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Abstract. In this paper, we define a generalization of Khovanov-
Lauda-Rouquier algebras which we call Weighted Khovanov-Lauda-
Rouquier algebras. We show that these algebras carry many of the
same structures as the original Khovanov-Lauda-Rouquier algebras,
including induction and restriction functors which induce a twisted
bialgebra structure on their Grothendieck groups.
We also define natural steadied quotients of these algebras, which in
an important special cases give categorical actions of an associated
Lie algebra. These include the algebras categorifying tensor products
and Fock spaces defined by the author and Stroppel in [Web17a, SW].
For symmetric Cartan matrices, weighted KLR algebras also have a
natural geometric interpretation as convolution algebras, generalizing
that for the original KLR algebras by Varagnolo and Vasserot [VV11];
this result has positivity consequences important in the theory of crys-
tal bases. In this case, we can also relate the Grothendieck group and
its bialgebra structure to the Hall algebra of the associated quiver.
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1 Introduction

In this paper, we introduce a generalization of Khovanov-Lauda-Rouquier al-
gebras [KL09, Rou], which we call weighted Khovanov-Lauda-Rouquier

algebras. The original KLR algebras are finite dimensional algebras associ-
ated to a quiver, or more generally a symmetrizable Cartan datum. To define
the weighted generalization of these algebras, one must choose in addition a
weighting on the graph Γ underlying the Cartan datum; this is simply an
assignment of a real number ϑe to each oriented edge of Γ.
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This extra datum allows us to modify the relations of the KLR algebra in a
way which is simple, but will probably initially look strange even to experts
in the subject. The essential paradigm shift is that instead of beginning with
idempotents indexed by sequences of nodes from the Dynkin diagram Γ, one
should assign an idempotent to a sequence enriched with a position on the
real number line for each element of the sequence, remembering the distance
between points. We call such an object a loading. The elements of our algebra
will be linear combinations of diagrams much like those of the KLR algebra,
but unlike the original relations, interesting relations can occur when strands
come within a fixed distance of each other; we call this phenomenon “action at
a distance.”
If there is a single node and no loops, then there are no changes and we arrive at
the nilHecke algebra exactly as in the KLR case. Let us consider the next easiest
case, where Γ is a A2 Dynkin diagram. As in the original KLR algebra (in
Rouquier’s presentation from [Rou, §3.2], or as described in [Web17a, CL15]),
one must choose a polynomial Q12(u, v) = au+bv that describes the interaction
of these two strands via the relation

1 2

= a

1 2

+ b

1 2

If the weighting on the unique edge e is k < 0, then we will see this relation not
when a strand labeled 1 crosses one labeled 2 and then crosses back, but when
it passes the line k units left of the strand labeled 2 and crosses back. In order
to aid with visualizing this, we draw a dashed line k units left of each strand
labeled 2. We will refer to these dashed lines as ghosts throughout the paper;
in general, we must draw one for each pair consisting of a strand labeled with
some node k, and an edge whose head is k. In this case, we will arrive at the
relation:

1 2

= a

1 2

+ b

1 2

This case produces no interesting new algebras: we can recover the original
KLR relations by shifting all strands with label 2 to the left by k units. In
general, we can always find such a fix when Γ is a tree. However, when the
graph Γ has cycles, interesting new algebras can appear. For example, for the
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Jordan quiver and the dimension vector (n), we arrive at the smash product
k[Sn]#k[x1, · · · , xn].

Many properties of the original KLR algebras carry over: the weighted KLR
algebra has a permutation type basis and a faithful representation representa-
tion on a sum of polynomials. Its category of representations is endowed with
monoidal and co-monoidal structures given by induction and restriction, gen-
eralizing those structures for the KLR algebra. Furthermore, its Grothendieck
group has a twisted bialgebra structure (or alternatively, Hopf structure for a
particular braided monoidal category) induced by these functors.

This definition was motivated in large part by the desire to unify generalizations
of the KLR algebras that have appeared in the author’s previous work. In
order to develop these, we associate to a quiver Γ and dominant weight λ a
new quiver Γλ, which we call its Crawley-Boevey quiver (see Section 3).
These quivers appear naturally in the theory of Nakajima quiver varieties. The
weighted KLR algebras attached to any weighting have a natural quotient we
call their steadied quotient (see Section 2.6); these generalize the cyclotomic
quotients of usual KLR algebras and always carry a categorical representation
of the Kac-Moody algebra g (see Theorem 3.1).

These allow us to interpret the tensor product algebras Tλ and T̃λ defined
in [Web17a, §2] and the (extended) quiver Schur algebras A,Aλ and Ãλ from
[SW, §2 & 4] in terms of a single construction.

Theorem A. For each Cartan datum, and list of dominant weights λ =
(λ1, . . . , λℓ), there is a weighting on the Crawley-Boevey quiver of λ = λ1 +

· · · + λℓ whose weighted KLR algebra Wϑ
ν is isomorphic to T̃

λ

λ−ν ⊗
k

k[t]. The

steadied quotient Wϑ
ν (c) of this KLR algebra is isomorphic to T

λ

λ−ν ⊗
k

k[t].

For Γ a cycle, the weighted KLR algebra Wϑ
ν is either Morita equivalent to the

original KLR algebra or to the quiver Schur algebra Aν , depending on whether
the sum of weights on an oriented cycle is zero or not. In this case, there is
also a weighting on the Crawley-Boevey quiver for λ and a fixed set of loadings
whose weighted KLR algebra is Morita equivalent to Ã

λ

λ−ν ⊗k

k[t] with steadied

quotient Morita equivalent to A
λ

λ−ν ⊗
k

k[t].

Another significant motivation is that more general steadied quotients in the
affine case are equivalent to category O for a rational Cherednik algebra of the
group G(r, 1, ℓ), as we prove in [Web17c]. Numerous constructions from this
paper, including steadied quotients and canonical deformations play a key role
in that work.

While this construction is purely algebraic in nature, it has a geometric inspi-
ration: for a quiver Γ with vertex set I and a dimension vector d : Γ → Z≥0,
an integral weighting ϑ will define a C∗-action on

EΓ =
⊕

i→j

Hom(Cdi ,Cdj )
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by letting t·(fe) = (tϑefe). Varagnolo and Vasserot [VV11] have given an inter-
pretation of some KLR algebras as Ext-algebras of complexes of constructible
sheaves on the moduli stack Eν/Gν of representations of the quiver Γ which
appeared in work of Lusztig [Lus91]; we can generalize this construction to give
an analogous constructible complex Y of sheaves which is well-behaved with
respect to the C∗-action.

Theorem B. The weighted KLR Wϑ
ν associated to a quiver Γ with integral

weighting is the Ext algebra ExtEν/Gν
(Y, Y ). If char(k) = 0 then Y is semi-

simple.
The map sending the class of a projective module [P ] to an appropriate Frobe-
nius trace of Y ⊗Wϑ

ν
P on the Fp points of Eν is a bialgebra map from K0

q (W
ϑ
ν )

to the Hall algebra of the quiver Γ.

This theorem has important positivity consequences; it is a key step in matching
the bases defined by projective objects with their canonical bases in the sense
of Lusztig (see [Web15, §6] and [Web17c, §4.7]). It will also play an important
role in understanding generalizations of category O in forthcoming work on the
representation theory of quantizations of quiver varieties [Web17b].
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2 Basic properties

2.1 Weighted algebras defined

Consider a graph Γ with vertex set I and oriented edge set Ω; we allow these
edges to have multiplicities ce, cē ∈ Z≥0 for e ∈ Ω. Let h, t : Ω ∪ Ω̄ → I be the
head and tail maps. We assume these multiplicities are symmetrizable, in the
sense that there exist di such that dh(e)ce = dt(e)cē.
There are two important examples to keep in mind:

• If C is a symmetrizable generalized Cartan matrix, then we have the
associated Dynkin diagram Γ, with the multiplicities ce given by the
negative of the entries −cij of the Cartan matrix. More generally, if
g has no loops, then there is an associated symmetrizable Kac-Moody
algebra.

• We can also take any locally finite graph Γ with all ce = cē = 1.
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Throughout, we will let a weighting on a quiver mean simply a map ϑ : Ω →
R; that is an attachment of a real number to each edge. By convention, we
extend this function to Ω̄ by ϑē = −ϑe. Note that we can also think of this an
R-valued 1-cocycle on the underlying CW complex of Γ.
Fix a commutative ring k. For each edge, we choose a polynomial Qe(u, v) ∈
k[u, v] which is homogeneous of degree dh(e)ce = dt(e)cē when u is given degree
dh(e) and v degree dt(e). We will always assume that Qe has coefficients before
the pure monomials in u and v which are units, and set Qē(u, v) = Qe(v, u).
In particular, if (Γ, c∗) arises from a symmetrizable Cartan matrix, the poly-
nomials Qij = Qe satisfy the properties we desire to define a KLR algebra (as
in [Web17a, §2]). Furthermore, we assume that if e is a loop of degree 0, then
Qe(u, v) = (u − v)Pe(u, v) for some symmetric polynomial Pe(u, v).

Definition 2.1. A loading i is a function from R to I ∪ {0} which is only
non-zero at finitely many points. We can also think a loading as choosing a
finite subset of the real line and labeling its elements with simple roots.
A loading is called generic if there is no real number such that i(a) = t(e), i(a−
ϑe) = h(e) for some edge e ∈ Ω, or such that i(a−ϑe) = h(e), i(a−ϑe′) = h(e′)
and ϑe 6= ϑe′ .

If we think of our loading as a set of labeled points, we can visualize this as
adding a “ghost” of each point labeled h(e) for each edge e ∈ Ω which is ϑe units
to the right of the point, and require that none of these coincide with each other
or with points of the loading when it can be avoided. We let |i| =

∑
r∈R

i(a),
and let d be the number of points in i.

Remark 2.2. The reader familiar with KLR algebras will be used to thinking of
i as a sequence of simple roots which has an order, but no distance information.
From now on, the distance between these elements will be essential, in a way
that will be clear momentarily. We can always obtain a simple ordered list of
nodes i̊ by forgetting the positions of the points; we call this the unloading

of i.

Assume for now that

(†) Γ is a graph such that no two edges of the same weight have matching
tail and head, and there are no cyclically oriented bigons with opposite
weights.

We now define the weighted KLR algebra Wϑ
B on a finite set of loadings

B.

Definition 2.3. A weighted KLR (wKLR) diagram is a collection of
finitely many oriented smooth curves in R × [0, 1] with each oriented in the
negative direction, with a labeling of each curve by an element i ∈ I. That is,
each curve’s projection to the y-coordinate must be a diffeomorphism to [0, 1].
Each curve must have one endpoint on y = 0 and one on y = 1, at distinct
points from the other curves. Curves are allowed to carry a finite number of
dots.
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Furthermore, for every edge with h(e) = i we add a “ghost” of each strand
labeled i shifted ϑe units to the right (or left if ϑe is negative). We require that
there are no tangencies or triple intersection points between any combination
of strands and ghosts, and no dots on intersection points. Note that by our
assumption (†), at a generic horizontal slice of the diagram, no two ghosts,
two strands, or pair of ghost and strand coincide, except for those strands and
ghosts that coincide because of edges of weight 0.
We’ll consider these diagrams up to isotopy which preserves all these condi-
tions.

For example, if we have an edge i→ j, then the diagram a is a wKLR diagram,
whereas b is not since it has a tangency between a strand and a ghost:

a =

i ij

b =

i ij

Reading along the lines y = 0, 1, we obtain loadings, which we call the top

and bottom of the diagram. There is a notion of composition ab of wKLR
diagrams a and b: this is given by stacking a on top of b and attempting to
join the bottom of a and top of b. If the loadings from the bottom of a and
top of b don’t match, then the composition is not defined and by convention
is 0, which is not a wKLR diagram, just a formal symbol. This composition

rule makes the formal span of all wKLR diagrams over k into an algebra ˜̃W
ϑ
.

For any finite set B of loadings, we let ˜̃W
ϑ

B be the subalgebra where we fix the
top and bottom of the diagram to lie in the set B. For each loading i ∈ B, we
have a straight line diagram ei where every horizontal slice is i, and there are
no dots.

Definition 2.4. The weighted KLR algebra Wϑ
B is the quotient of ˜̃W

ϑ

B by
relations similar to the original KLR relations, but with interactions between
differently labelled strands turned into relations between strands and ghosts of
others. If there is a loop of weight 0 at i (there can be at most one), we let
Pi(u, v) be the polynomial Qe(u, v)/(u−v) attached to this loop earlier; if there
is no such loop, we let Pi(u, v) = 0.
We give the list of local relations below. Some care must be used when under-
standing what it means to apply these relations locally. In each case, the LHS
and RHS have a dominant term which are related to each other via an isotopy
through a disallowed diagram with a tangency, triple point or a dot on a cross-
ing. You can only apply the relations if this isotopy avoids tangencies, triple
points and dots on crossings everywhere else in the diagram; one can always
choose isotopy representatives sufficiently generic for this to hold.
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1. The relations for passing dots through crossings are exactly as in the KLR
algebra.

i j

=

i j

for i 6= j

i i

=

i i

+

i i

i i

=

i i

+

i i

2. Fix an edge e. If the mth strand has label t(e) and we undo a bigon formed by
the mth strand and the ghost of the nth coming from the edge e (assuming e is
not a loop with ϑe = 0; not that this requires the nth strand to have label h(e)),
then we separate the strands and multiply by Qe(yn, ym). This is a bit harder
to draw in complete generality, but for example, if there is an edge e : i → j
with ϑe < 0 and Qe(u, v) = au+ bv, then we have

i j

= a

i j

+ b

i j

3. If we undo a bigon formed by the kth strand and the k+1st strand, we simply
separate the strands if they have different labels. If they are both labelled with
i, then then the result is a single crossing of the strands times 2Pi(yk, yk+1).

i j

=





i j

i 6= j

(
2Pi(yk, yk+1)

)

i i

i = j

4. strands can move through triple points without effect, except
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(a) when a ghost for an edge e : i→ j which is ϑe to the right of the mth strand
(which is labelled j) passes through a crossing of the nth and n + 1st strands
and these both have label i. In this case the diagrams where the strand is at the
left differs from the one where it is at the right by

∂n,n+1Qe(ym, yn) =
Qe(ym, yn)−Qe(ym, yn+1)

yn − yn+1
.

(b) the mth strand (which is labelled i) passes through the ghosts attached to
e : i→ j attached to the of the nth and n+ 1st strands, which are both labelled
j. In this case the diagrams where the strand is at the left differs from the one
where it is at the right by

∂n,n+1Qe(yn, ym) =
Qe(yn, ym)−Qe(yn+1, ym)

yn − yn+1
.

As before, we will not try to draw a completely general picture, but given an
example when there is an edge e : i → j, ϑe < 0 and Qe(u, v) = au + bv, then
we have

jji

=

jji

− b

jji

(c) the triple point involves the mth, m+1st and m+2nd strands, all labelled
i and there is a loop of weight 0 joining i to itself. In this case the diagrams
where the strand is at the left differs from the one where it is at the right by

(
Pi(yk, yk+1)Pi(yk+1, yk+2) + Pi(yk, yk+2)Pi(yk+1, yk)

− Pi(yk, yk+2)Pi(yk+1, yk+2)
)
ψk −

(
Pi(yk, yk+1)Pi(yk+1, yk+2)

+ Pi(yk, yk+2)Pi(yk+2, yk+1)− Pi(yk, yk+2)Pi(yk, yk+1)
)
ψk+1

Proposition 2.5. If we reverse the orientation of an edge e 7→ e′, and set ϑ′e′ =

−ϑe and Q′
e′(u, v) = Qe(v, u), then Wϑ′ ∼= Wϑ via the obvious isomorphism

leaving strands unchanged.

By analogy with the geometry of Section 4, we call this isomorphism Fourier

transform.

Definition 2.6. If Γ is an arbitrary choice of graph with multiplicities, ϑe and
Qe associated polynomials, then the weighted KLR algebra Wϑ

B for a set of
loadings B is the weight KLR algebra for the graph where we replace all bigons
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where the weights match (perhaps after reversing the orientation and negating
the weight) with single edges of that weight, with Qnew =

∏
Qold. Proposition

2.5 shows that this does not depend on how one chooses to reverse orientations.

We note that this algebra has a natural anti-automorphism where a∗ is the
reflection of a diagram a through a horizontal line.

Of course, many readers used to more categorical language will prefer to think
that there is a category where the objects are loadings, and the morphism
spaces are the spaces eiW

ϑ
Bej described above. We will freely switch between

these two formalisms throughout the paper.

2.2 A permutation type basis

Proposition 2.7. This algebra Wϑ
B acts faithfully on a sum of polynomial

rings ⊕Bk[y1, . . . , yd], one for each loading, via the rule

• when a strand passes from right of a ghost to left, we take the identity.

• when the jth strand has label t(e) and passes from left of the ghost for e
of the kth strand (which thus has label h(e)) to right of it, we multiply by
Qe(yk, yj).

• when the j and j + 1 strands cross and have the different labels, we just
apply the permutation sj.

• when the j and j + 1 strands cross and have the same label i, we act
with the Demazure operator ∂j,j+1 =

sj−1
yj+1−yj

if there is no loop of weight

0 at i and if there is such a loop e, we act by Qe(yj , yj+1) · ∂j,j+1 =
Pe(yj , yj+1) · (1− sj).

Proof. The confirmation of the relations is an easy modification of the proof of
Khovanov and Lauda [KL09]. The relations (1) follow from the usual Leibnitz
rule for Demazure operators:

∂j,j+1(fg) =
f sigsi − fg

yj+1 − yj
= f si∂j,j+1(g) + ∂j,j+1(f)g. (2.1)

The relation (2) is simply follows from the fact that one of the crossings intro-
duces a factor of Qe(yk, yj), and the other a factor of 1. The relation (3) is just
s2k = 1 if i 6= j, and if i = j, then for the no loop case, this is just ∂2k = 0 and
in the case where there is a loop, we have

Pi(yk, yk+1)(1 − sk)Pi(yk, yk+1)(1 − sk) = Pi(yk, yk+1)
2(1− sk)

2

= 2Pi(yk, yk+1)
2(1− sk).

The relations (4a) and (4b) follows immediately from (2.1).
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The only really different relation to check is (4c); in this case, we use the
notation Pij = Pe(yk+i−1, yk+k−1). The action we check is

= P12 ◦ (sk − 1) ◦ P23 ◦ (sk+1 − 1) ◦ P12 ◦ (sk − 1)

= P12P13P23sksk+1sk − P12P13P23sksk+1 − P12P13P23sk+1sk

+ P12P13P23sk+1 + (P12P23 + P21P13)sk − (P12P23 + P21P13)P12

Comparing with the mirror image, we arrive at the desired relations.

Fix a pair of loadings i, j. For each permutation π such that the order of labels
appearing in the loadings i, j differ by π, we fix an diagram bπ which wires
together i and j according to that permutation.
Note that now even for a transposition of adjacent elements, this is not uniquely
determined, since we may have a ghost that passes between both the pairs of
elements which we wire in opposite order, and the element depends on whether
we cross our strands to the left or right of this ghost; we let ψk denote the
diagram in which we cross to the left of all possible ghosts. Obviously, these
generate the algebra together with the dots yi.

Theorem 2.8. The space eiW
ϑej is a free module over k[y1, . . . , ym], and the

diagrams bπ are a free basis.

Proof. Proof that these span is much like that of [Web17a, 3.9]. If the strands
of a diagram ever cross each other twice, or cross a ghost twice, we can use the
relations to rewrite them as a sum of diagrams with fewer crossings between
pairs of strands or strands and ghosts using the relations of Definition 2.4(2-
4). Thus, we need only consider diagrams that we could have chosen for bπ.
Furthermore, we can use the triple-point moves to show that the difference
between any two such diagrams for π has fewer crossings by Definition 2.4(4).
Thus, the bπ’s must span and we need only show they are linearly independent.
On the rational functions in the polynomial representation, the element bπ acts
as a product of operators which are of the form si times a rational function plus
a rational function times 1. The operator si commutes past multiplying by a
rational function just by acting on it (the smash product rule); thus the product
of these terms is π times a rational function, plus of a sum of shorter elements of
Sn times rational functions. Thus, the linear independence over k[y1, . . . , ym]
of the action of the elements of Sn guarantees the linear independence of the
bπ’s.

2.3 Dependence on choice of loadings

Definition 2.9. Call two loadings i, i′ equivalent if for every edge e : i→ j,
and each pair of integers (f, g) the ghost of the f th strand labeled with h(e) is
either to the left of the gth strand labeled t(e) in both i, i′ or to the right in both.
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Example 2.10. Let Γ be the Kronecker quiver

0 11

−1

,

with the two edges are given weights 1 and −1. For ν = α0 + α1, a loading
is determined the x-coordinates x0 and x1 of the points labeled with 0 and 1.
There are 3 equivalence classes of loadings determined by the inequalities

10

x0 < x1 − 1

1 0

x1 − 1 < x0 < x1 + 1

01

x1 + 1 < x0.

(2.2)

Proposition 2.11. In the algebra on any set B of loadings containing equiva-
lent loadings i, i′ ∈ B, the projective modules Wϑei and W

ϑei′ are isomorphic.
That is, the original algebra is Morita equivalent to that with either loading
excluded.
In terms of the category of loadings mentioned earlier, these loadings are iso-
morphic.

Proof. The straight-line path from i to i′ gives an isomorphism between these
projectives.

In particular, if we simultaneously translate all points in a loading, we will
obtain an equivalent one.
Consider the dominant cone Dn = {x1 < · · · < xn} ⊂ Rn. For each ν =∑
viαi, the set of loadings with |i| = ν is naturally identified with the product

of the dominant cones Dv1 × · · · ×Dvm ⊂ Rv1 × · · · ×Rvm minus finitely many
affine hyperplanes. It’s clear from the definition that:

Proposition 2.12. The sets of equivalence classes are precisely the connected
components of the complement in Dv1 × · · · ×Dvm of affine hyperplanes asso-
ciated to each edge e : i→ j and 1 ≤ m ≤ vi, 1 ≤ n ≤ vj :

He,m,n = {x(i)m − x(j)n = ϑe}.

In particular, there are only finitely many equivalence classes for each fixed ν.

Definition 2.13. Let B(ν) denote a fixed choice of a set of loadings containing
one from each equivalence class with |i| = ν.
From now on, when we say “the weighted KLR algebra” Wϑ

ν we mean using that
attached to the set B(ν) of loadings; this algebra is unique up to canonical iso-
morphism, and if we add any new generic loadings with |i| = ν to this algebra,
we will always obtain a Morita equivalent algebra. Generally, we will not care-
fully distinguish between equivalent loadings and will freely replace inconvenient
loadings with equivalent ones.
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In terms of the category of loadings, we have simply chosen a set of objects
such that any object is isomorphic to one of the collection; this is almost the
skeleton of the category, but we have not accounted for the fact that sometimes
non-equivalent loadings will be isomorphic. Thus, the weighted KLR algebra
can be thought of really as an equivalence class of linear categories, and from
this perspective, it is manifestly well-defined.
For simplicity, we fix a real number s > |ϑe| for all e. Let Bs be the set of
loadings where the points of the loading are spaced exactly s units apart and the
first point is at x = 0. Such loadings are in canonical bijection with sequences
of elements in I. For the Kronecker quiver weighted as in the example above,
we must have s > 1, and only the first and third loadings of (2.2) are included
in Bs.

Proposition 2.14. If the graph Γ has no loops, then the algebra Wϑ
Bs

is iso-
morphic to the original KLR algebra, with

Qij(u, v) =
∏

i=h(e)
j=t(e)

Qe(u, v).

In particular, if ϑe = 0 for all e, we obtain the usual KLR algebra.

Proof. This isomorphism matches ei to an idempotent in the KLR algebra for
the corresponding sequence in I; the dot yk and crossing ψk correspond to the
similarly named elements as well. Our condition on loadings forces that (after
“pulling taut”) the jth strand crosses the kth if and only if it crosses all its
ghosts; the relations induced between such crossings are exactly the original
KLR relations.

This does not fully exhaust the cases where actually only obtain the original
algebra. This is easier to see once we consider a symmetry of our definition.
We can view the weighting ϑ as a 1-chain on Γ. If η : I → R is a 0-chain, then
we can consider the cohomologous 1-chain (ϑ+ dη)e = ϑe + ηh(e) − ηt(e).

Proposition 2.15. The map Wϑ
B → Wϑ+dη

B moving each i-labelled strand ηi
units right is an isomorphism.

Proof. This map moves the ghost attached to an edge e to the right by ηt(e), so
this map maintains all crossings between strands of the same color and between
ghosts and strands labelled with the tail of the associated edges.

Corollary 2.16. If Γ is a tree, Wϑ
ν is Morita equivalent to the original KLR

algebra.

Note that we say “Morita equivalent” here, since the set Bs may actually con-
tain redundant loadings which are equivalent to each other (since equivalence
is insensitive to the relative ordering of nodes with no edge connecting them).
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2.4 Induction and restriction

For each decomposition ν = ν′ + ν′′, we have a map ιν′;ν′′ : Wϑ
ν′ ⊗Wϑ

ν′′ → Wϑ
ν ,

where we send a tensor product of diagrams a⊗ b to the diagram where they
are placed next to each other with s units of separation between them. Note
that this map is not unital, but sends 1 ⊗ 1 to an idempotent eν′;ν′′ . Up to
the isomorphism induced by changing a loading in its equivalence class, this
isomorphism is unchanged by adjusting the distance between the diagrams, as
long as it is sufficiently large. This can be thought of as an induction operation
on loadings themselves: ιν′;ν′′(ei ⊗ ej) = ei◦j.

Definition 2.17. Define the functor of induction by

Indνν′;ν′′(M,N) =M ◦N :=Wϑ
ν ⊗Wϑ

ν′
⊗Wϑ

ν′′

M ⊠N

and restriction by
Resνν′;ν′′(L) := eν′;ν′′L.

Proposition 2.18. The operation ◦ makes the sum ⊕νW
ϑ
ν -mod into a

monoidal category, and Res∗,∗ makes this sum into a comonoidal category.
The subcategory ⊕νRν -mod is monoidally generated by Wϑ

αi
-mod.

Recall that the Grothendieck group K0(Wϑ
ν ) is the span of formal symbols

corresponding to finitely generated projective Wϑ
ν -modules subject to the rela-

tion that [M ⊕N ] = [M ] + [N ]; we can think of the sum K = ⊕νK
0(Wϑ

ν ) as
an abelian group graded by Z[I]. Furthermore, we endow Z[I] with a pairing
where

i · j = 2diδij − di
(∑

j
e
→i

ce +
∑

i
e
→j

cē
)
= 2djδij − dj

(∑

j
e
→i

cē +
∑

i
e
→j

ce
)
.

We will sometimes view this as the symmetrization of the bilinear form

〈j, i〉 = diδij −
∑

j
e
→i

dice i · j = 〈i, j〉+ 〈j, i〉.

This allows us to define a twisted product structure on A⊗A for any Z[I]-graded
algebra A by qdeg(b)·deg(c)(a⊗b)(c⊗d). As noted by Walker [Wal], we can think
of this as the natural product in the braided monoidal category of Z[I]-graded
vector spaces, where the braiding map on a tensor product of spaces V of pure
degree µ and V ′ of degree µ′ is the switch map V ⊗ V ′ → V ′ ⊗ V times qµ·µ

′

.

Theorem 2.19. The Grothendieck group K = ⊕νK
0(Wϑ

ν ) endowed with

the product [M ][N ] = [M ◦N ] and coproduct ∆([L]) =
∑

ν′+ν′′=ν

[Resνν′;ν′′(L)]

is a twisted bialgebra with a natural map U+
q (gΓ) → K; in fact, it is a Hopf

algebra in the braided category of Z[I]-graded vector spaces.
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Proof. For a decomposition ν = ν1 + ν2 = ν′1 + ν′2, we consider the restriction
of Wϑ

ν to Wϑ
ν1 ⊗Wϑ

ν2 on the left and Wϑ
ν′

1
⊗Wϑ

ν′

2
on the right. We can filter Wϑ

ν

as a bimodule by the sum µ of the labels on the strands that pass from left to
right, so the sum of the labels passing right to left is µ′ = ν′1 − ν1 + µ. By the
same argument as [KL09, 2.18], the successive quotients of this filtration are

(Wϑ
ν1−µ;µ ⊗Wϑ

µ′ ;ν2−µ′)⊗Wϑ
ν1−µ⊗Wϑ

µ ⊗Wϑ
µ′

⊗Wϑ
ν2−µ′

(Wϑ
ν1−µ;µ′ ⊗Wϑ

µ;ν2−µ′)

shifted upwards by the inner product −〈µ, µ′〉. As noted in [KL09, 3.2], this
suffices to prove that the coproduct ∆ is an algebra map K → K ⊗K for the
twisted product structure.
The counit ǫ just kills K0(Wϑ

ν ) for ν 6= 0, and the antipode S, as in the work
of Xiao [Xia97], can be constructed inductively by the formula

S([M ]) = −
∑

ν=ν′+ν′′

ν′′ 6=0

(1⊗ S)[Resνν′;ν′′(M)]

2.5 The twisted algebra

There is a larger category P whose objects are pairs (i;ϑ) of loadings and
weights. Morphisms (i0;ϑ0) and (i1;ϑ1) between two such pairs is very much
like in the category of loadings for a fixed weight, but the distance from each
ghosts to the strand it haunts is not a constant: instead at the horizontal slice
y = a, the distance of a ghost for e : i → j from the corresponding j labeled
strand is aϑ1(e)+(1−a)ϑ0(e). All the same local relations between morphisms
apply without change.

Proposition 2.20. This category has a representation that associates a polyno-
mial ring to each pair (i;ϑ) with the action given by formulas as in Proposition
2.7. The morphism space between any two pairs in P is spanned by a basis
given by the product of monomials in the dots with a fixed stringing up of each
permutation.

Proof. We can define an action on a sum of polynomial rings by the same local
rules as 2.7; since the same local relations are used, the same proof carries
through. With this action in hand, we can use the same proof as Theorem
2.8.

We will often be interested in considering the sum of all morphism spaces from
loadings with one weighting ϑ to those with another ϑ′. This sum is naturally
a bimodule Bϑ,ϑ′

over Wϑ and Wϑ′

.

2.6 Steadied quotients

In this subsection, we define a natural quotient of Wϑ
ν ; while the algebraic

motivation for this definition may not be immediately apparent, we believe it
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is well-motivated both by examples and by geometry. In fact, we recommend
that the reader glance at the next section on examples before reading the
definition below.
A charge on the vertex set I is a map c : I → C+ where

C+ = {x ∈ C | either Im(x) > 0 or x ∈ R>0.}

We always extend c linearly to Z[I]. Such a charge induces a preorder >c on
Z>0[I], using the argument of c(d)

Definition 2.21. We call an indecomposable Wϑ
ν -module is called unsteady

if it is isomorphic to a summand of an induction M1 ◦M2 where wt(M1) >c

wt(M2).

In Wϑ
ν , there is a natural 2-sided ideal Ic generated by all elements factoring

through unsteady projectives (thought of as a map of left modulesWϑ
ν →Wϑ

ν ).
Visually, this corresponds to diagrams where in the middle of the diagram, there
is a horizontal slice whose the induced loading is i1 ◦ i2 where |i1| >c |i2|.

Definition 2.22. The steadied quotientWϑ
ν (c) of W

ϑ
ν is the quotientWϑ

ν /Ic.
We let Bϑ,ϑ′

(c) denote the compatible quotient of the bimodule Bϑ,ϑ′

.

2.7 Canonical deformations

The algebrasWϑ have a canonical deformation. For each edge e with head j and
tail i, we assign an alphabet of variables ze,a,b for integers 0 ≤ a < di, 0 ≤ b < dj
such that adj + bdi < djce = dicē. We then consider the weighted KLR algebra
over the ring k[ze] with Q-polynomials given by

Q̃e(u, v) = Qe(u, v) +
∑

a,b

ze,a,bu
avb.

This polynomial will be homogeneous if we endow ze,a,b with degree djce −
adj − bdi = dicē − adj − bdi. Let S = k[{ze,a,b}]. In the case where each
edge has multiplicity 1 (ce = 1), then we only have one variable per edge and
Q̃e(u, v) = Qe(u, v) + ze.

Proposition 2.23. This deformation is free (and thus flat) over S.

Proof. The proof of Theorem 2.8 works equally well over S, showing that the
diagrams bπ give a free basis over S[y1, . . . , ym]. By multiplying by monomials,
we easily obtain a free S-basis.

Fix a field K, and a non-zero homomorphism χ : S → K. Fix a finite subset
Mi of K for each i ∈ I.

Definition 2.24. The graph Γχ,M•
is the graph with underlying set

⋃
i∈I{i}×

Mi ⊂ Γ ×K. For q1 ∈ Mi, q2 ∈ Mj, an edge e : i → j lifts to an edge ě from

(i, q1) and (j, q2) if and only if the polynomial satisfies χ(Q̃e)(q1, q2) = 0.
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Note that the natural map ⊔i∈IM → Γ is a graph homomorphism. We can
naturally assign polynomials to this graph by

Qě(u, v) := χ(Q̃ij)(u+ q1, v + q2).

Given a weighting ϑ of Γ, we also weight Γχ,M•
with ϑ̌ě = ϑe.

Example 2.25. Assume Γ is an e-cycle, whose vertices we identify with Z/eZ =
{0, . . . , e− 1} with an edge i→ i+1. If send ze for the edge e : e− 1 → 0 with
−1 and set ze for every other edge of this graph to 0, with K any characteristic
0 field, and take M = Z. We thus find that we have an edge (p, q) → (p′, q′) if
p′ ≡ p+1 mod e and q′ − q = δp′,0. This is equivalent to q

′e+ p′ = qe+ p+1.
That is, the resulting graph Γχ,M•

is isomorphic to Z with an edge i → i + 1,
where we identify Z and Z× Z/eZ by division with remainder by e.

Example 2.26. Let Γ be any graph, and let K any field, with each ze sent to
0. For any finite subset M ⊂ K, we can set Mi = M . The resulting graph is
just Γ×M , with the map to Γ being a trivial #M -fold covering.

Example 2.27. If Γ has a non-symmetric Cartan matrix, then for each pair
i, j ∈ I, we let eij = gcd(cij , cji), fij = cij/ gcd(cij , cji). Consider the poly-
nomials Qe(u, v) = (ufij − vfji )eij , let K be a field of characteristic coprime
to each di, and let Mi be the pi = lcm({dk})/dith roots of unity in K. In
this case, the graph structure is that ζ1 and ζ2 are connected by an edge if

ζ
fij
1 = ζ

fji
2 . That is, each preimage of i is connected to preimages of j by

pj/fji = lcm({dk}) gcd(cij , cji)/djcji preimages, along edges with multiplicity
eij .
Thus, Γχ,M•

in this case is the standard branched cover of a non-symmetric
Cartan matrix by a symmetric one.

We’d like to understand the specialization Wϑ
ν ⊗S K at the homomorphism χ;

while we don’t have a general description of this algebra, we can consider a
natural completion of it.
Let Ik ⊂Wν⊗SK be the two-sided ideal inWν⊗SK generated by the products∏

m∈M (yi −m)k for each i. These are clearly nested, and have trivial inter-

section for reasons of degree; thus, we can consider the completion ̂Wϑ
ν ⊗S K

at this system of ideals. Note, that this depends in a very strong way on M ,
but we will suppress this dependence from the notation. On the other hand,

we can consider the weighted KLR algebra ̂̌W ϑ̌ of the graph Γ ×M over the
field K, completed by the two-sided ideals generated by yki for all i. This is
the same completion applied before, but with M = {0}.

The completion ̂Wϑ
ν ⊗S K has a natural decomposition according to the topo-

logical generalized eigenvalues of the operators yi. That this, we can decompose
each quotient Wϑ

ν ⊗S K/In according to these eigenvalues since it is finite di-
mensional, and take the inverse limit of this decomposition. Note that these
generalized eigenvalues must lie in M , since the minimal polynomial of yi on
Wϑ

ν ⊗S K/In divides
∏

m∈M (yi − m)k. This decomposes the idempotents ei
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corresponding to loadings as a sum of idempotents where we associate an addi-
tional choice of m ∈M to each point in the loading. Put another way, consider
the ways of lifting the loading in Γ to one in Γ×M . If ǐ is such a loading, let
ǫ̌i denote the projection to its generalized eigenspace (which is an element of
the algebra by abstract Jordan decomposition in each quotient).
For any weighted KLR diagram for the graph Γ ×M , we have a “projection”
where we apply the first projection to the labels of each strand; we can always
isotope a KLR diagram so that this projection is a weighted KLR diagram as
well (if we aren’t careful, we might introduce tangencies). Note that this result
might not be independent of the isotopy.

Proposition 2.28. There is an isomorphism ̂̌W ϑ̌ ∼= ̂Wϑ
ν ⊗S K such that:

eǐ 7→ ǫ̌i yieǐ 7→ (yi −mi)ǫ̌i (2.3)

For diagrams, it is easier to describe this map locally. For most diagrams with
a single crossing and no dots, we simply pass to the projection, times ǫ̌i, except
in cases where:

• At y = a, in the projection of A, there is a crossing where the ℓth strand
(call its label i) crosses from left to right of a ghost haunting the kth strand
for an edge e : i→ j which doesn’t lift to an edge ě : (i,mℓ) → (j,mk). In
this case, we multiply the projection at y = a by χ(Q̃e)(yℓ+mℓ, yk+mk)

−1.
This exists because χ(Q̃e)(yℓ+mℓ, yk+mk) is a power series with non-zero
constant term by assumption, and thus invertible.

• At y = a, there is a crossing of two strands with labels (i,mk) and
(i,mk+1) with mk 6= mk+1. We send the crossing to yk+1 − yk times
the projection diagram plus the diagram with the crossing opened. That
is:

(i,mk) (i,mk+1)

7→

i i

−

i i

+

ii

Proof. Much like in [Web], we identify these algebras by giving an isomorphism
between their completed polynomial representations.

The completion of the polynomial representation of ̂Wϑ
ν ⊗S K is a sum of com-

pleted polynomial rings ⊕ǐK[[y1 −m1, . . . , yn −mn]]ǫ̌i, so we can use (2.3) as
the definition of the isomorphism of this to the completed polynomial repre-

sentation of ̂̌W ϑ̌.
Thus, we need only check that dotless diagrams act correctly. In all the cases
where a diagram is sent to its projection, the match between the actions is
clear. Now consider the case where there is a crossing where the ℓth strand
(call its label i) crosses from left to right of a ghost for the kth strand and an
edge e : i → j which doesn’t lift to an edge ě : (i,mℓ) → (j,mk); in this case,
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the action of the projection is by multiplication by χ(Q̃e)(yℓ +mℓ, yk +mk).
Thus, χ(Q̃e)(yℓ +mℓ, yk +mk)

−1 times this diagram acts by the identity map,
as does the diagram for Γ×M .
Finally, consider the case where there is a crossing of two strands with labels
(i,mk) and (i,mk+1) with mk 6= mk+1. The projection acts by the Demazure

operator
sj−1

yj−yj+1
. Thus,

i i

−

i i

+

ii

acts by the switch map sj, as does the diagram for Γ×M .
Thus we need only check that this map is invertible. The inverse applied to a
diagram times ǫ̌i similarly goes to the “anti-projection” but times χ(Q̃e)(yℓ +
mℓ, yk+mk) where there is an appropriate crossing of a strand and a ghost, and
when two like-colored strands with different mk and mk+1 cross, the inverse
map is given by

ǫ̌i

i i

7→ (yk−yk+1+mk−mk+1)
−1

(

(i,mk) (i,mk+1)

−

(i,mk)(i,mk+1)

)
.

Note that this also induces a map on the level of steadied quotients, since the
loading î is unsteady if and only if i is, and the idempotent ǫ̂

i
is 0 in the steadied

quotient if i is.

3 Relation to previous constructions

The motivation for the definition of weighted KLR algebras was to give a
unifying framework to some seemingly disparate examples, as well as providing
a language for new ones.
As Corollary 2.16 shows, we will encounter nothing new if we consider the
weighted KLR algebras for a tree; in particular, for any Dynkin diagram, or
extended Dynkin diagram of type other than Ân, nothing interesting happens.
On the other hand, there are some very interesting cases based on slightly less
famous graphs.

3.1 The Crawley-Boevey trick and categorical actions

The most important case for us is the graph produced by “the Crawley-Boevey
trick;” this was a construction which was originally designed with the aim of
thinking of Nakajima’s quiver varieties, which were originally defined using aux-
illiary “shadow vertices,” as a space of usual representations of a pre-projective
algebras.
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Given a graph Γ and a function w : I → Z≥0, we can define a new graph
Γw where we take the original graph Γ, add a new vertex 0 and string in wi

edges from 0 to i. More formally, Γw has vertex set I ∪ {0} and edge set

Ω∪{e1i , . . . , e
(wi)
i }i∈I with t(e

(k)
i ) = 0, h(e

(k)
i ) = i. We call the original edges of

Γ old edges, and the edges e
(∗)
∗ new edges. For simplicity, we always choose

c
e
(wi)

i

= c
ē
(wi)

i

= 1 and Q
e
(k)
i

(u, v) = u− v.

As we noted, this graph has previously appeared in the literature on Nakajima
quiver varieties, since

• there’s a canonical bijection between representations of Γw with V0 ∼= k
and representations of Γ together with a choice of map Cwi → Vi, and

• similarly, representations of the preprojective algebra of Γw with V0 ∼= k
are in canonical bijection with elements of the vector space Nakajima
denotes M subject to the moment map conditions [Nak94, (2.5)], and

• this representation is stable in the sense of Craw for the character which
is the product of the determinants of the action on Vi’s for i ∈ I, and the
−
∑

i∈I dimVi-power of the determinant on V0 if and only if it is stable
as in [Nak94, 3.5].

1 2 3 4

0

Figure 1: The Crawley-Boevey quiver of 3ω1 + ω3 for sl5.

This observation carries over into the algebras attached to these quivers. Given
a highest weight λ of the Kac-Moody Lie algebra g associated to Γ, we let
Γλ = Γw where w(i) = λ(α∨

i ).
For any weighting ϑ, call the reduced quotient W̄ϑ

ν̃ of the algebra Wϑ
ν̃ for Γw

with weight ν̃ = ν + α0 by the ideal generated by all dots on the 0-labelled
strand. Consider the charge c which assigns c(i) = −1+i for all old vertices and
i +

∑
di to 0, and the reduced steadied quotient W̄ϑ

ν̃ (c). When we relate this
construction to the geometry of quiver representations, this will correspond to
only acting by change of basis on the old vertices.
Since the single strand with label 0 in each diagram of W̄ϑ

ν̃ plays a special

role, we will represent its ghosts using red ribbons like { }; this is suggestive
of a relationship to the tensor product algebras of [Web17a, §3] which we will
discuss shortly.
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Assume that Γ has no loops. Recall that there is a 2-category U , defined using
the ring k and the polynomials Qij , which categorifies the universal envelop-
ing algebra of the associated Kac-Moody algebra g. We use the conventions
established in our previous papers [Web18, Web17a] for this category which
(modulo minor conventional differences) is that defined by Cautis and Lauda
[CL15] building on work of Rouquier [Rou] and Khovanov and Lauda [KL10].

Theorem 3.1. There is a categorical action of the Kac-Moody Lie algebra
g on the categories

⊕
ν W̄

ϑ
ν̃ (c) -pmod, with Fi given by the induction functor

M 7→M ◦Wϑ
αi
, and Ei by its left adjoint.

This is in principle the same proof as [Web17a, 3.26] but it is a bit more work
to describe the obvious module over U .
Consider the category Y ′

ϑ whose objects are signed loadings, that is, loadings
where each point is marked with a + or −, which we can also represent as either
an upward or downward arrow. We’ll use i± to represent the label of a point
in a signed loading.
We let a blank double weighted KLR diagram be a collection of curves
which are decorated with dots which are oriented and match the up and down
arrows on the source loading at y = 0 and the target at y = 1, and are
generic in the same sense as weighted KLR diagrams. These strands have ghosts
positioned ϑe units right of each strand (regardless of orientation) labelled with
the head of e; for purposes of weight labeling we also need to include ghosts
for the opposite orientation, that is ghosts (which we will draw as dotted lines

) ϑe units left of each strand labelled with t(e). The diagrams are the same
as those used in the 2-category U , except for the genericity conditions imposed
by ghosts. Here is an example of such a diagram:

i+

i+i− i+

j+ j−j−

j−

λ2

λ2

λ1

λ1

(3.1)

Some care is necessary when labeling the regions of the plane. We let a double

weighted KLR diagram be a blank DWKLRD with a labeling of each region
of the plane minus strands and ghosts labeled by a weight of g. Rather than
using the rules of [KL10] or [Web17a], these must be consistent with the rules1

1When the Cartan matrix is not invertible, we should be a bit careful about precisely
what fundamental weights mean, but this is actually a red herring. What we really want to
assign to regions are functions I → Z, but it has been conventionally handy to write these
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that

λ

µ µ+ λ

i

µ µ− 2ωi

and for ghosts corresponding to an edge e : i→ j:

e

µ µ+ cēωi

e

µ µ+ ceωj

As in [Web17a], we let L denote the label of the leftmost region, and similarly
for R and the rightmost. We refine the scalars tij = Qij(1, 0) as follows: for an
edge e and node i, we let

ti;e =

{
Qe(1, 0) if i = h(e),

1 otherwise.
ui;e =

{
Qe(0, 1) if i = h(e),

1 otherwise.

We let Yθ be the 2-category with:

• objects given by weights of g.

• 1-morphisms λ→ µ given by loadings with label L = λ,R = µ. Composition
is the horizontal composition of loadings.

• 2-morphisms i → j given by double weighted KLR diagrams with i as bottom
and j as top, modulo the relations [Web17a, (2.2-3)] and

– the bigon relation [Web17a, (2.4a-b)] is replaced by

λ

i j

= λ

i j

λ

i j

= λ

i j

(3.2a)

λ

i e

= ui;e λ

i e

λ

e j

= uj;e
λ

e j

(3.2b)

functions in the form α∨

i
(µ) for some weight µ. Thus, pedants should consider ωi to be the

characteristic function of i ∈ I.
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λ

i e

= ti;e
λ

i e

λ

e j

= tj;e
λ

e j

(3.2c)

– the KLR relations [Web17a, (2.5a-g)] replaced with the weighted KLR
relations of Definition 2.4.

In both cases, we ignore the dotted ghosts; these are only necessary to label
the plane so that sl2 relations function correctly.

Note that if the loadings have each pair of points at least s units apart, both
these changes in relations become irrelevant, and we recover the relations of
the original category U .
Note that Yϑ has a pair of commuting left and right actions of U , given by
placing diagrams in U (drawn on loadings with points more than s units apart)
to the far left or far right of a diagram in Yϑ.
The morphism spaces in Yϑ have a natural spanning set analogous to that for
U described by Khovanov and Lauda, which we’ll denote Zϑ. Each vector in
Zϑ is indexed by matching of the points of the two loadings such that points in
the different loadings have the same sign or in the same loading have different
signs. The diagram is gotten by choosing a way of stringing together the
matched points, placing an arbitrary number of dots at a fixed point on each
strand, and then multiplying at the right by a monomial in the bubbles (which
are far enough apart to avoid any interaction with ghosts).

Lemma 3.2. The set Zϑ is a basis.

Proof. The proof that these relations span is very similar to that of Theorem
2.8: one can use the relations of Definition 2.4 to remove any bigons, and show
any two choices of the vectors in Zϑ are the same, modulo diagrams with fewer
crossings.
Assume we have a non-trivial linear combination of diagrams in Zϑ. This must
be gotten as a sum of the relations in the category as described earlier. Now,
attach the morphism that pulls all strands to the far right and separates them
at least s units from each other from each other to the top and bottom of the
diagram. The result of is a linear combination of morphisms in U . Since every
relation in Yϑ remains a relation when a red line is dragged through it, or its
ends are pulled further apart, the relations that we used to write this linear
combination remain relations in U . That is, the sum of diagrams we arrive
at in U is 0 as well. However, we know by [Web17a, 2.32] that the analogous
spanning set to Zϑ in U is a basis, so when written in terms of these elements,
it must be a trivial linear combination.
Consider a diagram of Zϑ with a maximal number of crossings among those
that appear in the linear combination. The diagram corresponding to the same

Documenta Mathematica 24 (2019) 209–250



Weighted KLR Algebras 231

matching (with some new dots) appears in our new linear combination, and
no other diagram from the proposed basis could cancel it out. Thus, it must
have trivial coefficient in the original linear combination, contradicting the
assumption that it did not.

Thus, the set Zϑ is a basis; in particular, if we consider usual loadings as
signed loadings with all signs negative, we get an injection of the weighted
KLR algebra into the morphism space in Y.

Now, we apply a similar principle to have we have use many times in [Web17a];
we call a signed loading unsteady like in the unsigned case if it is horizontal
composition of a purely black loading with one containing all the red strands.
We let DW̄ϑ(c) be the quotient of the algebra spanned by double weighted
KLR diagrams with L = 0 by the relations of the category Yϑ and the ideal
generated by all unsteady signed loadings.

Lemma 3.3. The natural map of algebras W̄ϑ(c) → DW̄ϑ(c) is a Morita equiv-
alence.

Proof. First, we must show that the morphism space in the quotient DW̄ϑ(c)
between two usual loadings is the reduced steadied quotient of the weighted
KLR algebra. This follows from a similar argument to [Web17a, 3.23]. As in
[Web17a], we call a signed loading downward if all its points have negative
sign. Consider any diagram with downward top and bottom, and an unsteady
loading at y = 1/2. As in that proof, we can isotope the strands coming from
the unsteadying part of the loading so that they meet the line y = 1/2 again
before meeting any part of the rest of the loading. Now isotope the diagram
again, so that all but one of the resulting cups is pushed below y = 1/2. Now
we see that our diagram is unsteadied by a loading beginning with a ±i and
then a ∓i. Now, we can run the argument of [Web17a, 3.23] to finish the proof.
This shows that the map is injective.

Now, in order to prove Morita equivalence, we need only prove that the idem-
potent for any signed loading i factors through downward loadings in this quo-
tient. This is closely modeled on [Web17a, 3.24]. We induct on the number of
positive signs in i, as well as the length of the minimal permutation sending all
positive signs to the left and negative to the right. If this permutation is the
identity, then the left-most point carries a positive sign, and without changing
the isomorphism type, we can pull it to the far left, so this loading is trivial
in Yϑ. Thus, we must have a pair of consecutive points where the leftward
one carries a − and the rightward one carries a +. We can move the right-
ward one to the left through any ghosts or strands with different labels using
the relations (3.2a-3.2c). If they carry the same label, then by the relation
[Web17a, (2.3c)], ei factors through loadings where these points have switched
(lowering the length of the permutation) plus some number where they have
been removed (lowering the number of +’s). By induction, this map is a Morita
equivalence.
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Proof of Theorem 3.1. The category of modules over DW̄ϑ(c) manifestly car-
ries a categorical g-action since it carries an action of Yϑ which contains U as
a subcategory. The bimodules defining this action can be given exactly as in
[Web17a, (3.6)].

Exactly as in [Web17a, 5.7], we have that:

Proposition 3.4. The functor of tensor product with Bϑ,ϑ′

(c) commutes nat-
urally with the action of U .

3.2 Relations to tensor product algebras

Fix a list of highest weights λ = (λ1, . . . , λℓ). Choose any sequence of real
numbers ̟1 < · · · < ̟ℓ, and consider the weighting on Γλ where all old edges
have degree 0, and there are α∨

i (λj) new edges with weight ̟j connecting 0 to
i. We denote these edges ei,j,1, . . . , ei,j,α∨

i (λj) Recall that in [Web17a, §3], the

author defined algebras Tλ and T̃λ attached to the list λ.

Theorem 3.5. The algebra T̃
λ

λ−ν is the reduced quotient W̟̄
ν̃ of W̟

ν̃ . The
map replaces the ghosts of the 0-labelled strand with red strands, decorated by
the weights λ1 through λℓ if the 0-labelled strand has no dots on it, and sends
the diagram to 0 if there are any dots on the 0-labelled strand.

Proof. All relations between black strands satisfy the KLR relations in both
cases. When we undo a bigon between the i-labelled kth strand and the pth
0-labelled ghost (from the left) where the mth strand is 0-labelled, we multiply

by (yk − ym)α
∨

i (λp), which becomes y
α∨

i (λp)
k after setting ym = 0. Similarly, if a

ghost passes through a crossing of the kth and k + 1st strands, the correction
term is the opened crossing times

∂k,k+1((yk − ym)α
∨

i (λp)) =
(yk − ym)α

∨

i (λp) − (yk+1 − ym)α
∨

i (λp)

yk − yk+1
,

which becomes y
α∨

i (λp)
k + y

α∨

i (λp)−1
k yk+1 + · · · + y

α∨

i (λp)
k+1 after setting ym = 0,

which is exactly the relation expected from [Web17a, (3.2)]. Finally, in all
other triple points, there is no correction term in either set of relations. This
confirms all the relations of T̃λ.
Thus, turning all ghosts into red strands gives a surjective map W̄ϑ

ν̃ → T̃
λ

λ−ν .
Note that this map sends basis vectors to basis vectors for the diagram bases
of these algebras, and thus is an isomorphism.

Theorem 3.6. The tensor product algebra T
λ

λ−ν is the reduced steadied quotient

of the weighted algebra W̟
ν̃ (c) for Γw. Similarly, the bimodule Bϑ,ϑ′

(c) for two
different tensor product weightings is exactly Bσ, where σ is the positive braid
lift of the permutation sending the total order on new edges by weight in ϑ to
that induced by weight in ϑ′.
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Proof. Note that if ν′+ν′′ = ν̃, then ν′ >c ν
′′ if and only if the 0-component of

ν′ is 0 and that of ν′′ is 1. Thus, the unsteady ideal is generated by diagrams
where a block of strands all labeled with old vertices are “much further” left
than the 0-labelled strands. This obviously corresponds to the violating ideal
as defined in [Web17a, §3], so we have the desired isomorphism.

In this case, we can apply the canonical deformation discussed in Section 2.7,
which gives algebras like those appearing in [Web17a, §3.5]. Let us take this
deformation for the weighted KLR algebra of Crawley-Boevey quiver, and set
all coefficients ze,a,b = 0 for e an old edge (one from the original quiver).
We’re left with the parameter ze,0,0 for each new edge; we’ll abbreviate zi,j,k =
−zei,j,k,0,0. This results in a deformation of the algebra Tλ, where the number
of parameters {zi,j,k} is the number of new edges, that is, ρ∨(λ).

We can easily describe how the relations of Tλ deform in this case. For each
i ∈ Γ and j ∈ [1, ℓ], let pi,j(u) = (u − zi,j,1) · · · (u − zi,j,α∨

i (λj)). The relations
[Web17a, (4.1a,4.2)] thus deform to:

λj ii

−

λj ii

=
λi∑

p=1

∑

a+b=p−1

eℓ−p(−zi,j,∗) ·

(
ba

)
. (3.3a)

The RHS can alternately by written as (pi,j(yr+1)− pi,j(yr))/(yr+1 − yr).

i λj

= pi,j

( )

λji

λj i

= pi,j

( )

iλj (3.3b)

3.3 Relation to quiver Schur algebras

When Γ is a cycle with n vertices, then we have some particularly interesting
behavior. The choice of weightings (up to equivalence) is 1-dimensional, since
H1(Γ;R) ∼= R. Weightings are distinguished by the sum of the weights over
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an oriented cycle. We can identify Γ = Z/nZ, with an edge i → i + 1; we let
ϑe = k, a constant.
Choose 0 < ǫ ≪ |k| ≪ s. For each vector composition µ̂ = µ(1), . . . ,µ(m), we
associate the following loading j(µ̂): take the residue sequence (as defined in
[SW, (3)]) for this sequence, and for each entry of the jth block of the residue
sequence p1, . . . , add a points at js + ℓǫ labeled with pℓ (so, we assume that
ǫ < |k|/ℓmax). Thus, for each piece of the vector composition, we have a cluster
of points in the loading whose labels sum to that piece, and the clusters are
very far apart. Now take the idempotent mapping the loading to itself which
on the like-labelled strands of each piece of the loading does the idempotent
which acts on polynomials by projecting to symmetric polynomials. Note that
within each block, rearranging strands will result in isomorphic idempotents.

Example 3.7. If µ̂ = (1, 1, 2), (2, 0, 0) and k > 0, the loading is

1 2 3 3 1 1

where we represent ghosts by hollow circles.

There are some obvious idempotents acting on each of these loadings j(µ̂);
let e′

j(µ̂) be the idempotent that acts on j(µ̂) by applying the idempotent en
projecting to symmetric polynomials to the like-labelled points in each cluster.
Let eQS be the sum of the idempotents e′j(µ̂).

Theorem 3.8. The algebra eQSW
ϑ
ν eQS is isomorphic to the quiver Schur al-

gebra Ad defined in [SW].

Proof. This isomorphism sends the split of [SW] to the analogous splitting of
the idempotents we described without crossing any like-labelled strands, and
the merge to merging with crossing all pairs of like-labelled strands from the
two merging pieces. These are shown in Figure 2. It’s easily checked that these
act exactly as in [SW, 3.4]; in fact this is already shown in [SW, (23)]. Thus, Ad

injects into this space, and the graded dimensions of the two algebras coincide,
since the dimensions of the summands going between vector compositions µ̂

and µ̂
′ both count double cosets for the subgroups of Sm corresponding to the

vector compositions.

More generally, there are algebras, defined in [SW, §4], which mix together
features of the quiver Schur algebras above with those of the tensor product
algebras. These arise from the Crawley-Boevey quiver Γw for the n-cycle and
some dimension vector w. As before, choose a weighting ϑ, and let k be the
sum of the weights on the cycle.
For each pair of new edges e1, e2, one can consider all the closed paths which
leave the CB vertex using e1 and arrive using e2. If these connect to the same
vertex in the cycle, there’s a unique such path which isn’t self-intersecting (just
the bigon), and otherwise, there are two which go around the cycle in opposite
directions. We call a choice of ϑ well-separated for a dimension vector d if
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(1, 1, 2) (2, 0, 2)

(3, 1, 4)

0 1 2 2 0 0 2 2

(1, 1, 2) (2, 0, 2)

(3, 1, 4)

0 1 2 2 0 0 2 2

Figure 2: The comparison map with quiver Schur algebras

for any pair of new edges, the absolute value of the weight assigned to any non-
self-intersection loop which starts with one and ends with the other is greater
than k(

∑
i∈I di).

In a well-separated weighting, we can order the new edges according to their
weight unambiguously, since the weight of the two non-intersecting paths have
the same sign (otherwise, we might have one positive, and one negative). We
can consider the new edges in increasing order. Each one connects to a node in
the cycle, to which we have associated a fundamental weight. Thus, we obtain
a list of fundamental weights λ = {λ1, . . . , λℓ}, where ℓ is the total number of
new edges, usually called the level in this context. Furthermore, to each list
µ̀ = (µ̂(0), µ̂(1), . . . , µ̂(ℓ)) of vector compostions, we can associate a loading as
follows: we place a copy of the loading for µ̂(i) and its idempotent e′

µ̂(i) (as

constructed above) shifted by the position bi of the ith red strand. That is, we
place it on the real line just right of the ith red strand.

Let eQS;λ be the sum of idempotents attached to these loadings.

Theorem 3.9. If we choose ϑ well-separated, then the subalgebra
eQS;λW̄

ϑ
ν eQS;λ of the reduced quotient is the extended quiver Schur alge-

bra Ã
λ

d associated to λ, and the subalgebra eQS;λW̄
ϑ
ν (c)eQS;λ of reduced

steadied quotient is isomorphic to A
λ

d, and thus isomorphic to a cyclotomic
q-Schur algebra.
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Proof. The first isomorphism is exactly as in Theorem 3.8; we simply note that
the action of these operators on the appropriate symmetric polynomials exactly
match those of Ã

λ

d .
The steadied quotient exactly kills all idempotents where µ̂(0) 6= 0, and thus
coincides with the cyclotomic quotient.

In fact, both these inclusions of subalgebras induce Morita equivalences, but
we omit a proof of this fact; the construction of a cellular basis in [Web17c,
§3] shows that no simple representation is killed by this idempotent. It is more
natural to consider this in the context of a general weighting of an affine quiver,
which is probably the most interesting and powerful application of the theory
developed here; we develop this further in [Web17c].

4 The geometry of quivers

4.1 Loaded flag spaces

Throughout this section, we assume that Γ is a multiplicity-free quiver; that is,
we assume that ce = 1 for all edges, though we do allow multiple edges between
the same pair of vertices. Furthermore, we assume that Qe(u, v) = u − v for
every oriented edge. If ν =

∑
diαi, we let Vi = Cdi , V = ⊕iVi and let

Eν =
⊕

e∈Ω

Hom(Vt(e), Vh(e)).

This vector space has a natural action of Gν =
∏

i∈I GL(Vi) by pre- and post-
composition.
The vector d = (di)i∈Γ is called the dimension vector, and we will freely
identify ZΓ with the root lattice X(Γ) by sending d 7→ ν =

∑
diαi.

Let i be a loading.

Definition 4.1. We let an i-loaded flag on V be a flag of I-homogeneous
subspaces Fa ⊂ V for each real number a such that Fb ⊂ Fa for b ≤ a, and
dimFa =

∑
b≤a i(b). Even though this filtration is indexed by real numbers, only

finitely many different spaces appear; the dimension vector can only change at
points in the support of the loading, by adding the simple root labeling that point
to the dimension vector. Let Fli denote the space of i-loaded flags.

The relationship of these flags to the loadings we discussed earlier (justifying
the name) is as follows: we can imagine the space Fa as being attached to the
dots left of x = a. We read from left to right, and each time we pass a dot with
label i, we increase the size of the space in the flag in Vi.
Each loaded flag F• has a corresponding unloading, which is the complete
flag of spaces appearing as Fa for a ∈ R, indexed by dimension as usual.

Definition 4.2. For i a loading with |i| = ν, let

Xi = {(f, F•) ∈ Eν × Fli |fe(Fa) ⊂ Fa−ϑe
}
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be the space of i-loaded flags and compatible representations. Let p : Xi → Eν

be the map forgetting the flags, and let

Z =
⊔

i,j∈B(ν)

Xi ×Eν
Xj.

We can also interpret compatibility visually in terms of loadings: rather than
require that Fa be preserved by fe, we require that the piece of Vi correspond-
ing to a dot at x = a − ϑe can only be hit under the map fe by the pieces
corresponding to dots right of the corresponding ghost, that with x ≥ a. Put
differently, the piece of the filtration Fa corresponding to dots left of a must
land under fe in the span of pieces for dots whose ghosts are left of x = a.

Example 4.3. For j(µ̂) with k > 0, as defined in Section 3.3, the map fe for
each edge e : i→ i+1 must send the Fjs space associated to the first j parts of
the vector composition to the space F(j−1)s for the j − 1 pieces, since we have
specifically set things up so that a dot in the jth piece is to the left of the ghosts
attached to the jth piece, and those to the right, and right of the ghosts for
the j − 1st piece, and those to the left. Note that this is closely related to the
flag spaces considered in [SW], where arbitrary strongly preserved flags were
considered, but the flags we consider here come with a refinement to complete
flags. While this may seem extraneous, it makes the convolution algebras much
easier to deal with.
If k < 0, then the picture is quite different. Now, each dot for the jth piece is
right of the dots in the jth piece (and those to the left), so our conditions just
say that fe(Fjs) ⊂ Fjs, so this flag is weakly preserved.

Example 4.4. If we consider a Crawley-Boevey quiver Γw, with the weight on
all old edges being 0, then the result is that the flag Fa must be preserved in
the usual sense by all the maps associated to old edges. Furthermore, the map
fe along a new edge is constrained to be 0 on Fϑe

. That is, we are only allowed
to use one of the new edges on pieces of the flag corresponding to dots coming
right of the corresponding red line (in the usual pictures discussed in Section
3.2.

If ϑe = 0, then these are simply quiver flag varieties, as used by Lusztig
[Lus91], and considered by many other authors since. In particular, we can
define a collection of objects in the Gν -equivariant derived category of Eν

generalizing those considered by Lusztig, by considering the pushforwards

Yi := p∗kXi
[u(i)]

where

u(i) = dimXi/Gν

= #{(e, a, b) | i(a) = t(e), i(b) = h(e), a− b ≥ ϑe} −
∑

i∈I

|i|i(|i|i + 1)

2
.
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Since p is proper, if k is characteristic 0, then these sheaves will be a sum
of shifts of simple perverse sheaves; this can fail when the characteristic is
positive and small. In favorable cases, where we obtain parity vanishing results,
the summands of these sheaves will be parity sheaves in the sense of Juteau,
Mautner and Williamson [JMW14]. This is the case when Γ is of finite or affine
type A, but seems to be unknown in general; see [Mak15] for a more detailed
discussion of parity sheaves on Ev.

In the case of a tensor product weighting, these spaces and sheaves have been
studied by Li [Li14]. In the affine case, closely related spaces were considered
in [SW]; as long as the weights on new edges are well separated, the sheaves
Yi have the same simple summands as the pushforwards from the spaces Q(µ̂).
This definition of the spaces Xi has motivated in large part by the desire to
unify these examples and put them in a more general context.

4.2 An Ext-algebra calculation

Consider the tautological line bundle Li given by the quotient of the i-
dimensional space of the flag by the i−1st. The cohomology ring H∗

Gν
(Fli) is a

polynomial ring, in variables that can be identified with the equivariant Chern
classes Lk.

Given two loadings i and j and a permutation σ, we have a natural correspon-
dence

X̊τ
i;j = {(f, {F•}, f

′, {F ′
•}) ∈ Xi ×Xj|r(V∗, V

′
∗) = τ} Xτ

i;j = X̊τ
i;j

where r(−,−) is the usual relative position between the unloadings of these
flags. This space is non-empty if and only if the unloadings of i and j are
permuted to each other by τ .

We let HBM,Gd
∗ (−) denote the equivariant Borel-Moore homology of a space

with coefficients in k, as discussed in [VV11, §1]; for any proper map p : X → Y ,
the Borel-Moore homology HBM (X×Y X) carries a convolution algebra struc-
ture, defined in [CG97, 2.7]; in [CG97, 8.6], it’s proven that this is isomorphic
to the Ext algebra Ext•(p∗kX , p∗kX), and this result is easily extended to the
equivariant case.

Theorem 4.5. We have isomorphisms of dg-algebras

Ext•Gν

( ⊕

i∈B(ν)

Yi,
⊕

i∈B(ν)

Yi

)
∼= HBM,Gν

∗ (Z) ∼=Wϑ
ν

where the RHS has trivial differential. The right hand isomorphism sends

eib1ej 7→ [X1
i;j] eiψkej 7→ [Xsk

i;j ] yk → c1(Lk).

This map intertwines Verdier duality and the duality a 7→ a∗ on Wϑ
ν .
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Recall that replacing an object by another in which precisely the same indecom-
posable summands occur preserves the graded Morita class of the Ext-algebra.
Thus, if we replace ⊕Yi by the sum of all IC-sheaves whose shifts appear as
summands of Yi for some i, we obtain that:

Corollary 4.6. Assume char(k) = 0. The algebra Wϑ is graded Morita equiv-
alent to a non-negatively graded algebra. That is, there is a projective generator
G of Wϑ -mod with no negative degree endomorphisms. We can choose this
generator so that if P is a graded projective that occurs as a summand in Wϑei
for some i and no shift of P does, then P is a summand of G.

Note that it is easy to find examples where this fails if k has characteristic p.
Such an example for ŝl2 is discussed in [Web15, 5.7]; Williamson [Wil14] has
shown that examples exist for KLR algebras in finite type A for any prime p.
As we see in [Web15, Web17c], this property is key for proving a relationship
between categorifications and canonical bases, along the same lines as [VV11].

We now turn to the proof of Theorem 4.5, which we will prove via a series of
lemmata. As we noted in the proof of [SW, 3.11], we have an equivariant map

Xi ×Eν
Xj → Fli ×Flj,

projecting to the second factor. This map is is an affine bundle over each Gν-
orbit. These orbits are in turn homotopic to Gν/Tν, letting Tν be a maximal
torus in Gν . Thus Xi ×Eν

Xj is a union of finitely many spaces each with
even and equivariantly formal Borel-Moore homology, so the same is true of
Xi ×Eν

Xj.

Lemma 4.7. The Ext-algebra E = Ext•Gν

(⊕
i∈B(d) Yi,

⊕
i∈B(d) Yi

)
is formal

and acts faithfully on

⊕

i∈B(ν)

H∗
Gν

(Xi) ∼=
⊕

i∈B(ν)

H∗
Gν

(Fli).

Proof. This has essentially the same proof as [SW, 4.7]; Let U = H∗(BGν)
and V = H∗(BTν). The restriction functor RestGν

Tν
on equivariant derived

categories and the inclusion ιi,j : (Xi ×Eν
Xj)

Tν×Tν →֒ Xi ×Eν
Xj induce a
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commutative diagram

HomU (H
∗
Gν

(Xi), H
∗
Gν

(Xj))

HBM,Gν
∗ (Xi ×Eν

Xj)

HomV (V ⊗U H
∗
Gν

(Xi), V ⊗U H
∗
Gν

(Xj))

HBM,Tν×Tν
∗ (Xi ×Eν

Xj)

HomV (H
∗
Tν
(Xi), H

∗
Tν
(Xj))

HBM,Tν×Tν
∗ ((Xi ×Eν

Xj)
Tν×Tν )

HomV (H
∗
Tν
(Xi), H

∗
Tν
(Xj))

⋆−

⋆−

⋆−

RestGν

Tν

ι∗i,j(ιi,j)∗ι
∗
i,j

idV ⊗−
∼

ι∗j ◦ − ◦ (ιi)∗

The composition of the two vertical lines are both injective, since V is a free
module of finite rank over U and the Borel-Moore homology of every space
that appears is even and equivariantly formal. Since the fixed points of Tν are
isolated, the algebra

ET =
⊕

i,j∈B(ν)

HBM,Tν×Tν
∗ ((Xi ×Eν

Xj)
Tν×Tν )

is just the matrix algebra on V T =
⊕

i∈B(ν)H
∗
Tν
(XTν

i ). In particular, it is

formal as a dg-algebra since H∗
Tν
(Xi) is formal. This implies that E is formal

as a dg-algebra as well.
Furthermore, ET acts faithfully on V T . That is, the bottom rung of the ladder
is injective. Thus, any class a ∈ HBM,Gν

∗ (Xi×Eν
Xj) which the top action kills

is also killed by the map from the northwest corner to the southeast. This map
is injective, so we are done.

Lemma 4.8. The non-zero classes [Xσ
i,j] are a basis of HBM,Gν

∗

(
Xi ×Eν

Xj

)

over H∗
Gν

(Fli).

Proof. Pick a total order on permutations refining Bruhat order; our inductive
statement is that [Xσ

i,j] for σ ≤ τ is a basis of HBM,Gd
∗ (∪σ�τX

σ
i;j). If τ = 1,

then X1
i;j is an affine bundle over Fli = Flj, since the left and right flags must

agree. Thus, its equivariant Borel-Moore homology is freely generated over
H∗(Fli) by [X1

i,j].
Now, by induction, let τ ′ be maximal w.r.t τ ′ ≺ τ . Then we have long exact
sequence

· · · −→ HBM,Gd

i (∪σ�τ ′Xσ
i;j) → HBM,Gd

i (∪σ�τX
σ
i;j) → HBM,Gd

i (X̊τ
i;j) → · · ·
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The space X̊τ
i;j is an affine bundle over the space in Fli ×Flj with relative

position τ , since being compatible with two fixed flags is a linear condition on
matrix coefficients of quiver representations, and all fibers are conjugate under
the action of Gν . This space is, in turn, an affine bundle over Fli since the
space of flags of relative position exactly τ to a fixed flag is an affine space.
Thus, the equivariant Borel-Moore homology HBM,Gd

i (X̊τ
i;j) is free of rank 1

over H∗(BGi) if the unloading of i is sent to the unloading of j by τ , and rank
0 otherwise (since the space is empty). Furthermore, it is generated by the
fundamental class of X̊τ

i;j and in particular all lies in even degree. This shows
that, by induction, all groups appearing in the above sequence vanish in odd
degree, so the l.e.s. splits into a sum of s.e.s.
Thus, any subset of HBM,Gd

i (∪σ�τX
σ
i;j) consisting of a basis of

HBM,Gd

i (∪σ�τ ′Xσ
i;j) and an element projecting to [X̊τ

i;j] (if that space is

non-empty) is a basis of HBM,Gd

i (∪σ�τX
σ
i;j). Since [Xτ

i;j] projects to [X̊τ
i;j] if

that class is non-zero, and is itself 0 otherwise, induction yields the desired
fact.

Proof of Theorem 4.5. First, the left hand isomorphism is an immediate con-
sequence of [CG97, 8.6.7].
Now we wish to confirm that the action of the classes [X1

i;j] and [Xsk
i;j ] act on

⊕

i∈B(ν)

H∗
Gν

(Xi) ∼=
⊕

i∈B(ν)

k[y1, . . . , yd]

in the same way as eib1ej and eiψkej.

• If going from i to j passes a strand from right of a ghost to left of it,
then X1

i;j
∼= Xj: any j-loaded flag is easily modified to be a i-loaded flag

using reindexing. Thus, the desired convolution is just the pull-back map
for the inclusion Xj → Xi in cohomology, which sends Chern classes to
Chern classes, and induces the identity map on C[y1, · · · , yn].

• If going from i to j passes the jth strand from left of a ghost for e of
the kth strand to right, then symmetrically X1

i;j
∼= Xi. Thus, the desired

convolution is the pushforward by the inclusion Xi → Xj, which on the
level of cohomology rings multiplies by the Euler class of the normal
bundle for the inclusion, which is Hom(Lj ,Lk), whose Euler class is
yk − yj = Qe(yk, yj).

This deals with all crossings of strands and ghosts. We now need only consider
the case where no ghosts separate the k and k+1st strands, and we apply ψk.

• If kth and k + 1st strands have different labels, then Xsk
i;j is the graph

of an isomorphism between the sets of loadings Xi and Xj; there is a
unique j-loaded flag which agrees with a given i-loaded flag at all jumps
but the kth. The only effect of this isomorphism is that it reindexes the
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line bundles of interest to us via the permutation sk; hence this is also
the effect on Chern classes.

• If the kth and k + 1st strands have the same labels, we can take i = j.
LetW be the subvariety of Xi where all loops of weight 0 send the k+1st
step of the flag to the k− 1st, and let Lk;k+1 be the rank 2 vector bundle
on W given by the k + 1st step of the flag modulo the k − 1st. The
space Xsk

i;i is the projectivization over W of the vector bundle Lk;k+1.
Thus, if i : W → Xi is the inclusion, and p : Xsk

i;i → W the projection,
then [Xsk

i;i ] = i∗p∗p
∗i∗. The two pullbacks just act as the identity; the

pushforward p∗ acts as Demazure operator in the variables yk and yk+1,
and the pushforward i∗ multiplies by the Euler class of the normal bundle,
which is 1 if there is no loop of degree 0, and

∏
eQe(yk, yk+1) where e

ranges over such loops otherwise. Applying Definition 2.6, we see that
this matches the action of Proposition 2.7.

This shows that we have an injective algebra map a : eiW
ϑ
ν ej →

HBM,Gν
∗

(
Xi ×Eν

Xj

)
. Finally, we need to confirm that this map is sur-

jective.

We let eixσej = [Xσ
i,j] if the word in simple roots attached to j is the permuta-

tion by σ of that for i and 0 otherwise.

Now, consider a factorization of bτ into pieces where there is only one crossing
of two strands or of a strand and a ghost. The image a(bτ ) of this diagram is
the convolution of all the classes attached to these diagrams, which are each of
the form [Xsk

−,−] or [X
1
−,−]. That is, there is sequences tm ∈ {1} ∪ {s1, . . . , sn}

and i(m) such that bτ = eibt1ei(1)bt2 · · · ei(ℓ−1)btℓej In particular we obtain a
reduced decomposition τ = tk1 · · · tkℓ

. Now, consider an element (f, F•, F
′
•) ∈

X̊τ
i,j. Consider the unique flag which has relative position tk1 · · · tkh

to the
unloading of the left flag and tkℓ

· · · tkh+1
to the unloading of the right. Let

Fh
• be the unique i(h)-loaded flag whose unloading is the complete flag we have

just described.

Lemma 4.9. The i(h)-loaded flag Fh
• is compatible with the representation f∗.

Proof. Without loss of generality, we can assume that both F• and F ′
• are

coordinate flags for a single basis, which is in bijection with the points in the
loadings i and j; we let wi and wj be the accompanying positions on the real
line. By the compatibility with F• and F ′

•, the image fe(vm) is in the span of
vk with wi(vk) ≤ wi(vm)− ϑe and wj(vk) ≤ wj(vm)− ϑe.

One of the essential characteristics of bτ is that up to isotopy, we can assume
that the distance between any pair of strands monotonically increases or de-
creases, so we may assume that the distance between the weights associated
to vk and vm in i(h) are strictly between that for i and j. Thus, the same
inequalities hold for every slice, and we are done.
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Thus, we see that the map from the fiber product

q : Xt1
i;i(1)

×
X

(1)
i

Xt2
i(1);i(2)

×
X

(2)
i

· · · ×
X

(ℓ−1)
i

Xtℓ
i(ℓ−1);j

→ Xτ
i;j

must map bijectively over X̊τ
i;j; at each intermediate point, we have a single

unique choice for the i(h)-loaded flag compatible with f∗, which is, of course,
Fh
∗ .

Thus, we have that

a(bτ ) = q∗[X
t1
i;i(1)

×
X

(1)
i

· · · ×
X

(ℓ−1)
i

Xtℓ
i(ℓ−1);j

] = [Xτ
i;j] +

∑

τ<τ

rτ (y1, . . . , yn)[X
τ
i;j].

Thus, the matrix of the map a written in terms of the basis of eiW
ϑej given

by bτ ’s and that for the Borel-Moore homology HBM,Gν
∗

(
Xi ×Eν

Xj

)
given by

[Xτ
i;j]’s is upper-triangular with 1’s on the diagonal and thus an isomorphism.

Put another way:

Corollary 4.10. There is a fully faithful additive functor γ : Wϑ
ν -pmod →

D(Eν/Gν) sending [Wϑ
ν ei] 7→ Yi.

If Γ is produced by the Crawley-Boevey trick on another graph, we let G′
ν be

the subgroup of G which only acts on old vertices. This is a codimension 1
subgroup.
If we let Y ′

i be the pullback of Yi from Eν/Gν to Eν/G
′
ν . Repeating the proof

of Theorem 4.5 in this context, we arrive at almost the same result, except that
we have killed the Chern class of any line bundle attached to a representation
which is trivial restricted to G′

ν , that is the dot on the unique strand labeled
with α0. That is:

Corollary 4.11. We have isomorphisms of dg-algebras

Ext•Gν

( ⊕

i∈B(ν)

Y ′
i ,
⊕

i∈B(ν)

Y ′
i

)
∼=

⊕

i,j∈B(ν)

H
BM,G′

ν
∗

(
Xi ×Eν

Xj

)
∼= W̄ϑ

ν

where the RHS has trivial differential. In particular, if we choose a tensor
product weighting, we have an isomorphism

Ext•Gν

( ⊕

i∈B(ν)

Y ′
i ,
⊕

i∈B(ν)

Y ′
i

)
∼= T̃

λ

λ−ν

This result naturally extends to the bimodule Bϑ,ϑ′

defined earlier. The proof
is so similar to that of Theorem 4.5 that we leave it to the reader:

Theorem 4.12. For two weightings ϑ1, ϑ2, we have an isomorphism of dg-
modules:

Ext•Gν

( ⊕

i∈B1(ν)

Y 1
i ,

⊕

j∈B2(ν)

Y 2
j

)
∼= Bϑ1,ϑ2

ν
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where the left and right algebra actions are matched using the isomorphism of
Theorem 4.5.

Remark 4.13. Theorems 4.5 and 4.12 can be extended to the canonical de-
formations of Section 2.7 by letting G

E(Γ)
m act in the natural way on E with

each copy of Gm acting with weight 1 on the map along one edge and triv-
ially on all others. Considering the equivariant Borel-Moore homology in place
of usual BM homology gives the deformed algebra W̌ϑ, with the deformation

parameters corresponding to the cohomology of BG
E(Γ)
m .

4.3 Monoidal structure

Recall that the derived categories ⊕νD(Eν/Gν) carry the Lusztig monoidal
structure defined by convolution. If ν = ν′ + ν′′, and we let Vi = V ′

i ⊕ V ′′
i be

I-graded vector spaces of the appropriate dimension, we consider

Eν′;ν′′
∼= Eν′ ⊕ Eν′′ ⊕

⊕

e∈Ω

Hom(V ′′
t(e), V

′
h(e))

with the obvious action of

Gν′;ν′′ = {g ∈ Gν |g(V
′
i ) = V ′

i }.

We have the usual convolution diagram

Eν′;ν′′/Gν′;ν′′

Eν′/Gν′ Eν/Gν Eν′′/Gν′′

πs
πt

πq

We can view Eν′;ν′′/Gν′;ν′′ as the moduli space of short exact sequence with
submodule of dimension ν′ and quotient of ν′′. The projections π∗ are remem-
bering only the first, second or third term of the short exact sequence. The
convolution of sheaves F1 ∈ D(Eν′/Gν′),F2 ∈ D(Eν′′/Gν′′) is defined to be

F1 ⋆ F2 := (πt)∗(π
∗
sF1 ⊗ π∗

tF2)[−〈ν′′, ν′〉]

Proposition 4.14. The functor γ : Wϑ
ν -pmod → D(Eν/Gν) is monoidal, i.e.

γ(P1 ◦ P2) ∼= γ(P1) ⋆ γ(P2).

Proof. We need only check this for P1 = Wϑ
ν′ei, P2 = Wϑ

ν′′ej since every pro-
jective is a summand of one of these. In this case, P1 ◦ P2 = Wϑ

ν ei◦j. On the
other hand,

π∗
sYi = p̃s∗kXi×E

ν′
Eν′;ν′′

[u(i)] π∗
qYj = p̃q∗kXj×E

ν′′
Eν′;ν′′

[u(i)]
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where p̃s∗ and p̃q∗ are base changes of the map p by πs and πq. Note that when i

and j are separated far enough that no ghost from one is entangled in the other,
the subspace Fa for a between i and j on the real line is a subrepresentation.
Thus we have an isomorphism

(Xi ×Xj)×Eν′×Eν′′
Eν′;ν′′/Gν′;ν′′

∼= Xi◦j/Gν ; (4.1)

the difference in groups is that on left side we fix a particular subspace and
assume Fa = ⊕V ′

i and only act with the stabilizer of this subspace, whereas on
the right side, we sweep through all possible subspaces. These quotients are the
same since all I-graded subspaces of the same dimension vector are conjugate
under Gν .
By definition, Yi ⋆ Yj is the shifted pushforward from the LHS of (4.1), and
Yi◦j is the shifted pushforward from the RHS. Thus we have that Yi ⋆ Yj ∼= Yi◦j
where the equality of shifts follows from the formula

u(i ◦ j) = u(i) + u(j)− 〈|j|, |i|〉.

Furthermore, the self-Exts of Yi ⋆ Yj induced by those of Yi and Yj are exactly
intertwined with the image of ιν′;ν′′ , which shows that this functor is monoidal
on morphisms as well. Thus, we have obtained the desired result.

There is also a left adjoint to ⋆, which we denote Resν′;ν′′ , given by

Resν′;ν′′ F := (πs × πq)!π
!
tF [〈ν′′, ν′〉]

Proposition 4.15. The functor γ : Wϑ
ν -pmod → D(Eν/Gν) is intertwines

restriction functors, that is

(γ ⊠ γ)(Resν′;ν′′ P ) ∼= Resν′;ν′′ γ(P ).

Proof. Since these functors are left adjoint to functors intertwined by γ, they
just be intertwined if Resν′;ν′′ γ(P ) is in the subcategory generated by the image
of γ(P ).
As before, we need only consider the base where P = Rei. In this case, π!

tYi =
p̃∗kXi×Eν′;ν′′

. We filter the fiber product Xi × Eν′;ν′′ according the relative
position of the subspace V ′

i and the i-loaded flag (i.e. by the Schubert cell V ′
i

lands in for the Schubert stratification relative to the flag). Each such relative
position corresponds to dividing the points in the loading into two sets: those
where the dimension of the intersection of Fa with V ′

i jumps and those where
it does not. This gives loadings i′ and i′′. The subset of the fiber product
Xi × Eν′;ν′′ with fixed relative position is an affine bundle over the product
Xi′ ×Xi′ where the first term is the loaded flag induced on V ′

i by intersecting
with Fa, and the second is that induced on V ′′

i by taking the images of the
Fa’s. This shows that Resν′;ν′′ γ(P ) is an iterated cone of shifts of the objects
γ(P ′)⊠ γ(P ′′). This completes the proof.
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On the level of Grothendieck groups, these propositions show that the struc-
tures we have seen on K are also typical for categories of sheaves on represen-
tations of quivers.

Proposition 4.16. The sum of Grothendieck groups ⊕νK(D(Eν/Gν)) inherits
a twisted bialgebra structure with product and coproduct

[M][N ] = [M ⋆N ] ∆([M]) =

[ ∑

ν′+ν′′=ν

Resν′;ν′′ M

]
,

and the functor γ induces a map of twisted bialgebras.

Proof. The fact that γ induces a map that commutes with the multiplication
and comultiplication follows from Propositions 4.14 and 4.15.
The commutation of product and coproduct follows from the base change
formula for pushforwards and pullbacks. Choosing ν′, ν′′, µ′, µ′′ such that
ν′ + ν′′ = ν = µ′ + µ′′, we wish to consider Resµ′,µ′′(M′ ⋆ M′′). Let π∗
denote the projection maps from Eν′;ν′′ as before and κ∗ the corresponding
maps from Eµ′;µ′′ and B = Eν′;ν′′ ×Eν

Eµ′;µ′′ . Then we have a diagram with
the interior square Cartesian:

B/Gν

Eν′;ν′′/Gν Eµ′;µ′′/Gν

Eν′/Gν′ × Eν′′/Gν′ Eν/Gν Eµ′/Gµ′ × Eµ′′/Gµ′

κ̃t π̃t

πs × πq

πt κt

κs × κq

Thus, we have that

Resµ′,µ′′(M′ ⋆M′′) = (κs × κq)!κ
!
t(πt)∗(πs × πq)

∗(M′ ⋆M′′)

= (κs × κq)!(π̃t)∗κ̃
!
t(πs × πq)

∗(M′ ⋆M′′)

The variety B can be stratified into subsets Bτ according to the dimension
τ of the intersection between the subrepresentations of dimension ν′ and µ′.
Intersection with the other subrepresentation induces subs of dimension τ in
πsκ̃t and κsπ̃t, and taking its image induces a subs of dimension µ′ − τ in
πsκ̃t and dimension ν′ − τ in κsπ̃t. Let τ ′ = ν′′ + µ′′ − ν + τ . The map from
Bτ to the fiber product of Eτ ;ν′−τ × Eµ′−τ ;τ ′ with Eτ ;µ′−τ × Eν′−τ ;τ ′ over
Eτ ×Eµ′−τ ×Eν′−τ ×Eτ ′ is an affine bundle of dimension 〈τ + τ ′, µ′+ν′−2τ〉.
Thus,

∆µ′,µ′′([M′] ⋆ [M′′]) =
∑

τ

∆τ ;ν′−τ ([M
′]) ⋆∆µ′−τ ;τ ′[M′′].
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4.4 Hall algebras

While the previous section interpreted the weighted KLR algebras in terms of
characteristic 0 geometry, we can also consider the geometry of quivers over a
field of characteristic p. The varieties Eν , Xi and the algebraic group Gν are
all defined as Z-schemes whose base change to C are the varieties considered
in the previous sections. After base change to F̄q for q a prime power, we can
use the same pushforwards to define ℓ-adic sheaves Yi, which we denote with
the same symbol as the corresponding sheaves over C; in this section, we will
always consider sheaves on varieties over F̄q, so there is no danger of confusion.
By the usual comparison theorems in étale geometry (for example, [BBD82,
6.1.9]), the Ext-algebra of the sum of these sheaves is Wϑ

ν , just as it is for
sheaves over C.
The sheaves Yi have a unique mixed structure which is pure of weight 0. As
always, the pushforward by a proper map of the constant sheaf with it canonical
weight 0 mixed structure is again pure of weight 0. If we apply the shift in the
derived category without changing the action of Frobenius, we will change the
weight, but we can apply a Tate twist to return to weight 0. We will always take
this mixed structure. In this section, the functor γ will land in this category,
not its characteristic 0 analogue. The proof of Propositions 4.14 and 4.16 carry
over without change.
The reader might thus justly wonder what is achieved by introducing this more
difficult formalism. Our primary motivation is a better understanding of the
Grothendieck group K. Recall that for any finite field Fq, there is a Hall

algebra HΓ;q of representations of Γ, the space of all k-valued function on
the set of isomorphism classes of quiver representations over Fq. We refer to
the notes of Schiffmann [Sch] for basic facts and definitions of Hall algebras,
but our Hall algebra will have the opposite product and coproduct from Schiff-
mann’s for compatibility with our diagrammatic formulation. In essence, this
is because our conventions are adapted to writing short exact sequences with
arrows pointing left to right (as any right-thinking person would).
Attached to any mixed complex of sheaves M over an extension k of Qℓ on
Eν , we have a function TM : Eν(Fq) → k sending e ∈ E to the supertrace of
the Frobenius morphism acting on the stalk at that point:

TM(e) :=
∑

i∈Z

(−1)iTr(Fr | Hi(Me)).

If we let K denote the Grothendieck group of the category of pure weight 0
shifts of perverse sheaves over k, then TM : K → HΓ;q.

Proposition 4.17. The map TM : K → HΓ;q is a map of bialgebras.

Proof. This follows instantly from the Grothendieck trace formula.

While the definition of these functions may sound awfully abstruse, for ge-
ometrically natural sheaves, these functions are quite explicit. Of greatest
importance to us is that
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Proposition 4.18. TYi
(e) = q

u(i)/2 ·#{x ∈ Xi(Fq) | p(x) = e}

Proof. This follows immediately from the Grothendieck trace formula; the fac-
tor of q

u(i)/2 comes from the necessary Tate twist.

Combining these propositions, we obtain the relationship between the
Grothendieck group Kϑ and the Hall algebra.

Proposition 4.19. Assume k is of characteristic 0. There is natural map
of Hopf algebras (in the braided category of Z[I]-graded abelian groups) from
hq : K

ϑ → HΓ;q. The induced map
∏

qn hqn : K
ϑ →

∏
n≥1 HΓ;qn is injective.

Proof. Since all these properties descend automatically to any subfield, and
hold for all algebraically closed fields of characteristic 0 if they hold for one, we
may assume that k = Q̄ℓ for some prime ℓ coprime to p.
The map hq is the composition of that induced by γ and T∗. This is a map
of bialgebras by Propositions 4.16 and 4.17. If we have a non-zero element of
the kernel, it corresponds to a non-zero linear combination of pure complexes,
and thus a pair of pure complexes which are not isomorphic, but give the same
function for infinitely many powers of the same prime p; this is impossible by
[Lau87, Théorème 1.1.2]

This theorem, in particular, connects together the categorification theorem for
Uq(n) given by Khovanov and Lauda [KL09, 3.18], and the result of Ringel
giving an isomorphism between Uq(n) and the composition subalgebra of the
Hall algebra [Rin90] by giving a canonical isomorphism between K0

q (Rν) and
the composition algebra in HΓ;q without passing through quantum groups.
This picture could easily worked out by an expert from the paper of Varagnolo
and Vasserot [VV11], but we know of nowhere where it was written explicitly.
This relation to the Hall algebra gives a concrete approach to computing the
Grothendieck group of weighted KLR algebras. For example, when Γ is affine,
we obtain an isomorphism between
K0

q (W
ϑ) for k > 0 with the subalgebra of the Hall algebra with nilpotent

support considered by Vasserot and Varagnolo, amongst others [VV99].

References

[BBD82] Alexander A. Beilinson, Joseph Bernstein, and Pierre Deligne, Fais-
ceaux pervers, Analysis and topology on singular spaces, I (Luminy,
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geometry, Birkhäuser Boston Inc., Boston, MA, 1997. MR 98i:22021

[CL15] Sabin Cautis and Aaron D. Lauda, Implicit structure in 2-
representations of quantum groups, Selecta Math. (N.S.) 21 (2015),
no. 1, 201–244.

Documenta Mathematica 24 (2019) 209–250



Weighted KLR Algebras 249

[JMW14] Daniel Juteau, Carl Mautner, and Geordie Williamson, Parity
sheaves, J. Amer. Math. Soc. 27 (2014), no. 4, 1169–1212. MR
3230821

[KL09] Mikhail Khovanov and Aaron D. Lauda, A diagrammatic approach to
categorification of quantum groups. I, Represent. Theory 13 (2009),
309–347.

[KL10] Mikhail Khovanov and Aaron D. Lauda, A categorification of quan-
tum sl(n), Quantum Topol. 1 (2010), no. 1, 1–92. MR 2628852
(2011g:17028)

[Lau87] Gérard Laumon, Transformation de Fourier, constantes d’équations
fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ.
Math. (1987), no. 65, 131–210. MR 908218 (88g:14019)

[Li14] Yiqiang Li, Tensor product varieties, perverse sheaves, and stabil-
ity conditions, Selecta Math. (N.S.) 20 (2014), no. 2, 359–401. MR
3177922

[Lus91] George Lusztig, Quivers, perverse sheaves, and quantized envelop-
ing algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421. MR
MR1088333 (91m:17018)

[Mak15] Ruslan Maksimau, Canonical basis, KLR algebras and parity
sheaves, J. Algebra 422 (2015), 563–610. MR 3272091

[Nak94] Hiraku Nakajima, Instantons on ALE spaces, quiver varieties, and
Kac-Moody algebras, Duke Math. J. 76 (1994), no. 2, 365–416. MR
MR1302318 (95i:53051)

[Rin90] Claus Michael Ringel, Hall algebras and quantum groups, Invent.
Math. 101 (1990), no. 3, 583–591. MR 1062796 (91i:16024)

[Rou] Raphael Rouquier, 2-Kac-Moody algebras (2008), arXiv:0812.5023.

[Sch] Olivier Schiffmann, Lectures on Hall algebras (2006),
arXiv:math/0611617.

[SW] Catharina Stroppel and Ben Webster, Quiver Schur algebras and
q-Fock space (2011), arXiv:1110.1115.

[VV99] Michela Varagnolo and Eric Vasserot, On the decomposition matrices
of the quantized Schur algebra, Duke Math. J. 100 (1999), no. 2, 267–
297. MR 1722955 (2001c:17029)

[VV11] Michela Varagnolo and Eric Vasserot, Canonical bases and KLR-
algebras, J. Reine Angew. Math. 659 (2011), 67–100.

Documenta Mathematica 24 (2019) 209–250

http://arxiv.org/abs/0812.5023
http://arxiv.org/abs/math/0611617
http://arxiv.org/abs/1110.1115


250 Ben Webster

[Wal] Christopher D. Walker, Hall algebras as Hopf objects (2010),
arXiv:1011.5446.

[Web] Ben Webster, On graded presentations of Hecke algebras and their
generalizations (2013), arXiv:1305.0599.

[Web15] Ben Webster, Canonical bases and higher representation theory,
Compos. Math. 151 (2015), no. 1, 121–166.

[Web17a] Ben Webster, Knot invariants and higher representation theory,
Mem. Amer. Math. Soc. 250 (2017), no. 1191, 141 pp.

[Web17b] Ben Webster, On generalized category O for a quiver variety, Math-
ematische Annalen 368 (2017), no. 1, 483–536.

[Web17c] Ben Webster, Rouquier’s conjecture and diagrammatic algebra, Fo-
rum Math. Sigma 5 (2017), e27, 71. MR 3732238

[Web18] Ben Webster, A categorical action on quantized quiver varieties,
Math. Z. (2018).

[Wil14] Geordie Williamson, On an analogue of the James conjecture, Rep-
resent. Theory 18 (2014), 15–27. MR 3163410

[Xia97] Jie Xiao, Drinfeld double and Ringel-Green theory of Hall algebras,
J. Algebra 190 (1997), no. 1, 100–144. MR 1442148 (98a:16018)

Ben Webster
Department of Pure Mathematics,
University of Waterloo & Perimeter
Institute for Theoretical Physics
Waterloo, ON
Canada
ben.webster@uwaterloo.ca

Documenta Mathematica 24 (2019) 209–250

http://arxiv.org/abs/1011.5446
http://arxiv.org/abs/1305.0599

