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Abstract. We give a dynamical characterization of categorical
Morita equivalence between compact quantum groups. More precisely,
by a Tannaka–Krein type duality, a unital C∗-algebra endowed with
commuting actions of two compact quantum groups corresponds to
a bimodule category over their representation categories. We show
that this bimodule category is invertible if and only if the actions
are free, with finite dimensional fixed point algebras, which are in
duality as Frobenius algebras in an appropriate sense. This extends
the well-known characterization of monoidal equivalence in terms of
bi-Hopf–Galois objects.
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Introduction

The Tannaka–Krein duality principle, which roughly says that a quantum group
is characterized by its representation category viewed as a concrete category
of vector spaces, has played fundamental role in the development of various
approaches to quantum groups. In mathematical physics, the attempts by the
Leningrad school to find an algebraic structure behind the solutions of Yang–
Baxter equations (R-matrices) led to the famous Drinfeld–Jimbo quantized
universal enveloping algebras, where R-matrices are regarded as intertwiners
of tensor products of representations of Hopf algebras. In the operator al-
gebraic framework, Woronowicz’s Tannaka–Krein duality theorem has been
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used to construct many examples of compact quantum groups beyond the q-
deformations, see, e.g., [BCS10].

One natural question arising from this principle is the following: which cate-
gorical concepts for representation categories of quantum groups admit Hopf
algebraic formulations? For example, the most fundamental question of when
one has an equivalence RepG1

∼= RepG2 as abstract monoidal categories, has a
very satisfactory answer due to Schauenburg [Sch04] building on an earlier work
of Ulbrich [Ulb87]. It says that the representation categories are monoidally
equivalent precisely when there is a G1-G2-Hopf–Galois object, which is an al-
gebra with commuting coactions of the function algebras of G1 and G2, which
are separately ‘free’ and ‘transitive’ (or ‘ergodic’).

In the operator algebraic context, the C∗-analogue of this characteriza-
tion [BdRV06] has been fruitfully used by many authors to deduce analytic
properties of one compact or discrete quantum group from another, starting
from the work of Vaes and Vergnioux [VV07], where they showed that exact-
ness of the reduced function algebra of a compact quantum group is invari-
ant under monoidal equivalence. More recently, induction of central multipli-
ers along bi-Hopf–Galois objects was used to show that free quantum groups
have the Haagerup property and the weak amenability [Fre13, dCFY14]. An-
other interesting development is the introduction of central property (T) by
Arano [Ara18], which suggests that there is a close connection between har-
monic analysis on the representation categories of the q-deformations of com-
pact Lie groups and the classical theory of unitary representations of complex
semisimple Lie groups.

These works have led to a study of analytic properties of C∗-tensor categories,
which also has roots in Popa’s earlier work on approximation properties of
standard invariants of subfactors [Pop99]. Indeed, as has been shown by Popa
and Vaes [PV15] and the authors [NY16], ‘central’ approximation properties
of quantum groups considered in [dCFY14, Ara18] can be formulated at the
purely categorical level. As one of the applications, this has allowed one to
unify property (T) for (quantum) groups and property (T) for subfactors.

One crucial insight from the subfactor theory is that there is a more interest-
ing equivalence relation on tensor categories beyond the mere equivalence. It
corresponds to exchanging a subfactor for its dual inclusion, and in the case of
fusion categories, a relevant notion was introduced by Müger [Müg03] under the
name of weak monoidal Morita equivalence, which is now also called categorical
Morita equivalence. Namely, two fusion categories C1 and C2 are called weakly
monoidally Morita equivalent if one of them is monoidally equivalent to the
category of bimodules over a Frobenius algebra in the other [Lon94, Yam04].
In a more symmetric form this can be formulated in terms of 2-categories, or
as existence of an invertible C1-C2-module category [ENO10], see Section 3 for
precise definitions. Yet another characterization is that the Drinfeld centers
of C1 and C2 are equivalent as braided monoidal categories [Sch01, ENO11].
Most of these admit straightforward generalizations to the setting of infinite
C∗-tensor categories, although a characterization of categorical Morita equiva-
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lence in terms of the Drinfeld center seems to remain as an interesting problem.
Popa’s work on subfactors implies that sensible analytic properties should be
invariant under categorical Morita equivalence. For central property (T), this is
indeed the case [NY16,NY18]. It is therefore natural to expect that categorical
Morita equivalence should be useful in studying analytic properties of quantum
groups.
The goal of the present paper is to give an algebraic characterization of cat-
egorical Morita equivalence for representation categories of compact quan-
tum groups. By the Tannaka–Krein type duality for quantum group ac-
tions [Ost03, dCY13b, Nes14], bimodule categories over representation cate-
gories correspond to C∗-algebras with commuting actions of the quantum
groups. Namely, given commuting actions of compact quantum groups G1

and G2 on a unital C∗-algebra A, we can consider the category DA of equivari-
ant finitely generated right Hilbert A-modules. Therefore the precise question
we are going to answer is the following: under what conditions is the category
DA invertible as a (RepG2)-(RepG1)-module category?
Our main result (Theorem 3.7) states that DA is invertible if and only if the
actions are separately free, have finite dimensional fixed point algebrasAG1 and
AG2 , and that these algebras sit nicely in A so that the equivariant A-modules
AG1 ⊗ A and AG2 ⊗ A are isomorphic in a way that respects the actions of
AG1 and AG2 , which we call the G1-G2-Morita–Galois condition. When the
actions are ergodic, so that the fixed point subalgebras are trivial, we recover
the bi-Hopf–Galois condition.
Finally, let us note that 2-categories have close connection to the theory of
quantum groupoids, and a result of De Commer and Timmermann gives a
characterization of categorical Morita equivalence of compact quantum groups
in terms of what they call partial compact quantum groups [dCT15]. Their
construction gives a ‘zigzag’ of the so-called linking and co-linking quantum
groupoids between G1 and G2, as opposed to our one-step construction. They
also do not give any characterization of the ‘off-diagonal’ parts of the co-linking
groupoids, and the overall construction involving Hayashi’s canonical partial
quantum groups associated with the representation categories of G1 and G2

seems to be more involved than ours. At the same time their construction
works beyond our setting of compact quantum groups and allows one to capture
categorical Morita equivalence of several (partial) compact quantum groups at
once. It would be an interesting problem to find a characterization of the ‘off-
diagonal’ parts of their co-linking groupoids and compare it with our results,
but we do not attempt to go in this direction in the present paper.

The paper consists of four sections and an appendix. Section 1 is a recollection
of basic conventions and results that we use freely throughout the paper.
Section 2 is also of preliminary nature. Here we discuss Frobenius algebras
in C∗-tensor categories and modules over them, and compare such algebras
in the category of finite dimensional Hilbert spaces to finite dimensional C∗-
algebras with prescribed faithful states (Frobenius C∗-algebras). A large part
of this material is surely known to experts, but for the lack of a comprehensive
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reference we provide proofs of many results.
Section 3 is the main part of the paper. Here we formulate and prove our main
result indicated above. We also provide a one-sided variant (Theorem 3.24)
which starts from a single quantum group G and its action, and then produces
another categorically Morita equivalent quantum group, generalizing the notion
of G-Hopf–Galois objects.
In Section 4 we discuss relative tensor products of invertible bimodule categories
which correspond to the transitivity of Morita equivalence, as well as give a
few examples.
In Appendix we discuss a correspondence between module categories and Frobe-
nius algebras. In the purely algebraic setting the existence of such a correspon-
dences was established by Ostrik [Ost03]. Its adaption to the C∗-setting is
formulated in [AdC15], but we believe certain points concerning unitarity de-
serve further explanation.
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1 Preliminaries

1.1 Quantum groups and tensor categories

For a detailed discussion of C∗-tensor categories and compact quantum groups
we refer the reader to [NT13]. Let us just recall a few basic definitions and
facts.

A C∗-category is a category C where the morphisms sets C(U, V ) are complex
Banach spaces endowed with complex conjugate involution C(U, V ) → C(V, U),
T 7→ T ∗, satisfying the C∗-identity (so that every endomorphism ring C(X) =
C(X,X) becomes a C∗-algebra) and having the property T ∗T ≥ 0 in C(X)
for any T ∈ C(X,Y ). The most basic example of such a category is Hilbf , the
category of finite dimensional Hilbert spaces. We tacitly assume that C is closed
under finite direct sums and subobjects, which means that any idempotent in
the endomorphism ring C(U) comes from a direct summand of U .
A unitary functor, or a C∗-functor, F : C → C′ between C∗-categories is a
C-linear functor from C to C′ satisfying F (T ∗) = F (T )∗.
A C∗-tensor category is a C∗-category endowed with a unitary bifunctor ⊗ : C×
C → C, a distinguished object 1 ∈ C, and natural unitary isomorphisms

1⊗ U ∼= U ∼= U ⊗ 1, Φ: (U ⊗ V )⊗W → U ⊗ (V ⊗W )

satisfying certain compatibility conditions. Unless said otherwise, we always
assume that C is strict, that is, the above isomorphisms are the identity mor-
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phisms, but thanks to a C∗-analogue of Mac Lane’s coherence theorem this
does not lead to loss of generality. We also assume that the unit 1 is simple.
A C∗-2-category on a set I of ‘0-cells’ is given by a collection of C∗-categories
Cst for s, t ∈ I together with bilinear unitary bifunctors Crs×Cst → Crt and unit
objects 1s ∈ Css. The axioms which this structure satisfies are analogous to
those of strict C∗-tensor categories. In other words, the main difference from
the latter categories is that the tensor product X ⊗ Y is defined not for all
objects, but only when X ∈ Crs and Y ∈ Cst, and then X ⊗ Y ∈ Crt. Again, it
is possible to consider a non-strict version, C∗-bicategories, but we do not do
this as there is no essential loss of generality in considering only C∗-2-categories.
A unitary tensor functor, a unitary monoidal functor, or a C∗-tensor func-
tor, C → C′ between C∗-tensor categories is a pair consisting of a unitary
functor F : C → C′, such that F (1C) ∼= 1C′ , and a collection F2 of natural
unitary isomorphisms F (U) ⊗ F (V ) → F (U ⊗ V ) such that F2(F2 ⊗ ι) =
F2(ι ⊗ F2) : F (U) ⊗ F (V ) ⊗ F (W ) → F (U ⊗ V ⊗ W ). If F (1C) = 1C′ ,
F (U ⊗ V ) = F (U) ⊗ F (V ) and F2 : F (U) ⊗ F (V ) → F (U) ⊗ F (V ) are the
identity morphisms, then we say that we have a strict tensor functor.
A C∗-tensor category C is called rigid, if every object U has a conjugate object,
that is, there exist an object Ū and morphismsR : 1 → Ū⊗U and R̄ : 1 → U⊗Ū
solving the conjugate equations

(R∗ ⊗ ιŪ )(ιŪ ⊗ R̄) = ιŪ , (R̄∗ ⊗ ιU )(ιU ⊗R) = ιU .

The minimum d(U) of the numbers ‖R‖ ‖R̄‖ over all solutions is called the
intrinsic dimension of U . A solution (R, R̄) is called standard if ‖R‖ = ‖R̄‖ =
d(U)1/2. Any standard solution (RU , R̄U ) defines a trace on C(U) by

TrU (T ) = R∗
U (ι ⊗ T )RU ,

which is independent of any choices and is also equal to R̄∗
U (T ⊗ ι)R̄U (spheric-

ity). The normalized trace d(U)−1 TrU is denoted by trU . More generally, we
have partial categorical traces

TrU ⊗ι : C(U ⊗ V, U ⊗W ) → C(V,W ), T 7→ (R∗
U ⊗ ι)(ι⊗ T )(RU ⊗ ι),

and similarly ι⊗TrU : C(V ⊗U,W⊗U) → C(V,W ). Once standard solutions are
fixed, we can define a ∗-preserving anti-multiplicative map C(U, V ) → C(V̄ , Ū),
T 7→ T∨, such that

(ι⊗ T )RU = (T∨ ⊗ ι)RV , (T ⊗ ι)R̄U = (ι⊗ T∨)R̄V .

Rigidity can be similarly formulated for C∗-2-categories. Briefly, in the above
notation a dual of X ∈ Cst is given by an object X̄ ∈ Cts and morphisms
R : 1t → X̄ ⊗ X , R̄ : 1s → X ⊗ X̄ satisfying the conjugate equations of the
same form. The dimension d(X) and standard solutions (RX , R̄X) make sense,
and the functional TrX(T ) = R∗

X(ι ⊗ T )R∗
X on Cst(X) is tracial and satisfies

the sphericity condition.
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An example of a rigid C∗-tensor category is the representation category of a
compact quantum group. A compact quantum group G is represented by a
unital C∗-algebra C(G) equipped with a unital ∗-homomorphism ∆: C(G) →
C(G)⊗C(G) satisfying the coassociativity (∆⊗ ι)∆ = (ι⊗∆)∆ and the can-
cellation property, meaning that (C(G)⊗ 1)∆(C(G)) and (1⊗C(G))∆(C(G))
are dense in C(G)⊗C(G). There is a unique state h satisfying (h⊗ ι)∆ = h(·)1
and (ι ⊗ h)∆ = h(·)1 called the Haar state. If h is faithful, then G is called a
reduced quantum group. Throughout the whole paper we only consider such
quantum groups.
A finite dimensional unitary representation of G is a unitary element U ∈
B(HU ) ⊗ C(G), where HU is a finite dimensional Hilbert space, such that
(ι ⊗∆)(U) = U12U13. The tensor product of two representations U and V is
defined by U#⊤V = U13V23. This turns the category RepG of finite dimensional
unitary representations of G into a rigid C∗-tensor category.
The duality in the category RepG can be described as follows. Take the regu-
lar algebra C[G] of G, which is the dense ∗-subalgebra of C(G) spanned by the
matrix coefficients of finite dimensional representations. It is a Hopf ∗-algebra,
with the antipode characterized by (ι ⊗ S)(U) = U∗ for any unitary represen-
tation U . Consider the dual space U(G) = C[G]∗. It has the structure of a
∗-algebra, defined by duality from the Hopf ∗-algebra structure on C[G]. Every
finite dimensional unitary representation U of G defines a ∗-representation πU
of U(G) on HU by πU (ω) = (ι ⊗ ω)(U). We often omit πU in expressions and
write ωξ instead of πU (ω)ξ. There is a canonical positive element ρ ∈ U(G),
called the Woronowicz character, characterized by

(ι ⊗ S2)(U) = (πU (ρ)⊗ 1)U(πU (ρ
−1)⊗ 1), TrπU (ρ) = TrπU (ρ

−1)

for any finite dimensional unitary representation U .
The (non-unitary) contragredient representation of U is given by U c = (j ⊗
ι)(U∗) ∈ B(H̄U ) ⊗ C[G], where j denotes the canonical ∗-anti-isomorphism
B(HU ) ∼= B(H̄U ) defined by j(T )ξ̄ = T ∗ξ. Its unitarization, the conjugate
unitary representation Ū , is given by

Ū = (j(πU (ρ))
1/2 ⊗ 1)U c(j(πU (ρ))

−1/2 ⊗ 1).

Although S does not satisfy S2 = ι nor S(x∗) = S(x)∗ (which are in fact
equivalent) and is not bounded on C(G) in general, the unitary antipode R,
which is characterized by (j ⊗R)(U) = Ū , does satisfy these properties.
Finally, standard solutions of the conjugate equations can be defined by

RU (1) =
∑

i

ξ̄i ⊗ ρ−1/2ξi and R̄U (1) =
∑

i

ρ1/2ξi ⊗ ξ̄i, (1.1)

where (ξi)i is an orthonormal basis in HU . Note that for this choice of standard
solutions we have T∨ = j(T ). The above expressions for standard solutions
imply that the dimension d(U) coincides with the quantum dimension dimq U =
Tr πU (ρ) = TrπU (ρ

−1). We also have j(πU (ρ)) = πŪ (ρ
−1) on H̄U = HŪ .
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For a unitary representation U , it will often be convenient to view HU either
as a unitary right comodule over C[G] by letting δU (ξ) = U(ξ ⊗ 1), or as a
unitary left comodule by letting δU (ξ) = U∗

21(1⊗ ξ). This should not cause any
confusion, as for a fixed compact quantum group we always use only one point
of view depending on whether we consider right or left comodule algebras, and
that will always be clearly stated. Note that if we consider the spaces HU as
right comodules, the tensor product of representations of G corresponds to the
tensor product of right comodules, while if we consider HU as left comodules,
it corresponds to the opposite tensor product of left comodules.

1.2 Tannaka–Krein duality for quantum group actions

A left action of a compact quantum group G on a unital C∗-algebra A is
represented by an injective unital ∗-homomorphism α : A → C(G) ⊗ A such
that (∆ ⊗ ι)α = (ι ⊗ α)α, and that (C(G) ⊗ 1)α(A) is dense in C(G) ⊗ A. In
this case we say that A is a left G-C∗-algebra, and also write Gy A to express
this situation. Given such an algebra, we have a distinguished subalgebra
A ⊂ A, called the regular subalgebra, spanned by the elements a (the regular
elements) such that α(a) lies in the algebraic tensor product of C[G] and A.
More concretely, A is the linear span of elements (h(·x) ⊗ ι)α(a), where x ∈
C[G] and a ∈ A. It is a dense unital ∗-subalgebra of A, and the restriction of
α to A turns it into a left C[G]-comodule algebra in the purely algebraic sense.
Consider the fixed point C∗-algebra

B = AG = {a ∈ A | α(a) = 1⊗ a}.

Denote by Corr(B) the C∗-tensor category of C∗-correspondences over B,
that is, the category of right Hilbert B-modules X equipped with a unital
∗-homomorphism from B into the C∗-algebra of adjointable maps on X . This
category is not rigid and generally it has nonsimple unit. We will mostly be in-
terested in the case when B is finite dimensional, and instead of Corr(B) we will
work with its full subcategory Bimod -B of finite dimensional correspondences.
Define a functor F : RepG→ Corr(B) by

F (U) = (HU ⊗A)G = (HU ⊗A)G.

Here, according to our convention, we view HU as a left C[G]-comodule, since
A is a left comodule algebra, and then F (U) is the space of invariant vectors
in the tensor product of comodules HU and A. Note that if we did consider
HU as a right comodule, then we could write F (U) as the cotensor product
HU lGA. The B-valued inner product on (HU ⊗A)G is obtained by restricting
the obvious A-valued inner product on HU ⊗ A: 〈ξ ⊗ a, ζ ⊗ b〉A = (ζ, ξ)a∗b.1

We then have natural isometries

F2 : F (U)⊗B F (V ) → F (U #⊤ V ), x⊗ y 7→ x13y23. (1.2)

1Our convention is that inner products on Hilbert spaces are linear in the first variables,

while those on right Hilbert modules over C∗-algebras are linear in the second variables.
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The pair (F, F2) is called the spectral functor defined by the action α. In general
the isometries F2 are not unitary, so it is not a tensor functor but only a weak,
or lax, tensor functor.
Properties of spectral functors can be axiomatized and this way we get a one-
to-one correspondence between the isomorphism classes of unital left G-C∗-
algebras and natural unitary monoidal isomorphism classes of weak unitary
tensor functors [PR08,Nes14]. We will only need to know how an action α : A→
C(G)⊗A can be reconstructed from the corresponding spectral functor (F, F2).
Consider the set Irr(G) of equivalence classes of irreducible representations of
G and choose representatives Ui ∈ B(Hi)⊗C(G) for i ∈ Irr(G). As a G-space,
A can be identified with

⊕

i∈Irr(G)

H̄i ⊗ F (Ui),

endowed with a left action of G given by

α(ξ̄ ⊗ x) = (U c
i )

∗
21(1⊗ ξ̄ ⊗ x).

For ξ̄ ⊗ x ∈ H̄i ⊗ F (Ui) and ζ̄ ⊗ y ∈ H̄j ⊗ F (Uj), their product is given by

(ξ̄ ⊗ x)(ζ̄ ⊗ y) =
∑

k

w∗
k(ξ ⊗ ζ)⊗ F (w∗

k)F2(x⊗ y),

where wk ∈ Mor(Ulk , Ui#⊤Uj) are isometries defining a decomposition of Ui#⊤Uj

into irreducible representations. The involution is given by

(ξ̄ ⊗ x)∗ = (ι⊗ ξ∗)Ri(1)⊗ S∗
xF (R̄i)(1),

where Ri : 1 → Uī #⊤ Ui and R̄i : 1 → Ui #⊤ Uī form a solution of the conjugate
equations and Sx : F (Uī) → F (Ui #⊤ Uī) is the map y 7→ F2(x⊗ y).

A related categorical characterization of actions of G is in terms of module
categories. Recall first that, given a C∗-tensor category C, a right C-module
category is a C∗-category D together with a unitary bifunctor ⊗ : D × C → D
and natural unitary isomorphisms X⊗1 ∼= X and X⊗ (U ⊗V ) ∼= (X⊗U)⊗V
satisfying certain compatibility conditions. For a strict C∗-tensor category C,
a module category is called strict if these isomorphisms are just the identity
morphisms, and unless explicitly stated otherwise we will assume that we deal
with such module categories, which again does not lead to loss of generality.
An equivalent way to define a right C-module structure on a C∗-category D is
by saying that we have a unitary tensor functor from C⊗op into the C∗-tensor
category End(D) of unitary endofunctors of D, which has uniformly bounded
natural transformations as its morphisms.
A unitary C-module functor between right C-module categories D and D′ is
given by a pair (F, θ) consisting of a unitary functor F : D → D′ and a collection
θ of natural unitary isomorphisms θX,U : F (X)⊗U → F (X⊗U) satisfying some
compatibility conditions, which in the case of strict module categories become
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θX⊗U,V (θX,U ⊗ ι) = θX,U⊗V : F (X)⊗U ⊗ V → F (X ⊗ U ⊗ V ). We denote by
EndC(D) the C∗-tensor category of unitary C-module endofunctors of D.
Returning to an action α : A → C(G) ⊗ A, consider the category DA of G-
equivariant finitely generated right Hilbert A-modules. We will sometimes
denote this category more suggestively by ModG-A. Thus, the objects of DA

are right Hilbert A-modules X equipped with isometries δX : X → C(G) ⊗X ,
where we consider C(G)⊗X as a right Hilbert (C(G)⊗A)-module, satisfying
the following properties: δX(X)(C(G)⊗ 1) is dense in C(G)⊗X , (∆⊗ ι)δX =
(ι ⊗ δX)δX , δX(ξa) = δX(ξ)α(a), and 〈δX(x), δX(y)〉C(G)⊗A = α(〈x, y〉A). For
any such module (X, δX), we denote by X ⊂ X the dense subspace spanned by
the vectors x such that δX(x) lies in the algebraic tensor product of C[G] and
X , or more concretely, the subspace spanned by the vectors (h(· a)⊗ ι)δX(x),
where a ∈ C[G] and x ∈ X . Then X is a left C[G]-comodule and a right
A-module.
The category DA is a right (RepG)-module category, the effect of the action
of U ∈ RepG on X ∈ DA is the equivariant Hilbert module HU ⊗ X . Note
once again that since we consider a left action of G on A, we view HU as a
left comodule. This indeed gives us a right action of RepG, since the tensor
product of left comodules HU corresponds to the opposite tensor product in
RepG. The category DA has a distinguished object represented by the algebra
A itself.
This way we get a one-to-one correspondence between the isomorphism classes
of left G-C∗-algebras and the unitary isomorphism classes of pairs (D, X),
where D is a right (RepG)-module category and X is a generating object
in D, meaning that any other object is a subobject of X ⊗ U for some
U ∈ RepG [dCY13b,Nes14]. If we chose another generating object, then we get
a G-equivariantly Morita equivalent C∗-algebra. Therefore we also get a one-
to-one correspondence between the G-equivariant Morita equivalence classes of
left G-C∗-algebras and the unitary equivalence classes of singly generated right
(RepG)-module categories. For finite quantum groups and their actions on
finite dimensional algebras, which can then be considered as algebra objects in
RepG, similar results were already obtained by Ostrik [Ost03].
The relation between the above two categorical descriptions can be described
as follows. Assume we have a pair (D, X) as above. Then we can consider
the unital C∗-algebra B = D(X) and define a weak unitary tensor functor
RepG→ Corr(B) by letting

F (U) = D(X,X ⊗ U),

with the B-valued inner product 〈S, T 〉B = S∗T , and the tensor structure

F2 : F (U)⊗B F (V ) → F (U #⊤ V ), S ⊗ T 7→ (S ⊗ ι)T.

Thus, for example, the formula for involution on A =
⊕

i H̄i ⊗ D(X,X ⊗ Ui)
becomes

(ξ̄ ⊗ T )∗ = (ι⊗ ξ∗)Ri(1)⊗ (T ∗ ⊗ ιı̄)(ιX ⊗ R̄i)
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for ξ ∈ Hi and T ∈ D(X,X ⊗ Ui).

Of course, everything above makes sense also for right actions α : A→ A⊗C(G)
and left module categories. Briefly, given such an action and letting B = AG,
the corresponding spectral functor is defined by

F : (RepG)⊗op → Corr(B), F (U) = (HU ⊗A)G,

F2 : F (U)⊗B F (V ) → F (V #⊤ U), X ⊗ Y 7→ X23Y13.

The dense subalgebra A ⊂ A is reconstructed from (F, F2) by the same formula
as before, A =

⊕

i H̄i ⊗ F (Ui), endowed with the right action of G given by

α(ξ̄ ⊗ x) = (U c
i )13(ξ̄ ⊗ x⊗ 1).

The product is defined similarly to the case of left actions. The involution is
given by

(ξ̄ ⊗ x)∗ = (ξ∗ ⊗ ι)R̄i(1)⊗ S∗
xF (Ri)(1)

for ξ̄ ⊗ x ∈ H̄i ⊗ F (Ui), where Sx(y) = F2(x⊗ y).
The left (RepG)-module category DA is defined in the same way as before,
but equivariant right Hilbert A-modules are now right C(G)-comodules. The
spectral functor and the pair (DA, X), where X = A ∈ DA, are related by
F (U) = DA(X,U ⊗X).

Remark 1.1. In [dCY13b], a right G-C∗-algebra corresponding to a left module
category D and X ∈ D was constructed as the completion of Ã =

⊕

i D(Ui ⊗
X,X) ⊗ Hi, where Hi has the coaction ξ 7→ Ui(ξ ⊗ 1). This approach is of
course equivalent to the one above, with the isomorphism Ã → A given by

D(Ūi ⊗X,X)⊗ H̄i → H̄i ⊗D(X,Ui ⊗X),

S ⊗ ξ̄ 7→ (ι ⊗ ξ∗)Ri(1)⊗ (ιi ⊗ S)(R̄i ⊗ ιX).

In particular, when the weak tensor functor F is actually the fiber functor of
G, Ã can be identified with C[G] on the nose, while the above map gives a right
G-C∗-algebra isomorphism C[G] ∼= A.

Remark 1.2. Our correspondence between left actions and right module cat-
egories instead of left ones is more of a convention than a necessity. Given
any right (RepG)-module category D we can reverse the directions of arrows
in D to get a category Dop, and then define a left action of RepG on Dop

using a contravariant functor U 7→ Ū . At the level of C∗-algebras this cor-
responds to passing from a left action α : A → C(G) ⊗ A to the right ac-
tion a 7→ (ι ⊗ R)(α(a)21) on Aop, where R is the unitary antipode on C(G).
Concretely, the anti-isomorphism of the algebras corresponding to (D, X) and
(Dop, Xop) is given by

H̄i ⊗D(X,X ⊗ Ui) → H̄i ⊗Dop(Xop, Ui ⊗Xop) = H̄i ⊗D(X ⊗ Ūi, X),

ξ̄ ⊗ S 7→ (ι⊗ ξ∗)Ri(1)⊗ (ιX ⊗ R̄∗
i )(S ⊗ ιı̄).
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1.3 Free actions

A left action α : A → C(G) ⊗ A of a compact quantum group on a unital C∗-
algebra is called free [Ell00], if (1 ⊗ A)α(A) is dense in C(G) ⊗ A. By now
there are many equivalent characterizations of freeness [dCY13a,BdCH17]. In
particular, freeness is equivalent to any of the following conditions:

- the regular subalgebra A ⊂ A is a Hopf–Galois extension of B = AG,
that is, the Galois map

Γ: A⊗B A → C[G]⊗A, a⊗ b 7→ α(a)(1 ⊗ b),

is bijective;

- for any U ∈ RepG, the localized Galois map

ΓU : AU ⊗B A→ C[G]U ⊗A, a⊗ b 7→ α(a)(1 ⊗ b),

is a unitary map of right Hilbert A-modules, where C[G]U is the span of
matrix coefficients of U , and AU = {a ∈ A | α(a) ∈ C[G]U ⊗ A} is the
spectral subspace of A corresponding to U ; here AU has the structure of
a right Hilbert B-module induced by the unique G-invariant conditional
expectation E : A → B, and C[G]U is equipped with the scalar product
using the Haar state;

- the spectral functor RepG → Corr(B) is monoidal, that is, the natural
isometries

(HU ⊗A)G ⊗B (HV ⊗A)G → (HU#⊤V ⊗A)G

given by (1.2) are unitary.

Note that in the purely algebraic setting the equivalence of these conditions
was established earlier by Ulbrich in the ergodic case [Ulb87] and by Schauen-
burg [Sch04, Section 2.5] in general.
Freeness for right actions can be characterized similarly, this time the Galois
map being given by

A⊗B A → A⊗ C[G], a⊗ b 7→ α(a)(b ⊗ 1).

Yet another characterization of freeness for left actions is as follows, which in
the purely algebraic setting is due to Schneider [Sch90]. Needless to say, there
is also a similar characterization for right actions.

Proposition 1.3. An action α : A→ C(G)⊗A of a compact quantum group on
a unital C∗-algebra A is free if and only if, for any G-equivariant right Hilbert
A-module X, the map XG⊗AG A→ X, x⊗a 7→ xa, is a unitary isomorphism.
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Proof. We follow the idea of [Sch90], but there are several simplifications due
to the cosemisimplicity of C[G]. Since the map in the formulation is isometric,
the only question is when it has dense image. Let us denote the subspace of
regular vectors in X by X , and look at the product map µ : XG ⊗B A → X ,
where B = AG.
First suppose that the action is free. Using the inverse of the Galois map, we
can consider the map

ν : X → X ⊗B A, x 7→ x(1)Γ
−1(S−1(x(0))⊗ 1)1 ⊗ Γ−1(S−1(x(0))⊗ 1)2.

A standard computation shows that the image of this map is in (X ⊗B A)G,
where G acts only on the first factor of X ⊗B A. Since the G-isotypic de-
composition X =

⊕

i∈Irr(G)Xi is compatible with the action of B, we have

(X ⊗B A)G = XG ⊗B A. Then, using that the product map A ⊗B A → A
equals (ε⊗ ι)Γ, it is easy to check that ν, considered as a map X → XG⊗B A,
is the inverse of µ.
Conversely, assume the map in the formulation is unitary for any X , or equiv-
alently, the map µ : XG ⊗B A → X is an isomorphism. Take U ∈ RepG.
Consider the equivariant right Hilbert A-module X = C[G]Ū ⊗ A, where the
inner product on C[G]Ū is defined by the Haar state. Then

XG = {S(a(0))⊗ a(1) | a ∈ AU},

so XG ∼= AU as a right B-module. By assumption, the map

XG ⊗B A → X = C[G]Ū ⊗A, (S(a(0))⊗ a(1))⊗ b 7→ S(a(0))⊗ a(1)b,

is an isomorphism. But this shows that the map AU ⊗B A → C[G]U ⊗ A,
a⊗ b 7→ a(0) ⊗ a(1)b, is an isomorphism. Hence the localized Galois map ΓU is
an isomorphism.

If an action is free, then it follows from [dCY13a, Corollary 4.2(2)] that, for
any G-equivariant finitely generated right Hilbert A-module X , the module
XG is finitely generated over AG. Therefore the ‘only if’ part of the above
proposition implies that the functor X 7→ XG defines an equivalence of the
categories ModG -A and Mod -AG. Without the freeness assumption this is not
even well-defined as a functor into the category of finitely generated modules.
However, if the fixed point algebra is finite dimensional, the functor is well-
defined and we get the following characterization of freeness.

Proposition 1.4. Let α : A → C(G) ⊗ A be an action of a compact quantum
group on a unital C∗-algebra A. Assume that AG is finite dimensional. Then
the action is free if and only if Y G 6= 0 for any nonzero Y ∈ DA.

Proof. The ‘only if’ direction follows from the previous proposition and does
not require finite dimensionality of B = AG.
As for the converse, first, we claim that the finite dimensionality assumption
on AG implies that DA is semisimple. Indeed, since any module in DA is a
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direct summand of HU ⊗ A for some U ∈ RepG, it suffices to show that the
endomorphism algebra (B(HU ) ⊗ A)G of HU ⊗ A ∈ DA is finite dimensional.
But this is true, since any faithful G-invariant state ϕ on B(HU ) defines a
conditional expectation ϕ ⊗ ι : (B(HU ) ⊗ A)G → AG of finite probabilistic
index.
Let X be the object of DA represented by A itself. Then the space DA(X,Y ) ∼=
Y G is finite dimensional. In particular, Y G is finitely generated over B for any
Y ∈ DA. Assume that the action is not free. Then by the proof of the previous
proposition, there exists Y ∈ DA of the form Y = C[G]U ⊗ A such that the
isometric map Y G⊗BA→ Y , x⊗a 7→ xa, is not surjective. Since Y G is finitely
generated over B, the module Y G⊗B A is finitely generated over A, hence this
map is a morphism in DA. Its image, the proper submodule Y GA ⊂ Y , has a
nonzero orthogonal complement Z. Clearly, ZG = 0.

Remark 1.5. An equivalent way of formulating the above proposition is as
follows: if a (RepG)-module category D is semisimple, then the action of G on
the C∗-algebra corresponding to a generating object X ∈ D is free if and only
if every simple object of D is a subobject of X .

The following observation is useful for checking freeness in concrete examples.

Proposition 1.6. Assume α : B → C(G)⊗B is an action of a compact quan-
tum group G on a unital C∗-algebra B, and A ⊂ B is an invariant C∗-subalgebra
containing the unit of B such that the action of G on A is free. Then the action
of G on B is also free.

Proof. Since the Galois map B⊗BGB → C[G]⊗B, b⊗c 7→ α(b)(1⊗c), is always
injective, we only have to check surjectivity. By the freeness of the action on A
the image of this map contains C[G]⊗ 1, hence it also contains C[G]⊗ B.

1.4 Conventions

We often fix representatives (Ui)i of isomorphism classes of simple objects in a
rigid C∗-tensor category, and then use the subscript i instead of Ui, so that we
write di, (Ri, R̄i) instead of d(Ui), (RUi

, R̄Ui
), etc.

In order to simplify various expressions, we often omit the symbols ⊗ and #⊤

for tensor products of objects in tensor categories and module categories, as
opposed to this preliminary section. We still write ⊗ for tensor products of
morphisms and vector spaces.
When X and Y are objects in a rigid C∗-tensor category (or in a rigid C∗-2-
category) and standard solutions for the corresponding conjugate equations are
fixed, we take

(

(ιȲ ⊗RX ⊗ ιY )RX , (ιX ⊗ R̄Y ⊗ ιX̄)R̄X

)

as a standard solution
for XY (= X⊗Y ). We also normalize the choice of standard solutions in RepG
as in (1.1). Thus, for ξ ∈ Hi, we have

(ξ∗ ⊗ ι)R̄i(1) = ρ1/2ξ, (ι ⊗ ξ∗)Ri(1) = ρ−1/2ξ.
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Recall once again that all compact quantum groups in this paper are assumed
to be in the reduced form.
When we write formulas for linear maps on subspaces of vector spaces, such
as (HU ⊗ A)G ⊂ HU ⊗ A, we often consider only elementary tensors. By this
we do not mean that the subspaces are spanned by such tensors, but that our
formulas have obvious extensions to all the required tensors.
We use the Einstein summation convention, that is, if an index occurs once in
an upper and once in a lower position in an expression, then we have a sum
over this index.

2 Frobenius algebras and categories of modules

In this section we collect a number of results on algebra objects in C∗-tensor
categories and the corresponding categories of modules.

2.1 Frobenius algebras in tensor categories

Recall that a Frobenius algebra over C is a finite dimensional algebra A together
with a linear functional ϕ such that the pairing A × A → C, (a, b) 7→ ϕ(ab)
is nondegenerate. There are a number of other conditions equivalent to non-
degeneracy of the pairing, see, e.g., [Koc04]. One of them is that the vector
space A admits a (necessarily unique) coalgebra structure with counit ϕ and
coproduct ∆: A → A ⊗ A such that ∆ is an A-bimodule map. Explicitly, the
coproduct is defined by

∆(y) = yxi ⊗ xi

(

=
∑

i

yxi ⊗ xi

)

, (2.1)

where (xi)i is a basis in A and (xi)i is the dual basis, so that ϕ(xix
j) = δij .

By a Frobenius C∗-algebra we mean a finite dimensional C∗-algebra A together
with a faithful positive linear functional ϕ. Define a scalar product on A by
(x, y) = ϕ(y∗x). Then the coproduct ∆ defined by (2.1) coincides with the
adjoint m∗ of the product map m : A ⊗ A → A, while ϕ equals the adjoint of
the map v : C → A, v(1) = 1. This justifies the following definition.

Definition 2.1 (cf. [Müg03, Vic11, BKLR15]). An algebra object (A,m, v),
with product m : A ⊗A → A and unit v : 1 → A, in a C∗-tensor category C is
called a C∗-Frobenius algebra if m∗ : A → A ⊗ A is an A-bimodule morphism,
that is,

(m⊗ ι)(ι ⊗m∗) = m∗m = (ι⊗m)(m∗ ⊗ ι).

Since the unit v is uniquely determined, we will often write an algebra in C as
a pair (A,m).

In a similar way, given a C∗-Frobenius algebra (A,m), we say that a left A-
module (X,mX : A ⊗ X → X) in C is unitary if m∗

X : X → A ⊗ X is an
A-module morphism:

(m⊗ ι)(ι ⊗m∗
X) = m∗

XmX . (2.2)
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By the above discussion any Frobenius C∗-algebra is a C∗-Frobenius algebra in
Hilbf . It is known that the converse is also true. More precisely, we have the
following.

Lemma 2.2. Let (A,m, v) be a C∗-Frobenius algebra in Hilbf . Then the algebra
A admits a unique involution such that it becomes a C∗-algebra and such that
for the linear functional ϕ = v∗ on it we have (x, y) = ϕ(y∗x) for all x, y ∈ A.
Also, a left A-module X in Hilbf is unitary if and only if the representation of
A on the Hilbert space X is ∗-preserving.

Proof. Since m∗ is a coproduct with counit ϕ, the pair (A,ϕ) is a Frobenius
algebra, so the pairing defined by ϕ is nondegenerate. Hence we can define an
anti-linear operation a 7→ a∗ on A such that (x, y) = ϕ(y∗x) for all x, y ∈ A.
For a, b, c ∈ A we have

(c, ab) = (m∗(c), a⊗ b) = ((a∗ ⊗ 1)m∗(c), 1 ⊗ b) = (m∗(a∗c), 1⊗ b) = (a∗c, b).

This shows that the left regular representation of A is ∗-preserving, so the
∗-operation is an involution and A is a C∗-algebra.

Next, consider a left A-module X ∈ Hilbf . By definition, the representation of
A on X is ∗-preserving if, for all a ∈ A and x, y ∈ X , we have (ax, y) = (x, a∗y).
The right hand side can be written as

(x,mX(a∗ ⊗ y)) = ((m⊗ ι)(a⊗m∗
X(x)), 1 ⊗ y)

= ((v∗m⊗ ι)(ι ⊗m∗
X)(a⊗ x), y) ,

so the representation is ∗-preserving if and only if

mX = (v∗m⊗ ι)(ι ⊗m∗
X). (2.3)

This condition is equivalent to (2.2) in any C∗-tensor category. Indeed, iden-
tity (2.3) follows from (2.2) by multiplying the latter by v∗ ⊗ ι on the left.
Conversely, starting with (2.3) and using that m = (v∗m ⊗ ι)(ι ⊗m∗) by the
Frobenius condition, we compute:

(m⊗ ι)(ι ⊗m∗
X) = (v∗m⊗ ι⊗ ι)(ι ⊗m∗ ⊗ ι)(ι ⊗m∗

X)

= (v∗m⊗ ι⊗ ι)(ι ⊗ ι⊗m∗
X)(ι ⊗m∗

X)

= m∗
X(v∗m⊗ ι)(ι⊗m∗

X) = m∗
XmX .

This completes the proof of the lemma.

For a C∗-Frobenius algebra A in a C∗-tensor category C, we denote by A-ModC ,
or simply by A-Mod, the category of left unitary A-modules in C. It is easy
to check that A-Mod is a C∗-category [NY16, p. 418] using condition (2.3)
and arguments similar to the proof of the above proposition, where we in ef-
fect checked that the fact mX is a morphism in A-Mod implies that m∗

X is a
morphism in A-Mod as well. In a similar way we can introduce C∗-categories
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ModC-A of unitary right A-modules and BimodC -A of unitary A-bimodules
in C.

For abstract C∗-tensor categories it is natural to consider unitary isomorphisms
of C∗-Frobenius algebras. But for Hilbf there is a larger natural class of iso-
morphisms.

Lemma 2.3. Let (A,ϕA) and (B,ϕB) be Frobenius C∗-algebras. Assume that
T : A→ B is an isomorphism of algebras. Consider the adjoint map T ∗ : B →
A with respect to the scalar products defined by ϕA and ϕB . Then T is ∗-
preserving if and only if T ∗T : A→ A is a left A-module map.

Proof. The map T ∗T is a left A-module map if and only if

(T ∗T (ab), c) = (aT ∗T (b), c) (2.4)

for all a, b, c ∈ A. The left hand side of (2.4) equals (T (a)T (b), T (c)), while the
right hand side equals

(T ∗T (b), a∗c) = (T (b), T (a∗)T (c)).

We thus see that (2.4) holds for all b, c ∈ A if and only if T (a)∗ = T (a∗).

Motivated by this we give the following definition.

Definition 2.4. We say that an invertible morphism T : A→ A′ is an isomor-
phism of C∗-Frobenius algebras (A,m) and (A′,m′) in a C∗-tensor category C
if

m′(T ⊗ T ) = Tm and m(ι⊗ T ∗T ) = T ∗Tm.

It is straightforward to check that compositions and inverses of isomorphisms
are again isomorphisms. Furthermore, if (A,m) is a C∗-Frobenius algebra and
T : A → A′ is any invertible morphism satisfying m(ι ⊗ T ∗T ) = T ∗Tm, then
by letting m′ = Tm(T−1 ⊗ T−1) we get a C∗-Frobenius algebra (A′,m′).

Remark 2.5. Instead of requiring T ∗T to be a left A-module morphism in the
above definition we could require T ∗T to be a right A-module morphism. This
would change the notion of an isomorphism, but the isomorphism classes of
C∗-Frobenius algebras would remain the same. Indeed, assume T : A → A′

is an isomorphism according to Definition 2.4. Consider the polar decompo-
sition T = u|T |, so that |T | is a left A-module morphism. We have a linear
isomorphism

EndA-Mod(A) ∼= EndMod-A(A), S 7→ π(S) = m(Sv ⊗ ι),

which can be characterized by the identity

m(S ⊗ ι) = m(ι⊗ π(S)),
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since

m(ι⊗ π(S)) = m(ι⊗m)(ι⊗ Sv ⊗ ι) = m(m⊗ ι)(ι ⊗ Sv ⊗ ι)

= m(Sm⊗ ι)(ι ⊗ v ⊗ ι) = m(S ⊗ ι).

Therefore if we let T̃ = uπ(|T |), then T̃ ∗T̃ ∈ π(|T |)∗π(|T |) ∈ EndMod-A(A) and

m′ = Tm(T−1 ⊗ T−1) = um(|T |−1u∗ ⊗ u∗)

= um(u∗ ⊗ π(|T |)−1u∗) = T̃m(T̃−1 ⊗ T̃−1),

proving our claim.

The following subclasses of C∗-Frobenius algebras are of particular interest, see
again [BKLR15] for details.

Definition 2.6. A C∗-Frobenius algebra (A,m, v) in C is called

- irreducible, if A is simple as a left, equivalently, as a right, A-module;

- simple, if A is simple as an A-bimodule;

- special, or a Q-system [Lon94], if mm∗ is scalar;

- standard, if the pair (m∗v,m∗v) is a standard solution of the conjugate
equations for A, that is, if ‖m∗v‖2 equals the intrinsic dimension d(A) of
A ∈ C.

Remark 2.7.

(i) We always have a linear isomorphism MorC(1, A) ∼= EndA-Mod(A), T 7→
m(ι ⊗ T ), with the inverse S 7→ Sv. Therefore irreducibility is equivalent to
the condition dimMorC(1, A) = 1.

(ii) As mm∗ is an A-bimodule morphism, a simple C∗-Frobenius algebra is au-
tomatically a Q-system. In particular, this is true for irreducible C∗-Frobenius
algebras. Irreducible Q-systems are also called ergodic in [AdC15].

(iii) If (A,m, v) is an algebra in C such thatmm∗ is scalar, then it is a Q-system,
see [LR97, Section 6] or [BKLR15, Lemma 3.5]. Similarly, once we assume
that A is a Q-system, a left A-module X is unitary if and only if mXm

∗
X is

scalar, and then it is the same scalar as mm∗, see [BKLR15, Lemma 3.23] and
[NY16, Lemma 6.1].

(iv) Once mm∗ is assumed to be scalar, it is natural to fix a normalization
of the pair (m, v). For example, we may require this scalar to be 1. Another
natural choice, made in [NY16], is to require v to be an isometry.

(v) In [BKLR15] Q-systems are required to be standard, but we do not do this.

Lemma 2.8. Any C∗-Frobenius algebra is unitarily isomorphic to a direct sum
of simple C∗-Frobenius algebras.
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Proof. Note that the C∗-algebra EndBimod -A(A) is abelian, since A is a unit ob-
ject in the tensor category Bimod -A. More directly, if S, T ∈ EndBimod -A(A),
then

STm = Sm(ι⊗ T ) = m(S ⊗ T ) = Tm(S ⊗ ι) = TSm,

and multiplying on the right by v ⊗ ι we get ST = TS.
For every minimal projection z ∈ EndBimod -A(A), the subobject zA of A de-
fined by z becomes a C∗-Frobenius algebra, with product defined by the re-
striction of m to zA⊗ zA, and A is the direct sum of these algebras.

2.2 Standard Q-systems

Assume (A,m) is a C∗-Frobenius algebra. Then mm∗ : A → A is an A-
bimodule morphism, and as was observed in [BKLR15, Lemma 3.5], this mor-
phism is invertible, so that the product (mm∗)−1/2m : A ⊗ A → A defines an
isomorphic Q-system. We strengthen this observation as follows.

Theorem 2.9. Any C∗-Frobenius algebra in a C∗-tensor category C is isomor-
phic to a standard Q-system.

In particular, since isomorphisms of irreducible Q-systems are unitary up to
scalar factors, any irreducible Q-system is standard. This has been already
observed by Müger in [Müg03, Remark 5.6(3)]. The general result holds for
similar reasons, but the proof requires a bit more work.
First of all, by Lemma 2.8 it suffices to prove the theorem for simple Q-systems.
Let (A,m, v) be such a Q-system. We may assume that v is an isometry and
mm∗ = λι. Since the object A in C is self-dual, by passing to the subcategory
generated by A we may assume that C is rigid. We can then construct a rigid
C∗-2-category B of modules in C with the set {1, 2} of 0-cells in a standard
way [Yam04,Müg03, NY18]. Concretely, we take B11 = C, B22 = Bimod -A,
B12 = Mod-A, and B21 = A-Mod. The tensor products are defined over A
when possible, otherwise they are taken in C. For a discussion of unitarity of
the tensor product ⊗A and a proof of (C∗-)rigidity of B, see, e.g., [NY16,NY18].
We only want to make two additional remarks. First, the assumption of stan-
dardness made in the above cited papers did not play an essential role for
the construction of B, the only change is that d(A) in various formulas has
to be replaced by λ. Second, it is important to remember that given modules
X ∈ Mod-A and Y ∈ A-Mod, the structure morphism PX,Y : XY → X ⊗A Y
for the tensor product over A is normalized so that PX,Y P

∗
X,Y = λι, which

guarantees the unitarity of ⊗A.

Proof of Theorem 2.9. Using the above notation, consider A as an object X in
B12 = Mod-A. As a conjugate object X̄ we can take A considered as an object
in B21 = A-Mod. We have a solution (R, R̄) of the conjugate equations for X
defined by

R = m∗ : A = 12 → X̄X = A⊗A, R̄ = v : 1C = 11 → XX̄ = A⊗A A = A.
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We can find a positive invertible morphism T ∈ End(X̄) = EndA-Mod(A) such
that the morphisms R′ = (T ⊗ ι)R and R̄′ = (ι ⊗ T−1)R̄ form a standard
solution of the conjugate equations for X . Then the formula

RA = R̄A = (ι⊗R′ ⊗ ι)R̄′

defines a standard solution of the conjugate equations for XX̄ = A. Note that
the morphism R̄ : 1 → A = A⊗AA lifts to the morphism λ−1m∗v : 1 → A⊗A,
while ι ⊗ R ⊗ ι : A ⊗A A → A ⊗A A ⊗ A ⊗A A is induced by the morphism
ι⊗m∗v ⊗ ι : A⊗A→ A⊗A⊗A⊗A. Hence we have

RA = (m⊗m)(ι ⊗ (T ⊗ ι)m∗v ⊗ ι)λ−1(ι⊗ T−1)m∗v

= (T ⊗ ι)(m ⊗ ι)(ι⊗m∗m)(ι⊗ v ⊗ ι)λ−1m∗T−1v

= (T ⊗ ι)m∗mλ−1m∗T−1v = (T ⊗ ι)m∗T−1v.

But this means that by lettingm′ = m(T⊗ι) = T−1m(T⊗T ) and v′ = T−1v we
get an isomorphic C∗-Frobenius algebra structure on A withm′∗v′ = RA = R̄A,
so this new C∗-Frobenius algebra is standard. As it is simple, it is automatically
a Q-system.

One advantage of working with standard Q-systems is the following result.

Proposition 2.10. Any isomorphism of standard Q-systems is unitary up to
a scalar factor.

Proof. Assume T : (A,m, v) → (A′,m′, v′) is an isomorphism of standard Q-
systems. Using scalar isomorphisms we may replace these Q-systems by isomor-
phic ones and assume that m and m′ are coisometries. Then ‖v‖2 = ‖v′‖2 =
d(A) by standardness. We want to show that T is unitary. By taking the
polar decomposition of T and replacing (A′,m′, v′) by a unitarily isomorphic
Q-system we may further assume that T is a positive morphism, so that in
particular A′ = A as objects. We then have to show that T = ι.
As m′(T ⊗ T ) = Tm and Tm = m(ι⊗ T ), we have m′(T ⊗ ι) = m, and then

TrA(T
2) = v′

∗
m′(T 2 ⊗ ι)m′∗v′ = v′

∗
mm∗v′ = d(A).

Similarly TrA(T
−2) = d(A). By the Cauchy–Schwarz inequality we conclude

that T 2 is the identity morphism, hence T is the identity morphism as well.

2.3 Canonical invariant states

Let us now consider the C∗-Frobenius algebras in the representation categories
of compact quantum groups.
By a straightforward refinement of Lemma 2.2, the C∗-Frobenius algebras in
RepG correspond to the pairs (A,ϕ) consisting of a finite dimensional right G-
C∗-algebraA and aG-invariant faithful positive linear functional ϕ on A (for Q-
systems such a correspondence is explicitly stated in [AdC15, Proposition 3.4]).
Then Theorem 2.9 and Proposition 2.10 for C = RepG translate into the
following.
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Theorem 2.11. For any finite dimensional (left or right) G-C∗-algebra A there
exists a unique G-invariant faithful state ϕ on A such that if we define a scalar
product on A using ϕ, then for the product map m : A ⊗ A → A we have
mm∗ = (dimq A)ι.

Proof. By passing from A to Aop if necessary, we may assume that A is a right
G-C∗-algebra, see Remark 1.2. Then the existence of ϕ is equivalent to the
statement that any C∗-Frobenius algebra in RepG is isomorphic to a standard
Q-system such that the unit v : 1 → A is an isometry. If ϕ′ is another state as
in the formulation, then by Proposition 2.10 the identity map A→ A must be
unitary with respect to the scalar products defined by ϕ and ϕ′, so ϕ = ϕ′.

We call the state ϕ given by the above theorem the canonical invariant state
on A, and will usually denote it by ϕA. Unless stated otherwise, we will also
always assume that A is equipped with the scalar product defined by ϕA.

Assume A is a finite dimensional rightG-C∗-algebra. If X is a finitely generated
right Hilbert A-module, then we can turn it into a finite dimensional unitary
representation of G with respect to the scalar product (x, y) = ϕA(〈y, x〉A).
Any covariant representation of the pair (A,G) on a finite dimensional Hilbert
space arises this way. By Lemma 2.2 this allows us to identify the category
DA = ModG-A of finitely generated right Hilbert A-modules with the cate-
gory ModRepG-A of right unitary A-modules in RepG, so from now on we
will only use the lighter notation ModG-A. Of course, for this identification
any faithful G-invariant state on A can be used, but ϕA is the most natural
choice. Similarly, we identify BimodG -A with BimodRepG -A and A-ModG
with A-ModRepG.

The existence of canonical invariant states is not difficult to establish directly,
without relying on Theorem 2.9. In order to see this, assume as above that
A is a finite dimensional C∗-algebra with an action α : A → A ⊗ C(G) of G.
Denote by λ(a) the operator of multiplication on the left by a ∈ A. Consider
the representation πα of the algebra U(G) on the space A given by πα(ω)a =
ω � a = (ι⊗ ω)α(a). Recall also that we denote by ρ ∈ U(G) the Woronowicz
character.

Proposition 2.12. For any finite dimensional right G-C∗-algebra A, we have

ϕA(a) = (dimq A)
−1 Tr(λ(a)πα(ρ)) for all a ∈ A.

Proof. It is well known that (dimq A)
−1 Tr(λ(·)πα(ρ)) is an invariant state.

Therefore we only have to show that if we define a scalar product on A using
this state, then mm∗ = (dimq A)ι, or equivalently, if we define a scalar product
using the positive linear functional Tr(λ(·)πα(ρ)), then mm

∗ = ι.
Consider the one-parameter group of automorphisms βt of A defined by βt(a) =
ρit � a. Since A is finite dimensional, there exists a positive invertible element
b ∈ A such that βt = Ad bit. Then πα(ρ) = Ad b. Since A is a direct sum of
full matrix algebras, it is then enough to show the following: if c ∈ Matn(C) is

Documenta Mathematica 23 (2018) 2165–2216



Categorical Morita Equivalence 2185

a positive invertible matrix and we define a scalar product on Matn(C) using
the positive linear functional a 7→ Tr(λ(a)(Ad c)) = Tr(ac)Tr(c−1), then for
the product m on Matn(C) we have mm∗ = ι. But this is a straightforward
computation.

Remark 2.13. The above expression for ϕA can be interpreted as follows. Con-
sider the unique G-invariant conditional expectation E : A → AG. The ele-
ments of AG act by left multiplication on A, and this way we can consider AG

as a subalgebra of the endomorphism ring of the object A ∈ RepG. Hence the
normalized categorical trace trA on this endomorphism ring defines a tracial
state on AG. (To be more precise, in order to consider A as an object of RepG,
we have to define a scalar product on A using an invariant faithful state. But
the trace on AG that we get this way is independent of any choices.) Then
ϕA = trAE.

Remark 2.14. Another consequence of the proposition is that ϕA satisfies the
KMS condition with respect to (βt)t. Indeed, we have πα(ρ)

zλ(a)πα(ρ)
−z =

λ(ρz � a) and

ϕA(ab) = dimq(A)
−1 Tr(λ(ab)πα(ρ))

= dimq(A)
−1 Tr(λ(b)πα(ρ)λ(a)πα(ρ)

−1πα(ρ))

= ϕA(bβ−i(a)).

3 Invertible bimodule categories

3.1 Invertible bimodule categories and Morita–Galois objects

The notion of an invertible bimodule category was introduced in [ENO10].
Since relative tensor product of module categories over infinite C∗-tensor cate-
gories requires some discussion, we will adopt the following definition, which is
equivalent to the unitary version of the one in [ENO10] for finite rigid C∗-tensor
categories. We will return to relative tensor products in Section 4.

Definition 3.1. A nonzero C1-C2-module category D over rigid C∗-tensor cat-
egories C1 and C2 is called invertible if there exists a rigid C∗-2-category C with
the set {1, 2} of 0-cells such that C11 is unitarily monoidally equivalent to C1,
C22 is unitarily monoidally equivalent to C2, and C12 is unitarily equivalent to D
as a C1-C2-module category.

Invertible bimodule categories can be defined more intrinsically without men-
tioning 2-categories. For this we need to recall a few definitions.
Let C be a rigid C∗-tensor category and D be a right C-module category. Then
D is called indecomposable if it is not equivalent to a direct sum of two nonzero
module categories. If D is semisimple as a C∗-category, then D indecomposable
if and only if every nonzero object X ∈ D is generating, meaning that any other
object is a subobject of XU for some U ∈ C.
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The action of C on D is called proper, or cofinite [AdC15], if for any X,Y ∈ D
we have D(X,Y Ui) = 0 for all but finitely many i, where (Ui)i are represen-
tatives of the isomorphism classes of simple objects in C. Note that if D is
indecomposable this can be relaxed to D(X,Y Ui) = 0 for all but finitely many
i, for some nonzero X,Y .
Finally, recall that we denote by EndC(D) the C∗-tensor category with ob-
jects the unitary C-module endofunctors of D and morphisms the uniformly
bounded natural transformations between such endofunctors. The purely alge-
braic counterpart of this category is also denoted by C∗

D.

Theorem 3.2. Let C1 and C2 be rigid C∗-tensor categories and D be a nonzero
C1-C2-module category. Then D is invertible if and only if the following condi-
tions are satisfied:

(a) D is semisimple as a C∗-category;

(b) the action of C2 on D is proper;

(c) the functor C1 → EndC2
(D) defined by the action of C1 on D is an equiv-

alence of C∗-tensor categories.

Furthermore, if these conditions are satisfied, then D is indecomposable as a
left C1-module category and as a right C2-module category.

Proof. Assume first that D is invertible. By passing to equivalent categories we
may assume that we have a rigid C∗-2-category C with the set {1, 2} of 0-cells
such that C11 = C1, C22 = C2 and D = C12. Condition (a) is satisfied as C is
rigid. Condition (b) is also satisfied, since if D(X,Y Ui) 6= 0 then Ui appears in
the decomposition of Ȳ X ∈ C2 into a direct sum of simple objects. It remains
to check (c).

Let us fix a nonzero X ∈ C12, and let F be a C2-module endofunctor on C12.
Putting Y = F (X), for any object Z ∈ C12 the isometry d(X)−1/2F (R̄X ⊗ ιZ)
induces a realization of F (Z) as a direct summand of F (XX̄Z) ∼= Y X̄Z. Thus,
F is a direct summand of Y X̄ ∈ C1 in EndC2

(C12). It follows that we just need
to show

C1(U,U
′) ∼= MorEndC2

(C12)(U,U
′) for all U, U ′ ∈ C1.

Thus, suppose that (ηZ : UZ → U ′Z)Z is a natural transformation of C2-module
functors. This means we have ηZV = ηZ ⊗ ιV for Z ∈ C12 and V ∈ C2. We
claim that η0 = (ι ⊗ trX)(ηX) ∈ C(U,U ′) satisfies ηZ = η0 ⊗ ιZ for Z ∈ C12.
Indeed, we have

(ι⊗ trX)(ηX)⊗ ιZ =
1

d(X)
(ιU ′ ⊗ R̄∗

X ⊗ ιZ)(ηX ⊗ ιX̄Z)(ιU ⊗ R̄X ⊗ ιZ)

but ηX ⊗ ιX̄Z = ηXX̄Z and the naturality of η implies the right hand side of
the above identity is equal to d(X)−1ηZ(ιU ⊗ R̄∗

XR̄X ⊗ ιZ) = ηZ .
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Finally, D is indecomposable as a right C2-module category, since for any
nonzero objects X,Y ∈ D, the object Y is a subobject of X(X̄Y ). Similarly,
D is indecomposable as a left C1-module category.

Conversely, suppose that a nonzero C1-C2-module category D satisfies condi-
tions (a–c). By Theorem A.1, there is an irreducible Q-system A in C2 such
that D is unitarily equivalent to A-ModC2

as a C2-module category. We can
therefore consider A-ModC2

as a C1-C2-module category equivalent to D. On
the other hand, see Section 2.2, there is a rigid C∗-2-category (C′

ij)i,j such that
C′
12 = A-ModC2

and C2 = C′
22. By the first part of the proof, the action of C′

11

on C′
12 defines an equivalence between C′

11 and EndC2
(C′

12). The condition (c)
implies then that C1 is unitarily monoidally equivalent to C′

11 in a compatible
way with respect to the C1-C2- and C′

11-C2-module category structures on C′
12.

Thus, D is an invertible bimodule category.

From the above proof we also see that if C is a rigid C∗-tensor category and D
is a nonzero semisimple indecomposable right C-module category such that the
action of C on D is proper, then EndC(D) is a rigid C∗-tensor category and the
EndC(D)-C-module category D is invertible, so that the 2-category structure
and rigidity automatically follow from the one-sided module structure.

We now turn to representation categories of compact quantum groups. Our
goal is to find an algebraic characterization of invertibility of bimodule cate-
gories. Throughout the rest of this section G1 and G2 denote compact quantum
groups, and A denotes a unital C∗-algebra. We also fix representatives of irre-
ducible classes (Ui)i and (Vj)j in RepG1 and RepG2 respectively. Following
our conventions in Section 1.4, their underlying Hilbert spaces are denoted
by Hi and Hj .

Definition 3.3. Let G1 and G2 be reduced compact quantum groups. A G1-
G2-Morita–Galois object is a unital C∗-algebra A together with commuting
free actions α1 : A→ C(G1)⊗A and α2 : A→ A⊗C(G2) such that there is a
G1-G2-equivariant isomorphism

AG1 ⊗A ∼= AG2 ⊗A

of AG1 ⊗AG2-A-modules.

A few comments are in order. The subspace

A = {a ∈ A | α1(a) ∈ C[G1]⊗A, α2(a) ∈ A⊗ C[G2]}

is the regular subalgebra of A with respect to the joint action of G1 and G2, and
the tensor product is the algebraic one (we will later see that these assumptions
force AG1 and AG2 to be finite dimensional). The left AG1 ⊗ AG2 -module
structure on AG1 ⊗A is given by

(a⊗ b)(x⊗ y) = ax⊗ by,
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while on AG2 ⊗A by
(a⊗ b)(x⊗ y) = bx⊗ ay.

Since the actions of G1 and G2 commute, AG1 is a right G2-C
∗-algebra, in

particular, a right C(G2)-comodule, so AG1 ⊗ A is a right C(G2)-comodule.
Similarly, AG2 ⊗A is a left C(G1)-comodule. We therefore require the isomor-
phism AG1 ⊗A ∼= AG2 ⊗A to respect this comodule structures.

Existence of an isomorphism AG1 ⊗A ∼= AG2 ⊗A as in the above definition can
be reformulated as a compatibility condition on Frobenius algebra structures
on AG1 and AG2 . Namely, we have the following result.

Proposition 3.4. Assume we are given commuting actions α1 : A→ C(G1)⊗
A and α2 : A→ A⊗C(G2). Then a G1-G2-equivariant isomorphism AG1⊗A ∼=
AG2 ⊗A of AG1 ⊗AG2-A-modules exists if and only if the following conditions
hold:

(a) the fixed point algebras AG1 and AG2 are finite dimensional;

(b) there exist a faithful G2-invariant state ψ1 on AG1 and a faithful G1-
invariant state ψ2 on AG2 such that if m∗

1(1) = xi⊗xi, where m1 : A
G1 ⊗

AG1 → AG1 is the product map and the adjoint is computed with respect
to ψ1 ⊗ψ1 and ψ1, and similarly m∗

2(1) = yj ⊗ yj for the product m2 and
the state ψ2 on AG2 , then we have

xiyjxi ⊗ yj = λ1 ⊗ 1 and yjxiyj ⊗ xi = λ1 ⊗ 1

for a nonzero scalar λ.

Furthermore, if these conditions are satisfied, then

(i) the map
S : AG1 ⊗A → AG2 ⊗A, a⊗ b 7→ yj ⊗ ayjb,

is a G1-G2-equivariant isomorphism of AG1 ⊗ AG2-A-modules, with the
inverse given by e⊗ f 7→ λ−1xi ⊗ exif ;

(ii) as the states ψ1 and ψ2 we can take the canonical invariant states, in
which case λ = dimq A

G1 = dimq A
G2 , where we consider AG1 as a G2-

module and AG2 as a G1-module;

(iii) the relative commutants (AG1)′ ∩ AG2 and (AG2)′ ∩ AG1 are trivial; in
particular, AG1 is a simple G2-algebra and AG2 is a simple G1-algebra.

Remark 3.5. The identities in (b) can be equivalently expressed as

xiyxi = λψ2(y)1, yjxyj = λψ1(x)1 (x ∈ AG1 , y ∈ AG2). (3.1)

Indeed, we may, and will now and in the proof below, assume that the vectors
xi form a basis. Then the vectors xi are characterized by ψ1(xix

k) = δik, see
Section 2, and similarly for the yj ’s. Then 1 ⊗ 1 = ψ2(y

j)1 ⊗ yj, so the first
identity in (b) is equivalent to xiyjxi = λψ2(y

j)1 for all j.
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Proof of Proposition 3.4. Assume we are given a G1-G2-equivariant isomor-
phism T : AG1⊗A → AG2⊗A ofAG1⊗AG2 -A-modules. By theG2-equivariance
it maps 1⊗1 into a vector zk⊗zk ∈ AG2 ⊗AG2 , and then T , being a morphism
of AG1-A-modules, must be given by

T (a⊗ b) = zk ⊗ azkb.

We may assume that the vectors zk are linearly independent. It follows then
that they form a basis in AG2 . In particular, AG2 is finite dimensional, and for
similar reasons AG1 is finite dimensional as well, which proves (a).
Using that T is a morphism of left AG2-modules, we also see that zk ⊗ zk must
be a central vector in the AG2-bimodule AG2 ⊗ AG2 . Generally speaking, if
erst are matrix units in AG2 , any central vector in AG2 ⊗ AG2 has the form
ξ =

∑

r,s,t e
r
stv ⊗ erts for a uniquely defined v ∈ AG2 . Moreover, the slices

(ι⊗ ω)(ξ) for ω ∈ (AG2)∗ span AG2 if and only if v is invertible.
Now, take any faithful G1-invariant state ψ2 on AG2 and write m∗

2(1) = yj ⊗yj
with respect to ψ2. By the above discussion, the map

S : AG1 ⊗A → AG2 ⊗A, a⊗ b 7→ yj ⊗ ayjb,

has the form S(ζ) = T (ζ)(v ⊗ 1) for some invertible element v ∈ AG2 . Hence
S is an isomorphism of AG1 ⊗ AG2-A-modules. It is easy to see that this
isomorphism is G1-G2-equivariant (note that the vector m∗

2(1) is G1-invariant,
as m2 is a G1-equivariant map and the state ψ2 is invariant).
Consider now the inverse map S−1. By the same considerations as above, if
we fix a faithful G2-invariant state ψ̃1 on AG1 and write m∗

1(1) = x̃i ⊗ x̃i with
respect to ψ̃1, then S

−1 has the form

S−1(e ⊗ f) = x̃iu⊗ ex̃if (e ∈ AG2 , f ∈ A)

for an invertible element u ∈ AG1 . Let ψ denote the linear functional ψ̃1(·u
−1)

on AG1 , and note that ψ(x̃ix̃
ku) = δik. Then we have

x̃iu⊗ yj x̃iyj = S−1(S(1⊗ 1)) = 1⊗ 1,

yj ⊗ x̃iuyj x̃i = S(S−1(1⊗ 1)) = 1⊗ 1.

As in Remark 3.5, this is equivalent to

x̃iuyx̃i = ψ2(y)1 and yjxyj = ψ(x)1 (x ∈ AG1 , y ∈ AG2). (3.2)

We may assume that the vectors yj form an orthonormal basis in AG2 . Then
yj = yj∗, and as ψ(x)1 =

∑

j y
jxyj∗, we conclude that ψ is a G2-invariant

positive linear functional. As the pairing defined by ψ is nondegenerate, this
functional is faithful. Put λ = ψ(1) and ψ1 = λ−1ψ. If we use ψ1 to define m∗

1,
we get m∗

1(1) = λx̃iu ⊗ x̃i. Together with (3.2) this shows that condition (b)
is satisfied. Note also that we have proved (i) along the way.
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Conversely, if (a) and (b) are satisfied, then we get the required structure
isomorphism for a G1-G2-Morita–Galois object, as described in (i).

Next, for (ii), from the above considerations we see that as the state ψ2 we
can take any faithful G1-invariant state. If we take the canonical invariant
state, then from yjyj = λ1 we get λ = dimq A

G2 . But then the identity
xixi = λ1 implies that dimq A

G1 ≤ λ = dimq A
G2 . Similarly, if we start with

the canonical invariant state on AG1 , we get dimq A
G1 ≥ dimq A

G2 . Therefore
dimq A

G1 = dimq A
G2 and if we take the canonical invariant state on one

algebra, then we have to take the canonical invariant state on the other algebra
as well.

Finally, for (iii), if y ∈ (AG1)′ ∩ AG2 , then

λy = xixiy = xiyxi = λψ2(y)1,

so y is scalar. In particular, there are no non-scalar G1-invariant elements in
the center of AG2 , so AG2 is a simple G1-algebra. Similarly, (AG2)′∩AG1 = C1
and AG1 is a simple G2-algebra.

Remark 3.6. Another consequence of (3.1) is that, if we define A-valued inner
products on AGi ⊗A by 〈b⊗ a, b′ ⊗ a′〉A = ψi(b

∗b′)a∗a′, then the map S of (i)
becomes a scalar multiple of a unitary. Indeed, for a, a′ ∈ A and b, b′ ∈ AG1 ,
we have

〈yj ⊗ byja, y
k ⊗ b′yka

′〉A = ψ2(y
j∗yk)a∗y∗j b

∗b′yka
′.

Since we can arrange yk = y∗k as in the above proof, the right hand side equals

ψ2(yjy
k)a∗yjb∗b′yka

′ = a∗yjb∗b′yja
′ = λψ1(b

∗b′)a∗a′ = λ〈b ⊗ a, b′ ⊗ a′〉A.

In particular, S and its inverse extend to isomorphisms of equivariant right
Hilbert A-modules. Conversely, starting from a G1-G2-C

∗-algebra A, if we
assume that the actions are free, AG1 and AG2 are finite dimensional, and
that there is an isomorphism of equivariant (AG1 ⊗ AG2)-A-correspondences
AG1 ⊗A→ AG2 ⊗A, then taking the regular parts, we can verify the Morita–
Galois conditions for A.

The following is our main result.

Theorem 3.7. Assume that we are given commuting actions α1 : A→ C(G1)⊗
A and α2 : A→ A⊗C(G2) of reduced compact quantum groups G1 and G2 on a
unital C∗-algebra A. Consider the corresponding category DA of finitely gener-
ated G1-G2-equivariant right Hilbert A-modules. Then the (RepG2)-(RepG1)-
module category DA is invertible if and only if A is a G1-G2-Morita–Galois
object.

By the Tannaka–Krein type correspondence for quantum group actions dis-
cussed in Section 1.2, we then get the following corollary.
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Corollary 3.8. For any reduced compact quantum groups G1 and G2,
there is a bijective correspondence between the equivalence classes of invert-
ible (RepG2)-(RepG1)-module categories and the G1-G2-equivariant Morita
equivalence classes of G1-G2-Morita–Galois objects. We also have a bijective
correspondence between the equivalence classes of pairs (D, X), consisting of
an invertible (RepG2)-(RepG1)-category D and a nonzero object X ∈ D, and
the isomorphism classes of G1-G2-Morita–Galois objects.

We divide the proof of the theorem into several parts.

3.2 From invertible bimodule categories to bi-Morita–Galois ob-

jects

Assume first that DA is invertible. Consider the corresponding rigid C∗-2-
category C with the set {1, 2} of 0-cells such that C1 = C11 is equivalent to
RepG1, C2 = C22 is equivalent to RepG2, and DA is equivalent to C21 as a
C2-C1-module category. In order to simplify the exposition we are not going to
distinguish between Ci and RepGi, although to be pedantic we should either
explicitly use our fixed unitary monoidal equivalences RepGi → Ci in all the
formulas below or work with bicategories instead of 2-categories, that is, assume
that C has nontrivial associativity morphisms.
Let X ∈ C21 be the object corresponding to A. From now on we will think of A
as the result of the construction of a G1-G2-C

∗-algebra from the pair (C21, X).
We will see that the required isomorphism AG1 ⊗A ∼= AG2 ⊗A follows from the
equality (XX̄)X = X(X̄X) in C21, while freeness of the actions follows from
the indecomposability of C21 as a one-sided module category.

We start by establishing the freeness. The regular subalgebra A ⊂ A is

⊕

i∈Irr(G1)
j∈Irr(G2)

H̄i ⊗ H̄j ⊗ C21(X,VjXUi).

Recall that C(G1) coacts on the left by (U c
i )

∗
21, while C(G2) coacts on the right

by V c
j .

By construction, we have

AG2 =
⊕

i∈Irr(G1)

H̄i ⊗ C21(X,XUi), AG1 =
⊕

j∈Irr(G2)

H̄j ⊗ C21(X,VjX). (3.3)

In other words, the fixed point algebras are the algebras corresponding to
the object X in the category C21 regarded as a one-sided module category
either over RepG1 or over RepG2. The joint fixed point subalgebra (AG1)G2

is isomorphic to C21(X) = C21(X,X), so G1 and G2 act jointly ergodically if
and only if X is simple.
Consider a unitary equivalence DA → C21 of bimodule categories provided by
the Tannaka–Krein correspondence for actions. Up to a natural isomorphism, it
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is described by the following properties, see [Nes14, Section 3]. For U ∈ RepG1

and V ∈ RepG2, we put

F (HU ⊗HV ⊗A) = V XU,

and take the morphism V F (A)U → F (HU ⊗HV ⊗A) required by the definition
of a bimodule functor to be the identity. To describe the action of F on
morphisms, consider a morphism T : X → VjXUi in C21. There is a unique

morphism T̃ : A→ Hi ⊗Hj ⊗A in DA mapping 1 ∈ A into

∑

α,β

ξα⊗ ζβ ⊗ ξ̄α⊗ ζ̄β ⊗T ∈ Hi⊗Hj ⊗ H̄i⊗ H̄j ⊗C21(X,VjXUi) ⊂ Hi⊗Hj ⊗A,

where (ξα)α and (ζβ)β are orthonormal bases in Hi and Hj respectively. Then

we require F (T̃ ) = T .

Lemma 3.9. The strict (RepG2)-module functor DA → DAG1 , Y 7→ Y G1 , and
strict (RepG1)-module functor DA → DAG2 , Y 7→ Y G2 , are equivalences of
categories.

Proof. We will only prove the first statement. Denote the functor DA → DAG1 ,
Y 7→ Y G1 , by E. As we already observed above, the G2-C

∗-algebra AG1

corresponds to the (RepG2)-module category C21 and object X . It follows
that similarly to the functor F : DA → C21 we have a (RepG2)-module functor
F̃ : DAG1 → C21, F̃ (HV ⊗ AG1) = V X , defining an equivalence of categories.
We obviously have EF̃ = F on the full subcategory of DA consisting of the
modules HV ⊗ A. Since X generates C21 as a (RepG2)-module category and
both F and F̃ are equivalences of categories, it follows that E is an equivalence
of categories as well.

Lemma 3.10. The actions of G1 and G2 on A are separately free.

Proof. Let us only prove freeness of the action of G2. By Proposition 1.4 it
suffices to show that Y G2 6= 0 for any nonzero G2-equivariant finitely generated
right Hilbert A-module Y . Furthermore, the proof of that proposition respects
the additional action of G1 on A. In other words, if the action of G2 is not free,
then the proof shows that there exists a nonzero Y ∈ DA such that Y G2 = 0.
But this contradicts the previous lemma.

Let us now study the fixed point algebra AG1 in more detail. Consider the
object XX̄ ∈ RepG2. It has the structure of a standard Q-system given by

m = d(X)1/2(ιX ⊗R∗
X ⊗ ιX̄), v = d(X)−1/2R̄X .

In other words, if we use the picture of right unitary C(G2)-comodules for
RepG2, we can view XX̄ as a right G2-C

∗-algebra with the scalar product
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defined by the canonical invariant state. It can be reconstructed from the left
(RepG2)-module category ModG2

-XX̄, so we have a canonical isomorphism

XX̄ ∼=
⊕

j∈Irr(G2)

H̄j ⊗MorModG2
-XX̄(XX̄, VjXX̄). (3.4)

On the other hand, the functor Y 7→ Y X̄ defines a unitary strict (RepG2)-
module equivalence between C21 and ModG2

-XX̄, which is an observation going
back to [Müg03, Proposition 4.5]. Therefore comparing (3.4) with (3.3) we get
an isomorphism θ : XX̄ → AG1 of G2-C

∗-algebras. If we as usual equip AG1

with the scalar product defined by the canonical invariant state, θ becomes a
unitary isomorphism of the standard Q-systems XX̄ and AG1 in RepG2.
The particular isomorphism θ that we have defined has the following important
property. As in the proof of Lemma 3.9, consider a (RepG2)-module functor
F̃ : DAG1 → C21 allowing us to reconstruct AG1 as in (3.3). Composing it
with the functor C21 → RepG2, Y 7→ Y X̄ , we get a (RepG2)-module functor
˜̃F : DAG1 → RepG2 such that ˜̃F (HV ⊗AG1) = V XX̄.

Lemma 3.11. For any V ∈ RepG2 and any morphism S : HV ⊗ AG1 → AG1

in DAG1 , the following diagram commutes:

V XX̄ XX̄

HV ⊗AG1 AG1

˜̃F (S)

ιV ⊗θ θ

S

Proof. This is an immediate consequence of the definitions, making the follow-
ing argument essentially tautological.
It is enough to consider V = Vj . Take a morphism T : X → VjX . Let

T̃ : AG1 → Hj ⊗ AG1 be the morphism in DAG1 mapping 1 ∈ AG1 into
∑

β ζβ ⊗ ζ̄β ⊗ T , where (ζβ)β is an orthonormal basis in Hj . Then by defi-

nition we have ˜̃F (T̃ ) = T ⊗ ιX̄ . In terms of decomposition (3.4) this means

that ˜̃F (T̃ ) maps the unit of XX̄ into
∑

β ζβ ⊗ ζ̄β ⊗ (T ⊗ ιX̄) ∈ Hj ⊗ XX̄.

Applying ιj ⊗ θ to the last element we get
∑

β ζβ ⊗ ζ̄β ⊗ T = T̃ (1). Therefore

T̃ θ = (ιj ⊗ θ) ˜̃F (T̃ ) : XX̄ → Hj ⊗AG1 .

Since any morphism S : Hj ⊗ AG1 → AG1 in DAG1 has the form T̃ ∗ for some
T : X → VjX , this proves the lemma.

Note that this lemma implies that θ extends to a natural isomorphism of the

(RepG2)-module functors ˜̃F and the forgetful functor DAG1 → RepG2.

Lemma 3.12. Consider the multiplication map m1 : A
G1 ⊗A→ A. Then

F (m1)(θ ⊗ ιX) = d(X)1/2(ιX ⊗R∗
X) : XX̄X → X.
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Proof. As in the proof of Lemma 3.9, consider the functor E : DA → DAG1 .
Since F̃E = F on the modules HV ⊗A, it suffices to show that

F̃ (m1)(θ ⊗ ιX) = d(X)1/2(ιX ⊗R∗
X),

where now m1 denotes the multiplication map on AG1 . Applying the functor
Y 7→ Y X̄ we have to check that

˜̃F (m1)(θ ⊗ ιXX̄) = d(X)1/2(ιX ⊗R∗
X ⊗ ιX̄).

By the previous lemma the left hand side equals θ∗m1(θ⊗ θ), which is exactly
the right hand side, since θ is an isomorphism of Q-systems.

This lemma characterizes the unitary isomorphism θ. Indeed, any other iso-
morphism has the form θu, where u is a unitary automorphism of XX̄. Then

(ιX ⊗R∗
X)(u⊗ ιX̄) = ιX ⊗R∗

X ,

which implies u = ι.
Similar arguments apply to AG2 and X̄X . The main difference is that we
have to use the picture of left unitary C(G1)-comodules for RepG1, and since
the tensor product of left C(G1)-comodules corresponds to the opposite tensor
product of representations of RepG1, we have to replace the product on AG2

with the opposite one in order to get a C∗-Frobenius algebra in RepG1. As
usual we equip AG2 with the scalar product defined by the canonical invariant
state, so (a, b) = ϕAG2 (b

∗a) (where b∗a denotes the original product). Then
(AG2)op becomes a standard Q-system in RepG1 and we get the following
result.

Lemma 3.13. Consider the standard Q-system (X̄X,m = d(X)1/2(ιX̄ ⊗ R̄∗
X ⊗

ιX), v = d(X)−1/2RX) in RepG1. Then there exists a unique unitary isomor-
phism θ′ : X̄X → (AG2)op of standard Q-systems such that for the product map
m2 : A

G2 ⊗A→ A we have

F (m2)(ιX ⊗ θ′) = d(X)1/2(R̄∗
X ⊗ ιX) : XX̄X → X.

We are now ready to establish the key property of the algebra A.

Lemma 3.14. There is a G1-G2-equivariant isomorphism AG1 ⊗A ∼= AG2 ⊗A
of (AG1 ⊗AG2)-A-modules.

Proof. Consider the modules X1 = AG1 ⊗ A and X2 = AG2 ⊗ A. They are
AG1 -(AG2)op-modules in the category DA. Using the isomorphisms θ and θ′

we can equivalently view X1 and X2 as XX̄-X̄X-modules in DA. Then the
bimodule functor F : DA → C21 allows us to introduce XX̄-X̄X-module struc-
tures on F (X1) and F (X2), hence also on (θ∗⊗ιX)F (X1) and (ιX ⊗θ′∗)F (X2).
Let us consider them in more detail.
We have F (X1) = AG1X . The left AG1-module structure on AG1X comes
from the multiplication on AG1 . Hence the left XX̄-module structure on (θ∗⊗

Documenta Mathematica 23 (2018) 2165–2216



Categorical Morita Equivalence 2195

ιX)F (X1) = XX̄X also comes from the multiplication on XX̄. On the other
hand, the right (AG2)op-structure on AG1X is given by

ιAG1 ⊗ F (m2) : A
G1XAG2 → AG1X.

Using Lemma 3.13 we conclude that the right X̄X-module structure on (θ∗ ⊗
ιX)F (X1) = XX̄X comes from the multiplication on X̄X . Similar arguments
apply to (ιX ⊗ θ′∗)F (X2).
We thus have the equalities

(θ∗ ⊗ ιX)F (X1) = XX̄X = (ιX ⊗ θ′∗)F (X2)

of XX̄-X̄X-modules. Hence the unique isomorphism π : X1 → X2 in DA such
that

F (π) = (ιX ⊗ θ′)(θ∗ ⊗ ιX)

must be an isomorphism of XX̄-X̄X-modules, or equivalently, of AG1-(AG2)op-
modules.

This finishes the proof of Theorem 3.7 in one direction.

Remark 3.15. In the above proof we used a functor F : DA → C21. We could
have equally well used the functor going in the opposite direction defined
in [dCY13a]. Namely, we have a functor mapping Y ∈ C21 into a completion of

EY =
⊕

i,j

H̄i ⊗ H̄j ⊗ C21(X,VjY Ui).

This functor has the obvious action on morphisms. However, its bimodule
functor structure is a bit more difficult to describe. One minor advantage
of using this functor is that we would be able to compute an isomorphism
AG1 ⊗A ∼= AG2 ⊗A rather than merely prove its existence.

Before we turn to the proof of the theorem in the opposite direction, let us
finish this section with the following observation.

Proposition 3.16. The canonical invariant state ϕAG1 on AG1 is given by
the composition of the G2-invariant conditional expectation A

G1 → (AG1)G2 =
C21(X) with the normalized categorical trace trX on C21(X). Similarly for the
canonical invariant state on AG2 . In particular, there exists a unique G1-G2-
invariant state ϕ on A such that its restrictions to AG1 and AG2 coincide with
the canonical invariant states ϕAG1 and ϕAG2 , respectively.

We call this ϕ the canonical invariant state on A.

Proof. Take S ∈ (AG1)G2 = C21(X). We have to show that ϕAG1 (S) = trX(S).
By Remark 2.13 and definition of the product in AG1 , we have

ϕAG1 (S) = (dimq A
G2)−1

∑

j

(dimq Vj)(TrSj),
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where Sj is the operator on the vector space C21(X,VjX) given by T 7→ (ι⊗S)T .
By the Frobenius reciprocity we can identify C21(X,VjX) with C2(V̄j , XX̄). In
this picture the operator Sj becomes T 7→ (S ⊗ ι)T . But now XX̄ is an object
in RepG2, and since it decomposes into a direct sum of copies of V̄j , we get

∑

j

(dimq Vj)(TrSj) = TrXX̄(S ⊗ ιX̄) = TrX(S)d(X) = trX(S)d(X)2.

This implies that

ϕAG1 (S) = trX(S) and dimq A
G1 = d(X)2.

The statement for ϕAG2 is proved similarly. The last statement of the propo-
sition is now obvious: the unique G1-G2-invariant state extending ϕAG1 and
ϕAG2 is given by the composition of the unique G1-G2-invariant conditional
expectation A→ C21(X) with trX .

3.3 From bi-Morita–Galois objects to invertible bimodule cate-

gories

Conversely, assume that A is a G1-G2-Morita–Galois object. As above, we can
consider AG1 as a standard Q-system in RepG2. Then we have an invertible
(RepG2)-(BimodG2

-AG1)-module categoryModG2
-AG1 . We will show that the

C∗-tensor category BimodG2
-AG1 is equivalent to RepG1 and the bimodule

category ModG2
-AG1 is equivalent to DA in a coherent way.

Lemma 3.17. Let Y be a G1-G2-equivariant A
G1-A-correspondence, and Y ′

be an equivariant AG2-A-correspondence. We then have a G1-G2-equivariant
unitary isomorphism

Y G1 ⊗ Y ′ ∼= Y ′G2 ⊗ Y

of AG1 ⊗AG2-A-correspondences.

Note that in this formulation the scalar product on Y G1 is defined using the
AG1 -valued inner product and the canonical invariant state on AG1 , and simi-
larly for Y ′G2 .

Proof. Put λ = dimq A
G1 = dimq A

G2 , and let xi, x
i, yj, y

j be as in Proposi-
tion 3.4 (b), where we take the canonical invariant states. Consider the map

S0 : Y
G1 ⊗ Y ′G2 ⊗A → Y ′G2 ⊗ Y, ξ ⊗ η ⊗ a 7→ λ−1/2ηyj ⊗ ξyja.

Then by the AG2-centrality of yj ⊗ yj , this descends to a map from Y G1 ⊗
Y ′G2 ⊗AG2 A. Moreover, as the action of G2 on A is free, Proposition 1.3
implies Y ′G2 ⊗AG2 A ∼= Y ′. Thus, S0 induces a map

S : Y G1 ⊗ Y ′ → Y ′G2 ⊗ Y, ξ ⊗ ηa 7→ λ−1/2ηyj ⊗ ξyja.
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Similarly, T (η⊗ ξa) = λ−1/2ξxi ⊗ ηxia is a well-defined map from Y ′G2 ⊗Y to
Y G1 ⊗ Y ′.
By the above formulas, S and T are AG1 ⊗ AG2-A-module morphisms. They
are also equivariant with respect to the actions of G1 and G2, cf. the proof of
Proposition 3.4. It remains to show that they are inverse to each other. When
ξ ∈ Y G1 , η ∈ Y ′G2 , and a ∈ A, we have

ST (η ⊗ ξa) = λ−1ηyj ⊗ ξxiyjxia.

Using (3.1), the right hand side is equal to ϕAG2 (yj)ηy
j ⊗ ξa = η ⊗ ξa, which

shows ST = ι. A similar computation shows TS = ι.
Finally, let us show that S is unitary with respect to the A-valued inner prod-
ucts. We have

〈S(ξ′ ⊗ η′a′), S(ξ ⊗ ηa)〉A = λ−1ϕAG2 (〈η
′yk, ηyj〉AG2 )〈ξ

′yka
′, ξyja〉A.

Using

ϕAG2 (〈η
′yk, ηyj〉AG2 )yj = ϕAG2 (y

k∗〈η′, η〉AG2 y
j)yj = yk∗〈η′, η〉AG2 ,

we see that the above expression equals λ−1〈ξ′yka
′, ξyk∗〈η′, η〉AG2a〉A. Using

y∗kxy
k∗ = λϕAG1 (x) for x ∈ AG1 and that the AG1-valued inner product on Y G1

is the restriction of the A-valued one on Y , we arrive at ϕAG1 (〈ξ
′, ξ〉AG1 )a

′∗a,
which is the inner product of ξ′ ⊗ η′a′ and ξ ⊗ ηa. This shows the unitarity of
S.

Corollary 3.18. Any module X ∈ DA embeds into HU ⊗ A for some U ∈
RepG1, as well as into HV ⊗A for some V ∈ RepG2.

Proof. Any X ∈ DA embeds into HW ⊗HV ⊗A for someW ∈ RepG1 and V ∈
RepG2. Moreover, HV embeds into AG1 ⊗HV , and the above lemma implies
AG1 ⊗HV ⊗A ∼= (HV ⊗A)G2 ⊗A. Thus, X embeds into HW ⊗(HV ⊗A)G2 ⊗A,
which proves the first statement. The second is proved similarly.

Consider now the spectral functor

F : RepG1 → Bimod -AG1 , U 7→ (HU ⊗A)G1 ,

defined by the action of G1 on A. Since the action is free, it is a unitary tensor
functor, with the tensor structure given by

F2 : (HU⊗A)
G1⊗AG1 (HV ⊗A)

G1 → (HUV ⊗A)G1 , (ξ⊗a)⊗(ζ⊗b) 7→ (ξ⊗ζ)⊗ab.

Clearly we can view F as a unitary tensor functor RepG1 → BimodG2
-AG1 .

Proposition 3.19. The functor F : RepG1 → BimodG2
-AG1 is an equiva-

lence of categories.
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Proof. By Lemma 3.17, for any V ∈ RepG2, we have a G2-equivariant isomor-
phism

AG1 ⊗HV ⊗AG1 ∼= ((HV ⊗A)G2 ⊗A)G1 = F ((HV ⊗A)G2)

of AG1 -bimodules. This shows that the functor F is dominant, that is, any
object of BimodG2

-AG1 is a subobject of the image of an object of RepG1.
Since F is also faithful, it remains to show that F is full. It suffices to check
that the map

F : Mor(1, U) → MorBimodG2
-AG1 (A

G1 , (HU ⊗A)G1) (3.5)

is surjective for any U ∈ RepG1. The morphism space on the right can be
identified with the space of G2-invariant A

G1 -central vectors in (HU ⊗ A)G1 .
Since

((HU ⊗A)G1)G2 = (HU ⊗AG2)G1 ,

this space coincides with

(HU ⊗ ((AG1)′ ∩ AG2))G1 = (HU ⊗ C1)G1 = HG1

U ⊗ C1,

where we used that (AG1)′∩AG2 = C1 by Proposition 3.4(iii). This shows that
the map (3.5) is indeed surjective.

Consequently, we can view ModG2
-AG1 as an invertible (RepG2)-(RepG1)-

module category. Namely, for X ∈ ModG2
-AG1 and U ∈ RepG1, we have

XU = X ⊗AG1 (HU ⊗A)G1 .

In order to complete the proof of Theorem 3.7 it remains to establish the
following.

Lemma 3.20. The (RepG2)-(RepG1)-module categories DA and ModG2
-AG1

are equivalent.

Proof. By Proposition 1.3 we have an equivalence of C∗-categories E : DA →
ModG2

-AG1 given by E(X) = XG1 . We want to enrich it to an equivalence of
module categories. For this we have to define natural unitary isomorphisms

θV,X,U : V (E(X)U) → E(V (XU))

in ModG2
-AG1 , which is given by linear maps from HV ⊗XG1⊗AG1 (HU ⊗A)G1

to HV ⊗ (HU ⊗X)G1 for U ∈ RepG1, X ∈ DA, V ∈ RepG2. We define them
by

θV,X,U (ξ ⊗ x⊗ (ζ ⊗ a)) = ξ ⊗ (ζ ⊗ xa).

It is clear that this is a G2-equivariant morphism of right AG1-modules. It
is also easy to check that θV,X,U is isometric. In order to check that such
morphisms are unitary it suffices to consider modules of the form X = HW ⊗A
for W ∈ RepG2, since any object in DA is a subobject of such a module by
Corollary 3.18. But for such modules the statement is obvious. It is then
straightforward to check that (E, θ) is an equivalence of (RepG2)-(RepG1)-
modules categories.
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3.4 Fiber functors on categories of bimodules

In the previous sections we have developed an analogue of the bi-Hopf–Galois
theory for categorically Morita equivalent compact quantum groups. We now
turn to an analogue of the correspondence between fiber functors and Hopf–
Galois objects.

Definition 3.21. For a compact quantum group G and a finite dimensional
simple right G-C∗-algebra B, a G-Morita–Galois object for B is a unital C∗-
algebra A together a free action α : A → A ⊗ C(G), and a G-equivariant em-
bedding B →֒ A such that there is a G-equivariant isomorphism

AG ⊗A ∼= B ⊗A

of AG ⊗B-A-modules that maps 1⊗ 1 ∈ AG ⊗A into an element of B ⊗B ⊂
B ⊗A.

Similarly to Proposition 3.4, existence of an isomorphism as in the above defi-
nition can be reformulated as follows.

Lemma 3.22. Assume we are given a right action α : A → A ⊗ C(G) of a
compact quantum group G on a unital C∗-algebra A and a finite dimensional
invariant unital C∗-subalgebra B ⊂ A. Then a G-equivariant isomorphism
AG ⊗ A ∼= B ⊗ A of AG ⊗ B-A-modules, mapping 1 ⊗ 1 into an element of
B ⊗B, exists if and only if the following conditions hold:

(a) the fixed point algebra AG is finite dimensional;

(b) there exist a faithful G-invariant state ψB on B and a faithful state ψAG

on AG such that if m∗
B(1) = xi ⊗ xi with respect to ψB and m∗

AG(1) =
yj ⊗ yj with respect to ψAG , then

xiyjxi ⊗ yj = λ1 ⊗ 1 and yjxiyj ⊗ xi = λ1 ⊗ 1

for a nonzero scalar λ.

Furthermore, if these conditions are satisfied, then

(i) the map AG ⊗ A → B ⊗ A, a ⊗ c 7→ xi ⊗ axic, is a G-equivariant
isomorphism of AG ⊗ B-A-modules, with the inverse given by e ⊗ f 7→
λ−1yj ⊗ eyjf ;

(ii) as the state ψB we can take the canonical G-invariant state ϕB on B, in
which case λ = dimq B;

(iii) the relative commutants (AG)′ ∩B and B′ ∩AG are trivial; in particular,
B is a simple G-C∗-algebra.

Let us also note that we have the following analogue of Lemma 3.17, with
identical proof.
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Lemma 3.23. Let Y be an object of BimodG -B and Y ′ be a G-equivariant
AG-A-correspondence. Then we have a G-equivariant isomorphism

Y ⊗ Y ′ ∼= Y ′G ⊗ (Y ⊗B A)

of AG ⊗ B-A-correspondences. In particular, for any V ∈ RepG, we have a
G-equivariant isomorphism

B ⊗HV ⊗A ∼= (HV ⊗ A)G ⊗A

of B ⊗AG-A-correspondences.

We then have the following result.

Theorem 3.24. For any reduced compact quantum group G and any finite
dimensional simple right G-C∗-algebra B, there is a one-to-one correspondence
between the isomorphism classes of G-Morita–Galois objects for B and the
isomorphism classes of unitary fiber functors BimodG -B → Hilbf .

Proof. Assume we are given a G-Morita–Galois object A for B as in Defini-
tion 3.21. We define a functor F : BimodG -B → Hilbf by

F (X) = (the space of G-invariant B-central vectors in X ⊗B A).

We will see later that the space F (X) is finite dimensional. The Hilbert space
structure is defined as follows. The space X ⊗B A is a right Hilbert A-module.
If ξ, ζ ∈ F (X), then 〈ξ, ζ〉A ∈ B′ ∩AG = C1, so we can define a scalar product
by (ζ, ξ)1 = 〈ξ, ζ〉A.
Next, we define a tensor structure on F by

F2 : F (X)⊗ F (Y ) → F (X ⊗B Y ), F2((ξ ⊗ a)⊗ (ζ ⊗ c)) = (ξ ⊗ ζ)⊗ ca.

In order to check that F2 is unitary it suffices to consider bimodules of the form
B ⊗HV ⊗ B for V ∈ RepG, since any X ∈ BimodG -B embeds isometrically
into B ⊗ X ⊗ B. By Lemma 3.23 we have a G-equivariant isomorphism of
B-A-modules

B ⊗HV ⊗A ∼= (HV ⊗A)G ⊗A, (3.6)

so we can define a linear isomorphism

TV : (HV ⊗A)G → F (B ⊗HV ⊗B) ⊂ B ⊗HV ⊗A,

ξ ⊗ a 7→ (dimq B)−1/2xi ⊗ ξ ⊗ axi,
(3.7)

which in particular shows that F (X) is indeed finite dimensional for any X ∈
BimodG -B. Note that the A-valued inner product on B ⊗HV ⊗A is given by

〈b1 ⊗ ξ1 ⊗ a1, b2 ⊗ ξ2 ⊗ a2〉A = ϕB(b
∗
1b2)(ξ2, ξ1)a

∗
1a2.

Therefore if we define a scalar product on (HV ⊗A)G in the standard way,

(ξ1 ⊗ a1, ξ2 ⊗ a2) = ϕAG(〈ξ2 ⊗ a2, ξ1 ⊗ a1〉A) = (ξ1, ξ2)ϕAG(a∗2a1),
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then TV becomes unitary, since

ϕB(x
i∗xj)x∗i axj = (dimq B)ϕAG(a)1 for all a ∈ AG. (3.8)

Thus, in order to show that the maps F2 are unitary it suffices to check that,
for all U and V ,

T−1
HU⊗B⊗HV

F2(TU ⊗ TV ) : (HU ⊗A)G ⊗ (HV ⊗A)G → (HU ⊗B ⊗HV ⊗A)G,

(ξ ⊗ a)⊗ (ζ ⊗ c) 7→ (dimq B)−1/2ξ ⊗ xi ⊗ ζ ⊗ cxia,

is unitary. It is clear from (3.8) that this map is an isometry, so to prove that it
is a unitary isomorphism it is enough to compare the dimensions of both sides.
Using (3.6) again, we get isomorphisms

(HU ⊗B ⊗HV ⊗A)G ∼= (HU ⊗ (HV ⊗A)G ⊗A)G ∼= (HU ⊗A)G ⊗ (HV ⊗A)G,

which completes the proof of unitarity of F2. We have thus proved that (F, F2)
is a unitary tensor functor.

Let us show next that the spectral functor (RepG)⊗op → Bimod -AG defined
by the action of G on A can be reconstructed from F . Consider the dual
C∗-Frobenius algebra B ⊗B ∈ BimodG -B with product

(dimq B)1/2ι⊗ ϕB ⊗ ι : B ⊗B ⊗B = (B ⊗B)⊗B (B ⊗B) → B ⊗B

and unit (dimq B)−1/2m∗
B : B → B⊗B. By applying F we get a C∗-Frobenius

object in Hilbf , that is, by Lemma 2.2, a Frobenius C∗-algebra. It is easy to
see that the unitary

T1 : A
G → F (B ⊗B) ⊂ B ⊗A, a 7→ (dimq B)−1/2xi ⊗ axi,

is an isomorphism of ((AG)op, ϕAG) with this Frobenius C∗-algebra. Similarly,
anyB-bimodule B⊗HU⊗B is a (B⊗B)-bimodule in BimodG -B, so F (B⊗HU⊗
B) becomes an F (B ⊗ B)-bimodule, and using the isomorphisms TU : (HU ⊗
A)G → F (B ⊗ HU ⊗ B) and T1 : (A

G)op → F (B ⊗ B) we recover the AG-
bimodule structure on (HU ⊗ A)G. Finally, one can also easily check that the
tensor structure of the spectral functor can be recovered from that F2 and the
maps F (ι⊗ ι⊗ϕB ⊗ ι⊗ ι) : F (B⊗HV ⊗B⊗HU ⊗B) → F (B⊗HV ⊗HU ⊗B).

Assume now that we have another G-Morita–Galois object Ã for B defining
an isomorphic fiber functor F̃ . Let η : F → F̃ be such a unitary monoidal
natural isomorphism. It follows from the above discussion that we then get
an isomorphism AG ∼= ÃG intertwining the spectral functors (RepG)⊗op →
Bimod -AG and (RepG)⊗op → Bimod -ÃG. Hence we get a G-equivariant
isomorphism θ : A → Ã. We claim that θ is the identity map on B, so that θ
is an isomorphism of Morita–Galois objects for B.
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In view of the way we obtained an isomorphism of the spectral functors, we
have commutative diagrams

(HU ⊗A)G (HU ⊗ Ã)G

F (B ⊗HU ⊗B) F̃ (B ⊗HU ⊗B),

ι⊗θ

ηB⊗HU⊗B

where the vertical arrows are the maps T defined by (3.7). In other words, for
any ξ ⊗ a ∈ (HU ⊗A)G we have

ηB⊗HU⊗B(x
i ⊗ ξ ⊗ axi) = xi ⊗ ξ ⊗ θ(a)xi.

Using that ηF2 = F̃2(η ⊗ η) we then get that for any ζ ⊗ c ∈ (HV ⊗ A)G we
have

xi ⊗ ξ ⊗ xj ⊗ ζ ⊗ θ(c)xjθ(a)xi = xi ⊗ ξ ⊗ xj ⊗ ζ ⊗ θ(cxja)xi

in B ⊗HU ⊗B ⊗HV ⊗ Ã. In the simplest case U = V = 1 this gives

xi ⊗ xj ⊗ xjxi = xi ⊗ xj ⊗ θ(xj)xi,

and applying ϕB to the first leg we obtain xj ⊗ xj = xj ⊗ θ(xj). Hence
θ(xj) = xj , so θ is the identity map on B.

It is also clear that isomorphic Morita–Galois objects define isomorphic fiber
functors. It remains to show that any unitary fiber functor is defined by a
Morita–Galois object. Assume we are given such a functor

E : BimodG -B → Hilbf .

By Woronowicz’s Tannaka–Krein duality it defines a compact quantum group
G1. Then ModG-B becomes an invertible (RepG)-(RepG1)-module category
with generator B and we can consider the corresponding G1-G-Morita–Galois
object A.
We claim that the canonical fiber functor RepG1 → Hilbf is isomorphic to the
composition of the spectral functor EA : RepG1 → BimodG -B for G1 y A,
with the functor FA : BimodG -B → Hilbf corresponding to A as defined at
the beginning of the proof. We thus have to define a natural isomorphism

HU → F ((HU ⊗A)G1) ⊂ (HU ⊗A)G1 ⊗B A.

As (HU ⊗ A)G1 ⊗B A ∼= HU ⊗ A by Proposition 1.3, it is straightforward to
check that HU ∋ ξ 7→ ξ ⊗ 1 ∈ HU ⊗A is the required isomorphism.
In other words, we have proved that the spectral functor associated with the
action of G1 on A gives an autoequivalence EA of RepG1 = BimodG -B such
that FAEA

∼= E. Now, in order to complete the proof of the theorem it would
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be enough to show that EA is isomorphic to the identity functor. It is indeed
possible to do so, but let us instead finish the proof by giving a more formal
argument, as follows.
Suppose that Ẽ : BimodG -B → Hilbf is a unitary fiber functor, and let G̃1

be the corresponding compact quantum group. Consider the bi-Hopf–Galois
object Ã corresponding to the pair of functors Ẽ and E. In other words, Ã
is the Morita–Galois object defined by the category RepG1, considered as a
(RepG1)-(Rep G̃1)-module category, and by the object 1 ∈ RepG1. Then by
Proposition 4.4 below, the cotensor product ÃlG1

A is the regular subalgebra

of a G̃1-G-Morita–Galois object C, and CG̃1 is canonically isomorphic to AG1 =
B.
By definition we have Rep G̃1 = BimodG -B. Under this identification, the
spectral functor associated with G̃1 y Ã, which corresponds to the monoidal
equivalence Rep G̃1 → RepG1, is just the identity functor on BimodG -B. Sim-
ilarly, the spectral functor associated with G̃1 y C can be regarded as an
autoequivalence EC of BimodG -B, which is naturally unitarily monoidally iso-
morphic to EA by associativity of the cotensor product operation. We thus get
FCEA

∼= FCEC , but the latter is isomorphic to Ẽ by the same observation as
for A and E above. In particular, if we started with Ẽ = EEA, we would get
FC

∼= E.

4 Categorical Morita equivalence

4.1 Weak monoidal Morita equivalence and tensor product of

bimodule categories

Recall that two rigid C∗-tensor categories C1 and C2 are called unitarily weakly
monoidally Morita equivalent [Müg03] if there exists a rigid C∗-2-category C
with the set {1, 2} of 0-cells such that C11 and C22 are unitarily monoidally
equivalent to C1 and C2 respectively, and C12 6= 0, or in other words, if there
exists an invertible C1-C2-bimodule category. Using Frobenius algebras it is
shown in [Müg03] that this is indeed an equivalence relation. In the fusion
category case a more transparent proof is obtained using relative tensor product
of bimodule categories. We now want to make sense of this in our infinite C∗-
setting.
In fact, we will show a bit more. By passing to equivalent categories we may
assume that C11 = C1 and C22 = C2. Assume also that C2 is unitarily weakly
monoidally Morita equivalent to a third rigid C∗-tensor category C3, and let
(Cij)i,j=2,3 be the corresponding rigid C∗-2-category. Let us show then that
the two 2-categories (Cij)

2
i,j=1 and (Cij)

3
i,j=2 can be ‘combined’ into a C∗-2-

category with 0-cells {1, 2, 3}. We thus need to define C13, C31 as bimodule
categories over C1 and C3, and define the horizontal compositions C13×C31 → C1,
C13 × C32 → C12, etc. The idea is simple: using the duality morphisms we can
express everything in terms of the categories that we already have.
Thus, we define C13 as the idempotent completion of the category with objects
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XY for X ∈ C12 and Y ∈ C23, with respect to the morphism sets

C13(XY,X
′Y ′) = C2(X̄

′X,Y ′Ȳ ).

In the following exposition, given a morphism S : XY → X ′Y ′ in C13, let us de-
note by S0 its representative in C2(X̄

′X,Y ′Ȳ ). The composition of morphisms
in C13 is then defined by

(S ◦ T )0 = (ι⊗R∗
Y ′ ⊗ ι)(S0 ⊗ T0)(ι⊗ R̄X ⊗ ι)

for T ∈ C13(XY,X
′Y ′) and S ∈ C13(X

′Y ′, X ′′Y ′′), so that (R∗
X ⊗ ιY Ȳ )(ιX̄X ⊗

R̄Y ) represents the identity morphism of XY . Moreover, (X,Y ) 7→ XY is a
bifunctor: for S ∈ C12(X,X

′) and T ∈ C23(Y, Y
′), the morphism S⊗T : XY →

X ′Y ′ is represented by (T0 ⊗ ι)R̄Y R
∗
X′(ι⊗ S0).

The left C1-module category structure is defined by U(XY ) = (UX)Y at the
level of objects, and by

(S ⊗ T )0 = T0((R
∗
U ′ (ι⊗ S))⊗ ι)

for S ∈ C1(U,U
′) and T ∈ C13(XY,X

′Y ′), at the level of morphisms. The
right C3-module category structure on C13 is defined in a similar way. The C3-
C1-module category C31 is also defined in an analogous way as the idempotent
completion of the category of objects ZW for Z ∈ C32 and W ∈ C21, with
morphism sets

C31(ZW,Z
′W ′) = C2(WW̄ ′, Z̄Z ′).

The horizontal composition C13 × C31 → C1 is given by (XY )(ZW ) =
X(Y Z)W at the level of objects, and at the level of morphisms S ⊗ T ∈
C1(XY ZW,X

′Y ′Z ′W ′), for S ∈ C13(XY,X
′Y ′) and T ∈ C31(WZ,W ′Z ′), is

given by

((((ι ⊗R∗
Y )(ιX′ ⊗ S0 ⊗ ι)) ⊗ ((R̄∗

Z ⊗ ι)(ι ⊗ T0 ⊗ ιW ′ )))(R̄X′ ⊗ ι⊗RW ′).

The horizontal composition C31 × C13 → C3 is defined in a similar way. Next
let us describe C13×C32 → C12. At the level of objects, it is given by (XY )Z =
X(Y Z) for X ∈ C12, Y ∈ C23, and Z ∈ C32. At the level of morphisms,
S⊗T ∈ C12(XY Z,X

′Y ′Z ′) for S ∈ C13(XY,X
′Y ′) and T ∈ C32(Z,Z

′) is given
by

(ιX′Y ′Z′ ⊗R∗
Y Z)(ιX′Y ′ ⊗ T ⊗ ιZ̄Ȳ Y Z)(ιX′Y ′ ⊗ R̄Z ⊗ ιȲ Y Z)

(ιX′ ⊗ S0 ⊗ ιY Z)(R̄X′ ⊗ ιXY Z).

The remaining horizontal compositions are defined similarly.

Lemma 4.1. The category C13 is a C∗-category with the norm ‖S‖ =
‖S ⊗ ιȲ ‖C12(XY Ȳ ,X′Y ′Ȳ ) and the involution (S∗)0 = (RX̄′X ⊗ ι)(ι⊗S∗

0 ⊗ ι)(ι⊗

R̄Y ′Ȳ ) ∈ C2(X̄X
′, Y Ȳ ′) for S ∈ C13(XY,X

′Y ′).

Documenta Mathematica 23 (2018) 2165–2216



Categorical Morita Equivalence 2205

Proof. Take any nonzero object Z ∈ C23. It is easy to check that we can define
a faithful ∗-preserving functor FZ : C13 → C12 by letting FZ(XY ) = (XY )Z̄ on
objects and FZ(S) = S ⊗ ιZ̄ on morphisms. It follows that the ∗-operation in
the formulation of the proposition is indeed an involution and that the C∗-norm
on morphisms in C12 defines a C∗-norm on morphisms in C13. The latter norm
is independent of the choice of Z, since any other object Z ′ ∈ C23 embeds into
Z(Z̄Z ′).

In a similar way we check that C31 is a C∗-category. A straightforward verifi-
cation shows then that (Cij)

3
i,j=1 is a rigid C∗-2-category.

We denote the invertible C1-C3-module category C13 by C12 ⊠C2
C23. Note that

using representatives (Vj)j of the isomorphism classes of simple objects in C2,
we can write

C13(XY,X
′Y ′) =

⊕

j

C2(X̄
′X,Vj)⊗ C2(Vj , Y

′Ȳ )

∼=
⊕

j

C12(X,X
′Vj)⊗ C23(Y, V̄jY

′). (4.1)

Remark 4.2. Consider the Deligne tensor product C12 ⊠ C23, which is the cat-
egory with objects X ⊠ Y and morphisms

MorC12⊠C23
(X ⊠ Y,X ′

⊠ Y ′) = C12(X,X
′)⊗ C23(Y, Y

′).

The functor T (X ⊠ Y ) =
⊕

j XVj ⊠ V̄jY is an endofunctor of the ind-category
of C12 ⊠ C23. Decomposition of the tensor products VjVj′ into simple objects
induces the structure of a monad on T , that is, a natural transformation T 2 →
T (together with Id → T ). Formula (4.1) shows that the morphism sets in C13
are given by

C13(XY,X
′Y ′) ∼= MorC12⊠C23

(X ⊠ Y, T (X ′
⊠ Y ′))

for X,X ′ ∈ C12 and Y, Y ′ ∈ C23. The right hand side of the above can be
regarded as the set of T -module morphisms between the free T -modules T (X⊠

Y ) and T (X ′
⊠Y ′). Thus, C13 can be interpreted as the category of T -modules

in C12 ⊠ C23, and XY is represented by T (X ⊠ Y ).

Remark 4.3. By [Müg03, Proposition 4.5], or by Theorem 3.2, we may assume
that C12 = ModC1

-Q and C2 = BimodC1
-Q for a standard Q-system (Q,m, v)

in C1, and C23 = ModC2
-Q′ and C3 = BimodC2

-Q′ for a standard Q-system
(Q′,m′, v′) in C2. Then, denoting by PQ′,Q′ : Q′⊗Q′ → Q′⊗QQ

′ the structure
morphism of the tensor product over Q, the morphisms m̃ = m′PQ′,Q′ and
ṽ = v′v define the structure of a standard Q-system on Q′ as an object in
C1. We claim that C13 is equivalent to ModC1

-Q′ as a C1-C3-module category
in such a way that XY corresponds to X ⊗Q Y for X ∈ ModC1

-Q and Y ∈
ModBimod -Q-Q

′ (note that the category BimodC1
-Q′ can be regarded as C3 =
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BimodBimod -Q -Q′, since any Q′-module is also a Q-module by the inclusion
v′ : Q→ Q′).
Indeed, X ⊗Q Y inherits the structure of a right Q′-module from Y , and by
the Frobenius reciprocity we have

MorModC1
-Q′(X ⊗Q Y,X ′ ⊗Q Y ′) ∼= MorBimod -Q(X̄

′ ⊗X,Y ′ ⊗Q′ Ȳ ).

This shows that the subcategory of ModC1
-Q′ generated by the objects of the

form X ⊗Q Y is equivalent to C13. But this is the whole category ModC1
-Q′,

since any right Q′-module X in C1 is a submodule of X ⊗Q Q′.

4.2 Cotensor product of bi-Morita–Galois objects

At the level of bi-Morita–Galois objects relative tensor product of bimodule
categories corresponds to cotensor product. In the Hopf algebra setting this
result has been already obtained in [Mom12], so we will only give a sketch of
an alternative argument in our C∗-setting. Note that this result does not need
a characterization of algebras arising from invertible bimodule categories.

Proposition 4.4. Let G1, G2 and G3 be compact quantum groups, A be a G1-
G2-Morita–Galois object and B be a G2-G3-Morita–Galois object. Consider
the bimodule categories DA and DB, and let X ∈ DA and Y ∈ DB be the
generators corresponding to A and B, respectively. Then the G1-G3-Morita–
Galois object corresponding to the invertible bimodule category DB ⊠RepG2

DA

and its generator Y X is the completion of A lG2
B.

Proof. We write Cn for RepGn (n = 1, 2, 3), C32 for DB and C21 for DA. Choose
representatives (Ui)i, (Vj)j and (Wk)k of the isomorphism classes of irreducible
representations of G1, G2, and G3 respectively. The regular subalgebra of the
G1-G3-C

∗-algebra corresponding to Y X ∈ C31 = DB ⊠RepG2
DA is given by

⊕

i∈Irr(G1)
k∈Irr(G3)

H̄i ⊗ C31(Y X,WkY XUi)⊗ H̄k.

Similarly to (4.1), we have

C31(Y X,WkY XUi) ∼= C2(XŪkX̄, Ȳ WkY )

∼=
⊕

j∈Irr(G2)

C2(XŪiX̄, Vj)⊗ C2(Vj , Ȳ WkY )

∼=
⊕

j∈Irr(G2)

C21(X,VjXUi)⊗ C32(Y,WkY V̄j).

From this we see that the regular subalgebra is isomorphic to AlG2
B as a left

C[G1]-comodule and a right C[G3]-comodule. It is also not difficult to compare
the products and involutions on the two algebras.
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4.3 Categorical Morita equivalence and Brauer–Picard group

Similarly to [Nai07] we give the following definition.

Definition 4.5. Two compact quantum groups G1 and G2 are called cate-
gorically Morita equivalent if there is an invertible (RepG2)-(RepG1)-module
category.

By Theorem 3.7, two compact quantum groups G1 and G2 are categorically
Morita equivalent if and only if there exists a G1-G2-Morita–Galois object.

An invertible bimodule category implementing categorical Morita equivalence
of G1 and G2 is by no means unique. This leads to a notion of the Brauer–
Picard group [ENO10]. Namely, in our analytic setting, by the Brauer–Picard
group of a rigid C∗-tensor category C we mean the set BrPic(C) of equiva-
lence classes of invertible C-bimodule categories, with the group law defined
by the relative tensor product ⊠C . For C = RepG, we can equivalently de-
fine BrPic(RepG) as the set of equivariant Morita equivalence classes of G-
G-Morita–Galois objects, with the group law defined by the cotensor product
over G. We will discuss these notions for compact quantum groups in detail
elsewhere, confining ourselves for the moment to a few examples and remarks.

Example 4.6. Any finite quantum group G is categorically Morita equivalent
to its dual Ĝ. This follows by considering a depth 2 subfactor N ⊂ N ⋊G and
was already observed by Müger [Müg03, Corollary 6.16], but let us show this
using Morita–Galois objects.
Consider the C∗-algebra A = C(G)⋊G, where G acts on C(G) by right trans-
lations. The action of G on C(G) by left translations extends in the obvious
way to an action on A, while Ĝ also acts on A by the dual action. These two
actions commute and we claim that A is a G-Ĝ-Morita–Galois object.
Since the action G on C(G) by left translations is free, the action of G on A is
also free by Proposition 1.6. For similar reasons the action of Ĝ is free. Next,
let usij , s ∈ Irr(G), i, j = 1, . . . , ds, be matrix coefficients of irreducible unitary
representations of G. The dual basis with respect to the Haar state is given by
dsu

s∗
ij . For any ω ∈ C(Ĝ) = C∗G ⊂ A, we have

∑

s,i,j

dsu
s∗
ij ωu

s
ij =

∑

s,i,j,k

ds(u
s
kj , ω(1))u

s∗
ij u

s
ikω(2) =

∑

s,j

ds(u
s
jj , ω(1))ω(2).

Up to normalization, the Haar state hĜ on C(Ĝ) ∼=
⊕

s Matds
(C) is given by

⊕

s ds Tr. Hence, up to a scalar factor, the above expression equals

hĜ(ω(1))ω(2) = hĜ(ω)1.

Therefore the second identity in (3.1) is satisfied for G1 = G and G2 = Ĝ, as

AG = C(Ĝ) and AĜ = C(G). Since the roles of G and Ĝ are symmetric, the
first identity there is satisfied as well. Hence A is indeed a G-Ĝ-Morita–Galois
object. Note also that the canonical invariant state on A ∼= MdimC(G)(C) is
the unique tracial state.
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Example 4.7. Assume G is a genuine compact group and π : G → PU(H) is a
projective unitary representation of G on a finite dimensional Hilbert space H .
Consider the algebraC(G)⊗B(H) with two commuting actions ofG: one action
is given by left translations of G on C(G), the other by the tensor product of
the action by right translations on C(G) and by Adπ on B(H). These actions
are free by Proposition 1.6 and both fixed point algebras are isomorphic to
B(H). Taking the unique tracial states on these algebras it is easy to check
that identities (3.1) are satisfied. Therefore A is a G-G-Morita–Galois object.
In particular, the categories RepG and BimodG -B(H) are unitarily monoidally
equivalent. Modulo unitarity, this, in fact, follows already from [Par76] (see
also [vOZ98, Corollary 3.2]), since B(H) is an Azumaya algebra in the sym-
metric monoidal category RepG.
This simple example has the following consequence: if G is a genuine com-
pact connected group, then any compact quantum group categorically Morita
equivalent to G is monoidally equivalent to G. Indeed, if G′ is such a compact
quantum group, then RepG′ is unitarily monoidally equivalent to BimodG -B
for some simple G-C∗-algebra B. Since G is connected, B must be a full matrix
algebra B(H), and the claim follows.

A Q-systems and proper module categories

The goal of this appendix is to prove the following correspondence between
Q-systems and proper module categories.

Theorem A.1. Let C be a rigid C∗-tensor category with simple unit, and let D
be a nonzero indecomposable semisimple proper right C-module category. Then
there is an irreducible Q-system A in C such that D is unitarily equivalent to
A-ModC as a right C-module category.

This is an adaptation to the infinite C∗-setting of a result of Ostrik [Ost03,
Theorem 3.1]. It is certainly known to experts, see, e.g., [AdC15, Section 3],
but the precise details seem to be somewhat elusive in the literature. The main
point is to show that, if D is a proper right module category over C, the unitary
structure induces the structure of a Q-system on the internal endomorphism
object End(X) for any X , cf. [GS12, p. 625]. This would imply that D is a
part of a rigid C∗-bicategory which has C in one of its diagonal corners.

Fix representatives (Ui)i and (Xa)a of the isomorphism classes of simple objects
in C and D respectively. For any X ∈ D, we always consider D(Xa, X) and
D(X,Xa) as Hilbert spaces equipped with the scalar products

(S, T )D(Xa,X)ιa = T ∗S, (S, T )D(X,Xa)ιa = ST ∗.

More generally, for X,Y ∈ D, we consider D(X,Y ) as a Hilbert space via the
identification

D(X,Y ) ∼=
⊕

a

D(X,Xa)⊗D(Xa, Y ).
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This way the functor Y 7→ D(X,Y ) is a C∗-functor from D to Hilbf for any X .
The dual module category of D is given by the C∗-category of right C-module
functors HomC(D, C). We have canonical pairings HomC(D, C)×D → C and

D ×HomC(D, C) → EndC(D), (X,F ) 7→ (Y 7→ XF (Y )).

Fix a simple object X in D. We define a ‘dual’ of X ∈ D as an object in
HomC(D, C) by

X̄Y =
⊕

i

D(X,Y Ūi)⊗ Ui,

where we write X̄Y instead of X̄(Y ) and make use of a unitary bifunctor
Hilbf × C → C characterized by

C(H ⊗ U,K ⊗ V ) ∼= B(H,K)⊗ C(U, V ).

The object X̄Y is well-defined by the properness assumption on D. The functor
X̄ is adjoint to the functor C → D, U 7→ XU , via the natural isomorphisms

θX,Y,U : C(U, X̄Y ) =
⊕

i

D(X,Y Ūi)⊗ C(U,Ui) → D(XU, Y ),

D(X,Y Ūi)⊗ C(U,Ui) ∋ S ⊗ T 7→ d
1/2
i (ι⊗R∗

i )(S ⊗ T ),

(A.1)

for U ∈ C. In other words, X̄Y is the internal Hom object Hom(X,Y ). Here
and below we identify U with C ⊗ U , so that when H is a finite dimensional
Hilbert space the space of morphisms U → H ⊗V equals B(C, H)⊗C(U, V ) =
H⊗C(U, V ). The natural isomorphisms (X̄2)Y,V : (X̄Y )V → X̄(Y V ) are char-
acterized by commutativity of the diagrams

C(U, (X̄Y )V ) C(U, X̄(Y V ))

C(UV̄ , X̄Y ) D(XU, Y V )

D(XUV̄ , Y )

T 7→X̄2T

T 7→(ι⊗R̄∗
V )(T⊗ι) θ

θ S 7→(ι⊗R̄∗
V )(S⊗ι)

for U ∈ C. From this characterization we have (X̄2)Y U,V ((X̄2)Y,U ⊗ ιV ) =
(X̄2)Y,UV as morphisms from (X̄Y )UV to X̄(Y UV ).
Now, for Y ∈ D, let us denote by µY the morphism XX̄Y → Y which cor-
responds to ιX̄Y under isomorphism (A.1) for U = X̄Y . Then the morphism
X̄(µX)(X̄2)X,X̄X : (X̄X)(X̄X) → X̄X defines an algebra structure on X̄X
with unit ιX ⊗ ι1 ∈ D(X) ⊗ C(1) ⊂ C(1, X̄X). Furthermore, the morphism
X̄(µY )(X̄2)X,X̄Y : (X̄X)(X̄Y ) → X̄Y defines a left X̄X-module structure on
X̄Y . Then the functor Y 7→ X̄Y extends to an equivalence between D and
the category of left X̄X-modules in C (without any compatibility with the ∗-
structures for the moment) [Ost03; EGNO15, Section 7.9]. It remains to show
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that X̄X is an irreducible Q-system and that the X̄X-module structure on X̄Y
is unitary.

Lemma A.2. The morphism (X̄2)Y,V is given by

∑

i,j

(

di
dj

)1/2

Fβ ⊗ v∗β :
⊕

i

D(X,Y Ūi)⊗ UiV →
⊕

j

D(X,Y V Ūj)⊗ Uj ,

where (vβ : Uj → UiV )β is an orthonormal basis of isometries, and Fβ is the
map

D(X,Y Ūi) → D(X,Y V Ūj), S 7→ (ι⊗R∗
i ⊗ ιV Ūj

)(S ⊗ vβ ⊗ ι̄)(ι ⊗ R̄j).

Proof. It is enough to check the commutativity of the above diagram. Let

S ⊗ T ∈ D(X,Y Ūi)⊗ C(U,UiV ) ⊂ C(U, (X̄Y )V ).

Chasing this element along the arrows on the left, we obtain

d
1/2
i (ι⊗R∗

i ⊗ R̄∗
V )(S ⊗ T ⊗ ιV̄ ) ∈ D(XUV̄ , Y ).

On the other hand, chasing the top and right arrows, we obtain

∑

j,β

d
1/2
i (ι⊗ R∗

i ⊗ R̄∗
V )(S ⊗ vβ ⊗R∗

j (ι̄ ⊗ v∗βT )⊗ ιV̄ )(ιX ⊗ R̄j ⊗ ιUV̄ )

=
∑

j,β

d
1/2
i (ι⊗R∗

i ⊗ R̄∗
V )(S⊗ vβv

∗
βT ⊗ ιV̄ ) = d

1/2
i (ι⊗R∗

i ⊗ R̄∗
V )(S⊗T ⊗ ιV̄ ),

which proves the assertion.

We can now show that X̄2 is unitary thanks to the normalization of (A.1).

Lemma A.3. The morphism X̄2 is unitary, and its inverse is given by

∑

i,j

(

di
dj

)1/2

Gβ ⊗ vβ :
⊕

j

D(X,Y V Ūj)⊗ Uj →
⊕

i

D(X,Y Ūi)⊗ UiV,

where Gβ is the map

D(X,Y V Ūj) → D(X,Y Ūi), T 7→ (ιY Ūi
⊗R̄∗

j )(ιY Ūi
⊗v∗β⊗ι̄)(ιY ⊗Ri⊗ιV Ūj

)T.

Proof. Since Fβ can be written as

Fβ(S) = (ι⊗R∗
i ⊗ ιV Ūj

)(ιY Ūi
⊗ vβ ⊗ ι̄)(ιY Ūi

⊗ R̄j)S,

the morphism X̄∗
2 is indeed given by the formula in the formulation. It remains

to show that X̄2 is an isometry.
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By the above formula, the component of X̄∗
2 X̄2 for D(X,Y Ūi) ⊗ UiV →

D(X,Y Ūi′)⊗ Ui′V is given by

∑

j,β,γ

(didi′)
1/2

dj
Hβ,γ ⊗ wγv

∗
β ,

where (wγ : Uj → Ui′V )γ is an orthonormal basis, and Hβ,γ is the linear map

D(X,Y Ūi) → D(X,Y Ūi′),

S 7→ (ιY Ūi′
⊗ R̄∗

j )(ιY Ūi′
⊗ w∗

γ ⊗ ι̄)

(ιY ⊗Ri′R
∗
i ⊗ ιV Ūj

)(ιY Ūi
⊗ vβ ⊗ ι̄)(S ⊗ R̄j).

Since (ιı̄′ ⊗ R̄
∗
j )(ιı̄′ ⊗w

∗
γ ⊗ ι̄)(Ri′R

∗
i ⊗ ιV Ūj

)(ιı̄⊗vβ ⊗ ι̄)(ιı̄⊗ R̄j) is a morphism
from Ui to Ui′ , the only nonzero terms are for i′ = i. Moreover, it is easy to
see that the family

(

(

di
dj

)1/2

(R∗
i ⊗ ιV Ūj

)(ιı̄ ⊗ vβ ⊗ ι̄)(ιı̄ ⊗ R̄j)

)

β

forms an orthonormal basis of isometries Ūi → V Ūj . It follows that if (for i
′ =

i) we take (wγ)γ = (vβ)β , then (di/dj)Hβ,β(S) = S. Thus, we see that X̄∗
2 X̄2

indeed acts as the identity morphism on the direct summand D(X,Y Ūi) ⊗
UiV .

Lemma A.4. The linear isomorphism

D(Xa, XbU) → D(XaŪ ,Xb), T 7→
d(X̄Xb)

1/2

d(X̄Xa)1/2
(ιb ⊗ R̄∗

U )(T ⊗ ιŪ ),

is unitary for any U ∈ C.

Note that by the indecomposability assumption the object X̄Xa is nonzero for
any a, so the formulation makes sense.

Proof. Put T̃ = (ιb ⊗ R̄∗
U )(T ⊗ ιŪ ). By definition of (S̃, T̃ ), we have

X̄((ιb ⊗ R̄∗
U )(S ⊗ ιŪ ))(T

∗ ⊗ ιŪ )(ιb ⊗ R̄U )) = (S̃, T̃ )ιX̄Xb
.

Using the module functor structure on X̄, the left hand side can be written as

(ιX̄Xb
⊗ R̄∗

U )(X̄2)
−1
Xb,UŪ

(X̄2)XbU,Ū (X̄(ST ∗)⊗ ιŪ )

(X̄2)
−1
XbU,Ū

(X̄2)Xb,UŪ (ιX̄Xb
⊗ R̄U ),

which is (ιX̄Xb
⊗ R̄∗

U)((X̄2)
−1
Xb,U

X̄(ST ∗)(X̄2)Xb,U ⊗ ιŪ )(ιX̄Xb
⊗ R̄U ) by the mul-

tiplicativity of (X̄2)Y,U in U . Thus, the scalar (S̃, T̃ ) can be extracted by
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applying the categorical trace:

(S̃, T̃ ) = trX̄Xb

(

(ιX̄Xb
⊗ R̄∗

U )((X̄2)
−1
Xb,U

X̄(ST ∗)(X̄2)Xb,U ⊗ ιŪ )(ιX̄Xb
⊗ R̄U )

)

=
1

d(X̄Xb)
Tr(X̄Xb)U

(

(X̄2)
−1
Xb,U

X̄(ST ∗)(X̄2)Xb,U

)

=
1

d(X̄Xb)
TrX̄Xa

(X̄(T ∗)X̄(S)) =
d(X̄Xa)

d(X̄Xb)
(S, T ),

which proves the assertion.

Proposition A.5. We have µY µ
∗
Y = d(X̄X)ιY for any Y ∈ D.

Proof. We may assume that X = Xa and Y = Xb for some a, b. We identify

C(X̄aXb) =
⊕

i,j

B(D(Xa, XbŪi),D(Xa, XbŪj))⊗ C(Ui, Uj)

with
⊕

i

D(Xa, XbŪi)⊗D(Xa, XbŪi)⊗ C(Ui, Uj),

so that ιX̄aXb
is represented by

∑

i,α uα ⊗ ūα ⊗ ιi, where (uα : Xa → XbŪi)α is
an orthonormal basis of isometries. Then we have

µb = θXa,Xb,X̄aXb

(

∑

i,α

uα ⊗ ūα ⊗ ιi

)

=
∑

i,α

d
1/2
i (ιb ⊗R∗

i )(uα ⊗ ιi)(ιX ⊗ (u∗α ⊗ ιi)pi),

where pi : X̄aXb → D(Xa, XbŪi) ⊗ Ui is the orthogonal projection onto the

isotypic component for Ui. Hence µ
∗
b : Xb → XaX̄aXb is given by

∑

i,α d
1/2
i uα⊗

(u∗α ⊗ ιı̄)(ιb ⊗Ri). We thus have

µbµ
∗
b =

∑

i,α,α′

di(ιb ⊗R∗
i )(uα′u∗α ⊗ ιi)(ιb ⊗Ri).

By Lemma A.4, we have (ιb⊗R
∗
i )(uα′u∗α⊗ ιi)(ιb⊗Ri) = δα,α′

d(X̄aXa)
d(X̄aXb)

ιb. Hence

µbµ
∗
b =

∑

i

(

di
d(X̄aXa)

d(X̄aXb)
dimD(Xa, XbŪi)

)

ιb = d(X̄aXa)ιb,

which finishes the proof of the proposition.

It follows that X̄X is a standard Q-system in C and, for any Y ∈ D, the X̄X-
module X̄Y satisfies the unitarity condition. The Q-system X̄X is irreducible,
since C(1, X̄X) is one-dimensional. Thus Theorem A.1 is proved.
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Courses], vol. 20, Société Mathématique de France, Paris, ISBN
978-2-85629-777-3. MR3204665

[NY16] S. Neshveyev and M. Yamashita, Drinfeld Center and
Representation Theory for Monoidal Categories, Comm. Math.
Phys. 345 (2016), no. 1, 385–434,
DOI:10.1007/s00220-016-2642-7,
arXiv:1501.07390 [math.OA]. MR3509018

[NY18] S. Neshveyev and M. Yamashita, A few remarks on the tube
algebra of a monoidal category, Proc. Edinb. Math. Soc. (2) 61
(2018), no. 3, 735–758, DOI:10.1017/s0013091517000426,
arXiv:1511.06332 [math.OA]. MR3834730

[Ost03] V. Ostrik, Module categories, weak Hopf algebras and modular
invariants, Transform. Groups 8 (2003), no. 2, 177–206,
DOI:10.1007/s00031-003-0515-6,
arXiv:math/0111139 [math.QA]. MR1976459 (2004h:18006)

[Par76] B. Pareigis, Non-additive ring and module theory. IV. The Brauer
group of a symmetric monoidal category, Brauer groups (Proc.
Conf., Northwestern Univ., Evanston, Ill., 1975), 1976,
pp. 112–133. Lecture Notes in Math., Vol. 549, Springer, Berlin.
MR0498794

[PR08] C. Pinzari and J. E. Roberts, A duality theorem for ergodic actions
of compact quantum groups on C∗-algebras, Comm. Math. Phys.
277 (2008), no. 2, 385–421, DOI:10.1007/s00220-007-0371-7,
arXiv:math/0607188 [math.OA]. MR2358289 (2008k:46203)

[Pop99] S. Popa, Some properties of the symmetric enveloping algebra of a
subfactor, with applications to amenability and property T, Doc.
Math. 4 (1999), 665–744 (electronic). MR1729488 (2001c:46116)

[PV15] S. Popa and S. Vaes, Representation theory for subfactors,
λ-lattices and C∗-tensor categories, Comm. Math. Phys. 340
(2015), no. 3, 1239–1280, DOI:10.1007/s00220-015-2442-5,
arXiv:1412.2732 [math.OA]. MR3406647

Documenta Mathematica 23 (2018) 2165–2216

http://dx.doi.org/10.1080/00927870701511996
http://arxiv.org/abs/math/0605530
http://www.ams.org/mathscinet-getitem?mr=2362670
http://arxiv.org/abs/1303.6207
http://www.ams.org/mathscinet-getitem?mr=3426224
http://www.ams.org/mathscinet-getitem?mr=3204665
http://dx.doi.org/10.1007/s00220-016-2642-7
http://arxiv.org/abs/1501.07390
http://www.ams.org/mathscinet-getitem?mr=3509018
http://dx.doi.org/10.1017/s0013091517000426
http://arxiv.org/abs/1511.06332
http://www.ams.org/mathscinet-getitem?mr=3834730
http://dx.doi.org/10.1007/s00031-003-0515-6
http://arxiv.org/abs/math/0111139
http://www.ams.org/mathscinet-getitem?mr=1976459
http://www.ams.org/mathscinet-getitem?mr=1976459
http://www.ams.org/mathscinet-getitem?mr=0498794
http://dx.doi.org/10.1007/s00220-007-0371-7
http://arxiv.org/abs/math/0607188
http://www.ams.org/mathscinet-getitem?mr=2358289
http://www.ams.org/mathscinet-getitem?mr=2358289
http://www.ams.org/mathscinet-getitem?mr=1729488
http://www.ams.org/mathscinet-getitem?mr=1729488
http://dx.doi.org/10.1007/s00220-015-2442-5
http://arxiv.org/abs/1412.2732
http://www.ams.org/mathscinet-getitem?mr=3406647


2216 Sergey Neshveyev and Makoto Yamashita

[Sch01] P. Schauenburg, The monoidal center construction and bimodules,
J. Pure Appl. Algebra 158 (2001), no. 2-3, 325–346,
DOI:10.1016/S0022-4049(00)00040-2. MR1822847
(2002f:18013)

[Sch04] P. Schauenburg, Hopf-Galois and bi-Galois extensions, Galois
theory, Hopf algebras, and semiabelian categories, 2004,
pp. 469–515, Amer. Math. Soc., Providence, RI. MR2075600

[Sch90] H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf
algebras, Israel J. Math. 72 (1990), no. 1-2, 167–195,
DOI:10.1007/BF02764619. Hopf algebras. MR1098988

[Ulb87] K.-H. Ulbrich, Galois extensions as functors of comodules,
Manuscripta Math. 59 (1987), no. 4, 391–397,
DOI:10.1007/BF01170844. MR915993 (89a:16049)

[VV07] S. Vaes and R. Vergnioux, The boundary of universal discrete
quantum groups, exactness, and factoriality, Duke Math. J. 140
(2007), no. 1, 35–84, DOI:10.1215/S0012-7094-07-14012-2,
arXiv:math/0509706 [math.OA]. MR2355067 (2010a:46166)

[vOZ98] F. van Oystaeyen and Y. Zhang, The Brauer group of a braided
monoidal category, J. Algebra 202 (1998), no. 1, 96–128,
DOI:10.1006/jabr.1997.7295. MR1614178

[Vic11] J. Vicary, Categorical formulation of finite-dimensional quantum
algebras, Comm. Math. Phys. 304 (2011), no. 3, 765–796,
DOI:10.1007/s00220-010-1138-0,
arXiv:0805.0432 [quant-ph]. MR2794547

[Yam04] S. Yamagami, Frobenius algebras in tensor categories and bimodule
extensions, Galois theory, Hopf algebras, and semiabelian
categories, 2004, pp. 551–570, Amer. Math. Soc., Providence, RI.
MR2075605

Sergey Neshveyev
Department of Mathematics
University of Oslo
P.O. Box 1053, Blindern
NO-0316 Oslo
Norway
sergeyn@math.uio.no

Makoto Yamashita
Department of Mathematics
Ochanomizu University, Otsuka
2-1-1, Bunkyo
112-8610 Tokyo
Japan
Current address:
Department of Mathematics
University of Oslo
Norway
yamashita.makoto@ocha.ac.jp

Documenta Mathematica 23 (2018) 2165–2216

http://dx.doi.org/10.1016/S0022-4049(00)00040-2
http://www.ams.org/mathscinet-getitem?mr=1822847
http://www.ams.org/mathscinet-getitem?mr=1822847
http://www.ams.org/mathscinet-getitem?mr=2075600
http://dx.doi.org/10.1007/BF02764619
http://www.ams.org/mathscinet-getitem?mr=1098988
http://dx.doi.org/10.1007/BF01170844
http://www.ams.org/mathscinet-getitem?mr=915993
http://www.ams.org/mathscinet-getitem?mr=915993
http://dx.doi.org/10.1215/S0012-7094-07-14012-2
http://arxiv.org/abs/math/0509706
http://www.ams.org/mathscinet-getitem?mr=2355067
http://www.ams.org/mathscinet-getitem?mr=2355067
http://dx.doi.org/10.1006/jabr.1997.7295
http://www.ams.org/mathscinet-getitem?mr=1614178
http://dx.doi.org/10.1007/s00220-010-1138-0
http://arxiv.org/abs/0805.0432
http://www.ams.org/mathscinet-getitem?mr=2794547
http://www.ams.org/mathscinet-getitem?mr=2075605

