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Abstract. Let G be a connected quasi-split reductive group over
R, and more generally, a quasi-split K-group over R. Arthur had
obtained the formal formula for the spectral side of the stable local
trace formula, by using formal substitute of Langlands parameters.
In this paper, we construct the spectral side of the stable local trace
formula and endoscopic local trace formula directly for quasi-split K-
groups over R, by incorporating the works of Shelstad. In particular
we give the explicit expression for the spectral side of the stable local
trace formula, in terms of Langlands parameters.
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1. Introduction

In this paper, which is a sequel to [12], we give the explicit formula for spectral
side of stable local trace formula of a connected quasi-split reductive group over
R, and more generally, a quasi-split K-group over R.

In general, the local trace formula is an identity, one side which is called the
geometric side, is constructed in terms of semisimple orbital integrals; the other
side, which is called the spectral side, is constructed in terms of tempered char-
acters. Arthur [6] has obtained the stabilization of the geometric side, and con-
sequently obtained the formal formula for the spectral side of the stable trace
formula. However, the stable distributions and the coefficients that occurred
in the formal formula for the spectral side, are not explicit.

By combining with Shelstad’s works [13, 14, 15], we will directly stabilize the
spectral side of the local trace formula, which in particular give the explicit
formula for the spectral side of the stable local trace formula, in terms of
Langlands parameters.

In more details, let G be a quasi-split K-group over R, a notion for which we
refer to Section 1 of [4] (where it is called multiple groups) or section 2.2 of [12],
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and f a test function on G(R) with central character ζ. The endoscopic decom-
position of the spectral side of the invariant local trace formula, as obtained in
[6], takes the following form:

IGdisc(f) =
∑

G′∈Eell(G)

ι(G,G′)ŜG′

disc(f
G′

)

where Eell(G) is the set of Ĝ-equivalence classes of elliptic endoscopic data, and

fG′

is the Langlands-Shelstad transfer of f to G′ [13]. One has the formal
formula:

ŜG′

disc(f
G′

) =

∫

Φs−disc(G′,ζ)

sG
′

(φ′)fG′

(φ′)dφ′

with Φs−disc(G
′, ζ) being defined only in terms of formal substitute of Lang-

lands parameters φ′ of G′, and the coefficients sG
′

(φ′) are not explicit. Our
task is to show that Φs−disc(G

′, ζ) can be taken as actual Langlands parame-
ters, and also to give explicit formula for the coefficients in terms of Langlands
parameters; c.f. Section 4 for the definition of these terms.
In the global context of automorphic representations, the method of [1, 9] is
based on the comparison of the spectral and endoscopic objects for the global
trace formula for G. This could be expressed schematically in terms of (con-
jectural) Langlands parameters:

(M,φM ) −→ (φ, s)←− (G′, φ′)

In the archimedean local setting, the Langlands parametrization is available
for general G. This allows us to adapt the comparison process to the setting
of local trace formula:

(τ) −→ (φ, s)←− (G′, φ′)

in order to give the explicit construction of the spectral side of stable local
trace formula.

We now give more details for the comparison process. Firstly recall the clas-
sification theory of tempered representations, due to Harish-Chandra. The
tempered representations can be classified by triplets τ = (M,π, r), where M
is the Levi subgroup, π ∈ Π2(M) is square integrable modulo the split cen-
tre of M , and r ∈ Rπ, the representation theoretic R-group of π, which is
a finite abelian elementary 2-group. For a test function f = f1 × f̄2, with
f1, f2 ∈ H(G(R), ζ), the Hecke space with central character ζ, the spectral side
of the invariant local trace formula for G takes the following form [2]:

IGdisc(f) =

∫

Tdisc(G,ζ)

iG(τ)fG(τ)|Rπ |
−1dτ,

where fG(τ) = Θ(τ, f1)Θ(τ∨, f̄2), and the coefficient

iG(τ) = |W ◦
π |

−1
∑

w∈Wπ(r)reg

επ(w)| det(w − 1)
a
G
M
|−1,
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encodes combinatorial data fromWeyl groups that is relevant to the comparison
of global trace formulas [1, 9]; c.f. Section 3 for the definition of these terms.

The first step in the process of stabilization is to express the coefficient iG(τ)
in terms of data defined in terms of Langlands parameters for G, and more
precisely, defined in terms of the data (φ, s) above, an important point being
that, by the works of Knapp-Zuckerman [10] and Shelstad [13], the represen-
tation theoretic R-group is canonically isomorphic to the endoscopic R-group
defined in terms of Langlands parameters, c.f. Section 4; one has:

iG(τ) = |W ◦
φ |

−1
∑

w∈Wφ(x)reg

s◦φ(w)| det(w − 1)
a
G
M
|−1

where x is the image of s in Sφ = π0(Sφ). In turn, this can be expressed in

terms of the constants σ(S
◦

φ,s) as defined in [1]:

iG(τ) = iφ(x) =
∑

s∈Eφ,ell(x)

|π0(Sφ,s)|
−1σ(S

◦

φ,s).

Following [1], one defines the following subsets Φs−disc(G, ζ) ⊂ Φdisc(G, ζ) of
the set Φ(G, ζ) of Langlands parameters for G (with central character ζ), as:

Φs−disc(G, ζ) = {φ ∈ Φ(G, ζ) : Z(S
◦

φ) <∞},

Φdisc(G, ζ) = {φ ∈ Φ(G, ζ) : Z(Sφ) <∞}.

One has the fact that the constants σ(S
◦

φ,s) vanish if Z(S
◦

φ,s) is not finite; in

particular that the constants σ(S
◦

φ,s) vanish if φ /∈ Φs−disc(G, ζ).

Having defined the basic endoscopic and stable objects on the spectral side, we
can define the spectral transfer factors, in the spirit of Section 5 of [3], by com-
bining the classification of tempered representations and Shelstad’s definition
of spectral transfer factors [14, 15]. For instance, in the case where φ ∈ Φ(G, ζ)
is elliptic, we define, for τ = (M,π, r) and semi-simple s ∈ Sφ (c.f. Section 5):

∆(τ, φs) =
∑

χ∈R̂φ

χ(r)∆(Πχ, φs).

We then have the spectral transfer:

Θ(τ, f) =
∑

x∈Sφ

∆(τ, φx)f ′(φ, x).

We then obtain the first main theorem of the paper in Section 6:

Theorem 1.1. If f = f1 × f̄2, fi ∈ H(G(R), ζ), i = 1, 2, then

IGdisc(f) =

∫

Φdisc(G,ζ)

∑

s∈Eφ,ell

|Sφ|
−1|π0(Sφ,s)|

−1σ(S
◦

φ,s)f
′
1(φ, s)f

′
2(φ, s)dφ.
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To obtain the explicit formula for the spectral side of the endoscopic local trace
formula and the stable local trace formula, we use the arguments of Chapter 4
of [9]; one analyzes the coefficients by using the bijective correspondence:

Ĝ  Xdisc(G, ζ)←→ Ĝ  Ydisc(G, ζ),

between the set of Ĝ-conjugacy classes of Xdisc(G, ζ) = {(φ, s) : φ ∈

Φdisc(G, ζ), s ∈ Sφ,ell}, and the set of Ĝ-conjugacy classes of Ydisc(G, ζ) =
{(G′, φ′) : G′ ∈ Eell(G), φ′ ∈ Φs−disc(G

′, ζ)} (see Section 7 for details).

We then obtain the following in Section 7:

Theorem 1.2. If f = f1 × f̄2, fi ∈ H(G(R), ζ), i = 1, 2, then we have

IGdisc(f) =
∑

G′∈Eell(G)

ι(G,G′)ŜG′

disc(f
G′

)(1.1)

where
ι(G,G′) = |OutG(G

′)|−1|Z(Ĝ′)ΓR |−1,

ŜG′

disc(f
G′

) =

∫

Φs−disc(G′,ζ)

|Sφ′ |−1σ(S
◦

φ′)fG′

1 (φ′)fG′

2 (φ′)dφ′.

The explicit formula for the spectral side of the stable trace formula will then
be obtained in Section 8.

Here is the summary of the contents of the paper. After introducing prelimi-
naries and notations in Section 2, we recall some formulation of the invariant
local trace formula of Arthur in Section 3. Then in Section 4 we introduce
the basic objects that occur in the spectral side of the endoscopic local trace
formula and the stable local trace formula. We will study the properties of
the spectral transfer factors in Section 5. We then obtain the main theorem
on stabilization of the local trace formula in Section 6. The explicit formula
for the spectral side of the endoscopic and stable local trace formula are then
obtained in Section 7 and 8.
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2. Preliminaries and notation

Throughout the paper G is a K-group over R, which will be assumed to be
quasi-split from Section 4 onwards. The center of G is noted as Z(G), while
Z stands for a fixed central induced torus in G over R, and ζ is a character on
Z(R). Let

aG = Hom(X(G)R,R)

be the real vector space dual of the module X(G)R of R rational characters on
G. There is a canonical homomorphism

HG : G(R)→ aG

Documenta Mathematica 24 (2019) 303–329



The Spectral Side of Stable Local Trace Formula 307

defined by

e〈HG(x),χ〉 = |χ(x)|, x ∈ G(R), χ ∈ X(G)R,

where | · | is the absolutely valuation on R. Let AG be the split component of
the center of G, then

aG = HG(G(R)) = HG(AG)

and aG is the Lie algebra of AG. It is convenient to fix a Haar measure on
aG. This determines a dual Haar measure on the real vector space ia∗G. It also
determines a unique Haar measure on AG(R). We denote by a

∗
G,Z the subspace

of linear forms on aG that are trivial on the image of aZ in aG.

We recall some settings as in [2]. Denote by LG(M) the finite set of Levi
subgroups of G which contain a given Levi subgroup M . We let M0 be a fixed
Levi component of some minimal parabolic subgroup of G. Put L := LG(M0).
For M ∈ L, denote by PG(M) the set of parabolic subgroups of G having M
as Levi component. Define Π2(M(R)) to be the set of (equivalence classes of)
representations that are square integrable modulo the split center of M , and
Πtemp(M(R)) to be the set of (equivalence classes of) tempered representations.

For M ∈ LG(M0) and π ∈ Π2(M(R)), denote by Ππ(G(R)) the set of ir-
reducible constituents of the induced representation IP (π), which is a finite
subset of Πtemp(G(R)) and independent of the parabolic subgroup P . The
sets Ππ(G(R)) exhaust Πtemp(G(R)). The classification of the representations
in Πtemp(G(R)) is reduced to classifying the representations in the finite sets
Ππ(G(R)), and to determining the intersection of any two such sets. The second
question is answered by Harish-Chandra’s work.

Write WG
0 for the Weyl group of the pair (G,AM0

); for w ∈ WG
0 , we generally

write w̃ for any representative of w in K; here K is a (fixed) maximal compact
subgroup G(R) that is in good position relative to M0(R). If M ∈ LG(M0)
and π ∈ Π2(M(R)), wM = w̃Mw̃−1 is another Levi subgroup, and

(wπ)(m′) = π(w̃−1m′w̃), m′ ∈ (wM)(R)

is a representation in Π2((wM)(R)). We obtain an action

(M,π)→ (wM,wπ), w ∈WG
0 ,

of WG
0 on the set of pairs (M,π),M ∈ LG(M0), π ∈ Π2(M(R)).

As stated in Proposition 1.1 of [2], one has the following: If (M,π) and (M ′, π′)
are any two pairs, and (M ′, π′) equals (wM,wπ) for an element w ∈ WG

0 , then
the subsets Ππ(G(R)) and Ππ′(G(R)) of Πtemp(G(R)) are identical. Conversely,
if the sets Ππ(G(R)) and Ππ′(G(R)) have a representation in common, there is
an element w ∈WG

0 such that (M ′, π′) = (wM,wπ).

In this paper we shall fix the central data (Z, ζ). Thus H(G(R), ζ) is the Hecke
space of smooth functions with compact support f on G(R) that are left and
right finite under the maximal compact subgroup K, and such that f(zx) =
ζ(z)−1f(x) for z ∈ Z(R) and x ∈ G(R). We define Πtemp(G(R), ζ) to be the
subset of Πtemp(G(R)) consisting of those representations whose character on
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Z(R) is equal to ζ. Similarly one defines the subsets Π2(G(R), ζ) := Π2(G(R))∩
Πtemp(G(R), ζ) and Ππ(G(R), ζ) := Ππ(G(R)) ∩ Πtemp(G(R), ζ) etc.

We can understand the finite set Ππ(G(R), ζ) by the representation theo-
retic R-group [10]. More generally, we can parameterize the characters of the
tempered representations Πtemp(G(R), ζ) by the virtual characters of the sets

T (G, ζ), where T (G, ζ) is the set of G-equivalence classes of the sets T̃ (G, ζ),

with T̃ (G, ζ) being defined as T̃ (G, ζ) = {τ = (M,π, r) : M ∈ LG(M0), π ∈
Π2(M(R), ζ), r ∈ Rπ}. Here Π2(M(R), ζ) is as before the subset of Π2(M(R))
consisting of those π whose character on Z(R) is equal to ζ. Finally the repre-
sentation theoretic R-group Rπ of π is defined as the quotient of Wπ by W ◦

π ,
where

Wπ = {w ∈W (aM ) : wπ ∼= π}

is the stabilizer of π in the Weyl group of aM , and W ◦
π is the subgroup of

elements w in Wπ such that the operator R(w, π) is a scalar (c.f. below); W ◦
π

is a normal subgroup of Wπ. It is known that the group W ◦
π is the Weyl group

of a root system, composed of scalar multiples of those reduced roots α of
(G,AM ) for which the reflection wα belongs to W ◦

π (c.f p. 86 of [2]). These
roots divide the vector space aM into chambers. By fixing such a chamber aπ,
we can identify Rπ with the subgroup of elements in Wπ that preserve aπ.

The operator

R(w, π) = A(πw)Rw̃−1Pw̃|P (π), w ∈Wπ , π ∈ Π2(M), P ∈ PG(M)

is an intertwining operator from IP (π) to itself. Here to define A(πw), first
note that π can be extended to a representation of the group M ′(R) generated
by M(R) and w̃. We denote πw by such an extension, then the intertwining
operator

A(πw) : Iw̃−1Pw̃(π) −→ IP (π), π ∈ Wπ

between Iw̃−1Pw̃(π) and IP (π) is defined by setting

(A(πw)φ
′)(x) = πw(w̃)φ

′(w̃−1x), φ′ ∈ Iw̃−1Pw̃(π).

Finally the intertwining operator Rw̃−1Pw̃|P (π), and more generally

RQ|P (π) = rQ|P (π)
−1JQ|P (π) : IP (π) −→ IQ(π), for P,Q ∈ PG(M),

is the normalized intertwining operator between the induced representations
IP (π) and IQ(π), with rQ|P (π) being the normalizing factors; see the discussion
on p. 85 of [2]. In addition, since we are in the archimedean case, the operators
R(w, π) can be normalized so that R(w, π) is the identity for w ∈ W ◦

π (hence
R(r, π) is well-defined for r ∈ Rπ), and such that the map r 7→ R(r, π) is a
homomorphism on Rπ , c.f. p. 86 of [2]. We will always work with such a
normalization in what follows.
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3. Local trace formula

In this section we recall the formalism of the local trace formula of Arthur [2],
specifically in the archimedean case. Consider a test function f = f1 × f̄2,
with fi ∈ H(G(R), ζ) being in the Hecke space of test functions. Following
Arthur, it is customary to think of the components f1, f2 of f as being indexed
by the two elements set V = {∞1,∞2} (being regarded as two archimedean
places). The local trace formula is given by the identity IGdisc(f) = IG(f), c.f.
Theorem 4.2 of [2] and Proposition 6.1 of [6]. The geometric side of the local
trace formula is given by:

IG(f) =
∑

M∈L

|WM
0 ||W

G
0 |

−1(−1)dim(AM/AG)

∫

ΓG−reg,ell(M,V,ζ)

IGM (γ, f)dγ

defined in terms of the invariant distributions IGM (γ, f) (c.f. loc. cit.) For the
definition of ΓG−reg,ell(M,V, ζ), firstly, for a fixed basis Γ(M, ζ) of the space of
invariant distributions D(M, ζ) on M(R) introduced in Section 1 of [5] (which
in particular are ζ-equivariant under translation by Z(R)), one has the subset
ΓG−reg,ell(M, ζ) of Γ(M, ζ) consisting of elements that are strongly G-regular,
and having elliptic support in M(R). Put Γ(MV , ζV ) = Γ(M, ζ) × Γ(M, ζ)
(corresponding to the two places ∞1,∞2 in V ). Then ΓG−reg,ell(M,V, ζ) is
identified with the diagonal image of ΓG−reg,ell(M, ζ) in Γ(MV , ζV ):

ΓG−reg,ell(M,V, ζ) = {(γ, γ) : γ ∈ ΓG−reg,ell(M, ζ)}.

The other side is the spectral side given by:

IGdisc(f) =

∫

Tdisc(G,ζ)

iG(τ)fG(τ)|Rπ |
−1dτ.

Here:

Tdisc(G, ζ) = {τ = (M,π, r) ∈ T (G, ζ) : Wπ(r)reg 6= ∅, π ∈ Π2(M(R), ζ)},

where

Wπ(r)reg = Wπ(r) ∩Wπ,reg,Wπ(r) = W ◦
π · r,Wπ,reg = {w ∈Wπ : awM = aG},

and

iG(τ) = |W ◦
π |

−1
∑

w∈Wπ(r)reg

επ(w)| det(w − 1)
a
G
M
|−1

which encode combinatorial data from Weyl groups. The sign επ(w) stands
for the sign of projection of w onto the Weyl group W ◦

π taken relative to the
decomposition Wπ = W ◦

π ⋊Rπ, and a
G
M is the quotient of aM by aG. The other

terms are defined as:

fG(τ) = Θ(τ, f1)Θ(τ∨, f̄2) = Θ(τ, f1)Θ(τ, f2)

Θ(τ, fi) = tr(R(r, π)IP (π, fi)), i = 1, 2.
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Finally the measure dτ on Tdisc(G, ζ) is defined by the formula (c.f. equation
(3.5) of [2]):

∫

Tdisc(G,ζ)

f(τ)dτ =
∑

τ∈Tdisc(G,ζ)/ia∗
G,Z

∫

ia∗
G,Z

f(τλ)dλ.

for f ∈ Cc(Tdisc(G, ζ)).

Here when compared to equation (3.5) of [2], we first note that since we are in
the archimedean case, the groups Rπ are abelian, and hence the groups Rπ,r

in loc. cit., namely the centralizer of r in Rπ, reduces to Rπ.

Secondly, for our purpose, it would be more convenient to not to absorb the
factor |Rπ,r|−1 = |Rπ|−1 into the definition of the measure dτ on Tdisc(G, ζ),
as was done in [2].

4. Endoscopic and stable objects on the spectral side

From now on G will always be assumed to be a quasi-split K-group. We first
recall the Langlands parameters. These are admissible continuous homomor-
phisms:

φ : WR −→
LG

where as usual LG = Ĝ ⋊ WR is the L-group of G, defined with respect to a
splitting of G (that we fix for the rest of the paper); WR is the Weil group of
R: it is a non-split extension 1→ C× →WR → ΓR → 1, with ΓR = Gal(C/R).

The parameter φ is called bounded, if the image of WR in Ĝ is bounded. We

denote by Φ(G) for the set of Ĝ-equivalence classes of bounded parameters

(with respect to the conjugation action by Ĝ). For φ ∈ Φ(G), we denote by Πφ

the L-packet of tempered representations of G(R) associated to φ. The stable
character f 7→ f(φ) :=

∑
Π∈Πφ

tr Π(f) is then a stable distribution on G(R)

[13].

We denote by Φ2(G), the set of (equivalence classes of) square-integrable pa-
rameters, for the subset of φ ∈ Φ(G) that does not factor through LM , for any
proper Levi subgroup M of G. For φ ∈ Φ2(G), the L-packet Πφ consists of
square-integrable representations of G(R).

For any φ ∈ Φ(G), we set

Sφ = Cent(Imφ, Ĝ),

Sφ = Sφ/Z(Ĝ)ΓR ,

and

Sφ = π0(Sφ).

Since we are in the archimedean case, the component group Sφ is a finite abelian
elementary 2-group [13]. In addition, since we are working in the context of a
quasi-split K-group, one has that Πφ is in bijection with the set of characters
of Sφ; hence the cardinality of Πφ is equal to the order of Sφ [13, 15].
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One has

Φ2(G) = {φ ∈ Φ(G), |Sφ| <∞}.

We also define the following subsets of parameters Φdisc(G),Φs−disc(G),Φell(G),
of Φ(G):

Φdisc(G) = {φ ∈ Φ(G), |Z(Sφ)| <∞},

with Z(Sφ) := Cent(Sφ, S
◦

φ), and:

Φs−disc(G) = {φ ∈ Φ(G), |Z(S
◦

φ)| <∞},

with Z(S
◦

φ) being the usual center of S
◦

φ.

The set of elliptic parameters Φell(G) is defined as the subset of φ ∈ Φ(G),
such that |Sφ,s| < ∞ for some semi-simple element s ∈ Sφ; here Sφ,s is being
defined as:

Sφ,s := Cent(s, S
◦

φ).

One has:

Φ2(G) ⊂ Φs−disc(G) ⊂ Φdisc(G),

Φ2(G) ⊂ Φell(G) ⊂ Φdisc(G).

Also, for a central data (Z, ζ) of G as before, we denote by Φ(G, ζ) the set of
parameters φ ∈ Φ(G) that have character ζ with respect to Z, in the sense that
the composition:

WR

φ
→ LG→ LZ

corresponds to the character ζ of Z. Similar definition for the sets
Φ2(G, ζ),Φell(G, ζ) etc.

We now define the endoscopic R-group,

Rφ := Wφ/W
◦
φ ,

where the Weyl groups Wφ,W
◦
φ are defined as:

Wφ = Norm(T φ, Sφ)/T φ.

Here T φ is defined as A
M̂
/(A

M̂
∩ Z(Ĝ)ΓR), with A

M̂
= (Z(M̂)ΓR)◦, and M

being the Levi subgroup of G (which is unique up to conjugation) such that
φ factors through LM as a square integrable parameter φM ∈ Φ2(M, ζ) of M .
Similarly

W ◦
φ = Norm(T φ, S

◦

φ)/T φ.

One also has, by the results in section 5 of [13], the split short exact sequence:

0→ SφM
→ Sφ → Rφ → 0.(4.1)

For φ ∈ Φ(G, ζ), we denote by

Tφ = {τ = (M,π, r) ∈ T (G, ζ), such that π ∈ ΠφM
}.
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Lemma 4.1. If φ ∈ Φ(G, ζ), then we have canonical identification Rπ =
Rφ,Wπ = Wφ,W

◦
π = W ◦

φ , for τ = (M,π, r) ∈ Tφ.

Thus we have a natural surjective map of sets Tφ → Rφ by sending τ = (M,π, r)
to r ∈ Rπ = Rφ.

We can also define a non-canonical bijection ι : Tφ → Sφ (which we fix once
and for all) that respects the natural projection map to Rφ.

Proof. This follow from the results of Knapp-Zuckerman [10] and Shelstad [13].
If φ ∈ Φell(G, ζ) is elliptic, see the discussion before Proposition 5.2 of [12]. In

general, if φ ∈ Φ(G, ζ), then there is a Levi subgroup M̃ of G (unique up to
conjugacy), that is maximal with respect to the property that the parameter

φ factors through LM̃ as an elliptic parameter φM̃ of M̃ (see section 5 of

[13]). Under the Levi embedding LM̃ →֒ LG on the dual side, have a canonical
isomorphism

SφM̃

∼
−→ Sφ.

Now φM̃ is elliptic, and so the lemma is true for φM̃ ; thus we have canonical
isomorphisms (noting that the R-group of π with respect to G is canonically

identified with the R-group of π with respect to M̃ , c.f. loc. cit.):

Rπ = R
φM̃ = Rφ.

To show that one has canonical identifications between Wπ,Wφ and W ◦
π ,W

◦
φ ,

first note that Wφ is the stabilizer of φM in W (aM ). It is then a consequence
of the disjointness of tempered L-packets that Wφ contains Wπ . On the other
hand, we know that the intertwining operators on IP (π) coming from the sub-
group W ◦

φ of Wφ are scalars (c.f. section 5 of [13]). It follows that W ◦
φ is

contained in the subgroup W ◦
π of Wπ . Now Rπ = Wπ/W

◦
π , Rπ = Wφ/W

◦
φ , and

we already know that |Rπ| = |Rφ|, so it follows that we must have Wπ = Wφ

and W ◦
π = W ◦

φ .

Finally, one can thus construct a bijection ι : Tφ → Sφ that respects the
projection to Rφ, from a bijection between TφM̃ and SφM̃ that respects the

projection to R
φM̃ . �

Next we recall some generalities from [1]. We shall consider S to be any con-
nected component of a complex reductive group. Given such S, we denote
by S+ the complex reductive group generated by S, and by S◦ the identity
connected component of S+. Put

Z(S) = Cent(S, S◦)

for the centralizer of S in S◦. Then for a choice of maximal torus T of S◦,
denote by W (S◦) = Norm(T , S◦)/T the usual Weyl group of S◦. We can also
form the Weyl set

W (S) = Norm(T , S)/T .
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Denote by W (S)reg the subset of elements w ∈ W (S) that are regular, which
means that the fixed point set of w in T is finite. We can also regard (w − 1)
as a linear transformation on the real vector space

aT = Hom(X(T ),R).

Then the condition for w ∈ W (S)reg is equivalent to that det(w − 1)aT
6= 0.

We denote by:

s◦(w) = ±1

the sign of a element w ∈ W , to be −1 raised to the power of the number of
the positive roots of (S◦, T ) (with respect to some order) being mapped by w
to the negative roots. We then define the rational number

i(S) = |W (S◦)|−1
∑

w∈W (S)reg

s◦(w)| det(w − 1)aT
|−1

associated to S.

Next we write Sss for the set of semisimple elements in S. For any s ∈ Sss, we
set

Ss = Cent(s, S◦)

the centralizer of s in S◦. Then Ss is also a complex reductive group, whose
identity component is noted as:

S◦
s = (Ss)

◦ = Cent(s, S◦)◦.

If Γ is any subset of S which is invariant under conjugation by S◦, then we
shall denote by E(Γ) for the set of equivalence classes in Γss = Γ ∩ Sss, with
the equivalence relation defined by setting s′ ∼ s if

s′ = s◦zs(s◦)−1, s◦ ∈ S◦, z ∈ Z(S◦
s )

◦.

The main interest is the subset

Sell = {s ∈ Sss : |Z(S◦
s )| <∞}

of elliptic elements of S. The equivalence relation on Sell is then simply S◦-
conjugation. Put:

Eell(S) := E(Sell).

We have the following theorem which is a restatement of theorem 8.1 of [1].

Theorem 4.2. There are unique constants σ(S1), defined whenever S1 is a
connected complex reductive group, such that for any S as above, the number

e(S) =
∑

s∈Eell(S)

|π0(Ss)|
−1σ(S◦

s )(4.2)

equals i(S), and such that

σ(S1) = σ(S1/Z1)|Z1|
−1(4.3)

for any central subgroup Z1 of S1 (in particular σ(S1) = 0 if Z1 is infinite).
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Now back to the situation of Lemma 4.1. For τ ∈ Tφ, put x = ι(τ). Then we
can write the coefficient iG(τ) as:

iG(τ) = iφ(x) = |W
◦
φ |

−1
∑

w∈Wφ(x)reg

s◦φ(w)| det(w − 1)
a
G
M
|−1(4.4)

= eφ(x) =
∑

s∈Eφ,ell(x)

|π0(Sφ,s)|
−1σ(S

◦

φ,s)

i.e. iφ(x) is equal to the number i(Sx) above, with Sx being equal to the

component of Sφ that corresponds to x ∈ Sφ = π0(Sφ), and Wφ(x)reg is the set
W (Sx)reg as defined above; similarly eφ(x) is the number e(Sx), with Eφ,ell(x)
(resp. Eφ,ell) being the set Eell(Sx) (resp. Eell(Sφ)) defined as above, etc.
Note also that, as a consequence of the canonical identification Wπ = Wφ and
W ◦

π = W ◦
φ given by Lemma 4.1, we have that, if τ ∈ Tdisc(G, ζ), then one must

have φ ∈ Φdisc(G, ζ).

Finally we note the following. Let φ ∈ Φ(G, ζ) be as before, that factors
through LM as a square-integrable parameter φM of Levi subgroup M of G.
Recall that one has a split short exact sequence:

0→ SφM
→ Sφ → Rφ → 0.

Then for x, y ∈ Sφ, one has iφ(x) = iφ(y) if x = y mod SφM
. This follows

easily from the definition of the number iφ(x).

The constants σ(S
◦

φ,s), for s ∈ Eφ,ell = Eell(Sφ), appear as the coefficients of
the endoscopic and stable local trace formula, as we are going to see in the
following sections.

5. Spectral transfer

Suppose (G′, s′,G′, ξ′) is an endoscopic datum forG. In the theory of endoscopy
one chooses a Z-pair (G′

1, ξ
′
1), where G′

1 is a Z-extension of G′ and ξ′1 is an

embedding of extensions G′ →֒ LG′
1 that extends the embedding Ĝ′ →֒ Ĝ′

1 dual
to the surjection G′

1 → G′.

Given the endoscopic datum (G′, s′,G′, ξ′) for G as above, suppose that G′ =
LG′ (and thus ξ′ : LG′ →֒ LG is an embedding of L-groups, and it is not needed
to choose a Z-extension for G′), we define a mapping

Φ(G′, ζ) −→ Φ(G, ζ)

by φ′ 7→ φ = ξ′ ◦ φ′.

For the general case, we refer to Section 2 of [7] and also Section 2 of [14].
This construction gives a correspondence (G′, φ′) ←→ (φ, s) between pairs
(φ, s), where φ ∈ Φ(G, ζ), s ∈ Sφ semi-simple, and pairs (G′, φ′), where G′ =
(G′, s′,G′, ξ′) is an endoscopic datum of G, and φ′ ∈ Φ(G′, ζ), c.f. loc. cit. For
simplicity we always assume that G′ = LG′ in what follows.
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Definition 5.1. For φ′ ∈ Φ(G′, ζ) and Π ∈ Πtemp(G, ζ), we say that (φ′,Π)
is a related pair if φ(Π) is the image of φ′ under the map Φ(G′, ζ) −→ Φ(G, ζ)
associated to ξ′; here φ(Π) ∈ Φ(G, ζ) is the Langlands parameter of Π.

Given any φ′ ∈ Φ(G′, ζ), there is always a Π ∈ Πtemp(G, ζ) that is related to
φ′.

Definition 5.2. A related pair (φ′,Π) is G-regular if the parameter φ = φ(Π)
is G-regular, in the sense that we have that

Cent(φ(C×), Ĝ)

is abelian.

Shelstad had built the spectral transfer factors ∆(φ′,Π) [14] directly when the
related pair (φ′,Π) is G-regular, and obtained spectral transfer identities (if
the pair (φ′,Π) is not related, then one simply defines ∆(φ′,Π) = 0). The
general case is handled by using character identities of Hecht and Schmid, and
coherent continuation of the identities from the G-regular case [14].

We have the following spectral transfer relations. For each f ∈ H(G(R), ζ),
and for any endoscopic datum G′ of G, there exists f ′ ∈ H(G′(R), ζ) such

that the stable orbital integral of f ′ is equal to fG′

, the Langlands-Shelstad
transfer of f to G′ [13] (with respect to Whittaker normalization). Note that
in particular when we take G′ = G, then fG is the stable orbital integral of
f . In addition the following holds: for any endoscopic datum G′ of G and any
tempered Langlands parameter φ′ of G′(R), the stable character f ′(φ′) of φ′

(evaluated at f ′) satisfies:

f ′(φ′) =
∑

Π∈Πtemp(G,ζ)

∆(φ′,Π) trΠ(f).

Remark that, as the character f ′ 7→ f ′(φ′) is stable, it depends only on the
stable orbital integral of f ′. Hence in the above, namely when the stable orbital
integral of f ′ is equal to the Langlands-Sehlstad transfer fG′

, the value f ′(φ′)

depends only on fG′

, and we will write f ′(φ′) as fG′

(φ′).

Shelstad (c.f. [15], section 11) had also checked that the spectral transfer factors
can be normalized (namely Whittaker normalization) to satisfy the Arthur’s
conjecture, and we will always work with such normalization in what follows;
more precisely given endoscopic data (G′, s′,G′, ξ′) as above, one has, whenever
(φ′,Π) is a related pair, that the number ∆(φ′,Π) depends only on Π and on
the image xs of s in Sφ (here as before φ = φ(Π) is the Langlands parameter
of Π).

Thus given φ ∈ Φ(G, ζ), and s ∈ Sφ semi-simple, we will denote, for Π ∈ Πφ,

∆(φs,Π) := ∆(φ′,Π)

if the pair (φ, s) corresponds to (G′, φ′). For fixed Π ∈ Πφ, the function s 7→
∆(φs,Π) factors through Sφ. Thus we have the function x 7→ ∆(φx,Π) for
x ∈ Sφ. In addition, this function is a {±1}-valued character of Sφ [15].
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Thus in particular, given φ ∈ Φ(G, ζ) and s ∈ Sφ semi-simple, we can consider
the linear form f 7→ f ′(φ′), with the pair (φ, s) being corresponding to (G′, φ′).
This linear form, which by construction depends only on φ and s ∈ Sφ, in fact
depends only on φ and xs (where xs is as above the image of s in Sφ). We will
denote this linear form as f 7→ f ′(φ, s) or f ′(φs), and also as f 7→ f ′(φ, x) or
f 7→ f ′(φx), i.e. for x ∈ Sφ:

f ′(φ, x) = f ′(φ, s)

f ′(φx) = f ′(φs)

for any semi-simple s ∈ Sφ such that xs = x.

Shelstad had also constructed the adjoint spectral transfer factor ∆(Π, φs) and
established the inversion formula [15]: for Π ∈ Πφ, one has:

tr Π(f) =
∑

x∈Sφ

∆(Π, φx)f ′(φ, x).

Here on the right hand side, for the adjoint spectral transfer factor, the de-
pendence of ∆(Π, φs) on s again factors through the image xs of s in Sφ, and
so for x ∈ Sφ, we denote by ∆(Π, φx) the value ∆(Π, φs), for any semi-simple

s ∈ Sφ such that xs = x.

For our purpose, we need to construct the transfer factors ∆(τ, φs) and
∆(φs, τ), in the spirit of section 5 of [3]; again these depends only on the
image xs of s in Sφ, and so we similarly employ the notations ∆(τ, φx) and
∆(φx, τ). If φ ∈ Φell(G, ζ) is elliptic, then the transfer factors ∆(τ, φs) are
defined in [12]:

∆(τ, φs) =
∑

χ∈R̂π

χ(r)∆(Πχ, φs)

where τ = (M,π, r) ∈ Tφ, s ∈ Sφ semi-simple, and Πχ is the irreducible com-
ponent of induced representation of π whose character corresponds to that of χ

(here recall that Rπ is an abelian elementary 2-group, so χ ∈ R̂π takes values
in {±1}). We have the spectral transfer relation (c.f. equation (5.8) in [12]):

Θ(τ, f) =
∑

x∈Sφ

∆(τ, φx)f ′(φ, x).(5.1)

We also define the adjoint transfer factor (still assuming φ ∈ Φell(G, ζ) being
elliptic, and τ = (M,π, r) ∈ Tφ as before):

∆(φs, τ) =
∑

χ∈R̂π

1

|Rπ|
χ(r)∆(φs,Πχ).

We then have the spectral transfer formula: for semi-simple s ∈ Sφ, one has
(c.f. equation (5.9) in [12]):

f ′(φ, s) =
∑

τ∈Tφ

∆(φs, τ)Θ(τ, f),
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i.e.

f ′(φ, x) =
∑

τ∈Tφ

∆(φx, τ)Θ(τ, f)(5.2)

for x ∈ Sφ.

We have the following lemma.

Lemma 5.3. Suppose that φ ∈ Φ(G, ζ) is elliptic. Let M be Levi subgroup
of G such that φ factors through LM as a square-integrable parameter φM ∈
Φ2(M, ζ) for M , under which we have the split short exact sequence as in (4.1):

0 −→ SφM
−→ Sφ −→ Rφ −→ 0.

Given x ∈ Sφ, write x with respect to the above split exact sequence as x =
xM · r

′, where xM ∈ SφM
, and r′ ∈ Rφ. Then for τ = (M,π, r) ∈ Tφ, we have

∆(φx, τ) = 0 unless r = r′, in which case we have:

∆(φx, τ) = ∆(φxM

M , π)

where the transfer factor on the right hand side is with respect to M .

Proof. This is a direct computation, using the properties of spectral transfer
factors [15]:

∆(φx, τ) =
∑

χ∈R̂π

1

|Rπ|
χ(r)∆(φx,Πχ)(5.3)

=
∑

χ∈R̂π

1

|Rπ|
χ(r)χ(r′)∆(φxM ,Πχ)

= δ(r, r′) ·∆(φxM

M , π)

where δ(·, ·) is the Kronecker delta function. The lemma follows. �

Remark 5.4. This property of spectral transfer factor is also studied in Chap-
ters 2 and 6 of [9], in the form of local intertwining relations.

We now define the spectral transfer factors for general φ ∈ Φ(G, ζ), by reducing

to the elliptic case. If φ ∈ Φ(G, ζ), then there exists a Levi subgroup M̃ (unique
up to conjugacy), that is maximal with respect to the property that φ factors

through LM̃ as an elliptic parameter φM̃ for M̃ . With respect to the embedding
LM̃ →֒ LG, we have the canonical isomorphism

S
φM̃

∼
−→ Sφ

(c.f. proof of Lemma 4.1).

If τ = (M,π, r) ∈ Tφ, then we denote by τM̃ = (M,π, rM̃ ) ∈ T
φM̃ the cor-

responding element of T
φM̃ . Here rM̃ corresponds to r under the canonical

isomorphism RφM̃ = Rφ (c.f. proof of Lemma 4.1).
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We define the spectral transfer factor:

∆(τ, φx) = ∆(τM̃ , (φM̃ )x
M̃

)

where on the right hand side, we denote by xM̃ the element in S
φM̃ that cor-

responds to x ∈ Sφ under the above canonical isomorphism between S
φM̃ and

Sφ.

We have, with f
M̃

being the descent of f to M̃ , the identity:

Θ(τ, f) = Θ(τM̃ , f
M̃
).

Similarly we have, for x ∈ Sφ:

f ′(φ, x) = (f
M̃
)′(φM̃ , xM̃ ).

It follows that we again have the transfer relation (generalization of (5.1)):

Θ(τ, f) =
∑

x∈Sφ

∆(τ, φx)f ′(φ, x).(5.4)

We can similarly define the adjoint transfer factor ∆(φx, τ), and we have the
inverse transfer relation, for x ∈ Sφ (generalization of (5.2)):

f ′(φ, x) =
∑

τ∈Tφ

∆(φx, τ)Θ(τ, f).(5.5)

We also have the following properties about the transfer factors:

Lemma 5.5. Let φ ∈ Φ(G, ζ) be a bounded Langlands parameter. Then we
have:

• ∆(τ, φx) =
|Rφ|
|Sφ|

∆(φx, τ) =
|Rφ|
|Sφ|

∆(φx, τ) for τ ∈ Tφ and x ∈ Sφ.

• we have the adjoint relations

∑

τ∈Tφ

∆(φx1 , τ)∆(τ, φx2 ) = δ(x1, x2), for x1, x2 ∈ Sφ,

∑

x∈Sφ

∆(τ1, φ
x)∆(φx, τ2) = δ(τ1, τ2), for τ1, τ2 ∈ Tφ.

Where δ(·, ·) is the Kronecker delta function.

This follows from the case where φ is an elliptic parameter, which is established
in Proposition 5.2 of [12].

Finally to complete the discussion of this section, for τ ∈ T (G, ζ), φ ∈ Φ(G, ζ)
and x ∈ Sφ, we define ∆(τ, φx) and ∆(φx, τ) to be zero if τ /∈ Tφ.
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6. Stabilization of the local trace formula

To summarize the discussion of the previous section, we have firstly, from equa-
tion (5.4) and (5.5), the following:

Theorem 6.1. If f ∈ H(G(R), ζ), then for τ ∈ T (G, ζ), we have:

Θ(τ, f) =
∑

(φ,x)

∆(τ, φx)f ′(φ, x)(6.1)

where the summation is over φ ∈ Φ(G, ζ) and x ∈ Sφ.
Conversely, for φ ∈ Φ(G, ζ), x ∈ Sφ, we have:

f ′(φ, x) =
∑

τ∈T (G,ζ)

∆(φx, τ)Θ(τ, f).(6.2)

The following also follows easily:

Lemma 6.2. The statement of Lemma 5.3 holds for general φ ∈ Φ(G, ζ).

Now for φ ∈ Φ(G, ζ), define Tφ,disc := Tφ ∩ Tdisc(G, ζ). Recall that as a con-
sequence of Lemma 4.1 (c.f. discussion in the paragraph after equation (4.4)),
we have that, if τ ∈ Tφ,disc, then one must have φ ∈ Φdisc(G, ζ). Also from
Lemma 4.1, one has the bijection ι : Tφ → Sφ that respects the projection to
Rφ. Thus for φ ∈ Φdisc(G, ζ), put Sφ,disc to be the image of Tφ,disc under the
bijection ι : Tφ → Sφ. We define:

ΦS
disc(G, ζ) = {(φ, x) : φ ∈ Φdisc(G, ζ), x ∈ Sφ,disc}.

Thus for τ ∈ Tdisc(G, ζ), on applying equation (6.1) and the above discussion,
we have the transfer relation:

Θ(τ, f) =
∑

(φ,x)∈ΦS
disc

(G,ζ)

∆(τ, φx)f ′(φ, x).(6.3)

Similarly for φ ∈ Φdisc(G, ζ) and x ∈ Sφ,disc, we have, on applying equation
(6.2), the inversion formula:

f ′(φ, x) =
∑

τ∈Tdisc(G,ζ)

∆(φx, τ)Θ(τ, f).(6.4)

In the following, we also denote a pair (φ, x) ∈ ΦS
disc(G, ζ) as φx.

The linear space ia∗G,Z acts on Φdisc(G, ζ) through twisting: for φ ∈ Φdisc(G, ζ)
and λ ∈ ia∗G,Z

φλ(ω) := φ(ω)|ω|λ, ω ∈ WR

(here the element |ω|λ ∈ Z(Ĝ)ΓR is defined via the usual Nakayama-Tate du-
ality). This induces the action of ia∗G,Z on ΦS

disc(G, ζ), through twisting on

Φdisc(G, ζ): (φx)λ := (φλ)
x; here we are identifying Sφ and Sφλ

, hence the
identification for Sφ and Sφλ

, similarly the identification for Sφ,disc and Sφλ,disc.
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We define a measure on Φdisc(G, ζ) and ΦS
disc(G, ζ) by setting:

∫

Φdisc(G,ζ)

β1(φ)dφ =
∑

φ∈Φdisc(G,ζ)/ia∗
G,Z

∫

ia∗
G,Z

β1(φλ)dλ,

∫

ΦS
disc

(G,ζ)

β2(φ
x)dφx =

∑

(φ,x)∈ΦS
disc

(G,ζ)/ia∗
G,Z

∫

ia∗
G,Z

β2(φ
x
λ)dλ,

for any β1 ∈ Cc(Φdisc(G, ζ)), β2 ∈ Cc(Φ
S
disc(G, ζ)). We have the following

lemma, similar to Lemma 5.3 of [3]:

Lemma 6.3. Suppose that α ∈ Cc(Tdisc(G, ζ)), and β ∈ Cc(Φ
S
disc(G, ζ)). Then

we have ∫

Tdisc(G,ζ)

∑

(φ,x)∈ΦS
disc

(G,ζ)

β(φx)∆(φx, τ)α(τ)dτ(6.5)

=

∫

ΦS
disc

(G,ζ)

∑

τ∈Tdisc(G,ζ)

β(φx)∆(φx, τ)α(τ)dφx .

Proof. First note that for given a τ , the first inner summation is a finite sum,
by the definition of the transfer factors; similarly for a given φx, the second
summation is also finite. So the identity makes sense. From the definition of
measure for Tdisc(G, ζ), we can write the left hand side of (6.5) as:

(6.6)
∑

τ∈Tdisc(G,ζ)/ia∗
G,Z

∑

φx∈ΦS
disc

(G,ζ)/ia∗
G,Z

∑

µ∈ia∗
G,Z

∫

ia∗
G,Z

β(φx
µ)∆(φx

µ, τλ)α(τλ)dλ

For a given representative τ ∈ Tdisc(G, ζ)/ia∗G,Z in the outer sum, we may

choose the representative φx ∈ ΦS(G, ζ)/ia∗G,Z in the inner sum, that has the
same central character on AG.

Thus in the sum over µ, we see that if λ 6= µ, then φx
µ and τλ are not related,

and so by the definition of transfer factors, we have ∆(φx
µ, τλ) = 0. So we can

write (6.6) as:

∑

(τ,φx)

∫

ia∗
G,Z

β(φx
λ)∆(φx

λ, τλ)α(τλ)dλ.(6.7)

where double sum of (6.7) is a sum over the subset

(τ, φx) ∈ (Tdisc(G, ζ) × ΦS
disc(G, ζ))/ia∗G,Z

consisting of those pairs that have the same central character on AG.

In a parallel way, we can treat the right hand side of (6.5) along similar lines,
using the definition of measure for ΦS

disc(G, ζ). On noting the symmetry of the
sum-integral in (6.7), we thus conclude that the left hand side and the right
hand side of (6.5) are equal. �
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We can now begin the stabilization of the spectral side of the invariant local
trace formula:

Theorem 6.4. If f = f1 × f̄2, fi ∈ H(G(R), ζ) for i = 1, 2, then we have:

IGdisc(f) =

∫

Tdisc(G,ζ)

iG(τ)Θ(τ, f1)Θ(τ, f2)|Rπ |
−1dτ(6.8)

=

∫

ΦS
disc

(G,ζ)

1

|Sφ|
iφ(x)f

′
1(φ, x)f

′
2(φ, x)dφ

x

Proof. Firstly, applying the spectral transfer, as given in equation (6.3), to the
term Θ(τ, f1) in (6.8), we see that IGdisc(f) equals∫

Tdisc(G,ζ)

iG(τ)|Rπ |
−1

∑

(φ,x)∈ΦS
disc

(G,ζ)

∆(τ, φx)f ′
1(φ, x)Θ(τ, f2)dτ(6.9)

=

∫

Tdisc(G,ζ)

iG(τ)|Rπ |
−1

∑

(φ,x)∈ΦS
disc

(G,ζ)

|Rφ|

|Sφ|
f ′
1(φ, x)∆(φx, τ)Θ(τ, f2)dτ

with the last equality follows from the first part of Lemma 5.5. Next, in order
that ∆(φx, τ) 6= 0, we must have τ ∈ Tφ and hence |Rπ | = |Rφ| in the integrand.
Thus we see that the right hand side of (6.9) can be written as:

∫

Tdisc(G,ζ)

∑

(φ,x)∈ΦS
disc

(G,ζ)

iG(τ)

|Sφ|
f ′
1(φ, x)∆(φx, τ)Θ(τ, f2)dτ.

By Lemma 6.3, this is equal to:

∫

ΦS
disc

(G,ζ)

1

|Sφ|
f ′
1(φ, x)

∑

τ∈Tdisc(G,ζ)

iG(τ)∆(φx, τ)Θ(τ, f2)dφ
x.(6.10)

Now, denote by P : Sφ → Rφ for the surjective map from Sφ to Rφ in the split
short exact sequence (4.1). Given τ = (M,π, r) ∈ Tφ, and φ ∈ Φdisc(G, ζ), we
have, by Lemma 6.2, that for x ∈ Sφ,disc, if P (x) 6= r, then ∆(φx, τ) = 0. On
the other hand, if ∆(φx, τ) 6= 0, then we must have P (x) = r, i.e. ι(τ) and x
have the same image in Rφ under the map P . Thus we have:

iG(τ) = iφ(ι(τ)) = iφ(x)

(c.f. the discussion after the statement of Theorem 4.2, near the end of Section
4). Thus we can write (6.10) as∫

ΦS
disc

(G,ζ)

1

|Sφ|
iφ(x)f

′
1(φ, x)

∑

τ∈Tdisc(G,ζ)

∆(φx, τ)Θ(τ, f2)dφ
x.

Applying equation (6.4), we obtain the required formula:
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IGdisc(f) =

∫

ΦS
disc

(G,ζ)

1

|Sφ|
iφ(x)f

′
1(φ, x)f

′
2(φ, x)dφ

x.(6.11)

�

We set iφ(x) = 0, if x /∈ Sφ,disc. Then we have:

IGdisc(f) =

∫

Φdisc(G,ζ)

∑

x∈Sφ

|Sφ|
−1iφ(x)f

′
1(φ, x)f

′
2(φ, x)dφ.

Recall equation (4.4) from section 4, we write:

iφ(x) =
∑

s∈Eφ,ell(x)

|π0(Sφ,s)|
−1σ(S

◦

φ,s).

Thus we obtain

IGdisc(f)

=

∫

Φdisc(G,ζ)

∑

x∈Sφ

|Sφ|
−1

∑

s∈Eφ,ell(x)

|π0(Sφ,s)|
−1σ(S

◦

φ,s)f
′
1(φ, s)f

′
2(φ, s)dφ

in other words,

(6.12)

IGdisc(f) =

∫

Φdisc(G,ζ)

∑

s∈Eφ,ell

|Sφ|
−1|π0(Sφ,s)|

−1σ(S
◦

φ,s)f
′
1(φ, s)f

′
2(φ, s)dφ.

This is Theorem 1.1 as stated in the Introduction. In the next section, we are
going to express the right hand side of (6.12) in the form of an endoscopic local
trace formula.

7. Spectral side of endoscopic local trace formula

To obtain Theorem 1.2 as stated in the Introduction, we need to rewrite the
right hand side of (6.12), in terms of the endoscopic data of G. To do this we
need to make precise the correspondence (G′, φ′)←→ (φ, s).

Denote by Eell(G) for the set of elliptic endoscopic data of G. The set Ĝ 

Eell(G) of Ĝ-orbits in Eell(G) is then equal to the set Eell(G) of equivalence
classes of elliptic endoscopic data of G.

Write Fdisc(G, ζ) for the set of bounded Langlands parameters φ of G that have

character ζ with respect to Z (not being regarded as up to Ĝ-equivalence), and
such that Z(Sφ) is finite. Similarly for G′ ∈ Eell(G), write Fs−disc(G

′, ζ) for
the set of bounded Langlands parameters φ′ of G′ that have character ζ with

respect to Z (not being regarded as up to Ĝ′-equivalence), and such that Z(S
◦

φ′)
is finite.

The set Ĝ  Fdisc(G, ζ) of Ĝ-orbits in Fdisc(G, ζ) is equal to Φdisc(G, ζ). Simi-

larly, for G′ ∈ Eell(G), the set Ĝ′  Fs−disc(G
′, ζ) of Ĝ′-orbits in Fs−disc(G

′, ζ)
is equal to Φs−disc(G

′, ζ).
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We then define:

Xdisc(G, ζ) := {(φ, s) : φ ∈ Fdisc(G, ζ), s ∈ Sφ,ell},

and
Ydisc(G, ζ) := {(G′, φ′) : G′ ∈ Eell(G), φ′ ∈ Fs−disc(G

′, ζ)}.

The group Ĝ acts on Xdisc(G, ζ) and Ydisc(G, ζ) by conjugation. Denote by

Ĝ  Xdisc(G, ζ) and Ĝ  Ydisc(G, ζ) for the set of Ĝ-orbits.

As in the previous section, the linear space ia∗G,Z acts on Ĝ  Xdisc(G, ζ) and

ĜYdisc(G, ζ) by twisting, and we define measures on ĜXdisc(G, ζ) and Ĝ
Ydisc(G, ζ) by the same type of formula that define the measure on Φdisc(G, ζ) =

Ĝ  Fdisc(G, ζ), i.e.
∫

ĜXdisc(G,ζ)

=
∑

ĜXdisc(G,ζ)/ia∗
G,Z

∫

ia∗
G,Z

∫

ĜYdisc(G,ζ)

=
∑

ĜYdisc(G,ζ)/ia∗
G,Z

∫

ia∗
G,Z

The correspondence (φ, s)←→ (G′, φ′) induces the bijections:

Ĝ  Xdisc(G, ζ) ←→ Ĝ  Ydisc(G, ζ)(7.1)

Ĝ  Xdisc(G, ζ)/ia∗G,Z ←→ Ĝ  Ydisc(G, ζ)/ia∗G,Z

which is immediately seen to be measure preserving, and which is the focal
point for the transformation of the right hand side of the expression (6.12).
The argument we give below is parallel to that of Section 4.4 of [9].

The first step is to change the double sum-integral on the right hand side

of (6.12) to an integral over Ĝ  Xdisc(G, ζ), using that Φdisc(G, ζ) = Ĝ 

Fdisc(G, ζ), and also that the integrand is Ĝ-invariant. Given φ ∈ Fdisc(G, ζ),

the stabilizer of φ in Ĝ is the centralizer Sφ. Now the sum occurring in the

integrand on the right hand side of (6.12), is over Eφ,ell = S
◦

φ Sφ,ell, the set of

orbits in Sφ,ell under the conjugation action by the identity component S
◦

φ of

Sφ. On the other hand, given s ∈ Sφ,ell, the set of orbits under the conjugation

action of Sφ, or equivalently by Sφ, is bijective with the quotient of Sφ by the
subgroup

S
+

φ,s = Cent(s, Sφ).

However, the S
◦

φ-orbit of s is bijective with the quotient of S
◦

φ by the subgroup

Sφ,s = Cent(s, S
◦

φ).

We can therefore rewrite the sum-integral on the right hand side of (6.12), as

an integral over ĜXdisc(G, ζ), if we multiply the summand on the right hand
side of (6.12) by the number:

|S
◦

φ/Sφ,s|
−1|Sφ/S

+

φ,s| = |S
+

φ,s/Sφ,s|
−1|Sφ/S

◦

φ|,

Documenta Mathematica 24 (2019) 303–329



324 Chung Pang Mok, Zhifeng Peng

which is to say the number:

|S
+

φ,s/Sφ,s|
−1|Sφ|.(7.2)

In the second step, we use the bijection (7.1) and write the integral over Ĝ 

Xdisc(G, ζ) as an integral over Ĝ  Ydisc(G, ζ). Recall that:

Eell(G) = Ĝ  Eell(G).

The stabilizer of a given G′ ∈ Eell(G) in Ĝ is the group AutG(G
′). This means

that the integral over ĜYdisc(G, ζ) could be written as a double sum-integral:

∑

G′∈Eell(G)

∫

AutG(G′)Fs−disc(G′,ζ)

.

Now the integral over φ′ ∈ AutG(G
′)Fs−disc(G

′, ζ), could be replaced by the
integral over G′  Fs−disc(G

′, ζ) = Φs−disc(G
′, ζ), so long as we multiply the

integrand by the number:

|OutG(G
′)|−1|OutG(G

′, φ′)|(7.3)

where OutG(G
′, φ′) is the stabilizer of φ′ in OutG(G

′).

We have thus established that the double sum-integral on the right hand side
of (6.12), can be replaced by the double sum-integral:

∑

G′∈Eell(G)

∫

Φs−disc(G′,ζ)

provided that the summand is multiplied by the product of the two numbers
(7.2) and (7.3). Finally, the coefficient occurring in the summand on the right
hand side of (6.12) is:

|Sφ|
−1|π0(Sφ,s)|

−1σ(S
◦

φ,s).(7.4)

Thus we have:

IGdisc(f) =
∑

G′∈Eell(G)

∫

Φs−disc(G′,ζ)

(7.2) · (7.3) · (7.4) · f ′
1(φ, s)f

′
2(φ, s)dφ

′·

We thus need to express the product of (7.2), (7.3), and (7.4), in terms of the
pair (G′, φ′).

The product of (7.2), (7.3) and (7.4) is equal to the product of:

|OutG(G
′)|−1

and

|OutG(G
′, φ′)||S

+

φ,s/Sφ,s|
−1|π0(Sφ,s)|

−1σ(S
◦

φ,s).(7.5)
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Now under the correspondence (G′, φ′)←→ (φ, s), we have:

|OutG(G
′, φ′)| = |S+

φ,s/S
+
φ,s ∩ Ĝ′Z(Ĝ)ΓR |

= |S
+

φ,s/S
+

φ,s ∩ Ĝ′|

where Ĝ′ denote the quotient

Ĝ′Z(Ĝ)ΓR/Z(Ĝ)ΓR ∼= Ĝ′/Ĝ′ ∩ Z(Ĝ)ΓR .

Also

σ(S
◦

φ′) = σ((Sφ′/Z(Ĝ′)ΓR)◦) = σ(S
◦

φ,s/S
◦

φ,s ∩ Z(Ĝ′)ΓR)

where

Z(Ĝ′)ΓR = Z(Ĝ′)ΓR/Z(Ĝ)ΓR .

We thus have the identity

σ(S
◦

φ′) = σ(S
◦

φ,s)|S
◦

φ,s ∩ Z(Ĝ′)ΓR |(7.6)

by Theorem 4.2.

The term

|π0(Sφ,s)|
−1|S

◦

φ,s ∩ Z(Ĝ′)ΓR |−1

equals

|Sφ,s/S
◦

φ,sZ(Ĝ
′)ΓR |−1|Z(Ĝ′)ΓR |−1(7.7)

as can be seen by using

S
◦

φ,s/S
◦

φ,s ∩ Z(Ĝ′)ΓR ∼= S
◦

φ,sZ(Ĝ′)ΓR/Z(Ĝ′)ΓR .

Finally we can write:

|Sφ′ | = |π0(Sφ′)|(7.8)

= |S
+

φ,s ∩ Ĝ′/(S
+

φ,s)
◦Z(Ĝ′)ΓR |

= |S
+

φ,s ∩ Ĝ′/S
◦

φ,sZ(Ĝ′)ΓR |

where the last equality follows on noting that

(S
+

φ,s)
◦ = S

◦

φ,s.(7.9)

Thus (7.5) is equal to:

|Z(Ĝ′)Γ|−1|Sφ′ |−1σ(S
◦

φ′).

Finally, under the correspondence (G′, φ′)←→ (φ, s), we have

f ′
1(φ, s)f

′
2(φ, s) = fG′

1 (φ′)fG′

2 (φ′).

We thus obtain the following main theorem:
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Theorem 7.1. If f = f1 × f̄2, fi ∈ H(G(R), ζ), i = 1, 2, then we have

(7.10)

IGdisc(f) =
∑

G′∈Eell(G)

ι(G,G′) ·

∫

Φs−disc(G′,ζ)

|Sφ′ |−1σ(S
◦

φ′)fG′

1 (φ′)fG′

2 (φ′)dφ′

where

ι(G,G′) = |OutG(G
′)|−1|Z(Ĝ′)ΓR |−1.

Now we define, for any quasi-split K-group G over R, the following stable
distribution for G:

SG
disc(f) :=

∫

Φs−disc(G,ζ)

|Sφ|
−1σ(S

◦

φ)f
G
1 (φ)fG

2 (φ)dφ

where as before f = f1 × f̄2, f1, f2 ∈ H(G(R), ζ). In particular one has the

stable distribution SG′

disc for G′, with G′ being an endoscopic datum of G.

Still with f = f1 × f̄2, f1, f2 ∈ H(G(R), ζ), and G′ an endoscopic datum of
G, one has functions f ′

1, f
′
2 ∈ H(G

′, ζ) such that the stable orbital integrals

of f ′
i is equal to the Langlands-Shelstad transfer fG′

i (i = 1, 2) [13]. Put

fG := fG′

1 × f̄G′

2 and f ′ := f ′
1 × f̄ ′

2. Then since SG′

disc is stable for G′, one

has that the value SG′

disc(f
′) depends only on the stable orbital integral of f ′,

i.e. only on the Langlands-Shelstad transfer fG′

. We thus denote the value

SG′

disc(f
′) as ŜG′

disc(f
G′

).

With these notations we have:

ŜG′

disc(f
G′

) =

∫

Φs−disc(G′,ζ)

|Sφ′ |−1σ(S
◦

φ′)fG′

1 (φ′)fG′

2 (φ′)dφ′

hence in the context of Theorem 7.1, we can write equation (7.10) in the fol-
lowing form:

IGdisc(f) =
∑

G′∈Eell(G)

ι(G,G′)ŜG′

disc(f
G′

).(7.11)

8. Spectral side of stable local trace formula

With Theorem 7.1 in hand, we can now obtain the explicit formula for the
spectral side of the stable local trace formula. As before G is any K-group over
R that is quasi-split, with central data (Z, ζ).

In [6], one has following stable distribution SG for G, which is the stable version
of the geometric side of the invariant local trace formula IG, and is defined as
follows. For f = f1 × f̄2, with f1, f2 ∈ H(G(R), ζ):

SG(f)(8.1)

=
∑

M∈L

|WM
0 ||W

G
0 |

−1(−1)dim(AM/AG)

∫

∆G−reg,ell(M,V,ζ)

n(δ)−1SG
M (δ, f)dδ
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c.f. equation (10.11) of [6]. Here n(δ) is the order of the group Kδ as defined on
p. 509 of [3], and ∆G−reg,ell(M,V, ζ) is the stable version of ΓG−reg,ell(M,V, ζ),
similarly SG

M (δ, f) is the stable version of IGM (γ, f).

In particular one has the stable distribution SG′

for G′, with G′ being an
endoscopic datum of G. It is then shown in [6] that, the geometric side of the
local trace formula IG(f) for G (where f = f1 × f̄2, f1, f2 ∈ H(G(R), ζ) as
above) satisfies the following endoscopic decomposition:

IG(f) =
∑

G′∈Eell(G)

ι(G,G′)ŜG′

(fG′

)(8.2)

where as before fG′

is the Langlands-Shelstad transfer of f to G′, c.f. equation

(10.16) of [6]. Here the meaning of ŜG′

(fG′

) is similar to that of concerning

ŜG′

disc(f
G′

), c.f. the discussion near the end of Section 7.

We remark that, for the archimedean case of the local trace formula, the geo-
metric transfer identities that are needed in [6] to establish the endoscopic
decomposition (8.1)-(8.2), were established directly in [8], and so it is inde-
pendent of global arguments (in the non-archimedean case, the endoscopic
decomposition of the local trace formula was established in [6] using global
arguments, and so in particular the Fundamental Lemma is needed in the non-
archimedean case). We also remark that, when one of the components of f is
cuspidal, then the arguments for the endoscopic decomposition (8.1)-(8.2) were
already carried out in [4], Section 9 - 10.

Theorem 8.1. We have the stable local trace formula:

SG
disc(f) = SG(f)

where as before

SG(f)

=
∑

M∈L

|WM
0 ||W

G
0 |

−1(−1)dim(AM/AG)

∫

∆G−reg,ell(M,V,ζ)

n(δ)−1SG
M (δ, f)dδ,

and

SG
disc(f) =

∫

Φs−disc(G,ζ)

|Sφ|
−1σ(S

◦

φ)f
G
1 (φ)fG

2 (φ)dφ.

Proof. By induction on dim(Gder). Put E◦ell(G) = Eell(G)\{G}. Applying equa-
tion (7.11) and equation (8.2), we have

SG(f) = ŜG(fG) = IG(f)−
∑

G′∈E◦

ell
(G)

ι(G,G′)ŜG′

(fG′

)

and

SG
disc(f) = ŜG

disc(f
G) = IGdisc(f)−

∑

G′∈E◦
ell

(G)

ι(G,G′)ŜG′

disc(f
G′

).
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Now for G′ ∈ E◦ell(G), one has dim(G′
der) < dim(Gder), so by the induction

hypothesis, we have

ŜG′

disc(f
G′

) = ŜG′

(fG′

).

Combining with the equality IGdisc(f) = IG(f), we have obtained the theorem.
�

Remark 8.2.

(1) The method and results of this paper could be extended to the case where
G is a connected quasi-split reductive group over a p-adic field, as long as the
local Langlands correspondence is known for G, and such that the R-groups
Rφ and the component groups Sφ attached to the Langlands parameters of G
are all abelian. For instance the case of classical groups by the works [9, 11]
(with a slight complication in the even orthogonal case). We leave it to the
reader to formulate the corresponding results.

(2) For the geometric side of the stable local trace formula, the distributions
SG
M (δ, f) are defined inductively in terms of the invariant distributions IGM (γ, f),

which in turn is defined inductively by weighted orbital integrals, c.f. [4]. It is
thus a highly non-trivial matter to obtain explicit formulas for the distributions
SG
M (δ, f), when M 6= G. In this regard, we refer the reader to [12], where the

stable local trace formula is used to obtain explicit formulas for SG
M (δ, f), in

the case where f = f1× f̄2, where f2 is the stable pseudo-coefficient of a square
integrable parameter of G.
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