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Abstract. Let G be a connected reductive group. Previously, it
was shown that for any G-variety X one can define the dual group
G∨

X which admits a natural homomorphism with finite kernel to the
Langlands dual group G∨ of G. Here, we prove that the dual group is
functorial in the following sense: if there is a dominant G-morphism
X → Y or an injective G-morphism Y → X then there is a unique
homomorphism with finite kernel G∨

Y → G∨
X which is compatible with

the homomorphisms to G∨.
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1. Introduction

Let G be a connected reductive group defined over an algebraically closed field
k of characteristic zero. To any G-variety X one can attach a finite reflection
group W (X) (its “little Weyl group”) which, loosely speaking, determines the
large scale geometry of X (see Brion [Bri90] and [Kno94]).
While it is known that W (X) is a subgroup of the Weyl group of G, it is,
in general, not true that it is the Weyl group of some subgroup of G. But
surprisingly, the Langlands dual group G∨ of G does contain such a subgroup.
At least in the case whenX is spherical, this was first hinted at in work of Gaits-
gory and Nadler, [GN10], who constructed a reductive subgroup of G∨ whose
Weyl group is most likely equal to W (X). Later Sakellaridis and Venkatesh,
[SV17], refined (at least for X spherical) the description of a hypothetical sub-
group with Weyl group W (X). In particular, they worked out precisely how it
should embed into G∨. They also replaced the subgroup by a particular finite
cover G∨

X , the dual group of X , which carries more information about X .
In [KS17], it was shown that the Sakellaridis-Venkatesh construction does in-
deed work, i.e., that there is a homomorphism ϕX : G∨

X → G∨ as predicted in
[SV17]. The approach of [KS17] is purely combinatorial.
In the present paper we investigate the question whether the assignment X 7→
(G∨

X , ϕX) can be turned into a functor. To this end, we are going to normalize
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the homomorphism ϕX in such a way that it becomes unique up to conjugation
by an element of the maximal torus ofG∨

X . The main result of the present paper
is:

Theorem 1.1. Let X and Y be two G-varieties. Assume that there is either
a dominant G-morphism f : X → Y or a generically injective G-morphism
Y → X. Then there exists a unique homomorphism (necessarily with finite
kernel) η : G∨

Y → G∨
X such that ϕY = ϕX ◦ η.

In the body of the paper, we prove a more precise version of the theorem (see
Theorems 2.7 and 2.8).
The proof of Theorem 1.1 proceeds in several steps: first we treat the case of
a dominant morphism. First, the theorem is reduced to the case when both
X and Y are homogeneous with Y being of rank 1 and f being proper. Then
we use a classification (due to Akhiezer [Ahi83] and Panyushev [Pan95]) to
check the assertion case-by-case. To this end, we determine, given a spherical
G-variety G/H of rank 1, the Luna data of G/P where P runs through all
maximal parabolic subgroups of H . This might be of independent interest
since the morphisms G/P → G/H are in a sense minimal among all dominant
G-morphisms. The case of injective morphisms will finally follow from the
dominant one.
As opposed to [KS17] we are going to argue much more geometrically than
combinatorially. This is is due to the fact that the the weak spherical data
used in [KS17] do not possess sufficient functorial properties.

2. The dual group and distinguished homomorphisms

Let G be a connected reductive group defined over an algebraically closed
ground field k of characteristic 0. Let B ⊆ G be a Borel subgroup and T ⊆ B
a maximal torus. Let Λ := Ξ(B) be the weight lattice, Φ ⊂ Λ the root system
of G, and S ⊆ Φ the set of simple roots with respect to B.
We recall the dual group G∨

X of a G-variety X . A rational function f ∈ k(X)
is B-semiinvariant with character χf ∈ Λ if f(b−1x) = χf (b)f(x) for all b ∈ B
and x ∈ X where both sides are defined. All characters χf form a subgroup
Ξ = Ξ(X) of Λ, the weight lattice of X . The rank of Ξ(X) is called the rank
of X and is denoted by rkX .
Now consider a discrete valuation v : k(X) → Q ∪ {∞}. It is called central
if it is G-invariant and restricts to the trivial valuation on the field k(X)B of
rational B-invariants. Then v(f) depends, for any B-semiinvariant f , only on
its character χf . Thus we get a map

(1) ̺ : Z(X) → N (X) := Hom(Ξ,Q)

where Z(X) is the set of all central valuations. It was proven in [LV83] that ̺
is injective. Hence we may and will identify Z(X) with a subset of the Q-vector
space N (X).
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One can show that Z(X) is a finitely generated convex cone which is not
contained in a hyperplane. Let

(2) Σ = Σ(X) = {σ1, . . . , σs} ⊆ ΞQ := Ξ⊗Q

be a minimal set of outward normal vectors (so-called spherical roots of X)
such that

(3) Z(X) = {a ∈ N (X) | a(σ1) ≤ 0, . . . , a(σs) ≤ 0}.

The σi are only unique up to positive factors and there are several normal-
izations possible. The one which we are adopting uses the fact that each σi
lies in the intersection ΞQ ∩ QS. Thus we can and will normalize σi is such a
way that it is primitive in the root lattice ZS. Therefore, every σi is a linear
combination

∑
α∈S nαα with integral coprime coefficients which one can show

to be non-negative. The support |σi| of σi is the set {α ∈ S | nα > 0}. More
generally, we put |Σ0| = ∪σ∈Σ0

|σ| ⊆ S for any subset Σ0 ⊆ ZS.
A third invariant of X is a certain set Sp = Sp(X) ⊆ S of simple roots. It
consists of all α ∈ S (called parabolic for X) such that Pαx = Bx for generic
x ∈ X . Here Pα ⊆ G is the minimal parabolic subgroup corresponding to α. In
other words, the parabolic subgroup Q(X) corresponding to Sp is the stabilizer
of a generic B-orbit.
The coefficients nα are always non-negative. In fact much more is true. One
can show that the triple (|σ|, σ, Sp ∩ |σ|) will always appear in Table 1. The
items correspond to spherical varieties of rank 1 (listed in Table 3) which will
be explained in more detail in Section 4.

Table 1.

|σ| σ Sp ∩ |σ|

A1 α1 ∅

An, n ≥ 2 α1 + . . .+ αn {α2, . . . , αn−1}
Bn, n ≥ 2 α1 + . . .+ αn {α2, . . . , αn}
Bn, n ≥ 2 α1 + . . .+ αn {α2, . . . , αn−1}
Cn, n ≥ 3 α1 + 2α2 + . . .+ 2αn−1 + αn {α1, α3, . . . , αn}
Cn, n ≥ 3 α1 + 2α2 + . . .+ 2αn−1 + αn {α3, . . . , αn}
F4 α1 + 2α2 + 3α3 + 2α4 {α1, α2, α3}
G2 2α1 + α2 {α2}
G2 α1 + α2 {α1, α2}

D2 α1 + α2 ∅

Dn, n ≥ 3 2α1 + . . .+ 2αn−2 + αn−1 + αn {α2, . . . , αn}
B3 α1 + 2α2 + 3α3 {α1, α2}

One unfortunate feature of the normalization of spherical roots is the possibility
of Σ 6⊆ Ξ. Therefore, we define the modified weight lattice of X as

(4) Ξ̃ = Ξ̃(X) := Ξ(X) + ZΣ(X).
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According to [KS17, Prop. 5.4], the triple (Ξ̃,Σ, Sp) is a weak spherical datum,
i.e., satisfies:

• 〈Ξ̃ | α∨〉 = 0 for all α ∈ Sp.

• 〈Ξ̃ | α∨ − β∨〉 = 0 whenever σ = α+ β ∈ Σ is of type D2.
• 〈β | α∨〉 6= −1 whenever α, β ∈ S with α, α+ β ∈ Σ.

Looking at Table 1 one realizes that there are two types of spherical roots
namely those which are also roots of G and those which are not. These types
are separated by the middle horizontal line. Each non-root σ is the sum of two
strongly orthogonal roots γ1, γ2 as can be seen by inspection of Table 2. The
set {γ1, γ2} can be made unique by requiring that

(5) γ∨1 − γ∨2 = δ∨1 − δ∨2 with δ1, δ2 ∈ S.

It then follows that the restrictions of γ∨1 and γ∨2 to Ξ̃ coincide. Thus they

Table 2.

|σ| γ1, γ2 γ∨1 , γ
∨
2 δ∨1 , δ

∨
2

D2 α1, α2 α∨
1 , α

∨
2 α∨

1 , α
∨
2

Dn≥3 (α1 + . . .+ αn−2) + αn−1, (α∨
1 + . . .+ α∨

n−2) + α∨
n−1, α∨

n−1, α
∨
n

(α1 + . . .+ αn−2) + αn (α∨
1 + . . .+ α∨

n−2) + α∨
n

B3 α1 + α2 + 2α3, α2 + α3 α∨
1 + α∨

2 + α∨
3 , 2α

∨
2 + α∨

3 α∨
1 , α

∨
2

define an element of Ξ̃∨ := Hom(Ξ̃,Z) which is denoted by σ∨. On the other
hand, if σ ∈ Φ then the coroot σ∨ already has a meaning. Let Σ∨ := {σ∨ | σ ∈
Σ}. A fundamental fact about weak spherical data is the following

Theorem 2.1 ([KS17, Thm. 7.1]). Let (Ξ̃,Σ, Sp) be a weak spherical datum.

Then (Ξ̃,Σ, Ξ̃∨,Σ∨) is a based root datum.

This theorem gives rise to the following definition.

Definition 2.2. The dual group of a G-variety X is the connected com-
plex reductive group G∨

X whose based root datum is the dual root datum

(Ξ̃∨,Σ∨, Ξ̃,Σ).

Remarks 2.3. i) The Weyl group of G∨
X is, almost by definition, equal to

the little Weyl group W (X) of X . Observe that, due to our normalization,
Σ(X) and W (X) determine each other unlike, e.g., the normalization used in
[Kno96] where the set of spherical roots carries additionally information about
the automorphism group of X .
ii) The normalization of the spherical roots by being primitive in ZS is forced
on us by the requirement that G∨

X should map to G∨ with finite kernel (see
Theorem 2.5 below). This in turn forces the extension (4) of character groups.
Note, however, that for the representation theoretic purposes of [SV17] this is
the wrong lattice since it yields multiplicities which are too big.
iii) In the Langlands program, the most common approach is to define the
dual group only over C and we follow this tradition. Working also simplifies
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some definitions and arguments, most notably Definition 2.4 of a distinguished
homomorphism in Lie algebraic terms. Nevertheless, it should be remarked
that G∨

X can be defined over Z and that distinguished homomorphism exist
over Z[ 12 ] (see [KS17, Prop. 11.1]). Also our main Theorem 1.1 holds in that
generality.

The dual group of G, i.e., the connected complex reductive group whose root
datum is dual to that of G is denoted by G∨. It is equipped with a pinning,
i.e., a choice of generating root vectors eα∨ ∈ g

∨
α∨ with α ∈ S.

It was proved in [KS17] that there exists an almost canonical homomorphism
ϕ : G∨

X → G∨ with finite kernel. To make this more precise, we define for each
σ ∈ Σ(X) a one-dimensional subspace g

∨
σ∨ of g∨ as follows:

(6) g
∨
σ∨ :=






g
∨
σ∨ if σ ∈ Φ,

[g∨β∨ , eδ∨
1
− eδ∨

2
] if σ is of type Dn≥3,

[g∨β∨ , 2eδ∨
1
− eδ∨

2
] if σ is of type B3,

C(eδ∨
1
− eδ∨

2
) if σ is of type D2.

Here β∨ := γ∨1 − δ∨1 = γ∨2 − δ∨2 in case σ 6∈ Φ. It is easy to check that β∨ ∈ Φ∨

unless σ is of type D2 when β∨ = 0. The definition implies that

(7) g
∨
σ∨ ⊆ g

∨
γ∨

1
⊕ g

∨
γ∨

2
⊆ g

∨.

Next observe that the maximal tori T∨ ⊆ G∨ and A∨
X ⊆ G∨

X have the cochar-

acter group Λ and Ξ̃(X), respectively. Therefore, the inclusion Ξ̃(X) →֒ Λ
induces a homomorphism ϕA : A∨

X → T∨ with finite kernel.

Definition 2.4. A homomorphism ϕ : G∨
X → G∨ is called distinguished if

resA∨

X
ϕ = ϕA and ϕ(g∨X,σ∨ ) = g

∨
σ∨ for all σ ∈ Σ(X).

Here is an immediate consequence of the main result of [KS17]:

Theorem 2.5. Let X be a G-variety. Then:

i) There exists a distinguished homomorphism ϕX : G∨
X → G∨.

ii) Any other distinguished homomorphism is of the form ϕ ◦ Ad(a) with
a ∈ A∨

X .
iii) The kernel of ϕX is finite.
iv) The image G∗

X := ϕX(G∨
X) is a well-defined subgroup of G∨, i.e., it is

independent of the choice of ϕX .

Proof. [KS17, Thm. 7.7] shows the existence of an adapted homomorphism
ϕ : G∨

X → G∨ which means that g
∨
X,σ∨ is mapped just diagonally into g

∨
γ∨

1

⊕

g
∨
γ∨

2

⊆ g
∨ in case σ 6∈ Φ. More precisely, the image of ϕ is contained in the

associated group G∧
X ⊆ G∨ (see loc.cit. Def. 7.2 and Thm 7.3). Thus, there

an element t of T∧
ad, the maximal torus of the adjoint group of G∧

X , such that
Ad(t) ◦ ϕ is distinguished (cf. loc.cit Thm. 7.10). The other parts follow from
the construction of ϕX . �
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Remarks 2.6. i) Let L∨
X ⊆ G∨ be the Levi subgroup corresponding to

Sp(X) ⊆ S. The pinning of G∨ induces a pinning of L∨
X . This in turn gives

rise to a canonical principal homomorphism ψ : SL(2,C) → L∨
X . Then it

was shown, [KS17, Prop. 9.10], that the images of ϕX and ψ commute with
each other, i.e., they combine to a group homomorphism G∨

X × SL(2) → G∨.
In fact, the normalization (6) for σ of type Dn≥3 or B3 is equivalent to this
commutation property.
ii) Distinguished homomorphisms are invariant under certain automorphisms of
G. More precisely, let E be a group of automorphisms of the based root datum
of G. Then E acts canonically on G∨ by fixing the chosen pinning {eα∨}. We
say that E and X are compatible if E fixes Ξ(X), Σ(X), and Sp(X). Then (6)
implies

(8) s
g
∨
σ∨ = g

∨
sσ∨ for all s ∈ E and σ ∈ Σ(X).

This follows from (6) together with the observation that sδ∨i = δ
∨

i in case σ
and σ = sσ are both of type B3. Now (8) implies that E fixes G∗

X . Moreover,
the E-action lifts uniquely to G∨

X such that ϕX is E-equivariant. Observe,
though, that E will in general not fix any pinning of G∨

X , i.e., the action may
be non-standard in the sense of [KS17, §10].
A typical situation we have in mind is if G and X are defined over a subfield
k0 ⊆ k. Then the Galois group E of k0 acts on the based root datum of G
by means of the so-called ∗-action. Since X is defined over k0 it is known (see
[KK16]) that E and X are compatible.
iii) The normalization (6) also plays a role in the proof of Theorem 2.7 below.
More precisely, it is needed to prove equation (18).

Now we come to homomorphisms between different dual groups. For this let
X , Y be two G-varieties and let ϕX , ϕY be distinguished homomorphisms. A
homomorphism η : G∨

Y → G∨
X is called distinguished if ϕY = ϕX ◦ η. Since ϕX

and ϕY have finite kernel, η is unique with finite kernel if it exists. Here is the
main result of the paper:

Theorem 2.7. Let ϕ : X → Y be a dominant G-morphism between two G-
varieties. Then there exists a distinguished homomorphism η : G∨

Y → G∨
X .

This implies, in particular, that G∗
Y ⊆ G∗

X ⊆ G∨.

There is an analogous statement for injective morphisms. It is an easy conse-
quence of Theorem 2.7 (see the proof following Theorem 3.2).

Theorem 2.8. Let ϕ : Y → X be an injective G-morphism between two
G-varieties (e.g., Y is a G-stable subvariety of X). Then there exists a
distinguished homomorphism η : G∨

Y → G∨
X and therefore, in particular,

G∗
Y ⊆ G∗

X ⊆ G∨.

The proof of Theorem 2.7 will occupy the remainder of this paper.

Remark 2.9. In principle, all statements can be formulated and should be
valid in some form also over fields of positive characteristic p. However, the

Documenta Mathematica 24 (2019) 47–64



Functoriality Properties of the Dual Group 53

necessary changes would come at the expense of the readability of the paper so
that we decided to treat the characteristic 0 case separately. The main problems
in positive characteristic are: First, the list of spherical roots in Table 1 has
to be extended by roots obtained by inseparable isogenies. In particular, the
D2-roots α1 + pnα2 cause trouble. Secondly, the weight lattice Ξ(X) may not
beW (X)-stable, so has to be modified. Finally, our reasoning in Section 5 uses
the classification of spherical varieties. This is more a matter of convenience
but it would require considerable effort to work around it.

3. Reduction to rank one

We start the proof of Theorem 2.7 by a number of reduction steps. Let G′
X :=

(G∗
X)′ be the semisimple part of G∗

X . Observe that G′
X depends only on Σ(X)

and not on the lattice Ξ(X). Since the valuation cone Z(X) is a birational
invariant so is Σ(X). Therefore we may later (tacitly) replace X and Y by
suitable open dense subsets.

Lemma 3.1. Let f : X → Y be dominant or let f : Y → X be injective. Assume
G′

Y ⊆ G′
X . Then there is exists a distinguished homomorphism η : G∨

Y → G∨
X .

Proof. We claim that Ξ(Y ) ⊆ Ξ(X) in both cases. This is clear if f is dominant
since the pull-back of a B-semiinvariant is again a B-semiinvariant for the same
character. For f injective let p : X → X be the normalization and let Y ⊆ X
be a component of p−1(Y ) mapping dominantly to Y . By [Kno91, Thm. 1.3
b)], every B-semiinvariant rational function on Y extends to a B-semiinvariant
rational function on X . Since the character remains unchanged we get Ξ(Y ) ⊆
Ξ(Y ) ⊆ Ξ(X) = Ξ(X).
It is a general fact that if H ⊆ G is reductive then the coroot lattice of H is
contained in the coroot lattice of G (look at simply connected covers). Applying
this to G′

Y ⊆ G′
X we get ZΣ(Y ) ⊆ ZΣ(X) and therefore

(9) Ξ̃(Y ) ⊆ Ξ̃(X)

This inclusion induces a homomorphism of maximal tori A∨
Y → A∨

X . Because
G∗

X is generated by G′
X and ϕX(A∨

X) (and similarly for Y ) it follows that
G∗

Y ⊆ G∗
X .

Finally, the coweight lattice of G∗∨
Y := ϕ−1

X (G∗
Y )

0 ⊆ G∨
X is Ξ̃(Y )Q ∩ Ξ̃(X). By

(9), it contains the coweight lattice Ξ̃(Y ) of G∨
Y . Hence the inclusion G

∗
Y →֒ G∗

X

lifts to an isogeny G∨
Y → G∗∨

Y yielding the desired homomorphism η : G∨
Y →

G∨
X . �

The following comparison result will be crucial later on. It is a more precise
version of Theorem 2.8 in case Y is of codimension 1.

Theorem 3.2. Let X be a normal G-variety and let Y ⊂ X be a G-invariant
irreducible subvariety of codimension 1. Then Σ(Y ) ⊆ Σ(X) and therefore
G′

Y ⊆ G′
X . Moreover, if the valuation v := vY induced by Y is non-central

then N (Y ) = N (X). Otherwise, N (Y ) = N (X)/Qv and

(10) Σ(Y ) = {σ ∈ Σ(X) | v(σ) = 0}.
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Proof. This is essentially proved in [Kno93]. Assume first that v is central, i.e.,
that the restriction of v to k(X)B is trivial (that’s automatic if X is spherical).
Then there is a surjective homomorphism

(11) N (X) ։ N (Y )

with kernel Qv such that Z(Y ) is the image of Z(X) (loc.cit. Satz 7.5.2 with
v0 = o). Thus, the preimage of Z(Y ) is the cone Z(X) + Qv. Because of
v ∈ Z(X), this cone is defined by the inequalities σ ≤ 0 with σ ∈ Σ(X) and
v(σ) = 0. This proves (10).
Assume now that v is not central and let v0 be the restriction of v to k(X)B. Let
Zv0 be the set of G-invariant valuations whose restriction of k(X)B is a multiple
of v0. Then Zv0 can be identified with a convex cone in someQ-vector spaceNv0 .
Moreover, N (X) is a hyperplane of Nv0 such that Zv0 ∩N (X) = Z(X) (see the
exact sequence in loc.cit. §5 where Nv0 is corresponds to Hom(Qv0(K),Q)).
There is a surjective homomorphism (loc.cit. Satz 7.5.2)

(12) Nv0 ։ N (Y )

with kernel Qv such that Z(Y ) is the image of Zv0 . Since by assumption

v 6∈ N (X) we have N (X)
∼
→ N (Y ), as asserted.

It is a non-trivial fact (loc.cit. Satz 9.2.2) that as a cone Zv0 is generated by
Z(X) along with one extremal non-central valuation ve, i.e.,

(13) Zv0 = Z(X) +Q≥0ve.

Let v = v1 + cve with v1 ∈ Z(X) and c > 0. Then the preimage of Z(Y ) in
Nv0 equals

(14) Zv0 +Qv = Z(X) +Q≥0ve +Qv = Z(X) +Qv1 +Qve.

This shows that

(15) Z(Y ) = (Zv0 +Qv) ∩ N (X) = Z(X) +Qv1

is defined by the inequalities σ ≤ 0 with σ ∈ Σ(X) and v1(σ) = 0. In particular
Σ(Y ) ⊆ Σ(X). �

At this point we already have a

Proof of Theorem 2.8 assuming Theorem 2.7. We may assume that Y is a sub-
variety of X . It suffices to construct a normal G-variety X, a birational G-
morphism π : X → X , and a G-stable subvariety Y ⊂ X of codimension 1
which maps dominantly to Y . In fact, in this case we have G′

Y ⊆ G′

Y
⊆ G′

X
=

G′
X by Theorem 2.7 and Theorem 3.2. Then Lemma 3.1 yields a distinguished

homomorphism G∨
Y → G∨

X .

To construct X let p : X1 → X be the normalization of X and let Y1 ⊆ X1 be
a component of p−1(Y ) which maps surjectively to Y . Next, let X2 → X1 be
the blow up of X1 in Y1 and let Y2 ⊂ X2 be a component of the exceptional
divisor. Finally, the normalization p2 : X → X2 with Y ⊂ X a component of
p−1
2 (Y2) meets all requirements. �
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For the next step, recall that a homogeneous variety G/H is parabolically in-
duced if there is a proper parabolic subgroup Q ⊂ G with Qu ⊆ H ⊆ Q. It
is cuspidal if is not parabolically induced and if H does not contain a simple
factor of G.

Lemma 3.3. Assume G′
Y ⊆ G′

X in the following situation:

• G is of adjoint type,
• Y = G/H is homogeneous, spherical and cuspidal of rank 1, and H is
connected.

• X = G/P where P ⊂ H is a maximal parabolic subgroup.

Then G′
Y ⊆ G′

X for all G-varieties X, Y and all dominant G-morphisms X →
Y .

Proof. We will prove the assertion by induction on dimX+dimG. For this let
f : X → Y be an arbitrary dominant G-morphism.
Reduction to rkY = #Σ(Y ) = 1: Assume rkY ≥ 2. Every τ ∈ Σ(Y ) is a simple
coroot of G′

Y and therefore induces a semisimple rank-1-subgroupG′
Y (τ) ⊆ G′

Y .
Since the subgroups of this form generate G′

Y it suffices to prove G′
Y (τ) ⊆ G′

X

for all τ .
If Σ(Y ) = ∅ then G′

Y = 1 and there is nothing to prove. So fix τ ∈ Σ(Y ).
Then τ defines a codimension-1-face F of the valuation cone Z(Y ). Since
dimF = rkY − 1 ≥ 1 there is a non-trivial valuation v in the relative interior
of F . Let Y →֒ Y = Y ∪ Y0 be the smooth equivariant embedding where
Y0 is an irreducible divisor such that vY0

is a rational multiple of v. Then
rkY0 = rkY − 1 and Σ(Y0) = {τ} by Theorem 3.2. By [Kno93, Kor. 3.2] there
exists a lift of v to a (possibly non-central) equivariant valuation v of X . This
gives rise to a similar embedding X →֒ X = X ∪ X0 such that f extends to
a morphism X → Y which maps X0 dominantly to Y0. Theorem 3.2 implies
that Σ(X0) ⊆ Σ(X). Hence we have

(16) G′
Y (τ) = G′

Y0
and G′

X0
⊆ G′

X .

By induction we have G′
Y0

⊆ G′
X0

which proves the assertion.

Reduction to G semisimple: Let Z = Z(G)0 be the connected center of G. If
Z acts trivially on X then one can replace G by the semisimple group G/Z.
Otherwise, consider the morphism X0 := X ′/Z → Y0 := Y ′/Z where X ′ ⊆ X
and Y ′ ⊆ Y are non-empty, open, and G-stable such that the Z-orbit spaces
exist (these exist by [Ros56, Thm. 2]). Because of Σ(X0) = Σ(X) and Σ(Y0) =
Σ(Y ) by [Kno93, Satz 8.1.4] we have G′

Y ⊆ G′
X if and only if G′

Y0
⊆ G′

X0
. The

latter holds by induction.
Reduction to X and Y homogeneous: Let Y0 ⊆ Y be a general orbit. Then
Σ(Y0) = Σ(Y ) by [Kno90, Satz 6.5.4]. Let X0 ⊆ X be a general orbit in
the preimage of Y0 in X . Then X0 is also a general orbit of X and therefore
Σ(X0) = Σ(X). This proves the assertion by induction unless X = X0 and
Y = Y0.
Reduction to f proper: We may assume that X and Y are homogeneous. If
f is not proper choose a normal equivariant embedding X →֒ X such that f
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extends to a proper morphism X → Y . Let X0 be a component of X \ X .
By blowing up X in X0 and normalizing, if necessary, we may assume that
X0 is a G-invariant irreducible divisor. Then Σ(X0) ⊆ Σ(X) by Theorem 3.2
and therefore G′

X0
⊆ G′

X . The assertion follows by applying the induction
hypotheses to X0 → Y .
Because of the last steps we may assume that X = G/P , Y = G/H with
P 0 ⊆ H0 parabolic and rkY = 1.
Reduction to P and H connected: Follows from the fact that W (X), hence
Σ(X), hence G′

X is invariant under étale maps (see [Kno90, Satz 6.5.3]).
Reduction to P ⊂ H maximal parabolic: Assume that there is a parabolic Q
with P ⊂ Q ⊂ H and put Z := G/Q. We may assume P to be maximal
parabolic in Q. By induction on the morphism Z → Y it suffices to prove
G′

Z ⊆ G′
X for the morphism X → Z. This is indeed implied by the first

reduction step unless rkZ = 1.
Reduction to H cuspidal: Suppose there is a parabolic subgroup Q = LQu ⊂ G
with Qu ⊆ H ⊆ Q. Then Qu ⊆ Hu and Hu ⊆ Pu (since P is parabolic
in H). This shows that P is also induced by Q. The L = Q/Qu-varieties
X0 = Q/P = L/(P ∩L) and Y0 = Q/H = L/(H ∩L) have Σ(X0) = Σ(X) and
Σ(Y0) = Σ(X) (see, e.g., [KK16] Prop. 8.2). Then we conclude by induction. If
H contains a simple factor G1 of G then there are decompositions G = G1 ·G2

and H = G1 · H2. A maximal parabolic subgroup of H is either of the form
P1 ·H1 (in which case Σ(X) = Σ(Y )) or G1 ·P2 (in which case G1 acts trivially
on both X and Y and we may replace G by G/G1).
Reduction to H spherical: The only cuspidal homogeneous rank-1-varieties
which are not spherical are of the form G/H where G = SL(2) and H is finite
([Pan95]). By previous reduction steps we may assume that H is connected
(hence trivial) and contains a proper parabolic subgroup. So this case does not
occur.
This finishes the reduction of a general dominant morphism to the situation in
the Lemma. �

4. The rank-1-case

Using Lemma 3.3, the proof of Theorem 2.7 is now reduced to the cases where
G is of adjoint type, Y = G/H is homogeneous, spherical and cuspidal of rank
1, with H connected, and X = G/P where P ⊂ H is a maximal parabolic
subgroup.
The classification of all possible pairs (G,H) is due to Akhiezer [Ahi83] (see
also Brion’s simplification [Bri89]) and is reproduced in Table 3 below. In the
case B′

n, the group Pn denotes a maximal parabolic subgroup of SO(2n) whose
Levi part is GL(n). In C

′
n, the group B2 ⊆ Sp(2) is a Borel subgroup. Finally

U3 in case G
′
2 is a 3-dimensional unipotent group. The two columns on the

right will be used in the final step of the proof of Theorem 2.7.
We have Σ(G/H) = {τ} and we need to compute Σ = Σ(G/P ) for all maximal
parabolic subgroups P ⊂ H . This is done in Section 5. All varieties G/P turn
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Table 3.

G H τ∧ Σ∧

A1 PGL(2) Gm

An≥2 PGL(n+ 1)GmSL(n) (1) σ∨
1 +σ

∨
2

σ∨

1 σ∨

2

Bn≥2 SO(2n+ 1) SO(2n) (1) 2σ∨
1 +σ

∨
2

σ∨

1 σ∨

2

(2) σ∨
1

σ∨

1

B
′
n≥2 SO(2n+ 1) Pn (1) 2σ∨

1 +σ
∨
2

σ∨

1 σ∨

2

(2) 2σ∨
1 +σ

∨
2

σ∨

1 σ∨

2

Cn≥3 PSp(2n) Sp(2)Sp(2n−2) (1) σ∨
1

σ∨

1

(2) σ∨
1 +σ

∨
2

σ∨

1 σ∨

2

(3) γ∨1 +2σ∨
2 +γ

∨
2 +σ

∨
3

σ∨

4 σ∨

2 γ∨

1

γ∨

2

(4) γ∨1 +2σ∨
2 +2γ∨2

γ∨

1 σ∨

2 γ∨

2

C
′
n≥3 PSp(2n) B2Sp(2n− 2) (1) σ∨

1 +σ
∨
2 +σ

∨
3

σ∨

1 σ∨

2 σ∨

3

(2) σ∨
1 +2σ∨

2 +σ
∨
3 +σ

∨
4

σ∨

4 σ∨

2 σ∨

1

σ∨

3

(3) σ∨
1 +2σ∨

2 +2σ∨
3

σ∨

1 σ∨

2 σ∨

3

F4 F4 Spin(9) (1) γ∨2 +2σ∨
2 +2γ∨1

γ∨

2 σ∨

2 γ∨

1

(2) σ∨
2 +2σ∨

3 +2σ∨
1

σ∨

2 σ∨

1 σ∨

3

(3) σ∨
3 +2σ∨

4 +2σ∨
2 +2σ∨

1
σ∨

3 σ∨

4 σ∨

2 σ∨

1

(4) σ∨
2 +σ

∨
1 +σ

∨
3

σ∨

1 σ∨

2 σ∨

3

G2 G2 SL(3) (1) σ∨
1 + σ∨

2
σ∨

1 σ∨

2

G
′
2 G2 GmSL(2)U3 (1) σ∨

1 +3σ∨
2

σ∨

1 σ∨

2

Dn≥2 PSO(2n) SO(2n− 1) (1) {γ∨1 +σ
∨
1 , σ

∨
1 +γ

∨
2 }

γ∨

1 σ∨

1 γ∨

2

(2) {σ∨
1 , σ

∨
2 }

σ∨

1 σ∨

2

B
′′
3 SO(7) G2 (1) {σ∨

1 +σ
∨
3 , σ

∨
2 }

σ∨

1 σ∨

3 σ∨

2

(2) {σ∨
1 +σ

∨
2 +σ

∨
3 , 2σ

∨
2 +σ

∨
3 }

σ∨

1 σ∨

2 σ∨

3
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out to be spherical, even wonderful, a fact for which we don’t have a conceptual
argument.
For every spherical root σ define its set σ∧ of associated roots as

(17) σ∧ =

{
{σ∨} if σ ∈ Φ,

{γ∨1 , γ
∨
2 } otherwise (with γ∨i as in Table 2).

Put Σ∧ := ∪σ∈Σσ
∧. It was shown in [KS17] that Σ∧ is the basis of a maximal

rank subgroup G∧
X ⊆ G∨. Moreover, the root system of G∨

X is obtained from
that of G∧

X by a process called “folding”. Let Φ∧
X be the set of roots of G∧

X .
From Table 4 one can read off Σ∧ and τ∧ as a linear combination of Σ∧. The
result is recorded in the two right hand columns of Table 3. As an example,
consider case Cn(4). Here σ1 = γ1 + γ2 with γ1 = α1 and γ2 = αn. Since σ2 is
a root we have Σ∧ = {γ∨1 , σ

∨
2 , γ

∨
2 } which is a basis of a root system of type B3.

Moreover, one verifies τ∧ = α∨
1 + 2α∨

2 + . . .+ 2α∨
n−1 + 2α∨

n = γ∨1 + 2σ∨
2 + 2γ∨2 .

Now it is easy to finish the proof of Theorem 2.7.
First, we consider the case Σ∧ = Σ∨ (recognizable by the non-appearance of
γ∨i ’s). Here one checks that τ∧ ⊆ Φ∧

X which implies G∨
Y ⊆ G∧

X = G∨
X .

Next assume that Σ∧ 6= Σ∨ but τ∧ = {τ∨}. Here, one checks that τ∨ is actually
the highest root of Φ∧

X . Since all simple roots of G∧
X restrict to simple roots of

G∨
X , there is no other root of G∧

X which has the same restriction as τ∧. This
implies g∨X,τ = g

∧
X,τ = g

∨
τ and therefore G∨

Y ⊆ G∨
X .

The only case remaining is that of Dn(1) depending on a parameter ν ∈
{1, . . . , n− 2}. It suffices to prove

(18) g
∨
τ∨ = [g∨σ∨

1
, g∨σ∨

2
]

since then g
∨
τ∨ ⊆ g

∨
X and therefore G∨

Y ⊆ G∨
X .

Using the standard basis εi for the weight lattice of Dn and the normalization
(6) we have

(19) g
∨
τ∨ = [g∨ε1−εn−1

, E] with E := eεn−1−εn − eεn−1+εn .

If ν = n− 2 then g
∨
σ∨

2

= CE and σ∨
1 = ε1− εν+1 = ε1− εn−1 which proves (18).

Otherwise, we have

(20) g
∨
σ∨

2
= [g∨εν+1−εn−1

, E]

and therefore

(21) [g∨σ∨

1
, g∨σ∨

2
] = [g∨ε1−εν+1

, [g∨εν+1−εn−1
, E]] = [g∨ε1−εn−1

, E] = g
∨
τ∨.

Theorem 2.7 is proved. �

5. Appendix: Maximal parabolics in rank-1-subgroups

In the following, we use the classification of spherical varieties using Luna
diagrams due to Luna [Lun01], Losev [Los09], and Bravi-Pezzini [BP16]. A
very good introduction to this topic can be found in [BL11].
Table 4 below lists the Luna diagrams of all cuspidal rank-1-varieties Y = G/H
(G adjoint, H connected). For each such diagram we list a number of further
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Luna diagrams. We claim that these classify all varietiesX = G/P with P ⊂ H
maximal parabolic.
Along with the diagram ofX we are also giving the complete generalized Cartan
matrix so that the “decorations” of the diagrams by arrow heads “<” or “>”
are not needed. The rows of the Cartan matrix are labelled by the spherical
roots σi ∈ Σ := Σ(X). The columns correspond to the colors, i.e., to the
B-invariant irreducible divisors Dj of X . They also correspond to the circles
(filled or empty) in the Luna diagram. The index j of Dj means that Dj

is attached to the simple root αj . The entries of the Cartan matrix are the
numbers vDj

(fσi
) ∈ Z where fσi

∈ k(X) is a B-semiinvariant for the character
σi.
The claim can be verified in several easy steps:
1. First, one checks that all diagrams and Cartan matrices satisfy Luna’s
axioms. Thus, each belongs to a unique spherical (even wonderful) variety
X = G/P .
2. Let D0 be the set of colors which are printed in boldface. The corresponding
columns sum up to 0 which shows that D0 is distinguished in the sense of
[BL11, 2.3]. Therefore, D0 defines a G-morphism X → Y ′ = G/H ′ with
P ⊆ H ′ ⊆ G and H ′/P is connected.
3. Next one uses [BL11, 2.3] to verify that the spherical systems of Y and
Y ′ coincide which then implies that H ′ is conjugate to H . To do this one
shows that τ (whose coordinates in terms of the σi are provided in the leftmost
column) generates the orthogonal complement of the boldface columns. One
also has to observe that the colors not in D0 correspond to the colors of Y .
4. That P is parabolic in H is equivalent to G/P → G/H being proper which is
equivalent to noG-invariant valuation ofG/P restricting to the trivial valuation
of G/H . This in turn translates into τ being a linear combination of the σi
with strictly positive coefficients. This is clear from looking at the leftmost
column.
5. The submatrix given by the boldface entries is always a square matrix of
defect 1. Hence the columns of every proper subset of D0 are linear independent
which shows that such a subset in not distinguished. This means that P is
maximal proper subgroup of H .
6. The preceding steps show that P is a maximal parabolic in H . To see that
all of them are listed one checks that the number of items in the table equals
the number of G-conjugacy classes of maximal parabolics of H . To do this one
can consult Table 3 for H . In most cases this number equals the number of
maximal parabolics of H . Only in the cases Bn and G2 there is an element
of NG(H) acting as an outer automorphism on H . This results in two non-
conjugate maximal parabolics of H being conjugate in G resulting in one item
less.
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Table 4.

An

τ = α1 + . . .+ αn

(1)
αν (ν=1,...,n−1)

σ1 = α1 + . . .+ αν

σ2 = αν+1 + . . .+ αn

D1 Dν Dν+1 Dn

1 σ1 1 1 −1 0
1 σ2 0 −1 1 1

Bn

τ = α1 + . . .+ αn

(1)
αν (ν=1,...,n−2)

σ1 = α1 + . . .+ αν

σ2 = αν+1 + . . .+ αn

D1 Dν Dν+1

1 σ1 1 1 −1

1 σ2 0 −1 1

(2)
σ1 = α1 + . . .+ αn

D1 Dn

1 σ1 1 0

B
′
n

τ = α1 + . . .+ αn

(1)
αν (ν=1,...,n−2)

σ1 = α1 + . . .+ αν

σ2 = αν+1 + . . .+ αn

D1 Dν Dν+1 Dn

1 σ1 1 1 −1 0
1 σ2 0 −1 1 0

(2)

σ1 = α1 + . . .+ αn−1

σ2 = αn

D1 Dn−1 D
+
n

D−
n

1 σ1 1 1 −1 −1
1 σ2 0 −1 1 1

Cn

τ = α1 + 2α2 + . . .+ 2αn−1 + αn

(1)
σ1 = α1 + 2α2 + . . .+ 2αn−1 + αn

D1 D2

1 σ1 0 1

(2)
σ1 = α1 + α2

σ2 = α2 + 2α3 + . . .+ 2αn−1 + αn

D1 D2 D3

1 σ1 1 1 −1

1 σ2 −1 0 1

(3)
αν (ν=2,...,n−2)

σ1 = α1 + αν+1

σ2 = α2 + . . .+ αν

σ3 = αν+1+2αν+2 + . . .+ 2αn−1+αn

D1 D2 Dν Dν+2

1 σ1 2 −1 −1 −1

2 σ2 −1 1 1 0

1 σ3 0 0 −1 1
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(4)

σ1 = α1 + αn

σ2 = α2 + . . .+ αn−1

D1 D2 Dn−1

1 σ1 2 −1 −2

2 σ2 −1 1 1

C
′
n

τ = α1 + 2α2 + . . .+ 2αn−1 + αn

(1)

σ1 = α1

σ2 = α2

σ3 = α2 + 2α3 + . . .+ 2αn−1 + αn

D
+
1 D−

1 D+
2 D

−

2 D3

1 σ1 1 1 0 −1 0

1 σ2 0 −1 1 1 −1

1 σ3 −1 0 0 0 1

(2)
αν (ν=2,...,n−2)

σ1 = α1

σ2 = α2 + . . .+ αν

σ3 = αν+1

σ4 = αν+1+2αν+2 + . . .+ 2αn−1+αn

D+
1 D

−

1 D2 Dν D
+

ν+1 Dν+2

1 σ1 1 1 −1 0 −1 0

2 σ2 0 −1 1 1 0 0

1 σ3 −1 1 0 −1 1 −1

1 σ4 0 0 0 −1 0 1

(3)

σ1 = α1

σ2 = α2 + . . .+ αn−1

σ3 = αn

D+
1 D

−

1 D2 Dn−1 D
+
n

1 σ1 1 1 −1 0 −1

2 σ2 0 −1 1 1 0

1 σ3 −1 1 0 −2 1

F4

τ = α1 + 2α2 + 3α3 + 2α4

(1)

σ1 = α1 + 2α2 + 3α3

σ2 = α4

D3 D
+
4 D−

4

1 σ1 2 −2 −1
2 σ2 −1 1 1

(2)
σ1 = α1 + α2

σ2 = α2 + α3

σ3 = α3 + α4

D1 D2 D3 D4

1 σ1 1 1 −2 0
1 σ2 −1 1 0 −1
2 σ3 0 −1 1 1

(3)

σ1 = α1

σ2 = α2 + α3

σ3 = α3

σ4 = α4

D
+
1 D

−

1 D2 D
−

3 D+
4

1 σ1 1 1 −1 −1 −1
2 σ2 0 −1 1 0 0
1 σ3 1 −1 −1 1 0
2 σ4 −1 1 0 0 1
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(4)

σ1 = α1 + α2 + α3

σ2 = α2 + 2α3 + α4

σ3 = α4

D1 D3 D
+
4 D−

4

1 σ1 1 0 −1 0
1 σ2 −1 1 0 0
1 σ3 0 −1 1 1

G2

τ = 2α1 + α2

(1)

σ1 = α1

σ2 = α1 + α2

D+
1 D

−

1 D2

1 σ1 1 1 −1

1 σ2 0 −1 1

G
′
2

τ = α1 + α2

(1)

σ1 = α1

σ2 = α2

D+
1 D

−

1 D
+
2 D−

2

1 σ1 1 1 −1 0
1 σ2 −2 −1 1 1

Dn

τ = 2α1 + . . .+ 2αn−2 + αn−1 + αn

(1)
αν (ν=1,...,n−2)

σ1 = α1 + . . .+ αν

σ2 = 2αν+1 + . . .+ 2αn−2+αn−1+αn

D1 Dν Dν+1

2 σ1 1 1 −1

1 σ2 0 −2 2

(2)

σ1 = α1 + . . .+ αn−2 + αn−1

σ2 = α1 + . . .+ αn−2 + αn

D1 Dn−1 Dn

1 σ1 1 1 −1

1 σ2 1 −1 1

B
′′
3

τ = α1 + 2α2 + 3α3

(1)

σ1 = α1 + α2

σ2 = α2 + a3
σ3 = α3

D1 D2 D
+
3 D−

3

1 σ1 1 1 −2 0
1 σ2 −1 1 0 0
2 σ3 0 −1 1 1

(2)

σ1 = α1

σ2 = α2

σ3 = α3

D
+
1 D

−

1 D
−

2 D+
3

1 σ1 1 1 −2 −1
2 σ2 1 −2 1 0
3 σ3 −1 1 0 1
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[Bri90] Michel Brion, Vers une généralisation des espaces symétriques, J. Al-
gebra 134 (1990), 115–143.

[GN10] Dennis Gaitsgory and David Nadler, Spherical varieties and Langlands
duality, Mosc. Math. J. 10 (2010), 65–137, 271, arxiv:math/0611323.

[Kno90] Friedrich Knop, Weylgruppe und Momentabbildung, Invent. Math. 99
(1990), 1–23 (German, with English summary).

[Kno91] Friedrich Knop, The Luna-Vust theory of spherical embeddings,
Proceedings of the Hyderabad Conference on Algebraic Groups
(Hyderabad, 1989), Manoj Prakashan, Madras, 1991, pp. 225–249.
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