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Introduction

If X is a complex manifold, and f : X → X is a holomorphic mapping, then
the Fatou set is the largest open set where the iterates fn := f ◦ · · · ◦ f are
locally equicontinuous. Equivalently, these are the points where f is Lyapunov
stable. The complement of the Fatou set is the Julia set. While we refer to
this as the Julia set, it is sometimes possible to define several Julia sets, (see
[9, 20]). In dimension 1, the principal case is where X = P1 is the Riemann
sphere, and f is a rational function. In this case, Fatou showed that if J has a
tangent at some point, then J is either a circle or a circular arc. In the case of
the circle, f is conjugate to zd for d ∈ Z, |d| ≥ 2; and in the case of an arc, f is
conjugate to a Chebyshev polynomial. In higher dimension, there are of course
product maps, and in this case the Julia set is a union of product sets. There
are also nontrivial examples of polynomial maps for which the Julia set is (real)
algebraic; examples were given in C2 by Nakane [13] and in C3 by Uchimura
[16, 17, 18].
These maps discussed above are non-invertible; in the sequel we consider in-
vertible maps. In this case, we have both a forward Julia set J+ := J(f) and a
backward Julia set J− := J(f−1). The invertible polynomial maps of C2 have
been classified by Friedland and Milnor [10]. The polynomial diffeomorphisms
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with nontrivial dynamical behavior are conjugate to compositions of general-
ized Hénon maps, and each such composition has a degree d. (See [4, 8, 12]
for the basic dynamical properties of these maps.) By [10, 15], it follows that
the topological entropy of f is log(d). Hubbard [11] defined the escape locus
U+ for such a map f , and it is easily seen that J+ = ∂U+. By [3], J+ cannot
contain an algebraic curve, so it follows (see Proposition 1.2) that: Neither J+

nor J− can be (real) algebraic. Our main result is:

Theorem. Let f be a polynomial diffeomorphism of C2 with positive entropy.
Then neither J+ nor J− is a semianalytic subset of C2.

Fornæss and Sibony [8] showed that, for a generic Hénon map, the Julia set is
neither smooth nor semianalytic. In [1] we showed that J+ can never be C1

smooth. However, the Julia sets in [13] and [16, 17, 18] have singular points and
thus are not C1, and this non-smoothness was our motivation for the present
Theorem.

1 Levi flat hypersurfaces

Let U ⊂ C2 be an open subset. A function ρ on U is said to be real analytic if
for every q ∈ U , ρ can be written as a real power series which converges in a
neighborhood of q. Let us suppose that q = 0 and write

ρ(z, z̄) =
∑

I,J

cI,Jz
I z̄J

where I = (i1, i2) is a pair of nonnegative integers, and zI = zi11 · zi22 , and
similarly for J and z̄J . We may treat z and z̄ as independent variables and
write

ρ(z, w̄) =
∑

I,J

cI,Jz
Iw̄J

The reality condition on ρ is that cI,J = cJ,I , which means that ρ(z, w̄) =

ρ(w, z̄). A set X is real analytic if it can be written locally as X∩U = {ρ = 0}.
A point x0 ∈ X is said to be regular ifX is a smooth manifold in a neighborhood
of x0. We write Reg(X) for the set of regular points, and Reg(X) is dense in
X (see [7]), although the dimension may be different at different points.
A smooth real hypersurface is said to be Levi flat if it is (locally) pseudo-
convex from both sides. We recall that the Green function is given by the
superexponential rate of escape to infinity: G+ = limn→∞ d−n log+ ||fn||, and
G+ is pluriharmonic on the set U+ = {G+ > 0}. It follows that: If the
set J+ = ∂{G+ > 0} is C1 smooth on some open set, then it is Levi flat
there. A real analytic set is said to be Levi flat if it is Levi flat at each regular
point. If X is a real analytic, Levi flat hypersurface, then at each regular point,
there is a local holomorphic coordinate system such that X is locally given as
{z1 + z̄1 = 0}. At singular points, the situation is more complicated.
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The following allows us to replace the semianalytic J+ by a real analytic Levi
flat hypersurface.

Lemma 1.1. Suppose that J+ is semianalytic, and p ∈ J+. Then there is a
neighborhood U of p such that

J+ ∩ U ⊂ X := X1 ∪ · · · ∪XN ⊂ U

where Xj is analytic and locally irreducible at p, the real dimension of Xj = 3,
Xj is Levi flat, and for each j, p is contained in the closure of Reg(Xj)∩J+−⋃

i6=j Xi. Further, if p is a fixed point, then X is invariant in the sense that
f(X) ∩ U ⊂ X.

Proof. The semianalytic sets are generated locally by taking finite unions, in-
tersections and complements of sets of the form {rj = 0, sj > 0}. (See Bier-
stone and Milman [7] for further information on semianalyticity.) Thus, if J+

is contained in a semianalytic set, it is contained in an analytic set X . Now
X will have a finite number of irreducible components X1, . . . , XN at p, and
we can take the minimal number of components necessary to contain J+ ∩ U .
Now for each of the components Xj , minimality means that we must have
Xj ∩ J+ −

⋃
i6=j Xi 6= ∅. Now we know that for any saddle point q, the stable

manifold W s(q) is dense in J+, (see [5]). Thus for any neighborhood V which
intersects Xj ∩J+ −

⋃
i6=j Xi, we have that W

s(q)∩V is a nonempty subset of

Xj ∩J+−
⋃

i6=j Xi. Since W
s(q)∩V is a 2-dimensional set which is not locally

equal to V ∩Xj ∩ J
+ −

⋃
i6=j Xi, we conclude that Xj must have dimension 3.

The statement that p is contained in the closure of Reg(Xj)∩ J+ −
⋃

i6=j Xi is
a consequence of the minimality of the set of varieties Xj .
Finally, if p is a fixed point, then f(U) is a neighborhood of p, and f(X) is
a real analytic set which contains J+ ∩ f(U). By the minimality of X , f(X)
must coincide with X in a neighborhood of p.

Let us discuss the hypersurface X = {ρ = 0}, where ρ(z, w̄) converges for
z, w ∈ U . If for fixed w ∈ U , ρ(z, w̄) = 0 for all z, we say that X is Segre
degenerate at w. If X is not degenerate at w ∈ U , then the Segre variety,
which is defined as

Qw := {z ∈ U : ρ(z, w̄) = 0},

is a proper subvariety of U . (In other words, the condition that w is Segre
degenerate means that the Segre variety is the whole open set U .) We may
choose the defining function ρ to be minimal, which means that if ρ′ is any other
defining function, then ρ′ = hρ. The family of Segre varieties is independent
of the choice of minimal defining function.
A basic property of analytic varieties is that if p is not Segre degenerate, then
for q near p, the dependence q 7→ Qq is continuous in the Hausdorff topology in
a neighborhood of p. Another basic property is that if M is a complex analytic
curve (possibly singular), and if M ⊂ X , then M ⊂ Qζ for all ζ ∈M .
At this stage, we can conclude that J± cannot be algebraic.
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Proposition 1.2. Let f be a polynomial diffeomorphism of C2 with positive
entropy. Then neither J+ nor J− is a real algebraic set.

Proof. Let us suppose that J+ = {ρ(z, z̄) = 0} is defined by a real polynomial.
At a regular point, w ∈ J+ must be Levi flat, since every stable manifold is
a complex and dense in J+. Since J+ is Segre nondegenerate at w, Qw is a
proper subvariety of C2 which is contained in J+. On the other hand, this is
not possible, since by [3] there is no complex algebraic subvariety of C2 which
is contained in K+.

The set of Segre degenerate points is a complex subvariety of codimension
at least 2 (see [14, Section 3]). Thus in C2, the Segre degenerate points are
isolated, so we may assume that U is sufficiently small that all points of X ∩
U − {p} are Segre nondegenerate.
A basic result (see Pinchuk, Shafikov and Sukhov [14]) is that if X is Levi flat,
then for each regular point w ∈ X , the Segre variety Qw is contained in X .
We say that p is dicritical if there are infinitely many distinct varieties Qq

passing through p. If X is locally irreducible at p, it follows that if infinitely
many varieties Qq contain p, then all varieties Qq contain p. We will make use
of the following result:

Theorem 1.3 ([14, Theorem 3.1]). A point is Segre degenerate if and only if
it is dicritical.

Lemma 1.4. If p and X = X1 ∪ · · · ∪XN are as in Lemma 1.1, then p is not
dicritical for any Xj.

Proof. If r0 is a saddle point, then by [5], the stable manifoldW s(r0) is dense in
J+. Since there are infinitely many saddle points, we may suppose that r0 6= p.
Let q ∈ W s(r0) ∩ X − {p} be a regular point of X . We may assume that
q is Segre nondegenerate, so that Qq is a complex subvariety of X . Further,
since the leaves of the complex foliation of a Levi flat hypersurface are unique,
it follows that W s(r0) intersects Qq in an open set. If p is dicritical, then
p ∈ Qq. On the other hand, since p is fixed, it cannot belong to W s(r0).

Thus Ŵ s(r0) := W s(r0) ∪ Qq is a complex manifold which is strictly larger

than W s(r0). (Note that we may desingularize Ŵ s(r0) if p is a singular point
of Qq.) Now recall that W s(r0) is uniformized by C, and the only Riemann
surface which strictly contains C is the Riemann sphere, which is compact.
Since C

2 can contain no compact, Riemann surfaces, we have a contradiction,
by which we conclude that Qq cannot contain p. Thus p is not dicritical.

Lemma 1.5. Let p and X1 ∪ · · · ∪XN be as in Lemma 1.1. Then for each j ,

the Segre variety Q
(j)
p corresponding to Xj, satisfies Q

(j)
p ⊂ J+.

Proof. Let r0 be a saddle point, and letW s(r0) be its stable manifold. Then the
setW s(r0)∩Xj is dense in Reg(Xj)∩J

+−
⋃

i6=j Xi. Let ζ ∈W s(r0)∩Reg(Xj)∩

J+ −
⋃

i6=j Xi. It follows that W s(r0) coincides with Qζ in a neighborhood of
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ζ. Thus Qζ ⊂ J+. Now as we have observed, Qζ depends continuously on ζ,
so letting ζ → p, we conclude that Qp ⊂ J+.

2 Multipliers at a fixed point

In the following Lemmas, we will assume that f is a composition of generalized
Hénon mappings, J+ is semianalytic, p ∈ J+ is a fixed point of f , and the
multipliers of Df at p are α and β with |α| ≤ |β|. Let X1, . . . , XN be the
Levi flat hypersurfaces given by Lemma 1.1. By Lemma 1.5, the germs of

varieties Q
(j)
p at p are invariant under some iterate of f . There is an injective

holomorphic map ϕ : ∆ → Q
(j)
p such that ϕ(0) = p, and ϕ(∆) = Q

(j)
p . The map

f |
Q

(j)
p

induces a locally biholomorphic map g of ∆, fixing 0. Since Q
(j)
p ⊂ J+

the forward iterates of g are a normal family, so we have |g′(0)| ≤ 1. However,
it is evident that if the eigenvalues of Df are both greater than 1, then we
must have |g′(0)| > 1. Thus we conclude:

Lemma 2.1. We cannot have 1 < |α| ≤ |β|.

The next observation is less immediate.

Lemma 2.2. We cannot have 1 = |α| ≤ |β|.

Proof. If Qp is as in Lemma 1.5, then there is an invariant germ Q ⊂ Qp and
an injective holomorphic map ϕ : ∆ → Q such that ϕ(0) = p and ϕ(∆) = Q.
We let g denote the selfmap of ∆ induced by f |Q. If |α| = 1, then we must
have |g′(0)| = 1. If g′(0) is a root of unity then an iterate of g is the identity
and therefore Q consists of periodic points, but this is not the case for Hénon
maps (see [10]). Let Q̂ denote the maximal analytic continuation of Q. Since
g′(0) is not a root of unity, the iterates of f on Q̂ generate T1 of rotations and
are bounded in both forward and backward time. Thus it follows that Q̂ ⊂ K.
Thus there is an injective holomorphic map ϕ : M → Q̂ with ϕ(0) = p and
ϕ(M) = Q̂. M must be equivalent to the disk ∆ or to C. Since Q̂ ⊂ K is
bounded, it follows that we must have M = ∆.
Now ϕ is a bounded holomorphic function on ∆, so if follows that for almost
every θ there is a radial limit limr→1 ϕ(re

iθ). Let θ have this property. Let
γ := {ϕ(reiθ) : 0 ≤ r < 1}, and let p̂ = limr→1 ϕ(re

iθ) be the endpoint
of γ. As in Lemma 1.1, let X̂ be a real analytic hypersurface defined in a
neighborhood U of p̂ such that U ∩ J+ ⊂ X̂. Thus γ ∩ U ⊂ Q̂ ∩ U ⊂ X̂ .
A basic property of Segre varieties is that Qζ ⊂ X̂ for every ζ ∈ Q̂ ∩ U . In
particular, if ζ ∈ γ, there is an irreducible component Q′

ζ of Qζ that contains
γ ∩ U . Thus Q′

ζ ∩ U is independent of ζ ∈ γ ∩ U . If we choose ζ ∈ γ, ζ → p̂,
then we see by the continuity of varieties that Q′

ζ ⊂ Qp̂. Thus there is an
irreducible component Q′′ of Qp̂ such that γ ∩ U ⊂ Q′′. We conclude that Q′′

gives an analytic continuation of Q̂ along γ, which contradicts the maximality
of Q̂. This contradiction shows that we cannot have |α| ≥ 1.
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If the multipliers at p satisfy |α| < 1 and |α| < |β|, then the strong stable set
of p is defined as

W ss(p) = {p} ∪ {q ∈ C
2 : lim

n→∞

1

n
log( dist(fn(p), fn(q))) = log |α|}

By the Strong Stable Manifold Theorem, W ss(p) is a complex submanifold of
C2 which is uniformized by C. The local strong stable manifold is defined as

W ss
loc(p) := {q ∈W ss(p) : fn(q) ∈ U for all n ≥ 0}.

Let us choose coordinates (x, y) near p = (0, 0) so that the coordinate axes are
the eigenspaces for Df(p). Then if we take U = {|x| < r1, |y| < r2} to be a
small bidisk, then W ss

loc(p) is the connected component of W ss(p) ∩ U which
contains p.

Lemma 2.3. We have |α| < 1 ≤ |β|, and Qp =W ss
loc

(p).

Proof. By Lemmas 2.1 and 2.2 we know that |α| < 1. If |β| < 1, then p
is an attracting fixed point, which means that p belongs to the interior of
K+. Since p ∈ J+ = ∂K+, we must have |β| ≥ 1. Thus the eigenvalues are
distinct, and we may diagonalize Df(p). We may suppose that p = (0, 0),
and f(x, y) = (x1, y1) = (βx + · · · , αy + · · · ). Further, we may choose local
coordinates such that W ss

loc(p) = {x = 0}.
If V be an irreducible component of Qp, and V is not the same as W ss

loc(p),
then we may choose U sufficiently small that Qp ∩W ss

loc(p) = Qp ∩ {x = 0} =
{(0, 0)} = {p}. Thus for some positive integer µ we may choose a root x1/µ

and represent V locally as a Puiseux expansion V = {y =
∑∞

j=1 ajx
j/µ}. The

local invariance of V at p = (0, 0) means that we will have y1 =
∑∞

j=1 ajx
j/µ
1 .

If aj0 is the first nonvanishing coefficient, we must have α = βj0/µ. But this
is impossible since j0/µ > 0, and |α| < 1 ≤ |β|. It follows, then that the only
irreducible component of Qp is {x = 0}.

Lemma 2.4. |α| < 1 < |β|, and thus p is a saddle point.

Proof. By Lemma 2.3, we know that the multipliers of Df at p are |α| < 1 and
|β| ≥ 1. We must show that |β| > 1. If not, then |β| = 1. First, we observe
that β cannot be a root of unity. For in that case, p is a semi-attracting, semi-
parabolic fixed point. Such a fixed point has a semi-parabolic basin B, which
has been studied by Ueda [19] and Hakim [11], and more recently in [6]. By [5],
we know that ∂B = J+. However, the boundary of B has a fractal “cusp” at p
(reminiscent of the cauliflower Julia set) and is not contained in a semianalytic
set. To see this, we consider the strong stable manifold W ss(p) (called the
“Poincaré curve” in [19]). The local structure of a semi-parabolic map means
that ∂B cannot be smooth at points of W ss(p). Thus, if ∂B is contained in
a semianalytic set X , then W ss(p) must be contained in the singular locus of
X . Ueda [19] shows that W ss(p) is dense in ∂B (this also follows from [5]).
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But the singular locus of a semianalytic set is again semianalytic and cannot
be dense; so ∂B cannot be contained in a semianalytic set. We conclude that
βk 6= 1 for all nonzero integers k.
Now let us use coordinates from the proof of Lemma 1.5. Since Q(0,0) =

{x = 0}, we may write ρ(x, y, 0, 0) = xku(x, y), where u(x, y) is a holomorphic
function with u(0, 0) = 1. This means that

ρ(x, y, x̄, ȳ) = xku(x, y) + x̄ku(x, y) + Ψ(x, y, x̄, ȳ)

where in the expansion of ρ, all of the purely holomorphic terms are contained
in xku(x, y), and xk is the purely holomorphic part of lowest order. Now there
is a real analytic unit h(x, y, x̄, ȳ) such that ρ ◦ f = h ρ, and h(0, 0) = c 6= 0 is
real. Thus the purely holomorphic part of lowest order are cxk. On the other
hand, as in the proof of Lemma 1.5, we have

ρ(f(x,y)) = ρ(x1, y1, x̄1, ȳ1) =

= ρ(βx + · · · , αy + · · · , β̄x̄+ · · · , ᾱȳ + · · · ) = βkxk + β̄kx̄k +Ψ1

Thus we see that the purely holomorphic terms of lowest order are βkxk, from
which we conclude that βk is real, which is a contradiction.

Now p is a saddle point, and the multipliers are |α| < 1 < |β|. Let Wu(p)
be the unstable manifold at p. There is a holomorphic uniformization ψp :
C → Wu(p) ⊂ C2 such that ψp(0) = 0, and ψp(βζ) = f(ψp(ζ)). We set
Jp := ψ−1

p (J+ ∩Wu(p)) and g+p := G+ ◦ψp. By the invariance of J+ it follows
that Jp is invariant under ζ 7→ βζ.

Lemma 2.5. If p ∈ J+ is fixed, then β ∈ R, and Jp is a straight line in C

passing through the origin.

Proof. Let X be as in Lemma 1.1. With ψp as above, it follows that Jp :=
ψ−1
p (J+ ∩Wu(p) ⊂ C is semianalytic. Since it is invariant under ζ 7→ βζ, we

conclude that β ∈ R, and Jp consists of a finite number of rays passing through
the origin. We know that ∂{g+p > 0} ⊂ Jp, so it follows that g+p is harmonic
on C − Jp. Further, g+p cannot be identically zero on C, so there must be a
component of C− Jp where g+p > 0. Such components are sectors with vertex
at the origin, and let L denote a line which forms part of the boundary of a
sector with g+p > 0. If J+ is semianalytic, then so is Jp, and it follows that Jp
must contain at least a half-line inside L. We will show that Jp = L.
We consider the points r0 ∈ Jp which correspond to transverse intersections
between W s(p) and Wu(p). By [2] this set is dense in the set ∂{g+p > 0} and
thus it is dense in the interval Jp∩L. Let ∆0 ⊂ C denote a small disk about the
origin, and let ∆ ⊂ C denote a disk about such a point r0, small enough that it
is disjoint from the other lines in Jp. ∆∩L is a segment I which divides ∆ into
halves ∆′ and ∆′′. g+p is harmonic on ∆− I = ∆′ ∪∆′′, and we may assume it
is strictly positive on at least one of the half disks ∆′ or ∆′′. Similarly, it will
be strictly positive on (at least) one of the half disks of ∆0 − L.
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Consider the complex disks in C2 given by D0 := ψp(∆0) and D := ψp(∆).
Since D is transverse to W s(p) at ψp(r0), we may apply the Lambda Lemma
to conclude that there are disks Dj ⊂ f j(D) containing f j(ψp(r0)) which may
be written as graphs over D0, and Dj → D0 in the C1 topology. Let γj :=
f j(ψp(I))∩Dj . This is a smooth curve which divides Dj into halves D′

j and D′′
j ,

corresponding to the partition ∆ = ∆′∪I ∪∆′′. It follows that the γj converge
to a smooth curve γ0 ⊂ D0. Further, the half disks D′

j and D′′
j converge in

C1 to two half disks D′
0 and D′′

0 with D0 − γ0 = D′
0 ∪ D′′

0 . Now G+ > 0 is
harmonic on D′

j , so either G+ > 0 on D′
0 or G+ vanishes everywhere there.

However, G+ does not vanish identically on D0, so we have G+ > 0 on at least
one of the components of D0 − γ0, which means that J+ ∩ D0 = γ0. Since γ0
is f -invariant, it follows that ψ−1

p (γ0) is a straight line in C, which completes
the proof.

Lemma 2.6. There is a dense set of complex lines L ⊂ C2 such that K+ ∩ L
contains interior.

Proof. If L ⊂ C2 is a complex line, then by [10], L ∩ J+ is compact. Since
J+ is semianalytic of dimension 3, it follows that for generic L, X ∩L has real
dimension ≤ 1. Recall that ∂{G+|L > 0} ⊂ L∩ J+. Thus any component γ of
J+ ∩L with γ ∩J+ 6= ∅ cannot be a point, and thus must have dimension 1. If
J+ is semianalytic, then J+ ∩ L consists of a finite union of semianalytic arcs.

Given a complex line L0, we will show that there exists a line L arbitrarily close
to L0 such that K+ ∩ L contains interior. If J+ ∩ L is not simply connected,
then it divides L into (at least) two connected components. Only one of these
components can be unbounded, so we let ω ⊂ L denote a bounded component
of the complement of J+ ∩ L. On the other hand, G+ ≥ 0 vanishes on J+, so
by the maximum principle, G+ = 0 on ω, so ω ⊂ K+ = {G+ = 0}.

Thus if K+ ∩ L does not contain interior, J+ ∩ L must be a simply connected
union of arcs, and thus it must be a tree. Let p be an endpoint of this tree,
and let X1 ∪ · · · ∪XN be as in Lemma 1.1. It follows that for some j, L ∩Xj

contains a real analytic curve γ which contains p. Since γ is real analytic, it
cannot have p as its endpoint. Thus, γ cannot be contained in J+ and p is in
the boundary of J+∩Xj as a subset ofXj , in the sense that every neighborhood
of p intersects both J+ ∩Xj and Xj − J+. By Lemma 1.5, the Segre variety

Q
(j)
p ⊂ J+. Due to the continuous dependence of η 7→ Qη, we see that Q

(j)
p

is in the Xj-boundary of J+, and this boundary of J+ is given by the union
of Segre varieties. It follows that the boundary of J+ is a complex subvariety
of C2. However, there is no complex subvariety contained in K+ (see [3, 9]),
which is a contradiction.

Lemma 2.7. Let f be a polynomial diffeomorphism of C2 with positive entropy,
and let d be the degree of f . If p ∈ J+ is a fixed point, then d is one of the
eigenvalues of Df at p.
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Proof. We continue with the notation ψp : C → Wu(p) and g+p (ζ) :=
G+(ψp(ζ)). Thus g+p is subharmonic on C and satisfies the functional equa-
tion g+p (βζ) = d · g+p (ζ). By Lemma 2.5, we may assume that Jp is the real
axis. Thus on the upper/lower half plane, g+p (ζ) = c±ℑ(ζ) for some constants
c+ ≥ 0 and c− ≤ 0, which are not both zero. By the functional equation, we
have c+ℑ(βζ) = d · c+ℑ(ζ) if β > 0, so β = d in this case. If β < 0, then we
have c+ = −c−, and β = −d.
Now we will show that one of the c± is zero, so we must have β = d. By
Lemma 2.6, we may choose a L ⊂ C2 such that K+ ∩ L contains an interior
component ω. We may choose a point r ∈ W s(p)∩ ∂ω which is a regular point
of ∂ω. Further, we may suppose that L is transverse toW s(p) at r. Now we let
∆ ⊂ L denote a small disk containing r, so that ∆∩ ∂ω is a smooth arc which
divides ∆ into two open components. We have G+ = 0 on ω ∩∆ and G+ > 0
on the complementary component. Now we apply the Lambda Lemma as we
did in Lemma 2.5, and we conclude that G+ = 0 on one of the components of
the complement of D0 ∩ J+ ⊂Wu(p). Thus we have c+ = 0 or c− = 0.

Our Theorem is now a consequence of Lemma 2.7:

Proof of Theorem. We claim that there can be at most one fixed point p ∈
int(K+). We observe first that f contracts volume. Otherwise by [10] the
interior of K+ is bounded, then it is disjoint from an open set of complex lines,
which contradicts Lemma 2.6. Now if there are two fixed points inside int(K+),
by [5] there must be two basins B1 and B2 with ∂B1 = ∂B2 = ∂U+ = J+. This
is not possible if J+ is semianalytic. Thus every fixed point, with at most one
exception, is contained in J+. By Lemma 2.7, d is a multiplier for Df at each
fixed point, except possibly one. However, by Proposition 5.1 of [1], this is not
possible, so J+ cannot be contained in a semianalytic set.
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2

and Fatou-Bieberbach domains. Duke Math. J., 65(2):345–380, 1992.

[9] John Erik Fornæss and Nessim Sibony. Complex dynamics in higher di-
mensions. In Complex potential theory (Montreal, PQ, 1993), volume
439 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 131–186.
Kluwer Acad. Publ., Dordrecht, 1994. Notes partially written by Estela
A. Gavosto.

[10] Shmuel Friedland and John Milnor. Dynamical properties of plane polyno-
mial automorphisms. Ergodic Theory Dynam. Systems, 9(1):67–99, 1989.
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complex domain. I. The global topology of dynamical space. Inst. Hautes
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