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Abstract. Let ℓ be a commutative ring with unit. To every pair of

ℓ-algebras A and B one can associate a simplicial set Hom(A, B∆) so that

π0Hom(A, B∆) equals the set of polynomial homotopy classes of morphisms

from A to B. We prove that πnHom(A, B∆) is the set of homotopy classes

of morphisms from A to B
Sn
• , where B

Sn
• is the ind-algebra of polynomials

on the n-dimensional cube with coefficients in B vanishing at the boundary

of the cube. This is a generalization to arbitrary dimensions of a theorem

of Cortiñas-Thom, which addresses the cases n ≤ 1. As an application we

give a simplified proof of a theorem of Garkusha that computes the homo-

topy groups of his matrix-unstable algebraic KK-theory space in terms of

polynomial homotopy classes of morphisms.
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1 Introduction

Algebraic kk-theory was constructed by Cortiñas-Thom in [1], as a completely alge-

braic analogue of Kasparov’s KK-theory. It is defined on the category Algℓ of associa-

tive, not necessarily unital algebras over a fixed unital commutative ring ℓ. It consists

of a triangulated category kk endowed with a functor j : Algℓ → kk that satisfies the

following properties:

(H) Homotopy invariance. The functor j is polynomial homotopy invariant.

(E) Excision. Every short exact sequence of ℓ-algebras that splits as a sequence of

ℓ-modules gives rise to a distinguished triangle upon applying j.
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(M) Matrix stability. For any ℓ-algebra A we have j(M∞A) � j(A), where M∞A

denotes the algebra of finite matrices with coefficients in A indexed by N × N.

This functor j is moreover universal with the above properties: any other functor from

Algℓ into a triangulated category satisfying (H), (E) and (M) factors uniquely through

j. Another important property of kk-theory is that it recovers Weibel’s homotopy K-

theory: kk(ℓ, A) � KH0(A); see [1, Theorem 8.2.1].

As a technical tool for defining algebraic kk-theory, Cortiñas-Thom introduced in [1,

Section 3] a simplicial enrichment of Algℓ. They associated a simplicial mapping

space HomAlgℓ
(A, B∆) to any pair of ℓ-algebras A and B, and they defined simplicial

compositions

◦ : HomAlgℓ
(B,C∆) × HomAlgℓ

(A, B∆)→ HomAlgℓ
(A,C∆)

that make Algℓ into a simplicial category in the sense of [9, Section II.1]. The homo-

topy category of this simplicial category is Gersten’s homotopy category of algebras

[6, Section 1]. This means that there is a natural bijection

π0HomAlgℓ
(A, B∆) � [A, B],

where the right hand side denotes the set of polynomial homotopy classes of mor-

phisms from A to B. In the same vein, Cortiñas-Thom showed in [1, Theorem 3.3.2]

that

π1HomAlgℓ
(A, B∆) � [A, BS1],

where BS1 denotes the ind-algebra of polynomials on S 1 = ∆1/∂∆1 with coefficients

in B that vanish at the basepoint. The main result of this paper is the following gener-

alization of the latter to arbitrary dimensions.

Theorem 1.1 (Theorem 3.10). For any pair of ℓ-algebras A and B and any n ≥ 0

there is a natural bijection

πnHomAlgℓ
(A, B∆) � [A, BSn], (1)

where BSn is the ind-algebra of polynomials on the n-dimensional cube with coeffi-

cients in B vanishing at the boundary of the cube.

To prove Theorem 1.1 one has to compare two different notions of homotopy for ind-

algebra homomorphisms A → BSn : simplicial homotopy on the left hand side of (1)

and polynomial homotopy on the right. Simplicial homotopy implies polynomial ho-

motopy by [3, Hauptlemma (2)]. This key technical result of [3] —of which Garkusha

provides a beautiful constructive proof— allows one to define a surjective function

πnHomAlgℓ
(A, B∆)→ [A, BSn] (2)

that turns out to be the desired bijection. We prove the injectivity of (2) by showing

that polynomial homotopy implies simplicial homotopy; this is done in Lemma 3.9.

This lemma follows immediately from the existence of the multiplication morphisms

defined in section 3.1.
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With methods different from those of Cortiñas-Thom, Garkusha gave in [3] an alter-

native construction of kk-theory and moreover defined other universal bivariant ho-

mology theories of algebras. The latter are functors from Algℓ into some triangulated

category that share properties (H) and (E) with algebraic kk-theory but satisfy different

matrix-stability conditions. Garkusha showed in [3] that his bivariant homology theo-

ries are representable by spectra, and the simplicial mapping spaces between algebras

are his main building blocks for these spectra. The idea of the isomorphism (2) was

already present in the proof of [3, Comparison Theorem A], where he computed the

homotopy groups of the matrix-unstable algebraic KK-theory space in terms of poly-

nomial homotopy classes of morphisms. However, Garkusha used [3, Hauptlemma

(3)] as a substitute for Lemma 3.9 when proving injectivity. This makes his proof rely

on nontrivial techniques from homotopy theory such as the construction of a motivic-

like model category of simplicial functors on Algℓ. As an application of Theorem 1.1,

we give a simplified proof of [3, Comparison Theorem A] that uses no more homotopy

theory than the definition of the homotopy groups of a simplicial set.

The rest of this paper is organized as follows. In section 2 we fix notation and we recall

the definition of polynomial homotopy and the details of the simplicial enrichment of

Algℓ. In section 3 we prove Lemma 3.9 and Theorem 1.1. In section 4 we apply

Theorem 1.1 to give a simplified proof of [3, Comparison Theorem A].

2 Preliminaries

Throughout this text, ℓ is a commutative ring with unit. We only consider associative,

not necessarily unital ℓ-algebras and we write Algℓ for the category of ℓ-algebras and

ℓ-algebra homomorphisms. Simplicial ℓ-algebras can be considered as simplicial sets

using the forgetful functor Algℓ → Set; this is usually done without further mention.

The symbol ⊗ indicates tensor product over Z.

2.1 Categories of directed diagrams

Let C be a category. A directed diagram in C is a functor X : I → C, where I is a

filtering partially ordered set. We often write (X, I) or X• for such a functor. We shall

consider different categories whose objects are directed diagrams:

2.1.1 Fixing the filtering poset

Let I be a filtering poset. We will write CI for the category whose objects are the

functors X : I → C and whose morphisms are the natural transformations.

2.1.2 Varying the filtering poset

We will write ~C for the category whose objects are the directed diagrams in C and

whose morphisms are defined as follows: Let (X, I) and (Y, J) be two directed dia-

grams. A morphism from (X, I) to (Y, J) consists of a pair ( f , θ) where θ : I → J is a

functor and f : X → Y ◦ θ is a natural transformation.
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For a fixed filtering poset I, there is a faithful functor a : CI → ~C that acts as the

identity on objects and that sends a natural transformation f to the morphism ( f , idI).

2.1.3 The category of ind-objects

The category Cind of ind-objects of C is defined as follows: The objects of Cind are the

directed diagrams in C. The hom-sets are defined by:

HomCind ((X, I), (Y, J)) := lim
i∈I

colim
j∈J

HomC(Xi, Y j)

There is a functor ~C → Cind that acts as the identity on objects and that sends a

morphism ( f , θ) : (X, I)→ (Y, J) to the morphism:

(
fi : Xi → Yθ(i)

)
i∈I ∈ lim

i∈I
colim

j∈J
HomC(Xi, Y j)

2.2 Simplicial sets

The category of simplicial sets is denoted by S; see [8, Chapter 3]. Let Map(?, ??) be

the internal-hom in S; we often write YX instead of Map(X, Y).

2.2.1 The iterated last vertex map

Let sd : S→ S be the subdivision functor. There is a natural transformation γ : sd →

idS called the last vertex map [7, Section III. 4]. For X ∈ S, put γ1
X

:= γX and define

inductively γn
X

to be the following composite:

sdnX = sd(sdn−1X)
γ1

sdn−1 X // sdn−1X
γn−1

X // X

It is immediate that γn : sdn → idS is a natural transformation. Let sd0 : S→ S be the

identity functor and let γ0 : sd0 → idS be the identity natural transformation.

Lemma 2.3. For any p, q ≥ 0 and any X ∈ S we have:

γ
p+q

X
= γ

p

X
◦ sdp

(
γ

q

X

)
= γ

p

X
◦ γ

q

sdpX

Proof. It follows from a straightforward induction on n = p + q. �

2.3.1 Simplicial cubes

Let I := ∆1 and let ∂I := {0, 1} ⊂ I. For n ≥ 1, let In := I × · · · × I be the n–fold direct

product and let ∂In be the following simplicial subset of In:

∂In := [(∂I) × I × · · · × I] ∪ [I × (∂I) × · · · × I] ∪ · · · ∪ [I × · · · × I × (∂I)]

Let I0 := ∆0 and let ∂I0 := ∅. We identify Im+n = Im × In and ∂(Im+n) = [(∂Im) × In] ∪

[Im × (∂In)] using the associativity and unit isomorphisms of the direct product in S.
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2.3.2 Iterated loop spaces

Let (X, ∗) be a pointed fibrant simplicial set. Recall from [7, Section I.7] that the

loopspaceΩX is defined as the fiber of a natural fibration πX : PX → X, where PX has

trivial homotopy groups. By the long exact sequence associated to this fibration, we

have pointed bijections πn+1(X, ∗) � πn(ΩX, ∗) for n ≥ 0 that are group isomorphisms

for n ≥ 1. Iterating the loopspace construction we get:

π0(ΩnX) � π1(Ωn−1X, ∗) � · · · � πn(X, ∗)

Thus, π0Ω
nX is a group for n ≥ 1 and this group is abelian for n ≥ 2. Moreover, a

morphism ϕ : X → Y of pointed fibrant simplicial sets induces group homomorphisms

ϕ∗ : π0Ω
nX → π0Ω

nY for n ≥ 1. Let incl denote the inclusion ∂In → In. It is

easy to see that the iterated loop functor Ωn on pointed fibrant simplicial sets can be

alternatively defined by the following pullback of simplicial sets:

ΩnX
ιn,X //

��

Map(In, X)

incl∗

��
∆0 ∗ // Map(∂In, X)

(3)

We will always use the latter description ofΩn. Occasionally we will need to compare

Ωn for different integers n; for this purpose we will explicitely describe how the dia-

gram (3) arises from successive applications of the functor Ω. We start defining ΩX

by the following pullback in S:

ΩX
ι1,X //

��

Map(I, X)

incl∗

��
∆0 ∗ // Map(∂I, X)

For n ≥ 1, define inductively ιn+1,X : Ωn+1X → Map(In+1, X) as the following com-

posite:

Ω (ΩnX)
ι1,ΩnX // Map (I,ΩnX)

(ιn,X)∗ // Map
(
I,Map(In, X)

)
� Map (In × I, X)

It is easily verified that (3) is a pullback. Moreover, ιm+n,X equals the following com-

posite:

Ωn (ΩmX)
ιn,ΩmX // Map (In,ΩmX)

(ιm,X)∗ // Map
(
In,Map(Im, X)

)
� Map (Im × In, X)

Thus, under the identification of diagram (3), each time we apply Ω the new I-

coordinate appears to the right.
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2.4 Simplicial enrichment of algebras

We proceed to recall some of the details of the simplicial enrichment of Algℓ intro-

duced in [1, Section 3]. Let Z∆ be the simplicial ring defined by:

[p] 7→ Z∆
p

:= Z[t0, . . . , tp]/〈1 −
∑

ti〉

An order-preserving function ϕ : [p]→ [q] induces a ring homomorphismZ∆
q

→ Z∆
p

by the formula:

ti 7→
∑

ϕ( j)=i

t j

Now let B ∈ Algℓ and define a simplicial ℓ-algebra B∆ by:

[p] 7→ B∆
p

:= B ⊗ Z∆
p

(4)

If A is another ℓ-algebra, the simplicial set HomAlgℓ
(A, B∆) is called the simplicial

mapping space from A to B. For X ∈ S, put BX := HomS(X, B
∆); it is easily verified

that BX is an ℓ-algebra with the operations defined pointwise. When X = ∆p, this

definition of B∆
p

coincides with (4). We have a natural isomorphism as follows, where

the limit is taken over the category of simplices of X:

BX �

→ lim
∆p↓X

B∆
p

For A, B ∈ Algℓ and X ∈ S we have the following adjunction isomorphism:

HomS(X,HomAlgℓ
(A, B∆)) � HomAlgℓ

(A, BX)

Remark 2.5. Let X and Y be simplicial sets. In general (BX)Y � BX×Y – this already

fails when X and Y are standard simplices; see [1, Remark 3.1.4].

Remark 2.6. The simplicial ring Z∆ is commutative and hence the same holds for the

rings ZX = HomS(X,Z
∆), for any X ∈ S. Thus, the multiplication in ZX induces a ring

homomorphism mX : ZX ⊗ ZX → ZX . Note that mX is natural in X.

2.7 Polynomial homotopy

Two morphisms f0, f1 : A → B in Algℓ are elementary homotopic if there exists an

ℓ-algebra homomorphism f : A→ B[t] such that ev0 ◦ f = f1 and ev1 ◦ f = f0. Here,

evi stands for the evaluation t 7→ i. Equivalently, f0 and f1 are elementary homotopic

if there exists f : A→ B∆
1

such that the following diagram commutes for i = 0, 1:

A

fi

��

f // B∆
1

(di)∗

��
B

� // B∆
0

Here the di : ∆0 → ∆1 are the coface maps. Elementary homotopy ∼e is a reflexive

and symmetric relation, but it is not transitive —the concatenation of polynomial ho-

motopies is usually not polynomial. We let ∼ be the transitive closure of ∼e and call

Documenta Mathematica 24 (2019) 251–270



The Homotopy Groups of the Simplicial Mapping space 257

f0 and f1 (polynomially) homotopic if f0 ∼ f1. It is easily shown that f0 ∼ f1 iff there

exist r ∈ N and f : A→ Bsdr∆1

such that the following diagrams commute:

A

fi

��

f // Bsdr∆1

(di)∗

��
B

� // Bsdr∆0

It turns out that ∼ is compatible with composition; see [6, Lemma 1.1] for details.

Thus, we have a category [Algℓ] whose objects are ℓ-algebras and whose hom-sets are

given by [A, B] := HomAlgℓ
(A, B)/∼. We also have an obvious functor Algℓ → [Algℓ].

Definition 2.8 ([1, Definition 3.1.1]). Let (A, I) and (B, J) be two directed diagrams

in Algℓ and let f , g ∈ HomAlgℓ
ind ((A, I), (B, J)). We call f and g homotopic if they

correspond to the same morphism upon applying the functor Algℓ
ind → [Algℓ]

ind. We

also write:

[A•, B•] := Hom[Algℓ]
ind ((A, I), (B, J)) = lim

i∈I
colim

j∈J
[Ai, B j]

2.9 Functions vanishing on a subset

A simplicial pair is a pair (K, L) where K is a simplicial set and L ⊆ K is a simplicial

subset. A morphism of pairs f : (K′, L′) → (K, L) is a morphism of simplicial sets

f : K′ → K such that f (L′) ⊆ L. A simplicial pair (K, L) is finite if K is a finite

simplicial set. We will only consider finite simplicial pairs, omitting the word “finite”

from now on. Let (K, L) be a simplicial pair, let B ∈ Algℓ and let r ≥ 0. Put:

B(K,L)
r := ker

(
BsdrK → BsdrL

)

The last vertex map induces morphisms B
(K,L)
r → B

(K,L)

r+1
and we usually consider B

(K,L)
•

as a directed diagram in Algℓ:

B
(K,L)
• : B

(K,L)

0
→ B

(K,L)

1
→ B

(K,L)

2
→ · · ·

Notice that a morphism f : (K′, L′) → (K, L) induces a morphism f ∗ : B
(K,L)
• →

B
(K′,L′)
• of Z≥0-diagrams.

Lemma 2.10 (cf. [1, Proposition 3.1.3]). Let (K, L) be a simplicial pair and let B ∈

Algℓ. Then Z
(K,L)
r is a free abelian group and there is a natural ℓ-algebra isomorphism:

B ⊗ Z(K,L)
r

�

→ B(K,L)
r (5)

Proof. The following sequence is exact by definition of Z
(K,L)
r and [1, Lemma 3.1.2]:

0 // Z(K,L)
r

// ZsdrK // ZsdrL // 0 (6)
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The group Zsdr L is free abelian by [1, Proposition 3.1.3] and thus the sequence (6)

splits. It follows that Z
(K,L)
r is free because it is a direct summand of the free abelian

group ZsdrK . Moreover, the following sequence is exact:

0 // B ⊗ Z(K,L)
r

// B ⊗ ZsdrK // B ⊗ ZsdrL // 0

To finish the proof we identify B ⊗ Zsdr K �

→ Bsdr K using the natural isomorphism of

[1, Proposition 3.1.3]. �

Example 2.11. Following [3, Section 7.2], we will write B
Sn
• instead of B

(In,∂In)
• .

Note that B
S0
• is the constant Z≥0-diagram B.

3 Main theorem

3.1 Multiplication morphisms

Let (K, L) and (K′, L′) be simplicial pairs. It follows from Lemma 2.10 that Z
(K,L)
r ⊗

Z
(K′ ,L′)
s identifies with a subring of ZsdrK ⊗ ZsdsK′ . Let µK,K′ be the composite of the

following ring homomorphisms:

Z
sdrK ⊗ ZsdsK′

µK,K′

��

(γs)∗⊗(γr )∗ // Zsdr+sK ⊗ Zsdr+sK′

(pr1)∗⊗(pr2)∗

��
Z

sdr+s(K×K′)
Z

sdr+s(K×K′) ⊗ Zsdr+s(K×K′)moo

Here γ j is the iterated last vertex map defined in section 2.2.1, pri is the projection of

the direct product into its i-th factor and m is the map described in Remark 2.6.

Lemma 3.2. The morphism µK,K′ defined above induces a ring homomorphism

µ(K,L),(K′ ,L′) that fits into the following diagram:

Z
(K,L)
r ⊗ Z

(K′ ,L′)
s

incl //

µ(K,L),(K′ ,L′ )

��

ZK
r ⊗ Z

K′

s

µK,K′

��
Z

(K×K′ ,(K×L′)∪(L×K′ ))
r+s

incl // ZK×K′

r+s

Moreover, µ(K,L),(K′ ,L′) is natural in both variables with respect to morphisms of sim-

plicial pairs. We call µ(K,L),(K′ ,L′) a multiplication morphism.

Proof. Let ε be the restriction of µK,K′ to Z
(K,L)
r ⊗ Z

(K′ ,L′)
s ; we have to show that ε is

zero when composed with the morphism:

Z
sdr+s(K×K′) → Zsdr+s((K×L′ )∪(L×K′ ))

Since the functor Zsdr+s(?) : S → Alg
op

Z
commutes with colimits, it will be enough

to show that ε is zero when composed with the projections to Zsdr+s(K×L′) and to
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Zsdr+s(L×K′ ); this is a straightforward check. For example, the following commuta-

tive diagram shows that ε is zero when composed with the projection to Zsdr+s(L×K′);

we write i for the inclusion L ⊆ K.

Z
(K,L)
r ⊗ Z

(K′ ,L′)
s

��

0

((
ZsdrK ⊗ ZsdsK′ i∗⊗1 //

(γs)∗⊗(γr)∗

��

Zsdr L ⊗ ZsdsK′

(γs)∗⊗(γr)∗

��
Zsdr+sK ⊗ Zsdr+sK′ i∗⊗1 //

(pr1)∗⊗(pr2)∗

��

Zsdr+sL ⊗ Zsdr+sK′

(pr1)∗⊗(pr2)∗

��
Zsdr+s(K×K′) ⊗ Zsdr+s(K×K′) i∗⊗i∗ //

m

��

Zsdr+s(L×K′) ⊗ Zsdr+s(L×K′ )

m

��
Z

sdr+s(K×K′) i∗ // Zsdr+s(L×K′)

The assertion about naturality is clear. �

Remark 3.3. We can consider Z
(K,L)
• ⊗ Z

(K′ ,L′)
• as a directed diagram of rings indexed

over Z≥0 × Z≥0. Let θ : Z≥0 × Z≥0 → Z≥0 be defined by θ(r, s) = r + s; it is clear that θ

is a functor. Then the morphisms of Lemma 3.2 assemble into a morphism in ~AlgZ:

(
µ(K,L),(K′ ,L′), θ

)
: Z

(K,L)
• ⊗ Z

(K′ ,L′)
•

// Z(K×K′ ,(K×L′)∪(L×K′ ))
•

We will often think of µ(K,L),(K′ ,L′) in this way, omitting θ from the notation.

Remark 3.4. Upon tensoring µ(K,L),(K′ ,L′) with an ℓ-algebra B and using (5) we obtain

an ℓ-algebra homomorphism:

µ
(K,L),(K′ ,L′)
B

:
(
B

(K,L)
r

)(K′ ,L′)
s

// B(K×K′,(K×L′)∪(L×K′))
r+s

This morphism is obviously natural with respect to morphisms of simplicial pairs and

with respecto to ℓ-algebra homomorphisms. Again, we can think of it as a morphism

in ~Algℓ. It is easily verified that this morphism is associative in the obvious way.

Example 3.5. For any n ≥ 0 and any B ∈ Algℓ we have a morphism ι : B → B∆
n

induced by ∆n → ∗. It is well known that ι is a homotopy equivalence, as we proceed

to explain. Let v : B∆
n

→ B be the restriction to the 0-simplex 0. Explicitely, we

have v(ti) = 0 for i > 0 and v(t0) = 1. It is easily verified that v ◦ ι = idB. Now let

H : B∆
p

→ B∆
n

[u] be the elementary homotopy defined by H(ti) = uti for i > 0 and

H(t0) = t0 + (1 − u)(t1 + · · · + tn). We have ev1 ◦ H = idB∆
n and ev0 ◦ H = ι ◦ v. This

shows that ι ◦ v = idB∆
n in [Algℓ].
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The homotopy H constructed above is natural with respect to the inclusion of faces

of ∆n that contain the 0-simplex 0. More precisely: if f : [m] → [n] is an injective

order-preserving map such that f (0) = 0, then the following diagram commutes:

B∆
n

f ∗

��

H // B∆
n

[u]

f ∗[u]

��
B∆

m H // B∆
m

[u]

Now let p, q ≥ 0. Recall from the proof of [8, Lemma 3.1.8] that the simplices of

∆p × ∆q can be identified with the chains in [p] × [q] with the product order. The

nondegenerate (p + q)-simplices of ∆p × ∆q are identified with the maximal chains in

[p] × [q]; there are exactly
(

p+q

p

)
of these. Following [8], let c(i) for 1 ≤ i ≤

(
p+q

p

)
be

the complete list of maximal chains of [p] × [q]. Then ∆p × ∆q is the coequalizer in

S of the two natural morphisms of simplicial sets f and g induced by the inclusions

c(i) ∩ c( j) ⊆ c(i) and c(i) ∩ c( j) ⊆ c( j) respectively:

f , g :
∐

1≤i< j≤(p+q
p )

∆nc(i)∩c( j) ////
∐

1≤i≤(p+q
p )

∆nc(i)

Here nc is the number of edges in c; that is, the dimension of the nondegenerate

simplex corresponding to c. Since B? : Sop → Algℓ preserves limits, it follows that

B∆
p×∆q

is the equalizer of the following diagram in Algℓ:

f ∗, g∗ :
∏

1≤i≤(p+q
p )

B∆
nc(i)

////
∏

1≤i< j≤(p+q
p )

B∆
nc(i)∩c( j)

(7)

Moreover, since Z[u] is a flat ring, ? ⊗ Z[u] preserves finite limits and B∆
p×∆q

[u] is the

equalizer of the following diagram:

f ∗[u], g∗[u] :
∏

1≤i≤(p+q
p )

B∆
nc(i)

[u] ////
∏

1≤i< j≤(p+q
p )

B∆
nc(i)∩c( j)

[u] (8)

Notice that every maximal chain of [p] × [q] starts at (0, 0). This implies, by the

discussion above on the naturality of H, that the following diagram commutes for

every i and j:

B∆
nc(i)

��

H // B∆
nc(i)

[u]

��
B∆

nc(i)∩c( j) H // B∆
nc(i)∩c( j)

[u]

Then the homotopy H on the different B∆
nc(i)

gives a morphism of diagrams from (7)

to (8) that induces H : B∆
p×∆q

→ B∆
p×∆q

[u]. Let ι : B → B∆
p×∆q

be the morphism
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induced by ∆p × ∆q → ∗ and let v : B∆
p×∆q

→ B be the restriction to the 0-simplex

(0, 0). It is easily verified that ev1 ◦H is the identity of B∆
p×∆q

and that ev0 ◦H = ι ◦ v;

this shows that ι is a homotopy equivalence.

Finally, consider the following commutative diagram. Since each ι is a homotopy

equivalence, it follows that µ∆
p ,∆q

: (B∆
p

)∆
q

→ B∆
p×∆q

is a homotopy equivalence too.

B∆
p ι // (B∆

p

)∆
q

µ

��
B

ι //

ι

OO

B∆
p×∆q

The author does not know whether µK,K′ : (BK)K′ → BK×K′ is a homotopy equivalence

for general K and K′. It is true, though, that µK,K′ induces an isomorphism in any

homotopy invariant and excisive homology theory, as we explain below.

Example 3.6. Let T be a triangulated category with desuspension Ω and let

j : Algℓ → T be a functor satisfying properties (H) and (E). We will show that

j
(
µK,K′ : (BK)K′ → BK×K′

)
is an isomorphism, for any K, K′ and B.

Fix an object U of T and consider a short exact sequence of ℓ-algebras

E : A′ // A // A′′

that splits as a sequence of ℓ-modules. To alleviate notation, we will write T U
n (A)

instead of HomT (U,Ωn j(A)), for any n ∈ Z. By property (E), we have a distinguished

triangle

△E : Ω j(A′′) // j(A′) // j(A) // j(A′′)

that induces a long exact sequence of groups as follows:

// T U
n+1

(A′′) // T U
n (A′) // T U

n (A) // T U
n (A′′) //

This sequence is moreover natural in E . Now consider a cartesian square of ℓ-algebras

where the horizontal morphisms are split surjections of ℓ-modules:

A //

��

A′

��
A′′ // A′′′

Proceeding as in the proof of [2, Theorem 2.41], we get an exact Mayer-Vietoris

sequence:

// T U
n+1

(A′′′) // T U
n (A) // T U

n (A′) ⊕T U
n (A′′) // T U

n (A′′′) //

This sequence is natural with respect to morphisms of squares.

Let q ≥ 0. We will show that j(µK,∆q

) is an isomorphism by induction on the dimension

of K. The case dim K = 0 follows from the facts that j preserves finite products and
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that µ∆
0 ,∆q

is an ℓ-algebra isomorphism. Now let n ≥ 0 and suppose j(µK′ ,∆q

) is an

isomorphism for every finite L with dim L ≤ n. If dim K = n+1, we have a cocartesian

square:

K sknKoo

∐r
1 ∆

n+1

OO

∐r
1 ∂∆

n+1

OO

oo

Upon applying the functors (B?)∆
q

and B?×∆q

we get the following cartesian squares:

(BK)∆
q

��

// (BsknK)∆
q

��∏r
1(B∆

n+1

)∆
q // ∏r

1(B∂∆
n+1

)∆
q

BK×∆q

��

// BsknK×∆q

��∏r
1 B∆

n+1×∆q // ∏r
1 B∂∆

n+1×∆q

The horizontal morphisms in these diagrams are split surjections of ℓ-modules. In-

deed, the morphism ZK → ZsknK is a split surjection of abelian groups since it is sur-

jective by [1, Lemma 3.1.2] and ZsknK is a free abelian group by [1, Proposition 3.1.3].

Upon tensoring with B, we get that BK → BsknK is a split surjection of ℓ-modules.

Similar arguments apply to the remaining horizontal morphisms. By naturality of

µ, we have a morphism of squares from the square on the left to the square on the

right; this induces a morphism of long exact Mayer-Vietoris sequences upon applying

T U
∗ . Note that T U

∗ (µ∆
n+1,∆q

) is an isomorphism by Example 3.5. It follows from the

5-lemma that

(µK,∆q

)∗ : HomT (U, j((BK)∆
q

))→ HomT (U, j(BK×∆q

))

is an isomorphism. Since U is arbitrary, this implies that j(µK,∆q

) is an isomorphism.

Now we can show that j(µK,K′ ) is an isomorphism by induction on the dimension of

K′.

3.7 Main theorem

Following [3, Section 7.2], we put B̃
Sn
• := B

(In×I,∂In×I)
• . The coface maps di : ∆0 → I

induce morphisms (di)∗ : B̃
Sn
• → B

Sn
• .

Lemma 3.8 (Garkusha). Let f : A→ B̃
Sn
r be an ℓ-algebra homomorphism. Then the

following composites are homotopic; i.e. they belong to the same class in [A, BSn
r ]:

A
f
−→ B̃Sn

r

(di)∗

−→ BSn
r (i = 0, 1)

Proof. This is [3, Hauptlemma (2)]. �

As noted by Garkusha in [3], Lemma 3.8 shows that if two morphisms are simplicially

homotopic, then they are polynomially homotopic. The converse also holds, up to

increasing the number of subdivisions:
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Lemma 3.9 (cf. [3, Hauptlemma (3)]). Let H : A→ (B
Sn
r )sdsI be a homotopy between

two ℓ-algebra homomorphisms A→ B
Sn
r . Then there exists a morphism H̃ : A→ B̃

Sn

r+s

in Algℓ such that the following diagram commutes for i = 0, 1:

A
H //

H̃

��

(B
Sn
r )sds I

(di)∗ // BSn
r

(γs)∗

��
B̃
Sn

r+s

(di)∗ // BSn

r+s

Proof. Let H̃ be the composite:

A
H // (B(In,∂In)

r )
(I,∅)
s

µ(In ,∂In ),(I,∅)

// B(In×I,(∂In)×I)
r+s

It is immediate from the naturality of µ that H̃ satisfies the required properties. �

Theorem 3.10 (cf. [1, Theorem 3.3.2]). For any pair of ℓ-algebras A and B and

any n ≥ 0, there is a natural bijection:

πnHomAlgℓ
(A, B∆) � [A, BSn

• ] (9)

Proof. We will show that π0Ω
nEx∞HomAlgℓ

(A, B∆) � [A, BSn
• ]. Consider

HomAlgℓ
(A, B∆) as a simplicial set pointed at the zero morphism. For every p ≥ 0 we

have a pullback of sets:

(
ΩnEx∞HomAlgℓ

(A, B∆)
)

p

��

// Map
(
In,Ex∞HomAlgℓ

(A, B∆)
)

p

��
∗ // Map

(
∂In,Ex∞HomAlgℓ

(A, B∆)
)

p

(10)

For a finite simplicial set K we have:

Map
(
K,Ex∞HomAlgℓ

(A, B∆)
)

p
= HomS

(
K × ∆p,Ex∞HomAlgℓ

(A, B∆)
)

� colim
r

HomS
(
K × ∆p,ExrHomAlgℓ

(A, B∆)
)

� colim
r

HomS
(
sdr(K × ∆p),HomAlgℓ

(A, B∆)
)

� colim
r

HomAlgℓ

(
A, Bsdr (K×∆p)

)

It follows from these identifications, from (10) and from the fact that filtered colimits

of sets commute with finite limits, that we have the following bijections:

(
ΩnEx∞HomAlgℓ

(A, B∆)
)
0
� colim

r
HomAlgℓ

(A, BSn
r ) (11)
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(
ΩnEx∞HomAlgℓ

(A, B∆)
)
1
� colim

r
HomAlgℓ

(A, B̃Sn
r ) (12)

Using (11) we get a surjection:

(
ΩnEx∞HomAlgℓ

(A, B∆)
)

0
� colim

r
HomAlgℓ

(A, BSn
r ) −→ [A, BSn

• ]

We claim that this function induces the desired bijection. The fact that it factors

through π0 follows from the identification (12) and Lemma 3.8. The injectivity of

the induced function from π0 follows from Lemma 3.9. �

Remark 3.11. Let A and B be two ℓ-algebras and let n ≥ 1. Endow the set [A, BSn
• ]

with the group structure for which (9) is a group isomorphism. This group structure is

abelian if n ≥ 2. Moreover, if f : A → A′ and g : B → B′ are morphisms in [Algℓ],

then the following functions are group homomorphisms:

f ∗ : [A′, BSn
• ]→ [A, BSn

• ]

g∗ : [A, BSn
• ]→ [A, (B′)Sn

• ]

Example 3.12. Recall that B∆
1

= B[t0, t1]/〈1 − t0 − t1〉. Let ω be the automorphism

of B∆
1

defined by ω(t0) = t1, ω(t1) = t0; it is clear that ω induces an automorphism of

B
S1

0
= ker(B∆

1

→ B∂∆
1

). Let f : A → B
S1

0
be an ℓ-algebra homomorphism and let [ f ]

be its class in [A, BS1
• ]. We claim that [ω◦ f ] = [ f ]−1 ∈ [A, BS1

• ]. In order to prove this

claim, we proceed to recall the definition of the group law ∗ in π1Ex∞HomAlgℓ
(A, B∆).

Consider f and ω ◦ f as 1-simplices of Ex∞HomAlgℓ
(A, B∆) using the identification:

(
Ex∞HomAlgℓ

(A, B∆)
)
1
� colim

r
HomAlgℓ

(A, Bsdr∆1

)

According to [7, Section I.7], if we find α ∈
(
Ex∞HomAlgℓ

(A, B∆)
)
2

such that

{
d0α = ω ◦ f

d2α = f
(13)

then we have [ f ]∗[ω◦ f ] = [d1α]. Let ϕ : B∆
1

→ B∆
2

be the ℓ-algebra homomorphism

defined by ϕ(t0) = t0 + t2, ϕ(t1) = t1. Let α be the 2-simplex of Ex∞HomAlgℓ
(A, B∆)

induced by the composite:

A
f
→ B∆

1 ϕ
→ B∆

2

It is easy to verify that the equations (13) hold and that d1α is the zero path.

Example 3.13. Let A and B be two ℓ-algebras and let m, n ≥ 1. Let c : Im×In
�

→ In×

Im be the commutativity isomorphism; c induces an isomorphism c∗ : B
Sn+m
• → B

Sm+n
• .

We claim that the following function is multiplication by (−1)mn:

c∗ : [A, BSn+m
• ]→ [A, BSm+n

• ]

Indeed, this follows from Theorem 3.10 and the well known fact that permuting two

coordinates in Ωm+n induces multiplication by (−1) upon taking π0.
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4 Garkusha’s Comparison Theorem A

Matrix-unstable algebraic KK-theory consists of a triangulated category D(Fspl) en-

dowed with a functor j : Algℓ → D(Fspl) that satisfies (H) and (E), and is moreover

universal with respect to these two properties. It was constructed by Garkusha in

[5, Section 2.4] by means of deriving a certain Brown category and then stabilizing

the loop functor. Garkusha defined in [3] a space K (A, B) such that π0K (A, B) �

HomD(Fspl)( j(A), j(B)), for any pair of ℓ-algebras A and B. In this section we ap-

ply Theorem 1.1 to give a simplified proof of [3, Comparison Theorem A], where

π0K (A, B) is computed in terms of polynomial homotopy classes of morphisms.

4.1 Extensions and classifying maps

Let Modℓ be the category of ℓ-modules and write F : Algℓ → Modℓ for the forgetful

functor. An extension of ℓ-algebras is a diagram

E : A // B // C (14)

in Algℓ that becomes a split short exact sequence upon applying F. A morphism of

extensions is a morphism of diagrams in Algℓ. We often consider specific splittings

for the extensions we work with and we sometimes write (E , s) to emphasize that

we are considering an extension E with splitting s. Let (E , s) and (E ′, s′) be two

extensions with specified splittings; a strong morphism of extensions (E ′, s′)→ (E , s)

is a morphism of extensions (α, β, γ) : E ′ → E that is compatible with the splittings;

i.e. such that the folowing diagram commutes:

FB′

Fβ
��

FC′
s′oo

Fγ

��
FB FC

soo

The functor F : Algℓ → Modℓ admits a right adjoint T̃ : Modℓ → Algℓ; see [3, Section

3] for details. Let T be the composite functor T̃ ◦ F : Algℓ → Algℓ. Let A ∈ Algℓ and

let ηA : T A→ A be the counit of the adjunction. Notice that FηA is a retraction which

has the unit map σA : FA → FT̃ (FA) = FT A as a section. Let JA := ker ηA. The

universal extension of A is the extension:

UA : JA // T A
ηA // A

We will always consider σA as a splitting for UA.

Proposition 4.2 (cf. [1, Proposition 4.4.1]). Let (14) be an extension with splitting

s and let f : D → C be a morphism in Algℓ. Then there exists a unique strong

morphism of extensions UD → (E , s) extending f :

UD

∃!

��

JD //

ξ

��

T D

��

ηD // D

f

��
(E , s) A // B // C

(15)
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Proof. It follows easily from the adjointness of T̃ and F. �

The morphism ξ in (15) is called the classifying map of f with respect to the extension

(E , s). When D = C and f = idC we call ξ the classifying map of (E , s).

Proposition 4.3 (cf. [1, Proposition 4.4.1]). In the hypothesis of Proposition 4.2,

the homotopy class of the classifying map ξ does not depend upon the splitting s.

Proof. See, for example, [3, Section 3]. �

Because of Proposition 4.3, it makes sense to speak of the classifying map of (14) as

a homotopy class JC → A without specifying a splitting for (14).

Lemma 4.4. The functor J : Algℓ → Algℓ sends homotopic morphisms to homotopic

morphisms. Thus, it defines a functor J : [Algℓ]→ [Algℓ].

Proof. It is explained in [1] in the discussion following [1, Corollary 4.4.4.]. �

4.5 Path extensions

Let B be an ℓ-algebra and let n, q ≥ 0. Put:

P(n, B)
q
• := B

(In+1×∆q,(In×{1}×∆q)∪(∂In×I×∆q))
•

On the one hand, the composite In × ∆q
� In × {0} × ∆q ⊆ In+1 × ∆q induces mor-

phisms p
q

n,B : P(n, B)
q
r → B

(In×∆q,∂In×∆q)
r . On the other hand, we have inclusions

B
(In+1×∆q,∂In+1×∆q)
r ⊆ P(n, B)

q
r . We claim that the following diagram is an extension:

P
q

n,B : B
(In+1×∆q ,∂In+1×∆q)
r

incl // P(n, B)
q
r

p
q

n,B // B(In×∆q,∂In×∆q)
r

Exactness at P(n, B)
q
r holds because the functors Bsdr(−) : S → Algℓ

op preserve

pushouts and we have:

∂In+1 × ∆q =
[
(In × {1} × ∆q) ∪ (∂In × I × ∆q)

]
∪ (In × {0} × ∆q)

Exactness at B
(In+1×∆q,∂In+1×∆q)
r follows from the fact that both this algebra and P(n, B)

q
r

are subalgebras of Bsdr (In+1×∆q). A splitting of p
q

n,B in the category of ℓ-modules can be

constructed as follows. Consider the element t0 ∈ Z
∆1

; t0 is actually in Z
(I,{1})
0

since
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d0(t0) = 0. Let s
q

n,B be the composite:

B
(In×∆q,∂In×∆q)
r

s
q

n,B

,,

?⊗t0 // B(In×∆q ,∂In×∆q)
r ⊗ Z

(I,{1})
0

�

��(
B

(In×∆q,∂In×∆q)
r

)(I,{1})
0

µ

��
B

(In×∆q×I,(In×∆q×{1})∪(∂In×∆q×I))
r

�

��
B

(In×I×∆q ,(In×{1}×∆q)∪(∂In×I×∆q))
r

It is straightforward to check that s
q

n,B
is a section to p

q

n,B
.

Remark 4.6. It is clear that the extensions (P
q

n,B
, s

q

n,B
) are:

(i) natural in B with respect to ℓ-algebra homomorphisms;

(ii) natural in r with respect to the last vertex map;

(iii) and natural in q with respect to morphisms of ordinal numbers.

Example 4.7. Let A and B be two ℓ-algebras, let n ≥ 0 and let f : A → B
Sn
r be an

ℓ-algebra homomorphism. By Proposition 4.2, there exists a unique strong morphism

of extensions UA →P0
n,B

that extends f :

UA

∃!

��

JA //

Λn( f )

��

T A

��

// A

f

��
P0

n,B
B
Sn+1
r

// P(n, B)0
r

// BSn
r

We will write Λn( f ) for the classifying map of f with respect to P0
n,B

. Notice that:

Λn( f ) = Λn(idBSn ) ◦ J( f ) (16)

Indeed, this follows from the uniqueness statement in Proposition 4.2 and the fact

that the following diagram exhibits a strong morphism of extensions UA →P0
n,B that

extends f :

UA

��

JA

J( f )

��

// T A //

T ( f )

��

A

f

��
U

B
Sn
r

��

J(B
Sn
r )

Λn(id
BSn )

��

// T (B
Sn
r ) //

��

B
Sn
r

id

��
P0

n,B
B
Sn+1
r

// P(n, B)0
r

// BSn
r
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By (16) and Lemma 4.4, we can considerΛn as a functionΛn : [A, BSn
• ]→ [JA, BSn+1

• ].

Remark 4.8. Write Born for the category of bornological algebras; see [2, Definition

2.5]. Cuntz-Meyer-Rosenberg constructed in [2, Section 6.3] a triangulated category

ΣHo endowed with a functor Born → ΣHo that is homotopy invariant and excisive in

the bornological context, and is moreover universal with respect to these two proper-

ties; see [2, Section 6.7]. The matrix-unstable algebraic KK-theory category D(Fspl)

is the analogue of ΣHo in the algebraic context. Garkusha proved in [3] that there is

an isomorphism

HomD(Fspl)( j(A), j(B)) � colim
n

[JnA, BSn
• ],

where the transition functions on the right hand side are the Λn of Example 4.7. These

functions Λn : [JnA, BSn
• ] → [Jn+1A, BSn+1

• ] are the algebraic analogues of the mor-

phism Λ of [2, Definition 6.23] that is used in [2, Section 6.3] to define the hom-sets

in ΣHo.

4.9 Matrix-unstable algebraic KK-theory space

Let A and B be two ℓ-algebras and let n ≥ 0. From the proof of Theorem 3.10, it

follows that there is a natural bijection:

(
ΩnEx∞HomAlgℓ

(JnA, B∆)
)
q
� colim

r
HomAlgℓ

(
JnA, B(In×∆q ,∂In×∆q)

r

)

Let f ∈ HomAlgℓ
(JnA, B(In×∆q,∂In×∆q)

r ) and define ζn( f ) as the classifying map of f with

respect to the extension P
q

n,B:

UJnA

∃!

��

Jn+1A //

ζn( f )

��

T JnA

��

// JnA

f

��
P

q

n,B B
(In+1×∆q ,∂In+1×∆q)
r

// P(n, B)
q
r

// B(In×∆q,∂In×∆q)
r

It follows from Remark 4.6 that this defines a morphism of simplicial sets:

ζn : ΩnEx∞HomAlgℓ
(JnA, B∆)→ Ωn+1Ex∞HomAlgℓ

(Jn+1A, B∆) (17)

Definition 4.10 (Garkusha). Let A and B be two ℓ-algebras. The matrix-unstable

algebraic KK-theory space of the pair (A, B) is the simplicial set defined by

K (A, B) := colim
n
ΩnEx∞HomAlgℓ

(JnA, B∆),

where the transition morphisms are the ζn defined in (17).

Note that K (A, B) is a fibrant simplicial set, since it is a filtering colimit of fibrant

simplicial sets. This definition of K (A, B) is easily seen to be the same as the one

given in [3, Section 4].
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Theorem 4.11 ([3, Comparison Theorem A]). For any pair of ℓ-algebras A and B

and any m ≥ 0, there is a natural isomorphism

πmK (A, B) � colim
v

[JvA, BSm+v
• ]

where the transition functions on the right hand side are the Λn of Example 4.7.

Proof. Since πm � π0Ω
m commutes with filtered colimits, we have:

πmK (A, B) � colim
v
π0Ω

mΩvEx∞HomAlgℓ
(JvA, B∆)

� colim
v
π0Ω

v+mEx∞HomAlgℓ
(JvA, B∆)

� colim
v

[JvA, BSv+m
• ] (by Theorem 3.10)

Notice that ΩmΩv
� Ωv+m because of our conventions on iterated loop spaces; see

section 2.3.2. To finish the proof, we need to compare the function Λm+v with:

πmζ
v : [JvA, BSv+m

• ]→ [Jv+1A, BSv+1+m
• ]

Let cv,m : Iv × Im
�

→ Im × Iv be the commutativity isomorphism; cv,m induces an

isomorphism (cv,m)∗ : B
Sm+v
r → B

Sv+m
r . It is straightforward to verify that the following

squares commute:

[JvA, BSv+m
• ]

πmζ
v

// [Jv+1A, BSv+1+m
• ]

[JvA, BSm+v
• ]

Λm+v
//

�(cv,m)∗

OO

[Jv+1A, BSm+v+1
• ]

� (cv+1,m)∗

OO

These squares assemble into a morphism of diagrams that, upon taking colimit in v,

induces the desired isomorphism πmK (A, B) � colimv[JvA, BSm+v
• ]. �

Remark 4.12. It follows from [4, Theorem 4.4] that Garkusha’s matrix-unstable alge-

braic KK-theory category D(Fspl) is equivalent to a triangulated category of algebras

with Hom-sets given by

colim
n

[JnA, BSn
• ].

This requires a heavy machinery of homotopy theory. It is posible to obtain the latter

description of D(Fspl) using different methods, in the style of Cuntz-Meyer-Rosenberg

[2, Chapter 6]. Theorem 3.10 then provides [JnA, BSn
• ] with the group structure needed

to make sense of the signs that appear when defining the composition rule; see [2,

Lemmas 6.29 and 6.30]. We will develop this idea further in a future paper.
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