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Abstract. We construct a logarithmic model of connections
on smooth quasi-projective n-dimensional geometrically irreducible
varieties defined over an algebraically closed field of characteristic 0.
It consists of a good compactification of the variety together with
(n+1) lattices on it which are stabilized by log differential operators,
and compute algebraically de Rham cohomology. The construction is
derived from the existence of good Deligne-Malgrange lattices, a the-
orem of Kedlaya and Mochizuki which consists first in eliminating the
turning points. Moreover, we show that a logarithmic model obtained
in this way, called a good model, yields a formula predicted by Michael
Groechenig, computing the class of the characteristic variety of the
underlying D-module in the K-theory group of the variety.
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1 Introduction

Let U be a smooth quasi-projective geometrically irreducible variety of dimen-
sion n defined over a characteristic 0 field k. An open embedding j : U →֒ X
is said to be a good compactification if X is smooth projective and D = X \ U
is a strict normal crossings divisor. Here strict normal crossings divisor means
that the irreducible components of Dk̄, where k̄ ⊃ k is an algebraic closure
and the lower index k̄ indicates the base change ⊗kk̄, are smooth and intersect
transversally.

Definition 1.1. Let (E ,∇) be vector bundle on U with an integrable connec-
tion relative to k. A tuple

(
X, (E0, E1, . . . , En)

)

is called a logarithmic model of
(
U, (E ,∇)

)
if the following conditions are ful-

filled.

0) j : U →֒ X is a good compactification;

1) E0 ⊂ E1 ⊂ . . . ⊂ En is a tower of locally free lattices of j∗E ;

2) ∇(Ωi
X(logD)⊗OX

Ei) ⊂ Ωi+1
X (logD)⊗OX

Ei+1;

3) For any effective divisor ∆ with support in D, the embeddings of k-linear
complexes

Ω
•

X(logD)⊗OX
E

•
⊂ Ω

•

X(logD)⊗OX
E

•
(∆) ⊂ j∗(Ω

•

U ⊗OU
E)

are quasi-isomorphisms.

There is another natural definition.

Definition 1.2. Let (E ,∇) be vector bundle on U with an integrable connec-
tion relative to k. A tuple

(
X, (E0, E1, . . . , En)

)

is called a good model of
(
U, (E ,∇)

)
if the following conditions are fulfilled.

0) j : U →֒ X is a good compactification;

0’) j resolves the turning points of (E ,∇);

1’) E0 is the Deligne-Malgrange lattice of E (see Definition 2.1 and Theo-
rem 2.4) and Ei+1 is defined inductively as the OX -coherent subsheaf of
j∗E spanned by Ei and ΘX(logD) ·Ei.

Here, ΘX(logD) is the sheaf of vector fields stabilizing D. That good models
exist is due to Kedlaya and Mochizuki. Our first main result is the following
theorem.
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Theorem 1.3. Good models are logarithmic models.

Our purpose is to prove that the lattices Ei as described in 1’) verify 1) and 3).
It is performed in Section 3 by constructing specific filtrations on the (log)-de
Rham complexes, the graded of which are OX -linear.
The Deligne-Malgrange lattice E0 and its log derivatives Ei (i ≥ 1) can also
be used to compute the characteristic class of j∗E in Grothendieck’s K-group
K0(OX). Recall that, in [Lau83, §6.1], Laumon defines a group homomorphism

Car : K0(DX) −→ K0(OT∗X)

as follows. Let F
•
DX be the filtration of DX by the order of differential op-

erators. By an FDX-filtration of a DX-module M , we mean an increasing
filtration F

•
M such that FkDX · FℓM ⊂ Fk+ℓM for all k, ℓ ∈ Z. A coherent

FDX-filtration is an FDX -filtration such that grFM is coherent over grFDX .
For any coherent DX -module M , let F

•
M be any coherent FDX -filtration.

Then, denoting by [·] the class in K0, one has

CarM = [grFM ].

Composing with the restriction by the zero section i : X →֒ T ∗X , we obtain a
group homomorphism

Li∗Car : K0(DX) −→ K0(OX).

Computing Li∗CarM amounts to computing the class of

grFM ⊗L
OT∗X

OX ∈ K0(OX).

Our second main result confirms an expectation of Michael Groechenig.

Theorem 1.4. Let (E ,∇) be vector bundle on U with an integrable connection
relative to k. Let

(
X, (E0, E1, . . . , En)

)
be a good model of

(
U, (E ,∇)

)
. Then

Li∗Car(j∗E) =
n∑

i=0

(−1)n−i[ω−1
X ⊗ Ωi

X(logD)⊗ Ei] in K0(OX).

The proof rests on the two Appendices by the second named author. Appen-
dix A is classical, see e.g. [MHM]. Appendix B is inspired by [Wei17] and gives
a criterion for exactness of the tensor product of the differential operators over
the ones with logarithmic poles.
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274 Hélène Esnault and Claude Sabbah

2 The theorem of Kedlaya-Mochizuki

Sabbah’s conjecture [Sab00, Conj. 2.5.1] over k = C, stipulating the existence
of a good formal structure of (E ,∇) at each closed point of (X0 \ U) for a
given good compactification U →֒ X0, after blow up and ramification, was
solved by Mochizuki and Kedlaya, and for the latter, over any characteristic 0
field. Mochizuki’s theorem is summarized in [Moc09] and contains more struc-
ture than Sabbah’s initial conjecture. It yields a uniquely defined lattice with
certain properties. See the definitions in loc. cit. 2.2.2, Remark 2.3, Conjec-
ture 2.11, which is Sabbah’s conjecture enhanced with the existence of good
Deligne-Malgrange lattices after blow-up of a given good compactification, and
ramification at the formal completion of each closed point at infinity. See The-
orem 2.12 in which Conjecture 2.11 is solved.
We use Kedlaya’s more algebraic approach [Ked11, §5.3], that we now recall.
Let j : U →֒ X be a good compactification and x be a finite union of closed
points in D. We denote by Xx, resp. Dx the spectrum of the semi-local ring
OX,x, resp. OD,x of X , resp. D at x, by X̂x, resp. D̂x the formal spectrum of

the completion ÔX,x, resp. ÔD,x with respect to the ideal of x. We set

Ux = Xx \Dx, Ûx = X̂x \ D̂x

and

(Ex,∇x) = OXx
⊗OX

(j∗E ,∇), (Êx, ∇̂x) = O
X̂x

⊗OX
(j∗E ,∇).

Likewise, for any sheaf F of OX -modules on X , we define Fx and F̂x. We
also denote by F̂x an O

X̂x
-module, which is not necessarily defined over OXx

,

and similarly we use the symbol (̂−x) for an O
X̂x

-morphism which does not
necessarily descend to OX,x.
If K ⊃ k is any field extension, we denote by a lower index K the base change
⊗kK. Let k̄ ⊃ k be the choice of an algebraic closure. Let τ : k̄/Z → k̄ be the
admissible section of the projection k̄ → k̄/Z (see Kedlaya’s definition [Ked11,
Def. 5.3.2]), which for k = C is the one used by Deligne and is characterized by
the property that the real part of the image lies in [0 1).

Definition 2.1. Let j : U →֒ X be a good compactification of a smooth
quasi-projective geometrically irreducible variety defined over k, let (E ,∇) be
a vector bundle with an integrable connection on U .

1) An unramified good Deligne-Malgrange lattice E ⊂ j∗E is a lattice such
that for every closed point x ∈ D = X \ U ,

Êx =
⊕

ϕ∈Φ

(Lϕ ⊗Rϕ),

where Rϕ is Deligne’s extension of a regular singular connection associ-

ated to τ , Φ ⊂ O(Ûx) is a finite set satisfying the properties in [Ked11,
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Def. 3.4.6 (a) & (b)], and Lϕ is a purely irregular lattice of a connection
of rank 1, i.e., Lϕ is isomorphic to O

X̂x
with ∇(1) = dϕ.

2) A lattice E ⊂ j∗E is a good Deligne-Malgrange lattice if, for every closed

point x ∈ D, there exists a finite Galois cover ĥx : X̂ ′
x′ → X̂x, étale

over Ûx, where x′ is a finite union of closed points, with X̂ ′
x′ formally

smooth, of group G, a G-invariant lattice

Ê′
x′ ⊂ ĥx

∗
Êx

such that for all closed points y in x′, the lattice (̂E′
x′)y is an unramified

good Deligne-Malgrange lattice and such that

Êx = (̂E′
x′)

G.

Remark 2.2.

1) Recall [Ked11, Th. 5.3.4] that if a good Deligne-Malgrange lattice E exists
on a good compactification X of U , it is locally free, and the isomorphism
classes of E and Êx are unique for any closed point x ∈ D. See also the
proof of Lemma 3.1.

2) The Galois cover ĥx in 2) could simply be a base change K ⊃ k necessary
to make the geometric irreducible components of D rational over K.

Definition 2.3. The formal integrable connection on Ûx is said to be unrami-

fied if it admits a good Deligne-Malgrange lattice where ĥx is the base change
by a field extension. A connection (E ,∇) is said to be unramified if (Êx, ∇̂x) is
unramified for all closed points x ∈ D.

Theorem 2.4 ([Moc09], Theorem 2.12 and Conjecture 2.11 for the defini-
tion used in Theorem 2.12, [Moc11], Section 2.7 and Theorem 16.2.1, [Ked11],
Theorem 8.1.3, Hypotheses 8.1.1, Theorem 8.2.3). Let j : U →֒ X0 be a good
compactification of a smooth variety of finite type defined over a field k of char-
acteristic 0. Let (E ,∇) be a vector bundle with a flat connection on U . Then
there exists a proper birational map X → X0, which is an isomorphism on U ,
such that j : U →֒ X is a good compactification and the locally free j∗OU -sheaf
j∗E admits a good Deligne-Malgrange lattice E.

Mochizuki’s proof is analytic, and holds for meromorphic connections on com-
plex projective varieties as well, while Kedlaya’s proof is algebraic and rational
over the field of definition. The latter does not insist on the projectivity of X
when U is assumed to be quasi-projective. However, they both construct X
starting from a given X0 as above. Taking X0 to be projective, then their X ,
which is proper over X0, admits a proper modification X ′ → X such that
U →֒ X ′ is a good compactification and X ′ is projective. Then one applies
the covariance of Deligne-Malgrange lattices, see e.g. [Ked11, Rem. 5.3.7, 2nd
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part], where the formula should read f∗E ′
0∩E = E0. We remark that if (E ,∇) is

regular singular, then E is Deligne’s lattice [Del70, Prop. 5.4] and that, over the
complex numbers, good Deligne-Malgrange lattices coincide with the canonical
lattices constructed in [Mal96].

3 Proof of Theorem 1.3

The purpose of this section is to prove Theorem 1.3. We fix an effective divi-
sor ∆ with support in D.
Let ΘX(logD) be the sheaf of D-logarithmic vector fields on X . Define in-
ductively the sequence Ei of OX -coherent subsheaves of j∗E by the following
rule:

1) E0 = E;

2) For any natural number i ≥ 0, Ei+1 is the OX -coherent subsheaf of j∗E
generated over OX by Ei and ∇ξEi for any local section ξ of ΘX(logD).

We also denote it by Ei + ΘX(logD)Ei. Here ΘX(logD)Ei is understood as
the OX -coherent subsheaf of j∗E spanned by the ∇ξEi.
By definition one has, for any divisor ∆ with support in D,

1) Ei(∆) ⊂ j∗E and E = j∗(Ei(∆)) for each natural number i ≥ 0;

2) The connection j∗∇ : j∗E → Ω1
X(logD)⊗OX

j∗E restricts for each natural
number i ≥ 0 to ∇ : Ei(∆) → Ω1

X(logD) ⊗OX
Ei+1(∆) defining the

complex
DRlogD E

•
(∆) := Ω

•

X(logD)⊗OX
E

•
(∆).

If (E ,∇) is regular singular, then Ei = E0 and is locally free for all i ≥ 0 by
[Del70], loc. cit.

For a closed point x ∈ D, we do on X̂x the analogous construction:

1) Ê0,x = (Ê0)x;

2) For any natural number i ≥ 0, Êi+1,x is the O
X̂x

-coherent subsheaf of

Êx generated over O
X̂x

by Êi,x and ∇ξÊi,x for any local section ξ of

Θ
X̂x

(log D̂x).

Lemma 3.1. For any closed point x ∈ X, one has Êi,x = (Êi)x and the OX-
coherent sheaves Ei are all locally free.

Proof. As OX → O
X̂x

is flat, the second part of Lemma 3.1 follows from the

first part and Êi,x being locally free. We argue by induction in i ≥ 0. We

first assume i = 0. Then the first part Ê0,x = (Ê0)x is by definition. By

Definition 2.1 2), (Ê0)x is locally free if and only if (Ê′
0)x is. So we are reduced

to the unramified case, in which case this is part of Definition 2.1 1). We now
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assume i + 1 ≥ 1 and the statement for i. By Lemma 3.2, Lemma 3.1 is

equivalent to (Êi)x + ̂(ΘX(logD)Ei)x being locally free. On the other hand,

by definition ̂(ΘX(logD)Ei)x = ̂ΘX(logD)x(Êi)x. Thus one has Êi+1,x =

(Êi+1)x. It remains to prove local freeness. Again by Definition 2.1 2) it follows
from local freeness in the case of the existence of an unramified good Deligne-
Malgrange lattice. Then if Iϕ denotes the effective pole divisor of ϕ,

Êi,x =
⊕

ϕ∈Φ

(Lϕ(i · Iϕ)⊗Rϕ).

This finishes the proof.

Lemma 3.2. Let R ⊂ R′ be a flat extension of commutative rings. Let A,B,C
be R-modules with A,B ⊂ C. Let A′ = A ⊗R R′ and similarly for B,C be
the base changed modules. Then A′, B′ ⊂ C′, A′ ∩ B′ = (A ∩ B)′ ⊂ C′ and
A′ +B′ = (A+B)′ ⊂ C′.

Notations 3.3. We define DX(logD) ⊂ DX to be the sheaf of subalgebras
spanned by OX and ΘX(logD) and set

V 0E =
⋃

i∈N
Ei ⊂ (V 0E)(∆) =

⋃
i∈N

Ei(∆) ⊂ j∗E .

Facts 3.4. By definition, one has

DX(logD) ·E0(∆) = (V 0E)(∆), DX(logD) · V 0E(∆) = V 0E(∆),

defining
DRlogD V 0E(∆) = Ω

•

X(logD)⊗ V 0E(∆)

and the embedding of complexes

DRlogD E
•
(∆)

α
−−→ DRlogD V 0E(∆)

β
−−→ DR(j∗E),

where DR(j∗E) = Ω•

X ⊗OX
j∗E = DRlogD(j∗E) = Ω•

X(logD) ⊗ j∗E . The
DX(logD)-module V 0E(∆) is coherent. Moreover, (E ,∇) is regular singular if
and only if V 0E(∆) = E0(∆), if and only if V 0E(∆) is a OX -coherent subsheaf
of j∗E .

The rest of the section is devoted to prove

Theorem 3.5. Both α and β are quasi-isomorphisms.

Clearly this immediately implies Theorem 1.3.
We first treat α. To this aim we regard the left-hand side of α as the zeroth
term of the increasing filtration of DRlogD V 0E defined by

Fq DRlogD V 0E(∆)=

{
{0 → Eq(∆) → Ω1

X(logD)⊗ Eq+1(∆) → · · · } if q ≥ 0,

0 if q ≤ −1.

So Theorem 3.5 for α is equivalent to the following proposition.
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Proposition 3.6. For every q ≥ 1, the graded complex grFq DRlogD V 0E(∆)
has OX-linear differentials and is quasi-isomorphic to zero.

Proof. The OX -linearity is trivial. Faithful flatness ofOX → O
X̂x

again implies

that the proposition is true if and only if the analogous proposition on X̂x is
true for all closed points x ∈ D. Again by Definition 2.1 one reduces the
problem to the case of the existence of an unramified good Deligne-Malgrange

lattice: setting ∆̂′
x = ĥx

∗
∆̂x and defining Ê′

i,x′ from Ê′
0,x′ as in 2) before

Lemma 3.1, we have Êi(∆)x = (Ê′
i,x′(∆̂′

x))
G (same argument as in the proof of

Proposition 3.9 below). Let us consider the decomposition of Definition 2.1 1).

For the component of Êx corresponding to ϕ = 0, the filtration Fq is constant
and the assertion is obvious. For a component Lϕ ⊗ Rϕ with ϕ 6= 0, the
statement is equivalent to the OX -linear complex

(Ω
•

X̂x
(logD)⊗O

X̂x
OIϕ(∆̂

′
x + (q + •)Iϕ)⊗O

X̂x
Rϕ,∧dϕ)

being quasi-isomorphic to zero. Moreover, it is enough to show this assertion af-
ter a finite extension of the ground field, so we can assume that Assumption B.4
holds. We set ϕ = u(x)x−m with u ∈ O×

x̂
(i.e., u(0) 6= 0) and m ∈ Nℓ \ {0}.

If mi 6= 0, then for any k ≥ 0,

xi∂xi
: OIϕ(∆̂

′
x + (q + k)Iϕ)⊗O

X̂x
Rϕ −→ OIϕ(∆̂

′
x + (q + k + 1)Iϕ)⊗O

X̂x
Rϕ

is an isomorphism, being nothing but the multiplication by −mi. The assertion
follows.

We now treat β. The assertion is local so we fix a closed point x ∈ D. Theo-
rem 2.4 yields for a closed point x ∈ D natural numbers m depending on i, x

and the choice of ĥx such that ĥx is a Kummer cover along D̂i,x which ramifies
with ramification indices m.

Definition 3.7. Fixing (i, x), the minimal m is called the ramification index
of (E ,∇) at x along Di and is denoted by mi,x.

Lemma 3.8. Fixing a closed point x ∈ D, the Galois cover ĥx from Defini-
tion 2.1 2) is algebraizable in the following sense. There exists a smooth pro-
jective variety Z defined over k, a finite union z ∈ Z of closed points together
with a flat finite morphism g : Z → X, finite étale Galois of group H outside
of a strict normal crossings divisor D containing D, such that Z \g−1(D) →֒ Z
is a good compactification, and there is a factorization

ĝx : Ẑz
λx−−−→ X̂ ′

x′

ĥx−−−→ X̂x,

where gx is étale on Xx \Dx. In particular, G is a quotient of H.

Documenta Mathematica 24 (2019) 271–301



Good Lattices 279

Proof. We apply [Kaw81, Th. 17] (together with [Mat02, Lem. 5.2.4] for the
Galois property) to construct g. We just have to check the last property. To
say that gx is étale on Xx \Dx is to say that x does not lie on the closure of
D \D. By the proof of [Kaw81, Th. 17], this divisor is generic in a very ample
linear system, thus in particular can be chosen to avoid any 0-dimensional
subscheme. This finishes the proof.

We set j′ : Z \ g−1(D) → Z for the closed embedding and ∆′′ = g∗(∆). We
denote by β′ the corresponding embedding of de Rham complexes

DRlog g−1(D)[(V
0g∗E)(∆′′)]

β′

−−−→ DR(j′∗j
′∗g∗E).

We use the notations

βx = β ⊗OX
OXx

, β′
z = β′ ⊗OZ

OZz
,

and similarly (DRlogD(V 0E)(∆))x etc.

Proposition 3.9. If β′
z is a quasi-isomorphism, then so is βx.

Proof. The morphism βx : (DRlogD V 0E)x → (DR j∗E)x factors as

(DRlogD V 0E)x −→ (DRlogD E)x −→ (DR j∗E)x,

and, since the second morphism is clearly an isomorphism, we are re-
duced to showing that (DRlogD(V 0E)(∆))x → (DRlogD j∗E)x is a quasi-
isomorphism. By Lemma 3.8, and uniqueness in Theorem 2.4, the sheaf FK

0 of
K = ker(H → G)-invariants of the Deligne-Malgrange lattice F0 of (j′∗j

′∗g∗E)z

has formal germ (̂F0)z
K = (̂FK

0 )x′ equal to the Deligne-Malgrange lattice

of ĥx

∗
Êx on X̂ ′

x′ . This implies that (̂FH
0 )x = (̂F0)z

H = ((̂F0)z
K)G is equal

to (̂E0)x. We deduce from this that the two lattices FH
0 and E0,x of (j∗E)x

coincide.
We now prove inductively on i that FH

i = Ei,x. We assume it is true for
some i ≥ 0. Recall that gx is étale away from Dx. As g∗xΘXx

(logDx) =
ΘZz

(log g−1
x Dx), one has

(ΘZz
(log g−1

x Dx)Fi)
H = ΘXx

(logDx)F
H
i = ΘXx

(logDx)Ei,x.

On the other hand,

Ei+1,x = FH
i + (ΘZz

(log g−1
x Dx)Fi)

H =
(
Fi + (ΘZz

(log g−1
x Dx)Fi)

)H
= FH

i+1

as Ei,x and ΘXx
(logDx)Ei,x are sheaves of Q-vector spaces, thus any local

section

(v + w) ∈
(
Fi + (ΘZz

(log g−1
x Dx)Fi)

)H
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with v ∈ Fi, w ∈ (ΘZz
(log g−1

x Dx)Fi) can be written as

1

|H |

∑

h∈H

h · v +
1

|H |

∑

h∈H

h · w ∈ FH
i + (ΘZz

(log g−1
x Dx)Fi)

H .

We conclude that
((V 0g∗E)z)

H = (V 0E)x,

and similarly ((V 0g∗E)(∆′′)z)
H = V 0E(∆)x, from which again by the compat-

ibility of the differential forms we conclude

(DRlogD(V
0g∗E)(∆′′))z

H = (DRlogD(V
0E)(∆))x = DRlogDx

(V 0E)(∆)x.

On the other hand, one trivially has

DR(g∗j∗E)z
H = DR(j∗E)x.

This finishes the proof.

We may now assume that Ex has an unramified good Deligne-Malgrange lattice.
The sheaf DX of differential operators on X is canonically endowed with the
filtration F

•
DX by the order of differential operators. In particular, FpDX =

0 for p ≤ −1, F0DX = OX and F1DX is generated by OX and ΘX . We
first mimic the definition of the filtration by the order of the poles (shifted
by ∆) introduced by Deligne [Del70, Chap. 6], and its relation with the stupid
filtration of the logarithmic de Rham complex. We set, for p ∈ Z,

P pj∗E = (F−pDX) · (V 0E)(D +∆) ⊂ j∗E ,

so that, in particular,

P pj∗E = 0 (p ≥ 1), P 0j∗E = (V 0E)(D+∆), P−1j∗E = P 0j∗E+ΘX ·P 0j∗E .

The de Rham complex is then filtered as usual, for p ∈ Z,

P p DR(j∗E) = {0 → P pj∗E → Ω1
X ⊗ P p−1j∗E → · · ·

→ ΩdimX
X ⊗ P p−dimXj∗E → 0}.

By definition, the differentials on the graded complex P p DR j∗E/P p+1 DR j∗E
are OX -linear. On the other hand, one has the stupid filtration σ≥p on the
logarithmic de Rham complex of V 0 := (V 0E)(∆):

σ≥p DRlogD V 0 = {0 → · · · → 0 → Ωp
X(logD)⊗ V 0 → · · ·

→ ΩdimX
X (logD)⊗ V 0 → 0},

for which the graded complexes are just sheaves in various degrees. We use the
same notations for the localization at a closed point x. Theorem 3.5 for β is
then a consequence of the following more precise theorem.
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Theorem 3.10. If Ex has an unramified good Deligne-Malgrange lattice, the
inclusion of filtered complexes

(DRlogD V 0
x , σ

≥•) −֒→ (DR Ex, P
•

)

is a filtered quasi-isomorphism.

Proof. The differentials of the graded complexes grpσ DRlogD V 0
x and grpP DR Ex

(p ∈ Z) being OX -linear, again by Definition 2.1 we are reduced to the formal
case. In the regular case, the statement follows from the formal version of
[Del70, Prop. II.3.13] as τ is admissible thus the condition on the residues is
fulfilled. In the case where ϕ 6= 0, if |Iϕ| = D, we have V 0 = E and P pE = E
for p ≤ 0. The assertion amounts to proving that the natural morphism

(DRlogD E , σ≥•) −֒→ (DR E , σ≥•)

is a filtered quasi-isomorphism, which is obvious since Ωp
X(logD)⊗E = Ωp

X ⊗E
for every p ≥ 0. On the other hand, if |Iϕ| ( D, E is a successive extension
of rank-one connections and it is enough to prove the assertion for such con-
nections. Each such connection can be written as an external product of two
terms, one term satisfying the assumption above, the other one being regular.
For such a rank-one term, the assertion follows by using the regular case and
the case Dϕ = D, both proved above, by arguing as in [Del70, p. 81].

4 Remarks

4.1 Dimension one and Deligne’s theorem

If n = 1, in which case X is necessarily the normal compactification of U , this
concept has been developed by Deligne [Del70, §6]. He shows over k = C the
existence of pairs E0 ⊂ E1 with 1), 2), 3). He proves that although those
pairs are not unique, dimC(E1/E0)x is independent of the choice for all closed
points x on D and defines the irregularity divisor

∑
x∈D dimC(E1/E0)x · x of

(E ,∇) [Del70, Lem. 6.21]. It has been then deemed ‘pairs of good lattices’ in
[BE04, §3] in order to define local Fourier transforms of connections, then in
[BBDE04, §3.1] to compute the periods of the local Fourier transforms. While
Deligne in loc. cit. constructed the lattices using the existence of a cyclic vec-
tor, the construction in [BE04], [BBDE04] loc. cit. and [BBE02, §5] uses the
Turrittin-Levelt decomposition.

4.2 Non-negative shifts

The proof of Theorem 1.3 yields that for any natural number a, the embeddings
of complexes

Ω
•

X ⊗OX
E

•
−֒→ Ω

•

X ⊗OX
Ea+•

−֒→ j∗(Ω
•

U ⊗OU
E)

are quasi-isomorphisms.
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4.3 Boundedness

We remark the following.

Claim 4.1. The ramification indicesmi,x of Definition 3.7 are bounded. Equiv-
alently there is a natural number M such that mi,x divides M for all i, x.

Proof. As
(
U, (E ,∇)

)
and X are defined over a field k0 of finite type over k,

Definition 3.7 over k0 yields ramification indices mι,u(0) say for all closed points
u ∈ Dι over k0. Then Dι ⊗k0

k and u ⊗k0
k might further split, with x,Di

being one component. On the other hand ĥx over k is the pull-back of ĥu over
k0 localized at x and Di. Thus the mi,x over k are the same as mu,ι over k0
for k. We now choose a complex embedding k0 →֒ C. Again the Dι ⊗k0

C
and u⊗k0

C might further split and with the same argument, we just have to
show boundedness for the ma,z where z,Da is one component of (u,Dι)⊗k0

C.
By [Moc09, p. 2827, bullet point], for each complex point z (denoted by P in
loc. cit.) there exists an analytic neighbourhood Xz (denoted by XP in loc.
cit.) and a Kummer cover ϕ : X ′

z → Xz such that ϕ∗(E ,∇) is unramified.
Thus for all points z′ ∈ D ∩ Xz, mz′,a divides mϕ,a, the ramification index
of ϕ along Da ∩Xz. As D is compact in the analytic topology, it is covered by
finitely many such analytic open sets Xz. This finishes the proof.

5 The logarithmic characteristic variety

In this section, we give the proof of Theorem 1.4 by reducing it to Theorem 5.1
below. The sheaf DX(logD) ⊂ DX is endowed with the induced filtration
F

•
DX(logD) by the order of differential operators. Definitions and results

similar to those recalled in Sections A.1 and A.2 hold when D is a normal
crossings divisor in X and upon replacing DX with DX(logD) and correspond-
ingly T ∗X with T ∗X(logD), ωX with ωX(logD) = ωX(D). For a coherent
DX(logD)-module M , one obtains

Carlog M in K0(OT∗X(logD)).

The relation between the approach of Section A.3 and the logarithmic ap-
proach will be obtained by factoring the log zero-section embedding ilog : X →֒
T ∗X(logD) as

X ֒
i

−−→ T ∗X
p

−−→ T ∗X(logD).

We now take (X, (E0, . . . , En)) to be a good model of (U, (E ,∇)), see Defi-
nition 1.2. In particular, j∗E has no turning point along D. By definition,
Ei = FiDX(logD) · E0 (i ≥ 0).

It is convenient to set E−1 = 0. On the other hand, we set V 0E =
⋃

iEi and
V −1E = (V 0E)(D). The formation of E0, Ei, V

0E and V −1E is compatible

with the restriction to the formal neighbourhood X̂x of a closed point x ∈ X .
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Let us endow the DX(logD)-module V −1E := (V 0E)(D) with the filtra-
tion 0 = E−1 ⊂ E0(D) ⊂ E1(D) ⊂ · · · , so that its log de Rham complex
DRlogD(V −1E) is filtered by the formula

Fq DRlogD(V −1E) =
{
0 −→ Eq(D) −→ Ω1

X(logD)⊗ Eq+1(D) −→ · · ·
}

for every q ∈ Z. By Proposition 3.6, grFq DRlogD(V −1E) is acyclic for q ≥ 1
hence, by mimicking in the logarithmic case the argument leading to (A.20),
we find

Li∗log Carlog(V
−1E) =

n∑

i=0

(−1)n−i
[
ωX(logD)−1 ⊗ Ωi

X(logD)⊗ Ei(D)
]

=
n∑

i=0

(−1)n−i
[
ω−1
X ⊗ Ωi

X(logD)⊗ Ei

]
.

(5.1)

Theorem 1.4 immediately follows from the comparison between the character-
istic class and the pullback of the log-characteristic class in the Grothendieck
group K0(OT∗X).

Theorem 5.1. We have the equality in K0(OT∗X):

Car(j∗E) = Lp∗ Carlog(V
−1E).

In order to prove the theorem, one is led to compare j∗E with DX ⊗DX(logD)

V −1E and to extend this comparison to the graded modules with respect to a
coherent F -filtration.

5.1 Base change of the DX(logD)-module V −1E

The following proposition is proved in [Moc15, §§5.3.2–5.3.3] in a more general
context over the field C.

Proposition 5.2. The natural morphism DX ⊗DX(logD) V
−1E → E is an

isomorphism.

Proof. The assertion is local formal, and is compatible with base change after
a finite extension of the ground field, so we can assume that Assumption B.4
holds. We can also assume that the unramified good Deligne-Malgrange lattice
E0 comes from (see Definition 2.1 2)) has only one component Lϕ ⊗ Rϕ. We

keep the notation D for D̂x. We use the following notation:

• Let ĥx : X̂ ′
x′ → X̂x be a finite morphism ramified along D with Galois

group G, such that Lϕ ⊗ Rϕ = Ê ′
x′ := ĥx

∗
Êx. Let (x1, . . . , xn) and

(x′
1, . . . , x

′
n) be local coordinates adapted to ĥx and D, so that D =

(x1 · · ·xℓ) and ĥx

∗
(xi) = x′ρi

i (i = 1, . . . , ℓ). Denoting by E′
0 the Deligne-

Malgrange lattice of Ê ′
x′ , we have E0 = (E′

0)
G. It follows that Ep = (E′

p)
G
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and thus V 0Êx = (V 0Ê ′
x′)G. We then have V −1Êx = (V 0Ê ′

x′(ĥx

∗
D))G.

Moreover, with this identification, the action of xi∂xi
is induced by that

of (1/ρi)x
′
i∂x′

i
(i = 1, . . . , ℓ).

• We identify D with the support of its pull-back by ĥx and we decompose
it as D = D1 ∪D2, where D2 supports the pole divisor of ϕ.

• We set x′ρ = x−′ρ1

1 · · ·x−′ρℓ

ℓ and assume that D1 = (x1 · · ·xk) with k ≤ ℓ.

• We set D̂x = O
X̂x

⊗OX
DX .

We will prove the following two assertions.

a) V −1Êx = (V −1Êx)(∗D2), so that Êx = (V −1Êx)(∗D1),

b) D̂x ⊗D̂x(logD1)
V −1Êx ≃ (V −1Êx)(∗D1).

Let us first check that these assertions imply the proposition. We first claim
that

D̂x(logD1)⊗D̂x(logD) V
−1Êx −→ V −1Êx is an isomorphism. (5.2)

Indeed, the composed natural morphism

V −1Êx −→ D̂x(logD1)⊗D̂x(logD) V
−1Êx −→ V −1Êx (5.3)

is an isomorphism, hence the first morphism is injective. Let us check it is
onto. Set D2 = {xk+1 · · ·xℓ = 0}. For any P ∈ D̂x(logD1), there exists a

sufficiently large integer N such that P · (xk+1 · · ·xℓ)
N ∈ D̂x(logD). Since

any section P ⊗ m of D̂x(logD1) ⊗D̂x(logD) V
−1Êx can also be written as

P · (xk+1 · · ·xℓ)
N ⊗ (xk+1 · · ·xℓ)

−Nm because of a), it is equal to

1⊗ P · (xk+1 · · ·xℓ)
N
[
(xk+1 · · ·xℓ)

−Nm
]
= 1⊗ Pm ∈ 1⊗ V −1Êx,

proving the surjectivity. The first morphism in (5.3) is thus bijective, and so is
the second one. We conclude

D̂x ⊗D̂x(logD) V
−1Êx ≃ D̂x ⊗D̂x(logD1)

(
D̂x(logD1)⊗D̂x(logD) V

−1Êx
)

∼
−→ D̂x ⊗D̂x(logD1)

V −1Êx by (5.2)

≃ (V −1Êx)(∗D1) ≃ Êx by a).

Let us now prove a) and b). For b), we apply Proposition B.7 to D1 and

V −1Êx up to side-changing. In the left setting, the operators to be considered
in loc. cit. are (up to sign) Eui − j for j ≥ 0. The properties B.7 1) and 2) read

as follows for V 0Ê ′
x′(ĥx

∗
D): For any subset I ⊂ {1, . . . , k}, the operators

• x′
i (i /∈ I),
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• Eu′i − ρij (i ∈ I, j ≥ 0)

act in an invertible way on (x′−ρ)V 0(Lϕ ⊗ Rϕ)/(x
′
i)i∈I(x

′−ρ)V 0(Lϕ ⊗ Rϕ).
These properties are easily checked, showing thereby, after taking G-invariants,
that b) holds.
Similarly, it is enough to prove a) for (x′−ρ)V 0(Lϕ⊗Rϕ), for which the assertion
is also easy.

5.2 Proof of Theorem 5.1

We use the notation and the terminology explained in the appendix, Sec-
tion B.1.
Recall that we denote by F

•
DX(logD) (resp. F

•
DX) the increasing filtration

by the order of differential operators. We have in both cases F−1 = 0 and
F0 = OX . Moreover, when regardingDX as a (left or right) DX(logD)-module,
the filtration F

•
DX is an FDX(logD)-filtration of DX .

Recall that (Ei(D))i is a coherent F
•
DX(logD)-filtration of V −1E . The

DX -module DX ⊗DX(logD) V
−1E is then endowed with a natural coherent fil-

tration, namely

Fi(DX ⊗DX(logD) V
−1E)

=
∑

j+k≤i

im
[
FjDX ⊗OX

Ek(D) → DX ⊗DX(logD) V
−1E

]
. (5.4)

The DX -linear isomorphismDX⊗DX(logD)V
−1E → E (Proposition 5.2) enables

us to transport this filtration as a coherent filtration (FiE) of the DX -module E ,
by defining

FiE :=
∑

j+k≤i

FjDX · Ek(D), (5.5)

where the sum is taken in E . We simply denote by gr(V −1E) and grE the graded
modules with respect to these coherent filtrations E

•
(D) and F

•
E respectively.

By definition we have

grE ≃ grF (DX ⊗DX(logD) V
−1E). (5.6)

The Rees module Ẽ :=
⊕

i FiE ·z
i ⊂ E⊗kk[z] with respect to the filtration (5.5)

is a left D̃X -module (see Section B.1). Then

Li∗zẼ = i∗zẼ = Ẽ/zẼ = grE ,

where we regard grE as a graded D̃X -module on which z acts by zero, that is,
a grFDX -module.

Similarly, by using the filtration (Ei(D))i of V −1E , we define Ṽ −1E =⊕
i Ei(D) · zi, which is a left D̃X(logD)-module. With this notation, (5.4)

reads (see Lemma B.1 up to changing the side):

(DX ⊗DX(logD) V
−1E)∼ =

(
D̃X ⊗D̃X(logD) Ṽ

−1E
) /

z-torsion. (5.7)
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According to Lemma B.3 (up to side-changing), it is enough to prove the fol-
lowing.

Proposition 5.3. We have

D̃X ⊗L

D̃X(logD)
Ṽ −1E ≃ D̃X ⊗D̃X(logD) Ṽ

−1E .

Proof. Since the statement is local, it can be proved after restricting to the
formal neighbourhood of any point x ∈ D. Moreover, the formation of V −1

and that of Ṽ −1 commute with tensoring with the ring O
X̂x

since Ê0,x = Ê0x

(see 1) before Lemma 3.1). Therefore, in the remaining part of the proof, we will
assume that X is the formal neighbourhood of x ∈ D, but we will not change the
notation for the sake of simplicity. As both sides of the equation are compatible
with a finite base field extension, we can suppose that Assumption B.4 holds.
The proof of the proposition relies on the first part of Proposition B.5 of the
appendix, after changing the side. It is enough to prove that any subsequence

(xi)i∈I of (x1, . . . , xℓ) is a regular sequence for Ṽ −1E . Moreover, since Ṽ −1E =

Ṽ 0E(D), (xi)i∈I is a regular sequence for Ṽ −1E if and only if it is so for Ṽ 0E .
We thus argue with the latter module.

Reduction to the unramified case

As in the proof of Proposition 5.2, and with similar notation, we find that

Ṽ 0E = (Ṽ 0E ′)G, and we can assume that E ′ ≃ Lϕ ⊗ Rϕ. If we know that

(x′ρi

i )i∈I is a regular sequence for Ṽ 0E ′, then (ĥx

∗
(xi))i∈I is a regular sequence,

and by taking G-invariants we conclude that (xi)i∈I is a regular sequence for

Ṽ 0E , as wanted.

The unramified case

We now assume that E is unramified. Let ϕ(x) = u(x)/xm, where m =
(m1, . . . ,mℓ, 0, . . . , 0), with mi ≥ 1 for i = k + 1, . . . , ℓ and u(x) ∈ OX

with u(0) 6= 0. Set Lϕ = (OX(∗D), d + dϕ) and Dm =
∑ℓ

i=1 miDi. Then
Lϕ,p = OX(Dpm) (p ≥ 0) and Ep(D) = (V 0R)(Dpm), so that, forgetting the
connection, we have

Ṽ 0E =
(⊕

p≥0

(V 0Rϕ)(Dpm) · zp
)
⊂ Rϕ[z]. (5.8)

Since Ṽ 0E is graded, (xρi

i )i∈I is a regular sequence for Ṽ 0E if and only if it is
so for each graded piece (V 0Rϕ)(Dpm). This holds since (xρi

i )i∈I is a regular
sequence for V 0Rϕ.
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APPENDIX

by Claude Sabbah

A A reminder on characteristic varieties

In this section we reproduce [MHM, §A5]. Recall that n = dimX .

A.1 Right DX-modules

Recall that if N is a right DX -module, the Spencer complex of N is the complex

Sp(N) := {0 → N ⊗OX
∧nΘX

δ
−−→ · · ·

δ
−−→ N ⊗OX

ΘX
δ

−−→ N
•

→ 0},

where the
•
indicates the term in degree zero and where the differential δ is the

k-linear map given for m ∈ N by (ξ̂i means omitting ξi in the wedge product)

m⊗ (ξ1 ∧ · · · ∧ ξk) 7
δ

−−→
k∑

i=1

(−1)i−1(mξi)⊗ (ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξk)

+
∑

i<j

(−1)i+jm⊗
(
[ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξk

)
. (A.1)

Regarding DX as a right DX -module, the Spencer complex Sp(DX) is a com-
plex in the category of left DX -modules, by using the left DX -module struc-
ture on DX , and is a resolution of OX as a left DX -module, by locally free
DX -modules. Moreover, there is a natural isomorphism

Sp(N) ≃ N ⊗DX
Sp(DX) = N ⊗L

DX
Sp(DX). (A.2)

One concludes that

N ⊗L
DX

OX ≃ N ⊗DX
Sp(DX) ≃ Sp(N). (A.3)

If N is endowed with an FDX -filtration, the formula for the differential δ shows
that δ(FpN ⊗∧kΘX) ⊂ Fp+1N ⊗∧k−1ΘX , and the Spencer complex is filtered
by the formula

FpSp(N) = {0 → Fp−nN ⊗OX
∧nΘX

δ
−−→ · · ·

δ
−−→ Fp−1N ⊗OX

ΘX
δ

−−→ FpN → 0}. (A.4)

The graded complex grF Sp(N) is thus expressed as

grFSp(N) = {0 → grFN ⊗OX
∧nΘX

gr1δ−−−−→ · · ·

gr1δ−−−−→ grFN ⊗OX
ΘX

gr1δ−−−−→ grFN → 0}, (A.5)
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where gr1δ is defined by the first part of (A.1), that is,

m⊗ (ξ1 ∧ · · · ∧ ξk) 7
gr1δ−−−−→

k∑

i=1

(−1)i−1(ξim)⊗ (ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξk), (A.6)

where ξi is now regarded as a linear form on T ∗X .
We now explain that (A.2) is compatible with taking grF . Setting OT∗X :=
SymΘX , one similarly regards grFSp(DX) as a resolution of OX as an OT∗X -
module: one has

grFSp(DX) = {0 → OT∗X ⊗OX
∧nΘX

gr1δ−−−−→ · · ·

gr1δ−−−−→ OT∗X ⊗OX
ΘX

gr1δ−−−−→ OT∗X → 0}.

Grading (A.2) gives

grFSp(N) ≃ grFN ⊗OT∗X
grFSp(DX) = grFN ⊗L

OT∗X
grFSp(DX), (A.7)

since each term of the complex grF Sp(DX) is OT∗X -locally free. The graded
analogue of (A.3) is now

grFN ⊗L
OT∗X

OX ≃ CarN ⊗L
OT∗X

grF Sp(DX) ≃ grF Sp(N) (A.8)

in the bounded derived category of OX -modules. In the previous formulas, one
forgets the information given by the grading (e.g. grFN =

⊕
p FpN/Fp−1N),

as it is not to be used. In K0(OX), (A.8) reads

Li∗CarN = [grFSp(N)]. (A.9)

A.2 Left DX-modules

If M is a left DX -module, its de Rham complex is defined as

DRM = {0 → M
•

∇
−−−→ Ω1

X ⊗M −→ · · · −→ Ωn
X ⊗M → 0}. (A.10)

Recall the
•
indicated the degree zero term of the complex. If M is endowed

with a coherent filtration F
•
M , we set

Fp DRM = {0 → FpM
∇

−−−→ Ω1
X ⊗ Fp+1M −→ · · ·

−→ Ωn
X ⊗ Fp+nM → 0} (A.11)

and we have

grF DRM = {0 → grFM
gr1∇−−−−−→ Ω1

X ⊗ grFM −→ · · ·

−→ Ωn
X ⊗ grFM → 0}, (A.12)
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which is a bounded complex in the category of OX -modules.
The side-changing functor is defined by N = ωX ⊗OX

M . Then N is a right
DX -module, and we have natural identifications (see e.g. [MHM, Ex.A.5.9])

Sp(N) ≃ DR(M)[n], grFSp(N) ≃ grF DR(M)[n]. (A.13)

Now, (A.8) gives

grF (ωX ⊗OX
M)⊗L

OT∗X
OX ≃ grFSp(ωX ⊗OX

M) ≃ grF DR(M)[n]. (A.14)

It follows that

grFM ⊗L
OT∗X

OX ≃ ω−1
X ⊗ grF DR(M)[n], (A.15)

and therefore, in K0(OX),

Li∗CarM = (−1)n[ω−1
X ⊗ grF DR(M)]. (A.16)

A.3 Computing Li∗CarM

Let M (resp. N) be a coherent left (resp. right) DX -module and let F
•
M

(resp. F
•
N) be a coherent filtration. It is well known that there exists p0 such

that
grFp DRM (resp. grFp Sp(N)) is acyclic for any p > p0. (A.17)

Indeed, one first proves this for N = DX , for which one knows that grFp Sp(DX)
is acyclic for any p ≥ 1 (see e.g. [MHM, Ex.A.5.4(3)]) and then for any coherent
(N,F

•
N) by using a suitable resolution of it by right filtered DX -modules of

the form L ⊗OX
DX , where L is OX -coherent. One deduces the lemma for

(M,F
•
M) by using the side-changing formulas (A.13).

One sets grF≤pM :=
⊕

q≤p gr
F
q M and

grF≤p DRM := {0 → grF≤pM
gr1∇−−−−−→ Ω1

X ⊗ grF≤p+1M −→ · · ·

−→ Ωn
X ⊗ grF≤p+nM → 0}. (A.18)

The acyclicity property for p > p0 implies that the inclusion of complexes

grF≤p0
DRM −֒→ grF DRM

is a quasi-isomorphism. Then (A.16) reads

Li∗CarM = (−1)n[ω−1
X ⊗ grF≤p0

DR(M)], (A.19)

that is

Li∗CarM =

n∑

i=1

(−1)n−i[ω−1
X ⊗ Ωi

X ⊗ grF≤p0+iM ]

=
n∑

i=1

(−1)n−i[ω−1
X ⊗ Ωi

X ⊗ Fp0+iM ],

(A.20)
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where the latter equality follows from [grF≤pM ] = [FpM ] in K0(OX).
However, it is in general difficult to determine the smallest p0. One can never-
theless always assume that Fp0+iM = FiDX ·Fp0

M by taking p0 large enough.

B Defect of flatness of the differential operators on the dif-
ferential operators with logarithmic poles

In this section, we work with right D-modules.

B.1 Rees modules

The sheaf of rings DX is not flat over DX(logD). In this appendix, we make
explicit conditions on a DX(logD)-module N so that, nevertheless, tensoring
with N is exact. We enlarge the point of view to filtered DX(logD)-modules
by considering the associated Rees modules, in order to control the graded
modules.
Recall that, to any object M of an abelian category of (sheaves of) k-vector
spaces endowed with an increasing filtration F

•
M , we associate its Rees mod-

ule by introducing a new variable z and by defining RFM as
⊕

p FpMzp ⊂

k[z, z−1]⊗k M . Then, since the filtration in increasing, RFM is a k[z]-module.
We apply this construction to (DX , F

•
DX) and get

D̃X :=
⊕

p∈N

FpDX · zp ⊂ DX [z] := DX ⊗k k[z],

that we regard as a graded ring, which is locally free over the graded ring
ÕX := OX [z] and generated as an ÕX -algebra by ÕX and Θ̃X := ΘX ⊗k zk[z].

In particular, z is a central element in D̃X . Starting with DX(logD), we define

similarly D̃X(logD) and Θ̃X(logD). We will work in the category Modgr of
graded modules over these graded rings, and morphisms will be similarly graded
of degree zero. We always assume that the grading is bounded from below, that
is, if Ñ =

⊕
p(Ñ )p, we have (Ñ )p = 0 for p ≪ 0.

Let us note that

k[z, z−1]⊗k[z] D̃X = k[z, z−1]⊗k DX

and a similar property for D̃X(logD).

Let Ñ =
⊕

p(Ñ )p be a graded D̃X(logD)-module. Let (Ñ )′p denote the image

of (Ñ )p in Ñ [z−1] := k[z, z−1]⊗k[z] Ñ . Then (Ñ )′pz
−p ⊂ (Ñ )′p+1z

−p−1 and

N :=
⋃

p

(Ñ )′pz
−p ⊂ Ñ [z−1] (B.1)

is a DX -module, that we call the underlying DX -module of Ñ . We have

Ñ [z−1] = k[z, z−1]⊗k N .
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We denote by i∗z the functor •⊗k[z](k[z]/zk[z]) and by Li∗z the associated derived

functor. We have i∗zD̃X = grFDX . We extend i∗z with the same notation as a

functor Modgr(D̃X) → Mod(grFDX) and D
b
gr(D̃X) → D

b(grFDX). We also use
the same notation when considering DX(logD) instead of DX .

We say that Ñ is strict if z : Ñ → Ñ is injective (equivalently, since Ñ is

graded, Ñ is k[z]-flat). A graded D̃X(logD)-module Ñ is strict if and only
if there exists an FDX(logD)-filtration F

•
N of the associated DX -module N

defined by (B.1) such that Ñ =
⊕

p FpN zp =: RFN (the Rees module of N
with respect to F

•
N ). Indeed, strictness is equivalent to the property that, for

each p,
z : (Ñ )p −→ (Ñ )p+1 is injective. (B.2)

Setting FpN = (Ñ )′pz
−p one has Ñ =

⊕
p FpN zp. Moreover, by strictness,

Li∗zÑ = i∗zÑ = grFN .

A similar characterization of strictness holds for graded D̃X(logD)-modules.

Lemma B.1. Assume Ñ is a strict graded D̃X(logD)-module RFN . Then the

quotient of the graded module Ñ ⊗D̃X(logD) D̃X by its z-torsion is the Rees

module of the filtration F
•
(N ⊗DX(logD) DX) defined by

Fp(N ⊗DX(logD) DX) = im
[
Fp(N ⊗OX

DX) −→ (N ⊗DX(logD) DX)
]
,

with
Fp(N ⊗OX

DX) =
∑

q

FqN ⊗OX
Fp−qDX ⊂ N ⊗OX

DX .

Moreover, we have

Li∗z

[
(Ñ ⊗D̃X(logD) D̃X)

/
z-torsion

]
≃ grF (N ⊗DX(logD) DX) (B.3)

and
Li∗z(Ñ ⊗L

D̃X(logD)
D̃X) ≃ grFN ⊗L

grFDX(logD) gr
FDX . (B.4)

Proof. Since D̃X is ÕX -locally free and since Ñ is strict, Ñ ⊗ÕX
D̃X is also

strict, hence is the Rees module associated to a filtration F
•
(N ⊗OX

DX). This
is nothing but the filtration defined in the lemma.
There is a natural surjective composed morphism

Ñ ⊗ÕX
D̃X −→ Ñ ⊗D̃X(logD) D̃X −→ (Ñ ⊗D̃X(logD) D̃X)/z-torsion.

The last term is isomorphic to the Rees module of some FDX -filtration
F

•
(N⊗DX(logD)DX) for which (B.3) holds and, by considering the compo-

nent of degree p for each p, one checks that this is the filtration defined in the
lemma.
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For (B.4), we construct a graded resolution of D̃X as a left graded D̃X(logD)-

module by flat graded D̃X(logD)-modules L•. Since D̃X is k[z]-flat, one checks
inductively that each differential di : L

i → Li−1 is strict, i.e., its cokernel is k[z]-

flat. It follows that i∗zL
• is a resolution of i∗zD̃X = grFDX by flat grFDX(logD)-

modules. We interpret Li∗z(•) as (k[z]/zk[z])⊗
L
k[z]

•. The associativity property

as given e.g. in [Kas03, p. 240] leads to

Li∗z(Ñ ⊗L

D̃X(logD)
D̃X) ≃ (Li∗zÑ )⊗L

D̃X(logD)
D̃X

≃ grFN ⊗L

D̃X(logD)
D̃X ≃ grFN ⊗D̃X(logD) L

•

.

Since z acts by zero on grFN , we have grFN ⊗D̃X(logD) L
• ≃ grFN ⊗D̃X(logD)

i∗zL
•, and the latter term is nothing but grFN ⊗grFDX (logD) i

∗
zL

•. The choice

of L• implies that this is a realization of grFN ⊗L
grFDX(logD) gr

FDX .

As a consequence, we obtain the following criterion for a right graded
DX(logD)-module Ñ .

Lemma B.2. Assume that

1) Ñ is strict,

2) Ñ ⊗L

D̃X(logD)
D̃X ≃ Ñ ⊗D̃X(logD) D̃X ,

3) Ñ ⊗D̃X(logD) D̃X is strict.

Then we have

grF (N ⊗DX(logD) DX) ≃ grFN ⊗grFDX(logD) gr
FDX

≃ grFN ⊗L
grFDX(logD) gr

FDX .

Proof. It is enough to prove the isomorphism between the first and the third
term, since this would imply that the third term is isomorphic to its H0, that
is, the second term. We write

grFN⊗L
grFDX(logD)gr

FDX

≃ Li∗z(Ñ ⊗L

D̃X(logD)
D̃X) (by (B.4))

≃ Li∗z(Ñ ⊗D̃X(logD) D̃X) (by Assumption 2))

≃ Li∗z

[
(Ñ ⊗D̃X(logD) D̃X)/z-torsion

]
(by Assumption 3))

≃ grF (N ⊗DX(logD) DX) (by (B.3)).

(B.5)
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We now relax Condition B.2 3), but we assume that Ñ is D̃X(logD)-coherent.

Let us denote by T̃ the z-torsion of Ñ ⊗D̃X(logD) D̃X . It is a coherent graded

D̃X -module, the sections of which are annihilated by some power of z. It has
thus a finite filtration such that each graded piece grℓT̃ is a coherent graded

D̃X -module annihilated by z, hence a coherent graded grFDX -module. By the
first lines of (B.5), we find

H0(grFN ⊗L
grFDX(logD) gr

FDX) = grFN ⊗grFDX(logD) gr
FDX

= i∗z(Ñ ⊗D̃X(logD) D̃X)

H−1(grFN ⊗L
grFDX(logD) gr

FDX) = ker z,

and Hi(grFN ⊗L
grFDX(logD) gr

FDX) = 0 for i 6= 0,−1. We also have an exact
sequence

T̃ /zT̃ −→ grFN ⊗grFDX(logD) gr
FDX −→ grF (N ⊗DX(logD) DX) −→ 0,

but one does not expect in general an isomorphism between grFN⊗grFDX (logD)

grFDX and grF (N ⊗DX(logD) DX).

Lemma B.3. Let Ñ be a coherent graded D̃X(logD)-module. Assume that
Properties B.2 1) and B.2 2) hold. Then we have the equality in K0(OT∗X):

[grFN ⊗L
grFDX(logD) gr

FDX ] = [grF (N ⊗DX(logD) DX)].

Proof. If we do not assume B.2 3), we can nevertheless write in K0(OT∗X),
with the notation as above:

[grFN ⊗L
grFDX(logD) gr

FDX ] = [grF (N ⊗DX(logD) DX)] +
∑

ℓ

[Li∗zgrℓT̃ ].

On the other hand, we have

[Li∗zgrℓT̃ ] = [grℓT̃ ]− [grℓT̃ ] = 0

in K0(OT∗X).

B.2 Flatness properties

Assumption B.4. We denote by X̂ a formal neighbourhood of a closed point
x ∈ D and we assume that there exists a regular system of parameters
(x1, . . . , xn) in O

X̂,x
such that D̂ = {x1 · · ·xℓ = 0}.

For the sake of simplicity, we still denote X̂ by X and D̂ by D.

It is straightforward to check that the results of Section B.1 apply in this
setting. The following proposition and its proof are inspired by [Wei17].
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Proposition B.5. Let Ñ be a right graded D̃X(logD)-module. Assume that

any subsequence of the sequence (x1, . . . , xℓ) is a regular sequence for Ñ . Then

Ñ ⊗L

D̃X(logD)
D̃X ≃ Ñ ⊗D̃X(logD) D̃X .

If moreover every quotient Ñ /
∑

i∈I Ñxi (I ⊂ {1, . . . , ℓ}) is strict, then

Ñ ⊗D̃X(logD) D̃X is strict.

Proof. Recall that Sp D̃X(logD) is the complex having

D̃X(logD)⊗ÕX
∧kΘ̃X(logD)

as its term in degree −k, and differential the left D̃X(logD)-linear morphism

D̃X(logD)⊗ÕX
∧kΘ̃X(logD)

δ
−−→ D̃X(logD)⊗ÕX

∧k−1Θ̃X(logD)

given, for θ = θ1 ∧ · · · ∧ θk

δ(P ⊗ θ) =

k∑

i=1

(−1)i−1(P · θi)⊗ θ̂i +
∑

i<j

(−1)i+jP ⊗ ([θi, θj ] ∧ θ̂i,j),

with θ̂i = θ1 ∧ · · · ∧ θi−1 ∧ θi+1 ∧ · · · ∧ θk, and a similar meaning for θ̂i,j . Since

Spec(D̃X(logD)) is a resolution of ÕX by locally free left D̃X(logD)-modules

which are thus ÕX -locally free, we have

Ñ ≃ Ñ ⊗ÕX
Sp D̃X(logD),

with their right D̃X(logD)-module structure, by using the tensor right struc-

ture on the right-hand side. The complex Ñ ⊗ÕX
Sp D̃X(logD) has

Ñ ⊗ÕX
(D̃X(logD)⊗ÕX

∧kΘ̃X(logD))

as its term in degree −k, and differential id⊗δ, which is right D̃X(logD)-linear
for the tensor right structure.
We recall that there are two natural structures of right D̃X(logD)-module on
the tensor product

Ñ ⊗ÕX
D̃X(logD)⊗ÕX

∧kΘ̃X(logD).

The tensor structure is obtained by using the right structure on Ñ and the left
structure on D̃X(logD). On the other hand, the trivial structure, for which we
rather denote the tensor product as

(Ñ ⊗ÕX
∧kΘ̃X(logD))⊗ÕX

D̃X(logD),
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is obtained by using the right structure on D̃X(logD) and by completely forget-

ting the right action of derivations on Ñ while only remember its ÕX -structure.
However, there exists a unique involution of right D̃X -modules

Ñ ⊗ÕX
(D̃X(logD)⊗ÕX

∧kΘ̃X(logD))

∼
−−−→ (Ñ ⊗ÕX

∧kΘ̃X(logD))⊗ÕX
D̃X(logD)

extending the natural involution of ÕX -modules

Ñ ⊗ÕX
(ÕX ⊗ÕX

∧kΘ̃X(logD))
∼

−−−→ (Ñ ⊗ÕX
∧kΘ̃X(logD))⊗ÕX

ÕX .

Let us make explicit the differential δ. For P ∈ D̃X(logD), the element
[n⊗ (1⊗ θ)] · P (tensor structure) is complicated to express, but we must have,

by right D̃X(logD)-linearity of id⊗δ,

(id⊗δ)
[
(n⊗ (1⊗ θ)) · P

]
=

[
(id⊗δ)(n⊗ (1⊗ θ))

]
· P

=

[
n⊗

[ k∑

i=1

(−1)i−1θi ⊗ θ̂i +
∑

i<j

(−1)i+j1⊗ ([θi, θj ] ∧ θ̂i,j)
]]

· P. (B.6)

We now write

n⊗ (θi ⊗ θ̂i) = nθi ⊗ (1⊗ θ̂i)− [n⊗ (1⊗ θ̂i)] · θi,

so the previous formula reads, after the involution transforming the tensor
structure to the trivial one, by denoting δtriv the corresponding differential:

δtriv
[
(n⊗ θ)⊗ P

]
=

k∑

i=1

(−1)i−1(nθi ⊗ θ̂i)⊗ P

−
k∑

i=1

(−1)i−1(n⊗ θ̂i)⊗ (θiP ) +
∑

i<j

(−1)i+j(n⊗ ([θi, θj ] ∧ θ̂i,j))⊗ P

=
[
δÑ (n⊗ θ)

]
⊗ P −

k∑

i=1

(−1)i−1(n⊗ θ̂i)⊗ (θiP ), (B.7)

where δÑ is the differential of the Spencer complex Splog Ñ of Ñ as a right

D̃X(logD)-module.

We obtain, due to the local ÕX -freeness of D̃X(logD) and D̃X ,

Ñ⊗L

D̃X(logD)
D̃X ≃ (Ñ ⊗ÕX

Sp D̃X(logD))⊗L

D̃X(logD)
D̃X

≃
(
(Ñ ⊗ÕX

∧−•Θ̃X(logD))⊗ÕX
D̃X(logD), δtriv

)
⊗L

D̃X(logD)
D̃X

≃
(
(Ñ ⊗ÕX

∧−•Θ̃X(logD))⊗L

ÕX
D̃X(logD), δtriv

)
⊗L

D̃X(logD)
D̃X (B.8)

≃
(
(Ñ ⊗ÕX

∧−•Θ̃X(logD))⊗L

ÕX
D̃X , δtriv

)

≃
(
(Ñ ⊗ÕX

∧−•Θ̃X(logD))⊗ÕX
D̃X , δtriv

)
.
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In the last line, δtriv is given by (B.7), where P is now a local section of D̃X .

We have thus realized Ñ ⊗L

D̃X(logD)
D̃X as a complex (F•⊗ÕX

D̃X , δtriv), where

each term Fk is an ÕX -module.
With respect to the filtration F• ⊗ÕX

FkD̃X , δtriv has degree one, and the

differential grF1 δtriv of the graded complex F• ⊗ÕX
grF D̃X is expressed as

grF1 δtriv
[
(n⊗ θ)⊗Q

]
=

k∑

i=1

(−1)i(n⊗ θ̂i)⊗ (θi ·Q)

for a local section Q of grF D̃X . The filtration Fp(F
•⊗ÕX

D̃X , δtriv) whose term

in degree −k is F−k ⊗ÕX
Fp−kD̃X satisfies Fp(F

• ⊗ÕX
D̃X , δtriv) = 0 for p < 0

and we have

grF (F• ⊗ÕX
D̃X , δtriv) = (F• ⊗ÕX

grF D̃X , grF1 δtriv), (B.9)

compatible with the grading, if the grading on the right-hand side takes into
account the cohomology degree.

Lemma B.6. If the first condition of Proposition B.5 is fulfilled, the graded
complex (F• ⊗ÕX

grF D̃X , grF1 δtriv) has zero cohomology in any degree i 6= 0.
If the second condition is also fulfilled, then the cohomology in degree zero is
strict.

Proof. Let us consider the basis

x1∂̃x1
, x2∂̃x2

, . . . , xℓ∂̃xℓ
, ∂̃xℓ+1

, . . . , ∂̃xn

of Θ̃X(logD), so that, by replacing xi∂̃xi
with ∂̃xi

we obtain a basis of Θ̃X .

Let ξ̃1, ξ̃2, . . . , ξ̃n resp. x1ξ̃1, x2ξ̃2, . . . , ξ̃n be the corresponding basis of grF1 D̃X

resp. grF1 D̃X(logD). Then grF (F• ⊗ÕX
D̃X , δtriv) is identified with a Koszul

complex. More precisely, it isomorphic to the simple complex associated to the
n-cube with vertices

Ñ ⊗ÕX
grF D̃X = Ñ ⊗k k[ξ̃1, . . . , ξ̃n]

and arrows in the i-th direction all equal to multiplication by ξ̃i if i > ℓ and
by xi ⊗ ξ̃i if i ≤ ℓ. In such a way we obtain that (F• ⊗ÕX

grF D̃X , grF1 δtriv) is
quasi-isomorphic to the simple complex attached to the ℓ-cube having

Ñ ⊗k k[ξ̃1, . . . , ξ̃ℓ]
xi ⊗ ξ̃i

−−−−−−→ Ñ ⊗k k[ξ̃1, . . . , ξ̃ℓ]

as its arrow in the i-th directions.
Let us prove by induction on ℓ that, under the first assumption of Proposition
B.5, this complex has cohomology in degree zero only, and this cohomology is
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isomorphic to a direct sum of terms, each of which isomorphic to Ñ/
∑

i∈I Ñxi

for some I ⊂ {1, . . . , ℓ}. This will give the first part of the lemma.

Indeed, since x1 is injective on Ñ , each arrow x1 ⊗ ξ̃1 is injective with cokernel
isomorphic to Ñ1⊗k k[ξ̃2, . . . , ξ̃ℓ], where Ñ1 = Ñ ⊕

⊕
k≥1(Ñ /Ñx1)[ξ̃

k
1 ] and [ξ̃k1 ]

is the image of ξ̃k1 in the cokernel. It follows that the complex we consider is
quasi-isomorphic to the simple complex attached to the (ℓ− 1)-cube with ver-

tices Ñ1⊗kk[ξ̃2, . . . , ξ̃ℓ] and arrows xi⊗ ξ̃i (i = 2, . . . , ℓ). Now, any subsequence

of (x2, . . . , xℓ) is a regular sequence for Ñ1 by our assumption, and we obtain
the desired assertion by induction on ℓ.
For the second part of the lemma, we note that, by the second assumption of
Proposition B.5, each term Ñ/

∑
i∈I Ñxi is strict, so the cohomology in degree

zero is strict.

End of the proof of Proposition B.5

By (B.9), the lemma applies to the graded complex grF (F• ⊗ÕX
D̃X , δtriv)

and therefore each grFp (F
• ⊗ÕX

D̃X , δtriv) has cohomology in degree zero at
most. Moreover, if the supplementary assumption of strictness on the quo-
tients of Ñ is fulfilled, then the cohomology in degree zero is strict. It fol-
lows that each Fp(F

• ⊗ÕX
D̃X , δtriv) satisfies the same property since we have

F−1(F
• ⊗ÕX

D̃X , δtriv) = 0. Passing to the inductive limit, we conclude that

so does the complex (F• ⊗ÕX
D̃X , δtriv).

B.3 A criterion for having N ⊗DX(logD) DX ≃ N (∗D)

Assumption B.4 and the corresponding simplifying notation remain in order in
this section.
For I ⊂ {1, . . . , ℓ} we set Ic = {1, . . . , ℓ}\I, DI =

⋂
i∈I Di and, for each j ∈ Ic,

DI,j = DI ∩Dj and D
(Ic)
I =

⋃
j∈{1,...,ℓ}\I DI,j, so that D

(Ic)
I is a divisor with

normal crossings in DI . If I = ∅, we have DI = X and D
(Ic)
I = D.

We identify i∗DI
OX with ODI

and i∗DI
DX(logD) with DDI

(logD
(Ic)
I )[(Eui)i∈I ],

where Eui is the class of xi∂xi
. It is a central element in this ring.

The following result is inspired by [Moc15, Lem. 3.1.2].

Proposition B.7. Let N be a right DX(logD)-module. Together with the
assumption above, assume the following property: for any (possibly empty)
subset I of {1, . . . , ℓ},

1) i∗DI
N ⊂ (i∗DI

N )(∗D
(Ic)
I ),

2) for all j ∈ I and all k ≥ 1,

(Euj + k) : i∗DI
N −→ i∗DI

N is bijective.
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Then the natural morphism N ⊗DX(logD) DX → N (∗D) is an isomorphism.

In order to argue by induction on ℓ, we first consider how the properties in
Proposition B.7 are preserved when

• D = D1 ∪D′ and D is replaced with D′ (in the local setting, we assume
that D1 = {x1 = 0} and D′ = {x2 · · ·xℓ = 0}),

• correspondingly, N is replaced with N ⊗DX(logD) DX(logD′).

In order to simplify the formulas, we use in this section the simplified notation
below:

DX,log := DX(logD), D′
X,log := DX(logD′), N ′ = N ⊗DX,log

D′
X,log.

Since DX,log(∗D1) = D′
X,log(∗D1), we have N ′(∗D1) ≃ N (∗D1), and we have

a natural localization morphism N ′ → N ′(∗D1) = N (∗D1).

Lemma B.8. Let N be a right DX,log-module such that N ⊂ N (∗D1) and B.7 2)
for I = {1} holds. Then the localization morphism

N ′ −→ N ′(∗D1) = N (∗D1)

is an isomorphism.

Proof. The statement is local. For k ≥ 0, we set

D′
X,log,≤k =

k∑

j=0

∂j
x1
DX,log =

k∑

j=0

DX,log ∂
j
x1
.

We will prove by induction on k that N ⊗DX,log
D′

X,log,≤k injects into N (∗D1)

with image equal to Nx−k
1 , the case k = 0 being given by B.7 1) for I = ∅.

The composition

N ⊗DX,log
D′

X,log,≤k−1 −→ N ⊗DX,log
D′

X,log,≤k −→ N (∗D),

being injective by induction, so is the first morphism, whose cokernel will be
denoted by grk(N ⊗DX,log

D′
X,log). Since N is acted on by x1∂x1

, hence by

∂k
x1
xk
1 =

∏k

j=1(x1∂x1
+ j), the second morphism factorizes through Nx−k

1 ⊂

N (∗D1): an element m⊗ ∂k
x1

has image m∂k
x1

= (m∂k
x1
xk
1)x

−k
1 , and m∂k

x1
xk
1 is

the image of (m∂k
x1
xk
1)⊗ 1, hence belongs to N . We consider the commutative

diagram of exact sequences, where the first two terms of the right vertical line
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are regarded in N (∗D1),

0

��

0

��

N ⊗DX,log
D′

X,log,≤k−1
∼

//

��

Nx−k+1
1

��

N ⊗DX,log
D′

X,log,≤k

��

// Nx−k
1

��

grk(N ⊗DX,log
D′

X,log)

��

// Nx−k
1 /Nx−k+1

1

��

0 0

and we aim at proving that the lower horizontal arrow is bijective. For that
purpose, we consider the commutative diagram

N/Nx1

∂k
x1

��

N/Nx1

∂k
x1

��

grk(N ⊗DX,log
D′

X,log)
// Nx−k

1 /Nx−k+1
1 .

(B.10)

By definition, the left vertical morphism is onto. We claim that it is also
injective. We will check that the right vertical morphism is an isomorphism.
This will imply the desired injectivity, hence the bijectivity of the right vertical
arrow, together with that of the lower horizontal one.
Composing the right vertical morphism with right multiplication by xk

1 :

Nx−k
1 /Nx−k+1

1

xk
1−−−→ N/Nx1,

which is bijective, we find the morphism

∂k
x1
xk
1 : N/Nx1 −→ N/Nx1,

that we can write as
∏k

j=1(Eu1 + j). Property B.7 2) for I = {1} gives its
bijectivity, as wanted.

Lemma B.9. Let N be a DX,log-module satisfying B.7 1) and 2). Then so does
N ′ = N (∗D1) as a D′

X,log-module.

Proof. Let I be a subset of {2, . . . , ℓ} and let I ′c be its complement in {2, . . . , n},
while Ic = {1}∪ I ′c is its complement in {1, . . . , n}. We wish to prove that the
localization morphism

i∗I(N (∗D1)) −→ i∗I(N (∗D1))(∗D
(I′c)
I )
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is injective. Since x1 : N (∗D1) → N (∗D1) is bijective, so is x1 : i∗I(N (∗D1)) →
i∗I(N (∗D1)), and thus i∗I(N (∗D1)) = (i∗IN )(∗D1). Then, since the localization

morphism i∗IN → (i∗IN )(∗D
(I′c)
I ) is injective by B.7 1) for N , it remains so

after applying the functor (∗D1), which gives the desired injectivity, hence
B.7 1) for N ′ = N (∗D1). Similarly, B.7 2) is obtained by applying (∗D1), since
Euj commutes with x1 for j 6= 1.

End of the proof of Proposition B.7. We argue by induction on ℓ. We write

N ⊗DX,log
DX = N ⊗DX,log

D′
X,log ⊗D′

X,log
DX = N ′ ⊗D′

X,log
DX .

Due to Lemma B.9 and the induction hypothesis, we can apply Proposition
B.7 to N ′ with respect to the divisor D′, and we find

N ⊗DX,log
DX = N ′(∗D′) = N (∗D).
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Lecture Notes in Math. 163, Springer Verlag, 1970.
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