible manifold, then all its Coxeter generating sets are
conjugate. Caprace and Miihlherr [2] proved that for all my < co, a Coxeter
generating set S angle-compatible with S’ is conjugate to S’. This is what was
predicted by the Twist Conjecture, since S with all mg < oo does not admit
any elementary twist. Building on that, Caprace and Przytycki [3] proved that
an arbitrary S not admitting any elementary twist, and angle-compatible with
S’ is in fact conjugate to S’. This should be considered as the “base case” of
the Twist Conjecture.

In a foundational article [12] Miihlherr and Weidmann verified the Twist Con-
jecture in the case where all mg > 3. In that case there occur twists in Zo as
well as in dihedral groups. There is a more recent contribution of Weigel [15]
which improves the result of [12]. Ratcliffe and Tschantz proved the Twist Con-
jecture for chordal Coxeter groups [13]. The Twist Conjecture is also known
for the right-angled Coxeter groups (before the conjecture was stated), where
the proof is implicit in the work of Laurence [8] and is explicit in [10]. In these
papers the assumptions on mg seem an artefact of the proposed proof. In our
paper, we propose the following “step one” of a systematic approach towards
Twist Conjecture. Our first assumption below is natural from the point of view
of the statement of the conjecture, since it says that the occurring elementary
twists are as simple as possible. Our second assumption is that S is of type
FC meaning that for any 7' C S with my, finite for all ¢, € T, we have that
(T) is finite. This assumption seems less natural from the point of view of
the conjecture statement, but plays a role already in our proof of the “base
case”. More precisely, [3, §3-7] resolve (implicitly) the “base case” under FC
assumption, and [3, §8] is devoted to removing FC assumption.

MAIN THEOREM. Let S be a Cozeter generating set angle-compatible with S’.
Suppose that S admits only twists in Zo, and is of type FC. Then S’ is obtained
from S by a sequence of elementary twists and a conjugation.

We finally define an elementary twist. Let (W, .S) be a Coxeter system. Given
a subset J C S, we denote by W, the subgroup of W generated by J. We call
J spherical if W is finite. If J is spherical, let w; denote the longest element
of W;. We say that two elements s # t € S are adjacent if {s,t} is spherical.
This gives rise to a graph whose vertices are S and whose edges (labelled by m;)
correspond to adjacent pairs of S. This graph is called the defining graph of S.
Occasionally, when all mg; are finite, we will use another graph, whose vertices
are still S, but (labelled) edges correspond to pairs of non-commuting elements
of S. This graph is called the Coxeter—Dynkin diagram of S. Whenever we talk
about adjacency of elements of S, we always mean adjacency in the defining
graph unless otherwise specified.

Given a subset J C S, we denote by J L the set of those elements of S \ J that
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commute with J. A subset J C S is irreducible if it is not contained in K UK+
for some non-empty proper subset K C J.

Let J C S be an irreducible spherical subset. We say that C C S\ (J U J%)
is a component, if the subgraph induced on C' in the defining graph of S is a
connected component of the subgraph induced on S\ (J U J+). Assume that
we have a nontrivial partition S\ (J U J+) = AU B, where each component C
is contained entirely in A or in B. In other words, for all a € A and b € B, we
have that a and b are non-adjacent. We then say that J weakly separates S. In
the language of groups, this means that W splits as an amalgamated product
over Wj ;1. Note that A and B are in general not uniquely determined by .J.
We then consider the map 7: S — W defined by

(s) = s forse AUJUJE,
)= wysw;' for s € B,

which is called an elementary twist in (J) (see [1, Def 4.4]).

Coxeter generating sets S and S’ of W are twist equivalent if S” can be obtained
from S by a finite sequence of elementary twists and a conjugation. We say
that S is k-rigid if for each weakly separating J C S we have |J| < k. Thus
1-rigid means that there are no elementary twists (this was called twist-rigid
in [3]). Our Main Theorem states that if a Coxeter generating set S is 2-rigid,
of type FC, and angle-compatible to S’, then it is twist equivalent to S’. Since
twists in Zo do not change the defining graph, it follows that S and S’ have
the same defining graphs. Note that right-angled Coxeter groups are 2-rigid.

ORGANISATION. In Section 2 we recall some basic properties of the Davis
complex and geometric sets of reflections. In Section 3 we recall the notions
of bases and markings from [3]. In Section 4 we extend in two different ways
a marking compatibility result from [3]. Section 5 contains a technical result
required for the definition of complexity in Section 6. We prove the Main
Theorem in Section 7.

ACKNOWLEDGEMENTS. We thank Pierre-Emmanuel Caprace, with whom we
designed the strategy carried out in the paper. We also thank the referee
for many helpful suggestions. The second author was partially supported by
NSERC, FRQNT, and UMO-2015/18/M/ST1/00050.

2 PRELIMINARIES

2.1 DAVIS COMPLEX

Let A be the Davis complex of a Coxeter system (W, S). The 1-skeleton of A
is the Cayley graph of (W, S) with vertex set W and a single edge spanned on
{w,ws} for each w € W, s € S. Higher dimensional cells of A are spanned on
left cosets in W of remaining finite W;. The left action of W on itself extends
to the action on A. Note that A carries a natural CAT(0) metric; however this
metric will not play a role in the article.
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A chamber is a vertex of A. Collections of chambers corresponding to cosets
wWy are called J-residues of A. A gallery is an edge-path in A. For two
chambers c1,co € A, we define their gallery distance, denoted by d(ci,c2),
to be the length of a shortest gallery from c¢; to ¢ (this coincides with the
word-metric w.r.t. S).

Let » € W be an S-reflection. The fixed point set of the action of r on A
is called its wall W,. The wall W, determines r uniquely. Moreover, W,
separates A into two connected components, which are called half-spaces (for
r). If a non-empty K C A is contained in a single half-space (this happens
for example if K is connected and disjoint from W,.), then ®(W,, K) denotes
this half-space. An edge of A crossed by W, is dual to W,.. A chamber is
incident to W, if it is an endpoint of an edge dual to W,.. The distance of a
chamber ¢ to W,., denoted by d(c,W,), is the minimal gallery distance from ¢
to a chamber incident to W,..

The following fact is standard, see eg. [14, Thm 2.9].

THEOREM 2.1. Let R be a residue and let * € R and y € W be chambers.

Then there is a chamber 2’ € R on a minimal length gallery from y to x such
that @(W,.,y) = ®(W,., a’) for any reflection r fizing R.

2.2  GEOMETRIC SET OF REFLECTIONS

Let (W,S) be a Coxeter system. Let A,.s be the Davis complex for (W, S)
(“ref” stands for “reference complex”). For each reflection 7, let ), be its wall
in A,et. Note that this notation differs from the one in Subsection 2.1.
Suppose that S is ANGLE-COMPATIBLE with another Coxeter generating set
S’. Let Aamb be the Davis complex for (W,S’) (“amb” stands for “ambient
complex”). For each reflection r, let W, be its wall in A,,. Let P C S.

DEFINITION 2.2. Let {®,},cp be a collection of half-spaces of A, for p €
P. The collection {®,},cp is 2-geometric if for any pair p,r € P, the set

®,NP,. N A s a fundamental domain for the action of (p,r) on A

amb amb”
The collection {®,},cp is geometric if additionally F' = (,cp ®p N Agi)lb is
non-empty.
The set P is 2-geometric if there exists a 2-geometric collection of half-spaces
{(I)p}peP-

THEOREM 2.3 ([2, Thm 4.2]). If {®,}pecp is 2-geometric, then after possibly
replacing each ®,, by opposite half-space, the collection {®,},cp is geometric.

Theorem 2.3 justifies calling 2-geometric P geometric for simplicity. In fact,
by [5] (see also [6, Thm 1.2] and [2, Fact 1.6]), we have:

ProOPOSITION 2.4. If P is geometric, then F is a fundamental domain for the
action of (P) on Ag}lb, and for each p € P there is a chamber in F' incident to

W,. In particular, if P =S, then S is conjugate to S'.
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Note that since S is angle-compatible with S’, every 2-element subset of S is
geometric. However, this does not mean that S is 2-geometric. Nevertheless, for
S spherical, it is easy to inductively choose 2-geometric @, and by Theorem 2.3
and Proposition 2.4 we obtain the following.

LEMMA 2.5. If S is spherical, then it is conjugate to S’.

COROLLARY 2.6. Let J C S be spherical. Then J is conjugate to a spherical
J' S’ In particular, J is geometric, and if it is irreducible, there exist exactly

2 fundamental domains F for the action of (J) on A 0)

amb @8 in Proposition 2.4.

Proof. Let P C S be maximal spherical containing J. Then (P) is a maximal
finite subgroup of W. By [1, Thm 1.9], we have that (P) is conjugate to (P’)
for a maximal spherical P’ C S’. Thus we can assume without loss of generality
that P =S and P’ = S’. It now suffices to apply Lemma 2.5. O

2.3 DECOMPOSITION LEMMA

For J C S let J* be the set of those elements of S\ J that are not adjacent
to any element of J.

LEMMA 2.7. Let S be 2-rigid. Let s,t € S be adjacent and non-commuting,
and let r € S be neither adjacent to s nor to t. Suppose that t and r are in

distinct components of S\ (sUst), and that s and r are in distinct components
of S\ (tUtt). Let J = {s,t}. Then S =JUJ+tUJ>®.

Proof. Suppose by contradiction that the collection of vertices of S\ (J U J*4)
that are adjacent to s or to ¢ is non-empty. Since S is 2-rigid, there is a shortest
edge-path v in the subgraph induced on S\ (JUJ*) that connects r to a vertex
p € S\ (JUJL) adjacent to s or t. We assume without loss of generality that p
is adjacent to t. Since 7 and ¢ are in distinct components of S\ (sU st), there
is a vertex p’ of v in s*. If p # p/, then the subpath 7/ C ~ from r to p’ is
a shorter path from r to a vertex adjacent to s or ¢, which is a contradiction.
If p = p/, then since r and s are in distinct components of S\ (¢t Utt), there
exists a vertex p” of v/ = v in t-. If p” # p, then we can reach a contradiction
as before. If p”" = p, then p € J+, which is impossible by our choice of v. [

3 BASES AND MARKINGS

Henceforth, in the entire article we assume that S 1S TRREDUCIBLE, NON-
SPHERICAL, AND OF TYPE FC. (The reducible case easily follows from the
irreducible.)

In this section we recall, in simplified form, several central notions from [3].
Let W, S, Ajer, Vi (and later S’ A, W) be as in Section 2.2. The aim is to
introduce several natural choices for half-spaces for s € S in A, which will
be done in Definition 3.6. Let ¢y be the identity chamber of A ..
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3.1 BASES

DEFINITION 3.1. A base is a pair (s, w) with core s € S and w € W satisfying
(i) w = j1---jn where j; are pairwise distinct elements from S\ {s},

(i) d(w.co,Vs) =n,

(iii) the support J = {s,j1,...,jn} is spherical.

Note that in the language of [3, Def 3.1 and 3.6] our base would be called a sim-
ple base with spherical support. Indeed, Condition (ii) from [3, Def 3.1] saying
that every wall that separates w.cy from ¢y intersects ), follows immediately
from our Condition (iii); simplicity from [3, Def 3.6] is our Condition (i). Note
that our Condition (ii) implies that J is irreducible.

In [3, Lem 3.7] and the paragraph preceding it, we established the following.

REMARK 3.2. (i) If J C S is irreducible spherical and s € J, then there
exists a base with support J and core s. Namely, it suffices to order the
elements of J \ {s} into a sequence (j;) so that for every 1 < i < n the
set {s,J1,...,4:} is irreducible. Then (s, j1 ...jn) is a base.

(ii) The core s and support J determine the base (s,w) uniquely. Hence we
sometimes write a base as (s, J), or even just J if the core is fixed. When
J = {s}, we often write s instead of {s} for simplicity.

LEMMA 3.3. Let J C S be irreducible spherical, and let F' be a fundamental
domain for (J) in AD guaranteed by Corollary 2.6. Let s € J and define

amb

w e W via (s,w) = (s,J). Then we have @(Ws, F) = &(Ws,w.F).

Proof. First suppose S = S’. If ¢y € F, then by Definition 3.1(ii) we have
D(Ws, o) = P(Ws, w.cp), as desired. Otherwise, we have wjy.co € F. The
half-spaces ®(Ws,wy.co) and ®(Ws, wwy.cp) are opposite to ®(WVs, o) and
D (Ws, w.cp), so they coincide as well.

If S # 5, then by Corollary 2.6 we have gJg~! = J', where J' is a spheri-
cal subset of S’. Then (gsg~!,gwg~!) is a base for S’, and by the previous
paragraph we have ®(W,s,-1,9.F) = ®(W,,-1, gw.F). Translating by g~ we
obtain the statement in the lemma. O

3.2 MARKINGS

DEFINITION 3.4. A marking is a pair u = ((s,J), m), where (s,J) is a base
and where the marker m € S is not adjacent to some element of J. The core
and the support of the marking . are the core and the support of its base.

Our marking satisfies (but is not equivalent to the marking defined by) [3,
Def 3.8]. To see that, note that by [3, Rem 3.12], we have that w)), is disjoint
from ).
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REMARK 3.5. Let (s,J) be a base and m € S\ (JU J+). If JU {m} is not
spherical, then since S is of type FC, the pair ((s,J),m) is a marking. In
particular, since S is irreducible non-spherical, we have that for each s € S
there exists a marking with core s, since we can start with J C .S maximal irre-
ducible spherical containing s. Similarly, for each s € I C S with I irreducible
spherical, there exists a marking with core s and support containing I.

The following picks up the geometry of the walls W, for s € S inside the
ambient complex for S’.

DEFINITION 3.6. Let = ((s,w), m) be a marking. Since w), is disjoint from
V,, the element wmw™'s is of infinite order, and hence also wW,, is disjoint
from Ws. We define ®# = &(Ws, wW,,), which is the half-space for s in Aymp
containing wW,y,.

The next result is essentially [3, Prop 5.2]. Except for Lemma 2.5 this is the only
place where we use angle-compatibility (instead of reflection-compatibility).
Note that our markings are particular markings of [3], but the proof of [3,
Prop 5.2] only uses such markings if S is of type FC.

PROPOSITION 3.7. Suppose that P C S is irreducible and non-spherical. Let
p1,p2 € P. Suppose that for each i = 1,2, any marking p with core p; and
support and marker in P gives the same ®,, = ®F . Then the pair {®,,, ®p, }
1§ geometric.

We summarise Proposition 3.7, Theorem 2.3, and Proposition 2.4 in the fol-
lowing.

COROLLARY 3.8. If for each s € S any marking . with core s gives rise to the
same D! then S is conjugate to S’.

Also note that since S is of type FC, by [3, Lem 4.2 and Thm 4.5] a 1-rigid
subset P C S satisfies the hypothesis of Proposition 3.7.

COROLLARY 3.9. If P C S is 1-rigid, then it is geometric.

4 COMPATIBILITY OF MARKINGS

Let S, S", W, Ajer and Ay, be as in Section 3. The following trivially coincides
with [3, Def 4.1].

DEFINITION 4.1. Let ((s,J),m), ((s,J'),m’) be markings with common core.
We say that they are related by move

(M1) if J = J’, and the markers m and m’ are adjacent;

(M2) if there is j € S such that J = J'U{j} and moreover m equals m’ and is
adjacent to j.
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We will write ((s,J),m) ~ ((s,J")

, m') if there is a finite sequence of moves of
type M1 or M2 that brings ((s,J)

,m) to ((s,J),m").
The following is a special case of [3, Lem 4.2].

LEMMA 4.2. If markings p and p' with common core s are related by move M1
or M2, then ®# = &',

The goal of this section is to provide two generalisations of [3, Thm 4.5].

PROPOSITION 4.3. Let I C S be irreducible spherical. Suppose that no ir-
reducible spherical I' 2 I weakly separates S. Let py = (Ji,m1) and ps =
(J2,m2) be markings with common core s € I and such that I C Jy,Jo. More-
over, fori=1,2, define K; = J; \ (IUI+) when I C J;, and K; = {m;} when
J; = 1. Suppose that K and Ky are in the same component C of S\ (I UI).
Then py ~ po. Consequently @1 = @H2.

Henceforth we will frequently use the FC assumption to say that J C S is
spherical if and only if it induces a clique in the defining graph. We will
not mention this each time explicitly to be able to focus on the main line of
reasoning.

Proof. We follow the proof of Wojtaszczyk [3, App C], and argue by contradic-
tion. Let I be maximal irreducible spherical satisfying the hypothesis of the
proposition but with g1 % ps.

The I-distance between u; and pso is the length of a shortest edge-path in (the
subgraph induced on) C between a vertex of K; and a vertex of K. (Such
a path exists by our hypotheses.) Among pairs 1, 2 as above choose a pair
with minimal I-distance.

If the I-distance between p; and s is 0, then first consider the case where one
of J;, say Ji, equals I. If also Jo = I, then {m1} = K7 = K5 = {ms} yielding
{1 = p2, which is a contradiction. If T C Jy, then {m;} = K1 C Ky C J; and
hence J; U {m1} C Jo is spherical, contradiction. It remains to consider the
case where I C Ji, Jo. Then J; NJo\ (I UT1) # () giving a contradiction with
the maximality of I.

Now assume that the I-distance between 11 and uo is 1. First consider the case
where one of J;, say Ji, equals I. If also Jo = I, then m; and ms are adjacent.
Thus py and pg are related by move M1, which is a contradiction. If I C Js,
then there exists ko € Jo \ (I U 1) such that ks and m; are adjacent. Thus
is related to (I U {k2}, m1) by move M2. However, (I U{ka}, m1) ~ p2 by the
maximality of I, which is a contradiction. It remains to consider the second
case where I C J1, Jo. Then there exist k; € J;\ (JUI+) such that k; and ks are
adjacent. Note that I U {k1,k2} is spherical and irreducible. By Remark 3.5,
there exists a marking v with core s and support containing I U {k1,k2}. By
the maximality of I, we have p1 ~ v ~ uo, which is a contradiction.

If the I-distance between p; and po is > 2, let v be a shortest edge-path
in C' connecting a vertex k1 € K to a vertex ko € K5. Let k be the vertex
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on ~ following k;. If I U {k} is spherical, then again by Remark 3.5, there
exists a marking v with core s and support containing I U {k}. Since we
chose p1 and po to have minimal I-distance, we obtain p; ~ v ~ uo, which
is a contradiction. If 7 U {k} is not spherical, then (I, k) is a marking, hence
analogously 1 ~ (I, k) ~ ps, which is a contradiction. O

The following more technical proposition is used only in Case 4 of the proof of
Lemma 5.3 and we recommend to skip it at a first reading.

DEFINITION 4.4. Let P C S be irreducible non-spherical. We say that P is
1-rigid in S if for any irreducible spherical L € S with LN P # (), all elements
of P\ (LU L") are in one component of S\ (LU L1).

PROPOSITION 4.5. Let P C S be 1-rigid in S. Then for any markings u1 and
o with supports and markers in P and common core p, we have 1 ~ pso.
Consequently ®* = @2 and by Proposition 3.7, P is geometric.

In the proof we need the following terminology.

DEFINITION 4.6. Let P be 1-rigid in S. Note that P\ (L U L*) # ) for any
irreducible spherical p € L C S. A marking = ((p, J), m) is (p, P)-admissible
(or shortly admissible if p and P are fixed) if

1. pe P, and

2. if L C S is irreducible spherical such that p € L and J ¢ L, then
J\ (L U L*) (which is non-empty) and P\ (L U L*) are in the same
component of S\ (LU Lt), and

3. if L C S is irreducible spherical such that J C L, then m and P\ (LUL™)
are in the same component of S\ (L U L1).

A base (p,J) is (p, P)-admissible (or admissible) if it satisfies Conditions (1)
and (2).

Note that markings with core p and supports and markers in P, such as 1, us
in Proposition 4.5, are (p, P)-admissible, but not vice-versa. The class of (p, P)-
admissible markings is a crucial ingredient in the proof of Proposition 4.5. In
the remaining part of the section we fix P 1-rigid in S, and we fix p € P.

LEMMA 4.7. Suppose that (p, J) is admissible. Letv = ((p, J'),m) be a marking
such that J C J', JJ\J C P and m € P. Then v is admissible.

Note that such v exists for each .J. Namely, one can take J’ D J to be maximal
irreducible spherical with J’\ J C P. Then take m inside P\ (J'UJ'"), which
is non-empty since P is irreducible non-spherical.

Proof. Condition (1) is immediate. For Condition (2), let L C S be irreducible
spherical and such that p € L and J' € L. If J € L, then () # J \ (LU LY) C
J'\ (LUL™). Since (p, J) is admissible, Condition (2) holds for such L and J'.
If JC L, then J'\ (LULY) CJ"\ JC P, hence Condition (2) holds for such
L and J'. Condition (3) is immediate, since we have m € P. O
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Proof of Proposition J.5. Note that both p; and py are admissible. Hence to
prove the proposition it suffices to show that for any two admissible markings
11, 2 with common core p, we have 1 ~ .

We argue by contradiction. Let I > p be maximal irreducible spherical such
that there are admissible markings p; = (Ji,mq) and pa = (J2,mse) with
I C Ji,Jo, and py o4 po. We define Ky, Ko, and the I-distance between uq
and pg as in the proof of Proposition 4.3. Since both p; and po are admissible,
their I-distance is finite (set L = I in the definition of admissible marking).
Among pairs p1, ps as above choose a pair with minimal I-distance.

If the I-distance is 0, then either p; = po, or one of J; U {m;} is spherical, or
there is irreducible I’ 2 I contained in both J; and Js, contradiction. Suppose
now that the I-distance is 1. There are two cases to consider.

CASE 1: J; =1. If Jo = I, then u; and ps are related by move M1, contradic-
tion. Now we assume I C Jo. Pick k2 € K5 adjacent to my. Then I’ = TU{ky}
is spherical and irreducible. Moreover, p; ~ (I’,m1) by move M2. We claim
that (I’,mq) is admissible. Then (I’,m1) ~ p2 by the maximality of I, which
yields a contradiction. Now we prove the claim. For Condition (2), let p € L
and I' ¢ L. If I ¢ L, it suffices to use Condition (2) in the admissibility of
p1. Now suppose I C L. Then I’ \ (LU Lt) = {ko}. By Condition (2) in the
admissibility of z2, we have that ko is in the same component of S\ (L U Lt)
as P\ (LU L"), as desired. Condition (3) follows immediately from Condition
(3) in the admissibility of p;.

CASE 2: [ C Jiy AND I C Jy. For i = 1,2, pick k; € K; such that & and ko
are adjacent. Then J = I U {ky, ka} is spherical and irreducible. Tt is easy to
show that J is admissible following the argument from Case 1. Let v be an
admissible marking constructed from J as in Lemma 4.7. Then p; ~ v ~ ps
by the maximality of I, which yields a contradiction.

Finally suppose that the I-distance d between p; and pug is > 2. Let v be a
shortest edge-path in the subgraph induced on S\ (I UI~) starting at k1 € K
and ending at ko € Ks. Let k be the vertex on « following k. If J =T U {k}
is not spherical, then let v = (I, k), otherwise let v be defined from J as in
Lemma 4.7. Since the [-distance between v and puq,ps is < d, to reach a
contradiction it suffices to prove that v is admissible.

Consider first the case where J is spherical. By Lemma 4.7, it suffices to
prove that J is admissible. Let p € L and J ¢ L. If I ¢ L, then we use the
admissibility of y;. Otherwise, we have J\ (LUL") = {k}. Since v is a geodesic,
~v N L is empty, a vertex, or an edge. Moreover, y N L+ = (), since yN I+ =0
and I C L. Thus there is a subpath of v from k to k; or ko outside L U LL.
Since p1, 12 were admissible, k is in the component of S\ (L U Lt) containing
P\ (LUL%Y), as desired.

If J is not spherical, then v = (I,k). Condition (2) for v follows from the
admissibility of ;. For Condition (3), let I C L. As before, there is a subpath
of v from k to k; or ky outside LUL". Thus, again, since u1, i were admissible,
k is in the component of S\ (L U L*) containing P\ (L U L*). O
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5 GOOD VERTICES

In this section we introduce the notion of a good vertex ¢ in an irreducible
spherical J C S w.r.t. » € S\ J, and the related fundamental domain E; , for

the action of J on Aggb. Then in Proposition 5.2 we prove that E; , does not
depend on ¢. This will be crucial for the definition of the complexity of S w.r.t.
S’ in Section 6. Let S, S, W, Ao and A, be as in Section 3. THROUGHOUT
THE REMAINING PART OF THE ARTICLE, WE WILL ALSO ASSUME THAT S IS
2-RIGID.

DEFINITION 5.1. Let J C S be irreducible spherical and r € S\ J. A vertex
t € J is good with respect to r, if t is adjacent to r, or J\ (tUt") is non-empty
and in the same component of S\ (tUt') as r. Note that being good depends
on J.

Let I C S be spherical. J is good with respect to I if there exist non-adjacent
t € J and r € I such that ¢ is good with respect to r. Then let E;, be that

fundamental domain from Corollary 2.6 for the action of J on Ag}lb that is
contained in ®(W,;, W,.).

PROPOSITION 5.2. Let J C S be irreducible spherical and I C S be spherical.
Suppose that we have pairs of non-adjacent vertices (t,r) and (t',7") in J x I
such that t is good with respect to v, and t' is good with respect to v'. Then
Et,r - Et’,r’-

The proof of Proposition 5.2 is the most technical part of the article, and we
recommend to skip it at first reading. We need a preparatory lemma.

LEMMA 5.3. Let t,r € S be non-adjacent. Let J C S be irreducible spherical
containing t. Let jo € J and let w = (jo,j1,...) be the geodesic edge-path
in the Coxeter—Dynkin diagram of J that starts at jo and ends at t (such a
geodesic is unique since the Coxeter—Dynkin diagram of a spherical subset is
a tree). Let j, be the first vertexr of w not adjacent to r (possibly j, = jo
or jn = t). Suppose that both t,jo € J are good w.r.t. r. Then we have
q)(jnjn—l o 'jlem Et,r) = (I)(]n]nfl c 'jleo;W'r‘)'

Proof. We write £ = FE;, to shorten the notation.

We claim that for any non-commuting 7, € J at least one of j,j’ is good
(w.r.t. r; we will skip repeating this in this proof). To justify the claim, if both
j and j’ are not good, then r and j are in distinct components of S'\ (5’ Uj’J‘),
and r and j' are in distinct components of S\ (jUj1). If {4, '} C J, then there
is an element in S\ ({4,j'} U {4, 5'}*) adjacent to j and j’, which contradicts
Lemma 2.7. If {4, '} = J, then one of j,j’ equals ¢, which was assumed to be
good, contradiction. This justifies the claim.

If jo = t, then there is nothing to prove. Otherwise, we induct on the length
of w and assume that the conclusion of the lemma holds for all good j; distinct
from jo. By the claim either j; or js is good. We look first at the situation
where j; is good. There are four cases to consider.
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CASE 1: BOTH jy AND j; ARE NOT ADJACENT TO 7. Since j; is good, jo
it is in the same component of S\ (j; U ji-) as 7. Thus by Proposition 4.3
applied with I = {j;1} and the assumption that S is 2-rigid we have (ji,r) ~
((41,70)s7). Analogously (jo,r) ~ ((jo,Jj1),r). Let ¥ C Aump be the union
of the two sectors of the form ®; N ®;, for {®,,,P,, } geometric. Denoting
by, = (I)(leﬂwr)a from (j1,7) ~ ((j1,Jo), ) we obtain by, = @(lev.jOwT)a
and so jo®; O W,. Consequently W, C ®;, Njo®;, C XU joX. Analogously
(Jo,7) ~ ((jo,71),7) implies W, C ¥ U 71X, and so W, C . By induction
assumption, @W,,, E) = ®(W;,, W,.), thus E and W, are in the same sector
of ¥, and it follows that ®(W;,, E) = ®(W;,, W,).

CASE 2: 71 IS ADJACENT TO 7, BUT jp IS NOT ADJACENT TO r. Then n = 0.
Let j,, be the first vertex of w distinct from jy not adjacent to 7.

First, we claim ®(joW,,,E) = ®(joW,,,W,). Indeed, since (j1,j0) and
(j1,7J2 - - - jm) are bases, by two applications of Lemma 3.3 we have

@(WjujO-E) = @(leﬂE) = (I)(WjujQ e 'jm-E)v

which equals ®(Wj,, ja - - - jmW,) by induction. Furthermore, ((j1,72 - Jm),T)
is a marking and j, is adjacent to jo. Thus by Proposition 4.3 and the fact
that S is 2-rigid, we obtain

((j17j2 o 'jm)vr) ~ ((jlij)ar)a

and the claim follows.

Let @,,,®;, be the half-spaces for jo, ji containing E and let A = ®;, N ®;,.
Since W, intersects W;,, by the claim we have that W, intersects A. It follows
that @(Wj;,, E) = @(Wjy, Wr).

CASE 3: jo IS ADJACENT TO 7, BUT j; IS NOT ADJACENT TO 7. By in-
duction, we have ®(W;,, ) = ®(W;,,W,.). We need to show ®(jiW,,, E) =
O (j1Wjy, Wr). To do this, it suffices to reverse the argument in the previous
paragraph.

CASE 4: BOTH jy AND j; ARE ADJACENT TO r. Let P = {jo,j1,.-,Jn, "}
We claim that P is geometric. Indeed, by Proposition 4.5, to justify the claim
it suffices to prove that P is 1-rigid in S. We have that P is irreducible and
non-spherical. Now let L C S be irreducible spherical with L N P # ). Since S
is 2-rigid, it suffices to consider L = {l} a singleton in P. Note that in P the
only two non-adjacent elements are r and j,,. Thus the cases [ = r, j,, are clear.
It remains to consider the case [ € K = P\ {r,jn}. Since K is irreducible and
|K| > 2, we have K \ (lUl*) # (. Consequently, {l} does not weakly separate
P, verifying the claim.

By Theorem 2.3 and Proposition 2.4, there are half-spaces
{®j,, ®j,, -, ®;,, .} whose intersection contains a vertex z incident to
W,. Thus by induction we have

P(Jnin—1-J2Wi, E) = ®(jnin—1---J2Wj, Wr) = ®(jnin-1- - jaWj,, ).
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Let F and F,n (resp. V and V,u) be the two fundamental domains for
{josd1,--+,Jn} (vesp. {ji,...,4n}) from Corollary 2.6. Assume without loss
of generality I' C V. Then x and E are both inside F' or Fyy, say I, otherwise
they would be separated by j,jn—1---j2W;j,. It follows that both z and E
are in V. In particular, ®(jnjn—1- - 51 Wi, E) = ®(Jnin-1- - j1Wj,, ), which
equals ®(jnjn—1---J1Wjy, Wr), as desired.
Now we turn to the situation where j; is not good, hence js is good. Since
j1 is not good, it is not adjacent to r, and furthermore r is not adjacent to
Jo, nor to ja. Since jo is good and S is 2-rigid, by Proposition 4.3 we obtain
d(Wj,, Wr) = ®(Wj,, 1W,). By induction, we have @(W,,, W,) = (W, E).
Thus Lemma 5.4 below gives ®(W;,,joW,) = ®(W;,, E). Since S is 2-rigid,
by Proposition 4.3 we have (I)(le,jgwr) = (I)(le ,JojaWr) = (I)(le , JoWr),
and finally ®(W;,, W,.) = ®(Wj,, j1 W), since jo is good. Applying Lemma 5.4
with jo in place of jo we obtain ®(W,,, W;) = ®(Wj,, E), as desired.

O

LEMMA 5.4. Let j1,j2 € S be adjacent and non-commuting. Suppose that
r € S is not adjacent to jo and ®(Wj, , W,) = ®W;,,51W,). Let F be a
fundamental domain for (j1,j2) in Ag&b from Corollary 2.6. Then we have

DWj,, Wy) = PW;,, F) if and only if DWW, , j2aWr) = ®(W;,, F).

Proof. Denote ®,, = ®(W;,,W,), and choose ®,, so that ®;, and P, are
geometric. Let A = ®;, N®,,. Since DW,,, W,.) = ®(W,,,51WV;), as in Case 1
of the proof of Lemma 5.3 we obtain W, C A U jiA. Note that A U j1A is
contained entirely in one of the half-spaces for Wj;,, and in one of the half-
spaces for joW;,. Thus ®(W;,, W,) = &(W),,, F) if and only if F C A if and
only if ®(joW;,, W;) = ®(j2W;,, F). By Lemma 3.3 the latter is equivalent to
DWWy, joWr) = 2W;,, F). O

We are finally ready for the following.

Proof of Proposition 5.2. We prove the proposition by induction on the dis-
tance between ¢ and ¢’ in the Coxeter—Dynkin diagram of J. If ¢ = ¢/, then
since W, NW,, # (), the proposition is clear. If » = 7/, then we apply Lemma 5.3
with jo = ¢/, where n = 0. By Lemma 5.3, we have @(Wy/, E; ) = Wy, W,)
and thus By , = E; ., as desired.

Now we assume t # t’ and r # /. If t and ' are non-adjacent, then ¢ is good
with respect to 1’ (since r and 7’ are adjacent). Thus we can pass from (¢,r)
to (t',r") via (t,7') by the previous discussion. The case where ¢’ and r are
non-adjacent is analogous. Thus it remains to consider the case where ¢ and r’
are adjacent, and ¢’ and r are adjacent.

We first look at the case where ¢ and ¢ do not commute. We consider
P = {t,t',r,7"}. Note that the defining graph of P is a square, thus P is
1-rigid. Hence P is geometric by Corollary 3.9. Let F' C A;?r)lb be the funda-

mental domain for (P) Ag}lb from Proposition 2.4. Let V C Ag}lb be the
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fundamental domain for (t,¢') that contains F. Since ¢t and ¢’ do not com-
mute, V' is the only fundamental domain for (¢,t') contained in ®(W;, W,.) and
the only one in ®(Wy,, W,~). Thus E;, C V and Ey ,» C V. It follows that
Et,r = Et’,r’-

Now we deal with the general situation. We consider the geodesic edge-path
(t:), from to = ¢ to t, =t in the Coxeter—Dynkin diagram of J (which is a
tree). Let 4’ be minimal such that ¢; is not adjacent to 7" and ¢ maximal such
that ¢; is not adjacent to r. Then ¢, is good respect to 7’ (since r’ and ¢, 4
are adjacent) and ¢; is good with respect to r (since r and ¢;y; are adjacent).
Note that ¢/ > 1 and i < n—1. If i/ < n—1, then by the induction assumption
we can pass from (t,7) to (¢/,7') via (t;,7’). The case ¢ > 1 is analogous. Thus
in the remaining part of the proof we assume 7 = n and 7 = 0, in other words,
t; is adjacent to both r and r’ for each 1 < ¢ <n — 1.

Let P = {to,...,tn,r,7"}. Note that the defining graph of P is a join of a
4-cycle (whose consecutive vertices are t,7’,7,t') and a complete graph (whose
vertices are t1,...,t,—1). Since (¢;) was an edge-path in the Coxeter—Dynkin
diagram, it is easy to prove that the defining graph of P is 1-rigid. Thus P
is geometric by Corollary 3.9. Let F' C Ag}lb be the fundamental domain for

(P) ~ A;?r)lb from Proposition 2.4. Let V C A;?r)lb be the fundamental domain
for (to,...,tn) that contains F. Since {to,...,t,} is irreducible, V is the only
fundamental domain for (to,...,t,) contained in ®(W;, W,) and the only one

in ® Wy, W,+). Thus E;, CV and Eyv ,» C V. Hence E;, = Ey . O

6 COMPLEXITY

In this section, we introduce the complexity of the Coxeter generating set S
w.r.t. S’. We keep the setup from Section 5. To start, we need to describe
particular subsets of pairs of maximal spherical residues.

DEFINITION 6.1. Let J C S be a maximal spherical subset. By Corollary 2.6,
W stabilises a unique maximal cell o; C A,np. Let C; be the collection of
vertices in oy and let D; be the elements of C; incident to each W; for j € J.

When J is irreducible, then by Corollary 2.6, it is easy to see that D; consists
of two antipodal vertices. In general, let J = J; U---UJg be the decomposition
of J into maximal irreducible subsets. Let o5 = o1 X -+ X o be the induced
product decomposition of the associated cell. Then D is a product of pairs of
antipodal vertices {u;, v; } for each o;. Let m;: Dy — {u;,v;} be the coordinate
projections.

DEFINITION 6.2. For each ordered pair (J,I) of maximal spherical subsets
of S, we define the following subset E;; C D;. First, for each 4, consider
the following £ ; C D;. If J; is not good with respect to I, then we take
EY% = Dy. If J; is good, then let ¢ and r be as in Definition 5.1. Then we
take B ; = C;NEy, (which is contained in D and equal m; ' (u;) or ;' (v;)).
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Note that EgJ does not depend on t and r by Proposition 5.2. We define
Ejr=Ej;n---NnE%5,.

DEFINITION 6.3. We define the complexity of S, denoted K(5), to be the or-
dered pair of numbers

(’Cl(s)’ ’C2(S)) = (ZJ#I d(Cy,Cr), Z.];é] d(Eyr, EI,J))a

where J and I range over all maximal spherical subsets of S, and E ; is defined

in Definition 6.2. Note that the distance d is computed in A;ﬁb and so we have
K1(S") = K2(S") = 0, since ¢y € C,co € Ey 1 for all maximal spherical subsets
JIC S,

For two Coxeter generating sets S and S;, we define IC(S,) < K(9) if K£1(S;) <
IC1(S), or Ky (S-,—) = ICl(S) and ’CQ(S-,—) < ICQ(S)

7 PROOF OF THE MAIN THEOREM

We keep the setup from Section 5. Note that since S is 2-rigid, an elementary
twist does not change its defining graph. Thus Main Theorem reduces to the
following.

THEOREM 7.1. Let S be angle-compatible with S’. Suppose that S is 2-rigid
and of type FC. Assume moreover that S has minimal complexity among all
Cozeter generating sets twist-equivalent to S. Then S is conjugate to S’.

The proof will take the remaining part of the article, and we divide it into
several steps. For u = ((s,w), m) a marking with support J, we define K, =
J\ (sUst)if J # {s}, and K, = {m} otherwise.

By Corollary 3.8, to prove Theorem 7.1 it suffices to show that for any markings
p and g/ with common core s € S, we have ®/ = (I)’s‘/. Note that for each
component A of S\ (s U st), there exists a marking 4 with K, C A. By
Proposition 4.3 and the fact that S is 2-rigid, if K, C A, then & = &/
Thus each component A of S\ (s U st) determines a half-space ®4 := ®* for
s. Two components A; and Ay of S\ (s U st) are compatible if @4, = ®4,.
We will show that all the components of S \ (s U s*) are compatible. Fixing
s € S, we shall divide these components into several classes and conduct a case
analysis.

7.1 BIG COMPONENTS ARE COMPATIBLE

DEFINITION 7.2. A component A of S\ (s U st) is big if there is a € A not
adjacent to s. Otherwise A is small.

LEMMA 7.3. Any two big components are compatible.

Proof. We argue by contradiction and assume that the big components of S\
(sUst) can be divided into two non-empty families {A} and {By} such that
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all @4, coincide (call that half-space ®4) and are distinct from all ®p, , which
also coincide (call that half-space ®5). Let B be the union of all the By. Let
7 be the elementary twist that sends each element b € B to sbs and fixes other
elements of S. For a contradiction, we will prove K1 (7(5)) < K1(5).

Let J C S be maximal spherical. J is twisted if it contains an element of B
and s ¢ J. A twisted J exists, since we can take any maximal spherical .J
containing b € B not adjacent to s. Note that if J is twisted, then for each
J € J we have W, ;) = sW;, and hence C ;) = s.C;. Moreover, there is an
element b € J\ {s} not adjacent to s, since otherwise JU{s} would be spherical
contradicting the maximality of J. Then ®(Ws, Cy) = W, W,) = Dp.
Consider now maximal spherical I C S that is not twisted. If s € I, then
Criy=sCr=Cr. If s ¢ I, then IN B =0, and we also have C,;) = Cr. As
before, there exists such I with s ¢ I. Moreover, then there is a € I\ {s} not
adjacent to s, and ®(Ws, Cr) = (W, W,) = P 4.

Let J,I C S be maximal spherical. If both J and I are twisted or both are
not twisted, then d(Cy,Cr) = d(Cr (), Cr(1)). Now suppose that J is twisted
and [ is not twisted. If s € I, we still have d(C;,Cr) = d(Cr5), Crp))-
If s ¢ I, then since ®p # Py, we have P(W;,Cy) # ®(Ws,Cr). Hence a
minimal length gallery S from a chamber in C; to a chamber in C; has an
edge dual to W,. Removing this edge from § and reflecting 8 N ®(Ws, C)
by s, we obtain a shorter gallery from a chamber in s.C; to a chamber in Cf.
Thus d(C (), Cry) = d(s.Cy,Cr) < d(Cy,Cr). Consequently Ki(7(S5)) <
K1(S). O

7.2 EXPOSED COMPONENTS

DEFINITION 7.4. A small component, A is ezposed if there is t € A and r inside
a different component of S\ (sUs~) such that s and r are in distinct components
of S\ (tUth).

LEMMA 7.5. If there ezists an exposed component, then all components are
compatible.

Proof. Let t and r be as in Definition 7.4. Note that r is adjacent to neither s
nor t. By Lemma 2.7, none of the elements of S\ ({s,t} U {s,t}1) is adjacent
to s or t. It follows that there is only one small component of S\ (sUs"), and
this small component equals {t}.

Observe that a maximal spherical subset J C S contains s if and only if it
contains ¢t. Indeed, if say s € J, then each element of J \ {s} is adjacent to s.
Hence J C {s,t} U {s,t}* by Lemma 2.7. If t ¢ J, then J U {t} is spherical,
which contradicts the maximality of J. We say that J is exposed if {s,t} C J.
Let W, ) be the union of all the walls in A, for the reflections in the dihedral
group (s,t). Since S is 2-rigid, the graph induced on S\ ({s,t} U {s,t}1)
is connected. Thus all the walls W, for r € S\ ({s,t} U {s,t}1) lie in the
same connected component A of Auyp, \ Wy, ¢y. Consequently, all D for J
not exposed lie in A. Let X C A,np be the union of the two sectors of the
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form &, N @, for {P,, D;} geometric. Assume first A C X. Then (W, A) =
O (Ws, tA), hence W, W,) = ®(W;,tW,). These half-spaces correspond
to markings p = ((s,t),r) with K, = {t} and ¢/ = (s,r) with K, = {r}.
Consequently, the unique small component {¢} of S\ (sUs") is compatible with
a big component. In view of Lemma 7.3, all the components are compatible.
It remains to consider the case A ¢ .

Let 75 (resp. 7¢) be the elementary twist that sends ¢ to sts (resp. s to tst) and
fixes other elements of S. For any w € (s,t), composing appropriately 75 and
7: (while keeping the notation s,t for the images of s,t under the twist), we
obtain 7 = 7, sending s to wsw™!, t to wtw ! and fixing other elements of S.
We will justify the following.

1. WT(S) = wWW, and W,,-(t) = wW;

2. if J is maximal spherical that is exposed (resp. not exposed), then D, =
’w.D.] (resp. D.,.(J) = D.]);

3. if J and I are both maximal spherical and exposed (resp. not exposed),
then By -1y =w.Ey 1 (vesp. Erp) ) = E1);

4. if J is maximal spherical that is exposed and I is maximal spherical that
is not exposed, then ET(J),T(I) = ’LU.EJJ and ET(I),T(J) = E[”].

Here (1) is immediate and implies (2), while (3) follows from (2) and Defini-
tion 6.2 (note that an elementary twist does change the defining graph, so it
does not, change the good subsets of J and I). Now we prove (4). Note that for
each j € J, we have W; N\ W, ;) # 0. Moreover, 7 fixes each element of I. Thus
for non-adjacent 7 € I and j € J, the walls W; and W, ;) are in the same half-
space for i = 7(i). Hence it follows from Definition 6.2 that E_ () s = Er,J.
It remains to verify the first equality of (4). Note that the elements of J\ {s, ¢}
are fixed by 7, and {s,t} C J is maximal irreducible that is not good in view
of Definition 7.4 and Lemma 2.7. Thus E.(j (1) = Dy = w.Dj = w.Ey g,
finishing the proof of (4).

Coming back to the case A ¢ X, choose 7 = 7, a composition of twists
as above so that wX contains A. We will reach a contradiction by show-
ing K1(7(S)) = K1(S) and Ko(7(S)) < K2(S). The equality follows from
the fact that for any maximal spherical J C S, we have C. ;) = C;. Now
we verify the inequality. Consider maximal spherical subsets J, I C S. If
both J and I are exposed or both are not exposed, then by (3) we have
d(Er(5),(1)s Er () r(0)) = d(Eg1, E1 ).

Now we assume that J is exposed but I is not exposed. Let 3 be a shortest
gallery from a chamber y € E} ; to achamber x € E; ;. By angle-compatibility,
{s,t} is conjugate to {s’,t'} C S’. By Theorem 2.1, we can assume that (3 is
a concatenation of galleries 3’ and 8”, where 8’ is a minimal gallery from y to
some chamber (call it ') in the {s’,¢'}-residue R containing x. Furthermore,
B’ C A. Note that z # 2/ since A ¢ X.
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We have 2’ = w.z or ¥’ = w.Tans, where x,,; is the chamber antipodal to x
in R. Note that zan € Ey 1, since {s,t} is an irreducible component of J that
is not good with respect to I. Thus from (4) we deduce 2’ € E.(j (1) and
Yy € E,,-([)y,,.(.]). Consequently d(ET(J),T(I)aET(I),T(.])) < d(EJ,[,E[7J), giving
Ka(7(5)) < Ka(S9). O

7.3 NON-EXPOSED SMALL COMPONENTS

To prove Theorem 7.1, it remains to consider the case where all components of
S\ (sUst) are big, or small and not exposed. We argue by contradiction and
assume that the components of S\ (sUs") can be divided into two non-empty
families {A;} and {By} such that all ®4, coincide and are distinct from all
®p,, which also coincide. Let A (resp. B) be the union of all By, (resp. Ay).
By Lemma 7.3, we can assume that all the big components (if they exist) are
in A. Let 7 be the elementary twist that sends each element b € B to sbs and
fixes other elements of S.

Let J C S be a maximal spherical subset. J is twisted if it contains an element
of B. In that case, s is adjacent to each element in J since B is a union of small
components. Consequently J U {s} is spherical so s € J by the maximality of
J.

In particular, 7 preserves all Cy, and hence K1 (S) = K1 (7(S)). For a contra-
diction, we will prove Ka(7(S)) < K2(S).

Consider maximal spherical subsets J and I. If both of them are twisted or
both are not-twisted, then we have

A(Er(5),r(r)s Brnyr(0) = d(Es1, Er ). (7.1)

Now we assume that .J is twisted and I is not twisted. If I C {s} U {s}*,
then (7.1) holds as well. It remains to discuss the case where I ¢ s U st. We
will prove d(ET(J),T(I)ﬂ E.,.([)J.(J)) < d(E.]J, E[”]), which implies ’CQ(T(S())) <
K2(Sp) and finishes the proof of Theorem 7.1.

CASE 1: I CONTAINS s. In that case, pick r € I\ (s Ust). Let I; C I be
maximal irreducible containing r. Then s € I1, since s and r do not commute.
Pick t € J\ (sUst). Let J; C J be maximal irreducible containing t. Then
s € Ji. Since both t and r are adjacent to s, we have that ¢t € J; is good with
respect to r, and r € I; is good respect to t.

We first justify that £;; and E; ; lie in distinct half-spaces for s. Otherwise,
{r, s, t} is geometric. In particular, we have ®(Ws, tW,) = ®(Ws,,rW,). These
half-spaces correspond to markings p = ((s,t),r) with K, = {t} and p/ =
((s,7),t) with K, = {r}. This contradicts the assumption that ¢ and r belong
to incompatible components.

We have D ;) = s.D;. Note that 7 fixes all the elements of I and .J \ Ji, and
hence E.(j) -1y = s.Ej in view of

(I)(SWt, WT) = (I)(SWt, WT N Ws) = S‘I)(Wt, Wr n Wé) = S(I)(Wt, WT)
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On the other hand, we have E(p) -(;) = Er 7, since W; N W, ;) # 0 for each
J € J, and hence W; and W, ;) are in the same half-space for i = 7(i) € I not
adjacent to j.

To conclude Case 1, pick a gallery 8 of minimal length from z € E;; to
y € Er ;. Since chambers x and y lie in distinct half-spaces for s and x is
incident to Ws, we can assume that the first edge of g is dual to W, (Theo-
rem 2.1). Since s.x € s.E5r = E. 5y~ and y € Er j = E-(1),7(s), we have
d(ET(J),T(I)a E,,.([)ﬂ.('])) < d(EJ,], ELJ), as desired.

CASE 2: I CONTAINS AN ELEMENT NOT ADJACENT TO s. Let this element
be r. Let t and J; be as in Case 1. Since t is inside a non-exposed small
component, t € Jy is good with respect to r. In particular, J; is good with
respect to I.

Let ¥ C Aump be the union of the two sectors of the form & N ®; for {Pg, P;}
geometric. We first justify W, C s3. Indeed, note that W, is disjoint from
any wall in Wy, ;1. Since s and r are in the same component of S\ (tU t1), we
have (t,7) ~ ((t,s),r) by Proposition 4.3 and the fact that S is 2-rigid. Thus
D(Wi, W,) = D(Wy, sW,.). Tt follows that W, C X UsX. Now recall that ¢t € B
and r € A, thus @W,, W,.) # @(W;, tW,.) by the incompatibility of A and B.
It follows that W,. C ¥ is not possible, justifying W, C sX.

Let A be the sector of ¥ satisfying W, C sA. It follows that E;; C A and
Er (7).~ C sA. Consequently E.(y) (1) = sEjr. We also have E_(p) () =
Er .y asin Case 1. Note that E; ; and E;; are in distinct half-spaces for s.
Now we can prove d(E; () +(1), Er(1),-(5)) < d(Esr,Ers) in the same way as
in Case 1.
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