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1 Introduction

1.1 Triple product L-functions

Central values of L-functions play an important role in number theory. If
π1, π2 and π3 are three cuspidal automorphic representations of GL(2,AF ), for
a number field F , then one can consider the central value L(1/2, π1 × π2 × π3)
of the degree 8 triple product L-function. It was conjectured by Jacquet that
this central value is non-zero if and only if there is a quaternion algebra D over
F such that ∫

A
×

F D×(F )\D×(AF )

fD
1 (x)fD

2 (x)fD
3 (x) d×x 6= 0.

Here, fD
i are cusp forms in πD

i , the cuspidal automorphic representation of
D×(A) obtained by Jacquet-Langlands correspondence from πi. This was
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proven by Harris and Kudla [8]. One can look at the more general situation
of a cubic extension E of F and consider an irreducible cuspidal automorphic
representation Π of GL(2,AE). In this context, the analogue of Jacquet’s con-
jecture has been proven by Prasad and Schulze-Pillot in [19]. Explicit formulas
relating the L-value and the integral have been obtained by several authors
(see [1], [6], [10], [13] and [25]).

In this paper, we look at the special case of E = L × F , where L is a
quadratic extension of F . We consider a cuspidal automorphic representation

π on GL(2,AF ) and an induced representation Ind
GL(2)
B (Ω1,Ω2) on GL(2,AL).

Here, Ω1,Ω2 are characters in L×\A×
L and B is the Borel subgroup of GL(2).

Given a smooth section f in the induced representation, let E(g, s; f) be the
standard Eisenstein series (see (7)). For φ ∈ π, we consider the pullback of the
Eisenstein series given by the integral

Z(s, f, φ) =

∫

A
×

F GL(2,F )\GL(2,AF )

E(h, s; f)φ(h)dh. (1)

We compute the above integral under certain assumptions on the ramification of
the local representations and characters. We assume that π∞ is a holomorphic
discrete series. For a non-archimedean place v, we assume that πv is either
unramified or an unramified twist of the Steinberg representation. Let Ω1,Ω2

be such that c(Ω2,v) = 0 and c(Ω1,v) = 0 or 1. In the latter case, πv is ramified.
Also, assume that the archimedean components of the characters match with
the archimedean component of π (See Section 6.1 for details). It turns out
that Z(s, f, φ) = 0 if the central L-value L(1/2,BC(π) × Ω) = 0. Here, BC(π)
is the base change of π to GL(2,AL) and Ω is the character on A×

L defined
by Ω(z) := Ω−1

1 (z̄)Ω−1
2 (z). This vanishing condition follows from the criteria

for existence of Waldspurger models and we will explain it in the next section.
Assuming L(1/2,BC(π) × Ω) 6= 0, we can choose f and φ (see Section 6.1) so
that

Z(s, f, φ̄) =
L(2s+ 1

2 , π̃ × Ω1|A×)

L(2s+ 1,Ω1Ω
−1
2 )

∏

p≤∞
Yp(s). (2)

Here, π̃ is the contragredient representation of π. The values of Yp(s) are
explicitly computed and, for almost all finite p, the term Yp(s) = 1. The exact
value of Yp(s) is given in Theorem 6.1.

1.2 Waldspurger models

Unwinding the integral (1), we can deduce that Z(s, f, φ) is Eulerian from the
following formula.

Z(s, f, φ) =

∫

T (AF )\GL(2,AF )

f(ηh, s)Bφ(h)dh.
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Here, η is the non-trivial representative of B(L)\GL(2, L)/GL(2, F ). The torus
T (F ) is the subgroup of GL(2, F ) isomorphic to L×. Bφ is the period defined
by

Bφ(g) :=

∫

Z(AF )T (F )\T (AF )

φ(tg)Ω−1(t)dt.

It has been shown in [24] that a necessary condition for Bφ to be non-zero is
that L(1/2,BC(π) × Ω) 6= 0. We assume this non-vanishing condition. The
map φ 7→ Bφ gives a global Ω-Waldspurger model for π. The Waldspurger
model gives a realization of the representation π in terms of C-valued functions
on the group, which transform by the character Ω upon left translation by the
torus T .

We can now choose a factorizable section f(h, s) =
∏

v fv(hv, s), and the
uniqueness of the Waldspurger models allows us to write Bφ(h) =

∏

v Bv(hv).
This gives us Z(s, f, φ) =

∏

v Zv(s), where

Zv(s) =

∫

T (Fv)\GL(2,Fv)

fv(ηhv, s)Bv(hv)dhv. (3)

1.3 Explicit formulas for new-forms in local Waldspurger models

The key to computing (3) is choosing appropriate local vectors fv and Bv.
There are two reasonable choices for Bv in the non-archimedean case – the
new-form or the Gross-Prasad test vector. For the application that we have in
mind towards the conjectures of Tonghai Yang, we will choose the new-form.
For more on the Gross-Prasad test vectors see [4]. In the archimedean case, we
will assume that π∞ is a holomorphic discrete series with lowest non-negative
weight ℓ. The vector B∞ will be chosen to be the weight ℓ vector. The choice
for fv is more straightforward. We choose the vector in the local induced
representation that is right invariant under an appropriate compact subgroup
so that the integral Zv is not trivially zero.

In order to actually compute Zv we need explicit formulas for the local vectors
Bv. One of the main contributions of this paper is explicit formulas for certain
distinguished vectors in the Waldspurger models for local representations of
GL(2).

Unramified non-archimedean case: When πv is unramified, we obtain explicit
formulas for the spherical vector B0 in the Waldspurger model. The vector

is determined by its values on {
[
̟m

1

]

: m ≥ 0}. We use the fact that the

spherical vector is an eigenfunction of the local Hecke algebra to get recurrence
relations on the above values. This allows us to obtain

∑

m≥c(Ω)

B0(

[
̟m

1

]

)xm =
(q − κx)xc(Ω)

ωπ(̟)x2 − λx+ q
B0(

[
̟c(Ω)

1

]

).
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Here, λ is the eigenvalue of B0. Also, κ is an explicit constant depending on the
conductor c(Ω) and the ramification of Lv/Fv. See Proposition 3.4 for details.
Note that the unramified computations put no restriction on the character Ω
or the field extension L. This extends results of [2].
Ramified non-archimedean case: We obtain the explicit formulas for the new-
form in the Waldspurger model for the twist of the Steinberg representation of
GL(2) by an unramified character χv. When Lv/Fv is a field extension, this was
done in [4]. We compute the remaining case when Lv = Fv ⊕ Fv. Note that a
necessary and sufficient condition for a local Waldspurger model to exist is that
Ωv 6= χv ◦NLv/Fv

. We use the fact that the new-form is right invariant under
the Iwahori subgroup and is an eigenfunction of the Atkin-Lehner operator and
the Hecke operator.
Archimedean case: We assume that π∞ is the holomorphic discrete series of
GL(2,R) with lowest non-negative weight ℓ. We compute the explicit formulas
for the weight ℓ vector B0 in the Waldspurger model for π∞. The key property
of B0 is that it is annihilated by the lowering operator in the complexified
Lie algebra of SL(2,R). We consider the action of the lowering operator on
vectors in π∞. The criteria that B0 is annihilated by the lowering operator
reduces to a first order linear ordinary differential equation satisfied by B0.
This leads to the explicit formulas in both the cases when L∞ is split or non-
split over F∞ = R. In the split case, we use these formulas to compute the
local archimedean integral Z∞(s) as follows

Z∞(s) =

{
iD−1/2π if ℓ = 2, s = 0;

22−2s−ℓ2D− ℓ
4−si

ℓ
2π

Γ(2s+ ℓ
2−1)

Γ(s)Γ( ℓ
2+s)

if Re(2s+ ℓ
2 ) > 1.

(4)

Here, ℓ2 depends on Ω∞ and D is the fundamental discriminant for L/F . We
do the split computation here because we want to apply this to the case of
Hilbert modular forms. If one considers Bianchi modular forms, then one can
use the explicit formulas for the weight vector in the non-split case to compute
the integral as well. In that case, one has to deal with the further complication
that the maximal compact is not abelian and hence, we have K-types of higher
dimensions. We have not done that case here.
The local computations in the archimedean and non-archimedean case lead to
the calculation of the local integrals Zv(s) leading to the formula (2).

1.4 Application to Tonghai Yang’s conjectures

In [26], Yang constructs a Hilbert Eisenstein series E((τ1, τ2), s, f) over a totally
real extension L/Q associated to an imaginary quadratic extension K/L. This
involves choosing the characters Ω1 = χK/L, the character corresponding to the
extension K/L by class field theory, Ω2 = 1, and choosing a square-free ideal
N . As a function of (τ1, τ2) ∈ H2, Yang shows that E((τ1, τ2), s, f) is a Hilbert
Eisenstein series of weight (1, 1), of square-free level NdK/L and Nebentypus
character corresponding to χK/L. He gives explicit formulas for the Fourier
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coefficients of E((τ1, τ2), s, f), a criteria for non-vanishing and shows that it is
holomorphic for s = 0. By restriction to the diagonal, we get that E((τ, τ), 0, f)
is a holomorphic modular form of weight 2, square-free level N and Nebentypus
character ψ. Here, N and ψ depend on K,L and N .
By allowing K and L to vary subject to certain conditions, Yang obtains a
family of such Hilbert Eisenstein series. He conjectures that the restriction of
these Eisenstein series to the diagonal forms a spanning set for the space of
holomorphic modular forms of weight 2, level N and Nebentypus character ψ.
One of the key steps towards this conjecture is the following –
Given a cusp form Φ ∈ S2(N,ψ), does there exist a choice of K,L,N , such
that the corresponding Hilbert Eisenstein series E((·, ·), s, f) satisfies

〈E((·, ·), s, f)|∆H,Φ〉 6= 0.

Here, 〈 , 〉 is the Petersson inner product. Suppose Φ is a Hecke eigenform,
then let φ be the function on GL(2,A) corresponding to Φ and let π be the
irreducible, cuspidal automorphic representation of GL(2,A) corresponding to
Φ. Let E(g, s, f) be the Eisenstein series on GL(2,AL) corresponding to E .
Then, we show in Proposition 6.2 that

Z(s, f, φ̄) = vol(Γ0(N)\H)〈E((·, ·), s, f)|∆H,Φ〉. (5)

Using (2), we get, in Corollary 6.4

〈E((·, ·), 0, f)|∆H,Φ〉 6= 0

if and only if

L(1/2, π) 6= 0 and L(1/2,BC(π)× χK/L) 6= 0.

If L(1/2, π) = 0, we immediately get that Φ cannot be in the span of the Hilbert
Eisenstein series. In case L(1/2, π) 6= 0, then using the results of Friedberg and
Hoffstein in [3], one can obtain characters χK/L such that L(1/2,BC(π) ×
χK/L) 6= 0. If we expand the family of Hilbert Eisenstein series by allowing
more general choices of Ω1,Ω2, then the criteria of non-vanishing of the inner
product changes from L(1/2, π) 6= 0 to a twist L(1/2, π×χ) 6= 0, for a suitable
character χ. Again using [3], there is now a chance to achieve this. This is the
advantage of computing the global integral Z(s, f, φ) for as general a choice of
data as possible.
The formula (5) relating the inner product to the global integral is the reason
for choosing new-forms for local vectors in the Waldspurger models of the local
representations. Also, we have not considered highly ramified local represen-
tations πv because they do not appear in considerations for the application to
Tonghai Yang’s conjecture.
Let us also remark that it is not possible to extend the ideas of Tonghai Yang
in a naive manner to obtain spanning sets for modular forms of weight ℓ > 2.
This is because (4) easily gives us Z∞(0) = 0 for s = 0 and ℓ > 2.

Documenta Mathematica 24 (2019) 1–45



6 Rodney Keaton and Ameya Pitale

1.5 Previous work

Observe that the computations mentioned above work only when the holo-
morphic cusp form Φ is a Hecke eigenform. Even if we get non-vanishing
of Petersson inner product for all Hecke eigenforms, it does not imply non-
vanishing for non-Hecke eigenforms. In a certain special case, Yingkun Li in
[12] has obtained a complete answer. Fix an odd, square-free integer N . Con-
sider any two coprime, negative, fundamental discriminants d1, d2 such that
(

d1

p

)

=
(

d2

p

)

= −1, for all p|N . Let K = Q(
√
d1,

√
d2) and L = Q(

√
d1d2)

and let N be a square-free ideal in L with an odd number of prime divisors
such that N ∩Z = NZ. Li proves that the span of the restriction of the Hilbert
Eisenstein series corresponding to d1, d2,N , varying under the above restric-
tions, is precisely the space spanned by the Eisenstein series E2,N ∈ M2(N)
and all cuspidal eigenforms Φ ∈ M2(N) satisfying L(1/2,Φ) 6= 0. The key
to obtaining this result is once again the computation of the Petersson inner
product. In this particular case, Li makes use of the explicit Fourier coefficients
of the Hilbert Eisenstein series to show that the restriction is a Shimura lift
of a weight 3/2 modular form. This leads to an explicit formula for the inner
product in terms of the central value of the L-function and certain Fourier
coefficients of the half integral weight modular form.

These classical methods cannot be easily generalized to other choices ofK,L,N
from Yang’s conjectures. In fact, a question from Li to compute the inner
product in an adelic setting was the starting point of this current paper.

It should be remarked that this inner product has been considered in [9]. In
[9] the author also considers certain non-squarefree level cases by choosing the
Gross-Prasad test vector. Let us point out that the computation technique in
[9] is completely different to that used in the present paper.

1.6 Structure of the paper

In Section 2, we introduce our basic objects of study as well as state and prove
that the global integral is Eulerian. In Section 3 we present the calculation
of explicit values of a new vector in the Waldspurger model of an unramified
principal series (Section 3.2) and in the Waldspurger model of an unramified
twist of a Steinberg representation (Section 3.3). In Section 4 we perform the
local integral calculations needed for our inner product. In Section 5 we present
the analogous explicit values of the Waldspurger model at the archimedean
places, and also compute the local inner product in the split case, i.e., when
the quadratic field extension is totally real. Finally, in Section 6, we combine
our local calculations to obtain the calculation of the global integral. Also, in
this section we relate our integral calculation to the inner product mentioned
above and give a case which is relevant to the conjectures of Yang.
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2 Preliminaries

2.1 Eisenstein series and Waldspurger models

Let F be a number field. Let a,b, c ∈ F such that d := b
2 − 4ac 6= 0.

Let L = F (
√
d) be a subfield of C. Let A be the ring of adeles of F and

AL be the ring of adeles of L. Let H be defined by H(R) = GL2(R) for
a ring R. Let B be the standard Borel subgroup of H . Let π be an irre-
ducible cuspidal automorphic representation of H(A) with central character
ωπ. Let Ω1,Ω2 be characters of A×

L/L
× such that Ω1Ω2|A× = ω−1

π . For s ∈ C,

let I(Ω1,Ω2, s) = Ind
H(AL)
B(AL)(Ω1,Ω2, δ

s
B). Here, δB is the modulus character

δB(

[
u v
w

]

) = |u/w|AL . Hence, for f ∈ I(Ω1,Ω2, s), we have

f(

[
u v
w

]

g, s) = Ω1(u)Ω2(w)|u/w|s+1/2
AL

f(g, s). (6)

For any section f ∈ I(Ω1,Ω2, s), define the Eisenstein series

E(g, s) = E(g, s; f) =
∑

γ∈B(L)\H(L)

f(γg, s). (7)

This series is absolutely convergent for Re(s) > 1/2 and has a meromorphic
continuation to all of C (see [11]).

For a,b, c as above, set

S =

[
a b/2

b/2 c

]

, and ξ =

[
b

2 c

−a
−b

2

]

.

Let F (ξ) = {xI2 + yξ : x, y ∈ F} ⊂M2(F ). We have the isomorphism

F (ξ) ∋ xI2 + yξ 7→ x+ y

√
d

2
∈ L.

Let

T (F ) = {g ∈ H(F ) : tgSg = det(g)S}.

Then T (F ) = F (ξ)× and hence, T (F ) ≃ L×. Note that T (F ) consists of all
matrices

g = t(x, y) =

[
x+ y b

2 cy
−ay x− y b

2

]

, x, y ∈ F, det(g) = x2− 1

4
y2(b2−4ac) 6= 0.

(8)
Let Ω be a character of T (A)/T (F ) ≃ A×

L/L
× defined by

Ω(z) := Ω−1
1 (z̄)Ω−1

2 (z), for all z ∈ A×
L . (9)

Documenta Mathematica 24 (2019) 1–45



8 Rodney Keaton and Ameya Pitale

Hence, Ω|A× = ωπ. For φ ∈ Vπ, define

Bφ(g) =

∫

ZH(A)T (F )\T (A)

φ(tg)Ω−1(t)dt. (10)

The C-vector space spanned by {Bφ : φ ∈ Vπ} is called the global Waldspurger
model of π of type (S,Ω). The uniqueness and criteria for existence for having
such a Waldspurger model is known by [20], [23], and [24]. We will assume
that such a Waldspurger model exists.
Let φ ∈ Vπ. We wish to study the integral

Z(s) = Z(s, f, φ) =

∫

H(F )ZH (A)\H(A)

E(h, s; f)φ(h)dh. (11)

2.2 Basic Identity

The first step is to show that the above integral is Eulerian. Using the Bruhat
decomposition of GL(2), we get the following lemma.

Lemma. 2.1 The representatives for the double cosets B(L)\H(L)/H(F ) are

given by I2 and η =

[
1
β 1

]

, with β = (b+
√
d)/(2c).

Let us denote by ∆(F ) = B(L) ∩ H(F ) and ∆0(F ) = η−1B(L)η ∩ H(F ),
subgroups of H(F ).

Lemma. 2.2 We have
∆0(F ) = T (F ).

Proof. Let e1 = t[1, 0] and e2 = t[0, 1]. Let h ∈ ∆0. Hence, hη−1e1 = γη−1e1
for some γ ∈ L×, since B(F ) fixes the line generated by e1. Let γ = x+ y

√
d

for x, y ∈ F . We have η−1e1 = e1−βe2. Hence he1−βhe2 = (x+y
√
d)e1−(x+

y
√
d)βe2. Since h ∈ H(F ), we get two equations by comparing the coefficient of√
d and the coefficient of 1 on both sides. This gives us he1 = (x−by)e1+2aye2

and he2 = −2cye1 + (x + by)e2. Hence, h = x − 2yξ ∈ T (F ). The reverse
implication can also be worked out similarly.

By Lemmas 2.1 and 2.2, we have

E(g, s; f) =
∑

γ∈B(L)\H(L)

f(γg, s) =
∑

γ∈∆(F )\H(F )

f(γg, s) +
∑

γ∈T (F )\H(F )

f(ηγg, s).

Hence

Z(s) =

∫

∆(F )ZH(A)\H(A)

f(h)φ(h)dh+

∫

T (F )ZH(A)\H(A)

f(ηh)φ(h)dh.
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Using cuspidality of π, we have

∫

∆(F )ZH(A)\H(A)

f(h)φ(h)dh = 0.

Thus,

Z(s) =

∫

T (F )ZH(A)\H(A)

f(ηh)φ(h)dh,

which will be needed in the proof of the following proposition.

Proposition. 2.3 Let π be an irreducible cuspidal automorphic representation
of GL2(A) with central character ωπ. Let Ω1,Ω2 be characters of A×

L/L
× such

Ω1Ω2|A× = ωπ. Let f ∈ I(Ω1,Ω2, s) and φ ∈ Vπ. Then we have

Z(s, f, φ) =

∫

H(F )ZH(A)\H(A)

E(h, s; f)φ(h)dh =

∫

T (A)\H(A)

f(ηh, s)Bφ(h)dh.

Here, Bφ is as defined in (10) with Ω defined in (9). Also, η =

[
1
β 1

]

with

β = (b+
√
d)/(2c).

Proof. We have

Z(s) =

∫

T (F )ZH(A)\H(A)

f(ηh)φ(h)dh

=

∫

T (A)\H(A)

∫

T (F )ZH (A)\T (A)

f(ηth)φ(th)dtdh.

For t = xI2 + yξ ∈ T (A), we get

f(ηth, s) = f(ηtη−1ηh, s) = Ω−1(x+ y
√
d/2)f(ηh, s).

Hence,

Z(s) =

∫

T (A)\H(A)

f(ηh, s)
( ∫

T (F )ZH (A)\T (A)

Ω−1(t)φ(th)dt
)

dh

=

∫

T (A)\H(A)

f(ηh, s)Bφ(h)dh,

as required.
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By the uniqueness of the Waldspurger model, we have

Bφ(h) =
∏

v

Bv(hv), f(h, s) =
∏

v

fv(hv, s)

where h = ⊗′hv. Hence, Z(s) =
∏

v Zv(s), where

Zv(s) =

∫

T (Fv)\H(Fv)

fv(ηvhv, s)Bv(hv)dhv. (12)

3 Values of the newform in the Waldspurger model

In this section, we will compute the explicit values of the new vector in the
Waldspurger model when the GL(2) representation is either unramified or an
unramified twist of a Steinberg representation. Note, in the latter, we will
recall the values computed in [4] as well as a new calculation when the local
extension L/F is split.

3.1 Set-up

Let F be a local non-archimedean field of characteristic zero. We will drop the
subscript v in this section. Let o be the ring of integers of F , p the unique
maximal ideal, ̟ a uniformizer and let q be the residue characteristic. Let
K = H(o) be the maximal compact subgroup of H(F ).
We have fixed three elements a,b, c ∈ F such that d = b

2 − 4ac 6= 0. We
have L = F (

√
d) if d /∈ F×2, and L = F ⊕ F otherwise. In the latter case we

consider F diagonally embedded. Let z 7→ z̄ be the obvious involution on L
whose fixed point set is F . We define the Legendre symbol as

(L

p

)

=







−1 if L/F is an unramified field extension,

0 if L/F is a ramified field extension,

1 if L = F ⊕ F.

(13)

We will make the following assumptions:

• a,b ∈ o and c ∈ o×.

• If d /∈ F×2, then d is a generator of the discriminant of L/F .

• If d ∈ F×2, then d ∈ o×.

We define elements β and ξ0 of L by

β =







b+
√
d

2c
if L is a field,

(
b+

√
d

2c
,
b−

√
d

2c

)

if L= F ⊕ F.

(14)
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ξ0 =







−b+
√
d

2
if L is a field,

(−b+
√
d

2
,
−b−

√
d

2

)

if L= F ⊕ F.

(15)

If L is a field, let oL be its ring of integers, ̟L a uniformizer, and vL the
normalized valuation. If L = F ⊕ F , put oL = o ⊕ o and ̟L = (̟, 1). By
Lemma 3.1.1 of [16], in either case,

oL = o+ oβ = o+ oξ0. (16)

Fix the ideal in oL given by

PL := poL =







pL if
(
L
p

)
= −1,

p2L if
(
L
p

)
= 0,

p⊕ p if
(
L
p

)
= 1.

(17)

Here pL is the maximal ideal of oL when L is a field. We have Pn
L ∩ o = pn for

all n ≥ 0.
Let us recall the embedding of L× as a torus in H(F ) for convenience of cal-
culations. With a,b, c as above, let

S =

[
a

b

2
b

2 c

]

, ξ =

[
b

2 c

−a
−b

2

]

.

Then F (ξ) = F · I2 + F · ξ is a two-dimensional F -algebra isomorphic to L. If

L is a field, then an isomorphism is given by x+ yξ 7→ x+ y
√
d

2 . If L = F ⊕F ,

then an isomorphism is given by x+yξ 7→ (x+y
√
d

2 , x−y
√
d

2 ). The determinant
map on F (ξ) corresponds to the norm map on L. Let

T (F ) = {g ∈ H(F ) : tgSg = det(g)S}. (18)

One can check that T (F ) = F (ξ)×. Note that T (F ) ∼= L× via the isomorphism
F (ξ) ∼= L. Under the same isomorphism the group T (o) := T (F ) ∩ K is
isomorphic to o×L . Note that T (F ) consists of all matrices

g = t(x, y) =

[
x+ y b

2 cy
−ay x− y b

2

]

, x, y ∈ F, det(g) = x2− 1

4
y2(b2−4ac) 6= 0.

(19)
Let Ω be any character of L×, which we may view as a character of the torus
T (F ). Define

c(Ω) := min {m ≥ 0 : Ω|(1+Pm
L )∩o×

L
≡ 1}. (20)

Note that this is the conductor of Ω only in the case L/F is an unramified field
extension. Let B(Ω) be the space of all locally constant functions B : H(F ) →
C satisfying

B(tg) = Ω(t)B(g) for all t ∈ T (F ), g ∈ H(F ). (21)
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12 Rodney Keaton and Ameya Pitale

Let (π, V ) be any infinite dimensional, irreducible, admissible representation
of H(F ). We say that π has an (S,Ω)-Waldspurger model if π is isomorphic
to a subrepresentation of B(Ω). We call a linear functional ℓ on π an (S,Ω)-
Waldspurger functional if it satisfies

ℓ(π(t)v) = Ω(t)ℓ(v) for all t ∈ T (F ), v ∈ V. (22)

If π has an (S,Ω)-Waldspurger model then we obtain a (S,Ω)-Waldspurger
functional ℓ by ℓ(B) = B(1). On the other hand, if π has an (S,Ω)-Waldspurger
functional, we obtain an (S,Ω)-Waldspurger model for π by the map v 7→ Bv,
where Bv(g) = ℓ(π(g)v). Observe that a necessary condition for a (S,Ω)-
Waldspurger model or functional to exist is that Ω|F× = ωπ, the central char-
acter of π.

3.2 The unramified case

Throughout this subsection, we suppose that π is unramified.

3.2.1 Preliminaries on the spherical vector in the Waldspurger model

As π is unramified, we have that π = χ1 × χ2 where χ1, χ2 are unramified
characters of F×. Let Ω be any character of L× such that Ω|F× = χ1χ2. By
Saito [20] and Tunnell [23] or Gross-Prasad [7] or [4], it is known that π has
a (S,Ω)-Waldspurger model for any such Ω. Let B0 be the spherical vector in
the (S,Ω)-Waldspurger model of π. Our first task is to give explicit formulas

for the values of B0(g) for all g ∈ H(F ). This is done in the case
(

L
p

)

= ±1

and both c(Ω) = c(π) = 0 in [2]. We will answer this for all Ω and also for
(

L
p

)

= 0. Also, our methods are different from those of [2]. The assumptions

on the torus gives the following useful decomposition (see [22])

H(F ) =
⊔

m≥0

T (F )

[
̟m

1

]

K. (23)

Since B0 is the spherical vector in a (S,Ω)-Waldspurger model, we see that B0

is completely determined by its values on

[
̟m

1

]

with m ≥ 0. We have the

following vanishing result depending on c(Ω).

Lemma. 3.1 Let c(Ω) > 0. Then for all 0 ≤ m < c(Ω), we have

B0(

[
̟m

1

]

) = 0.

Proof. Let t(x, y) ∈ (1 +Pm) ∩ o×L be such that Ω(t(x, y)) 6= 1. Note that this
implies that x+by/2+cyβ ∈ (1+Pm)∩o×L , which means that y ∈ pm. Hence,
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we have

B0(

[
̟m

1

]

) = Ω(t(x, y))−1B0(t(x, y)

[
̟m

1

]

)

= Ω(t(x, y))−1B0(

[
̟m

1

] [
̟−m

1

]

t(x, y)

[
̟m

1

]

︸ ︷︷ ︸

∈K

)

= Ω(t(x, y))−1B0(

[
̟m

1

]

),

which completes the proof.

3.2.2 Hecke operator

The spherical vector is an eigenfunction of the Hecke operator T (̟), which

corresponds to the characteristic function of the double coset K

[
̟

1

]

K in

the Hecke algebra of K-bi-invariant functions on H(F ). We have the following
eigenvalue relation

T (̟)B0 = λB0, λ = q1/2
(
χ1(̟) + χ2(̟)

)
. (24)

Note that the above eigenvalue can be easily checked by using the coset de-
composition below and applying T (̟) to the spherical vector in the induced
model of π. We have the following decomposition of the double coset into a
disjoint union of single cosets.

K

[
̟

1

]

K =
⊔

u∈o/p

[
̟ u

1

]

K ⊔
[
1
̟

]

K.

Hence, we get the key relation to obtain the explicit values of B0. For all
g ∈ H(F ), we have

∑

u∈o/p

B0(g

[
̟ u

1

]

) +B0(g

[
1
̟

]

) = λB0(g), λ = q1/2
(
χ1(̟) + χ2(̟)

)
.

(25)

We wish to use the above equation with g =

[
̟m

1

]

. As will be clear, the

case m = 0 is the most complicated and uses a lot of information regarding
the underlying number theory. Of course, that case occurs only if Ω is also
unramified.
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14 Rodney Keaton and Ameya Pitale

Lemma. 3.2 We have

B0(

[
̟m

1

][
1
̟

]

) =







ωπ(̟)B0(

[

̟m−1

1

]

) if m > 0;

B0(

[

̟

1

]

) if m = 0, a ∈ o×;

Ω(̟L)B0(1) if m = 0, a ∈ p,
(

L
p

)

= 0;

Ω(1, ̟)B0(1) if m = 0, a ∈ p,
(

L
p

)

= 1.

(26)

Proof. The m > 0 case is clear. Let m = 0. By Lemma 3.1, we can assume
that c(Ω) = 0. Let a ∈ o×. We have the matrix identity

t(x, y)

[
1
̟

]

=

[
̟

1

] [
c

−a b̟

]

︸ ︷︷ ︸

∈K

, t(x, y) =

[
c

−a b

]

.

Note that, in this case, we have t(x, y) ∈ o×L and hence Ω(t(x, y)) = 1. This
gives us the m = 0, a ∈ o× case.

Now let a ∈ p. By Lemma 2.1 of [4], we see that this implies
(

L
p

)

= 0 or 1.

First let
(

L
p

)

= 0. Again by Lemma 2.1 of [4], we have vL(β) = v(a) = 1,

which implies that b ∈ p. We have the matrix identity

t(x, y)

[
1
̟

]

=

[
c

− a

̟ −b

]

∈ K, with x = − b

2̟
, y =

1

̟
.

We have Ω(t(x, y)) = Ω(̟−1(−b+ cβ)) = ωπ(̟)−1Ω(β̄) = ωπ(̟)−1Ω(̟L) =
Ω(̟L)

−1. Here, we have again used that c(Ω) = 0. Hence, we get the m =

0, a ∈ p,
(

L
p

)

= 0 case.

Now, let
(

L
p

)

= 1. Since d ∈ o× and b+
√
d

2c
b−

√
d

2c = a

c
, we have v(b−

√
d

2c ) =

v(a). If v(a) = 1, then the same matrix identity as above is valid. In this case

Ω(t(x, y)) = ωπ(̟)−1Ω(β̄) = ωπ(̟)−1Ω(b−
√
d

2c , b+
√
d

2c ) = ωπ(̟)−1Ω(̟, 1) =
Ω(1, ̟)−1. If v(a) > 1, then we have the matrix identity

t(x, y)

[
1
̟

]

=

[
1 c

−a/̟ −b+̟

]

∈ K, with x = 1− b

2̟
, y =

1

̟
.

In this case,

Ω(t(x, y)) = Ω(̟−1(̟ − cβ̄))

= ωπ(̟)−1Ω(̟ − c
b−

√
d

2c
, ̟ − c

b+
√
d

2c
)

= ωπ(̟)−1Ω(̟, 1)

= Ω(1, ̟)−1,
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since b+
√
d

2c ∈ o× and v(b−
√
d

2c ) = v(a) > 1. This completes the proof of the
lemma.

Lemma. 3.3 Let u ∈ (o/p)×,m ≥ c(Ω). We have that B0(

[
̟m

1

][
̟ u

1

]

) is

equal to







Ω(̟L)B0(1) if m = 0,
(

L
p

)

= 0, a ∈ o×, u = u0;

Ω(̟, 1)B0(1) if m = 0,
(

L
p

)

= 1, a ∈ o×, u = (−b+
√
d)/(2a);

Ω(1, ̟)B0(1) if m = 0,
(

L
p

)

= 1, a ∈ o×, u = (−b−
√
d)/(2a);

Ω(̟, 1)B0(1) if m = 0,
(

L
p

)

= 1, a ∈ p, u = −c/b;

B0(

[

̟m+1

1

]

) otherwise.

(27)

Here, in the
(

L
p

)

= 0 case u0 is the unique element of o/p such that u0+β 6∈ o×L .

Proof. For u ∈ (o/p)× and m ≥ 0, set αu,m := c + b̟mu + a̟2mu2. First
assume that αu,m ∈ o×. Then we have the matrix identity

t(x, y)

[
̟m

1

][
̟ u

1

]

=

[
̟m+1

1

] [
1

a̟2m+1u
c

αu,m

c

]

︸ ︷︷ ︸

∈K

,

with x = 1 + bu̟m

2c and y ∈ −u̟m

c
. Note that, in this case, t(x, y) = 1 +

u̟mβ̄ ∈ 1 +Pc(Ω), since m ≥ c(Ω). Hence, Ω(t(x, y)) = 1.

Now, suppose that αu,m ∈ p. This implies that m = 0 and
(

L
p

)

= 0, 1. Hence,

c(Ω) = 0. First assume that
(

L
p

)

= 0. If a ∈ p, then b ∈ p and hence αu,0 ∈ o×

for all u ∈ (o/p)×. So we are in the previous case. If a ∈ o×, then there is a
unique u0 ∈ (o/p)× such that αu0,0 ∈ ̟o×. Hence, a+b(au0/c)+c(au0/c)

2 ∈
̟o×, which implies that vL(au0/c + β) = 1. We have the following matrix
identity

t(x, y)

[
̟ u0

1

]

=

[
1 + b

au0

αu0,0

a̟u0

−u−1
0

]

∈ K, with y =
1

a̟u0
, x = ̟−1 +by/2.

Note that Ω(t(x, y)) = Ω(̟−1 + by/2 + y
√
d/2) = Ω(̟−1 + c/(̟au0)β) =

ωπ(̟)−1Ω(au0/c + β) = ωπ(̟)−1Ω(̟L) = Ω(̟L)
−1. The other cases are

computed similarly.
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16 Rodney Keaton and Ameya Pitale

3.2.3 Values of the spherical vector in the Waldspurger model

We have the following result for the explicit values of B0.

Proposition. 3.4 Let π = χ1 ×χ2 with χ1χ
−1
2 6= | |±1 and χ1, χ2 unramified.

Let Ω be a character of L× such that Ω|F× = ωπ and c(Ω) as defined in (20).
Let π be given by its (S,Ω)-Waldspurger model and let B0 be a spherical vector
in π. Let

R(x) :=
∑

m≥c(Ω)

B0(

[
̟m

1

]

)xm

be a formal power series. Let λ = q1/2
(
χ1(̟) + χ2(̟)

)
. Then we have the

following formula

R(x) =
(q − κx)xc(Ω)

ωπ(̟)x2 − λx+ q
B0(

[
̟c(Ω)

1

]

), (28)

where

κ =







0 if c(Ω) > 0;
λ

q+1 if c(Ω) = 0,
(

L
p

)

= −1;

Ω(̟L) if c(Ω) = 0,
(

L
p

)

= 0;

− λ
q−1 + q

q−1 (Ω(̟, 1) + Ω(1, ̟)) if c(Ω) = 0,
(

L
p

)

= 1.

(29)

Proof. For m ≥ 0, we set Am = B0(

[
̟m

1

]

). Using (25) with g =

[
̟m

1

]

and Lemmas 3.1, 3.2, 3.3, we get for m ≥ c(Ω),m > 0

qAm+1 + ωπ(̟)Am−1 = λAm. (30)

From this we get the following relation between the generating series.

q
∞∑

max(c(Ω),1)

Am+1x
m + ωπ(̟)

∞∑

max(c(Ω),1)

Am−1x
m = λ

∞∑

max(c(Ω),1)

Amx
m. (31)

Let us first consider the case where c(Ω) > 0. Then (31) gives us

q

x

∞∑

c(Ω)

Am+1x
m+1 + ωπ(̟)x

∞∑

c(Ω)

Am−1x
m−1 = λ

∞∑

c(Ω)

Amx
m,

which implies

q
(
R(x)−Ac(Ω)x

c(Ω)
)
+ ωπ(̟)x2R(x) = λxR(x).

Solving for R(x) we get the c(Ω) > 0 case of the proposition.
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Next, let c(Ω) = 0. We get the following relation from (31)

q

x

∞∑

2

Amx
m + ωπ(̟)x

∞∑

0

Amx
m = λ

∞∑

1

Amx
m.

Hence, we get

q
(
R(x)−A0 −A1x

)
+ ωπ(̟)x2R(x) = λx

(
R(x)−A0

)
.

Solving for R(x) we have

R(x) =
qA0 + qA1x− λA0x

ωπ(̟)x2 − λx+ q
.

We obtain the following information regarding the above numerator from Lem-
mas 3.2, 3.3 using (25) with g = 1.
(

L
p

)

= −1: We have (q + 1)A1 = λA0. Hence

qA0 + qA1x− λA0x = A0(q −
λ

q + 1
x).

(
L
p

)

= 0: We have qA1 +Ω(̟L)A0 = λA0. Hence

qA0 + qA1x− λA0x = A0(q − Ω(̟L)x).

(
L
p

)

= 1: We have (q − 1)A1 +
(
Ω(̟, 1) + Ω(1, ̟)

)
A0 = λA0. Hence

qA0 + qA1x− λA0x = A0(q − (− λ

q − 1
+

q

q − 1
(Ω(̟, 1) + Ω(1, ̟)))x).

This competes the proof of the proposition.

3.3 Explicit values for an unramified twist of the Steinberg representation

Throughout this section we assume that the representation π is an unramified
twist of the Steinberg representation, i.e., π = χStGL2 , where χ is an unramified
character of F×. We let Ω be any character of L× such that Ω|F× = ωπ = χ2.
For the field case, [24] states that π has an (S,Ω)-Waldspurger model if and
only if Ω 6= χ◦NL/F . Note, if B0 is a new form in the (S,Ω)-Waldspurger model

of π, then B0 is right invariant under the Iwahori subgroup I =

[
o o

p o

]

∩K,

∑

u∈o/p

B0(g

[
1
u 1

]

) = −B0(gw), for w =

[
0 1
−1 0

]

, (32)
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18 Rodney Keaton and Ameya Pitale

and

B0(g

[
1

̟

]

) = −χ(̟)B0(g). (33)

Using (23), we have the following double coset decomposition.

H(F ) =
⊔

m>0

(

T (F )

[
̟m

1

]

I ⊔ T (F )
[
̟m

1

]

wI
)

(34)

⊔







T (F )wI if
(

L
p

)

= −1;

T (F )wI ⊔ T (F )
[

1

u0 1

]

I if
(

L
p

)

= 0;

T (F )wI ⊔ T (F )
[

1

u1 1

]

I ⊔ T (F )
[

1

u2 1

]

I if
(

L
p

)

= 1.

In the ramified case, u0 is the unique element of o/p such that a+bu0 + cu20 ∈
p. In the split case, u1, u2 are the two distinct elements of o/p such that
a+ bui + cu2i ∈ p. We will begin by restating the relevant portions of Lemma
4.4 in [4].

Lemma. 3.5 [4, Lemma 4.4] Suppose that B0 is a new form in the (S,Ω)-
Waldspurger model of π. Then,

i) For m > 0, we have

B0(

[
̟m

1

]

w) =
χ(̟)m

qm
B0(w).

ii) For m > 0, we have

B0(

[
̟m

1

]

) =

{

−χ(̟)m

qm−1 B0(w) if m ≥ c(Ω)

0 if m < c(Ω).

iii) If L/F is ramified, then

B0(

[
1
u0 1

]

) =

{

−qB0(w) if c(Ω) = 0

0 if c(Ω) > 0.

We note that this lemma is only stated for fields in [4], but the proof of part i)
and part ii) in the split case follows from exactly the same argument.
We will also need the following analogue of part iii) of the previous lemma in
the split case. Note, from Thm. 1.6 in [4], we know that π always admits an
(S,Ω)-Waldspurger model when L/F is split.
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Lemma. 3.6 Suppose that
(

L
p

)

= 1. Let u1, u2 ∈ o be inequivalent modulo p

and satisfy cu2i + bui + a ∈ p for i = 1, 2. Then,

i) If c(Ω) > 0, then we have, for i = 1, 2,

B0(

[
1
ui 1

]

) = 0.

ii) Let c(Ω) = 0. Assume that Ω(1, ̟) = χ(̟). Then B0(w) = 0 and

B0(

[
1
u1 1

]

) = −B0(

[
1
u2 1

]

).

iii) Let c(Ω) = 0. Assume that Ω(1, ̟) 6= χ(̟). Then B0(w) 6= 0,

B0(

[
1
u1 1

]

) =
q − 1

χ(̟)Ω(1, ̟)−1 − 1
B0(w),

and

B0(

[
1
u2 1

]

) =
q − 1

χ(̟)−1Ω(1, ̟)− 1
B0(w).

Proof. First, set x =
√
d/2 +̟ and y = 1. Then, one can check that

t(x, y)

[
1
u2 1

]

=

[
1
u1 1

][
1
̟

]

w

[
−1

1

][

−
√
d/c 1
̟ c

]

.

Note, the last two matrices on the right hand side are in I. Thus, we have

Ω(
√
d+̟,̟)B0(

[
1
u2 1

]

) = B0(

[
1
u1 1

][
1
̟

]

w).

Also, by (33) we have

B0(

[
1
u1 1

][
1
̟

]

w) = −χ(̟)B0(

[
1
u1 1

]

).

Hence, we get

Ω(
√
d+̟,̟)B0(

[
1
u2 1

]

) = −χ(̟)B0(

[
1
u1 1

]

). (35)

Now, let us assume that c(Ω) > 0. Let (a1, a2) ∈ o×⊕o× satisfy Ω((a1, a2)) 6= 1,
which is possible since c(Ω) > 0. Using this, we set

x =
a1 + a2

2
, y =

a1 − a2√
d

.
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Then, we have that
[

1
−u1 1

]

t(x, y)

[
1
u1 1

]

∈ I.

Thus,

Ω((a1, a2))B(

[
1
u1 1

]

) = B(t(x, y)

[
1
u1 1

]

) = B(

[
1
u1 1

]

),

and since Ω((a1, a2)) 6= 1, we have B(

[
1
u1 1

]

) = 0. By (35), we also get

B(

[
1
u2 1

]

) = 0. This completes the proof of part i).

Next, if we set x = b/2 + cu and y = 1 for any u ∈ o/p with u not equivalent
to u1 or u2 modulo p, then we have

[
1
u 1

][
−c b+ cu

−βu,0

]

= t(x, y)w,

where βu,0 is defined in Lemma 3.2 of [14]. From this, it follows that

B0(

[
1
u 1

]

) = Ω(u+ β)B0(w).

Applying this to (32) we have

B0(

[
1
u1 1

]

) +B0(

[
1
u2 1

]

) = −B0(w)







∑

u∈o/p
u6=u1,u2

Ω(u+ β) + Ω(1)






.

By Lemma 3.4 in [14], the summation on the right hand side is over a complete
set of representatives for o×L/(o

×+P), and hence is equal to q−1 since c(Ω) = 0.
So, we get

B0(

[
1
u1 1

]

) +B0(

[
1
u2 1

]

) = −(q − 1)B0(w).

Combining this with (35), we have

(χ(̟)−1Ω(1, ̟)− 1)B0(

[
1
u2 1

]

) = (q − 1)B0(w),

where we have used the fact that Ω is unramified and that
√
d ∈ o×. Parts ii)

and iii) now follow.

When B0(w) 6= 0, we will choose B0 to be normalized so that B0(w) = 1.
Note, if π admits a non-zero (S,Ω)-Waldspurger model and B0(w) = 0, then
it is necessarily the case that L/F is split and c(Ω) = 0. In that case, we
normalize so that

B0(

[
1
u1 1

]

) = −B0(

[
1
u2 1

]

) = 1.
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4 Local non-archimedean zeta integral

In this section, we will compute the local integral (12) in the non-archimedean
case. We will first compute the zeta integral when the GL(2) representation is
unramified. Finally, we will compute the zeta integral in several cases when the
GL(2) representation is an unramified twist of the Steinberg representation.

4.1 The local unramified integral

Now, we will compute the local integral (12) given by

Z(s) =

∫

T (F )\H(F )

f(ηh, s)B(h)dh.

The measure is normalized so that

∫

T (F )\T (F )K

dt = 1.

Let us assume that Ω1,Ω2 are unramified characters and π is unramified. This
implies that c(Ω) = 0. Choose the unramified section f given by

f(

[
u v
w

]

k) = Ω1(u)Ω2(w)|u/w|s+1/2
L , for

[
u v
w

]

∈ B(L) and k ∈ H(oL).

Let B = B0 the spherical vector in π normalized so that B0(1) = 1. This is
possible by Proposition 3.4. Hence, we have

Z(s) =

∞∑

m=0

∫

T (F )\T (F )





̟m

1



K

f(ηh, s)B0(h)dh

=

∞∑

m=0

Vmf(

[
̟m

1

]

, s)B0(

[
̟m

1

]

),

where, by Lemma 3.5.3 of [5], we have

Vm :=

∫

T (F )\T (F )





̟m

1



K

dt =

{

(1−
(

L
p

)

q−1)qm if m ≥ 1;

1 if m = 0.
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We have also used that

[
̟−m

1

]

η

[
̟m

1

]

∈ H(oL) since β ∈ oL. Hence, we

get

Z(s) =

∞∑

m=0

(1−
(L

p

)

q−1)qmΩ1(̟
m)|̟m|s+1/2

L B0(

[
̟m

1

]

) +
(L

p

)

q−1

= (1−
(L

p

)

q−1)

∞∑

m=0

(
Ω1(̟)q−2s

)m
B0(

[
̟m

1

]

) +
(L

p

)

q−1

= (1−
(L

p

)

q−1)R(Ω1(̟)q−2s) +
(L

p

)

q−1.

Using the formula for R(x) from Proposition 3.4, after some computation, we
get the following result.

Theorem. 4.1 Let π,Ω1 and Ω2 be unramified. We have

Z(s) =
L(2s+ 1/2, π × Ω1|F×)

L(2s+ 1,Ω1Ω
−1
2 )

, (36)

where L(s,Ω1Ω
−1
2 ) is equal to







(
1− Ω1Ω

−1
2 (̟)q−2s

)−1
if
(

L
p

)

= −1;
(
1− Ω1Ω

−1
2 (̟L)q

−s
)−1

if
(

L
p

)

= 0;
(
1− Ω1Ω

−1
2 (̟, 1)q−s

)−1(
1− Ω1Ω

−1
2 (1, ̟)q−s

)−1
if
(

L
p

)

= 1.

4.2 The local integral for the unramified twist of a Steinberg representation

We now proceed to the case that π = χSt is the unramified twist of a Steinberg
representation, and we let B0 denote the new-form in the (S,Ω)-Waldspurger
model of π which was introduced in Section 3.3.

4.2.1 Preliminaries

For the calculation of Z(s) we will require certain volume calculations through-
out. Note, for a subgroup K ′ ⊂ K we set

VK′,m =

∫

T (F )\T (F )





̟m

1



K′

dh,

where we have normalized the measure so that VK,0 = 1. In what follows, we
set I ⊂ K to be the Iwahori subgroup.

Lemma. 4.2 For m ≥ 0 we have
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i)

VwI,m =
qm+1(1 −

(
L
p

)

q−1)

q + 1
.

ii) For m ≥ 1,

VI,m =
qm(1−

(
L
p

)

q−1)

q + 1
.

iii) If
(

L
p

)

= 0, then

V



1
u0 1



I,0

=
1

q + 1
.

iv) If
(

L
p

)

= 1, then

V



1
u1 1



I,0

= V



1
u2 1



I,0

=
1

q + 1
.

Proof. Parts i) and ii) follow from similar arguments as in the proof of Lemmas
3.7.1, 3.7.2 and 3.7.3 in [16]. Parts iii) and iv) follow from part i) by applying
Lemma 4.1 in [18].

Throughout, we will use the following expression for Z(s) which is obtained by
applying (34),

Z(s) =
∞∑

m=1












∫

T (F )\T (F )





̟m

1



I

f(ηh, s)B0(h)dh+

∫

T (F )\T (F )





̟m

1



wI

f(ηh, s)B0(h)dh












+

∫

T (F )\T (F )K

f(ηh, s)B0(h)dh.

(37)

4.2.2 Integrating against a ramified principal series

In this section we assume that c(Ω1) = 1 and c(Ω2) = 0, so that c(Ω) = 1,
which implies that π has an (S,Ω)-Waldspurger model. We choose the section
f ∈ I(Ω1,Ω2, s) given by the formula

f(h, s) =







Ω1(a)Ω2(d)
∣
∣a
d

∣
∣
s+1/2

L
if h ∈

[

a ∗
d

][

1 0

1 1

]

K1(PL),

0 o.w.
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where [
a ∗
d

]

∈ B(L),

and

K1(PL) =

{[
a b
c d

]

∈ H(oL) : c ∈ PL, d ∈ 1 +PL

}

.

Note, when L is a field, one can easily show that

B(L)

[
1 0
1 1

]

K1(PL) = B(L)

[
1 0
1 1

]

K1(pL),

which justifies our choice of section f .
We will need the following lemma for evaluating the zeta integral Z(s).

Lemma. 4.3 Let f be as above. Then, f is right invariant with respect to I.

Proof. Any element of I can be written as the product of an element of Z(o×)
and an element in K1(PL). Now, using the relation (Ω1Ω2)|F× = ω−1

π and the
fact that ωπ is unramified, we get the lemma.

Using this lemma, we obtain the following result which simplifies our zeta
integral.

Proposition. 4.4 With notation as above we have,

i) For m > 0,
∫

T (F )\T (F )





̟m

1



I

f(ηh, s)B0(h)dh = 0.

ii)
∫

T (F )\T (F )K

f(ηh, s)B0(h)dh = VwI,0.

Proof. First, we prove i). Applying Lemma 4.3, it is enough to show that

η

[
̟m

1

]

/∈ B(L)

[
1 0
1 1

]

K1(PL).

This follows from the fact that η

[
̟m

1

]

∈ B(L)K1(PL) and B(L)K1(PL) ∩

B(L)

[
1 0
1 1

]

K1(PL) is empty. In order to prove ii), note that we can rewrite w

as

w =

[
−1

−1

][
1 −1

1

][
1
1 1

][
1 −1

1

]

,
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from which it follows that ηw = w(w−1ηw) is in the support of f giving us
∫

T (F )\T (F )wI

f(ηh, s)B0(h)dh = VwI,0.

Note that we have used c(Ω) > 0 in the split case to getB0(w) 6= 0. By Lemmas

3.5 and 3.6, we have B0(

[
1
u0 1

]

) = 0 if L/F is a ramified field extension and

B0(

[
1
ui 1

]

) = 0, i = 1, 2 if L/F is a split extension. Now part ii) follows from

(34).

With this proposition in hand, we are now prepared to compute the zeta inte-
gral, i.e.,

Z(s) =

∞∑

m=1












∫

T (F )\T (F )





̟m

1



I

f(ηh, s)B0(h)dh+

∫

T (F )\T (F )





̟m

1



wI

f(ηh, s)B0(h)dh












+

∫

T (F )\T (F )K

f(ηh, s)B0(h)dh

= VwI,0 +
∞∑

m=1

∫

T (F )\T (F )





̟m

1



wI

f(ηh, s)B0(h)dh

=

∞∑

m=0

VwI,mf(

[
−̟m

−1

][
1

−1

]

)B0(

[
̟m

1

]

w)

=

∞∑

m=0

qm(q −
(

L
p

)

)

q + 1
Ω1(̟)m|̟m|s+1/2

L χ(̟)mq−m

=
q −

(
L
p

)

q + 1

∞∑

m=0

(Ω1(̟)χ(̟)q−2s−1)m.

With this calculation, we have shown the following theorem.

Theorem. 4.5 Let π = χStGL2
with χ an unramified character of F×. Let

Ω1 and Ω2 be characters of L× with c(Ω1) = 1 and Ω2 being unramified, and
suppose that Ω1Ω2|F× = ω−1

π . Then,

Z(s) =
q −

(
L
p

)

q + 1

L(2s+ 1/2, π × Ω1|F×)

L(2s+ 1,Ω1Ω
−1
2 )

.
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4.2.3 Integrating against an unramified principal series

In this section we consider the case that the characters Ω1 and Ω2 are unram-
ified, and I(Ω1,Ω2, s) is irreducible.
In this setting, the condition Ω|F× = χ2 gives that Ω = χ ◦ NL/F when L/F
is unramified, hence π does not have an (S,Ω)-Waldspurger model. Similarly,
when L/F is ramified we have that Ω = χ′χ◦NL/F where χ′ is either trivial or
the unique unramified quadratic character. It is only in the latter case that π
has an (S,Ω)-Waldspurger model. Finally, when L/F is split, we simply apply
Thm. 1.6 from [4] to see that π has an (S,Ω)-Waldspurger model.
If we choose the unramified section

f(

[
a ∗
d

]

k) = Ω1(a)Ω2(d)|a/d|s+1/2
L , for

[
a ∗
d

]

∈ B(L) and k ∈ H(oL), (38)

then an inner K-integral gives a vector in π that is spherical, which is impos-
sible. Hence, for that choice of f , we have Z(s) = 0.
Alternatively, considering the same Ω1,Ω2, we also calculate the local zeta
integral by choosing the following section

f̂(bk) = f(bkg, s), for b ∈ B(L), k ∈ GL2(oL), g =

[
̟−1

L

1

]

,

where f is the section from (38). Note, this is an old vector in I(Ω1,Ω2, s).
We present the following calculation, which will be needed to evaluate the zeta
integral.

Proposition. 4.6 Let f be as above. Then,
∫

T (F )\T (F )K

f̂(ηh, s)B0(h)dh is

equal to






−Ω1(̟L)−1qs+3/2(1−Ω1(̟L)Ω2(̟L)−1q−2s−1)
q+1 if

(
L
p

)

= 0

−Ω1(̟,1)−1qs+1/2(1−Ω1(̟,1)Ω2(̟,1)−1q−2s−1)
q+1 if

(
L
p

)

= 1, B0(w) = 0

−(q−1)Ω1(̟,1)−1qs+1/2(1−Ω1(̟,1)Ω2(̟,1)−1q−2s−1)
(q+1)(1−χ(̟)−1Ω(1,̟)) if

(
L
p

)

= 1, B0(w) = 1







.

Proof. Suppose that L/F is ramified. Note, in this case we have B0(

[
1
u0 1

]

) =

−q by Lemma 3.5. Furthermore, the integral breaks up as
∫

T (F )\T (F )K

f̂(ηh, s)B0(h)dh =

∫

T (F )\T (F )wI

f̂(ηh, s)B0(h)dh

+

∫

T (F )\T (F )





1
u0 1



I

f̂(ηh, s)B0(h)dh.
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In order to compute the first integral, we use that f̂ is right invariant under I,
which follows from

I ⊆
[
̟−1

L

1

]

H(oL)

[
̟L

1

]

,

We also need the matrix identity

ηw =

[
̟L

̟−1
L

][
̟−1

L

1

][
1

−1 β̟L

][
̟L

1

]

. (39)

Combining with the volume calculation in Lemma 4.2 we have
∫

T (F )\T (F )wI

f̂(ηh, s)B0(h)dh = VwI,0Ω2(̟L)
−1|̟L|s+1/2

L B0(w)

=
q−s+1/2

q + 1
Ω2(̟L)

−1.

The evaluation of the second integral follows by noting that

η

[
1
u0 1

]

=

[
̟−1

L

1

][
1

̟−1
L (β + u0) 1

][
̟L

1

]

∈
[
̟−1

L

1

]

H(oL)

[
̟L

1

]

.

From which we obtain
∫

T (F )\T (F )





1
u0 1



I

f̂(ηh, s)B0(h)dh =
−qs+3/2

q + 1
Ω1(̟L)

−1.

Combining, we have
∫

T (F )\T (F )K

f̂(ηh, s)B0(h)dh is equal to

−qs+3/2Ω1(̟L)
−1(1− Ω1(̟L)Ω2(̟L)

−1q−2s−1)

q + 1
.

The split case is computed in a similar way.

In order to calculate Z(s) we also need the following integral calculations, which
we calculate using Lemma 4.2 and Lemma 3.5, from which we obtain that

∫

T (F )\T (F )





̟m

1



I

f̂(ηh, s)B0(h)dh

is equal to

−(1−
(

L
p

)

q−1)q

q + 1
Ω1(̟L)

−1qs+1/2(Ω1(̟)χ(̟)q−2s−1)mB0(w),
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and ∫

T (F )\T (F )





̟m

1



wI

f̂(ηh, s)B0(h)dh

is equal to

(1−
(

L
p

)

q−1)q

q + 1
Ω2(̟L)

−1q−s−1/2(Ω1(̟)χ(̟)q−2s−1)mB0(w).

Combining this with the previous proposition we have the following theorem.

Theorem. 4.7 Let π = χStGL2 with χ an unramified character of F×. Let

Ω1, Ω2, and f̂ be as above. Then, Z(s) is equal to

− qs+
1
2

q + 1

L(2s+ 1/2, π × Ω1|F×)

L(2s+ 1,Ω1Ω
−1
2 )

×







qΩ1(̟L)
−1 if

(
L
p

)

= 0;

Ω1(̟, 1)
−1 if

(
L
p

)

= 1, B0(w) = 0;

(q−1)Ω1(̟,1)−1

1−χ(̟)−1Ω(1,̟) if
(

L
p

)

= 1, B0(w) = 1.

5 Local archimedean case

Now, let F = R. Let K = SO(2) be the maximal compact subgroup of
H(R). For ℓ ≥ 1, let π be the discrete series representation Dµ(ℓ). This
representation has the lowest non-negative weight ℓ and central character
[
u
u

]

7→ sgn(u)ℓ|u|µ. We need to obtain the values of a weight ℓ vector B0

in the Waldspurger model of Dµ(ℓ). We obtain a differential equation satisfied
by B0 using the fact that B0 is annihilated by the lowering operator. For this,
first recall that the Lie algebra g = sl(2,R) of SL(2,R) is generated by

D =

[
1
−1

]

, E =

[
1
]

, F =

[

1

]

,

and the lowering operator L is an element of the complexified Lie algebra gC
and is defined by

L =
1

2

[
1 −i
−i 1

]

=
1

2

(
D − iE − iF

)
. (40)

An element X ∈ g acts on B0 by

(X.B0)(g) =
d

dt

∣
∣
∣
t=0

B0(g exp(tX)). (41)

We will follow the ideas from [17]. We will consider two special cases here

corresponding to S = ±
[
1
1

]

and S = ±
[
1
−1

]

, the non-split and split case

respectively.
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5.1 The non-split case

Let S = ±
[
1
1

]

. Then

T (R) = {
[
x y
−y x

]

: x, y ∈ R, x2 + y2 6= 0} ≃ C×

by the isomorphism

[
x y
−y x

]

7→ x + iy. We see that any element of t ∈ T (R)

can be written as

t =

[
γ
γ

]

r(δ), where γ > 0, r(δ) =

[
cos(δ) sin(δ)
− sin(δ) cos(δ)

]

, with δ ∈ R.

Let Ω be a character of C× given by

Ω(

[
γ
γ

]

r(δ)) = γµeimδ, (42)

for some m ∈ Z. Notice that we want Ω|R× = ωπ, and hence we must have
m ≡ ℓ (mod 2). By the Cartan decomposition, we have (see (18) of [17])

GL(2,R) = GL(2,R)+ ⊔
[
−1

1

]

GL(2,R)+

= T (R){
[
ζ
ζ−1

]

: ζ ≥ 1}SO(2)

⊔ T (R)
[
−1

1

]

{
[
ζ
ζ−1

]

: ζ ≥ 1}SO(2).

Let us assume that π = Dµ(ℓ) is given by its (Ω, S)-Waldspurger model. Let
B0 ∈ π be weight ℓ vector. Hence, we have

B0(tgr(θ)) = Ω(t)eiℓθB0(g).

If B0(1) 6= 0, then we get the necessary condition thatm = ℓ. If B0(

[
−1

1

]

) 6=

0, then, using

[
−1

1

]

r(δ)

[
−1

1

]

= r(−δ), we get the necessary condition that

m = −ℓ. In the first case, support of B0 is contained in GL(2,R)+ and in the

latter case, the support of B0 is contained in

[
−1

1

]

GL(2,R)+. Let us first

consider the case m = ℓ. Let us set f(ζ) := B0(

[
ζ
ζ−1

]

) for ζ ≥ 1. We wish

to obtain the action of L on B0. For this, suppose
[
ζ
ζ−1

]

exp(tX) =

[
γ(t)

γ(t)

]

r(δ(t))

[
ζ(t)

ζ(t)−1

]

r(θ(t)),
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where γ(t), δ(t), ζ(t) and θ(t) are smooth functions with γ(0) = 1, δ(0) = θ(0) =
0 and ζ(t) = ζ. Then

(X.B0)(

[
ζ
ζ−1

]

) =
d

dt

∣
∣
∣
t=0

B0(

[
γ(t)

γ(t)

]

r(δ(t))

[
ζ(t)

ζ(t)−1

]

r(θ(t)))

=
d

dt

∣
∣
∣
t=0

γ(t)µeiℓ(θ(t)+δ(t))f(ζ(t))

=
(

µγ′(0) + iℓ(θ′(0) + δ′(0))
)

f(ζ) + ζ′(0)f ′(ζ). (43)

Hence, we need to find the values of the derivatives at 0 of the above functions
for X = D,E, F .

X = D case: Let X = D. Then exp(tD) =

[
et

e−t

]

. Hence, γ(t) = 1, δ(t) =

θ(t) = 0 for all t and ζ(t) = ζet. Hence (43) gives us

(D.B0)(

[
ζ
ζ−1

]

) = ζf ′(ζ). (44)

X = E case: Let X = E. Then exp(tE) =

[
1 t
1

]

. Hence

[
ζ
ζ−1

][
1 t
1

]

= r(δ(t))

[
ζ(t)

ζ(t)−1

]

r(θ(t)). (45)

We recall the following lemma and proof from the expanded version of [15].

Lemma. 5.1 Let h =

[
y x
y−1

]

with y 6= 0. Then h = k1

[
z
z−1

]

k2, with

k1, k2 ∈ SO(2) and

z2 =
1 + x2y2 + y4 +

√

(1 + x2y2 + y4)2 − 4y4

2y2
.

Proof. We may assume that x 6= 0. By the Cartan decomposition of SL2(R),

there exist k1, k2 ∈ SO(2) and z > 1 such that h = k1

[
z
z−1

]

k2. Write

k1 =

[
cos(δ) sin(δ)
− sin(δ) cos(δ)

]

for δ ∈ [0, 2π). Applying both sides of h = k1

[
z
z−1

]

k2

to i as fractional linear transformations, and using that SO(2) stabilizes i, we
get

y2i+ xy =
cos(δ)z2i+ sin(δ)

− sin(δ)z2i+ cos(δ)
.
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Simplifying and comparing the coefficients of i and the constant terms, we get

−z2xy sin(δ) = cos(δ)(z2 − y2), (1− z2y2) sin(δ) = xy cos(δ).

Note that, since x, y 6= 0, we have sin(δ), cos(δ) 6= 0 and y 6= ±z,±1/z. Hence,
we can divide the above two equations and after simplification obtain y2z4 −
(1 + x2y2 + y4)z2 + y2 = 0, which gives the lemma.

Hence, we get

ζ(t)2 =
1 + ζ4t2 + ζ4 +

√

(1 + ζ4t2 + ζ4)2 − 4ζ4

2ζ2
,

and
(1 − ζ2(t)ζ2) sin(δ(t)) = ζ2t cos(δ(t)).

Using implicit differentiation, we get

ζ′(0) = 0, δ′(0) =
ζ2

1− ζ4
.

Now, comparing the (2, 1) coefficient of both sides of (45) and using implicit
differentiation, we get

θ′(0) = −δ
′(0)

ζ2
= − 1

1− ζ4
.

Substituting into (43), we get

(E.B0)(

[
ζ
ζ−1

]

) =
−iℓ

1 + ζ2
f(ζ). (46)

X = F case: Let X = F . Then exp(tF ) =

[
1
t 1

]

. We have

[
ζ
ζ−1

][
1
t 1

]

=

[
−1

1

][
ζ−1 −ζ−1t

ζ

][
1

−1

]

= r(3π/2)

[
ζ−1 −ζ−1t

ζ

]

r(π/2).

Arguing as in the X = E case, we get

ζ′(0) = 0, δ′(0) =
ζ2

1− ζ4
, θ′(0) = − ζ4

1− ζ4
,

which gives us

(F.B0)(

[
ζ
ζ−1

]

) =
iℓζ2

1 + ζ2
f(ζ). (47)

Using the definition (40) and the formulas (44), (46) and (47), we get

(L.B0)(

[
ζ
ζ−1

]

) =
1

2

(

ζf ′(ζ) − ℓ
1− ζ2

1 + ζ2
f(ζ)

)

. (48)
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Proposition. 5.2 Let Ω be a character of T (R) given by (µ,m) ∈ C × Z as
defined in (42). For ℓ > 0, let Dµ(ℓ) be the lowest weight discrete series module
of H(R). If Dµ(ℓ) has a (Ω, S)-Waldspurger model then the model is unique
and m = ±ℓ. The lowest weight vector B0 in the (Ω, S)-Waldspurger model of
Dµ(ℓ) is given by

B0(g) = γµeiℓ(δ+θ)
( ζ

1 + ζ2

)ℓ

, (49)

if

m = ℓ, g =

[
γ
γ

]

r(δ)

[
ζ
ζ−1

]

r(θ)

or

m = −ℓ, g =
[
γ
γ

]

r(δ)

[
−ζ

ζ−1

]

r(θ),

and B0(g) = 0, otherwise.

Proof. Setting (L.B0) ≡ 0 and (48) gives us the formula for B0 above in the
case ℓ = m. The case ℓ = −m is very similar. Since Dµ(ℓ) is generated by the
lowest weight vector B0, we get the uniqueness of the Waldspurger model.

5.2 The split case

Let S =

[
−1

1

]

. Then

T (R) = {
[
x y
y x

]

: x, y ∈ R, x2 − y2 6= 0}.

We have

T (R) ∋ t 7→ t−1
0

[
x y
y x

]

t0 =

[
x+ y

x− y

]

≃ R× × R×,

where t0 =

[
1 1
1 −1

]

.

N = {
[
1 ζ
1

]

: ζ ∈ R} and A = {
[
u
v

]

: u, v ∈ R×}.

Using the Iwasawa decomposition, we get

H(R) = T (R)t0NSO(2). (50)

We have the character Ω of T (R) given by

Ω(

[
x y
y x

]

) = Ω(t0

[
x+ y

x− y

]

t−1
0 ) = sgn(x+y)ǫ1 |x+y|µ1sgn(x−y)ǫ2 |x−y|µ2 ,

(51)
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with µ1, µ2 ∈ C, ǫ1, ǫ2 ∈ {0, 1}.
Let us assume that π = Dµ(ℓ) is given by its (Ω, S)-Waldspurger model. Let
B0 ∈ π be weight ℓ vector. Hence, we have

B0(tgr(θ)) = Ω(t)eiℓθB0(g).

Using the fact that

[
−1

−1

]

∈ SO(2) ∩ T (R) and the central character of π,

we get the necessary condition that

ǫ1 + ǫ2 ≡ ℓ (mod 2) and µ1 + µ2 = µ. (52)

Let us set

f(ζ) := B0(t0

[
1 ζ
1

]

).

For X ∈ g, we have

t0

[
1 ζ
1

]

exp(tX) =

[
x(t) y(t)
y(t) x(t)

]

t0

[
1 ζ(t)

1

]

r(θ(t)),

where x(t), y(t), ζ(t) and θ(t) are smooth functions such that x(0) = 1, y(0) =
θ(0) = 0 and ζ(0) = ζ and x(t)± y(t) > 0. Hence

(X.B0)(t0

[
1 ζ
1

]

) =
d

dt

∣
∣
∣
t=0

B0(t0

[
1 ζ
1

]

exp(tX))

=
d

dt

∣
∣
∣
t=0

B0(

[
x(t) y(t)
y(t) x(t)

]

t0

[
1 ζ(t)

1

]

r(θ(t)))

=
(

µ1(x
′(0) + y′(0)) + µ2(x

′(0)− y′(0)) + iℓθ′(0)
)

f(ζ)

(53)

+ ζ′(0)f ′(ζ)

X = D case: Let X = D. Then

t0

[
1 ζ
1

]

exp(tD) = t0

[
1 ζ
1

][
et

e−t

]

= t0

[
et

e−t

]

t−1
0 t0

[
1 ζe−2t

1

]

.

Hence, x(t) + y(t) = et, x(t) − y(t) = e−t, θ(t) = 0 and ζ(t) = ζe−2t. Applying
(53), we get

(D.B0)(t0

[
1 ζ
1

]

) = (µ1 − µ2)f(ζ)− 2ζf ′(ζ). (54)

X = E case: Let X = E. Then

t0

[
1 ζ
1

]

exp(tE) = t0

[
1 ζ
1

][
1 t
1

]

= t0

[
1 ζ + t

1

]

.
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Hence, x(t)± y(t) = 1, θ(t) = 0 and ζ(t) = ζ + t. Applying (53), we get

(E.B0)(t0

[
1 ζ
1

]

) = f ′(ζ). (55)

X = F case: Let X = F . Then

t0

[
1 ζ
1

]

exp(tF ) = t0

[
1 ζ
1

][
1
t 1

]

= t0

[
1 + ζt ζ
t 1

]

.

Let

[
1 + ζt ζ
t 1

]

=

[
a
a−1

][
1 u
1

]

k, with a ∈ R>0, u ∈ R, k ∈ SO(2). Apply-

ing both sides to i as fractional linear transformation, and using that SO(2)
stabilizes i, we get

(1 + ζt)i+ ζ

ti+ 1
= a2i+ a2u.

Hence, we get the system of equations

1 + ζt = a2(1 + tu), ζ = a2(u− t).

This give us
a = (1 + t2)−1/2, u = (1 + t2)ζ + t.

Hence, we have

t0

[
1 ζ
1

]

exp(tF ) = t0

[
1 + ζt ζ
t 1

]

= t0

[
(1 + t2)−1/2

(1 + t2)1/2

][
1 (1 + t2)ζ + t

1

]

r(θ(t)).

This gives us x′(0)± y′(0) = 0, θ′(0) = 0, ζ′(0) = 1. Applying (53), we get

(F.B0)(t0

[
1 ζ
1

]

) = f ′(ζ). (56)

Using the definition (40) and formulas (54), (55) and (56), we get

(L.B0)(t0

[
1 ζ
1

]

) =
1

2

(

(µ1 − µ2)f(ζ) − (2ζ + 2i)f ′(ζ)
)

. (57)

Proposition. 5.3 Let Ω be a character of T (R) defined in (51) for µ1, µ2 ∈ C
and ǫ1, ǫ2 ∈ {0, 1}. For ℓ > 0, µ ∈ C, let Dµ(ℓ) be the lowest weight discrete
series module of H(R). A necessary condition for Dµ(ℓ) to have a (Ω, S)-
Waldspurger model is ǫ1 + ǫ2 ≡ ℓ (mod 2) and µ1 + µ2 = µ. If a Waldspurger
model exists, then it is unique. The lowest weight vector B0 in the (Ω, S)-
Waldspurger model of Dµ(ℓ) is given by

B0(tt0

[
1 ζ
1

]

r(θ)) = Ω(t)eiℓθ(2i+ 2ζ)
µ1−µ2

2 , (58)

for all t ∈ T (R), ζ, θ ∈ R.
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Remark. 5.4 One can consider another matrix S′ = αtMSM , with α ∈ R×

and M ∈ GL(2,R), instead of S =

[
−1

1

]

. The torus TS′ = {g ∈ H(R) :

tgS′g = det(g)S′} is given by TS′ = M−1TSM . The character Ω′ of TS′

corresponding to the character Ω of TS is given by Ω′(t′) := Ω(Mt′M−1). If B
is an element of a (S,Ω)-Waldspurger model of π, then

B′(g) := B(Mg), g ∈ H(R), (59)

is an element of a (S′,Ω′)-Waldspurger model of π. In the section below, we
will make some special choices of S′ and will use Proposition 5.3 and (59) to
obtain the explicit formulas of the weight ℓ vectors in the (S′,Ω′)-Waldspurger
model of π.

5.3 The local archimedean integral: the split case

In this section, we will compute the local archimedean integral. We will use
Proposition 5.3, for values of the weight ℓ vector in a Waldspurger model of π.

In Proposition 5.3, we considered the torus to be the stabilizer of S =

[
−1

1

]

.

For our global computation in the next section, we will need to consider a
more general choice of S, which we will give now. Let D > 0 be a fundamental
discriminant and set

S(D) :=







[
−D
4

1

]

if D ≡ 0 (mod 4);

[
1−D
4

1
2

1
2 1

]

if D ≡ 1 (mod 4).

(60)

First, assume thatD ≡ 0 (mod 4). In this case, we have S(D) = tMSM , where

M =

[√
D/2

1

]

. Let TS(D) be the torus that is defined as the stabilizer of

S(D) in GL(2). Then TS(D) =M−1TSM . Define ΩD : TS(D) → C by ΩD(t) =
Ω(MtM−1). LetBD be the weight ℓ vector in a (S(D),ΩD)-Waldspurger model
for π. Then we have

BD(g) = B0(Mg), (61)

where the values of B0(g) are given in Proposition 5.3.

We want to compute the following integral

Z∞(s) =

∫

T (R)\H(R)

f(ηh, s)BD(h)dh.

The measures are normalized as follows. For a function ϕ on H(R), we have
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that
∫

GL(2,R)+
ϕ(g)dg is equal to

∞∫

0

∫

R

∞∫

0

∫

SO(2,R)

ϕ(

[
u
u

][
v
v−1

][
1 ζ
1

]

k)u−1v−1dk dv dζ du,

where du, dv, dζ are the usual Lebesgue measures and
∫

SO(2,R) dk = 1. Hence,

for a function ϕ which is left invariant under TS(D)(R), using (50), we have

∫

T (R)\H(R)

ϕ(h)dh =

∫

R

∫

SO(2,R)

ϕ(M−1t0

[
1 ζ
1

]

k)dk dζ,

where t0 =

[
1 1
1 −1

]

and M =

[√
D/2

1

]

.

Let us now make the following assumptions about the relevant representations.
Let π = D(ℓ), i.e., µ = 0. Let ℓ1, ℓ2 be positive integers such that ℓ1 + ℓ2 = ℓ.
Set

Ω1(x, y) = |x|
ℓ1−1

2 |y|
ℓ2−1

2 = Ω2(x, y)
−1, (x, y) ∈ (R×)2. (62)

A simple computation shows that I(Ω1,Ω2, 0) = D(ℓ1)⊗D(ℓ2). We have,

Ω(x, y) = |x|
ℓ1−ℓ2

2 |y|
ℓ2−ℓ1

2 . (63)

Let us choose a section f ∈ I(Ω1,Ω2, s) which corresponds to a vector of weight

(ℓ1, ℓ2), i.e., we have f((

[
u1 w1

z1

]

r(θ1),

[
u2 w2

z2

]

r(θ2)), s) us equal to

Ω1(u1, u2)Ω2(z1, z2)
∣
∣
∣
u1u2
z1z2

∣
∣
∣

1
2+s

ei(ℓ1θ1+ℓ2θ2). (64)

The above formula, together with (61), gives us

Z∞(s) =

∫

R

f(ηM−1t0

[
1 ζ
1

]

, s)BD(M−1t0

[
1 ζ
1

]

)dζ

=

∫

R

f(ηM−1t0

[
1 ζ
1

]

, s)B0(t0

[
1 ζ
1

]

)dζ

In this case, η = (

[
1√
D/2 1

]

,

[
1

−
√
D/2 1

]

). We need to write the argument

of f above according to the Iwasawa decomposition. For this we have

[
1√
D/2 1

][

2/
√
D

1

]

t0

[
1 ζ
1

]
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is equal to

[

2/
√
D

1

][
−(1 + ζ2)−

1
2 ∗
2(1 + ζ2)

1
2

]




ζ√
1+ζ2

−1√
1+ζ2

1√
1+ζ2

ζ√
1+ζ2





and [
1

−
√
D/2 1

][

2/
√
D

1

]

t0

[
1 ζ
1

]

=

[

2/
√
D

1

][
1 ζ + 1

−2

]

.

Hence,

f(ηM−1t0

[
1 ζ
1

]

, s) = D− (ℓ1+ℓ2)
4 −s (ζ + i)ℓ1

(1 + ζ2)ℓ1+s
.

We also have µ1 − µ2 = ℓ1 − ℓ2. Hence, by Proposition 5.3, we have

B(t0

[
1 ζ
1

]

) = 2
ℓ1−ℓ2

2 (−i+ ζ)
ℓ1−ℓ2

2 = 2
ℓ1−ℓ2

2

(1 + ζ2

i+ ζ

) ℓ1−ℓ2
2

.

Hence, we get

Z∞(s) = 2
ℓ1−ℓ2

2 D− ℓ
4−s

∫

R

(i+ ζ)
ℓ
2

(1 + ζ2)
ℓ
2+s

dζ. (65)

Proposition. 5.5 For positive integer k and complex number s, set

I(k, s) :=

∞∫

−∞

(i+ x)k

(1 + x2)k+s
dx,

whenever the integral converges. Then, we have

I(k, s) =

{

iπ if k = 1, s = 0;

ik22−2s−kπ Γ(2s+k−1)
Γ(s)Γ(k+s) if Re(2s+ k) > 1.

(66)

Proof. We have

I(1, 0) =

∞∫

−∞

i+ x

1 + x2
dx = i

∞∫

−∞

1

1 + x2
dx = i arctan(x)|∞−∞ = iπ.

The general case is obtained by a suitable change of variable, a fairly compli-
cated contour integral argument reducing the integral to the reciprocal of the
beta function.

Let us remark that the special case of k = 1, s = 0 can also be obtained from
the general formula above by taking the limit as s approaches zero and the
doubling formula for the gamma function. Substituting (66) into (65), we get
the following theorem.
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Theorem. 5.6 Let π = D(ℓ), where ℓ is a positive even integer. Let ℓ1, ℓ2 be
two positive integers such that ℓ1+ ℓ2 = ℓ. Let Ω1,Ω2 be characters of R××R×

given by (62). Let Ω be given by (63). For D > 0, a fundamental discriminant,
let S(D) be defined by (60). Let π be given by its (S(D),ΩS(D))-Waldspurger
model and let BD be a weight ℓ vector in π. Let f ∈ I(Ω1,Ω2, s) be as defined
in (64). Then, we have

Z∞(s) =

{
iD−1/2π if ℓ = 2, s = 0;

22−2s−ℓ2D− ℓ
4−si

ℓ
2π

Γ(2s+ ℓ
2−1)

Γ(s)Γ( ℓ
2+s)

if Re(2s+ ℓ
2 ) > 1.

(67)

In particular,
Z∞(0) = 0 if ℓ > 2.

Proof. The case D ≡ 0 (mod 4) follows from the computations above the
statement of the theorem. The D ≡ 1 (mod 4) follows exactly as above noting

that

[
1−D
4

1
2

1
2 1

]

=

[
1 1

2
1

][ −D
4

1

][
1
1
2 1

]

.

6 The global integral

In this section, we will prove the main global theorem of the paper. We will
specify the choices precisely and put together the local results from previous
sections to obtain a formula for the global integral. We will also obtain a
classical version of the integral formula rewriting the integral as the Petersson
inner product of classical holomorphic modular forms.

6.1 The main global theorem

Let us make the following assumptions. Let F = Q, L = Q(
√
D), with D > 0

a fundamental discriminant. Let us set

S(D) =







[
−D
4

1

]

if D ≡ 0 (mod 4);

[
1−D
4

1
2

1
2 1

]

if D ≡ 1 (mod 4).

Let π = ⊗′πp be an irreducible cuspidal representation of H(A) and N a
square-free positive integer.

• For p ∤ N , let πp be an unramified representation.

• For p|N , let πp be a twist of the Steinberg representation by an unramified
character χp.
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• Let π∞ be the holomorphic discrete series representation D(ℓ), with low-
est weight ℓ, a positive even integer.

Let Ω1,Ω2 : A×
L → C× be two characters satisfying the following properties.

• Let Ω1Ω2|A× = ωπ, where ωπ is the central character of π.

• Let N ′|N be a positive integer. If v ∤ N ′, then both Ω1,v and Ω2,v are
unramified. If v|N ′ then assume that c(Ω1,v) = 1, c(Ω2,v) = 0.

• For x, y ∈ R×, let Ω1,∞(x, y) = |x|ℓ/2−1|y|ℓ/2−1 = Ω−1
2,∞(x, y).

Note that, one can show that characters satisfying the above conditions do exist.
Let Ω(z) = Ω−1

1 (z̄)Ω−1
2 (z) for z ∈ A×

L . Let us make the following assumptions.

• For every p ≤ ∞, the local representation πp has a (S(D), Ω̄p)-
Waldspurger model. Note that the choices above imply that this con-
dition reduces to the following. If p|(N/N ′), then either p is split in L,
or p is ramified in L and Ω̄p = χ′

pχp ◦ NLp/Qp
, where χ′

p is the unique
quadratic unramified character of Q×

p .

• Assume that L(12 ,BC(π)× Ω̄) 6= 0, where BC(π) is the base change of π
to H(AL).

These two assumptions together imply that π has a non-zero global (S(D), Ω̄)-
Waldspurger model. Let ϕ ∈ π and Bϕ = ⊗Bp be such that Bp is in the
(S(D), Ω̄p)-Waldspurger model of πp. Alternatively, B̄p is in the (S(D),Ωp)-
Waldspurger model of π̃p, the contragredient representation of πp. Choose ϕ
such that, for any p < ∞, we have Bp is the newform in πp, and ϕ∞ is the
weight ℓ vector in π∞. These local functions are normalized as follows:

• If p ∤ N then Bp(1) = 1.

• If p|(N/N ′), Lp = Qp ⊕ Qp,Ωp(1, ̟p) = χ̄p(̟p), then Bp(

[
1
u1 1

]

) = 1.

Here, u1 =
√
D/2 if D ≡ 0 (mod 4) and u1 = (1 +

√
D)/2 if D ≡ 1

(mod 4).

• If p < ∞ and does not satisfy any of the conditions above, then

Bp(

[
1

−1

]

) = 1.

• For p = ∞, we have B∞(M−1
D t0) = 1, where t0 =

[
1 1
1 −1

]

and MD =
[√

D/2
1

]

if D ≡ 0 (mod 4) and MD =

[√
D/2
1/2 1

]

if D ≡ 1 (mod 4).

Let us choose the section f(·, s) = ⊗fv(·, s) ∈ I(Ω1,Ω2, s) as follows. We
will write fp for ⊗v|pfv. If p ∤ N , then fp is the spherical vector in the local
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representation normalized by fp(1) = 1. If p|N ′ then fp is the newform in the

local representation normalized so that fp(

[
1
1 1

]

) = 1. If p|(N/N ′), then we

choose fp to be the translate of the spherical vector, normalized to be 1 at the

identity, by

[
̟−1

Lv

1

]

. For p = ∞, we choose f∞ to be the vector of weight

(ℓ/2, ℓ/2) given by (64) with ℓ1 = ℓ2 = ℓ/2. The next theorem computes the
following global integral

Z(s, f, ϕ̄) =

∫

ZH(A)H(Q)\H(A)

E(h, s, f)ϕ̄(h)dh.

Theorem. 6.1 Let the notations and choices of local vectors be as above.
Then, we have

Z(s, f, ϕ̄) =
L(2s+ 1

2 , π̃ × Ω1|A×)

L(2s+ 1,Ω1Ω
−1
2 )

∏

p≤∞
Yp(s),

where, for p <∞, we have

Yp(s) =







1 if p ∤ N ;

p−
(

L
p

)

p+1 Lp(2s+ 1,Ω1Ω
−1
2 ) if p|N ′;

−Ω1(̟Lp )
−1ps+3

2

p+1 if p| NN ′ ,
(

L
p

)

= 0;

−Ω1(̟p,1)
−1ps+1

2

p+1 if p| NN ′ ,
(

L
p

)

= 1,Ω(1, ̟p) = χ̄p(̟p);

−(p−1)Ω1(̟p,1)
−1ps+1

2

(p+1)(1−χ̄p(̟p)−1Ω(1,̟p))
if p| NN ′ ,

(
L
p

)

= 1,Ω(1, ̟p) 6= χ̄p(̟p),

and

Y∞(s) =

{
iD−1/2π if ℓ = 2, s = 0;

22−2s−ℓ2D− ℓ
4−si

ℓ
2 π

Γ(2s+ ℓ
2−1)

Γ(s)Γ( ℓ
2+s)

if Re(2s+ ℓ
2 ) > 1.

Here, π̃ is the contragredient representation of π.

Proof. The theorem follows from Theorems 4.1, 4.5, 4.7 and 5.6.

6.2 Petersson norm of classical modular forms

In this section, we will realize the global integral Z(s, f, ϕ̄) as the Petersson
inner product of classical modular forms on the complex upper half plane H :=
{x + iy ∈ C : y > 0}. Let (τ1, τ2) ∈ H2 and let g1, g2 ∈ SL(2,R) such
that gj〈i〉 = τj . Here, we have g〈τ〉 = (aτ + b)/(cτ + d) for τ ∈ H and
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g =

[
a b
c d

]

∈ H(R). Set g = ⊗vgv ∈ H(AL) by gv = 1 for v ∤ ∞ and

g∞ = (g1, g2). Define the Eisenstein series E((τ1, τ2), s, f) : H2 → C by

E((τ1, τ2), s, f) := J(g1, i)
ℓ/2J(g2, i)

ℓ/2E(g, s, f), (68)

where J(

[
a b
c d

]

, τ) := cτ+d. Note that the right hand side above is well-defined

by the choice of the section f . In fact, if τj = xj + iyj, then we can choose

gj =

[
1 xj

1

][√
yj

1/
√
yj

]

. In this case, J(gj , i) = y
−1/2
j . Let Φ be the cusp

form on H corresponding to ϕ from the previous section.
For two smooth functions f1, f2 on H of weight ℓ with respect to Γ0(N), at
least one of which is rapidly decreasing at ∞, we define the Petersson inner
product by

〈f1, f2〉 :=
1

vol(Γ0(N)\H)

∫

Γ0(N)\H

f1(τ)f2(τ)y
ℓ dxdy

y2
. (69)

Proposition. 6.2 With notations as in 6.1, we have

Z(s, f, ϕ̄) = vol(Γ0(N)\H)〈E|∆H,Φ〉. (70)

Proof. The proposition follows from

ZH(A)H(Q)\H(A)/SO(2,R)K0(N) ≃ ZH(R)Γ0(N)\H(R)+/SO(2,R)

≃ Γ0(N)\H,

and, for h ∈ SL(2,R) and h〈i〉 = τ , we have

E(h, s, f)ϕ̄(h) = J(h, i)−ℓE((τ, τ), s, f)J(h, i)−ℓΦ(τ) = E((τ, τ), s, f)Φ(τ)yℓ.

Here, K0(N) is defined in (71) below.

6.3 Special cases arising from Tonghai Yang’s paper

In [26], Tonghai Yang has considered Hilbert Eisenstein series obtained from
certain specific choices of the characters Ω1 and Ω2. Let us explain the setup
of Theorem 1.2 of [26]. Let us first remark that, in [26], an Eisenstein series
is constructed on SL(2), whereas, in this paper, we are constructing Eisenstein
series on GL(2).
Let L = Q(

√
D) be a real quadratic extension of Q and let K be an imaginary

quadratic extension of L. Let χK/L be the character of L associated to the
extension K/L. Let N be a square-free integral ideal of L such that all its
prime factors are inert in K. Let Ω1 = χK/L and Ω2 = 1. Let N be a positive
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square-free integer such that dK/LN ∩ Z = NZ and N ′ be an integer such
that dK/L ∩ Z = N ′Z. Here, dK/L is the discriminant of K/L. Let ψ be
the Hecke character corresponing to χK/L. Let E(g, s, f) be the Eisenstein
series on H(AL), with the section f(∗, s) ∈ I(χK/L, 1, s) as in Section 6.1.
Let E((τ1, τ2), s, f) := J(g1, i)J(g2, i)E(g, s, f) be the Eisenstein series on H2

as defined in (68). Theorem 1.2 part 2) of [26] states that, as a function of
(τ1, τ2), the Eisenstein series E((τ1, τ2), s, f) is a Hilbert modular form (non-
holomorphic) of weight (1, 1), level dK/LN and character ψ. Furthermore,
part 3) of Theorem 1.2 in [26] states that, when non-zero, the Eisenstein series
E((τ1, τ2), 0, f) is holomorphic.
Let Φ ∈ S2(Γ0(N), ψ) be a cusp form of weight 2, level N and nebentypus
character ψ. Here, we have used the same notation for the Dirichlet character
obtained by restriction of ψ. Let ω be the character of Q×\A× corresponding
to ψ. Note that ω = χK/L|A×

Q

. Let

K0(N) :=
∏

p<∞
Kp(N), where Kp(N) =







H(Zp) if p ∤ N ;

H(Zp) ∩
[

Zp Zp

pZp Zp

]

if p|N.

(71)
Define the character λ of K0(N) by

λ(

[
a b
c d

]

) :=
∏

p|N
ω−1
p (dp).

The function ϕ : H(A) → C corresponding to Φ is given by the formula

ϕ(g) = ϕ(γg∞k0) := λ(k0)
det(g∞)

J(g∞, i)2
Φ(g∞〈i〉). (72)

Here, using strong approximation, we have written g = γg∞k0, with γ ∈
H(Q), g∞ ∈ GL(2,R)+ and k0 ∈ K0(N). Assume that Φ is a Hecke eigen-
form. Let π be the irreducible cuspidal automorphic representation of H(AQ)
generated by the right translates of ϕ. The central character of π is given
precisely by ω. Assume that, for every p ≤ ∞, the local representation πp
has a (S(D), (χK/L)p)-Waldspurger model. In Section 5 of [26], several special
choices of K and L are made which automatically guarantee this local condi-
tion. Also assume that L(12 ,BC(π)×χK/L) 6= 0. Theorem 6.1 and Proposition
6.2 gives us the following theorem.

Theorem. 6.3 Let the notations be as above. Then we have

〈E|∆H,Φ〉 = iπD− 1
2 vol(Γ0(N)\H)

L(1/2, π)

L(1, χK/L)

∏

p<∞
Yp(0),

where Yp(s) is the same as in the statement of Theorem 6.1.
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We get the following corollary on non-vanishing of the Petersson inner product.

Corollary. 6.4 Let the notations be as above. Then, we have 〈E|∆H,Φ〉 6= 0
if and only if L(1/2, π) 6= 0 and L(1/2,BC(π)× χK/L) 6= 0.

Note that, by results of Friedberg and Hoffstein in [3], given a π, one can obtain
characters χK/L such that L(1/2,BC(π) × χK/L) 6= 0.
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