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Abstract. In this paper we study random perturbations of first-
order elliptic operators with periodic potentials. We are mostly in-
terested in Hamiltonians modeling graphene antidot lattices with im-
purities. The unperturbed operator H0 := DS + V0 is the sum of
a Dirac-like operator DS plus a periodic matrix-valued potential V0,
and is assumed to have an open gap. The random potential Vω is
of Anderson-type with independent, identically distributed coupling
constants and moving centers, with absolutely continuous probability
distributions. We prove band edge localization, namely that there ex-
ists an interval of energies in the unperturbed gap where the almost
sure spectrum of the family Hω := H0 + Vω is dense pure point, with
exponentially decaying eigenfunctions, that give rise to dynamical lo-
calization.
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1. Introduction

The main goal of this paper is to derive spectral and dynamical localization
properties near band edges for first-order elliptic and periodic operators densely
defined in L2(Rd,Cn), perturbed by random potentials. The main application
we have in mind is related to graphene antidot lattices. Graphene is a two-
dimensional material made of carbon atoms arranged in a honeycomb structure.
The energy spectrum for pristine graphene possesses two bands crossing at the
Fermi level with a Dirac-cone structure. Therefore charge carriers close to the
Fermi energy behave like massless Dirac fermions, making pristine graphene a
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semimetal. In order to use graphene for semiconductor applications, such as
transistors, one needs to produce an energy gap.
Several gapped models have been proposed in the physics literature. In the
present article we are interested in models of regular sheet of graphene having
a periodic array of obstacles that create an open spectral gap at the Fermi
level. These obstacles can take many different forms like e.g. local defects in
the interatomic bonds, or deformation of the structure inducing curvatures in
the sheet of graphene, or nanoscale perforations in a periodic pattern (see e.g.
[7, 6, 10] and references therein). In the present work, we are interested in this
last setting called graphene antidot lattices (GAL). In [6] and [28], this has been
modelized by a two dimensional Dirac operator with a spatially varying mass
term to calculate the electronic transport through such structures, and numer-
ical computations showed gap opening near the Fermi level. A mathematical
approach in [3] proved gap opening with a periodic mass potential.
This theoretical prediction relies on a perfect placement of identical perfora-
tions. However, in the fabrication process, some fluctuations might occur. In
[29] the authors numerically measure the effect of these fluctuations by consider-
ing random chemical or geometrical perturbations, and prove that conductivity
properties are modified and the gap disappears only for very strong disorder.
In the present article, in order to verify that the material remains a semi-
conductor with a mobility gap, we propose to perturb the afore mentionned
gapped Dirac Hamiltonian by an Anderson-type potential to describe defects
in the array of obstacles. The random potential we introduce is a perturbation
of the periodic varying mass term that models the nanoscale perforations.
To characterize conductivity and study the mobility gap there are two types
of properties for such Hamiltonians we are interested in (see Definition 3.1 for
details):

• Spectral localization: Dense pure point spectrum with exponentially
decaying associated eigenfunctions.

• Dynamical localization: Uniform boundedness in time of moments of
positive orders of states which are spectrally supported in the dense
point spectrum.

Starting from the seminal contributions by Anderson [1] and the rigorous spec-
tral analysis initiated by Pastur [21, 16], a significant number of papers on
Anderson-like Hamiltonians have been published in the mathematical litera-
ture.
Most of the existing mathematical results regarding these properties are derived
for the case where the kinetic energy is described by discrete or continuous
Laplace operators. The case where the kinetic energy is given by Dirac or
Maxwell operators has been the subject of studies only recently.
A step towards Dirac operators has been done in the case where the kinetic
energy is given by a Laplacian on L2(Rd) ⊗ Cν , ν > 1 and the random poten-
tial is matrix-valued (see [4] and references therein). In [23, 24] the authors
considered discretized versions of Dirac operators on ℓ2(Zd,Cν) (d = 1, 2, 3),
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with a simple mass potential, and a random potential given by a matrix-valued
diagonal operator, and proved spectral and dynamical localization near band
edges.
A precise analysis of the conditions leading to localization enables us to provide
a result not only for random perturbations of two-dimensional continuous Dirac
operators, but also for a larger class of first-order elliptic operators. This
includes the operators describing “classical waves” as defined by Klein and
Koines [19].
In our paper we are interested in the case in which a spectral gap is created near
zero by a deterministic matrix-valued potential, which afterwards is perturbed
by a random one.
Our main results on spectral and dynamical localization are stated in Theo-
rem 2.10 and Theorem 2.11. The proofs of these results exploit the develop-
ments of the theory of multiscale analysis for continuous operators as given by
[8, 13, 15, 9]. In contrast to [19], the random perturbations we consider are ad-
ditive, and not multiplicative. Due to cross terms, the spectral and dynamical
localization properties we study cannot be reached in a straightforward way
by considering the square of the perturbed operator as done in [19]. In [14] a
related study of spectral localization is done for random magnetic Hamiltoni-
ans that can be compared, to a certain extent, with the square of the random
operators (2.6) we analyze here, but rather strict and involved assumptions are
imposed that do not hold for the Hamiltonians (2.6) we consider. Therefore it
becomes necessary to work directly with first-order operators, which induces
some technical difficulties. For instance, the Wegner inequality of Theorem 4.2
requires a sharp bound that is obtained by a Combes-Thomas estimate that
we have to derive in the case of Dirac operators. The second main ingredient,
the so-called initial decay estimate (see Property 3.11) necessitates to prove
that a gap still persists after perturbation and to have a good control on the
variations of this gap, which depends upon trace estimates for Dirac operators.
Moreover, in order to perform the multiscale analysis, the lack of self-adjoint
realization for Dirac operators with Dirichlet boundary conditions forces us to
consider first-order elliptic operators where solely the random perturbations is
spatially cut. This latter point is also what makes that the general scheme of
our proof has some similarities with the one developped in [2].

2. Setting and main results

We start with a few definitions.

Definition 2.1. Let {σi}di=1 be a family of n × n Hermitian matrices where
n, d > 1. We consider the following first-order linear operator with constant
coefficients:

(2.1) σ · (−i∇) :=

d∑

j=1

σj(−i
∂

∂xj
),
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densely defined in L2(Rd,Cn). It is elliptic if there exists C > 0 such that for
all p ∈ Rd and q ∈ Cn we have

‖(σ · p)q‖Cn > C‖p‖Rd ‖q‖Cn .(2.2)

If E0 ∈ R, the maps

R
d ∋ p 7→ gij(p) :=

[
(σ · p− E0 − i)−1

]

ij
∈ C, 1 6 i, j 6 n,

are well defined and due to (2.2) there exists a constant C <∞ such that

|gij(p)| 6 C〈p〉−1, 1 6 i, j 6 n(2.3)

where 〈p〉 :=
√
1 + |p|2 for some norm | · | on Rd.

A direct consequence is that σ · (−i∇) is self-adjoint on the Sobolev space
H1(Rd,Cn).

Definition 2.2. We say that an operator on L2(Rd,Cn) is a coefficient positive
operator if it is a bounded invertible operator given by the multiplication by an
n× n Hermitian matrix-valued measurable function S(x) such that there exist
two positive constants S± such that:

(2.4) 0 < S−In 6 S(x) 6 S+In,

where In is the n× n identity matrix.

We consider operators of the type

(2.5) H0 = SD0S + V0

where D0 is a first-order elliptic operator with constant coefficients like in
(2.1), and S is a coefficient positive operator as in (2.4). The function
S ∈ W 1,∞(Rd,Hn(C)), where Hn is the space of n× n Hermitian matrices, is
supposed to be Zd-periodic. We denote

DS := SD0S.

Such operators appear in connection with wave propagation and are sometimes
called classical wave operators (cf. [20, 19]). We warn the reader that this name
has nothing to do with the Möller wave operators of quantum scattering theory.
The potential V0 is Zd-periodic and belongs to L∞(Rd,Hn).
With the above definitions and assumptions the operator H0 is self-adjoint on
H1(Rd,Cn).

Assumption 1 (gap assumption). The spectrum of H0 contains a finite open
gap, which will be denoted (B−, B+).

Example 2.3. The simplest examples are the free Dirac operators with mass
µ > 0 in dimension two and three, respectively given by

H0 = σ1(−i∂x1
) + σ2(−i∂x2

) + µσ3 in L2(R2,C2),
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with σi being the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
−0 −1

)

and

H0 = α · (−i∇) + µβ in L2(R3,C4),

with α = (α1, α2, α3), β being the Dirac matrices

αi =

(
0 σi
σi 0

)
, β =

(
1 0
0 −1

)
.

Both operators are such that ρ(H0) ∩ R = (−µ, µ) (cf. [27]), where for T
self-adjoint, ρ(T ) is its resolvent set.

Example 2.4. A family of operators which is physically relevant in connection
to graphene antidot lattices, as introduced e.g. in [22] and rigorously studied
in [3], is the following:

H0(α, β) = D0 + β
∑

γ∈Z2

χ

( · − γ

α

)
σ3 in L2(R2,C2),

where D0 = σ · (−i∇) is the two-dimensional massless Dirac operator, β > 0,
α ∈ (0, 1], and χ : R2 → R is a bounded function with support in a compact
subset of (− 1

2 ,
1
2 ]

2.

If
∫
χ 6= 0 it has been proved in [3, Theorem 1.1] the existence of a spectral gap

near zero for this operator, namely that there exist constants C,C′ > 0 and δ ∈
(0, 1) such that for every α ∈ (0, 1/2] and β > 0 satisfying αβ < min{δ, C′/C}
we have

[−α2β(C′ − Cαβ), α2β(C′ − Cαβ)] ⊂ ρ(H0(α, β)).

Example 2.5. In [11] it has been shown that certain operators of the type DS

as in (2.5), modeling Maxwell operators with periodic dielectric constants, can
also have open gaps.

For operators fulfilling Assumption 1, we want to study the effect of random
perturbations on the spectral gap (B−, B+).
The random matrix-valued perturbation Vω describing local defects is defined
by

Vω =
∑

i∈Zd

λi(ω)u(· − ξi(ω)− i),

for some u, λi and ξi satisfying Assumption 2 below. The total Hamiltonian is
thus

(2.6) Hω = H0 + Vω .

Assumption 2. (i) The real-valued random variables {λi(ω), i ∈ Zd} are
independent and identically distributed. Their common distribution is abso-
lutely continuous with respect to Lebesgue measure, with a density h such that
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‖h‖L∞ < ∞. We assume that supp(h) = [−m,M ] 6= {0} for some finite
non-negative m and M .
(ii) The variables {ξi(ω), i ∈ Zd} are independent and identically distributed,
and they are also independent from the λj’s. They take values in BR with
0 < R < 1

2 , where BR is the ball in Rd with radius R and centered at the
origin.
(iii) The single-site matrix potential u is compactly supported with supp(u) ⊂
[−2, 2]d. In addition, u is assumed to be continuous almost everywhere, with
u ∈ L∞(Rd,H+

n ), where H+
n is the space of n × n non-negative Hermitian

matrices.
(iv) The density h decays sufficiently rapidly near −m and M , i.e.

0 < P
{
|λ+m| < ǫ

}
6 ǫd/2+β,

0 < P
{
|λ−M | < ǫ

}
6 ǫd/2+β

for some β > 0.

Remark 2.6. Here are a few comments:

(i) We take as probability space Ω =
(
supp(h)

)Zd

× (BR)
Z
d

equipped with the
product probability measure.
(ii) The periodicity of V0 and S, and hypotheses (i) and (ii) imply that the
family {Hω, ω ∈ Ω} has a deterministic spectrum Σ in the sense that there
exists A0 ⊂ Ω with probability 1 such that ∀ω ∈ A0, σ(Hω) = Σ (cf. for
example [9, Theorem 4.3, p20]).
(iii) A standard result about trace estimates [26, Theorem 4.1] states that

f(x)g(−i∇) ∈ Tq if f, g ∈ Lq(Rd) for 2 6 q <∞
with

‖f(x)g(−i∇)‖q 6 (2π)−d/q‖f‖Lq‖g‖Lq

where Tq denotes the trace ideal and ‖ · ‖q the associated norm.
If q > d, each gij ∈ Lq(Rd). Thus if f ∈ Lq(Rd,Mn(C)) we obtain that
f(·)(D0 − E0 − i)−1 ∈ Tq and there exists a constant C < ∞ such that for all
E0 ∈ R and f ∈ Lq(Rd,Mn(C)) one has

‖f(·)(D0 − E0 − i)−1‖q 6 C max
16i,j6n

‖fij‖Lq(Rd).

In order to simplify notation we will sometimes forget about the matrix struc-
ture of the various objects and simply write for example ‖f‖Lq instead of taking
the maximum over all its n2 components.
Denote for simplicity z = E0 + i. We have

(DS − z)−1 = S−1(D0 − zS−2)−1S−1

and

(D0 − zS−2)−1 = (D0 − z)−1 − (D0 − z)−1z(In − S−2)(D0 − zS−2)−1.
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A consequence of (2.4) is that the entries of S and those of S−1 are globally
bounded. Hence, for any bounded interval I ⊂ R, there exists a finite constant
CI such that for any E0 ∈ I and f ∈ Lq we have:

‖f(·)(DS − E0 − i)−1‖q 6 CI ‖f‖Lq .

If E0 ∈ (B−, B+) we have that (H0 − E0)
−1 exists as a bounded operator.

Then by using both the first resolvent identity to change E0 with E0 + i and
the second resolvent identity to produce a (DS − E0 − i)−1 to the left, we
find f(·)(H0 − E0)

−1 ∈ Tq if q > d and that for any compact subinterval J of
(B−, B+) there exists a finite constant C′

J such that for any E0 ∈ J and f ∈ Lq

we have:

(2.7) ‖f(·)(H0 − E0)
−1‖q 6 C′

J‖f‖Lq .

(iv) Hypotheses (i)-(iii) imply that ∀ω, ‖Vω‖∞ 6 C where C is a finite constant
depending only on m, M , u and R.
(v) As a consequence, the operator Hω is self-adjoint on H1(Rd,Cn) for any ω.
(vi) Another useful result is the following. Given a Schwartz function χ ∈
S(Rd,C), since S ∈ W 1,∞(Rd,Mn(C)), the commutator [H0, χ] is bounded.
Indeed, we have:

[H0, χ] = S
(
σ · (−i∇χ)

)
S.

We denote:

(2.8) M∞ := max{m,M} sup
(xi)∈[− 1

2
, 1
2
]Zd

∥∥∥∥∥∥

∑

i∈Zd

u(· − xi − i)

∥∥∥∥∥∥
∞

<∞,

where ‖ · ‖∞ means the supremum on Rd of the operator norm associated with
the standard Euclidean norm on Cn. Remember that u has compact support,
thus only a finite numbers of terms are different from zero in the above series.
Next, we need an assumption on the almost sure spectrum. In Proposition 2.8
we will give sufficient conditions which make sure that it holds.

Assumption 3. Let Σ be the almost sure spectrum of Hω. Then there exist
two constants B′

± satisfying B− 6 B′
− < B′

+ 6 B+ such that

Σ ∩
(
(B−, B

′
−) ∪ (B′

+, B+)
)
6= ∅ and Σ ∩ (B′

−, B
′
+) = ∅,

i.e. some new almost sure spectrum appears in the old gap, while a smaller gap
still exists.

Due to [18, Theorem 1, §6, p304] we have information on the spectrum not
only for almost every ω but for all ω ∈ Ω.

Definition 2.7. We say that an ergodic family of operators (Hω)ω∈Ω is Kirsch-
standard if:

(1) Ω is a Polish space and the σ-algebra contains the Borel sets on Ω.
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(2) There is a set Ω0 with probability one such that Hω is self-adjoint for
any ω ∈ Ω0 and the mapping ω 7→ Hω restricted to Ω0 is continuous
in the sense that if ωj → ω then Hωj → Hω in the sense of strong
resolvent convergence.

Let us briefly show that in our case we deal with a Kirsch-standard ergodic fam-
ily of operators with Ω0 = Ω. First, Ω is a Polish space as a countable product
of Polish spaces when it is equipped with the classical distance on a product
of metric spaces. Second, it suffices to show that for any φ ∈ C∞

c (Rd,Cn) we
have Hωjφ→ Hωφ when ωj → ω (cf. [25, Theorem VIII.25]).

If ωj → ω ∈ Ω, then for all i ∈ Zd λi(ωj) → λi(ω) and ξi(ωj) → ξi(ω). Then
(assuming for simplicity n = 1):

‖Hωjφ−Hωφ‖2

=

∫

Rd

∑

i∈Zd

∣∣λi(ωj)u(· − ξi(ωj)− i)− λi(ω)u(· − ξi(ω)− i)
∣∣2 |φ|2.

As u is continuous almost everywhere, the difference in the integral tends almost
everywhere to 0 and the integrand is bounded by 4M2

∞|φ|2 which is integrable.
Using the dominated convergence theorem, we find the desired result.
Note that if ξi(ω) takes only discrete values (including the case where it is
constant), we do not need the continuity of u.
The fact that (Hω) is a standard ergodic family of operators has the important
consequence that (see [18, Theorem 1, §6, p304])
(2.9) ∀ω ∈ Ω, σ(Hω) ⊂ Σ.

Hence Σ only depends on the support of the probability distributions. Also,
Σ ∩ [B−, B+] is characterized by the following two propositions which state
that under Assumptions 1 and 2 one can tune the parameters in such a way
that Assumption 3 holds and some “new” almost sure spectrum appears in the
old gap, without closing it though. Moreover, the almost sure spectrum has
exactly one (smaller) gap in the given gap of the unperturbed operator. Proofs
will be given in Appendix A.

Proposition 2.8. There exist u, m, and M as in Assumption 2 such that Hω

satisfies Assumption 3.

Proposition 2.9 (Location of the spectrum in the gap of H0). Assume the
existence of B′

− and B′
+ of Assumption 3. Denote

B̃− = sup{E ∈ Σ | E 6 B′
−} and B̃+ = inf{E ∈ Σ | E > B′

+}.
Then [B−, B̃−] ⊂ Σ and [B̃+, B+] ⊂ Σ.

Our main results on localization are the following.

Theorem 2.10 (Spectral localization). Under Assumptions 1, 2 and 3, there
exist two constants E± satisfying B− 6 E− 6 B′

− and B′
+ 6 E+ 6 B+ such

that Σ∩ (E−, E+) is non-empty, dense pure point, with exponentially decaying
eigenfunctions.
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Theorem 2.11 (Dynamical localization). Suppose Assumptions 1, 2 and 3
hold, and denote E± the two energies of Theorem 2.10. If r > 0 and ψ ∈
L2(Rd,Cn) has compact support, then for any compact interval J ⊂ (E−, E+),

(2.10) E

{
‖ |x|rEω(J)e

−iHωtψ‖2
}
<∞

where Eω(J) denotes the spectral projector on the interval J for Hω and E is
the expectation associated to P.

Throughout this article, we shall use the sup norm in Rd

(2.11) |x| = max{|xi| : i = 1, . . . , d}.

Remark 2.12. Some stronger dynamical localization results will be described
in the next section, see in particular the estimate (3.1) which will be proved in
Theorem 4.1. In particular, Theorem 2.11 is a straightforward consequence of
Theorem 4.1.

3. One method to localize them all: Germinet and Klein’s
bootstrap multiscale analysis

Here we briefly explain how Germinet and Klein’s multiscale analysis has to be
applied in our setting. More details can be found in [15] and [9].
In this section, Hω denotes an ergodic random self-adjoint operator on
L2(Rd,Cn).

3.1. Spectral and dynamical localization. Given a set B ⊂ Rd, we
denote χB its characteristic function. For x ∈ Zd, we denote χx the char-
acteristic function of the cube of side-length 1 centered at x. We recall that
〈x〉 =

√
1 + |x|2. The projection-valued spectral measure ofHω will be denoted

by Eω(·). The Hilbert-Schmidt norm of an operator A is denoted by ‖A‖2.

Definition 3.1. Let Hω be an ergodic random operator defined on a probabil-
ity space (Ω,F ,P) and I an open interval. The different localization properties
are the following:

(1) The family of operators (Hω) exhibits exponential localization (EL) in
I if it has only pure point spectrum in I and for P- almost every ω the
eigenfunctions of Hω with eigenvalue in I decay exponentially in the
L2 sense, i.e. for P- almost every ω, for any eigenvalue E in I and any
associated eigenfunction ψE , there exist constants C and m > 0 such
that for all x ∈ Zd, ‖χxψE‖ 6 Ce−m|x|.

(2) Hω exhibits strong dynamical localization (SDL) in I if Σ∩ I 6= ∅ and
for each compact interval J ⊂ I and ψ ∈ H with compact support, we
have

E

{
sup
t∈R

‖〈x〉rEω(J)e
−itHωψ‖2

}
<∞ for all r > 0.
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(3) Hω exhibits strong sub-exponential Hilbert-Schmidt-kernel decay
(SSEHSKD) in I if Σ∩ I 6= ∅ and for each compact interval J ⊂ I and
0 < ζ < 1 there is a finite constant CJ,ζ such that

(3.1) E

{
sup

‖f‖∞61

‖χxEω(J)f(Hω)χy‖22

}
6 CI,ζe

−|x−y|ζ ,

for all x, y ∈ Zd, the supremum being taken over all Borel functions f
of a real variable, with ‖f‖∞ = supt∈R |f(t)|, and ‖ · ‖2 is the Hilbert-
Schmidt norm.

Other types of localization are presented in [9] but they are all implied by
(SSEHSKD). Note that (SDL) is also implied by (SSEHSKD).
As in [9], we define ΣEL (resp. ΣSSEHSKD) as the set of E ∈ Σ for which there
exists an open interval I ∋ E such that Hω exhibits exponential localization
(resp. strong sub-exponential Hilbert-Schmidt kernel decay) in I.

3.2. Generalized eigenfunction expansion. Let H = L2(Rd, dx;Cn).
Given ν > d/4, we define the weighted spaces H± as

H± = L2(Rd, 〈x〉±4νdx;Cn).

The sesquilinear form

〈φ1, φ2〉H+,H−
=

∫
φ̄1(x) · φ2(x)dx

where φ1 ∈ H+ and φ2 ∈ H− is the duality map.
We set T to be the self-adjoint operator on H given by multiplication by the
function 〈x〉2ν ; note that T−1 is bounded.

Property 3.2 (SGEE). We say that an ergodic random operator Hω satisfies
the strong property of generalized eigenfunction expansion (SGEE) in some
open interval I if, for some ν > d/4,

(1) The set

Dω
+ = {φ ∈ D(Hω) ∩H+;Hωφ ∈ H+}

is dense in H+ and is an operator core for Hω with probability one.
(2) There exists a bounded, continuous function f on R, strictly positive

on the spectrum of Hω such that

E

{
[tr(T−1f(Hω)Eω(I)T

−1)]2
}
<∞.

Definition 3.3. A measurable function ψ : Rd → Cn is said to be a generalized
eigenfunction of Hω with generalized eigenvalue λ if ψ ∈ H−\{0} and

〈Hωφ, ψ〉H+,H−
= λ〈φ, ψ〉H+,H−

, for all φ ∈ Dω
+.

As explained in [9], when (SGEE) holds, a generalized eigenfunction which is
in H is a bona fide eigenfunction. Moreover, if µω is the spectral measure for
the restriction of Hω to the Hilbert space Eω(I)H, then µω-almost every λ is
a generalized eigenvalue of Hω.
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3.3. Finite volume operators and their properties. We remind the
reader that throughout this article we use the sup norm in Rd : |x| = max{|xi| :
i = 1, . . . , d}. By ΛL(x) we denote the open box of side L > 0 centered at
x ∈ Rd:

ΛL(x) = {y ∈ R
d; |y − x| < L

2
},

and by Λ̄L(x) the closed box. We define the boundary belt as

ΥL(x) = Λ̄L−1(x)\ΛL−3(x).

We will write Λl ⊏ ΛL(x) when a smaller box Λl is completely surrounded by
the belt ΥL(x) of a bigger box ΛL(x). More precisely, this means that if x ∈ Zd

and L > l + 3 we have Λl ⊂ ΛL−3(x).
Given a box ΛL(x), we define the localized operator

(3.2) Hω,x,L = H0 +
∑

i∈ΛL(x)∩Zd

λi(ω)ui(· − ξi(ω)) = H0 + Vω,x,L,

where we denote ui = u(· − i). This operator is a self-adjoint unbounded
operator on L2(Rd,Cn).
We can then define Rω,x,L(z) = (Hω,x,L − z)−1 the resolvent of Hω,x,L and
Eω,x,L(·) its spectral projection.
Definition 3.4. We say that an ergodic random family of operators Hω is
Klein-standard [9] if for each x ∈ Zd, L ∈ N there is a measurable map H·,x,L

from Ω to self-adjoint operators on L2(Rd,Cn) such that

U(y)Hω,x,LU(−y) = Hτyω,x+y,L

where τ and U define the ergodicity:

U(y)HωU(y)∗ = Hτy(ω).

It is easy to see that the family (3.2) of localized operators makes Hω a Klein-
standard operator.
We now enumerate the properties which are needed for multiscale analysis to
be performed, yielding thus various localization properties.

Definition 3.5. An event is said to be based in a box ΛL(x) if it is determined
by conditions on the finite volume operators (Hω,x,L)ω∈Ω.

Property 3.6 (IAD). Events based in disjoint boxes are independent.

The following properties are to hold in a fixed open interval I.

Property 3.7 (SLI). Denote by χx,L the characteristic function of ΛL(x) and
χx := χx,1. We also denote Γx,L the characteristic function of ΥL(x). Then
for any compact interval J ⊂ I there exists a finite constant γJ such that, given
L, l′, l′′ ∈ 2N, x, y, y′ ∈ Zd with Λl′′(y) ⊏ Λl′(y

′) ⊏ ΛL(x), then for P-almost
every ω, if E ∈ J with E /∈ σ(Hω,x,L) ∪ σ(Hω,y′,l′) we have
(3.3)

‖Γx,LRω,x,L(E)χy,l′′‖ 6 γJ‖Γy′,l′Rω,y′,l′(E)χy,l′′‖‖Γx,LRω,x,L(E)Γy′,l′‖.
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Property 3.8 (EDI). For any compact interval J ⊂ I there exists a finite
constant γ̃J such that for P-almost every ω, given a generalized eigenfunction
ψ of Hω with generalized eigenvalue E ∈ J , we have, for any x ∈ Zd and
L ∈ 2N with E /∈ σ(Hω,x,L), that

‖χxψ‖ 6 γ̃J‖Γx,LRω,x,L(E)χx‖‖Γx,Lψ‖.

Property 3.9 (NE). For any compact interval J ⊂ I there exists a finite
constant CJ such that, for all x ∈ Zd and L ∈ 2N,

E

(
tr
(
Eω,x,L(J)

))
6 CJL

d.

Property 3.10 (W). For some b > 1, there exists for each compact subinterval
J of I a constant QJ such that

(3.4) P{dist(σ(Hω,x,L), E) < η} 6 QJηL
bd,

for any E ∈ J , 0 < η < 1
2dist(E0, σ(H0)), x ∈ Zd and L ∈ 2N.

Property 3.11 (H1(θ, E0, L0)).

P

{∥∥∥Γ0,L0
Rω,0,L0

(E0)χ0,L0/3

∥∥∥ 6
1

Lθ
0

}
> 1− 1

841d
.

3.4. Multiscale analysis and localization. In this paragraph, we recall
two very powerful results of Germinet and Klein which give us localization
properties.

Definition 3.12. Given E ∈ R, x ∈ Zd and L ∈ 6N with E /∈ σ(Hω,x,L), we
say that the box ΛL(x) is (ω,m,E)-regular for a given m > 0 if

(3.5)
∥∥∥Γx,LRω,x,L(E)χx,L/3

∥∥∥ 6 e−mL/2.

In the following, we denote

[L]6N = sup{n ∈ 6N|n 6 L}.

Definition 3.13. For x, y ∈ Z
d, L ∈ 6N, m > 0 and I ⊂ R an interval, we

denote.

R(m,L, I, x, y)

=
{
ω; for every E′ ∈ I either ΛL(x) or ΛL(y) is (ω,m,E

′)-regular.
}
.

The multiscale analysis region ΣMSA for Hω is the set of E ∈ Σ for which
there exists some open interval I ∋ E such that, given any ζ, 0 < ζ < 1 and α,
1 < α < ζ−1, there is a length scale L0 ∈ 6N and a mass m > 0 so that if we
set Lk+1 = [Lα

k ]6N, k = 0, 1, . . ., we have

P
{
R(m,Lk, I, x, y)

}
> 1− e−Lζ

k

for all k ∈ N, x, y ∈ Zd with |x− y| > Lk.
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Theorem 3.14 (Multiscale analysis - Theorem 5.4 p136 of [9]). Let Hω be a
Klein-standard ergodic random operator with (IAD) and properties (SLI), (NE)
and (W) fulfilled in an open interval I. For Σ being the almost sure spectrum
of Hω and for b as in (3.4), given θ > bd, for each E ∈ I there exists a finite
scale Lθ(E) = Lθ(E, b, d) > 0 bounded on compact subintervals of I such that,
if for a given E0 ∈ Σ ∩ I we have (H1)(θ, E0, L0) at some scale L0 ∈ 6N with
L0 > Lθ(E0), then E0 ∈ ΣMSA.

Theorem 3.15 (Localization - Theorem 6.1 p139 of [9]). Let Hω be a Klein-
standard ergodic operator with (IAD) and properties (SGEE) and (EDI) in an
open interval I. Then,

ΣMSA ∩ I ⊂ ΣEL ∩ ΣSSEHSKD ∩ I.

4. Application to our setting

We will now show that all the conditions listed in the previous Section hold
true in our setting.

Theorem 4.1. Let Hω be the operator defined by (2.6) obeying Assumptions 1-
3. Then, we have (IAD) and there exist two constants E± satisfying B− 6

E− < B̃− and B̃+ < E+ 6 B+ such that (SLI), (EDI), (NE), (W), (SGEE)
and (H1(θ, ·,L0)) for θ and L0 large enough are satisfied on Σ ∩ (E−, E+).
Therefore, we have the localization properties (EL) and (SSEHSKD) on the
interval Σ ∩ (E−, E+).

Proof. (IAD) is a direct consequence of the independence of random variables
stated in Assumption 2 (i) and (ii).
To show (SLI), let x, y, y′, L, l′′ and l′ be as in Property 3.7 and consider, for
z ∈ Zd and ℓ > 4 a function χ̃z,ℓ ∈ C∞

0 (Rd, [0, 1]) which has value 1 on Λℓ−3(z)
and 0 outside of Λℓ−5/2(z) and whose gradient has norm smaller than 3. Pick
E ∈ (B−, B+) such that E /∈ σ(Hω,x,L) ∪ σ(Hω,y′,l′).
Using Assumption 2(iii) on the support of u leads us to the identity Hωχ̃y′,l′ =
Hω,x,Lχ̃y′,l′ and then we get:

(4.1) (Hω − E)χ̃y′,l′Rω,x,L(E) = χ̃y′,l′ +Wy′,l′Rω,x,L(E)

where

Wy′,l′ = [Hω, χ̃y′,l′ ] = [H0, χ̃y′,l′ ]

is bounded according to Remark 2.6 (vi).
With similar support arguments, we have Hωχ̃y′,l′ = Hω,y′,l′ χ̃y′,l′ and together
with the identity (4.1) we get the geometric resolvent equation:

(4.2) χ̃y′,l′Rω,x,L(E) = Rω,y′,l′(E)χ̃y′,l′ +Rω,y′,l′(E)Wy′,l′Rω,x,L(E).

Multiplying (4.2) from the left by χy,l′′ and from the right by Γx,L, writing
Wy′,l′ = Γy′,l′Wy′,l′Γy′,l′ , χ̃y′,l′Γx,L = 0, and taking the norm of the adjoints,
yields the estimate (3.3).
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For (EDI), we have, for ψ a generalized eigenfunction of Hω with associated
generalized eigenvalue E:

Rω,x,L(E)Wx,Lψ = Rω,x,L(E)
(
Hωχ̃x,L − χ̃x,LHω

)
ψ.

But, denoting V ext
ω,x,L = Vω − Vω,x,L, we have,

Hω = Hω,x,L + V ext
ω,x,L = Rω,x,L(E)−1 + E + V ext

ω,x,L.

Then,

Rω,x,L(E)Wx,Lψ

= χ̃x,Lψ +Rω,x,L(E)Eχ̃x,Lψ +Rω,x,L(E)V ext
ω,x,Lχ̃x,Lψ −Rω,x,L(E)χ̃x,LHωψ.

Using the facts that V ext
ω,x,L χ̃x,L = 0 and Hωψ = Eψ, we get

Rω,x,L(E)Wx,Lψ = χ̃x,Lψ

which, through operations similar to the ones of the proof of (SLI), will give
the desired result.
(NE) and (W) will be proved in Paragraph 4.1. (H1(θ, E0, L0)) for good values
of the parameters will be proved in Paragraph 4.2.
Let us now give the proof of (SGEE). For the first part, we see that Dω

+ ⊃
C∞
c (Rd,Cn) which is dense in H+ and a core for Hω for any ω.

For the second part we pick T as in Section 3.2, being defined by the multipli-
cation with 〈x〉2ν where ν > d/4. Then we will show that for some λ ∈ R:

tr
(
T−1(Hω − iλ)−d(Hω + iλ)−dT−1

)
6 C,

with C almost surely independent of ω, which will imply (SGEE) for any in-
terval I ⊂ R, with f : x 7→ |x− iλ|−2d.
To this purpose, it suffices to show that T−1(Hω − iλ)−d is Hilbert-Schmidt
with a Hilbert-Schmidt norm almost surely independent of ω.
For some α > 0, let hα = 〈·〉αHω〈·〉−α defined on C∞

c (Rd,Cn). By using the
fact that the multiplication by 〈x〉±α commutes with potentials, we find that
for any φ ∈ C∞

c (Rd,Cn)
hαφ = Hωφ+Kφ

for some bounded operator K independent of ω. We can then extend hα on
D(Hω).
Then, for λ ∈ R∗,

hα − iλ =
(
1 + (Wω +K)(DS − iλ)−1

)
(DS − iλ)

where Wω = V0 + Vω . As (Wω +K) is bounded independently of ω and λ, we
see that for λ large enough ‖(DS− iλ)−1(Wω+K)‖ < 1 so hα− iλ is invertible.
Moreover,

(4.3) (hα − iλ)−1 = (DS − iλ)−1
(
1 + (Wω +K)(DS − iλ)−1

)−1

.

By a standard argument one can prove that the following identity holds:

〈·〉−α(hα − iλ)−1 = (Hω − iλ)−1〈·〉−α,
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which together with (4.3) implies that:

〈·〉α(Hω − iλ)−1〈·〉−α = (DS − iλ)−1
(
1 + (Wω +K)(DS − iλ)−1

)−1

.(4.4)

The idea is to write the operator (Hω − iλ)−dT−1 as a product of d factors,
each of them belonging to T2d. In order to simplify notation, let us denote
(Hω − iλ)−1 by r and T−1/d with t−1. Then we get by induction:

(Hω − iλ)−dT−1 = rdt−d = rd−1t−(d−1){t−1tdrt−d}

=

d∏

j=1

t−1tjrt−j .(4.5)

For each j, we can put α = 2νj/d and by (4.4) we get:

t−1tjrt−j = 〈·〉−2ν/d(DS − iλ)−1 × Uj,

where Uj is a bounded operator with a norm independent of ω. The func-

tion 〈x〉−2ν/d belongs to L2d(Rd) when ν > d/4. Thus reasoning as in Re-
mark 2.6(iii) we have that (Hω − iλ)−dT−1 is Hilbert-Schmidt with a norm
which is independent of ω. This proves (SGEE) and thus concludes the proof
of Theorem 4.1. �

4.1. Proof of (W) and (NE). Let x ∈ Zd, L ∈ 2N,Λ = ΛL(x). We denote

Λ̃ = Λ ∩ Z
d. In order to alleviate notations, we denote Hω,Λ = Hω,x,L, Vω,Λ =

Vω,x,L and Eω,Λ = Eω,x,L the spectral projector. We prove in this paragraph
properties (W) and (NE) for the operator Hω,x,L, namely we establish the
following theorem.

Theorem 4.2 (Wegner estimate). Suppose Assumptions 1 and 2(i)-(iii) hold
true, and, for E0 ∈ (B−, B+) and η < 1

2dist(E0, σ(H0)), we denote Iη(E0) =
[E0 − η,E0 + η]. For any compact subinterval J of (B−, B+), there exists a
constant CJ such that for all E0 ∈ J

E
(
tr(Eω,Λ(Iη(E0)))

)
6 CJ η |Λ|.

Remark 4.3. This estimate trivially implies (NE). By Chebishev’s inequality,
it also leads to (W) with b = 1.

The resolvent of H0 in z ∈ ρ(H0) will be denoted R0(z). Let us fix some
E0 ∈ (B−, B+) and denote R0 := R0(E0). The following proposition holds
true:

Proposition 4.4. Assume that E0 belongs to a compact I in the gap. Let us
denote

K{i} = ui1R0ui2R0 · · ·uiq−1
R2

0uiq ,

given a q-tuple {i} for q being an even integer larger than 2d. Under Assump-
tions 1 and 2 (iii) on Vω,x,L, there exists a constant C > 0 such that for all
E0 ∈ I we have

(4.6)
∑

i1,...,iq∈Λ̃

‖K{i}‖1 6 C|Λ|.
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For the proof of this Proposition we need the following two Combes-Thomas-
like lemmas which are proved in Appendix B.

Lemma 4.5. Fix a compact interval I ⊂ (B−, B+). There exist two constants
α > 0 and C < ∞ such that, for all E ∈ I and any pair of bounded functions
χ1 and χ2 with ‖χi‖∞ 6 1 for i = 1, 2 and χ1 compactly supported, such that
the distance between their supports is a > 0, we have:

(4.7) ‖χ1(H0 − E)−1χ2‖ 6 C |supp(χ1)| e−αa.

The second lemma is a similar estimate with trace norm:

Lemma 4.6. Let a0 > 0. With the same notation as in Lemma 4.5, assume
that a > a0. Then the operator χ1(H0−E)−1χ2 is trace class and furthermore,
there exist two constants D > 0 and α > 0 such that for all E ∈ I and all χ1,
χ2 satisfying the hypotheses in Lemma 4.5 we have

(4.8) ‖χ1(H0 − E)−1χ2‖1 6 D |supp(χ1)| e−αa.

The proofs of these two lemmas are given in Appendix B.

Proof of Proposition 4.4. The inequality (4.6) is also proved in [2, Proposi-
tion 7.2] for Schrödinger operators under the assumptions that (4.7) and (4.8)
hold true, although the authors do not consider moving centers ξi(ω).
We omit here details of the proof since it is a straightforward adaptation of the
proof of [2, Proposition 7.2] once Lemma 4.5 and Lemma 4.6 are given.
The main ingredient behind the proof is that u has compact support,
thus keeping one index fixed, say i1, the operator K{i} is trace class and∑

i2,...,iq∈Λ̃ ‖K{i}‖1 is bounded by a numerical constant, uniformly on compacts

in the gap. Note that if any two consecutive uij and uij+1
have overlapping

supports then we use that uijR0 ∈ T2d, otherwise we use (4.8) and control the
series through the exponential localization. In the end we use that the number
of terms ui1 is proportional with the Lebesgue measure of Λ. �

For the proof of Theorem 4.2, we will use the following spectral averaging result
proven in [8, Corollary 4.2].

Proposition 4.7. Let H(λ) = H0 + λV a family of self-adjoint operators on
a Hilbert space H where V is bounded and satisfies

0 6 c0B
2 6 V

for some c0 > 0 and some bounded, self-adjoint operator B. Let Eλ be the
spectral family for H(λ). Then, for any Borel set J ⊂ R and any function
h ∈ L∞ compactly supported, h > 0,

∥∥∥∥
∫

R

h(λ)BEλ(J)Bdλ

∥∥∥∥ 6 c−1
0 ‖h‖∞|J |.

Proof of Theorem 4.2. The proof is very similar to the one in [2] though it
requires few technical changes. For the sake of completeness, we give it here.
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Let J be a compact subinterval of (B−, B+). We recall that if Hω,ΛψE = E ψE ,
E ∈ Iη(E0), we have

K0(E0)ψE = −ψE +R0(E0) (Hω,Λ − E0)ψE ,

where K0(E0) := R0(E0)Vω,Λ. When there is no ambiguity, we will drop the
dependence in E0 in the notations. Henceforth,

Eω,Λ(Iη) = −K0Eω,Λ(Iη) +R0(Hω,Λ − E0)Eω,Λ(Iη) .(4.9)

Thus, noting that Eω,Λ(Iη) is a positive trace class operator,

tr
(
Eω,Λ(Iη)

)
=
∥∥Eω,Λ(Iη)

∥∥
1

6
∣∣tr(K0Eω,Λ(Iη))

∣∣+ η ‖R0‖
∥∥Eω,Λ(Iη)

∥∥
1
,

and since η 6 1
2dist(E0, σ(H0)), we get

tr(Eω,Λ(Iη)) 6 2 |tr(K0Eω,Λ(Iη))|.(4.10)

A first consequence of (4.10) is, by the Hölder inequality with q as in Proposi-
tion 4.4 and 1/p+ 1/q = 1,

E
(
‖Eω,Λ(Iη)‖1

)
6 2E

(
‖K0Eω,Λ(Iη)‖1

)
6 2E

(
‖K0‖q‖Eω,Λ(Iη)‖p

)

6 2
{
E(‖K0‖qq)}1/q {E(‖Eω,Λ(Iη)‖pp)

}1/p

,
(4.11)

where ‖ · ‖q denotes the norm in the Schatten class Tq.
Since q > 2d, according to (2.7) we obtain that there exists a constant C such
that for all E0 ∈ J we have

(4.12) ‖K0(E0)‖q 6 C‖Vω,Λ‖Lq 6 CM∞|Λ|1/q

where M∞ is defined by (2.8).
From this inequality, the fact that E(‖Eω,Λ(Iη)‖pp) = E(‖Eω,Λ(Iη)‖1) (a conse-
quence of the fact that the non-zero eigenvalues of the spectral projector are
equal to one) and (4.11), we obtain:

(4.13) E(‖Eω,Λ(Iη(E0))‖1) 6 C |Λ|,
for all E0 ∈ J which in particular ends the proof of Property (NE).
Now, we use the adjoint of formula (4.9) to derive

K0Eω,Λ(Iη) = −K0Eω,Λ(Iη)K
∗
0 +K0Eω,Λ(Iη)(Hω,Λ − E0)R0,

which implies
∣∣tr(K0Eω,Λ(Iη))

∣∣ 6
∥∥K0Eω,Λ(Iη)

∥∥
1

6 tr
(
K0Eω,Λ(Iη)K

∗
0

)
+ η ‖R0‖

∥∥K0Eω,Λ(Iη)
∥∥
1
.

(4.14)

Hence, by (4.10) and η 6 1
2dist(E0, σ(H0)), this yields

E
(
tr(Eω,Λ(Iη)

)
6 4E

(
tr(K0Eω,Λ(Iη)K

∗
0 )
)
.

If q > 2, one continues this procedure and writes:

K0Eω,Λ(Iη)K
∗
0 = −K0Eω,Λ(Iη)(K

∗
0 )

2 +K0Eω,Λ(Iη)(Hω,Λ − E0)R0K
∗
0 .

(4.15)
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One has by Hölder’s inequality,

|tr(K0Eω,Λ(Iη)(Hω,Λ − E0)R0K
∗
0 )| 6 ‖K0Eω,Λ(Iη)(Hω,Λ − E0)R0K

∗
0‖1

6 η‖R0‖‖K0Eω,Λ(Iη)‖q/(q−1)‖K∗
0‖q

6 η‖R0‖‖K0‖2q‖Eω,Λ(Iη)‖q/(q−2).

(4.16)

Taking the expectation and again using Hölder’s inequality, inequality (4.12)
and (4.13), one can bound the expectation of the left hand side of (4.16) by
Cη|Λ|, where C is a constant independent of η, |Λ| and E0 ∈ J . Consequently,
the latter equations (4.14)-(4.16) imply

E(tr(Eω,Λ(Iη))) 6 4E(|tr(K0Eω,Λ(Iη)(K
∗
0 )

2)|) + Cη|Λ|.

If q > 3, one repeats this procedure again. Finally, one obtains

(4.17) E
(
tr(Eω,Λ(Iη))

)
6 4E

(
|tr(K0Eω,Λ(Iη)(K

∗
0 )

q−1)|
)
+ C η|Λ|,

where C is independent of η, |Λ| and E0 ∈ J .
To estimate the first term on the right hand side of (4.17), we expand the
potential VΛ =

∑
i∈Λ̃ λiui(·−ξi). In the rest of this proof, by abuse of notation,

we shall denote ui(· − ξi) by ui. Moreover, we fix the values of all ξi’s, and
expectation will be taken only with respect to the λi’s. For each q-tuple of

indices {i} := (i1, . . . , iq) ∈ Λ̃q, we define:

K{i} := Ki1...iq := u
1
2

i2
R0ui3R0ui4 · · ·uiqR2

0u
1
2

i1
.

By using Hölder’s inequality for trace ideals [26, Theorem 2.8],
Ki1...iq ∈ T1. In terms of this operator, using cyclicity of trace, the first term
on the right side of (4.17) becomes

E

(
|tr(K0Eω,Λ(Iη)(K

∗
0 )

q−1)|
)

= E





∑

i1,...iq∈Λ̃

λi1(ω) · · ·λiq (ω)tr
{
K{i}(u

1
2

i1
Eω,Λ(Iη)u

1
2

i2
)

}



.

(4.18)

Since K{i} is compact, we write it in terms of its singular value decomposition.

For each multi-index {i}, there exists a pair of orthonormal bases,
{
φ
{i}
k

}
and

{
ψ
{i}
k

}
, and non-negative numbers

{
µ
{i}
k

}
, all independent of ω, such that

(4.19) K{i} =

∞∑

k=1

µ
{i}
k

∣∣∣φ{i}k 〉〈ψ{i}
k

∣∣∣ .
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Inserting the representation (4.19) into (4.18) and expanding the trace in

{φ{i}k }, we obtain

(4.20) E





∑

{i}∈Λ̃q

∑

k>1

λ{i}(ω)µ
{i}
k 〈ψ{i}

k , (u
1
2

i1
Eω,Λ(Iη)u

1
2

i2
)φ

{i}
k 〉




,

where λ{i}(ω) := λi1 (ω) · · ·λiq (ω). Recalling that Eω,Λ(Iη) > 0, we bound the
k-sum in (4.20) by

(4.21)

1
2

∑

k>1

µ
{i}
k E

{
|λ{i}(ω)|〈ψ{i}

k , (u
1
2

i1
Eω,Λ(Iη)u

1
2

i1
)ψ

{i}
k 〉

+|λ{i}(ω)|〈φ{i}k , (u
1
2

i2
Eω,Λ(Iη)u

1
2

i2
)φ

{i}
k 〉
}
.

From the independence of the λi’s, the spectral averaging result (Proposition
4.7) applied to each term in (4.21) gives for the first term:

(4.22) E

{
|λ{i}(ω)|〈ψ{i}

k , (u
1
2

i1
Eω,Λ(Iη)u

1
2

i1
)ψ

{i}
k 〉
}

6 C1 η.

where C1 is finite, independent of k, and independent of E0 according to As-
sumption 2(i). From inequalities (4.18), (4.21) and (4.22), we obtain as upper
bound for the first term on the right hand side of (4.17):

(4.23) E
(
tr(Eω,Λ(Iη)

)
6 C1 η

∑

i1,...,iq∈Λ̃

(
‖K{i}‖1

)
.

Applying Proposition 4.4 we can bound the above series by a constant times
the Lebesgue measure of Λ, and this ends the proof of the Wegner estimate
and of the theorem. �

Remark 4.8. In order to apply Theorem 3.14 ([9, Theorem 5.4, p136]) for
proving Theorems 2.10, 2.11 and 4.1, it would be enough to have a Wegner-
like estimate with |Λ| raised to some high power. Thus we could have shown
directly using (2.7) and Hölders’s inequality for trace ideals that

∑

i1,...,iq∈Λ̃

‖K{i}‖1 6 C|Λ|q.

In this way we would have avoided the use of Proposition 4.4.

4.2. Proof of (H1(θ,E0,L0)). In this subsection, we want to prove

P

{
‖Γ0,L0

Rω,0,L0
(E0)χ0,L0/3‖ 6

1

Lθ
0

}
> 1− 1

841d

for E0 close enough to band edges B̃±, some θ > d and L0 large enough. As

in [2], we first prove that, for δ > 0 small, dist(σ(Hω,x,L), B̃±) > δ with good
probability. We can then apply Lemma B.1 to get exponential decay of the
resolvent at energies E ∈ (B̃− − δ/2, B̃−] ∪ [B̃+, B̃+ + δ/2). We finally verify
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H1(θ, E0, L0) for any θ > 0, E0 ∈ (B̃−−δ/2, B̃−]∪[B̃+, B̃++δ/2) and L0 > L∗
0

for some L∗
0 depending only on θ, d, B± B̃±, δ, M , m and M∞.

As in the previous section, we define Λ = ΛL(0) for some L ∈ 2N. We denote

Λ̃ = Λ ∩ Zd, Hω,Λ = Hω,0,L, Vω,Λ = Vω,0,L.

Lemma 4.9. Let µ = µω0,Λ ∈ σ(Hω0,Λ) ∩ (B−, B+) for some ω0 ∈ Ω. Then
µ ∈ Σ.

Proof. It is (2.9). See also [2, Lemma 5.1] for an alternative proof that can
easily be adapted for first-order operators. �

Proposition 4.10. Let δ± = 1
2 |B̃± − B±| and 0 < δ < 1

2M
−1
∞ min(δ+, δ−)

2.
Assume that

∀i ∈ Λ̃, −(1− δM∞ min(δ+, δ−)
−2)m < λi(ω) < (1− δM∞ min(δ+, δ−)

−2)M.

Then we have

sup
{
σ(Hω,Λ) ∩ (−∞, B̃−)

}
< B̃− − δ

and

inf
{
σ(Hω,Λ) ∩ (B̃+,+∞)

}
> B̃+ + δ.

Proof. We only prove the first inequality, the proof of the second one is similar.
Assume that the statement is false, i.e. there exist some Λ and some values of
the parameters λi(ω) and ξi(ω) such that Hω,Λ has an eigenvalue µ ∈ [B̃− −
δ, B̃−]. If one of the coupling constants λi is negative, say λ0 < 0, then let us
consider the family

H(λ) := DS + λu(· − ξ0(ω)) +
∑

i6=0,i∈Λ̃

λi(ω)u(· − ξi(ω)− i), λ ∈ [λ0(ω), 0].

We have that H(λ) is a self-adjoint analytic family of type (A) (cf. [17, VII,§2])
and all its discrete eigenvalues En(λ) in the interval [B̃−−δ, B̃−] can be followed
real-analytically as functions of λ. Also, we may construct real analytic families
of eigenvectors ψn(λ) for each of them. The Feynman-Hellmann formula and
Assumption 2(iii) give:

E′
n(λ) = 〈ψn(λ), u(· − ξ0(ω))ψn(λ)〉 > 0,

which shows that H(λ) will continue to have eigenvalues in [B̃− − δ, B̃−] up
to λ = 0. By induction, we may replace all the negative λi’s with zero, not
changing the fact that the new realization of Hω, this time with Vω,Λ > 0, still

has at least one eigenvalue µ ∈ [B̃− − δ, B̃−].
Now let us also assume that Vω,Λ > 0 and consider the analytic family of type
(A) T (ϑ) := H0+ϑVω,Λ, for ϑ in a small real neighbourhood of ϑ0 = 1. Since µ

has finite multiplicity, say n, there are at most n functions µ(k)(ϑ) analytic in ϑ
near ϑ0 = 1 such that µ(k)(1) = µ. Let φ(k)(ϑ) be a real analytic eigenfunction
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for µ(k)(ϑ), with ‖φ(k)(ϑ)‖ = 1 for ϑ real and |ϑ − 1| small. Applying the
Feynman-Hellmann formula we find that for ϑ such that ϑVω,Λ 6M∞

dµ(k)(ϑ)

dϑ
= 〈φ(k)(ϑ), Vω,Λφ

(k)(ϑ)〉 > ϑ−1M−1
∞ ‖ϑVω,Λφ

(k)(ϑ)‖2

= ϑ−1M−1
∞

∥∥∥∥
(
H0 − µ

(k)
ϑ

)
φ(k)(ϑ)

∥∥∥∥
2

> ϑ−1M−1
∞

(
dist(σ(H0), µ

(k)
ϑ )
)2
.

(4.24)

We now assume λi(ω) < (1− δM∞[min(δ+, δ−)]
−2)M, ∀i ∈ Λ̃, and fix

ϑ1 = min
i∈Λ̃

(
M

λi(ω)

)
>

(
1− δM∞

[
min(δ+, δ−)

]−2
)−1

> 1.(4.25)

We see that by definition of ϑ1 the condition ϑVω,Λ 6 M∞ is satisfied on the
interval [1, ϑ1].
Upon integrating (4.24) over [1, ϑ1] and using that µ 6 µ(k)(ϑ) 6 µ(k)(ϑ1) we
get:

µ(k)(ϑ1) > µ+(logϑ1)M
−1
∞ min

{[
dist(µ(k)(ϑ1), σ(H0))

]2
,
[
dist(µ, σ(H0))

]2
}
.

We have to bound the minimum of the distances. As we always have the
following order

B− < µ 6 µ(k)(ϑ1) 6 B̃− < B̃+ < B+

there are only two cases:

• either the minimum is dist(µ(k)(ϑ1), σ(H0)) and then it is equal to
B− − µ(k)(ϑ1) > 2δ+.

• or the minimum is dist(µ, σ(H0)) and then it is equal to µ − B−. As

µ > B̃− − δ, this distance is greater than B̃− − δ − B− = 2δ− − δ.
As δ < 1

2M
−1
∞ δ2−, the distance is larger than δ−(2 − 1

2M
−1
∞ δ−). Using

Lemma A.2 with A − B = Vω and ‖Vω‖ 6 M∞, we must have 2δ− 6

M∞ so the distance is larger than 3
2δ−.

Thus the minimum is larger than 3
2 min(δ+, δ−). Then using the inequality

− log(1− x) > x with x = 1− ϑ−1
1 from (4.25) we have

log(ϑ1) > 1− ϑ−1
1 = δM∞

[
min(δ+, δ−)

]−2

which leads to µ(k)(ϑ1) > B̃− and thus to a contradiction. �

Corollary 4.11. For 0 < δ < 1
2M

−1
∞ min(δ+, δ−), we have

sup
(
σ(Hω,Λ) ∩ (−∞, B̃−)

)
< B̃− − δ

and

inf
(
σ(Hω,Λ) ∩ (B̃+,+∞)

)
> B̃+ + δ,
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with probability larger than

1− 2|Λ| max
X∈{−m,M}

∣∣∣∣∣

∫ X

(1−δM∞ min(δ+,δ−)−2)X

h(s)ds

∣∣∣∣∣ .

Proof. The probability that

∀i ∈ Λ̃, −(1− δM∞ min(δ+, δ−)
−2)m < λi(ω) < (1− δM∞ min(δ+, δ−)

−2)M

is given by
[
1−

∫ M

(1−δM∞[min(δ+,δ−)]−2)M

h(s)ds−
∫ −(1−δM∞[min(δ+,δ−)]−2)m

−m

h(s)ds

]|Λ|

.

The conclusion follows by using (1− x)α > 1−αx for α > 1 and x ∈ [0, 1]. �

We can now prove hypothesis (H1(θ, E0, L0)).

Proposition 4.12. Let χi, i = 1, 2, be two functions with
‖χi‖∞ 6 1, supp(χ1) ⊂ ΛL0/3 and supp(χ2) ⊂ ΛL0

such that

supx∈supp(χ2) dist(x, ∂ΛL0
) < L0/8. Define δ± := 1

2 |B̃± − B±|. For

β > 0 as in Assumption 2 (iv), consider any ν > 0 such that
0 < ν < 4β(2β + d)−1 < 2. Then there exists L∗

0 such that for all L0 > L∗
0 and

E0 ∈ (B̃− − Lν−2
0 , B̃−] ∪ [B̃+, B̃+ + Lν−2

0 ),

sup
ǫ>0

‖χ2RΛL0
(E0 + iǫ)χ1‖ 6 e−L

ν/3
0 ,

with probability larger than 1− 1
841d .

Proof. Pick δ = 2Lν−2
0 . For L0 large enough we have δ < 1

2M
−1
∞ min(δ+, δ−)

2,
hence, using Assumption 2(iv), Corollary 4.11 and the fact that 0 < ν <
4β(2β + d)−1 yields

P

{
dist(σ(Hω,0,L0

), B̃±) > δ
}
>1− 2Ld

0

(
max(m,M)δM∞ min(δ+, δ−)

−2
) d

2
+β

>1− 1

841d
,

for L0 large enough.
Now consider any realization of Hω,0,L0

which obeys dist(σ(Hω,0,L0
), B̃±) >

δ = 2Lν−2
0 and let E0 ∈ (B̃− − Lν−2

0 , B̃−] ∪ [B̃+, B̃+ + Lν−2
0 ). We now apply

Lemma B.1 with x0 = 0, knowing that, for a1 and a2 as defined in Lemma B.1,
we have a2 − a1 > L0/8. We get

‖χ2RΛL0
(E + iǫ)χ1‖ 6

2

Lν−2
0

exp

(
−cL

ν/2−1
0

2
|B̃+ − B̃−|1/2

L0

8

)
.

The result follows by taking L0 large enough. �

Property (H1(θ, E0, L0)) comes directly from the previous proposition as

χ0,L0/3 and Γ0,L0
satisfy its hypotheses and e−L

ν/3
0 6 1

Lθ
0

when L0 > Lθ for

some finite Lθ.
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Appendix A. Spectrum location

A.1. Proof of Proposition 2.8.

Lemma A.1. Let ũ : Rd 7→ Hn(C) be a bounded, compactly supported, non-
negative matrix-valued multiplication potential which is not identically zero.
Let H0 be defined by (2.5) and define

Hτ := H0 + τũ(x), τ ∈ R.

Then there exists some τ ∈ R with |τ | > 0 such that Hτhas at least one discrete
eigenvalue in (B−, B+).

Proof. The perturbation given by ũ is relatively compact to H0, hence due
to the Birman-Schwinger principle we have that µ ∈ (B−, B+) is a discrete
eigenvalue of Hτ if −1 is an eigenvalue of τũ1/2(H0 − µ)−1ũ1/2. The family of
self-adjoint operators T (µ) := ũ1/2(H0 − µ)−1ũ1/2 cannot be identically zero
for µ ∈ (B−, B+) because this would lead to

T ′(µ) = ũ1/2(H0 − µ)−2ũ1/2 ≡ 0,

hence |H0 − µ|−1ũ1/2 = 0 and ũ1/2 = 0, contradiction. Now let µ0 ∈ (B−, B+)
be such that T (µ0) has a non-zero real eigenvalue E0. Then choosing τ0 =
−1/E0 we obtain that Hτ0 has a discrete eigenvalue at µ0. �

A slightly more general version of the following lemma can be found in [17,
V,Theorem 4.10]
The Hausdorff distance between two real subsets Ω1,2 ⊂ R is defined as

dH(Ω1,Ω2) := max{ sup
x∈Ω1

dist(x,Ω2), sup
y∈Ω2

dist(x,Ω1)}.(A.1)

Lemma A.2. Let A and B be two self-adjoint operators acting on the same
Hilbert space and having the same domain, such that A−B is bounded. Then

dH
(
σ(A), σ(B)

)
6 ‖A−B‖ .(A.2)

Proof. Let λ 6∈ σ(A) such that d(λ, σ(A)) > ‖A − B‖. Then the operator
(B−A)(A−λ)−1 has norm less than 1 and Id+ (B−A)(A−λ)−1 is invertible
with a bounded inverse. Thus

B − λ =
(
Id + (B −A)(A − λ)−1

)
(A− λ)

is also invertible with a bounded inverse, which shows that λ 6∈ σ(B). In other
words, no element of σ(B) can be located at a distance larger than ‖A − B‖
from σ(A), which implies:

sup
E∈σ(B)

d(E, σ(A)) 6 ‖A−B‖.

By interchanging A with B, the proof is over. �

Lemma A.3. Using the notation and result of Lemma A.1, let u := τ0ũ and
consider the operator Hω as in (2.6). With the notation introduced in Assump-
tion 2(i), let m,M ∈ (1, 2). Then there exists λ0 ∈ (0, 1) small enough such
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that Assumption 3 is satisfied if m and M are replaced respectively by λ0m and
λ0M .

Proof. For the sake of simplicity, let us assume m = M . According to
Lemma A.1, we know that some µ0 ∈ (B−, B+) belongs to the spectrum of
Hτ0 = H0 + u(x). Using (2.9), one can show that µ0 also belongs to the spec-
trum of Hω for ω belonging to a set of measure one, hence µ0 belongs to the
almost sure spectrum Σ.
Now consider the family Hλ,ω := H0+λVω with λ ∈ (0, 1). By multiplying the
potential with λ we effectively reduce the support of h to [−Mλ,Mλ]. Because
Vω is uniformly bounded for all ω, we know from Lemma A.2 that the spectrum
σ(Hλ,ω) varies Lipschitz continuously with λ, uniformly in ω.
We now want to prove that the almost sure spectrum Σλ is continuous in λ in
the Hausdorff distance. Let E ∈ Σλ and fix ǫ > 0. There exists some ωE such
that E ∈ σ(HλωE ). By the Weyl criterion, there exists ψE of norm one such
that

‖(HλωE − E)ψE‖ 6 ǫ/10.

Then there exists some Λ := ΛE,ǫ,λ ⊂ Rd large enough such that HΛ,λωE
:=

H0 + VΛ,λωE obeys
‖(HΛ,λωE − E)ψE‖ 6 ǫ/5.

This inequality implies by the same Weyl criterion that the operator HΛ,λωE

must have at least one point E′ of its spectrum such that E′ ∈ (E−ǫ/5, E+ǫ/5).
Now using Lemma A.2 we can find some δ > 0 such that for every λ′ obeying
|λ′−λ| < δ, the Hausdorff distance between the spectra of HΛ,λωE and HΛ,λ′ωE

is less than ǫ/5 thus there must exist E′′ in σ(HΛ,λ′ωE ) such that |E′′−E| < ǫ.
Finally, via Kirsch’s argument (2.9) one can prove that E′′ belongs to the
almost sure spectrum of Hλ′ω; in other words,

sup
E∈Σλ

d(E,Σλ′) < ǫ, ∀|λ′ − λ| < δ.

This implies in particular that the almost sure spectrum of Hλ,ω must converge
(as a set) to the spectrum ofH0 when λ tends to zero. Thus if λ is small enough,
then at least one gap must appear in the almost sure spectrum of Hλω, which
due to the same continuity, it must still have some non-empty component in
the old gap (B−, B+). �

A.2. Proof of Proposition 2.9. Under the conditions of Lemma A.3 we
know that there exists a gap [B′

−, B
′
+] ⊂ (B−, B+) in the almost sure spectrum

Σ of Hω, and at the same time, either Σ ∩ (B−, B
′
−) or Σ ∩ (B′

+, B+) is non-
empty.
Now assume that Σ ∩ (B−, B

′
−) is not empty. Let B̃− ∈ (B−, B

′
−) be the

supremum of this set (note that B̃− < B′
− since Σ is closed and we must have

B̃− ∈ Σ). If λ ∈ [0, 1] we consider the family Hλω and denote by Σλ its almost
sure spectrum. As a set, Σλ varies continuously with λ in the Hausdorff distance
as we saw in Lemma A.3. Denote by Eλ the supremum of Σλ ∩ [B−, B

′
−).

Because E1 = B̃−, E0 = B− and Eλ varies continuously with λ, we conclude
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that Eλ covers the interval [B−, B̃−]. Finally, since Eλ ∈ Σλ ⊂ Σ, we conclude

that [B−, B̃−] ⊂ Σ, hence no other gaps can appear in this interval.

Appendix B. Combes-Thomas estimates

This section is dedicated to Lemma 4.5 and Lemma 4.6. The proof of
Lemma 4.5 follows closely the strategy [5, Proposition 5.2].

Lemma B.1. Let W be a symmetric and matrix-valued bounded potential, and
let H = DS +W where DS = Sσ · (−i∇)S is like in (2.5) and S is a bounded
coefficient operator as in (2.4). Assume that H has a gap (E−, E+) in its
spectrum, containing 0. Consider χ1 and χ2 two compactly supported functions
such that ‖χi‖∞ 6 1. For x0 ∈ Rd define

a1 = sup
x∈supp(χ1)

|x− x0| and a2 = dist(x0, supp(χ2)).

For E ∈ (E−, E+) let

υ± = dist(E,E±) and υ = min(υ+, υ−).

Then there exists a constant c > 0 such that for all E ∈ (E−, E+) we have:

(B.1) ‖χ1(H − E)−1χ2‖ 6
2

υ
e−c

√
υ+υ−(a2 − a1).

Proof. Let ǫ > 0 and define 〈x − x0〉ǫ :=
√
ǫ+ |x− x0|2. For t > 0, we define

on C∞
c (Rd,Cn) the (non self-adjoint) operator

Ht,ǫ := e−t〈x−x0〉ǫHet〈x−x0〉ǫ = H − tSσ · (i∇〈x − x0〉ǫ)S.
The operator Ht,ǫ is closed on the domain of H . Let ψ ∈ C∞

c (Rd,Cn) with
norm 1. We denote ψ− = P(−∞,E−]ψ and ψ+ = P[E+,+∞)ψ, where P are the
spectral projectors for H , and we remind that υ± = dist(E,E±).
We have

‖(Ht,ǫ − E)ψ‖ >ℜ(〈ψ+ − ψ−, (Ht,ǫ − E)(ψ+ + ψ−)〉)
>υ+‖ψ+‖2 + υ−‖ψ−‖2 − 2‖tSσ · (i∇〈x− x0〉ǫ)S‖ ‖ψ+‖ ‖ψ−‖.

We observe that the length of ∇〈x−x0〉ǫ is bounded by a number independent
of ǫ. Let t := c

√
υ+υ− where c > 0 is independent of both E and ǫ, and small

enough so that:
‖tSσ · (i∇〈x − x0〉ǫ)S‖ <

√
υ+υ−/2.

We then have
‖(Ht,ǫ − E)ψ‖ > 1/2min(υ+, υ−).

Thus, Ht,ǫ − E is invertible for E ∈ (E−, E+) and

‖(Ht,ǫ − E)−1‖ 6
2

υ
,

uniformly in ǫ. Hence,

‖χ1(H − E)−1χ2‖ =‖χ1e
t〈·−x0〉ǫ(Ht,ǫ − E)−1e−t〈·−x0〉ǫχ2‖

6‖χ1e
t〈·−x0〉ǫ‖ ‖(Ht,ǫ − E)−1‖ ‖e−t〈·−x0〉ǫχ2‖.
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The central factor is bounded by 2/υ. By taking ǫ to zero, the first factor
is bounded by eta1 and the third factor by e−ta2 . We have thus proved the
lemma. �

Proof of Lemma 4.5. Without loss of generality we may assume that the dis-
tance between the supports obeys a > 10. Let K = [−1/2, 1/2)d be a unit cube
in Rd. Let gγ be the characteristic function of the cube Kγ := γ +K, γ ∈ Zd.
We have

χ1(H0 − E)−1χ2 =
∑

γ,γ′

gγχ1(H0 − E)−1χ2gγ′ .(B.2)

The sum over γ only contains finitely many terms because χ1 is compactly
supported. For any given such pair gγχ1 and gγ′χ2 we apply Lemma B.1 in
which we choose x0 = γ. We observe that in this case a1 6 1 and since a > 10
we also have a2 > a/3 + |γ − γ′|/3. Thus (B.1) leads to

‖gγχ1(H0 − E)−1χ2gγ′‖ 6 c1e
−c2ae−c2|γ−γ′|

where C1 and c2 are constants depending on the interval I. Then we can sum
over γ′ for every fixed γ and we are done. �

We are ready to prove Lemma 4.6.

Proof of Lemma 4.6. Using the same notation as in the proof of Lemma 4.5,
the strategy is to show the existence of two positive constants c1 and c2 such
that in the trace norm we have:

‖gγχ1(H0 − E)−1χ2gγ′‖1 6 c1e
−c2ae−c2|γ−γ′|.(B.3)

Without loss of generality we may assume that a0 = 10 and a > 10. Then the
pairs γ and γ′ which give a non-zero contribution must obey |γ − γ′| > 8.
We now consider 2d smooth and compactly supported functions 0 6 fj 6 1
which obey the following conditions: gγf1 = gγ , fjfj+1 = fj if 1 6 j 6 2d, and
the support of the ”largest” function f2d is contained in the hypercube centered
at γ with side-length 2. In particular, the support of fj and the support of the
derivatives of fj+1 are disjoint, and also f2dgγ′ = 0.
Denote R0 := (H0 − E)−1. We have [fj , R0] = R0S(−iσ · ∇fj)SR0 and

gγR0gγ′ = gγf2dR0gγ′ = gγR0S(−iσ · ∇f2d)SR0gγ′

and repeating this for all j we have:

gγR0gγ′ = gγ

2d∏

j=1

(
R0S(−iσ · ∇fj)S

)
χsupp(f2d)R0gγ′ .

Each factor R0S(−iσ ·∇fj)S belongs to T2d with a norm which is independent
of γ and γ′. Thus the product is trace class. Moreover, by applying Lemma B.1
to the pair χsupp(f2d) and gγ′ with x0 = γ we obtain a2−a1 > |γ−γ′|/10+a/10
and

‖χsupp(f2d)R0gγ′‖ 6 Ce−αae−α|γ−γ′|.
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This proves (B.3). Since there is a finite number of gγ ’s which give a non-
zero contribution in (B.2), this number being proportional with the Lebesgue
measure of the support of χ1, the proof is over. �
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Mathématique de France, 2008.

[10] M. Dvorak, W. Oswald, and Z. Wu. Bandgap opening by patterning
graphene. Sci. Rep., 3:2289, 2013. doi:10.1038/srep02289.

[11] A. Figotin and P. Kuchment. Band-gap structure of spectra of periodic
dielectric and acoustic media. II. Two-dimensional photonic crystals. SIAM
J. Appl. Math., 56(6):1561–1620, 1996. doi:10.1137/S0036139995285236.

[12] J.A. Fürst, J.G. Pedersen, C. Flindt, N.A. Mortensen, M. Brand-
byge, T.G. Pedersen, and A.-P. Jauho. Electronic properties

Documenta Mathematica 24 (2019) 65–93

http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.5169/seals-117008
http://dx.doi.org/10.1007/s00020-017-2411-9
http://dx.doi.org/10.1007/s10955-015-1255-4
http://dx.doi.org/10.1081/PDE-120004894
http://dx.doi.org/10.1088/0953-8984/26/26/265301
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1006/jfan.1994.1103
http://dx.doi.org/10.1038/srep02289
http://dx.doi.org/10.1137/S0036139995285236


92 J.-M. Barbaroux, H. D. Cornean, S. Zalczer

of graphene antidot lattices. New J. Phys., 11:095020, 2009.
doi:10.1088/1367-2630/11/9/095020.
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