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Abstract. Let X = Γ\D be a Mumford-Tate variety, i.e., a quotient
of a Mumford-Tate domain D = G(R)/V by a discrete subgroup Γ.
Mumford-Tate varieties are generalizations of Shimura varieties. We
define the notion of a special subvariety Y ⊂ X (of Shimura type), and
formulate necessary criteria for Y to be special. Our method consists
in looking at finitely many compactified special curves Ci in Y , and
testing whether the inclusion

⋃
i Ci ⊂ Y satisfies certain properties.

One of them is the so-called relative proportionality condition. In this
paper, we give a new formulation of this numerical criterion in the
case of Mumford-Tate varieties X . In this way, we give necessary and
sufficient criteria for a subvariety Y of X to be a special subvariety of
Shimura type in the sense of the André-Oort conjecture. We discuss
in detail the important case where X = Ag, the moduli space of
principally polarized abelian varieties.
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1 Introduction

Griffiths domains [4] are flag domains, i.e., quotients of the form D = G(R)/V ,
where G is a certain reductive algebraic group defined over Q and V a compact
stabilizer subgroup. Griffiths domains parametrize pure Hodge structures of
given weight and Hodge numbers. Any moduli spaceM of smooth, projective
varieties induces, after a choice of cohomological degree and a base point, a
period map

P :M→ Γ\D,
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where Γ is the monodromy group, i.e., the image of the fundamental group of
M in G(R), a finitely generated, discrete subgroup.
In general, the period map P is not surjective, but has image contained in
quotients of so-called Mumford-Tate domains by discrete subgroups, see [4,
Chap. 15] or [7]:

Theorem 1.1. After possibly replacing M by a finite, étale cover, the period
map P factors as

P :M−→ Γnc\Dnc × Γc\Dc ×Df ,

into a product of quotients of domains of non-compact, compact or flat (i.e.,
constant) type. Here D• denotes a domain of the respective type. The compo-
sition with the third projection is constant. In addition, for each x1 ∈ Γnc\Dnc

and x3 ∈ Df , one has that Im(P) ∩ (x1 × Γc\Dc)× x3) is finite.

Recall that a domain is by definition of non-compact type (resp. compact type,
resp. flat type) if its universal cover is a product of non-compact irreducible
spaces (resp. product of compact irreducible spaces, resp. is a euclidean space).
Theorem 1.1 asserts that the ”non-compact part” of the period map is the
essential one. The (derived) Mumford-Tate group of the Hodge structure of
a general element inM contains the algebraic monodromy group, i.e., the Q-
Zariski closure of the topological monodromy group, as a normal subgroup by
a theorem of Y. André [4, Prop. 15.8.5].
In the rest of this paper, we will assume that G is of non-compact
type, Q-simple and adjoint. It is not difficult to reduce to this case. Only
in rare cases, D itself is Hermitian symmetric [4]. In these cases, Γ\D is a
connected component of a Shimura variety under some arithmetic condition on
Γ [5, 10]. An important example is the moduli space Ag = Γ\Hg of principally
polarized abelian varieties of dimension g with some level structure induced by
Γ. Here Hg denotes the Siegel upper half space of genus g. Shimura varieties
contain distinguished subvarieties which are called special subvarieties. The
zero-dimensional special subvarieties are the CM points, i.e., the points corre-
sponding to Hodge structures with commutative Mumford-Tate group. Positive
dimensional special subvarieties are more difficult to understand. However, the
André-Oort conjecture claims that special subvarieties of Shimura varieties are
precisely the loci which are the Zariski closures of sets of CM points. This
conjecture has recently attracted a lot of interest, see the work of Edixhoven,
Klingler, Pila, Ullmo, Tsimerman, Yafaev and others [6, 9, 13, 14, 16]. In 2015,
based on the above works, Tsimerman [16] completed the proof of the André-
Oort conjecture for Ag using an averaged version of a conjecture of Colmez
proved by Yuan and Zhang [19] and also independently by Andreatta-Goren-
Howard-Madapusi in [2].
Our aim is to give sufficient and effective Hodge theoretic criteria for a subva-
riety of X = Γ\D to be a special subvariety.
In [11] and [12], we have studied special subvarieties in Shimura varieties of
unitary or orthogonal type. Our method consisted of characterizing special
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subvarieties by a relative proportionality principle. The main goal of the present
work is to generalize this principle to quotients of Mumford-Tate domains.

1.1 Results in the case X = Ag

For the reader’s convenience, we first study the case where X = Ag. Let
Ag = Γ\Hg be a smooth model, i.e., we require that Γ is torsion-free. Recall
that by Hg we denote the Siegel upper half space of genus g. We choose a
smooth toroidal compactification Ag as constructed by Mumford et al. [3,
chap. III], such that the boundary S ⊂ Ag is a divisor with normal crossings.
We consider a smooth projective subvariety Y ⊂ Ag meeting S transversely and
define Y 0 := Y ∩Ag . Our results are valid for any compactification Ag satisfying
these conditions. Throughout this paper we denote subvarieties contained in
the locally symmetric part Ag of Ag with a superscript 0.
Such a subvariety Y 0 is called special, if it is an irreducible component of
a Hecke translate of the image of some morphism ShK(G,X) → Ag =
ShK(N)(GSp(2g),H±

g ), defined by an inclusion of a Shimura subdatum
(G,X) ⊂ (GSp(2g),H±

g ) together with some compact open subgroup K ⊂
G(Af ) such that K ⊂ K(N). See Section 3 for details about Shimura varieties
and special subvarieties.
We look for necessary and sufficient effective criteria, such that Y 0 is a special
subvariety with minimal dimension containing a union

⋃
i∈I C

0
i of finitely many

special curves Ci. Already in our previous works [11] and [12] we have found a
necessary condition for Y 0 to be special, provided a compactified special curve
C ⊂ Ag (i.e., compactification of a special curve C0 ⊂ Y 0) is contained in Y :

Definition 1.2 (Relative Proportionality Condition (RPC)).
Let C ⊂ Y ⊂ Ag be a compactified irreducible special curve with logarithmic
normal bundle NC/Y , and 3-step Harder-Narasimhan filtration 0 ⊂ N0

C/Y ⊂

N1
C/Y ⊂ N2

C/Y = NC/Y (both notions are explained in Section 4). Then one
has the relative proportionality inequality

degNC/Y ≤
rank(N1

C/Y ) + rank(N0
C/Y )

2
· deg TC(− logSC).

If C and Y are special subvarieties, then equality holds.

For curves C on Hilbert modular surfaces or Picard modular surfaces, this
condition is only a simple numerical criterion involving intersection numbers,
see [11] and [12].
Suppose we are given a finite number of compactified special curves Ci in
Ag, contained in some irreducible subvariety Y of dimension dim(Y ) ≥ 2.
We assume for simplicity that Y and all Ci intersect the boundary S of Ag

transversely. Fix a base point y ∈ Y 0 ⊂ Ag contained in the union of all
Ci and assume for simplicity that the union

⋃
i∈I C

0
i is connected. Let V

be the local system of weight 1 polarized Q-Hodge structures over Ag. More
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precisely, choose a level N ≥ 3 structure A
[N ]
g on Ag. Denote by f : U → Ag

the universal family of abelian varieties, then V = R1f∗Q is the local system
attached to it. So over each point y ∈ Ag, Vy is the associated polarized Q-
Hodge structure H1(Ay ,Q) with Ay being the abelian variety corresponding
to y. Let (E, θ) = (E1,0 ⊕ E0,1, θ) be the Higgs bundle associated with VC.
The thickening of the Higgs field is the pullback of the Higgs bundle on Y via
ϕ : C → Y :

θC/Y := ϕ∗θ : E1,0 → E0,1 ⊗ ϕ∗Ω1
Y (logSY ).

We can also consider the thickening in a point y ∈ Y :

θy∈Y : E1,0
y → E0,1

y ⊗ ϕ∗Ω1
Y (log SY )y.

Consider the k-fold tensor product (E, θ)⊗k. It decomposes as a direct sum

E⊗k =
∑

m+n=k

Em,n, where Em,n =
⊕

Em1,n1 ⊗ · · · ⊗ Emk,nk and the sum

ranges over all (mi, ni) with mi + ni = 1,

k∑

i=1

mi = m,

k∑

i=1

ni = n. The Higgs

field, which we continue to denote by θ, decomposes as θ : Em,n → Em−1,n+1⊗
Ω1

Y (logSY ) with

Em1,n1⊗· · ·⊗Emk,nk
θ
−→

k⊕

i=1

Em1,n1⊗· · ·⊗Emi−1,ni+1⊗· · ·Emk,nk⊗Ω1
Y (logSY )

satisfying the Leibniz rule. In particular, given a base point y ∈ ϕ(C) ⊂ Y , we
get the map

θy∈Y : Ep,p
y → Ep−1,p+1

y ⊗ Ω1
Y (logSY )y.

Note that the complex vector space Ep,p
y does not have any naturalQ-structure,

however since in the fibers Ep,p
y ⊂ V⊗k

y ⊗ C, we define

Definition 1.3. Let

Wy∈Y := {v ∈ Ep,p
y ∩ V⊗k

y,Q | θy∈Y (v) = 0},

i.e., the Hodge tensors that are killed by the (infinitesimal) Higgs field in y ∈ Y .
Note that if k is not even, then we require that Wy∈Y is trivial. The tensors
in Wy∈Y are called infinitesimally parallel Hodge tensors. We define the group
Hy to be the largest Q-algebraic group fixing the vectors in all Wy∈Y ( for all
p).

The spaces Wy∈Y (more generally Wy∈Y for a finitely generated sublocal
system W ⊂ V⊗, see Definition 1.8) and the group Hy will play a crucial role
in the sequel, see §7.

For the following definition, note that as remarked above, by the construction
of the Higgs bundle associated to a local system, it holds that in the fibers
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Em,n
y ⊂ V⊗k

y and so we can do the parallel transport using the connection
fiberwise (but the connection associated to the local system does not descend
to the graded bundle Em,n in general). Note that it is not in general true that
the property of being a (p, p)-class is preserved under the parallel transport.

Definition/Remark 1.4. Let

(Ep,p
y )par =

{v ∈ Ep,p
y ∩ V⊗k

y,Q|any parallel transport of v from y to y′ lies in Ep,p
y′ ∩ V⊗k

y′,Q}.

Here y′ ∈ Y varies in Y and we say “parallel transport of v from y to y′”, where
we mean more precisely ”parallel transport of v along any path from y to y′“.
By parallel transporting one also gets (Ep,p

y )par ≃ (Ep,p
y′ )par .

We define

MT (V)y = {g ∈ GL(Ey)|g stabilizes v ∈ (Ep,p
y )par for all p ∈ N}.

Note that (Ep,p
y )par is associated to a polarized sublocal system and since it

consists of Hodge tensors (i.e., Q-tensors of type (p, p)), its polarization is
definite and so it is unitary and hence v ∈ (Ep,p

y )par is killed by the Higgs field
θy∈Y . Hence, by the above defintion of the group Hy, we have the inclusion

Hy ⊂MT (V)y.

On the other hand, if MT (Vy) is the Mumford-Tate group fixing all Hodge
tensors in Vy, then it trivially holds that MT (Vy) ⊂ Hy. So in general we
have the inclusions

MT (Vy) ⊂ Hy ⊂MT (V)y.

Note that by parallel transport we have an isomorphism MT (V)y ≃MT (V)y′

(but in general the isomorphism MT (Vy) ≃MT (Vy′) is not true).

Now we are ready to state our first result:

Theorem 1.5. Let Y 0 be a smooth, algebraic subvariety of Ag such that Y 0

has unipotent monodromies at infinity. Let Y be a smooth compactification of
Y 0 as above such that Y intersects the boundary S of Ag transversely. Suppose
Y 0 contains finitely many special curves C0

i such that the compactification Ci

of C0
i is a special curve in Y and that

⋃
i∈I C

0
i is connected. Choose a base

point y ∈
⋃

i∈I C
0
i . Assume the following:

(BIG) The Q-Zariski closure in G = Sp(2g) of the monodromy representation of
π1(
⋃

i∈I C
0
i , y) equals the Q-Zariski closure of the representation of π1(Y

0, y).
(LIE) If H = Hy is the Q-algebraic group in Definition 1.3 and H(R)/K is the
associated period domain, then one has dimH(R)/K ≤ dim Y .
(RPC) All compactified special curves Ci satisfy relative proportionality.
Then, Y 0 is a special subvariety of Ag.
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In addition, the proof of the theorem implies that K is a maximal compact
stabilizer group, that H is of Hermitian type (i.e., H/K is a Hermitian sym-
metric space), and in the Hodge decomposition hC = h−1,1 ⊕ h0,0 ⊕ h1,−1 of
the real Lie algebra h = LieH(R), one has h−1,1 = TY 0,y for the holomorphic
tangent space of Y 0 at y. In particular, the group Hy does not depend on the
base point y in a crucial way.
More can be said about the group H = Hy : In fact, in general the holomorphic
tangent space TY 0,y is a subspace of the holomorphic tangent space of H/K at
y and H(R)/K ⊂ Hg is the smallest Mumford-Tate subdomain which contains
y and such that the holomorphic tangent space of H(R)/K at y contains TY 0,y,
see Proposition 1.10. Therefore, one always has dimH(R)/K ≥ dimY 0, and
condition (LIE) implies that dimH(R)/K = dimY 0.
Theorem 1.5 generalizes previous work in [11] and [12], which was restricted to
special subvarieties in unitary or orthogonal Shimura varieties, hence the case
of rank ≤ 2. There are explicit examples of connected cycles ∪iC0

i of special
curves C0

i in Ag for g ≥ 2, for which the minimal enveloping special subvariety
of ∪iC0

i is Ag but not smaller. For example two so called Mumford curves (see
[18], section 5) in A4 intersecting at one point. This shows that condition (LIE)
is necessary. We saw already above that (RPC) is also necessary. Condition
(BIG) is probably not a necessary condition. All three conditions are not
independent, but their relations are not fully understood. In the course of the
proof, we will see that condition (BIG) together with (RPC) implies that the
monodromy group Γ (i.e. the Q-Zariski closure ρ(π1(Y 0, y))) is contained in
the groupH = Hy defined above. We therefore formulate a condition as follows

(Mon) Γ ⊂ Hy

See the last section of this introduction for a strategy of the proof of Theo-
rem 1.5.

1.2 Results in the case of a Mumford-Tate variety X = Γ\D

Now we turn to the general case. As far as we know, there is no good notion of
Hecke operators on Mumford-Tate domains D = G(R)/V . In addition, there
are no good compactifications of a Mumford-Tate variety X = Γ\D known in
these cases in general [8].
Therefore, to avoid these two difficulties, by a special curve in X we will denote
an étale morphism

ϕ0 : C0 −→ X

from a Shimura curve C0, which is induced from a morphism of algebraic groups
G′ → G defined over Q, such that a certain Shimura datum for G′ defines C0.
Assume also that we are given a quasi-projective variety Y 0 ⊂ X containing
the image of ϕ0 and with a NC smooth compactification Y and let C be a
compactification of C0. Denote by SY = Y \ Y 0 the boundary divisor, and by
SC = C \C0, so that SC is the pullback of SY to C, and ϕ0 extends to a finite
map ϕ : C → Y .
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In Section 6, we show that there is a filtration

N0
C/Y ⊂ N1

C/Y ⊂ · · · ⊂ Ns
C/Y = NC/Y

on the logarithmic normal bundle NC/Y , induced by the Harder-Narasimhan
filtration on NC/X . The logarithmic normal bundle NC/Y is defined by the
exact sequence

0→ TC(− logSC)→ ϕ∗TY (− logSY )→ NC/Y → 0.

The relative proportionality condition can be stated as:

Definition 1.6 (Relative Proportionality Condition (RPC)).
The curve ϕ : C → Y satisfies the relative proportionality condition (RPC) if
the slope inequalities

µ(N i
C/Y /N

i−1
C/Y ) ≤ µ(N i

C/X/N i−1
C/X), for i = 0, ..., s

are equalities. The sheavesN i
C/X are properly defined in Section 6. The integer

s depends on C and X . Summing up these inequalities, yield the relative
proportionality inequality

degNC/Y ≤ r(C, Y,X) · deg TC(− logSC),

where r(C, Y,X) ∈ Q is a rational number depending on C, Y and X , and
hence on G. If C and Y are special subvarieties, then equality holds.

Let g = Lie(G) be the Lie algebra of G. We have a weight zero Hodge structure
on g,

g =
⊕

p

g−p,p.

Definition 1.7. We denote by T h
X the holomorphic, horizontal tangent bundle

to X [4, Sec. 12.5]. That is, T h
X is the homogenous bundle on X associated to

g−1,1.

Now we prove the analogue of Theorem 1.5 for Mumford-Tate varieties. We
will assume that Y 0 is a horizontal subvariety of X , i.e., that TY 0 is contained
in the horizontal tangent bundle T h

X . For the following theorem, we need also
to generalize the notion of special subvariety of Shimura type of a general
Mumford-Tate variety X . This will be done in section 5. Let V be a local
system of polarized Q-Hodge structures over X . So over each point y ∈ X ,
Vy is a polarized Q-Hodge structure of some given weight. Choose any finitely
generated, sublocal system W ⊂ V⊗ of even weight 2p and defined over Q,
where V⊗ is the full tensor algebra generated by tensor powers of V and its
dual. We denote the fiber of WQ over y by Wy,Q. Let (E, ϑ) be the Higgs
bundle corresponding to WC.
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Assume now that ϕ : C → Y compactifies C0 −→ Y 0 −→ X with C0 a special
curve in X . If ϕ : C → Y satisfies (RPC), then we have a decomposition:

NC/Y = N0
C/Y ⊕N1

C/Y /N
0
C/Y ⊕ · · · ⊕N i

C/Y /N
i−1
C/Y ⊕ · · · ⊕Ns

C/Y /N
s−1
C/Y .

Now let

θy∈Y := Ep,p
y → Ep−1,p+1

y ⊗ Ω1
Y (log SY )|y

be the thickening of the Higgs field along C, as explained in section 1.2, with
splitting

Ep−1,p+1
y ⊗ Ω1

Y (logSY )|y ∼= Ep−1,p+1
y ⊗

(
Ω1

C(logSC)|y ⊕N∨
C/Y |y

)
.

Although the complex vector space Ep,p
y does not have any natural Q-structure,

we define as in the Definition 1.3.

Definition 1.8. Under these assumptions, we define a complex vector space
in analogy with Definition 1.3

Wy∈Y := {t ∈ Ep,p
y ∩Wy,Q | θy∈Y (t) = 0}.

As in the case of Ag, the tensors in Wy∈Y are called infinitesimally parallel
Hodge tensors. We define the group Hy to be the largest Q-algebraic group
fixing the vectors in all Wy∈Y .

With the above definition, the condition (Mon) in the general case is fomulated
exactly as in the previous section, namely the monodromy group Γ (i.e. the Q-
Zariski closure ρ(π1(Y 0, y))) is contained in the group H = Hy defined above.

(Mon) Γ ⊂ Hy

Theorem 1.9. Let X = Γ\D be a Mumford-Tate variety associated to the
Mumford-Tate group G. Let Y 0 be a smooth, horizontal algebraic subvariety of
X that has unipotent monodromies at infinity. Moreover let Y be a NC smooth
compactification of Y 0. Suppose that there exists a finite collection of special
curves ϕ0

i : C0
i −→ Y 0 such that

⋃
i∈I C

0
i is connected with compactifications

ϕi : Ci −→ Y as above and NC divisors SCi = Ci \ C
0
i . Choose a base point

y ∈
⋃

i∈I C
0
i . Assume the following:

(BIG) The Q-Zariski closure in the Mumford-Tate group G of the monodromy
representation of π1(

⋃
i∈I C

0
i , y) equals the Q-Zariski closure of the representa-

tion of π1(Y
0, y).

(LIE) If H = Hy is the Q-algebraic group of Definition 1.8 and K a compact
subgroup such that H(R)/K ⊂ D is the period domain associated to H, then
one has dimH(R)/K ≤ dimY .
(RPC) All compactified special curves Ci satisfy relative proportionality.
Then, Y 0 is a special subvariety of X of Shimura type (see Definition 5.1).
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In addition, as in the case of Ag, the proof of the theorem implies that the
group H essentially does not depend on y, K is a maximal compact stabilizer
group, that H is of Hermitian type, and in the Hodge decomposition hC =
h−1,1⊕h0,0⊕h1,−1 of the real Lie algebra h = LieH(R), one has h−1,1 = TY 0,y

for the holomorphic tangent space of Y 0 at y. See Proposition 1.10 and the
paragraph following this proposition for the above claims.
The (RPC) condition implies that the above filtration is in fact the Harder-
Narasimhan filtration on NC/Y .

Strategy of the proof

The proof of both theorems is based on the following observations:

Proposition 1.10. Let X = Γ\D be a Mumford-Tate variety associated to the
Mumford-Tate group G. Let Y 0 be a smooth, horizontal algebraic subvariety of
X such that Y 0 has unipotent monodromies at infinity. Assume the conditions
(Mon) and (LIE). Then Y 0 is special.

Proof. Let Γ be the image of π1(Y
0, y) under ρ in G. The map of universal

covers Ỹ 0 → G(R)/V factors through Ỹ 0 → H(R)+/K →֒ G(R)/V and using
condition (Mon), the period map may be viewed as a map

Y 0 P
→֒Z0 = Γ\H(R)+/K.

By condition (LIE), one has Y 0 = Z0 for dimension reasons. Since Y 0 is
horizontal by assumption, it follows that Y 0 is special.

Note that the tangent space of the image of the above period map P lies in the
horizontal subspace of the tangent space of H(R)/K. By the condition (LIE),
the tangent space of the image of the period map is equal to the tangent space
of H(R)/K. Hence the tangent space of H(R)/K itself is horizontal. Therefore
H is of Hermitian type and in particular K is maximal compact.
Using this Proposition, the proofs of Theorem 1.5 and Theorem 1.9 are reduced
to the proof of the following Theorem:

Theorem 1.11. Let X = Γ\D be a Mumford-Tate variety associated to the
Mumford-Tate group G. Let Y 0 be a smooth, horizontal algebraic subvariety
of X such that Y 0 has unipotent monodromies at infinity. Then, conditions
(BIG) and (RPC) imply condition (Mon).

The condition (BIG) may be replaced by other conditions: for example, one
may require that there is an integral linear combination

∑
i∈I aiCi which de-

forms in X and fills X out. In [12], we showed that this assumption implies
condition (BIG) as well. In this light, we pose the following

Conjecture 1.12. Suppose an irreducible Mumford-Tate varietyX associated
to G contains (infinitely many) special curves. Then, condition (BIG) holds
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for X , i.e., there are finitely many compactified special curves Ci in X , such
that the Q-Zariski closure of the monodromy representation of π1(

⋃
i∈I C

0
i , y)

is equal to G.

In addition, one wants to find an effective bound of the number of special curves
needed. Conjecture 1.12 is known to be true in the case where G = SO(2, n)
and G = SU(1, n) for n ≥ 1, see [12, Remark 3.7]. However, it appears to be
open even in the case G = Sp2g for large g. It may be possible to solve this
conjecture by looking at one special curve C0 containing a CM-point y and
taking finitely many Hecke translates of C0 which fix the point y.
Theorem 1.11 will be proved in the last section. In the sections before, we
recall the notions of special subvarieties and explain the condition (RPC).
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2 Mumford-Tate groups and Hodge classes

For any Q-algebraic group M , we denote by MR the associated R-algebraic
group. Let V be a Q-Hodge structure with underlying Q-vector space also
denoted by V . This corresponds to a real representation

h : S −→ GL(VR)

of the Deligne torus S = ResC/RGm.

Definition 2.1. The (large) Mumford-Tate group MT (V ) of V is the smallest
Q-algebraic subgroup of GL(V ) such that MT (VR) contains the image of h.
The (special) Mumford-Tate group, or Hodge group, Hg(V ) = SMT (V ) is
the smallest Q-algebraic subgroup of SL(V ) such that SMT (VR) contains the
image of the subgroup S1 ⊂ S.

Depending on the context, we will use both groups under the general name
Mumford-Tate group. If one looks at all Hodge classes in V ⊗i ⊗ V ∨⊗j for all
(i, j), then the special Mumford-Tate group SMT (V ) is precisely the largest Q-
algebraic subgroup G ⊂ Sp(2g) fixing all Hodge classes in such tensor products.

Example 2.2. Let us look at Hodge structures of weight 1. We fix a level

N structure A
[N ]
g on Ag with N ≥ 3. Therefore, there is a universal family

f : U → Ag over Ag. Let V = R1f∗Q be the natural Q-local system of weight
one on Ag. We denote by

V⊗
C =

⊕

i,j

V⊗i
C ⊗ V

∨⊗j
C
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the full tensor algebra. This is an infinite direct sum of polarized local systems,
where each summand V⊗i

C ⊗V
∨⊗j
C carries a family of Hodge structures of weight

i−j. A Hodge class in V⊗
C is a flat section in some finite dimensional subsystem

of V⊗

C defined over Q and corresponding fiberwise to a (p, p)-class.

3 Special Subvarieties in Ag

Let us recall some useful notation concerning Shimura varieties and their special
subvarieties.

Definition 3.1 (Shimura datum). A Shimura datum is a pair (G,X) consist-
ing of a connected, reductive algebraic group G defined over Q and a G(R)-
conjugacy class X ⊂ Hom(S, GR) such that for all (i.e., for some) h ∈ X ,
(i) The Hodge structure on Lie(G) defined by Ad◦h is of type (−1, 1)+(0, 0)+
(1,−1).
(ii) The involution Inn(h(i)) is a Cartan involution of Gad

R .
(iii) The adjoint group Gad does not have factors defined over Q onto which h
has a trivial projection.

The connected components of X form G(R)+-conjugacy classes. The weight
cocharacter h ◦ w : Gm,C → GC does not depend on the choice of h.

For a compact open subgroup K ⊂ G(Af ), we consider the double coset
space ShK(G,X) = G(Q) \ (X × G(Af )/K). We denote an element of this
set by [x, aK] (x ∈ X , aK ∈ G(Af )/K). The Shimura variety associated to
the above Shimura datum is defined as Sh(G,X) = lim

←−
ShK(G,X). Note

that ShK(G,X) can be recovered from Sh(G,X) as the quotient modulo K
by the theory of Shimura varieties. An element γ ∈ G(Af ) defines a map
ShK′(G,X) → ShK(G,X), [x, aK ′] 7→ [x, aγK] called the Hecke translate for
K ′ ⊂ γKγ−1. This map induces a (right) action of G(Af ) on Sh(G,X). We
refer to [10] for an accessible reference concerning Shimura varieties.

A morphism of Shimura data (M,X ′) → (G,X) is a homomorphism M → G
of algebraic groups sending X ′ to X . A morphism of Shimura varieties
Sh(M,X ′) → Sh(G,X) is an inverse system of regular maps of algebraic
varieties compatible with the action of G(Af ).

Denote by (GSp(2g),H±
g ) the Shimura datum in the sense of Deligne [5] defining

Ag = A
[N ]
g with level structure given by the compact open subgroup K(N) of

GSp(2g)(Af ).

Definition 3.2 (Special Subvarieties). A special subvariety of Ag is a geo-
metrically irreducible component of a Hecke translate of the image of some
morphism ShK(G,X) → Ag = ShK(N)(GSp(2g),H±

g ), which is defined by an
inclusion of a Shimura subdatum (G,X) ⊂ (GSp(2g),H±

g ) together with some
compact open subgroup K ⊂ G(Af ) such that K ⊂ K(N).
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In other words, by the above notation, there is a sequence

Sh(G,X)C −→ Sh(GSp(2g),H±
g )C

γ
−→Sh(GSp(2g),H±

g )C
quot
−→Ag = ShK(N)(GSp(2g),H±

g )

where γ ∈ G(Af ) and the second map is the Hecke operator defined above.

Special subvarieties are totally geodesic subvarieties with respect to the natu-
ral Riemannian (Hodge) metric, i.e., geodesics which are tangent to a special
subvariety stay inside. In fact, there is almost an equivalence by a result of
Abdulali [1] and Moonen:

Proposition 3.3. An irreducible algebraic subvariety of Ag is special if and
only if it is totally geodesic and contains a CM point.

Proof. See Theorem 6.9.1 in Moonen [10].

4 Relative Proportionality in Ag

Consider a non-singular projective curve C and an embedding

ϕ : C →֒ Y →֒ Ag,

where Y ⊂ Ag is a smooth projective subvariety as in the introduction. We
denote by C0 := ϕ−1(Y 0) 6= ∅ the ”open” part, where Y 0 = Y ∩ Ag. Assume
that C0 is a special curve in the following. Let SC and SY be the intersections
of C and Y with S. We assume overall that such intersections are transversal.

The logarithmic normal bundles of C in Y and Ag are defined by the exact
sequences

0→ TC(− logSC)→ TAg
(− logS)→ NC/Ag

→ 0,

0→ TC(− logSC)→ TY (− logSY )→ NC/Y → 0.

Let N•
C/Y be the Harder-Narasimhan filtration on the logarithmic normal bun-

dle NC/Ag
intersected with NC/Y . The following definition was given in [12,

Def. 1.4].

Definition 4.1 (Relative Proportionality Condition (RPC)).
The map ϕ : C →֒ Y satisfies the relative proportionality condition (RPC), if
the slope inequalities

µ(N i
C/Y /N

i−1
C/Y ) ≤ µ(N i

C/Ag
/N i−1

C/Ag
), i = 0, 1, 2

are equalities. For the slopes, one gets by [12]:

µ(N2
C/Ag

/N1
C/Ag

) = 0,

µ(N1
C/Ag

/N0
C/Ag

) =
1

2
degTC(− logSC),

µ(N0
C/Ag

) = degTC(− logSC).
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Hence, we obtain a set of inequalities

µ(N2
C/Y /N

1
C/Y ) ≤ 0,

µ(N1
C/Y /N

0
C/Y ) ≤

1

2
deg TC(− logSC),

µ(N0
C/Y ) ≤ degTC(− logSC).

Adding all three inequalities we obtain a single inequality

degNC/Y ≤
rank(N1

C/Y ) + rank(N0
C/Y )

2
· deg TC(− logSC).

In case of equality, we say that (RPC) holds.

Example 4.2. In case Y is a smooth projective surface, and C is a smooth
special curve in Y intersecting the boundary SY transversally, then

(KY + SY )·C + 2C2 = 0,

if Y is a Hilbert modular surface, and

(KY + SY )·C + 3C2 = 0,

if Y is a ball quotient, see [11, Thm. 0.1], [12, Ex. 1.6] and [4, Chap. 17].

The main consequence of (RPC) is the following:

Proposition 4.3.
(i) If ϕ : C →֒ Y satisfies (RPC), then ϕ∗TY (− logSY ) is a direct summand of
an orthogonal decomposition of ϕ∗TAg

(− logS) with respect to the Hodge met-
ric.
(ii) If Y 0 →֒ Ag is a special subvariety, then ϕ∗TY (− logSY ) is a direct sum-
mand of an orthogonal decomposition of ϕ∗TAg

(− logS) with respect to the

Hodge metric and ϕ : C →֒ Y satisfies (RPC).

Proof. [12, Prop. 1.5].

In [12, Formula 1.3] we showed that, if C0 is a special curve, one has a splitting

ϕ∗TY (− logSY ) ∼= TC(− logSC)⊕NC/Y .

This splitting is induced from a corresponding splitting of ϕ∗TAg
(− logS). If, in

addition, (RPC) holds, then this splitting is compatible with the decomposition

NC/Y =
2⊕

i=0

N i
C/Y /N

i−1
C/Y .
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5 Special Subvarieties in X = Γ\D

As far as we know, there is no good notion of Hecke operators on Mumford-
Tate domains D = G(R)/V . In addition, there are no good compactifications
of X = Γ\D known in these cases, since X does not even carry any algebraic
structure in general [8]. Here Γ is the monodromy group.

Therefore, to avoid these two difficulties, by a special curve in X we will denote
an étale morphism

ϕ0 : C0 −→ X = Γ\G(R)/V

from a Shimura curve C0 to X , induced from a morphism of algebraic groups
G′ → G defined over Q. In other words, C0 is the quotient of the orbit of a
certain Hodge structure h ∈ D under the conjugation action of G′. One can
generalize this notion to arbitrary special subvarieties.

Let h ∈ D be a Hodge structure with Mumford-Tate group Mh. The Mh(R)-
orbit of h under the conjugation action of Mh(R) in D is a Mumford-Tate do-
main D(Mh) ⊂ D in the sense of [7, 4]. In other words, D(Mh) is a connnected
component of the image of a Shimura datum (M,X ′) in the Mumford-Tate
datum (G,X), see [4, Chap. 17]. Using this notation, we define:

Definition 5.1. A special subvariety of Shimura type in X is a horizontal,
algebraic subvariety Z0 ⊂ X , such that there is a Hodge structure h ∈ D with
Mumford-Tate group M = Mh such that Z0 is a quotient of the orbit D(M)
by a discrete subgroup.

Note that we shall omit reference to the Hodge structure h and simply speak
of a Mumford-Tate domain D(M) as in the above definition.

Hence, by our definition of a special subvariety Z0, we have a commutative
diagram

D(M)

��

// D

��

Z0 // X

Note that we always require a special subvariety to be horizontal and algebraic,
so that Z0 is of Shimura type, i.e., D(M) is a Hermitian symmetric domain.
In most cases, Z0 is a proper subvariety of X by [8].

Remark 5.2. More general notions of special subvarieties in Mumford-Tate
varieties are conceivable, for example horizontal subvarieties of maximal di-
mension in Mumford-Tate varieties. But it is not clear whether such defini-
tions have good properties. For example such varieties may not carry any CM
points.

Documenta Mathematica 24 (2019) 523–544



Special Subvarieties in Mumford-Tate Varieties 537

6 Relative Proportionality in X = Γ\D

To define the relative proportionality condition (RPC), using the notation of
the previous paragraph, we need first the following observations.

Let C0 ϕ0

−→Y 0 i
→֒X be a special curve and Y 0 an algebraic subvariety of X =

Γ\D. Let Y be a smooth compactification of Y 0 and C a compatible smooth
compactification of C0, which extends to a finite morphism ϕ : C → Y . Note
that for this we do not need to require thatX has an algebraic compactification.
Denote by SY = Y \Y 0 the boundary divisor, and by SC = C \C0, so that SC

is the pullback of SY to C.
Fix a base point corresponding to a Hodge representation h : S → GR whose
orbit under G defines X . Let g = Lie(G). As mentioned earlier, g =

⊕
p g

−p,p

carries a weight zero Hodge structure. If K is a maximal compact subgroup
containing V , then its complexified Lie algebra kC is given by the sum for even
p, whereas its complement pC is the sum for all odd p [4, Sec. 12.5]. For p = 1,
we obtain the horizontal, holomorphic tangent bundle, see Definition 1.7. The
vertical tangent bundle is given by the quotient of Lie algebras k/v, where v is
the Lie algebra of V . This terminology comes from the fibration [4, 8]

ω : D = G(R)/V −→ G(R)/K.

We remark that the horizontal tangent bundle agrees with the usual tangent
bundle, if V = K and D is a Hermitian symmetric domain, for example in the
case of X = Ag.

Proposition 6.1. Assume that Y 0 (and hence C0) has unipotent monodromies
at infinity. Then the bundle (ϕ0)∗T h

X on C0 extends to a vector bundle on C
which we denote by ϕ∗T h

X(− logS).

Proof. Let Vp,q be the universal vector bundles on D which parametrize the
(p, q)-classes on X . The horizontal, holomorphic tangent bundle T h

X of X is
contained in a direct sum of the Hodge bundles:

T h
X ⊂ End

−1,1

(
⊕

p,q

Vp,q

)
=
⊕

p,q

Hom
(
Vp,q,Vp−1,q+1

)
.

All these bundles are homogenous on D, and the inclusion of the subbundle TX

is defined by explicit conditions. Over the algebraic variety Y 0, the restricted
bundles Vp,q|Y 0 on the right hand side, and also the subbundle TX |Y 0 , have
a Deligne extension V

p,q
|Y 0 to Y . Therefore, T h

X |Y 0 and (ϕ0)T h
X have natural

extensions to Y and C which we denote by ϕ∗T h
X(− logS), although S does

not exist.

Using this, we can define the logarithmic normal bundle NC/X through the
exact sequence

0→ TC(− logSC)→ ϕ∗T h
X(− logS)→ NC/X → 0.
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In a similar way, we have the exact sequence

0→ TC(− logSC)→ ϕ∗TY (− logSY )→ NC/Y → 0.

By a previous result [12, Prop. 1.5.(ii)] of ours, see Prop. 4.3(ii) above, which is
independent of Ag, we know that the logarithmic tangent bundle TC(− logSC)
is an orthogonal direct summand of the newly defined bundle ϕ∗TX(− logS)
with respect to the Hodge metric:

TC(− logSC) →֒ ϕ∗TX(− logS).

We now show that certain local systems on C0 split in a controlled way, giving
a representation-theoretic proof of the following result of [17].

Lemma 6.2. Assume that V is a C-variation of Hodge structures of weight k
over C0 which comes from a G(R)-representation on X by restriction. Then,

V = U⊕
⊕

i

(
Si(L) ⊗ Ti

)
,

where L is a weight one local system of rank 2 and Ti and U are unitary local
systems of weights k − i and k respectively.

Proof. Since C0 splits in at least one place, we may assume that the special
Mumford-Tate group of the Shimura curve C0 has the form SL(2)×U1×...×Ur

for some r ≥ 0, where the Ui are compact Lie groups (i.e., anisotropic). This
gives rise to an embedding SL(2) × U1 × ... × Ur →֒ G of algebraic groups.
Now, since the groups Ui are compact as real groups, it follows that every rep-
resentation of them is a unitary representation and it is well-known that the
representations of the group SL(2)R are direct sums of symmetric products of
the standard representation. Note also that the irreducible subrepresentations
of the product representation is a product of the irreducible subrepresentations
of each representation and that the product of unitary representations is again
unitary. This means that there is a standard 2-dimensional representation L

and unitary representations Ti and U such that V has the asserted decomposi-
tion.

Note that, since L is a weight 1 variation of Hodge structures, and C0 is a
special curve, by results of [17], its Deligne extension to C corresponds to a
Higgs bundle of the form (L ⊕ L−1, σ) such that the Higgs field σ : L →
L−1 ⊗ Ω1

C(logSC) is an isomorphism, and hence L2 ≃ Ω1
C(log SC).

We can now apply Lemma 6.2 to the universal C-local system VC of weight
k ≥ 1 on X coming from the Q-local system V described above. It implies that
(ϕ0)∗VC = U ⊕

⊕
i

(
Si(L)⊗ Ti

)
for local systems L, Ti and U over C0. We

denote the Higgs bundles on C corresponding to the C-local systems (ϕ0)∗VC,
Ti and U by V , Ti and U . The bundles Ti and U have degree 0 and their Higgs
fields are zero. Note that the Higgs field of Si(L) comes from that of L, i.e.,
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is equal to Si(σ) for σ the Higgs field of L. The Higgs field of V respects the
direct sums and vanishes on U. Therefore,

TC(− logSC) ⊆

⊕

✷

Hom
(
Li−2µ ⊗ Ti,a,L

j−2ν ⊗ Tj,b
)
⊂ End−1,1


 ⊕

p+q=k

Vp,q


 ,

where the bundles Ti,a, Tj,b have slope 0, and ✷ = {(µ, i, ν, j, a, b) ∈ N6
0 | µ ≤

i ≤ k, ν ≤ j ≤ k, a ≤ k−i, b ≤ k−j, j+b−ν = i+a−µ−1}. In the above sum,
TC(− logSC) is a direct summand and orthogonal with respect to the natural
Riemannian (i.e., Hodge) metric. Let TC(− logSC)

⊥ denote the orthogonal
complement of TC(− logSC) in this sum. Thus, there is a decomposition

ϕ∗TX(− logS) = TC(− logSC)⊕NC/X ,

such that, as in [12, Section 1],

NC/X ⊂

TC(− logSC)
⊥ ⊕

⊕

p+q=k

Hom
(
Up,q,Vp−1,q+1

)
⊕
⊕

p+q=k

Hom
(
Vp,q,Up−1,q+1

)
.

In particular, NC/X is a sum of polystable bundles of different slopes. Hence,
one has a Harder-Narasimhan decomposition

NC/X =

s⊕

i=0

Ri

with polystable bundles Ri of strictly increasing slopes µ(Ri) < µ(Ri+1). The
length s is an integer depending on C and X .
Accordingly, the Harder-Narasimhan filtration on NC/X is given by

N i
C/X = R0 ⊕R1 ⊕ · · · ⊕Ri, 0 ≤ i ≤ s.

Taking the induced filtration N i
C/Y := N i

C/X ∩ NC/Y on NC/Y obtained by
intersection, we get a filtration on NC/Y :

N0
C/Y ⊂ N1

C/Y ⊂ · · · ⊂ Ns
C/Y = NC/Y .

In analogy with the Ag case, we can now make the following definition:

Definition 6.3 (Relative Proportionality Condition (RPC)).
We say that ϕ : C → Y satisfies the relative proportionality condition (RPC),
if the slope inequalities

µ(N i
C/Y /N

i−1
C/Y ) ≤ µ(N i

C/X/N i−1
C/X), i = 0, . . . , s

are equalities.
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Adding all these inequalities, we obtain a single inequality

degNC/Y ≤ r(C, Y,X) · deg TC(− logSC),

where r(C, Y,X) ∈ Q is a rational number depending on C, Y and X , and
hence on G. However, it is not possible to write r(C, Y,X) in a closed form, as
in the case of X = Ag, since it would depend on G and not only on the weight
k. In example 4.2, the constant r(C, Y,X) is 1 in the case of Hilbert modular
surfaces and 1

2 in the case of ball quotients. The assertions of Proposition 4.3
and [12, Formula 1.3] also hold in this more general case by induction over s,
i.e., we have a splitting

ϕ∗TY (− logSY ) ∼= TC(− logSC)⊕
s⊕

i=0

N i
C/Y /N

i−1
C/Y ,

if C0 is a special curve in X satisfying (RPC).

7 Proof of Theorem 1.11

In this section we prove Theorem 1.11. From this, Theorem 1.5 and Theo-
rem 1.9 follow, as we showed in the introduction.
We assume conditions (BIG) and (RPC) and look at a smooth and horizontal
subvariety Y 0 →֒ X , where X = Γ\G(R)/K is a (connected) Mumford-Tate
variety.
We choose a base point y ∈

⋃
i C

0
i . Note that X carries a family of Q-Hodge

structures V as a local system. It does not underly a variation of Q-Hodge
structures in general, since Griffiths transversality may not hold. However,
when restricted to Y 0, or the curves C0

i , this will be the case, since Y 0 is
horizontal. We now consider the restriction of V to Y 0 only.
Let H be the Q-algebraic group from condition (LIE). By Definition 1.8, it fixes
precisely the Hodge classes in these vector spaces Wy∈Y . For ease of notation,
set C = Ci in what follows (till end of the proof of Lemma 7.1) and denote
the restriction VC to C by VC . Since the C-local system VC has the form
VC =

⊕(
Si(L) ⊗ Ti

)⊕
U, where L is related to a C-local system of weight 1

corresponding to a Higgs bundle L ⊕ L−1, by Lemma 6.2 and (proof of) [17],
Proposition 3.4, the Higgs field is given by

Si−2µ(σ) : Li−2µ → Li−2µ−2 ⊗ Ω1
Y (logS).

In particular, the sheaves Ep,q can be decomposed into a direct sum of
polystable sheaves Ep,q

ι of slopes µ(Ep,q
ι ) = ιdegL for ι ∈ [−qk, · · · , pk]. Using

this, we prove:

Lemma 7.1. The thickening θy∈Y on Ep,q
ι decomposes as a direct sum of mor-

phisms:

Ep,q
ι

θ
Ni

C/Y
/N

i−1

C/Y
−−−−−−−−−→ Ep−1,q+1

ι+ri ⊗ (N i
C/Y /N

i−1
C/Y )

∨
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between polystable bundles of the same slope. Here, ri is the number satisfying
µ(Ri) = µ(N i

C/Y /N
i−1
C/Y ) = ri degL.

Proof. Note that the above decomposition of NC/Y gives a corresponding de-
composition as

θC + θNC/Y
= θC + θN0

C/Y
+ θN1

C/Y
/N0

C/Y
+ · · ·+ θNs

C/Y
/Ns−1

C/Y
.

Since, by Lemma 6.2 on the curve C, one has the C-local system VC =⊕(
Si(L)⊗ Ti

)⊕
U, the description of the sheaves Ep,q shows that we can

reduce to the situation i = 1. This case is treated in [12, Lemma 2.7] for V⊗k
C .

In fact, if i = 1, then for k = 1 we have the decompositions

L ⊗ T → L−1 ⊗ T ⊗ Ω1
C(logSC)

L ⊗ T → L−1 ⊗ T ⊗ (N0
C/Y )

∨

L ⊗ T → U∨ ⊗ (N1
C/Y /N

0
C/Y )

∨

U → U∨ ⊗ (N2
C/Y /N

1
C/Y )

∨

and for arbitrary weight k, the result can be obtained by reducing to the case
k = 1 by remembering that θ⊗k

y∈Y is defined by the Leibniz rule.

Thus, we have shown that the kernels of ϑ decompose into vector bundles with
vanishing slopes, and hence induce unitary Higgs bundles. This is the crucial
ingredient for the remaining proof.

Proposition 7.2. Under condition (RPC), the subspaces Wy∈Y,Q and Wy∈Y

are invariant under the monodromy action of π1(
⋃

iC
0
i , y) → G and define a

unitary local system on each curve C0
i . If conditions (RPC) and (BIG) both

hold, then the subspaces Wy∈Y,Q and Wy∈Y are invariant under the monodromy
action of π1(Y

0, y)→ G.

Proof. The proofs of Prop. 2.4 and Prop. 3.1 of [12] immediately carry over
to this more general situation. Indeed the kernels ker(θp,p) decompose to sub-
bundles with non-positive slopes and one shows that ker(θp,p)0, the subbundle
of slope 0, is invariant under complex conjugation induced by the real struc-
ture and underlies a unipotent subsystem W of type (p, p). Conversely, any
t ∈ Wy∈Y,R lies in ker(θp,p)0,y showing that WR,y = Wy∈Y,R. Proposition 3.1
of [12] says that the subspace Wy∈Y,R is invariant under monodromy action.
Fixing a base point y1 ∈ C0

1 the idea is to study the parallel transport of real
vectors in Wy1∈Y,R along paths in the connected subspace

⋃
i Ci. The Higgs

field θy∈Y decomposes as θy∈C1
+ θNC1/Y ,y and hence Wy∈Y,R can be identified

with the kernel of θNC1/Y ,y. On the other hand, as indicated above, there is a
unitary subsystem WC1

of type (p, p) such that Wy∈Y,R = WC1,y. The kernel
θNC1/Y

is a polystable subbundle of slope zero and hence it underlies a unitary
subsystem W′

C1
. It follows that Wy∈Y,R ⊂ W′

C1,y
. Now starting with a real
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vector t1 ∈ Wy∈Y,R and parallel transporting it along some path in C0
1 from

y1 to y2 ∈ C0
1 ∩ C0

2 to a vector t2, one sees that t2 is also a real vector and
is contained in the fiber of W′

C1
at y2. It therefore follows that θy∈C1

(t2) = 0
and θNC1/Y ,y(t2) = 0, i.e., t2 ∈ Wy2∈Y,R. Regarding y2 ∈ C0

2 and repeating the

above parallel transport along a path in C0
2 , from y2 to y3 ∈ C2 ∩ C3 and so

on, one concludes that Wy∈Y,R is invariant under the monodromy action.
Finally, the last part of the proof there uses only condition (BIG).

As in Cor. 3.5 of [12], one gets the following corollary:

Corollary 7.3. The subspaces Wy∈Y define a unitary local subsystem U ⊂
W on Y 0 with Q-structure. The local system U extends to Y , and has finite
monodromy.

Since we assumed that the monodromies at infinity are unipotent, which always
holds after a finite étale cover of Y 0, this means that U is trivial, and all its
global sections, i.e., all (p, p)-classes inside U, which are by definition of Wy∈Y

invariant under H , are also monodromy-invariant. Recall that the Mumford-
Tate group MT (VY 0) is the Q-algebraic group fixing all parallel Hodge classes
for all p [4, Chap. 15]. We obtain therefore:

Corollary 7.4. The infinitesimally fixed Hodge classes in WQ over points
y ∈ Y 0 are globally monodromy-invariant. Hence, condition (Mon) holds.

Therefore, Theorem 1.11 is proven.
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