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Abstract. We describe a construction of the cyclotomic structure on
topological Hochschild homology (THH) of a ring spectrum using the
Hill–Hopkins–Ravenel multiplicative norm. Our analysis takes place
entirely in the category of equivariant orthogonal spectra, avoiding use
of the Bökstedt coherence machinery. We are also able to define two
relative versions of topological cyclic homology (TC) and TR-theory:
one starting with a ring Cn-spectrum and one starting with an algebra
over a cyclotomic commutative ring spectrum A. We describe spectral
sequences computing the relative theory over A in terms of TR over
the sphere spectrum and vice versa. Furthermore, our construction
permits a straightforward definition of the Adams operations on TR
and TC.
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1 Introduction

Over the last two decades, the calculational study of algebraic K-theory has
been revolutionized by the development of trace methods. In analogy with the
Chern character from topologicalK-theory to ordinary cohomology, there exist
“trace maps” from algebraicK-theory to various more homological approxima-
tions. For a ring R, Dennis constructed a map to Hochschild homology

K(R) −→ HH(R)
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that generalizes the trace of a matrix. Goodwillie lifted this trace map to
negative cyclic homology

K(R) −→ HC−(R) −→ HH(R)

and showed that, rationally, this map can often be used to compute K(R).
In his 1990 ICM address, Goodwillie conjectured that there should be a “brave
new” version of this story involving “topological” analogues of Hochschild and
cyclic homology defined by changing the ground ring from Z to the sphere spec-
trum. Although the modern symmetric monoidal categories of spectra had not
yet been invented, Bökstedt developed coherence machinery that enabled a def-
inition of topological Hochschild homology (THH) along these lines. Further,
he constructed a “topological” Dennis trace map [7]

K(R) −→ THH(R).

Subsequently, Bökstedt–Hsiang–Madsen [8] defined topological cyclic homology
(TC) and constructed the cyclotomic trace map to TC, lifting the topological
Dennis trace

K(R) −→ TC(R) −→ THH(R).

They did this in the course of resolving the K-theory Novikov conjecture for
groups satisfying a mild finiteness hypothesis. Subsequently, seminal work of
McCarthy [35] and Dundas [14] showed that when working at a prime p, TC
often captures a great deal of information about K-theory. Hesselholt and
Madsen (inter alia, [21]) then used TC to make extensive computations in
K-theory, including a computational resolution of the Quillen–Lichtenbaum
conjecture for certain fields.
The calculational power of trace methods depends on the ability to compute
TC(R), which can be approached using the methods of equivariant stable ho-
motopy theory. Bökstedt’s definition of THH(R) closely resembles a cyclic bar
construction, and as a consequence THH(R) is an S1-spectrum. Topological
cyclic homology is constructed from this S1-action on THH(R), via fixed point
spectra TRn(R) = THH(R)Cpn . In fact, THH(R) has a very special equiv-
ariant structure: THH(R) is a cyclotomic spectrum, which is an S1-spectrum
equipped with additional data that models the structure of a free loop space
ΛX .
The cyclic bar construction can be formed in any symmetric monoidal category
(A,⊠, 1); we will let N cyc

⊠
denote the resulting simplicial (or cyclic) object.

Recall that in the category of spaces, for a group-like monoid M , there is a
natural S1-equivariant map

|N cyc
× M | −→ Map(S1, BM) = ΛBM

(where | · | denotes geometric realization) that is a weak equivalence on fixed
points for any finite subgroup Cn < S1. Moreover, for each such Cn, the free
loop space is equipped with equivalences (in fact homeomorphisms)

(ΛBM)Cn ≃ ΛBM
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of S1-spaces, where (ΛBM)Cn is regarded as an S1-space (rather than an
S1/Cn-space) via pullback along the nth root isomorphism

ρn : S
1 ∼= S1/Cn.

In analogy, a cyclotomic spectrum is an S1-spectrum equipped with compatible
equivalences of S1-spectra

tn : ρ
∗
nLΦ

CnX −→ X,

where LΦCn denotes the (left derived) “geometric” fixed point functor.
The construction of the cyclotomic structure on THH has classically been
one of the more subtle and mysterious parts of the construction of TC. In a
modern symmetric monoidal category of spectra (e.g., symmetric spectra or
EKMM S-modules), one can simply define THH(R) as

THH(R) = |N cyc
∧ R|,

but the resulting S1-equivariant spectrum did not appear to have the correct
equivariant homotopy type [31, 2.5.9]. Only Bökstedt’s original construction
of THH seemed to produce the cyclotomic structure.
Although this situation has not impeded the calculational applications, reliance
on the Bökstedt construction has limited progress in certain directions. For
example, the details of the Bökstedt construction make it difficult to understand
the equivariance (and therefore relevance to TC) of various additional algebraic
structures that arise on THH , notably the Adams operations and the coalgebra
structures.
The purpose of this paper is to introduce a new approach to the construction
of the cyclotomic structure on THH using an interpretation of THH in terms
of the Hill–Hopkins–Ravenel multiplicative norm. Our point of departure is
the observation that the construction of the cyclotomic structure on THH(R)
ultimately boils down to having good models of the smash powers

R∧n = R ∧R ∧ . . . ∧R︸ ︷︷ ︸
n

of a spectrum R as a Cn-spectrum such that there is a suitably compatible
collection of diagonal equivalences

R −→ ΦCnR∧n.

The recent solution of the Kervaire invariant one problem involved the detailed
analysis of a multiplicative norm construction in equivariant stable homotopy
theory that has precisely this type of behavior. Although Hill–Hopkins–Ravenel
studied the norm construction NG

H for a finite group G and subgroup H , using

the cyclic bar construction one can extend this construction to a norm NS1

e on
associative ring orthogonal spectra; such a construction first appeared in the
thesis of Martin Stolz [11, 41].
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For the following definition, we need to introduce some notation. Let S denote
the category of orthogonal spectra and let SS

1

U denote the category of orthog-
onal S1-spectra indexed on the complete universe U . Finally, let Ass denote
the category of associative ring orthogonal spectra.

Definition 1.1. Define the functor

NS1

e : Ass −→ SS
1

U

to be the composite functor

R 7→ IU
R∞ |N

cyc
∧ R|,

with |N cyc
∧ R| regarded as an orthogonal S1-spectrum indexed on the standard

trivial universe R∞. Here IU
R∞ denotes the change of universe functor (see

Definition 2.6).

Since both the cyclic bar construction and the change of universe functor pre-
serve commutative ring orthogonal spectra, the norm above also preserves com-
mutative ring orthogonal spectra. In the following proposition, proved in Sec-
tion 4, Com and ComS1

U denote the categories of commutative ring orthogonal
spectra and commutative ring orthogonal S1-spectra, respectively.

Proposition 1.2. NS1

e restricts to a functor

NS1

e : Com −→ ComS1

U

that is the left adjoint to the forgetful functor from commutative ring orthogonal
S1-spectra to commutative ring orthogonal spectra.

The forgetful functor from commutative ring orthogonal S1-spectra to com-
mutative ring orthogonal spectra is the composite of the change of universe
functor IR

∞

U and the functor that forgets equivariance. The proof of the above

proposition identifies NS1

e : Com→ ComS1

U as the composite functor

R 7→ IU
R∞(R⊗ S1),

which is left adjoint to the forgetful functor. Here ⊗ denotes the tensor of a
commutative ring orthogonal spectrum with an unbased space, and we regard
(−)⊗S1 as a functor from commutative ring orthogonal spectra to commutative
ring orthogonal spectra with an action of S1.
The Hill–Hopkins–Ravenel treatment of the norm functor includes an analysis
of the left derived functors of the norm. As part of this analysis they show that
the norm NG

H preserves certain weak equivalences. For our norm NS1

e into SS
1

U ,
we work with the homotopy theory defined by the F-equivalences of orthogonal
S1-spectra, where an F -equivalence is a map that induces an isomorphism on
all the homotopy groups at the fixed point spectra for the finite subgroups of
S1. We prove the following theorem in Section 4.
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Proposition 1.3. Assume that R is a cofibrant associative ring orthogonal
spectrum and R′ is either a cofibrant associative ring orthogonal spectrum or a
cofibrant commutative ring orthogonal spectrum. If R → R′ is a weak equiva-
lence, then NS1

e R→ NS1

e R′ is an F-equivalence in SS
1

U .

Of course the conclusion holds if R is a cofibrant commutative ring orthog-
onal spectrum as well; the point of Proposition 1.3 is to compare cofibrant
replacements in associative and commutative ring orthogonal spectra.
As a consequence we obtain the following additional observation about the
adjunction in the commutative case. See Proposition 4.10 for a more precise
statement.

Proposition 1.4. The functor

NS1

e : Com −→ ComS1

U

is Quillen left adjoint to the forgetful functor (for an appropriate model struc-
ture with weak equivalences the F-equivalences on the codomain); in particular,
its left derived functor exists and is left adjoint to the right derived forgetful
functor.

Our first main theorem is that when R is a cofibrant associative ring orthogonal
spectrum, NS1

e R is a cyclotomic spectrum. To be precise, we use the point-set
model of cyclotomic spectra from [6], which provides a definition entirely in
terms of the category of orthogonal S1-spectra.

Theorem 1.5. Let R be a cofibrant associative or cofibrant commutative ring
orthogonal spectrum. Then NS1

e R has a natural structure of a cyclotomic spec-
trum.

Proposition 1.4, which describes NS1

e as the homotopical left adjoint to the
forgetful functor, suggests a generalization of our construction of THH that
takes ring orthogonal Cn-spectra as input. For commutative ring orthogonal
Cn-spectra, we can define NS1

Cn
as the left adjoint to the forgetful functor. How-

ever, to extend to the non-commutative case, we need an explicit construction.
We give such a construction in Section 8 in terms of a cyclic bar construction,
which we denote as N cyc,Cn

∧ R. Its geometric realization |N cyc,Cn
∧ R| has an

S1-action, and by promoting it to the complete universe we obtain a genuine
orthogonal S1-spectrum that we denote as NS1

Cn
R. The following proposition

is a consistency check.

Proposition 1.6. Let R be a commutative ring orthogonal Cn-spectrum. Then
NS1

Cn
R is isomorphic to the left adjoint of the forgetful functor from commutative

ring orthogonal S1-spectra to commutative ring orthogonal Cn-spectra applied
to R.

Again, we can describe the left adjoint in terms of a tensor

NS1

Cn
R = IU

R∞(R ⊗Cn S
1),
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where the relative tensor R ⊗Cn S
1 may be explicitly constructed as the co-

equalizer
(i∗R)⊗ Cn ⊗ S

1
⇒ (i∗R)⊗ S1

of the canonical action of Cn on S1 and the action map (i∗R) ⊗ Cn → i∗R,
where i∗ denotes the change-of-group functor to the trivial group. Choosing an
appropriately subdivided model of the circle produces the isomorphism between
the two descriptions.
As above, by cofibrantly replacing R we can compute the left-derived functor
of NS1

Cn
, and in this case NS1

Cn
R is a p-cyclotomic spectrum (see Definition 3.1)

provided either n is prime to p or R is “Cn-cyclotomic” (q.v. Definition 8.7
below). This leads to the obvious definition of TCCnR. This Cn-relative THH
(and the associated constructions of TR and TC) is expected to be both inter-
esting and comparatively easy to compute for some of the equivariant spectra
that arise in Hill–Hopkins–Ravenel, in particular the real cobordism spectrum
MUR.
We can also consider another kind of relative construction, namely in the sit-
uation where R is an algebra over an arbitrary commutative ring orthogonal
spectrum A. Definition 1.1 can be extended to the relative setting; the equiv-
ariant indexed product can be carried out in any symmetric monoidal category,
and the homotopical analysis in the case of A-modules is given in Section 6.

Definition 1.7. Let A be a cofibrant commutative ring orthogonal spectrum,
and denote by A-Alg the category of A-algebras. We define the A-relative
norm functor

AN
S1

e : A-Alg −→ AS1 -ModS
1

U

by
R 7→ IU

R∞ |N
cyc
∧A
R|.

Here AS1 denotes IU
R∞A, constructed by applying the point-set change of uni-

verse functor IU
R∞ to A regarded as a commutative ring orthogonal S1-spectrum

(on the universe R∞) with trivial S1-action. Then AS1 is a commutative ring

orthogonal S1-spectrum (on the universe U) and AS1 -ModS
1

U denotes the cat-

egory of AS1-modules in SS
1

U .

We write ATHH(R) for the underlying non-equivariant spectrum of AN
S1

e R;
this spectrum was denoted thhA(R) in [15, IX.2.1]. When R is a commutative

A-algebra, AN
S1

e R is naturally a commutative AS1 -algebra. The functor

AN
S1

e : A-Com −→ AS1 -ComS1

U

is again left adjoint to the forgetful functor.
Using the identification NS1

e A ∼= IUR∞(A⊗S1) in the commutative context, the
map S1 → ∗ induces a map of equivariant commutative ring orthogonal spectra

NS1

e A→ AS1 . Just as in the non-equivariant case, we can identify AN
S1

e R as
extension of scalars along this map.
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Proposition 1.8. Let R be an associative A-algebra. There is a natural iso-
morphism

AN
S1

e R ∼= NS1

e R ∧NS1
e A AS1 .

When A is a cofibrant commutative ring orthogonal spectrum and R is a cofi-
brant associative A-algebra or cofibrant commutative A-algebra, this induces a
natural isomorphism in the stable category

AN
S1

e R ∼= NS1

e R ∧L
NS1

e A
AS1 .

However, due to the subtleties of the behavior of IU
R∞ when applied to cofibrant

commutative ring orthogonal spectra regarded as S1-spectra with trivial action,

AN
S1

e R is not in general cyclotomic. Instead, we must settle for the following
analogue of Theorem 1.5, which we prove in Section 7. When it applies, it alters
the equivariant structure of ATHH(R) to produce a cyclotomic spectrum.

Theorem 1.9. Let A be a cofibrant commutative ring orthogonal spectrum that
is ι∗eA for a cofibrant p-cyclotomic commutative ring orthogonal S1-spectrum A.

Moreover, assume that the canonical counit map NS1

e A→ A is a p-cyclotomic
map. Let R be a cofibrant A-algebra. Then

NS1

e R ∧NS1
e A A

is a p-cyclotomic spectrum.

In fact, we have a slightly more general version of this result.

Theorem 1.10. Let A be a cofibrant commutative ring orthogonal spectrum
and R a cofibrant A-algebra. Let M be a p-cyclotomic object in NS1

e A-modules.
Then the smash product

NS1

e R ∧NS1
e AM

is a p-cyclotomic spectrum.

Note that A is not usually the same as AS1 . Moreover, we do not know many
interesting examples of commutative ring orthogonal spectra A for which the
conditions of Theorems 1.9 and 1.10 apply; in all the cases we are aware of, A is
closely related to the sphere spectrum with its standard cyclotomic structure,
as we explain in Section 7. As a consequence, we regard the conditions in these
theorems as elucidating the structural difficulties of finding relative cyclotomic
structures in nature.

Nonetheless, when these theorems apply, we can form relative topological
cyclic homology ATC(R), which is the target of an A-relative cyclotomic trace
K(R)→ ATC(R), defined as the composite K(R)→ TC(R)→ ATC(R).
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Theorem 1.11. Under the hypotheses above, there is an A-relative cyclotomic
trace map K(R) → ATC(R) making the following diagram commute in the
stable category

K(R) //

$$❏
❏
❏
❏
❏
❏
❏
❏
❏

TC(R) //

��

THH(R)

��

ATC(R) //
ATHH(R).

The equivariant homotopy groups πCn
∗ (NS1

e R) are the TR-groups TRn∗ (R)

and so πCn
∗ (AN

S1

e R) are by definition the relative TR-groups ATR
n
∗ (R). The

Künneth spectral sequence of [26] can be combined with Proposition 1.8 to
compute the relative TR-groups from the absolute TR-groups and Mackey
functor Tor. More often we expect to use the relative theory to compute the
absolute theory. Non-equivariantly, the isomorphism

THH(R) ∧ A ∼= ATHH(R ∧ A) (1.12)

gives rise to a Künneth spectral sequence

TorA∗(R∧SR
op)

∗,∗ (A∗(R), A∗(R)) =⇒ A∗(THH(R)).

An Adams spectral sequence can then in theory be used to compute the homo-
topy groups of THH(R). For formal reasons, the isomorphism (1.12) still holds
equivariantly, but now we have three different versions of the non-equivariant
Künneth spectral sequence (none of which have quite as elegant an E2-term)
which we use in conjunction with equation (1.12). We discuss these in Section 9.
A further application of our model of THH and TC is a construction, when R is

commutative, of Adams operations on NS1

e R and AN
S1

e R that are compatible
(in the absolute case) with the cyclotomic structure. McCarthy explained how
Adams operations can be constructed on any cyclic object that, when viewed
as a functor from the cyclic category, factors through the category of finite sets
(and all maps). As a consequence, it is possible to construct Adams operations
on THH of a commutative monoid object in any symmetric monoidal category
of spectra. An advantage of our formulation is that we can easily verify the
equivariance of these operations and in particular show they descend to TC.
We prove the following theorem in Section 10.

Theorem 1.13. Let A be a commutative ring orthogonal spectrum and R a

commutative A-algebra. There are Adams operations ψr : AN
S1

e R → AN
S1

e R.
In the absolute case, when r is prime to p, the operation ψr is compatible with
the restriction and Frobenius maps on the p-cyclotomic spectrum THH(R) and
so induces a corresponding operation on TR(R) and TC(R).

We have organized the paper to contain a brief review with references to much
of the background needed here. Section 2 is mostly review of [32] and [23,
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App. B], and Section 3 is in part a review of [6, §4]. In addition, the main results
in Section 4 overlap significantly with [41], although our treatment is very
different: we rely on [23] to study the absolute S1-norm whereas [41] directly
analyzes the construction by using a somewhat different model structure and
focuses on the case of commutative ring orthogonal spectra.
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2 Background on equivariant stable homotopy theory

In this section, we briefly review necessary details about the category of orthog-
onal G-spectra and the geometric fixed point and norm functors. Our primary
sources for this material are the monograph of Mandell-May [32] and the ap-
pendices to Hill–Hopkins–Ravenel [23]. See also [6, §2] for a review of some of
these details. We begin with two subsections discussing the point-set theory
followed by two subsections on homotopy theory and derived functors.

2.1 The point-set theory of equivariant orthogonal spectra

Let G be a compact Lie group. We denote by T G the category of based G-
spaces and based G-maps (where “spaces” means compactly-generated weak
Hausdorff spaces). The smash product of G-spaces makes this a closed sym-
metric monoidal category, with function object F (X,Y ) the based space of
(non-equivariant) maps from X to Y with the conjugation G-action. In par-
ticular, T G is enriched over G-spaces. We will denote by U a fixed universe
of G-representations [32, §II.1.1], by which we mean a countable dimensional
vector space with linear G-action and G-fixed inner product that contains R∞,

Documenta Mathematica 23 (2018) 2101–2163



2110 Angeltveit, Blumberg, Gerhardt, Hill, Lawson, Mandell

is the sum of finite dimensional G-representations, and that has the property
that any G-representation that occurs in U occurs infinitely often. Let VG(U)
denote the collection of finite dimensional G-inner product spaces which are
isomorphic to a G-vector subspace of U . Except in this section, we always
assume that U is a complete G-universe, meaning that all finite dimensional ir-
reducible G-representations are in U . For V ,W in VG(U), denote by IG(V,W )
the space of (non-equivariant) isometric isomorphisms V → W , regarded as a
G-space via conjugation. Let I U

G be the category enriched in G-spaces with
VG(U) as its objects and IG(V,W ) as its morphism G-spaces; we write just
IG when U is understood. We also fix a skeleton skI U

G of I U
G .

Definition 2.1 ([32, II.2.6]). An orthogonal G-spectrum is a G-equivariant
continuous functor X : IG → T

G equipped with a structure map

σV,W : X(V ) ∧ SW −→ X(V ⊕W )

that is a natural transformation of enriched functors IG×IG → T
G and that

is associative and unital in the obvious sense. A map of orthogonal G-spectra
X → X ′ is a natural transformation that commutes with the structure map.

We denote the category of orthogonal G-spectra by SG. When necessary to
specify the universe U , we include it in the notation as SGU .
The category of orthogonal G-spectra is enriched over based G-spaces, where
the G-space of maps consists of all natural transformations (not just the equiv-
ariant ones). Tensors and cotensors are computed levelwise. The category of
orthogonal G-spectra is a closed symmetric monoidal category with unit the
equivariant sphere spectrum SG (with SG(V ) = SV ).
For technical reasons, it is often convenient to give an equivalent formulation
of orthogonal G-spectra as diagram spaces. Following [32, §II.4], we consider
the category JG which has the same objects as IG but morphisms from V
to W given by the Thom space of the complement bundle of linear isometries
from V to W .

Proposition 2.2 ([32, II.4.3]). The category SG of orthogonal G-spectra is
equivalent to the category of JG-spaces, i.e., the continuous equivariant func-
tors from JG to TG. The symmetric monoidal structure is given by the Day
convolution.

This description provides simple formulas for suspension spectra and desuspen-
sion spectra in orthogonal G-spectra.

Definition 2.3 ([32, II.4.6]). For any finite-dimensional G-inner product space
V we have the shift desuspension spectrum functor

FV : T G −→ SG

defined by
(FV A)(W ) = JG(V,W ) ∧A.
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This is the left adjoint to the evaluation functor which evaluates an orthogonal
G-spectrum at V .

Remark 2.4. In [23], the desuspension spectrum FV S
0 is denoted as S−V and

F0A is denoted as Σ∞A in a nod to the classical notation. (They write S−V ∧A
for FV A ∼= FV S

0 ∧A.)

Since the category SGU is symmetric monoidal under the smash product, we
have categories of associative and commutative monoids, i.e., algebras over the
monads T and P that create associative and commutative monoids in symmetric
monoidal categories (e.g., see [15, §II.4] for a discussion).

Notation 2.5. Let AssG and ComG denote the categories of associative and
commutative ring orthogonal G-spectra.

For a fixed object A in ComG, there is an associated symmetric monoidal
category A-ModG of A-modules in orthogonal G-spectra, with product the A-
relative smash product ∧A. As in Notation 2.5, there are categories A-AlgG of
A-algebras, and A-ComG of commutative A-algebras [32, III.7.6].
We now turn to the description of various useful functors on orthogonal G-
spectra. We begin by reviewing the change of universe functors. In contrast to
the classical framework of “coordinate-free” equivariant spectra [29], orthogonal
G-spectra disentangle the point-set and homotopical roles of the universe U .
A first manifestation of this occurs in the behavior of the point-set “change of
universe” functors.

Definition 2.6 ([32, V.1.2]). For any pair of universes U and U ′, the point-set
change of universe functor

IU
′

U : SGU −→ S
G
U ′

is defined by IU
′

U X(V ) = J (Rn, V ) ∧O(n) X(Rn) for V in VG(U ′), where
n = dimV .

These functors are strong symmetric monoidal equivalences of categories:

Proposition 2.7 ([32, V.1.1,V.1.5]). Given universes U,U ′, U ′′,

1. IUU is naturally isomorphic to the identity.

2. IU
′′

U ′ ◦ IU
′

U is naturally isomorphic to IU
′′

U .

3. IU
′

U is strong symmetric monoidal.

We are particularly interested in the change of universe functors associated to
the universes U and UG. The latter of these universes is isomorphic to the
standard trivial universe R∞. Note that the category of orthogonal G-spectra
on R∞ is just the category of orthogonal spectra with G-actions.
Given a closed subgroup H < G, we can regard a G-space X(V ) as an H-space
ι∗HX(V ). The space-level construction gives rise to a spectrum-level change-of-
group functor.
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Definition 2.8 ([32, V.2.1]). For a closed subgroup H < G, define the functor

ι∗H : SGU −→ S
H
ι∗HU

by
(ι∗HX)(V ) = JH(Rn, V ) ∧O(n) ι

∗
H(X(Rn))

for V in VH(ι∗HU), where n = dim(V ).

As observed in [32, V.2.1, V.1.10], for V in VG(U),

(ι∗HX)(ι∗HV ) ∼= ι∗H(X(V )).

In contrast to the category of G-spaces, there are two reasonable constructions
of fixed-point functors: the “categorical” fixed points, which are based on the
description of fixed points asG-equivariant maps out of G/H , and the “geomet-
ric” fixed points, which commute with suspension and the smash product (on
the level of the homotopy category). Again, the description of orthogonal G-
spectra as JG-spaces in Proposition 2.2 provides the easiest way to construct
the categorical and geometric fixed point functors [32, §V].
For any closed normal subgroupH⊳G, let JH

G (V,W ) denote the G/H-space of
H-fixed points of JG(V,W ). Given any orthogonal spectrum X , the collection
of fixed points {X(V )H} forms a JH

G -space. We can turn this collection into
a JG/H -space in two ways. There is a functor q : JG/H → JH

G induced by
regarding G/H-representations as H-trivial G-representations via the quotient
map G→ G/H .

Definition 2.9 ([32, §V.3]). For H a closed normal subgroup of G, the cate-
gorical fixed point functor

(−)H : SGU −→ S
G/H

UH

is computed by regarding the JH
G -space {X(V )H} as a JG/H -space via q.

On the other hand, there is an equivariant continuous functor φ : J H
G →JG/H

induced by taking a G-representation V to the G/H-representation V H .

Definition 2.10 ([32, §V.4]). For H a closed normal subgroup of G, let FixH

denote the functor from orthogonal G-spectra (=JG-spaces) to JH
G -spaces

defined by (FixH X)(V ) = (X(V ))H . The geometric fixed point functor

ΦH(−) : SGU −→ S
G/H

UH

is constructed by taking ΦH(X) to be the left Kan extension of the JH
G -space

FixH X along φ.

Remark 2.11. Hill–Hopkins–Ravenel [23, B.190] call the point-set geometric
fixed point functor “the monoidal geometric fixed point functor” and define it
using the coequalizer

∨
V,W<U

JH
G (V,W ) ∧ FWHS0 ∧ (X(V ))H //

//
∨

V <U

FV HS0 ∧ (X(V ))H ,
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where the notation V < U means that V is a finite-dimensional G-stable sub-
space of the universe U . This formula is derived from applying the geometric
fixed point functor above to the “tautological presentation” of X :

∨
V,W<U

JG(V,W ) ∧ FWS
0 ∧X(V ) //

//
∨

V <U

FV S
0 ∧X(V ),

noting that ΦHFV A ∼= FV HAH for a G-space A. Although ΦH does not pre-
serve coequalizers in general, it does preserve the coequalizers preserved by
FixH , and FixH preserves the canonical coequalizer diagram since it is level-
wise split. Thus, the definition above agrees with the definition in [23, B.190].

Both fixed-point functors are lax symmetric monoidal [32, V.3.8, V.4.7] and
so descend to categories of associative and commutative ring orthogonal G-
spectra.

Proposition 2.12. Let H ⊳G be a closed normal subgroup. Let X and Y be
orthogonal G-spectra. There are natural maps

ΦHX ∧ ΦHY −→ ΦH(X ∧ Y ) and XH ∧ Y H −→ (X ∧ Y )H

that exhibit ΦH and (−)H as lax symmetric monoidal functors.
Therefore, there are induced functors

ΦH , (−)H : AssG −→ AssG/H

and
ΦH , (−)H : ComG −→ ComG/H .

For a commutative ring orthogonal G-spectrum A, a corollary of Proposi-
tion 2.12 is that the fixed-point functors interact well with the category of
A-modules.

Corollary 2.13. Let A be a commutative ring orthogonal G-spectrum. The
fixed-point functors restrict to functors

ΦH : A-ModG −→ (ΦHA)-ModG/H

and
(−)H : A-ModG −→ AH -ModG/H .

Remark 2.14. We can extend these constructions to closed subgroups H < G
that are not normal by considering the normalizer NH and quotient WH =
NH/H . However, since we do not need this generality herein, we do not discuss
it further.

Let z ∈ G be an element in the center of G. Then multiplication by z is
a natural automorphism on objects of SG

R∞ or on objects of A-ModG
R∞ . In

particular, it will induce a natural automorphism IU
R∞z of NG

HX or of AN
G
HX ,

as described in Sections 4 and 7.
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Proposition 2.15. Let z be an element in the center of G, and K a normal
subgroup. Then for any X ∈ SG

R∞ , we have an identification

ΦK(IU
R∞z) = IU

K

R∞ z̄

of self-maps of ΦK(IU
R∞X), where z̄ = zK ∈ G/K. In particular, for z ∈ K

the map ΦK(IU
R∞z) is the identity.

Proof. Using the tautological presentation of IU
R∞X and naturality, it suf-

fices to verify this identity on orthogonal spectra of the form FV Y for a G-
representation V ∈ VG(U); on such spectra, the map IU

R∞z : FV Y → FV Y is
given by f ∧ y 7→ (f ◦ z−1) ∧ (z · y). The result follows from the fact the fixed
point functor (−)K takes multiplication by z to multiplication by z̄, and the
functor JK

G → JG/K induces maps JK
G (V, V ) → JG/K(V K , V K) taking z

to z̄.

2.2 The point-set theory of the norm

Central to our work is the realization by Hill, Hopkins, and Ravenel [23] that a
tractable model for the “correct” equivariant homotopy type of a smash power
can be formed as a point-set construction using the point-set change of universe
functors. It is “correct” insofar as there is a diagonal map which induces an
equivalence onto the geometric fixed points (see Section 2.3 below). They refer
to this construction as the norm after the norm map of Greenlees-May [19],
which in turn is named for the norm map of Evens in group cohomology [16,
Chapter 6].
The point of departure for the construction of the norm is the use of the change-
of-universe equivalences to regard orthogonal G-spectra on any universe U as
G-objects in orthogonal spectra. (Good explicit discussions of the interrela-
tionship can be found in [32, §V.1] and [40, 2.7].) We now give a point-set
description of the norm following [40] and [12]; these descriptions are equiva-
lent to the description of [23, §A.3] by the work of [12].
For the construction of the norm, it is convenient to use BG to denote the
category with one object, whose monoid of endomorphisms is the finite groupG.
The category SBG of functors from BG to the category S of (non-equivariant)
orthogonal spectra indexed on the universe R∞ is isomorphic to the category
SG
R∞ of orthogonal G-spectra indexed on the universe R∞. We can then use the

change of universe functor IU
R∞ to give an equivalence of SBG with the category

SGU of orthogonal G-spectra indexed on U .

Definition 2.16. Let G be a finite group and H < G be a subgroup with index
n. Fix an ordered set of coset representatives (g1, . . . , gn), and let α : G→ Σn≀H
be the homomorphism

α(g) = (σ, h1, . . . , hn)

defined by the relation ggi = gσ(i)hi. The indexed smash-power functor

∧GH : SBH −→ SBG
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is defined as the composite

SBH
∧n

// SB(Σn≀H) α∗

// SBG.

The norm functor
NG
H : SHU −→ S

G
U ′

is defined to be the composite

X 7→ IU
′

R∞(∧GH(IR
∞

U X)).

This definition depends on the choice of coset representatives; however, any
other choice gives a canonically naturally isomorphic functor (the isomorphism
induced by permuting factors and multiplying each factor by the appropriate
element ofH). As observed in [23, A.4], in fact it is possible to give a description
of the norm which is independent of any choices and is determined instead by
the universal property of the left Kan extension. Alternatively, Schwede [40,
9.3] gives another way of avoiding the choice above, using the set 〈G : H〉 of
all choices of ordered sets of coset representatives; 〈G : H〉 is a free transitive
Σn ≀H-set and the inclusion of (g1, . . . , gn) in 〈G : H〉 induces an isomorphism

∧GHX
∼= 〈G : H〉+ ∧Σn≀H X∧n.

In our work, G will be the cyclic group Cnr < S1 and H = Cr (usually for r =
1), and we have the obvious choice of coset representatives gk = e2π(k−1)i/nr ,
letting us take advantage of the explicit formulas. In the case r = 1, we have
the following.

Proposition 2.17. Let G be a finite group and U a complete G-universe. The
norm functor

NG
e : S −→ SGU

is given by the composite
X 7→ IU

R∞X∧G,

where X∧G denotes the smash power indexed on the set G.

When dealing with commutative ring orthogonal G-spectra, the norm has a
particularly attractive formal description [23, A.56], which is a consequence of
the fact that the norm is a symmetric monoidal functor.

Theorem 2.18. Let G be a finite group and let H be a subgroup of G. The
norm restricts to the left adjoint in the adjunction

NG
H : ComH

⇆ ComG : ι∗H ,

where ι∗H denotes the change of group functor along H < G.

The relationship of the norm with the geometric fixed point functor is encoded
in the diagonal map [23, B.209].
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Proposition 2.19. Let G be a finite group, H < G a subgroup, and K ⊳G a
normal subgroup. Let X be an orthogonal H-spectrum. Then there is a natural
diagonal map of orthogonal G/K-spectra

∆: N
G/K
HK/KΦH∩KX −→ ΦKNG

HX.

(Here we suppress the isomorphism H/H ∩ K ∼= HK/K from the notation.)
In the case when X is an associative ring orthogonal H-spectrum, ∆ is a map
of associative ring orthogonal G/K-spectra.

Proof. The construction of ∆ is the same as [23, Proposition B.209] after gen-
eralizing the corresponding space-level diagonal. To do this, first note that for
any based H-space A, there is a natural isomorphism

∆: N
G/K
HK/KA

H∩K ∼=
−−→ (NG

HA)
K .

For this, it is convenient to model the space-level norm as follows. The space
NG
HA is isomorphic to the subspace of tuples a = (ag)g∈G ∈

∧
g∈GA such that

ahg = hag. The left G-action is given by (k · a)g = agk.

Under this identification, N
G/K
HK/KA

H∩K consists of tuples b = (b[g])[g]∈G/K

of elements in AH∩K such that b[hg] = hb[g] for h ∈ H . Similarly, (NG
HA)

K

consists of tuples a = (ag)g∈G such that ahg = hag for h ∈ H and agk = ag for
k ∈ K. This allows us to define the bijection ∆ by (∆b)g = b[g].
When X is an associative ring orthogonal H-spectrum, checking that ∆ is a
map of associative ring orthogonal G/K-spectra is checking that the map is
compatible with the multiplication and unit. For the unit, this is clear by
naturality and the compatibility of the natural isomorphisms

N
G/K
HK/KΦH∩KS ∼= S and ΦKNG

HS
∼= S.

To check the multiplication, it suffices to show that for all X,Y , the diagram

(N
G/K
HK/KΦH∩KX) ∧ (N

G/K
HK/KΦH∩KY )

∆∧∆

��

// N
G/K
HK/KΦH∩K(X ∧ Y )

∆

��

(ΦKNG
HX) ∧ (ΦKNG

HY ) // ΦKNG
H(X ∧ Y )

commutes, where the horizontal maps are the lax monoidal structure maps. In
fact, it suffices to show that the underlying non-equivariant diagram commutes.
The underlying non-equivariant orthogonal spectrum of

(N
G/K
HK/KΦH∩KX) ∧ (N

G/K
HK/KΦH∩KY )

is a smash power of ΦH∩KX ∧ΦH∩KY , which is rigid in the sense of [33, §3.3]
by the argument of [33, 3.19]. Since both composites in the diagram agree
when X and Y are each of the form FV Z, they agree for all X and Y .
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For any particular commutative ring orthogonal spectrum A, the indexed
smash-power construction of Definition 2.16 can be carried out in the symmet-
ric monoidal category A-Mod. Denote the A-relative indexed smash-power by
(∧A)

G
H . For X an A-module with H-action, we understand (∧A)

G
HX to be

(∧A)
G
HX := α∗X∧n,

where the nth smash power is over A and α∗ is as in Definition 2.16. This is
an A-module (in SG

R∞). We then have the following definition of the A-relative
norm functor:

Definition 2.20. Let A be a commutative ring orthogonal spectrum. Write
AH for the commutative ring orthogonal H-spectrum IU

R∞A obtained by re-
garding A (with trivial H-action) as an object of SBH and applying the change
of universe functor, and similarly for AG. The A-relative norm functor

AN
G
H : AH -ModHU −→ AG-ModGU ′

is defined to be the composite

X 7→ IU
′

R∞((∧A)
G
H(IR

∞

U X)).

The theory of the diagonal map in the A-relative context is somewhat more
complicated than in the absolute setting; we explain the details in Section 7.

2.3 Homotopy theory of orthogonal spectra

We now review the homotopy theory of orthogonal G-spectra with a focus
on discussing the derived functors associated to the point-set constructions of
the preceding section. We begin by reviewing the various model structures
on orthogonal G-spectra. All of these model structures are ultimately derived
from the standard model structure on T G (the category of based G-spaces).

Following the notational conventions of [32], we start with the sets of maps

I = {(G/H × Sn−1)+ −→ (G/H ×Dn)+}

and

J = {(G/H ×Dn)+ −→ (G/H × (Dn × I))+},

where n ≥ 0 and H varies over the closed subgroups of G. (We understand
S−1 in this context as the empty set.) Recall that there is a compactly gener-
ated model structure on the category T G in which I and J are the generating
cofibrations and generating acyclic cofibrations (e.g., [32, III.1.8]). The weak
equivalences and fibrations are the mapsX → Y such that XH → Y H is a weak
equivalence or fibration for each closed H < G. Transporting this structure
levelwise in VG(U), we get the level model structure in orthogonal G-spectra.
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Proposition 2.21 ([32, III.2.4]). Fix a G-universe U . There is a compactly
generated model structure on SGU in which the weak equivalences and fibrations
are the maps X → Y such that each map X(V )→ Y (V ) is a weak equivalence
or fibration of G-spaces. The sets of generating cofibrations and acyclic cofi-
brations are given by IUG = {FV i | i ∈ I} and JUG = {FV j | j ∈ J}, where V
varies over the objects of skVG(U).

The level model structure is primarily scaffolding to construct the stable model
structures. In order to specify the weak equivalences in the stable model struc-
tures, we need to define equivariant homotopy groups.

Definition 2.22. Fix a G-universe U . The homotopy groups of an orthogonal
G-spectrum X are defined for a closed subgroup H < G and an integer q as

πHq (X) =





colim
V <U

πq((Ω
VX(V ))H) q ≥ 0

colim
R−q<V<U

π0((Ω
V−R

−q

X(V ))H) q < 0,

(see [32, §III.3.2]).

These are the homotopy groups of the underlying G-prespectrum associated
to X (via the forgetful functor from orthogonal G-spectra to prespectra). We
define the stable equivalences to be the maps X → Y that induce isomorphisms
on all homotopy groups.

Proposition 2.23 ([32, III.4.2]). Fix a G-universe U . The standard stable
model structure on SGU is the compactly generated symmetric monoidal model
structure with the cofibrations given by the cofibrations of Proposition 2.21, the
weak equivalences the stable equivalences, and the fibrations determined by the
right lifting property. The generating cofibrations are given by IUG as above, and
the generating acyclic cofibrations K are the union of JUG and certain additional
maps described in [32, III.4.3].

This model structure lifts to a model structure on the category AssGU of asso-
ciative monoids in orthogonal G-spectra.

Theorem 2.24 ([32, III.7.6.(iv)]). Fix a G-universe U . There are compactly
generated model structures on AssGU in which the weak equivalences are the sta-
ble equivalences of underlying orthogonal G-spectra indexed on U , the fibrations
are the maps which are stable fibrations of underlying orthogonal G-spectra in-
dexed on U , and the cofibrations are determined by the left lifting property.

To obtain a model structure on commutative ring orthogonal spectra, we also
need the “positive” variant of the stable model structure. We define the posi-
tive level model structures in terms of the generating cofibrations (IUG )+ ⊂ IUG
and (JUG )+ ⊂ JUG , consisting of those maps FV i and FV j such that the repre-
sentation V contains a nonzero trivial representation; these also extend to a
positive stable model structure.
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Theorem 2.25 ([23, B.129]). Fix a G-universe U . There are compactly gen-
erated model structures on ComG

U in which the weak equivalences are the stable
equivalences of the underlying orthogonal G-spectra, the fibrations are the maps
which are positive stable fibrations of underlying orthogonal G-spectra indexed
on U , and the cofibrations are determined by the left lifting property.

We will also use a variant of the standard stable model structure that can be
more convenient when working with the derived functors of the norm. We
refer to this as the positive complete stable model structure. See [23, §B.4]
for a comprehensive discussion of this model structure, and [43, §A] for a brief

review. In order to describe this, denote by (I
ι∗HU
H )+ and (J

ι∗HU
H )+ generating

cofibrations for the positive stable model structure on orthogonal H-spectra
indexed on the universe ι∗HU .

Theorem 2.26 ([23, B.63]). Fix a G-universe U . There is a compactly gen-
erated symmetric monoidal model structure on SG with generating cofibrations

and acyclic cofibrations the sets {G+ ∧H i | i ∈ (I
ι∗HU
H )+, H < G} and

{G+ ∧H j | j ∈ (J
ι∗HU
H )+, H < G} respectively. The weak equivalences are

the stable equivalences, and the fibrations are determined by the right lifting
property.

We then have corresponding positive complete model structures for ComG and
AssG.

Theorem 2.27 ([23, B.130], [23, B.136 (0908.3724v3)]). Fix a G-universe U .
There are compactly generated model structures on AssGU and ComG

U in which
the weak equivalences are the stable equivalences of the underlying orthogonal
G-spectra, the fibrations are the maps which are positive complete stable fibra-
tions of underlying orthogonal G-spectra indexed on U , and the cofibrations are
determined by the left-lifting property.

For a fixed object A in ComG
U , there are also lifted model structures on the cat-

egories A-ModGU of A-modules, A-AlgGU of A-algebras, and A-ComG
U of com-

mutative A-algebras in both the stable and positive complete stable model
structures ([32, III.7.6] and [23, B.137]). There are also lifted model structures
on the category A-ModGU of A-modules when A is an object of AssGU , but we
will not need these. Part of the following is [23, B.137]; the rest follows by
standard arguments.

Theorem 2.28. Fix a G-universe U . Let A be a commutative ring orthogonal
G-spectrum indexed on U . There are compactly generated model structures on
the categories A-ModGU and A-AlgGU in which the fibrations and weak equiva-
lences are created by the forgetful functors to the stable, complete stable, and
positive complete stable model structures on SGU . There are compactly gener-
ated model structures on A-ComG

U in which the fibrations and weak equivalences
are created by the forgetful functors to the positive stable and positive complete
stable model structures on A-ModGU .
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Finally, when dealing with cyclotomic spectra, we need to use variants of these
model structures where the stable equivalences are determined by a family of
subgroups of G. Recall the definition of a family: a family F is a collection
of closed subgroups of G that is closed under taking closed subgroups and
conjugation. We say a map X → Y is an F -equivalence if it induces an
isomorphism on homotopy groups πH∗ for allH in F . All of the model structures
described above have analogues with respect to the F -equivalences (e.g., see [32,
IV.6.5]), which are built from sets I and J where the cells (G/H × Sn−1)+ →
(G/H × Dn)+ and (G/H × Dn)+ → (G/H × (Dn × I))+ are restricted to
H ∈ F . We record the situation in the following omnibus theorem.

Theorem 2.29. There are stable, positive stable, and positive complete stable
compactly generated model structures on the categories SGU and AssGU where
the weak equivalences are the F-equivalences. There are positive stable and
positive complete stable compactly generated model structures on the category
ComG

U where the weak equivalences are the F-equivalences.

Let A be a commutative ring orthogonal G-spectrum. There are stable, posi-
tive stable, and positive complete stable compactly generated model structures
on the categories A-ModGU , A-Alg

G
U where the weak equivalences are the F-

equivalences. There are positive stable and positive complete stable compactly
generated model structures on A-ComG

U where the weak equivalences are the
F-equivalences.

We are most interested in case of G = S1 and the families FFin of finite sub-
groups of S1 and Fp of p-subgroups {Cpn} of S

1 for a fixed prime p.

2.4 Derived functors of fixed points and the norm

We now discuss the use of the model structures described in the previous section
to construct the derived functors of the categorical fixed point, geometric fixed
point, and norm functors. We begin with the categorical fixed point functor.
Since this is a right adjoint, we have right-derived functors computed using
fibrant replacement (in any of our available stable model structures):

Theorem 2.30. Let H ⊳G be a closed normal subgroup. Then the categorical

fixed point functor (−)H : SGU → S
G/H

UH is a Quillen right adjoint; in particular,
it preserves fibrations and weak equivalences between fibrant objects in the stable
and positive complete stable model structures on SGU .

As the fibrant objects in the model structures on associative and commuta-
tive ring orthogonal spectra are fibrant in the underlying model structures on
orthogonal G-spectra, we can derive the categorical fixed points by fibrant
replacement in any of the settings in which we work.
In contrast, the geometric fixed point functor admits a Quillen left derived
functor (see [32, V.4.5] and [23, B.197]).
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Theorem 2.31. Let H be a closed normal subgroup of G. The functor ΦH(−)
preserves cofibrations and weak equivalences between cofibrant objects in the
stable, positive stable, and positive complete stable model structures on SGU .

Since the cofibrant objects in the lifted model structures on AssGU are cofibrant
when regarded as objects in SGU [32, III.7.6], an immediate corollary of The-
orem 2.31 is that we can derive ΦH by cofibrant replacement when working
with associative ring orthogonal G-spectra. In contrast, the underlying orthog-
onal G-spectra associated to cofibrant objects in ComG, in either of the model
structures we study, are essentially never cofibrant and the point-set functor
ΦG does not always agree on these with the geometric fixed point functor on
the equivariant stable category; cf. Example 7.5. (Although note that Stolz has
produced model structures in which the underlying spectra for commutative
ring orthogonal spectra are cofibrant [41].) Nonetheless, it follows from The-
orem 2.36 that when R is a cofibrant commutative ring orthogonal spectrum,
the point-set geometric fixed points do work correctly on norms NG

e R.
The first part of the following theorem is [23, B.104]; the statement in the case
of A-modules is similar and discussed in Section 6.

Theorem 2.32. The norm NG
H (−) preserves weak equivalences between cofi-

brant objects in any of the various stable model structures on SH , AssH , and
ComH .
Let A be a commutative ring orthogonal spectrum. Then the A-relative norm

AN
G
e (−) preserves weak equivalences between cofibrant objects in any of the

various stable model structures on A-Mod, A-Alg, and A-Com.

The utility of the positive complete model structure is the following homotopi-
cal version of Theorem 2.18 [23, B.135].

Theorem 2.33. Let H be a subgroup of G. The adjunction

NG
H : ComH

⇆ ComG : ι∗H

is a Quillen adjunction for the positive complete stable model structures.

Finally, we have the following result about the derived version of the diagonal
map [23, B.209]. We note the strength of the conclusion: the diagonal map is
an isomorphism on cofibrant objects, not just a weak equivalence.

Theorem 2.34 ([23, B.209]). Let H be a closed normal subgroup of G. The
diagonal map

∆: ΦHX −→ ΦGNG
HX

is an isomorphism of orthogonal spectra (and in particular a weak equivalence)
when X is cofibrant in any of the stable model structures on SH , or when X is
a cofibrant object in AssH .

Along the lines of Proposition 2.19, we also need the following more general
statement, which essentially follows from the argument of [23, B.209] using the
isomorphism given in the proof of Proposition 2.19 to start the induction.
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Theorem 2.35. Let G be a finite group, H < G a subgroup, and K ⊳ G a
normal subgroup. Let X be an orthogonal H-spectrum. The diagonal map of
orthogonal G/K-spectra

∆: N
G/K
HK/KΦH∩KX −→ ΦKNG

HX.

is an isomorphism of orthogonal spectra (and in particular a weak equivalence)
when X is cofibrant in any of the stable model structures on SH or when X is
a cofibrant object in AssH .

We also need the commutative ring orthogonal spectrum version of Theo-
rem 2.34.

Theorem 2.36. The diagonal map

∆: X −→ ΦGNG
e X

is an isomorphism of orthogonal spectra when X is a cofibrant commutative
ring orthogonal spectrum.

Proof. The induction in [23, B.209] and monoidality of both sides reduces
the statement to the case when X = (FVB+)

(m)/Σm where V is a finite-
dimensional (non-equivariant) inner product space and B is the disk Dn or
sphere Sn−1—in particular, when B is a compact Hausdorff space. In gen-
eral, for a (non-equivariant) orthogonal spectrum T the diagonal map is con-
structed as follows: for every (non-equivariant) inner product space Z, the uni-
versal property of the indexed smash product gives a map of based G-spaces
NG
e (T (Z))→ (NG

e T )(Ind
G
e Z), which restricts on the diagonal to a map

T (Z) −→ (NG
e T (Ind

G
e Z))

G = (FixG(NG
e T ))(Ind

G
e Z), (2.37)

and the construction of ΦG from FixG then induces a map

T (Z) −→ (ΦG(NG
e T ))((Ind

G
e Z)

G) = (ΦG(NG
e T ))(Z).

When T is a cell of the form FVB+, the map in (2.37) factors as

T (Z) = Je(V, Z) ∧B+ −→J G
G (IndGe V, Ind

G
e Z) ∧B+ −→

(JG(Ind
G
e V, Ind

G
e Z) ∧N

G
e (B)+)

G = (FixG(NG
e T ))(Ind

G
e Z).

The first map T (Z) = Je(V, Z) ∧ B+ → J G
G (IndGe V, Ind

G
e Z) ∧ B+ induces

an isomorphism

T −→ Pφ(J
G
G (IndGe V,−) ∧B+) ∼= Je((Ind

G
e V )G,−) ∧B+.

By passing to quotients, we see that likewise in the case of interest,

X = (FVB+)
(m)/Σm ∼= FVmBm+ /Σm,
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the diagonal map factors as an isomorphism

X −→ Pφ(J
G
G (IndGe V

m,−) ∧Σm Bm+ ) ∼= Je((Ind
G
e V

m)G,−) ∧Σm Bm+

followed by a map

Pφ(J
G
G (IndGe V

m,−) ∧Σm Bm+ ) −→ ΦG(NG
e X)

that is the induced map on left Kan extension from a map of J G
G -spaces

J G
G (IndGe V

m,−) ∧Σm Bm+ −→ (JG(Ind
G
e V

m,−) ∧NG
e Σm

NG
e (Bm)+)

G.

Thus, it suffices to show that the latter map is an isomorphism. This amounts
to showing that for each G-inner product space W , the map

J G
G (IndGe V

m,W ) ∧Σm Bm+ −→ (JG(Ind
G
e V

m,W ) ∧NG
e Σm

NG
e (Bm)+)

G

is a homeomorphism, but since both sides are compact Hausdorff spaces, it
amounts to showing that the map is a bijection. The map is clearly an in-
jection. To see that it is a surjection, we note that any non-basepoint x of
JG(Ind

G
e V

m,W ) ∧NG
e Σm

NG
e (Bm)+ is represented by a collection of points

~bh ∈ B
m (indexed on h ∈ G) and isometries φh : V

m →W (indexed on h ∈ G)
such that

⊕
h φh : IndGe V

m → W is injective. The point x is G-fixed if for
every g ∈ G, there exist an element σ(g) in NG

e Σm such that

g · ((φh), (~bh)) = ((φh) ◦ σ(g)
−1, σ(g) · (~bh)). (2.38)

If we write σ(g) also in coordinates σ(g) = (σh(g)), where

(φh) ◦ σ(g)
−1 = (φh ◦ σh(g)

−1) and σ(g) · (~bh) = (σh(g) ·~bh),

then (2.38) becomes

g ◦ φg−1h = φh ◦ σh(g)
−1

~bg−1h = σh(g)~bh.

for all g, h ∈ G, where we have written h ◦ (−) to denote the action of h on W
(and likewise we use (−) ◦ h below to denote the action of h on IndGe V

m). Let

φ′h = h ◦ φ1 = φh ◦ σh(h)
−1

~b′h = σh(h) ·~bh = ~b1,

Then ((φ′h), (
~b′h)) also represents the element x, with (~b′h) clearly a diagonal

element. Since

(g · φ′)h = (g ◦ φ′ ◦ g−1)h

= g ◦ φ′g−1h = g ◦ g−1h ◦ φ1

= h ◦ φ1 = φ′h,

we also have (φ′h) is in the image of J G
G (IndGe V

m,W ).
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3 Cyclotomic spectra and topological cyclic homology

In this section, we review the details of the category of p-cyclotomic spectra
and the construction of topological cyclic homology (TC). The diagonal maps
that naturally arise in the context of the norm go in the opposite direction to
the usual cyclotomic structure maps, and so we also explain how to construct
TC from these “op”-cyclotomic spectra. In the following, fix a prime p and a
complete S1-universe U .

3.1 Background on p-cyclotomic spectra

In this section, we briefly review the point-set description of p-cyclotomic spec-
tra from [6, §4]; we refer the reader to that paper for more detailed discussion.

Definition 3.1 ([6, 4.5]). A p-precyclotomic spectrum X consists of an or-
thogonal S1-spectrum X together with a map of orthogonal S1-spectra

tp : ρ
∗
pΦ

CpX −→ X.

Here ρp denotes the p-th root isomorphism S1 → S1/Cp. A p-precyclotomic
spectrum is a p-cyclotomic spectrum when the induced map on the derived
functor ρ∗pLΦ

CpX → X is an Fp-equivalence. (Here LΦCp denotes the left

derived functor of ΦCp and Fp denotes the family of p-subgroups of S1.) A
morphism of p-cyclotomic spectra consists of a map of orthogonal S1-spectra
X → Y such that the diagram

ρ∗pΦ
CpX //

��

X

��

ρ∗pΦ
CpY // Y

commutes.

Remark 3.2. A cyclotomic spectrum is an orthogonal spectrum with p-
cyclotomic structures for all primes p satisfying certain compatibility relations;
see [6, 4.7–8] for details.

Following [6, 5.4–5], we have the following weak equivalences for p-
precyclotomic spectra.

Definition 3.3. A map of p-precyclotomic spectra is a weak equivalence when
it is an Fp-equivalence of the underlying orthogonal S1-spectra.

Proposition 3.4 ([6, 5.5]). A map of p-cyclotomic spectra is a weak equiva-
lence if and only if is a weak equivalence of the underlying (non-equivariant)
orthogonal spectra.

Documenta Mathematica 23 (2018) 2101–2163



Topological Cyclic Homology Via the Norm 2125

3.2 Constructing TR and TC from a cyclotomic spectrum

In this section, we give a very rapid review of the definition of TR and TC
in terms of the point-set category of cyclotomic spectra described above. The
interested reader is referred to the excellent treatment in Madsen’s CDM notes
[31] for more details on the construction in terms of the classical (homotopical)
definition of a cyclotomic spectrum.
For a p-precyclotomic spectrum X , the collection {XCpn} of (point-set) cate-
gorical fixed points is equipped with maps

F,R : XCpn −→ XCpn−1

for all n, defined as follows. The Frobenius maps F are simply the obvious
inclusions of fixed points, and the restriction maps R are constructed as the
composites

XCpn ∼= (ρ∗pX
Cp)Cpn−1

(ρ∗pω)
C
pn−1

−−−−−−−−→ (ρ∗pΦ
CpX)Cpn−1

(tp)
C
pn−1

−−−−−−→ XCpn−1 ,

where the map ω is the usual map from categorical to geometric fixed points [32,
V.4.3]. The Frobenius and restriction maps satisfy the identity F ◦R = R ◦F .
When X is fibrant in the Fp-model structure (of Theorem 2.29), we then define

TR(X) = holimRX
Cpn and TC(X) = holimR,F X

Cpn .

The homotopy limit for TC is often computed in two steps; since R and F
commute, F acts on TR(X), and TC(X) can be defined as the homotopy fixed
points of the action on TR(X) by the free monoid generated by F .
In general, we define TR and TC using a fibrant replacement that preserves
the p-precyclotomic structure; such a functor is provided by the main theo-
rems of [6, §5], which construct model structures on p-precyclotomic and p-
cyclotomic spectra where the fibrations are the fibrations of the underlying
orthogonal S1-spectra in the Fp-model structure. Alternatively, an explicit
construction of a fibrant replacement functor on orthogonal spectra that pre-
serves precyclotomic structures is given in [4, 4.6–7].

Proposition 3.5 (cf. [6, 1.4]). A weak equivalence X → Y of p-precyclotomic
spectra induces weak equivalences TR(Xf)→ TR(Yf) and TC(Xf)→ TC(Yf )
of orthogonal spectra, where (−)f denotes any fibrant replacement functor in
p-cyclotomic spectra.

Remark 3.6. We do not yet have an abstract homotopy theory for multiplica-
tive objects in cyclotomic spectra, and the explicit fibrant replacement functor
QI of [4, 4.6] is lax monoidal but not lax symmetric monoidal. As a conse-
quence, at present we do not know how to convert a p-cyclotomic spectrum
which is also a commutative ring orthogonal S1-spectrum into a cyclotomic
spectrum that is a fibrant commutative ring orthogonal S1-spectrum.
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3.3 Op-precyclotomic spectra

For our construction of THH based on the norm (in the next section), the diag-
onal map X → ΦGNG

e X is in the opposite direction of the cyclotomic structure
map needed in the definition of a cyclotomic spectrum. In the case when X is
cofibrant (or a cofibrant ring or cofibrant commutative ring orthogonal spec-
trum), the diagonal map is an isomorphism and so presents no difficulty; in the
case when X is just of the homotopy type of a cofibrant orthogonal spectrum,
the fact that the structure map goes the wrong way necessitates some technical
maneuvering in order to construct TR and TC.

Definition 3.7. An op-p-precyclotomic spectrum X consists of an orthogonal
S1-spectrum X together with a map of orthogonal S1-spectra

γ : X −→ ρ∗pΦ
CpX.

An op-p-cyclotomic spectrum is an op-p-precyclotomic spectrum where the
structure map is an Fp-equivalence. A map of op-p-precyclotomic spectra is a
map of orthogonal S1-spectra that commutes with the structure map. A map of
op-p-precyclotomic spectra is a weak equivalence when it is an Fp-equivalence
of the underlying orthogonal S1-spectra.

Note that the definition above uses a condition on the point-set geometric fixed
point functor rather than the derived geometric fixed point functor. Such a
definition works well when we restrict to those op-p-cyclotomic spectraX where
the canonical map in the S1-equivariant stable category ρ∗pLΦ

CpX → ρ∗pΦ
CpX

is an Fp-equivalence. For op-p-cyclotomic spectra in this subcategory, a map
is a weak equivalence if and only if it is a weak equivalence of the underlying
(non-equivariant) orthogonal spectra.
Rather than study the category of op-p-precyclotomic spectra in detail, we
simply explain an approach to constructing TR and TC from this data. In
what follows, let (−)f denote a fibrant replacement functor in the Fp-model
structure on orthogonal S1-spectra; to be clear, we assume the given natural
transformation X → Xf is always an acyclic cofibration. Then for an op-p-
precyclotomic spectrum X , we get a commutative diagram

X
γ

//
��

≃

��

ρ∗pΦ
CpX
��

≃

��

Xf γf
// (ρ∗pΦ

CpX)f ≃
// (ρ∗pΦ

Cp(Xf ))f

where the bottom right horizontal map is a weak equivalence because ρ∗p and

ΦCp preserve acyclic cofibrations. In place of the restriction map R, we have a
zigzag

R : (Xf )
Cpn −→ ((ρ∗pΦ

Cp(Xf ))f )
Cpn−1 ←− (Xf )

Cpn−1
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constructed as the following composite

(Xf )
Cpn

∼= // (ρ∗p(Xf )
Cp)Cpn−1 ≃ // ((ρ∗p(Xf )

Cp)f )
Cpn−1

rr❡❡❡❡
❡❡
❡❡
❡❡
❡❡
❡❡
❡❡
❡❡
❡❡
❡❡
❡❡
❡❡
❡❡

((ρ∗pΦ
Cp(Xf ))f )

Cpn−1 ((ρ∗pΦ
CpX)f )

Cpn−1

≃
oo (Xf )

Cpn−1 .oo

We can use this as an analogue of TR.

Definition 3.8. Define opTR(X) as the homotopy limit of the diagram

· · · ←− (Xf )
Cpn −→ ((ρ∗pΦ

Cp(Xf ))f )
Cpn−1 ←− (Xf )

Cpn−1 −→ · · ·

· · · ←− (Xf )
Cp −→ (ρ∗pΦ

Cp(Xf ))f ←− Xf .

The zigzags R are compatible with the inclusion maps

F : (Xf )
Cpn −→ (Xf )

Cpn−1

in the sense that the following diagram commutes:

(Xf )
Cpn+1 //

F ))❙❙
❙
❙
❙
❙
❙
❙
❙

((ρ∗pΦ
Cp(Xf ))f )

Cpn

F

**

(Xf )
Cpnoo

F

))❚❚
❚
❚
❚
❚
❚
❚
❚

(Xf )
Cpn // ((ρ∗pΦ

Cp(Xf ))f )
Cpn−1 (Xf )

Cpn−1oo

We can therefore form an analogue of TC.

Definition 3.9. Define opTC(X) by taking the homotopy limit over the dia-
gram

· · ·
**

77
(Xf )

Cpnoo
33

// ((ρ∗pΦ
Cp(Xf ))f )

Cpn−1
))

(Xf )
Cpn−1 //oo

88 · · ·

where the middle parts are the R zigzags and the top and bottom the F maps.

This has the expected homotopy invariance property.

Proposition 3.10. Let X → Y be a weak equivalence of op-p-precyclotomic
spectra. The induced maps opTR(X) → opTR(Y ) and opTC(X) → opTC(Y )
are weak equivalences.

Although we have nothing to say in general about the relationship between
p-cyclotomic spectra and op-p-cyclotomic spectra or between opTC and TC,
we have the following comparison result in the case when X has compatible p-
cyclotomic and op-p-precyclotomic structures. This in particular applies when
X has the homotopy type of a cofibrant orthogonal spectrum, as we explain in
Section 4. We apply it in Section 7 to prove Theorem 1.11.
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Proposition 3.11. Let X be an op-p-precyclotomic spectrum and a p-
cyclotomic spectrum and assume that the composite of the two structure maps

ρ∗pΦ
CpX −→ X −→ ρ∗pΦ

CpX

is homotopic to the identity. Then there is a zig-zag of weak equivalences con-
necting TR(X) and opTR(X) and a zig-zag of weak equivalences connecting
TC(X) and opTC(X).

Proof. In the case of the comparison of TR(X) and opTR(X), we can use a
fibrant replacement of X in the category of cyclotomic spectra to compute both
TR(X) and opTR(X). It follows that it suffices to show that the homotopy
limits of diagrams of fibrant objects of the form

. . . Ynoo
fn

// Y ′
n Yn−1

g−1
noo // . . . (3.12)

and

. . . // Yn
fn // Y ′

n

gn // Yn−1
// . . . (3.13)

are equivalent, where gn is an equivalence and g−1
n ◦ gn is homotopic to the

identity. This kind of rectification argument is standard, although we are not
sure of a place in the literature where the precise fact we need is spelled out.
We argue as follows. Choosing a homotopy H from the identity to g−1

n ◦ gn, we
get strictly commuting diagrams of the form

Yn
fn // Y ′

n Yn−1

g−1
noo id // Yn−1

Yn

id

OO

id

��

fn×{0}
// Y ′
n × I

π1

��

H

OO

Y ′
n

id

��

gn

OO

id×{1}
oo

gn // Yn−1

id

OO

id

��

Yn
fn // Y ′

n Y ′
n

idoo
gn // Yn−1.

Note that all the vertical maps are weak equivalences, and therefore the induced
maps between the homotopy limits of the rows are both weak equivalences.
The homotopy limit of the top row is weakly equivalent to the homotopy limit
of (3.12) and the homotopy limit of the bottom row is weakly equivalent to
the homotopy limit of (3.13). This completes the comparison of TR(X) and
opTR(X); the argument for comparing TC(X) and opTC(X) is analogous using
“ladders” in place of rows.

Remark 3.14. The following sketches a reformulation of the above argument,
showing the equivalence of homotopy limits of (3.12) and (3.13), using the more
general-purpose machinery of coherent diagrams. All numbered references in
the following are to [30].
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As homotopy limits are invariant up to equivalence, we can assume that the
objects in the diagram are cofibrant-fibrant and hence that gn is a homotopy
equivalence. If N(S◦) denotes the “simplicial nerve” [1.1.5.5] of the simpli-
cial category of cofibrant-fibrant orthogonal spectra, homotopy limits can be
computed in the quasicategory N(S◦) [4.2.4.8].
There is a simplicial set K whose 0-simplices correspond to the objects Yn
and Y ′

n, whose 1-simplices correspond to the maps fn, gn, and g
−1
n , and whose

2-simplices express the composition homotopies g−1
n ◦ gn ⇒ id. We have a

homotopy coherent diagram of orthogonal spectra indexed on K in the sense
of Vogt (or [1.2.6]) expressed as follows:

· · ·Yn+1

fn+1
// Y ′
n+1

gn+1

$$

Yn

g−1
n+1

ff

ks

fn // Y ′
n

gn
$$

Yn−1

g−1
n

dd
ks

fn−1
// Y ′
n−1

gn−1

&&

Yn−2 · · ·

g−1
n−1

hh

ks

We write K+ for the upper subcomplex containing the edges fn and gn, and
similarly write K− for the lower subcomplex containing the fn and g−1

n .
The inclusionK+ → K is an iterated pushout along horn-filling maps Λ2

0 → ∆2,
so this map is left anodyne [2.0.0.3] and hence final [4.1.1.3]. The restric-
tion from K-diagrams to K+-diagrams therefore preserves all homotopy limits
[4.1.1.8].
We now consider the inclusion K− → K, which is an iterated pushout along
horn-filling maps Λ2

2 → ∆2 whose last edges are g−1
n . Because the maps g−1

n are
equivalences, the space of extensions of a diagram indexed on K− to a diagram
indexed on K is contractible because the map Λ2

2 → ∆2, with the final edge
marked as an equivalence, is marked anodyne [3.1.1.1, 3.1.3.4]. In addition,
the subspace of homotopy right Kan extensions is also contractible [4.2.4.8,
4.3.2.15]. Therefore, any extension of this K−-diagram to a K-diagram is a
homotopy right Kan extension, and the homotopy limit of a homotopy right
Kan extension is equivalent to the homotopy limit of the original diagram
[4.3.2.8].
The comparison between TC and opTC follows by a similar argument. There
is a diagram indexed by K × ∆1, representing the natural transformation F
on the comparison diagram for TR: we define a simplicial set L by identifying
K × {1} with K × {0} after a shift. There are subcomplexes L+ and L−,
generated by K+ ×∆1 and K− ×∆1 respectively, representing the diagrams
defining TR and opTR. As before, the inclusion L+ → L is left anodyne and
the inclusion L− → L only involves extension along equivalences.

4 The construction and homotopy theory of the S1-norm

In this section, we construct the norm from the trivial group to S1 and study
its basic point-set and homotopical properties. In particular, we prove that
under mild hypotheses it gives a model for THH that is cyclotomic. Unlike
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norms for finite groups, the S1-norm does not apply to arbitrary orthogonal
spectra; instead we need an associative ring structure. In the case when R
is commutative, we identify the S1-norm as the left adjoint of the forgetful
functor from commutative ring orthogonal S1-spectra indexed on a complete
universe to (non-equivariant) commutative ring orthogonal spectra.
Throughout this section, we fix a complete S1-universe U . As in the definition
of the norm for finite groups, the (point-set) equivalence of categories IU

R∞

discussed in Section 2.1 will play a key technical role.
For a ring orthogonal spectrum R, let N cyc

∧ R denote the cyclic bar construction
with respect to the smash product; i.e., the cyclic object in orthogonal spectra
with k-simplices

[k] −→ R ∧R ∧ . . . ∧R︸ ︷︷ ︸
k+1

and the usual cyclic structure maps induced from the ring structure on R.

Lemma 4.1. Let R be an object in Ass. Then the geometric realization of the
cyclic bar construction |N cyc

∧ R| is naturally an object in SS
1

R∞ .

Proof. It is well known that the geometric realization of a cyclic space has
a natural S1-action [25, 3.1]. Since geometric realization of an orthogonal
spectrum is computed levelwise, it follows by continuous naturality that the
geometric realization of a cyclic object in orthogonal spectra has an S1-action.
As noted in Section 2.1, the category SS

1

R∞ of orthogonal S1-spectra indexed on
R∞ is isomorphic to the category of orthogonal spectra with S1-actions.

Using the point-set change of universe functors we can regard this as indexed
on the complete universe U . The following definition repeats Definition 1.1
from the introduction.

Definition 4.2. Let R be a ring orthogonal spectrum. Define the functor

NS1

e : Ass −→ SS
1

U

to be the composite functor

R 7→ IU
R∞ |N

cyc
∧ R|.

When R is a commutative ring orthogonal spectrum, the usual tensor homeo-
morphism of McClure-Schwanzl-Vogt [37] (see also [15, IX.3.3])

|N cyc
∧ R| ∼= R⊗ S1

yields the following characterization:

Proposition 4.3. The restriction of NS1

e to Com lifts to a functor

NS1

e : Com −→ ComS1

U

that is left adjoint to the forgetful functor

ι∗ : ComS1

U −→ Com.
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Proof. To obtain the refinement of NS1

e to a functor Com→ ComS1

U , it suffices
to construct a refinement of |N cyc

∧ | to a functor

|N cyc
∧ | : Com −→ Com

S1

R∞ .

We obtain this immediately from the strong symmetric monoidal isomorphism

|X•| ∧ |Y•| ∼= |X• ∧ Y•|

for simplicial objectsX•,Y• in orthogonal spectra and the easy observation that
the map is S1-equivariant for cyclic objects. Let P denote the free commutative
ring orthogonal S1-spectrum functor. Using the isomorphism

P|X•| ∼= |PX•|

and the fact that N cyc
∧ PX ∼= PN cyc

∨ X , we deduce that there is an isomor-
phism |N cyc

∧ PX | ∼= P(X∧S1
+). Because |N

cyc
∧ R| preserves reflexive coequalizers

(see [15, II.7.2]), we can use the canonical reflexive coequalizer

PPR //
// PR // R

to identify |N cyc
∧ R| as the reflexive coequalizer

P(PR ∧ S1
+)

//
// P(R ∧ S1

+)
// R⊗ S1,

constructing the tensor of R with the unbased space S1 in the category of
commutative ring orthogonal spectra. A formal argument now identifies this
as the left adjoint to the forgetful functor

ι∗ : ComS1

R∞ −→ Com

and it follows that NS1

e is the left adjoint to the forgetful functor indicated in
the statement.

We now show that the S1-norm NS1

e R is a cyclotomic spectrum in orthogonal
S1-spectra. For this, we need to work with the Cn geometric fixed points.
Since |N cyc

∧ R| is the geometric realization of a cyclic spectrum, the Cn-action
can be computed in terms of the edgewise subdivision of the cyclic spectrum
N cyc

∧ R [8, §1]. Specifically, the nth edgewise subdivision sdnN
cyc
∧ R is a sim-

plicial orthogonal spectrum with a simplicial Cn-action such that there is a
natural isomorphism of orthogonal S1-spectra

| sdnN
cyc
∧ R| ∼= |N

cyc
∧ R|,

where the S1-action on the left extends the Cn-action induced from the simpli-
cial structure (see [8], p. 471, first display, or Section 8 in this paper for further
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review). For NS1

e then, taking Ũ = ι∗Cn
U , a complete Cn-universe, there is an

isomorphism of orthogonal Cn-spectra indexed on Ũ

ι∗Cn
NS1

e R ∼= IŨR∞(ι∗Cn
|N cyc

∧ R|).

This allows us to understand the Cn-action on NS1

e R in terms of the Cn-action
on |N cyc

∧ R|.

Writing this out, the orthogonal Cn-spectrum ι∗Cn
NS1

e (R) has a description
as the geometric realization of a simplicial orthogonal Cn-spectrum having k-
simplices given by norms

(NCn
e R)∧(k+1) ∼= IŨR∞(R∧n(k+1)),

where Cn acts by block permutation on R∧n(k+1) and Ũ = ι∗Cn
U . The faces

are also given blockwise, with di for 0 ≤ i ≤ k − 1 the map

NCn
e (R∧(k+1)) −→ NCn

e (R∧k)

on norms induced by the multiplication of the (i + 1)st and (i + 2)nd factors
of R. The face map dk is a bit more complicated and uses both an internal
cyclic permutation inside the last NCn

e R factor (as in Proposition 2.15) and a
permutation of the (k + 1) factors of (NCn

e R)∧(k+1) together with the multi-
plication d0. Writing g = e2πi/n for the canonical generator of Cn < S1 and α
for the natural cyclic permutation on X∧(k+1), dk is the composite

(NCn
e R)∧(k+1) id∧k ∧IŨ

R∞
g

−−−−−−−−→ (NCn
e R)∧(k+1) α

−−→ (NCn
e R)∧(k+1) d0−−→ (NCn

e R)∧k.

In fact, we have the following concise description of the Cn-action in NS1

e -
bimodule terms. We obtain a (NCn

e R,NCn
e R)-bimodule gNCn

e R, using the

standard right action but twisting the left action using IŨ
R∞g. In the following

statement, we use the cyclic bar construction with coefficients in a bimodule,
q.v. [8, §2].

Theorem 4.4. Let R be a ring orthogonal spectrum. For any Cn < S1, there
is an isomorphism of orthogonal Cn-spectra

ι∗Cn
NS1

e (R) ∼= |N
cyc
∧ (NCn

e R, gNCn
e R)|,

where the cyclic bar construction is taken in the symmetric monoidal category
SCn

Ũ
.

Next we assemble the diagonal maps into a map NS1

e R → ρ∗nΦ
CnNS1

e R of
orthogonal S1-spectra. The following lemma (which is just a specialization of
Proposition 2.15) provides the basic compatibility we need. (The lemma also
follows as an immediate consequence of the much more general rigidity theorem
of Malkiewich [33, §3].)
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Lemma 4.5. Let R be an orthogonal spectrum, let H < S1 be a finite subgroup,

and let h ∈ H. Then the map ΦH(IŨ
R∞h) : ΦHNH

e R→ ΦHNH
e R is the identity.

We now prove the main theorem about the diagonal map cyclotomic structure.

Theorem 4.6. Let R be a ring orthogonal spectrum. The diagonal maps

∆n : R
∧(k+1) −→ ΦCnNCn

e R∧(k+1)

assemble into natural maps of S1-spectra

τn : N
S1

e R −→ ρ∗nΦ
CnIU

R∞ |N
cyc
∧ R| ∼= ρ∗nΦ

CnNS1

e R.

If R is cofibrant or cofibrant as a commutative ring orthogonal spectrum, then
these maps are isomorphisms.

Proof. Varying k, we get a map of cyclic objects

N cyc
∧ R −→ ΦCnIŨ

R∞ sdnN
cyc
∧ R

and on realization and change of universe, a map

NS1

e R −→ IU
R∞ |ΦCnIŨ

R∞ sdnN
cyc
∧ R|

of orthogonal S1-spectra. The map τn is the composite with the evident iso-
morphism of orthogonal S1-spectra

IU
R∞ |ΦCnIŨ

R∞ sdnN
cyc
∧ R| ∼= ρ∗nΦ

CnIU
R∞ | sdnN

cyc
∧ R| ∼= ρ∗nΦ

CnNS1

e R.

(In [13, §4], the first isomorphism is studied in detail.) When R is cofibrant,
the maps ∆n are isomorphisms, and so therefore are the maps τn.

The previous theorem establishes a precyclotomic structure. For the cyclotomic
structure, we now just need to compare the point-set geometric fixed point
functors with their derived functors.

Theorem 4.7. Let R be a cofibrant ring orthogonal spectrum or a cofibrant
commutative ring orthogonal spectrum. Then for any Cn < S1, the point-set
geometric fixed point functor on NS1

e R computes the left derived geometric fixed
point functor

LΦCnNS1

e R
≃
−−→ ΦCnNS1

e R.

Moreover, there is an S1-equivariant isomorphism

ΦCnNS1

e R ∼= IUR∞ |ΦCnIŨ
R∞ sdnN

cyc
∧ R|.

Theorem 1.5, the assertion of the cyclotomic structure on NS1

e R for R a cofi-
brant ring orthogonal spectrum or cofibrant commutative ring orthogonal spec-
trum, is now an immediate consequence of the previous theorem and Theo-
rem 4.6. If R only has the homotopy type of a cofibrant object, application of
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Proposition 3.11 allows us to functorially work with opTR and opTC as models
of TR and TC.
For the proof of the previous theorem, recall that a simplicial object in a
category enriched in spaces is said to be proper when for each n the map from
the kth latching object to the kth level is an h-cofibration. (Recall that an
h-cofibration is a map f : X → Y with the homotopy extension property: Any
map φ : Y → Z and any path in the space of maps from X to Z starting at
φ ◦ f comes from the restriction of a path in the space of maps from Y to Z
starting at φ.) The geometric realization of a proper simplicial object (in a
topologically cocomplete category) is the colimit of a sequence of pushouts of
h-cofibrations. This is relevant to the situation above because of the following
lemma.

Lemma 4.8. Let R be a cofibrant ring orthogonal spectrum or a cofibrant com-
mutative ring orthogonal spectrum. Then for any Cn < S1,

IŨ
R∞ sdnN

cyc
∧ R

is proper as a simplicial object in SCn

Ũ
.

Proof. Since IŨ
R∞ is a topological left adjoint, it preserves pushouts and homo-

topies, and therefore preserves properness. Thus, it suffices to show that

sdnN
cyc
∧ R

is a proper simplicial object in SCn

R∞ . In the case when R is a cofibrant ring
orthogonal spectrum, each level is cofibrant as an orthogonal Cn-spectrum and
the inclusion of the latching object is a cofibration. In the case when R is
cofibrant as a commutative ring orthogonal spectrum, an argument similar
to [15, VII.7.5] shows that the iterated pushouts that form the latching objects
are h-cofibrations and the inclusion of the latching object is an h-cofibration.

Proof of Theorem 4.7. Given the discussion above, we see that under the hy-
potheses of the theorem, the point-set geometric fixed point functor ΦCn com-
mutes with geometric realization, giving us the isomorphism

ΦCnNS1

e R ∼= IUR∞ |ΦCnIŨ
R∞ sdnN

cyc
∧ R|.

Since the point-set geometric fixed point functor commutes with sequential col-
imits of h-cofibrations, to see that it computes the derived geometric fixed point
functor, we just need to see that it does so on each of the objects involved in the
sequence of pushouts that constructs the geometric realization. This happens

on the levels of N• = IŨ
R∞ sdnN

cyc
∧ R because each Nk is the smash product of

copies of NCn
e R and it happens on NCn

e R in the case when R is a cofibrant ring
orthogonal spectrum by Theorem 2.34 (and [23, B.89]) and in the case when R
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is a cofibrant commutative ring orthogonal spectrum by Theorem 2.36 (com-
bined with Theorem 2.34). The other pieces are the orthogonal Cn-spectra Pk
defined by the pushout diagram

Lk ∧ ∂∆
k
+

//

��

Lk ∧∆k
+

��

Nk ∧ ∂∆
k
+

// Pk,

where Lk denotes the latching object. The point-set geometric fixed point
functor computes the derived geometric fixed point functor for each Pk because
it does so for each Nk and for each latching object (by induction).

Finally, we turn to the question of understanding the derived functors of NS1

e .
Recall that when dealing with cyclic sets, the S1-fixed points do not usually
carry homotopically meaningful information. As a consequence, we will work
with the model structure on SS

1

U provided by Theorem 2.29 with weak equiv-
alences the FFin-equivalences, i.e., the maps which are isomorphisms on the
homotopy groups of the (categorical or geometric) fixed point spectra for the
finite subgroups of S1 (irrespective of what happens on the fixed points for S1).

We will now write SS
1,FFin

U for SS
1

U to emphasize that we are using the FFin-
equivalences. We use analogous notation for the categories of ring orthogonal
S1-spectra and commutative ring orthogonal S1-spectra.
We now observe that NS1

e admits (left) derived functors when regarded as

landing in SS
1,FFin

U and (in the commutative case) ComS1,FFin

U . Theorems 4.6
and 4.7 have the following consequence.

Theorem 4.9. Let R → R′ be a weak equivalence of ring orthogonal spectra
where R and R′ is each either a cofibrant ring orthogonal spectra or a cofi-
brant commutative ring orthogonal spectra (four cases). Then the induced map

NS1

e R→ NS1

e R′ is an FFin-equivalence.

Proof. Since we have shown that NS1

e R and NS1

e R′ are cyclotomic spectra
and the map is a map of cyclotomic spectra, it suffices to prove that it is
a weak equivalence of the underlying non-equivariant spectra, where we are
looking at the map |N cyc

∧ R| → |N cyc
∧ R′|. At each simplicial level, the map

R∧(k+1) → R′∧(k+1) is a weak equivalence and the simplicial objects are proper,
so the map on geometric realizations is a weak equivalence.

In the commutative case, we have the following derived functor result.

Proposition 4.10. Regarded as a functor on commutative ring orthogonal
spectra, the functor NS1

e is a left Quillen functor with respect to the positive

complete model structure on Com and the FFin-model structure on ComS1

U .

Proof. The forgetful functor preserves fibrations and acyclic fibrations.
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5 The cyclotomic trace

The modern importance of THH and TC derives from the application of the
trace maps K → TC and K → TC → THH to computing algebraic K-theory.
In this section, we give a construction of the cyclotomic trace in terms of the
norm construction of THH .
First, observe that the constructions of Section 4 and 6 generalize without mod-
ification to the setting of categories enriched in orthogonal spectra: Specifically,
given a small spectral category C we define the cyclic bar construction as the
geometric realization of the cyclic orthogonal spectrum with k-simplices

[k] 7→
∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck).

This construction gives rise to an orthogonal S1-spectrum; we have the follow-
ing analogue of Lemma 4.1.

Lemma 5.1. Let C be a small category enriched in orthogonal spectra. Then
the geometric realization of the cyclic bar construction |N cyc

∧ C| is naturally an

object in SS
1

R∞ .

In order to obtain a cyclotomic structure, as in Theorem 1.5, we need to arrange
for the mapping spectra in C to be cofibrant. Such a spectral category is called
“pointwise cofibrant” [4, 2.5]. Following [4, 2.7], we have a cofibrant replace-
ment functor on spectral categories with a fixed object set that in particular
produces pointwise cofibrant spectral categories.

Theorem 5.2. Let C be a pointwise cofibrant spectral category, then IU
R∞ |N

cyc
∧ C|

has a natural structure of a cyclotomic spectrum.

Proof. Much of this goes through just as in Section 4. The only real divergence
is that although levelwise

IŨ
R∞ sdnN

cyc
∧ C

is no longer given as a smash of norms, the diagonal isomorphisms

∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

−→ ΦCnIŨ
R∞

( ∨

c0,...cq

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(cq, cq−1) ∧ C(c0, cq)

)

(where q = n(k + 1)− 1) arise as the composite of the diagonal isomorphism

∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

−→ ΦCnNCn
e

( ∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

)
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and the isomorphism

ΦCnNCn
e

( ∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

)

−→ ΦCnIŨ
R∞

( ∨

c0,...cq

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(cq, cq−1) ∧ C(c0, cq)

)

induced by the inclusion

( ∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

)
∧(n)

−→
∨

c0,...cq

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(cq, cq−1) ∧ C(c0, cq)

of the summands where ci(k+1)+j = cj for all 0 < i < n, 0 ≤ j < k + 1.

We simplify notation by writing THH(C) for the orthogonal S1-spectrum or
cyclotomic spectrum IU

R∞ |N
cyc
∧ C|. From this point, the construction of TR and

TC proceeds identically with the case of associative ring orthogonal spectra.

We now turn to the construction of the cyclotomic trace. The trace map is
induced from the inclusion of objects map

ob(C) −→ |N cyc
∧ C|

that takes x to the identity map x → x in the zero-skeleton of the cyclic bar
construction. To make use of this for K-theory, we use the Waldhausen con-
struction of K-theory as the geometric realization of the nerve of the multisim-

plicial spectral category w•S
(n)
• C and consider the bispectrum THH(w•S

(n)
• C).

The construction now proceeds in the usual way (e.g., see [5, 1.2.5]).

6 A description of relative THH as the relative S1-norm

In this section, we extend the work of Section 4 to the setting of A-algebras
for a commutative ring orthogonal spectrum A. The category of A-modules is
a symmetric monoidal category with respect to ∧A, the smash product over
A. As explained in [23, §A.3], the construction of the indexed smash product
can be carried out in the symmetric monoidal category of A-modules. Our
construction of relative THH will use the associated A-relative norm.

We will write AG to denote the commutative ring orthogonal G-spectrum ob-
tained by regarding A as having trivial G-action; i.e., AG = IU

R∞A. This is a
commutative ring orthogonal G-spectrum since IU

R∞ is a symmetric monoidal
functor. For example, if A is the sphere spectrum then AG is the G-equivariant
sphere spectrum.
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Warning 6.1. Although IU
R∞ performs the (derived) change of universe on

stable categories for cofibrant orthogonal spectra, and IU
R∞ has a left derived

functor on commutative ring orthogonal spectra (Proposition 6.2 below), the
underlying object in the stable category of AG is not the derived change of
universe applied to A except in rare cases like A = S; see Example 6.3 below.
As a consequence, in the following result the comparison map between the
left derived functor and the left derived functor of IU

R∞ : S → SGU is not an
isomorphism.

Proposition 6.2. The functor IU
R∞ : Com→ ComG

U is a Quillen left adjoint.

Proof. The functor in question is the composite of the inclusion of Com in
ComG

R∞ as the objects with trivial G-action (which is Quillen left adjoint to
the G-fixed point functor) and the Quillen left adjoint IU

R∞ : ComG
R∞ → ComG

U .
The Quillen right adjoint is the composite (−)G ◦ IR

∞

U .

Example 6.3. For X a non-equivariant positive cofibrant orthogonal spec-
trum, PX is a cofibrant commutative ring orthogonal spectrum. We have that
IU
R∞PX = PIU

R∞X , whose underlying object in the equivariant stable category
is isomorphic to

∨
EGΣn+ ∧Σn I

U
R∞X∧n by [32, III.8.4], [23, B.117]. On the

other hand, the underlying object of PX in the non-equivariant stable cate-
gory is isomorphic to

∨
EΣn+ ∧Σn X

∧n, which the derived functor on stable
categories takes to

∨
EΣn+ ∧Σn I

U
R∞X∧n. In general, the commutative ring

derived functor is related to the stable category derived functor by change of
operads along EΣ∗ → EGΣ∗, cf. [3].

For an A-algebra R, let N cyc
∧A
R denote the cyclic bar construction with respect

to the smash product over A. The same proof as Lemma 4.1 implies the
following.

Lemma 6.4. Let R be an object in A-Alg. Then the geometric realization of

the cyclic bar construction |N cyc
∧A
R| is naturally an object in A-ModS

1

R∞ .

Using the point-set change of universe functors we can turn this into an or-
thogonal S1-spectrum indexed on the complete universe U .

Definition 6.5. Let R be a ring orthogonal spectrum. Define the functor

AN
S1

e : A-Alg −→ AS1 -ModS
1

U

as the composite

AN
S1

e R = IU
R∞ |N

cyc
∧A
R|.

The argument for Proposition 4.3 also proves the following relative version.

Proposition 6.6. The restriction of AN
S1

e to commutative A-algebras lifts to
a functor

AN
S1

e : A-Com −→ AS1 -ComS1

U

Documenta Mathematica 23 (2018) 2101–2163



Topological Cyclic Homology Via the Norm 2139

that is left adjoint to the forgetful functor

ι∗ : AS1 -ComS1

U −→ A-Com

We now make a non-equivariant observation about relative THH (ignoring
the group action temporarily) that informs our description of the equivariant
structure. Similar theorems have appeared previously in the literature, e.g.,
[36, §5].

Lemma 6.7. Let R be an A-algebra in orthogonal spectra. Then there is an
isomorphism

STHH(R) ∧
STHH(A) A ∼= ATHH(R).

Proof. Commuting the smash product with geometric realization reduces the
lemma to verifying the formula

(R ∧R ∧ . . . ∧R) ∧A∧A∧...∧A A ∼= R ∧A R ∧A . . . ∧A R,

which is a straightforward calculation.

We now generalize Lemma 6.7 to take advantage of the equivariant structure.

Proposition 6.8. Let G be a finite group. Let A be a commutative ring or-
thogonal spectrum and M an A-module. The A-relative norm is obtained by
base-change from the usual norm:

AN
G
e M

∼= NG
e M ∧NG

e A
AG

Proof. SinceM is an A-module, we know that NG
e M is anNG

e A-module (in the
category SGU ), using the fact that the norm is a symmetric monoidal functor [23,
A.53]. The right hand side is the extension of scalars along the canonical
map NG

e A → AG obtained as the adjoint of the natural (non-equivariant)
map A → AG. Because the map NG

e (−) → AN
G
e (−) is a monoidal natural

transformation, we obtain a canonical map from NG
e M ∧NG

e A
AG to AN

G
e M ;

this map is an isomorphism because it is clearly an isomorphism after forgetting
the equivariance.

Extending this to S1, if R is an A-algebra we have the following characteriza-
tion of relative THH as an S1-spectrum that follows by essentially the same
argument.

Proposition 6.9. Let R be an A-algebra in orthogonal spectra. Then we have
an isomorphism

AN
S1

e R ∼= NS1

e R ∧NS1
e A AS1

We now turn to the homotopical analysis of AN
S1

e . The following theorem

asserts that the left derived functor of AN
S1

e exists.
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Theorem 6.10. Let R → R′ be a weak equivalence of cofibrant A-algebras.

Then the induced map AN
S1

e R→ AN
S1

e R′ is an FFin-equivalence.

To prove this theorem, it suffices to prove the following theorem, which in
particular implies Proposition 1.8.

Theorem 6.11. Let A be a cofibrant commutative orthogonal spectrum and let
R be a cofibrant A-algebra. The smash product NS1

e R ∧NS1
e A AS1 represents

the derived smash product in the FFin-model structure.

Proof. Let N be a cofibrant NS1

e A-module approximation of NS1

e R; the asser-
tion is that the map

N ∧NS1
e A AS1 −→ NS1

e R ∧NS1
e A AS1

is a FFin-equivalence. We compare to the bar construction: Let
B(N,NS1

e A,AS1) be the geometric realization of the simplicial object with
k-simplices

N ∧NS1

e A ∧ · · · ∧NS1

e A︸ ︷︷ ︸
k

∧AS1 ,

and similarly for B(NS1

e R,NS1

e A,AS1). Then we have a commutative diagram

B(N,NS1

e A,AS1) //

��

N ∧NS1
e A AS1

��

B(NS1

e R,NS1

e A,AS1) // NS1

e R ∧NS1
e A AS1 .

We want to show that the righthand map is a FFin-equivalence; we show that
the remaining three maps are FFin-equivalences. We apply the change of groups
functor ι∗Cn

and show that they are weak equivalences of orthogonal Cn-spectra.
Since ι∗Cn

commutes with smash product and geometric realization, we have
isomorphisms

ι∗Cn
B(N,NS1

e A,AS1) ∼= B(ι∗Cn
N, ι∗Cn

NS1

e A,ACn)

ι∗Cn
(N ∧NS1

e A AS1) ∼= ι∗Cn
N ∧ι∗Cn

NS1
e A ACn

and similarly for NS1

e R in place of N .

Before proceeding, we note that ι∗Cn
NS1

e A and ι∗Cn
NS1

e R are flat in the sense

of [23, B.15]. This can be seen as follows. NCn
e A is flat by [23, B.147] and

NCn
e R is flat being the sequential colimit of pushouts over h-cofibrations of

flat objects. Likewise, ι∗Cn
NS1

e A, ι∗Cn
NS1

e R, and ι∗Cn
N are sequential colimits

of pushouts over h-cofibrations of objects that are flat, q.v. Theorem 4.4 for
NS1

e A and NS1

e R. As an immediate consequence, we see that the map

B(N,NS1

e A,AS1) −→ B(NS1

e R,NS1

e A,AS1)
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is a FFin-equivalence as

B(ι∗Cn
N, ι∗Cn

NS1

e A, ι∗Cn
AS1) −→ B(ι∗Cn

NS1

e R, ι∗Cn
NS1

e A, ι∗Cn
AS1)

is a weak equivalence on each simplicial level and the simplicial objects are
proper.
To see that ι∗Cn

B(N,NS1

e A,AS1)→ ι∗Cn
(N ∧NS1

e A AS1) is a weak equivalence,

letM be a cofibrantNS1

e A-module approximation of AS1 . Since smash product
commutes with geometric realization, we have compatible isomorphisms

B(N,NS1

e A,NS1

e A) ∧NS1
e AM

∼= B(N,NS1

e A,M)

B(N,NS1

e A,NS1

e A) ∧NS1
e A AS1 ∼= B(N,NS1

e A,AS1)

Now we have a commutative diagram

B(N,NS1

e A,M) ∼=

��

B(N,NS1

e A,NS1

e A) ∧NS1
e AM

//

��

N ∧NS1
e AM

��

B(N,NS1

e A,AS1) ∼= B(N,NS1

e A,NS1

e A) ∧NS1
e A AS1 // N ∧NS1

e A AS1 .

with the bottom composite map becoming the map in question after applying
ι∗Cn

. The lefthand map becomes a weak equivalence after applying ι∗Cn
because

both ι∗Cn
N and ι∗Cn

NS1

e A are flat. The top map is a weak equivalence because

(−)∧NS1
e AM preserves the weak equivalence B(N,NS1

e A,NS1

e A)→ N and the

righthand map is a weak equivalence because N ∧NeS1 (−) preserves the weak
equivalence M → AS1 .
Finally, to see that the map

ι∗Cn
B(NS1

e R,NS1

e A,AS1) −→ ι∗Cn
NS1

e R ∧NS1
e A AS1

is a weak equivalence, we apply Theorem 4.4 to observe that it is induced by a
map of simplicial objects

B(N cyc
∧ (NCn

e R, gNCn
e R), N cyc

∧ (NCn
e A, gNCn

e A), ACn)

−→ N cyc
∧ (NCn

e R, gNCn
e R) ∧Ncyc

∧
(NCn

e A,gNCn
e A) ACn .

Here at the kth level, the map is

B((NCn
e R)∧(k) ∧ gNCn

e R, (NCn
e A)∧(k) ∧ gNCn

e A,ACn)

−→ ((NCn
e R)∧(k) ∧ gNCn

e R) ∧(NCn
e A)∧(k)∧gNCn

e A ACn ,

which is a weak equivalence since (NCn
e R)∧(k)∧gNCn

e R is flat as a module over
(NCn

e A)∧(k) ∧ gNCn
e A.
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Similarly, we can extend the homotopical statement of Proposition 4.10 to the
relative setting.

Proposition 6.12. Regarded as a functor on commutative A-algebras, the

functor AN
S1

e is a left Quillen functor with respect to the positive complete

model structure on A-Com and the FFin-model structure on AS1-ComS1

U .

Proposition 6.13. Let R→ R′ be a weak equivalence of A-algebras where R is
cofibrant and R′ is a cofibrant commutative A-algebra. Then the induced map

AN
S1

e R→ AN
S1

e R′ is an FFin-equivalence.

Proof. By Theorem 6.11,

AN
S1

e R ∼= NS1

e R ∧NS1
e A AS1

represents the derived smash product. Since NS1

e R′ is cofibrant as a commu-

tative NS1

e A-algebra,

AN
S1

e R′ ∼= NS1

e R′ ∧NS1
e A AS1

also represents the derived smash product.

7 When do we have relative cyclotomic structures?

One application of the perspective of THH as the S1-norm is the construction

of relative versions of TR and TC built from AN
S1

e R, which we discuss in this

section. In previous drafts, the authors asserted that AN
S1

e could in general be
endowed with cyclotomic structure or op-pre-cyclotomic structures. However,
as explained below, except for very special choices for A (such as A = S), this is
not correct. Some of the difficulties arise from subtleties of the behavior of the
derived functor of change of universe on commutative ring orthogonal spectra,
q.v. Example 6.3 above and Example 7.5 below. Other difficulties arise from
a basic incompatibility of diagonal maps, as we will explain.
We begin with an example due to Lars Hesselholt that illustrates the impossi-
bility of a general construction of a nontrivial cyclotomic structure. Let R be
a cofibrant commutative ring orthogonal spectrum. Recall that the cyclotomic
structure on THH(R) yields an isomorphism THH(R) → ρ∗pΦ

CpTHH(R).

Essentially by definition, there is a natural map ΦCpTHH(R)→ THH(R)tCp ,
where (−)tCp denotes the Tate fixed-points; this map is simply a relabeling of
the map

(THH(R) ∧ ẼCp)
Cp −→ (F (ECp+, THH(R)) ∧ ẼCp)

Cp

induced by the collapse map EG+ → S0. Therefore, we have a composite map

THH(R) −→ ρ∗pΦ
CpTHH(R) −→ ρ∗pTHH(R)tCp.
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(In fact, in the Nikolaus-Scholze formalism for describing cyclotomic structures,
it is shown that for bounded-below R this map is equivalent to the data of a
cyclotomic structure as we present here [38].) The counterexample arises from
consideration of this map in the specific example of THHHZ(Fp).

Example 7.1. Suppose that we could construct p-cyclotomic structures for
general R and A, and that the expected naturality holds. Then in particular
we would have a commutative diagram of ring orthogonal spectra

THH(Fp) //

��

THHHZ(Fp)

��

THH(Fp)
tCp // THHHZ(Fp)

tCp .

Passing to homotopy groups and composing with the edge homomorphism in
the Tate spectral sequence then yields a commutative diagram of graded rings

SFp(t) //

��

ΓFp(v)

��

SFp(t, t
−1) // SFp(v, v

−1),

where SFp denotes the symmetric algebra and ΓFp the divided power algebra.
The top map is the canonical map from THH∗ to HH∗ and it takes t to v.
Then the left-then-bottom composite takes tp to a non-zero element while the
top-then-right composite takes tp to zero.

In order to understand the situation better, we now describe a natural op-
precyclotomic structure on AS1 . The geometric fixed point functor ΦH is lax
symmetric monoidal, and therefore gives rise to a functor

ΦH : AG-ModGU −→ (ΦHAG)-Mod
G/H

UH

when H is normal in G. In the case of a finite subgroup Cn < S1, for an
AS1 -module X , we have that ΦCnX is an orthogonal S1/Cn-spectrum and a
module over ΦCnAS1 . In fact, it is a module over AS1/Cn

.

Proposition 7.2. Let A be a (non-equivariant) commutative ring orthogonal
spectrum and let H be a closed normal subgroup of a compact Lie group G.
There is a natural map of commutative ring orthogonal G/H-spectra AG/H →
ΦHAG.

Proof. By adjunction, maps AG/H → ΦHAG are in bijective correspondence

with maps A → (ΦHAG)
G/H . The natural map in question can thus be con-

structed as the adjoint of the composite

A −→ (AG)
G ∼= ((AG)

H)G/H −→ (ΦHAG)
G/H .
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Alternatively, we can give a direct construction as follows. Let X be an arbi-
trary non-equivariant orthogonal spectrum and write XG for the application of
the point-set functor IU

R∞ . We write ΦHXG as the coequalizer

∨
V,W<U

J U
G (V,W )H ∧ FWHS0 ∧ (XG(V ))H //

//
∨
V <U

FV HS0 ∧ (XG(V ))H

in orthogonal G/H-spectra. For V an H-fixed G-inner product space, we can
also regard V as a G/H-inner product space, and we have

XG/H(V ) ∼= XG(V ) = (XG(V ))H .

Writing XG/H as the coequalizer

∨
V,W<UH

J UH

G/H(V,W ) ∧ FWS
0 ∧XG/H(V ) //

//
∨

V <UH

FV S
0 ∧XG/H(V ),

we get a canonical natural map of orthogonalG/H-spectra λ : XG/H → ΦHXG.
The symmetric monoidal transformation ΦHXG ∧ ΦHYG → ΦH(XG ∧ YG) is
induced by the natural map

FV H
1
S0 ∧ (XG(V1))

H ∧ FV H
2
S0 ∧ (YG(V2))

H

��

F(V1⊕V2)HS
0 ∧ ((XG ∧ YG)(V1 ⊕ V2))

H ,

and we see that λ is also lax symmetric monoidal. Applying these observations
to the commutative ring orthogonal spectrum A and the multiplication map
A∧A→ A, we see that λ induces a map of commutative ring orthogonal G/H-
spectra AG/H → ΦHAG, natural in the commutative ring orthogonal spectrum
A.

We now specialize this to the subgroup Cn < S1 and an AS1 -moduleX . Pulling
back along the nth root isomorphism ρn : S

1 → S1/Cn gives rise to an orthog-
onal S1-spectrum ρ∗nΦ

CnX that is a module over AS1 ∼= ρ∗nAS1/Cn
.

Definition 7.3. An op-p-precyclotomic spectrum relative to A consists of an
AS1 -module X together with a map of AS1-modules

γ : X −→ ρ∗pΦ
CpX.

Proposition 7.2 thus constructs an op-p-precylotomic spectrum structure on
AS1 . However, it is important to be clear about what this does and doesn’t
prove: specifically, we do not in general know that ΦCpAS1 computes the de-
rived geometric fixed points.
One would now hope to use the same argument as for Theorem 4.6 to construct

an op-p-precyclotomic structure on AN
S1

e R. Unfortunately, there is a basic
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compatibility issue which we now explain. It is possible to construct an A-
relative version of the diagonal map

∆A : X −→ ΦGAN
G
e X.

(a special case of the analogue of Proposition 2.19), which we can now state
using Proposition 7.2.

Proposition 7.4. Let A be a commutative ring orthogonal spectrum and let
X be an A-module. For any finite group G, there is a natural diagonal map

∆A : X −→ ΦGAN
G
e X.

of A-modules, where the A-module action on the right is induced by the com-
posite map A→ ΦGNG

e A→ ΦGAN
G
e X.

Proof. The map itself is constructed as the composite

X
∆
−−→ ΦGNG

e X −→ ΦG(AG ∧NG
e A

NG
e X) ∼= ΦGAN

G
e X,

where the last isomorphism is Proposition 6.8. To show that this is a map
of A-modules as specified, it suffices to show that the natural transformation
Id → ΦGNG

e is lax monoidal, as the second part of the composite clearly is;
this latter statement follows from the Proposition 2.19.

The following example indicates some of the complexity of the behavior of this
diagonal map.

Example 7.5. In the previous proposition, consider the case when R = A and
A = PFRS

0 is the free commutative ring orthogonal spectrum on FRS
0 ≃ S−1.

When n = 2,

FixC2 PFRS
0(W ) =

∨

m

(JS1(Rm,W )/Σm)C2 .

In general for a (C2 × Σm)-set X , an element of X/Σm is C2-fixed when for a
representing element ξ, the C2-orbit lies in the Σm-orbit; when the action of
Σm on X is free, we can then associate to ξ a homomorphism fξ : C2 → Σm
defined by α · ξ = fξ(α) · ξ for α ∈ C2. (Choosing a different representative of
the orbit changes the homomorphism by conjugation fσξ = σfξσ

−1.)
For X = JS1(Rm,W ), and ξ : Rm → W an element of X , the C2-orbit of ξ
lies in the Σm-orbit precisely when there exists a homomorphism f : C2 → Σm
such that α · ξ = ξ ·f(α)−1, where α acts by the C2-action on W and ξ ·f(α)−1

is induced by the change of coordinates on Rm associated to the permutation
f(α)−1 (and we have fξ = f in the preceding notation). This gives us a
decomposition of sets

(JS1(Rm,W )/Σm)
C2 ∼=

( ∨

f : C2→Σm

JS1(f∗Rm,W )C2

)
/Σm,
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where Σm acts by conjugation of the set of homomorphisms and permutation
on the coordinates, and f∗Rm denotes Rm with C2-action coming from f . It
is essentially clear that the bijection above is a homeomorphism thinking in
terms of Thom spaces of corresponding isometry spaces and noting that those
are disjoint.

In summary, we have a homeomorphism

FixC2 PFRS
0(W ) ∼=

∨

m

( ∨

f : C2→Σm

JS1(f∗Rm,W )C2

)
/Σm.

The summands with f the trivial map contribute a summand of AS1/C2
, but

the remaining summands make non-trivial contributions of orthogonal G/H-
spectra of the form F(Rm)σS

0/Z(σ) where σ is an order 2 element of Σm, Z(σ)
is its centralizer, and (f∗Rm)σ is its fixed points. In this case we see that
the natural map of Proposition 7.2 is split, and in general it is split for free
commutative ring orthogonal spectra, but the splitting is not natural and so
does not extend to a splitting for arbitrary commutative ring orthogonal spectra
A.

In this example AS1 is a cofibrant commutative ring orthogonal S1-spectrum,
and this also gives an example where the point-set geometric fixed points fail
to compute the derived geometric fixed points. In the S1-equivariant stable
category AS1 is a suspension spectrum, so the derived geometric fixed points
are isomorphic to A.

Although one might hope to use Proposition 7.4 to construct an op-cyclotomic
structure on ATHH, there is an issue related to the fact that the map of
commutative ring orthogonal spectra

A −→ ΦGNG
e A −→ ΦGAG

inducing the A-module structure on the relative diagonal is in general not the
same map as the canonical map given in Proposition 7.2. In order to elucidate
the basic incompatibility, we use the description of ATHH in terms of base
change given by Proposition 6.9. Since ΦCp commutes with smash product, the
required structure amounts to the data of the following commutative diagram

NS1

e R

��

NS1

e A

��

//oo AS1

��

ΦCpNS1

e R ΦCpNS1

e A //oo ΦCpAS1 .

The left-hand square commutes by naturality. But using the op-precyclotomic
structure from Proposition 7.2, the right-hand diagram does not in general
commute!
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However, this diagram does commute (essentially by hypothesis) in the case
that A is the underlying non-equivariant commutative ring orthogonal spec-
trum of a p-cyclotomic commutative ring orthogonal S1-spectrum A, the canon-
ical map NS1

e A→ A is a map of p-cyclotomic spectra, and R is an A-algebra.
Specifically, we can immediately deduce Theorem 1.9 from the introduction
(using Theorem 6.11 to retain homotopical control).

Theorem 7.6. Let A be a cofibrant commutative ring orthogonal spectrum that
is ι∗eA for a cofibrant p-cyclotomic commutative ring orthogonal S1-spectrum A.

Moreover, assume that the canonical counit map NS1

e A→ A is a p-cyclotomic
map. Let R be a cofibrant A-algebra. Then the derived smash product

NS1

e R ∧NS1
e A A

is a p-cyclotomic spectrum.

The statement of Theorem 7.6 should be interpreted more as a precise ex-
planation of the difficulty of having a reasonable relative cyclotomic structure
than as a condition one expects to arise frequently. We know comparatively
few examples beyond S. One class of examples arises when A is a smashing
localization of the sphere spectrum; e.g., A = LKUS and A is the pushforward
IS

1

e A. But in such cases the relative and absolute THH are naturally weakly
equivalent, and so these examples are not very interesting.

More generally, one can consider the cyclotomic spectrumA = SS1∧A for a non-
equivariant cofibrant commutative ring orthogonal spectrum A. As discussed
in warning 6.1, this spectrum is not typically equivalent to IS

1

e A. Therefore, it

is not formal that there exists a reasonable map NS1

e A→ A in this case; e.g.,
when A = HZ one can check that no such map exists. However, an interesting
example is explained and applied in the context of p-adic Hodge theory by
Bhatt-Morrow-Scholze [1, §11.1]. Specifically, they show that the relative THH
in the case A = S[t] = Σ∞

+ N does admit a cyclotomic structure; Proposition [1,
11.3] provides a verification of the conditions of Theorem 7.6, expressed in the
formalism of the Nikolaus-Scholze approach to cyclotomic spectra [38].

The same argument proves a slightly more general version of the preceding
theorem, where instead we let A be a commutative ring orthogonal spectrum,
R an A-algebra, and M a coefficient spectrum which is an NS1

e A-module and a
p-cyclotomic spectrum. The following is Theorem 1.10 from the introduction.

Theorem 7.7. Let A be a cofibrant commutative ring orthogonal spectrum and
R a cofibrant A-algebra. Let M be a p-cyclotomic object in NS1

e A-modules.
Then the derived smash product

NS1

e R ∧NS1
e AM

is a p-cyclotomic spectrum.
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Under the hypotheses of Theorem 1.9, using the relative analogues of Defini-
tions 3.8 and 3.9, we obtain analogues of TR and TC which we denote ATR and

ATC. These constructions are evidently functorial, which proves Theorem 1.11
from the introduction.

8 THH of ring Cn-spectra

For G a finite group and H < G a subgroup, the norm NG
H provides a functor

from orthogonal H-spectra to orthogonal G-spectra. In this section, we gener-
alize this construction to a relative norm NS1

Cn
, which we view as a “Cn-relative

THH”. We begin with an explicit construction which generalizes the simplicial
object studied in Section 4 arising from the edgewise subdivision of the cyclic
bar construction.

Definition 8.1. Let R be an associative ring orthogonal Cn-spectrum indexed
on the trivial universe R∞. Let N cyc,Cn

∧ R denote the simplicial object that in
degree q is R∧(q+1), has degeneracy si (for 0 ≤ i ≤ q) induced by the inclusion
of the unit in the (i+ 1)-st factor, and has face maps di for 0 ≤ i < q induced
by multiplication of the ith and (i+1)st factors. The last face map dq is given
as follows. Let αq be the automorphism of R∧(q+1) that cyclically permutes
the factors, putting the last factor in the zeroth position, and then acts on that
factor by the generator g = e2πi/n of Cn. The last face map is dq = d0 ◦ αq.

The previous definition constructs a simplicial object but not a cyclic object.
Nevertheless, it does have extra structure of the same sort found on the edgewise
subdivision of a cyclic object. The operator αq in simplicial degree q is the
generator of a Cn(q+1)-action (the action obtained by regarding R∧(q+1) as
an indexed smash product for Cn < Cn(q+1)). The faces, degeneracies, and
operators αq satisfy the following relations in addition to the usual simplicial
relations:

αn(q+1)
q = id

d0αq = dq

diαq = αq−1di−1 for 1 ≤ i ≤ q

siαq = αq+1si−1 for 1 ≤ i ≤ q

s0αq = α2
q+1sq

This defines a Λop
n -object in the notation of [8, 1.5]. As explained in [8, 1.6–8],

the geometric realization has an S1-action extending the Cn-action.

Definition 8.2. Let R be an associative ring orthogonal Cn-spectrum indexed
on the universe Ũ = ι∗Cn

U . The relative normNS1

Cn
R is defined as the composite

functor
NS1

Cn
R = IU

R∞ |N
cyc,Cn
∧ (IR

∞

Ũ
R)|

When R is a commutative ring orthogonal Cn-spectrum, we have the following
analogue of Proposition 4.3.
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Proposition 8.3. The restriction of NS1

Cn
to ComCn

Ũ
lifts to a functor

NS1

Cn
: ComCn

Ũ
−→ ComS1

U

that is left adjoint to the forgetful functor

ι∗ : ComS1

U −→ Com
Cn

Ũ
.

We now describe the homotopical properties of the relative norm. The following
analogue of Theorem 4.9 has the same proof.

Theorem 8.4. Let R→ R′ be a weak equivalence of cofibrant associative ring
orthogonal Cn-spectra. Then NS1

Cn
R→ NS1

Cn
R′ is a FFin-equivalence.

In the commutative case, we have the following analogue of Proposition 4.10
(also using an identical proof).

Theorem 8.5. Regarded as a functor on commutative ring orthogonal Cn-
spectra, the functor NS1

Cn
is a left Quillen functor with respect to the positive

complete model structure on ComCn

Ũ
and the positive complete FFin-model struc-

ture on ComS1

U .

We now turn to the question of the cyclotomic structure.

Theorem 8.6. Let R be a cofibrant associative ring orthogonal Cn-spectrum.
If p is prime to n, then NS1

Cn
R has the natural structure of a p-cyclotomic

spectrum.

Proof. As in the proof of Theorem 4.6, we can identify ι∗Cpn
NS1

Cn
R as the geo-

metric realization of a simplicial orthogonal Cpn-spectrum of the form

N
Cpn

Cn
(R∧(•+1)).

Since p is prime to n, by Proposition 2.19 we have a diagonal map R∧(q+1) →

ΦCpN
Cpn

Cn
R∧(q+1), which again commutes with the simplicial structure and in-

duces a diagonal map

τp : N
S1

Cn
R −→ ρ∗pΦ

CpNS1

Cn
R.

Under the hypothesis that R is cofibrant as an orthogonal Cn-spectrum, The-

orem 2.35 shows that the diagonal map R∧(q+1) → ΦCpN
Cpn

Cn
R∧(q+1) is an

isomorphism, and it follows that τp is an isomorphism. The inverse gives the
p-cyclotomic structure map.

As usual, we can construct TRCnR and TCCnR from the cyclotomic structure

on NS1

Cn
R. And as before, when R only has the homotopy type of a cofibrant

object, application of Proposition 3.11 allows us to work with opTRCn and
opTCCn .
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When p divides n, the diagonal map is of the form

NS1

Cn/p
ΦCpR −→ ΦCpNS1

Cn
R,

and is an isomorphism when R is cofibrant as an orthogonal Cn-spectrum or
as a commutative ring orthogonal Cn-spectrum. In these cases, we can get a
p-cyclotomic structure map if we have one on R of the following form.

Definition 8.7. For p | n, a Cn p-cyclotomic spectrum consists of an orthog-
onal Cn-spectrum X together with a map of orthogonal Cn-spectra

t : NCn

Cn/p
ΦCpX −→ X

that induces a genuine Cn-equivariant equivalence to X from the derived com-
posite functor.

Proposition 8.8. Assume p | n and let R be an associative ring orthogonal
Cn-spectrum with a Cn p-cyclotomic structure such that the structure map t is
a ring map. Then NS1

Cn
R has the natural structure of a p-cyclotomic spectrum.

At present, we do not know if the previous proposition is interesting. However,
for any (non-equivariant) ring orthogonal spectrum R′, R = NCn

e R′ satisfies

the hypotheses, and NS1

Cn
R ∼= NS1

e R′.

9 Spectral sequences for ATR

In this section we present four spectral sequences for computing ATR. In each
case we actually have two spectral sequences, one graded over the integers and
a second graded over RO(S1). We follow the modern convention of denoting an
integral grading with ∗ and an RO(S1)-grading with ⋆. Although the two look
formally similar, they are very different computationally, for reasons explained
in the introduction to [26]: the Tor terms are computed using very different
notions of projective module. Specifically, for V a non-trivial representation

π
(−)
∗ (ΣVR) cannot be expected to be projective as a π

(−)
∗ R Mackey functor

module; however, π
(−)
⋆ (ΣVR) is of course projective as a π

(−)
⋆ R Mackey functor

module, being just a shift of the free module π
(−)
⋆ R.

9.1 The absolute to relative spectral sequence

The equivariant homotopy groups πCn
∗ (NS1

e R) are the TR-groups TRn∗ (R) and

so πCn
∗ (AN

S1

e R) are by definition the relative TR-groups ATR
n
∗ (R).

Notation 9.1. Let

TR
(−)
∗ (R) = π

(−)
∗ (NS1

e (R)) TR
(−)
⋆ (R) = π

(−)
⋆ (NS1

e (R))

ATR
(−)
∗ (R) = π

(−)
∗ (AN

S1

e (R)) ATR
(−)
⋆ (R) = π

(−)
⋆ (AN

S1

e (R))
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Using the isomorphism of Proposition 6.9

AN
S1

e (R) ∼= NS1

e (R) ∧NS1
e A AS1 ,

we can apply the Künneth spectral sequences of [26] to compute the relative
TR-groups from the absolute TR-groups and Mackey functor Tor. Technically,
to apply [26] and for ease of statement, we restrict to a finite subgroup H < S1.

Recall that for a commutative ring orthogonal spectrum A, AH denotes IŨ
R∞A

where Ũ is the complete S1-universe regarded as a complete H-universe, and
we regard A as an H-trivial orthogonal H-spectrum.

Theorem 9.2. Let A be a cofibrant commutative ring orthogonal spectrum and
let R be a cofibrant associative A-algebra or cofibrant commutative A-algebra.
For each finite subgroup H < S1, there is a natural strongly convergent spectral
sequence of H-Mackey functors

Tor
TR(−)

∗
(A)

∗,∗ (TR
(−)
∗ (R), π

(−)
∗ (AH)) =⇒ ATR

(−)
∗ (R),

compatible with restriction among finite subgroups of S1.

Compatibility with restriction among finite subgroups of S1 refers to the fact
that for H < K, the restriction of the K-Mackey functor Tor to an H-Mackey
functor is canonically isomorphic to the H-Mackey functor Tor and the corre-
sponding isomorphism on E∞-terms induces the same filtration on π∗. (Free
K-Mackey functor modules restrict to free H-Mackey functor modules essen-
tially because finite K-sets restrict to finite H-sets.)
We also have corresponding Künneth spectral sequences graded on RO(H) for
H < S1 or RO(S1). We choose to state our results in terms of the RO(S1)-
grading because this makes the behavior of the restriction among subgroups
easier to describe; the restriction maps RO(S1) → RO(H) are surjective, and
as a result Tor-groups calculated in RO(H)-graded homological algebra restrict
naturally to Tor-groups calculated in RO(S1)-graded homological algebra. In
the following theorem, ⋆ denotes the RO(S1)-grading.

Theorem 9.3. Let A be a cofibrant commutative ring orthogonal spectrum and
let R be a cofibrant associative A-algebra or cofibrant commutative A-algebra.
For each finite subgroup H < S1, there is a natural strongly convergent spectral
sequence of H-Mackey functors

Tor
TR(−)

⋆ (A)
∗,⋆ (TR

(−)
⋆ (R), π

(−)
⋆ (AH)) =⇒ ATR

(−)
⋆ (R),

compatible with restriction among finite subgroups of S1.

9.2 The simplicial filtration spectral sequence

The spectral sequence of the preceding subsection essentially gives a computa-
tion of the relative theory in terms of absolute theory. More often we expect
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to use the relative theory to compute the absolute theory. Non-equivariantly,
the isomorphism

THH(R) ∧ A ∼= ATHH(R ∧ A) (9.4)

gives rise to a Künneth spectral sequence

TorA∗(R∧SR
op)

∗,∗ (A∗(R), A∗(R)) =⇒ A∗(THH(R)).

As employed by Bökstedt, an Adams spectral sequence can then in practice
be used to compute the homotopy groups of THH(R). For formal reasons,
the isomorphism (9.4) still holds equivariantly, but now we have three different
versions of the non-equivariant Künneth spectral sequence (none of which have
quite as elegant an E2-term) which we use in conjunction with equation (9.4).
The first equivariant spectral sequence generalizes the Künneth spectral se-
quence in the special case when π∗A is a field. Non-equivariantly, it derives
from the simplicial filtration of the cyclic bar construction; equivariantly, we
restrict to a finite subgroup H < S1 and look at the simplicial filtration on the
nth edgewise subdivision (described in the proof of Theorem 4.9).

Theorem 9.5. Let A be a cofibrant commutative ring orthogonal spectrum and
let R be a cofibrant associative A-algebra or cofibrant commutative A-algebra.
Let H be a finite subgroup of S1.

1. There is a natural spectral sequence strongly converging to the integer
graded H-Mackey functor ATR

(−)
∗ (R) with E1-term

E1
s,t = πt(AN

H
e (R∧(s+1))).

2. There is a natural spectral sequence strongly converging to the RO(S1)−

graded H-Mackey functor ATR
(−)
⋆ (R) with E1-term

E1
s,τ = πτ (AN

H
e (R

∧(s+1))).

The E2-terms of both spectral sequences are compatible with restriction among
finite subgroups of S1.

To see the compatibility with restriction among subgroups, we note that for
H = Cmn, the E

2-term (E2
∗,τ )

Cm is the homology of the simplicial object

sdn π
Cm
⋆ ((NCm

e A)∧(•+1)).

For H < K, the subdivision operators then induce an isomorphism on E2-
terms.
In general, we do not know how to describe the E2-term of these spectral se-
quences. One can formulate box-flatness hypotheses that would permit the
identification of the E2-term as a kind of Mackey functor Hochschild homol-
ogy [2]; however, such hypotheses will rarely hold in practice. On the other
hand, when A = HF for F a field, for formal reasons, the E1-term is a purely
algebraic functor of the graded vector space π∗R. We conjecture that the E2-
term is a functor of the graded F-algebra π∗R.
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9.3 The cyclic filtration spectral sequence

We have a second spectral sequence arising from the filtration on cyclic objects
constructed by Fiedorowicz and Gajda [17]. Although they work in the context
of spaces, their arguments generalize to provide an FFin-equivalence

|EX•| −→ |X•|

for cyclic orthogonal spectra, where E is the evident orthogonal spectrum gen-
eralization of the construction in their Definition 1:

EX• =

∫

[m]∈Λface

Xm ∧ Λ(•, [m])+

The proof of their Proposition 1 (which in fact only gives an FFin-equivalence
for spaces) also applies in the orthogonal spectrum context, substituting geo-
metric fixed points for fixed points, to prove the FFin-equivalence for orthog-
onal spectra. Change of universe IU

R∞ commutes with geometric realization,
and we use the coend filtration of EX• for X• = N cyc

∧A
R to obtain the following

Fiedorowicz-Gajda cyclic filtration spectral sequences.

Theorem 9.6. Let A be a cofibrant commutative ring orthogonal spectrum and
let R be a cofibrant associative A-algebra or cofibrant commutative A-algebra.
Let H be a finite subgroup of S1.

1. There is a natural spectral sequence of integer graded H-Mackey functors
strongly converging to ATR

(−)
∗ (R) with E1-term

E1
s,t = πt(I

U
R∞(S1

+ ∧Cs+1 R
∧(s+1))).

2. There is a natural spectral sequence of RO(S1)-graded H-Mackey functors

strongly converging to ATR
(−)
⋆ (R) with E1-term

E1
s,τ = πτ (I

U
R∞(S1

+ ∧Cs+1 R
∧(s+1))).

The E1-terms are compatible with restriction among finite subgroups of S1.

9.4 The relative cyclic bar construction spectral sequence

The third spectral sequence directly involves Mackey functor Tor. For an A-

algebra R, let g
AN

Cn

e R denote the (AN
Cn
e R,AN

Cn
e R)-bimodule obtained by

twisting the left action of AN
Cn
e R on AN

Cn
e R by the generator g = e2πi/n

of Cn. We can identify the Cn-homotopy type of AN
S1

e R in terms of this
bimodule,

AN
S1

e R ∼= IUŨN
cyc
∧A

(AN
Cn
e R, gAN

Cn

e R),

where the cyclic bar construction on the right is taken in the symmetric
monoidal category of A-modules in orthogonal Cn-spectra and Ũ = ι∗Cn

U de-
notes U viewed as a complete Cn-universe. A consequence of this description
is that the main theorem of [26] constructing the equivariant Künneth spectral
sequence applies:
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Theorem 9.7. Let A be a cofibrant commutative ring orthogonal spectrum and
let R be a cofibrant associative A-algebra or cofibrant commutative A-algebra.
Fix n > 0.

1. There is a natural strongly convergent spectral sequence of integer graded
Cn-Mackey functors

E2
∗,∗ = TorN

Cn
e (R∧AR

op)
∗,∗ (π∗AN

Cn
e R, π∗

g
AN

Cn

e R) =⇒ ATR
(−)
∗ (R).

2. There is a natural strongly convergent spectral sequence of RO(S1)-graded
Cn-Mackey functors

E2
∗,⋆ = Tor

NCn
e (R∧AR

op)
∗,⋆ (π⋆AN

Cn
e R, π⋆

g
AN

Cn

e R) =⇒ ATR
(−)
⋆ (R).

We see no reason why the E2-terms for the spectral sequences of the previous
theorem should be compatible under restriction among finite subgroups of S1.

10 Adams operations

In this section, we study the circle power operations on THH(R) for a com-
mutative ring R and on ATHH(R) for a commutative A-algebra R. Such
operations were first defined on Hochschild homology by Loday [27] and
Gerstenhaber-Schack [18] and explained by McCarthy [35] in terms of cov-
ering maps of the circle and extended to THH by [37]. Following [10, 4.5.3],
we refer to these as Adams operations and denote them as ψr (though in older
literature [28, 4.5.16], the Adams operations differ by a factor of the operation
number r). Specifically, we study how the operations interact with the equiv-
ariance, and we show that when r is prime to p, ψr descends to an operation on
TR(R), TC(R), cf. [10, §7]. We study the effect of ψr on TR0(R) and TC0(R),
where we show it is the identity on TR0(R) when R is connective.

We recall the construction of McCarthy’s Adams operations, which ultimately
derives from the identification of N cyc

∧A
R as the tensor R ⊗ S1 in the category

of commutative A-algebras. Using the standard model for the circle as the
geometric realization of a simplicial set S1

• (with one 0-simplex and one non-
degenerate 1-simplex), the tensor identification is just observing that N cyc

∧A
R is

the simplicial object obtained by taking S1
• coproduct factors of R in simplicial

degree •,

N cyc
∧A
R = R⊗ S1

• .

The operation ψr is induced by the r-fold covering map

qr : S
1 −→ S1, eiθ 7→ eriθ.

after tensoring with R.
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Definition 10.1. Let A be a commutative ring orthogonal spectrum and R a
commutative A-algebra. For r 6= 0, the Adams operation

ψr : ATHH(R) −→ ATHH(R)

is the map of (non-equivariant) commutative A-algebras obtained as the tensor
of R with the covering map qr : S

1 → S1.

We will study the equivariance of ψr using the Cn-action that arises on the edge-
wise subdivision sdn of a cyclic set. To make this section more self-contained,
we again recall from [8, §1] how this works. There are natural homeomorphisms

δn : | sdnX | −→ |X |

for the n-fold edgewise subdivision of a simplicial space or simplicial orthog-
onal spectrum, and canonical isomorphisms of simplicial objects sdr sdsX →
sdrsX , which together make the following diagram commute [8, 1.12]:

| sdr sdsX | //

δr

��

| sdrsX |

δrs

��

| sdsX |
δs

// |X |.

(10.2)

When X has a cyclic structure, sdnX comes with a natural Cn-equivariant
structure which on the geometric realization is the restriction to Cn of the
natural S1-action; moreover, in the diagram above, the left hand isomorphism
is Cs-equivariant [8, 1.7–8].
We have a simplicial model of ψr by McCarthy’s observation that qs is the
geometric realization of a quotient map of simplicial sets sds S

1
• → S1

• . By
naturality, the maps qs are compatible with the maps δr and the top map
in (10.2) in the sense that the diagrams

| sdr sds S
1
• |

sdr qs //

δr

��

| sdr S
1
• |

δr

��

| sdr sds S
1
• | //

sdr qs

��

| sdrs S
1
• |

qrs

��

| sds S
1
• | qs

// |S1
• | | sdr S

1
• | qr

// |S1
• |

commute.

Proposition 10.3. Let A be a commutative ring orthogonal spectrum and R a
commutative A-algebra. For r 6= 0 and n relatively prime to r, the restriction
of qr is the r-power isomorphism Cn → Cn and the Adams operations ψr is a
map of commutative ring orthogonal Cn-spectra

ψr : ι∗CnAN
S1

e R −→ q∗r ι
∗
CnAN

S1

e R.
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Moreover, for s relatively prime to n, the formula

(qr)
∗(ψs) ◦ ψr = ψrs : ι∗CnAN

S1

e R −→ q∗rsι
∗
CnAN

S1

e R.

holds.

Proof. As above, the r-fold covering map defining the Adams operations be-
comes a Cn-equivariant map

sdn(sdr S
1) −→ (qr |Cn)

∗(sdn S
1).

Tensoring levelwise and applying IŨ
R∞ , we obtain a map of simplicial commu-

tative A-algebras

IŨ
R∞(R ⊗ (sdn sdr S

1)) −→ q∗rI
Ũ
R∞(R⊗ sdn S

1).

The result now follows from diagram (10.2) and the compatibility diagrams for
the quotient maps qs.

In the case when p ∤ r, the previous proposition shows that in particular the
operation ψr should pass to categorical Cpn -fixed points (in the derived cat-
egory of A). Taking fibrant replacements, we get a map (of non-equivariant
A-modules)

ψr : (AN
S1

e R)
Cpn

f −→ (AN
S1

e R)
Cpn

f

making the diagram

(AN
S1

e R)
Cpn+1

f

ψr

//

F

��

(AN
S1

e R)
Cpn+1

f

F

��

(AN
S1

e R)
Cpn

f ψr
// (AN

S1

e R)
Cpn

f

commute, where F is the natural inclusion of fixed-points. Passing to the
homotopy limit, we get an Adams operation ψr on ATF (R).

In the absolute case we can also consider TR and TC. We next argue that for
p ∤ r, the Adams operation ψr descends to TR(R) and TC(R).

Theorem 10.4. Let R be a commutative ring orthogonal spectrum. For p ∤ r,
the Adams operation ψr induces maps

ψr : TR(R) −→ TR(R)

and

ψr : TC(R) −→ TC(R).
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Proof. It suffices to consider the case when R is cofibrant and to show that ψr

commutes with the op-p-cyclotomic structure map

γ = τp : N
S1

e R −→ ρ∗pΦ
CpIŨ

R∞ | sdpN
cycR|.

This is clear from the naturality of (10.2).

Finally, we provide the following computation for the action of the Adams
operations on TR0 and TC0.

Theorem 10.5. Let R be a cofibrant commutative ring orthogonal spectrum.
Assume that R is connective. Then for p ∤ r, the Adams operation ψr acts by
the identity on TR0(R).

Proof. Writing R0 = π0R, the hypothesis of connectivity implies that

π0TR(R) ∼= π0TR(R0),

and so it suffices to consider the case when R = HR0. By [20, Addendum 3.3],
we have a canonical isomorphism of TR0(R) with the ring of p-typical Witt

vectors W (R0) and canonical isomorphisms of π
Cpn

0 NS1

e R with Wn+1(R0), the
p-typical Witt vectors of length n + 1. Letting R0 vary over all commutative
rings, ψr then restricts to natural transformations ψrn+1 of rings Wn+1(−) →
Wn+1(−), compatible with the restriction maps. We complete the proof by
arguing that such a natural transformation must be the identity.
Since the functor Wn+1 is representable, it suffices to prove that ψrn+1 is the
identity when R0 is the representing object Z[x0, . . . , xn], or, since this is tor-
sion free, when R0 = Q[x0, . . . , xn]. A fortiori, it suffices to prove ψrn+1 is the
identity when R0 is a Q-algebra. Since for a Q-algebraWn+1(R0) is isomorphic
as a ring to the Cartesian product of n + 1 copies of R0 via the ghost coordi-
nates, the only possible natural ring endomorphisms ofWn+1 are the maps that
permute the factors. Since ψr commutes with the restriction map R on TR(R),
and on the ghost coordinates the restriction map induces the projection onto
the first n factors, it follows by induction that ψrn+1 is the identity.

Corollary 10.6. Let R be a commutative ring orthogonal spectrum. Assume
that R is connective and that p ∤ r. Then TC0(R) has the Frobenius invariants
of W (π0R) as a quotient and the action of ψr descends to the identity map on
this quotient.

Example 10.7. When we take R = S to be the sphere spectrum, [8, §5]
identifies TC(S)∧p as (S ∨ΣCP∞

−1)
∧
p , where CP∞

−1 denotes the Thom spectrum
of the virtual bundle −L, where L denotes the tautological line bundle. More
to the point, ΣCP∞

−1 is the homotopy fiber of the S1-transfer ΣΣ∞
+ CP∞ → S.

The tom Dieck splitting identifies

TRn(S)∧p ≃
∏

0≤m≤n

(Σ∞
+ B(Cpn/Cpm))∧p

∼=
∏

0≤k≤n

(Σ∞
+ B(Cpk ))

∧
p .
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The operation ψr is defined on TC(S) for p ∤ r and acts on THH(S) as the
identity (on the point-set level). By the formula in Theorem 10.3 it acts on
the Cpn -fixed points via the change of group isomorphism Cpn → Cpn given by
the r-power map. It therefore induces the corresponding r-power map on each
classifying space B(Cpn/Cpm) in each factor in TRn(S); of course, the r-power
map on Cpn/Cpm is the r-power map on Cpk under the canonical isomorphism.
This allows us to determine the action of ψr on TC(S). The computation of
TC(S) in [8, §5] and [31, §4.4] uses a weak equivalence

(ΣΣ∞
+ CP∞)∧p ≃ holim(Σ∞

+ BCpk)
∧
p ,

and the action of ψr on BCpk is compatible with the action of ψr on
(ΣΣ∞

+ CP∞)∧p given by multiplication by r on the suspension and the action on
CP∞ ≃ K(Z, 2) induced by the multiplication by r on Z. The fiber sequence

ΣCP∞
−1 −→ ΣΣ∞

+ CP∞ −→ S

has a consistent action of ψr (where we use the trivial action on S). After
p-completion, the action of {r | p ∤ r} extends to an action of the units of Z∧

p .
The Teichmüller character then gives an action of (Z/p)× and (since p − 1 is
invertible in Z∧

p ) a splitting into p− 1 “eigenspectra” wedge summands. This
decomposition of TC(S)∧p is well-known and plays a role in Rognes’ cohomo-
logical analysis of Wh(∗)∧p at regular primes [39, §5].

11 Madsen’s remarks

In his CDM notes [31, p. 218], Madsen describes the restriction map, and notes
that the inverse is not as readily accessible even in the algebraic setting since
“∆(r) = r ⊗ · · · ⊗ r is not linear”. Yet in our framework, we naturally get the
inverse to the cyclotomic structure map rather than the cyclotomic structure
map itself. At first blush, this seems to pose a curious contradiction. The
answer arises from the transfer: v 7→ v⊗p is linear modulo the ideal generated
by the transfer, and this is exactly the ideal killed by LΦH .
The observation that the ideal killed by LΦH coincides with the ideal generated
by the transfer is essentially a formal consequence of the definition of the derived
geometric fixed point functor: LΦH(X) = (X ∧ ẼP)H is a composite of the
categorical fixed points with the localization killing cells of the form S1/K for
K a proper subgroup of H . Computationally, this means that all transfers from
proper subgroups of H are killed.
The observation that the algebraic diagonal map is linear modulo the transfer is
more interesting. In particular, this question highlights the issue of constructing
an algebraic model of the norm functor that correctly reflects the homotopy
theory. We first consider the naive smash power which is simply the Cp-module
(Z{x, y})⊗p, where Z{x, y} is the free abelian group on the set {x, y}. Inside is
the element (x+ y)⊗p, which is obviously in the fixed points of the Cp-action.
In this context, Madsen’s remark boils down to the fact that (x + y)⊗p is not
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x⊗p + y⊗p. We can expand (x + y)⊗p using a non-commutative version of the
binomial theorem as follows. Observing that the full symmetric group Σp acts
on the tensor power (and the Cp-action is just the obvious restriction), if we
group all terms with i tensor factors of x and p − i tensor factors of y, then
we see that the symmetric group permutes these and a subgroup conjugate to
Σi ×Σp−i stabilizes each element. We therefore see that the sum of all of such
terms for a fixed i can be expressed as the transfer

Tr
Σp

Σi×Σp−i
x⊗i ⊗ y⊗(p−i).

Letting i vary and summing the terms (and then restricting back to Cp) shows
that

(x+ y)⊗p = x⊗p + y⊗p +Res
Σp

Cp

( p−1∑

i=1

Tr
Σp

Σi×Σp−i
x⊗iy⊗(p−i)

)
.

All of the terms involving transfers are in the ideal generated by transfers by
definition, and so we conclude that the pth power map is linear modulo these.

However, this algebraic model is not the correct analogue of the norm. First,
when we reduce modulo the transfer from proper subgroups in the pth tensor
power of a ring, then we also kill the transfer of the element 1. This then takes
us from Z-modules to Z/p-modules. Second, the fixed point Mackey functor
associated to the pth tensor power functor is not the right algebraic version of
the norm.
There are now several constructions of a norm functor in the category of Mackey
functors that exhibit the correct homotopy-theoretic behavior. Mazur describes
one for cyclic p-groups [34], Hill-Hopkins gives one for a general finite group
by stepping through the norm in spectra [22], and subsequently Hoyer gave a
purely algebraic definition for all finite groups and showed it to be equivalent
to the others [24]. One of the basic properties of the algebraic norm is that the
norm from H-Mackey functors to G-Mackey functors is the functor underlying
the left adjoint to the forgetful functor fromG-Tambara functors toH-Tambara
functors. In particular, since π0(R) for R a commutative ring G-spectrum is a
G-Tambara functor [9], the algebraic norm precisely mirrors the multiplicative
behavior of the norm in spectra. A more detailed exposition of the connection
between the algebraic norm and THH will appear in [2].

In this context, if R is a commutative ring, then the inverse map considered by
Madsen is exactly the universally defined norm map

NCp
e : R −→ NCp

e (R)(Cp/Cp)

underlying the Tambara functor structure. While this map is not linear, it is so
modulo the transfer [42]. In fact, just as in topology, this map is a right inverse
to the “geometric fixed points” functor ΦCp on Mackey functors, the map which
takes a Mackey functor M and returns the quotient group M(G/G)/ im(Tr),

where im(Tr) denotes the image of the transfer: ΦCp ◦N
Cp
e = Id.
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We close by illustrating this all with an example which shows the failure of the
“naive” tensor power approach and the strength (and relative computability)
of the Tambara functor approach to the algebraic norm. Let p = 2, and let
R = Z[x]. Then the two-fold tensor power, C2-equivariantly, is

Z[C2 · x] = Z[x, gx].

The transfer ideal is generated by 2 and x+ gx, and modulo 2 and x+ gx, the
map x 7→ x · gx induces the canonical surjection

Z[x] −→ Z/2[x · gx].

In this example, the map from R to the quotient of the fixed points of R⊗2

by the ideal given by the transfer is not an isomorphism; we can interpret the
failure to be an isomorphism as a failure to correctly interpret the transfer of
the element 1. In particular, restricting to the submodule generated by 1 we
implicitly computed

NC2
e Z = Z,

endowed with the trivial action. This is not what the algebraic norm computes
for us!
For G = C2 and for R = Z[x], the fixed points of NC2

e (Z[x]) are the ring

Z[t, y, x · gx]/(t2 − 2t, ty − 2y),

with the elements t and y the transfers of 1 and x respectively (the restriction
map takes t to 2, y to x + gx and x · gx to itself). In particular, we observe
that the unit 1 generates not a copy of Z but rather a copy of the Burnside
ring Z[t]/t2 − 2t. Thus, modulo the image of the transfer, this ring is simply
Z[x · gx], and the norm map x 7→ x · gx is an isomorphism.
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