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Abstract. We establish the Iwasawa main 
onje
ture for semistable

abelian varieties over a fun
tion �eld of 
hara
teristi
 p under 
ertain
restri
tive assumptions. Namely we 
onsider p-torsion free p-adi
 Lie
extensions of the base �eld whi
h 
ontain the 
onstant Zp-extension
and are everywhere unrami�ed. Under the usual µ = 0 hypothesis, we
give a proof whi
h mainly relies on the interpretation of the Selmer


omplex in terms of p-adi
 
ohomology [TV℄ together with the tra
e

formulas of [EL1℄.
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1 Introduction

1.1 Statement of the main theorem

Consider a fun
tion �eld K of 
hara
teristi
 p, C the 
orresponding proper

smooth geometri
ally irredu
ible 
urve over a �nite �eld k and an abelian

variety A/K with Néron model A/C. Assume for simpli
ity that A has good

redu
tion everywhere and that the Hasse-Weil L fun
tion of A/K does not

vanish at s = 1. In this situation the BSD 
onje
ture predi
ts that ea
h group

involved in the right hand term below is �nite and that the following formula

holds (where Â denotes the dual abelian variety):

L(A/K, 1) =
#X(A/K)

#A(K)#Â(K)
.
#H0(C,Lie(A))

#H1(C,Lie(A))
(1)
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Let us restri
t our attention to the p-adi
 valuations on both sides. There

are natural perfe
t 
omplexes of Zp-modules RΓ(C, Tp(A)), RΓ(C,Lie(A))
whose 
ohomology groups are the p-part of the groups appearing above. These

omplexes thus be
ome a
y
li
 after extension of s
alars to Qp, hen
e pro-

du
e 
lasses in K0(Zp,Qp) ≃ Z. Looking at L(A/K, 1) as an element of

K1(Qp) ≃ Qp
×
, the p-part of (1) simply be
omes

∂(L(A/K, 1)) = [RΓ(C, Tp(A))] + [RΓ(C,Lie(A))] (2)

where ∂ : K1(Qp) → K0(Zp,Qp) is the 
onne
ting map of lower K-theory

(ie. the p-adi
 valuation vp : Qp
× → Z). As explained in [KT℄ the 
omplexes

appearing on the right hand side 
an be related to p-adi
 (
rystalline and then

rigid) 
ohomology and the tra
e formulae whi
h are known in this 
ontext are

then su�
ient to a
tually prove (2).

The main purpose of this paper is to establish a similar statement in the setting

of non 
ommutative Iwasawa theory. We don't assume that L(A/K, 1) 6= 0
anymore and A is now allowed to have semistable redu
tion at some given

set Z of points of C. Consider a Galois extension K∞/K whi
h 
ontains the


onstant Zp-extension Kk∞/K, is unrami�ed everywhere, and whose Galois

group G = lim
←−n

Gn is p-adi
 Lie without p-torsion. In that situation, a general

result explained in se
tion 2 will allow us to form perfe
t 
omplexes of modules

over the Iwasawa algebra Λ(G) := lim
←−n

Zp[Gn]:

NK∞
:= R lim

←−n
RΓZn(Cn, Tp(A))

LK∞
:= R lim

←−n
RΓZn(Cn, Lie(A))

where RΓZn(Cn,−) is the fun
tor of 
ohomology vanishing at Zn (see. se
tion

4 for a pre
ise de�nition and the relation to usual Selmer 
omplexes) and is

designed to take out the 
ontribution of Z. A signi�
ant di�eren
e with the

BSD statement is that here, the 
ohomology of these 
omplexes are expe
ted

to be torsion Λ(G)-modules even if L(A/K, 1) = 0. This is well known if

K = Kk∞ (see. Cor. 5.2 or [LLTT℄ Cor. 2.1.5). To go from this 
ase to the

general one, we follow the strategy of [CFKSV℄, whi
h unfortunately requires an

extra assumption, namely the usual µ = 0 hypothesis. More pre
isely, we will

prove the following generalization of [LLTT℄, where only the 
ase K = Kk∞
was 
onsidered.

Theorem 1.1. (Thm. 5.15) Let A/K, K∞/K and G as above. If the µ-
invariant of the Pontrjagin dual of the dis
rete Selmer group of A over Kk∞
is trivial, then

(i) The 
ohomology Λ(G)-modules of NK∞
and LK∞

are S∗
-torsion, where

S∗
is the 
anoni
al Ore set of [CFKSV℄. The latter 
omplexes

thus produ
e 
lasses [NK∞
] and [LK∞

] in K0(Λ(G),Λ(G)S∗) (denoted

K0(MH(G)) in lo
. 
it.).
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(ii) There exists a 
anoni
al element LA/K∞
∈ K1(Λ(G)S∗) satisfying

∂LA/K∞
= [NK∞

] + [LK∞
] (3)

where ∂ : K1(Λ(G)S∗)→ K0(Λ(G),Λ(G)S∗) denotes the 
onne
ting map

in lower K-theory.

(iii) The element LA/K∞
veri�es the interpolation property

ρ(LA/K∞
) = L(U,A/K, ρ∨, 1) (4)

for ea
h Artin O-valued representation ρ of G (O/Zp, a totally ram-

i�ed extension), where ρ(−) : K1(Λ(G)S∗) → L× ∪ {0,∞} denotes

the 
orresponding evaluation map, (−)∨ denotes the 
ontragredient, and

L(U,A/K, ρ, s) is the ρ-twisted Hasse-Weil L-fun
tion of A/K without

Euler fa
tors at Z = C − U .

We also give a similar statement involving 
omplexes N∗
K∞

and L∗
K∞

whi
h

are Λ(G)-dual to NK∞
and LK∞

(see Prop. 2.11 (ii), as well as Prop. 4.16,

(ii) for the pre
ise statement).

Here, the 
onstru
tion of LA/K∞
, the proof that NK∞

is torsion and the proof

of (3) are simultaneous and rely essentially on the main result of [TV℄ (a

shea��ed version of [KT℄ Prop. 5.13) whi
h yields distinguished triangles of

perfe
t 
omplexes of Λ(G)-modules relating �at and 
rystalline 
ohomology

(see Se
t. 4.4.4 and Rem. 4.15). The proof of (4) relies on the 
omparison of


rystalline and rigid 
ohomology [LST℄ together with the tra
e formula for the

latter and the 
odes
ent properties of the Iwasawa 
omplexes along the tower

K∞/K (Prop. 4.16, relying on Thm. 2.11).

1.2 Outline of the paper

Se
tion 2. De�ning the 
omplexes NK∞
, LK∞

or N∗
K∞

, L∗
K∞

o

urring in the

main 
onje
ture (3) involves forming proje
tive limits along the Galois tower

formed by the Cn's or alternatively indu
tive limits and taking duals. In order

to perform these operations, a 
onvenient framework is given by the derived 
at-

egory of normi
 systems Db(GMod(Zp)) de�ned and studied in [Va℄. A normi


system is a 
olle
tion Mn of Gn-modules together with equivariant morphisms

Mn →Mm, Mm →Mn satisfying a natural 
ompatibility (Def. 2.1). The pur-

pose of this se
tion is to show that the 
olle
tion of derived fun
tors RΓ(Cn,−)

omes from a fun
tor RΓ(C,−) with values in Db(GMod(Zp)).
We pla
e ourself in a setting whi
h is general enough to handle the various


ohomology theories (�at, étale, 
rystalline...) involved here. Namely we show

(Lem.-Def. 2.7) that in a ringed topos (E,R) any pro-torsor X = (Xn, Gn)n
gives rise to a fun
tor

Γ(X,−) :Mod(E,R)→ GMod(Γ(E,R)) (5)
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from the 
ategory of R-modules of E to that of normi
 systems of Γ(E,R)-
modules. Using [Va℄, the �nal subse
tion 
olle
ts the basi
 properties (des
ent,


odes
ent, perfe
tness, duality, under suitable assumptions, see. Thm. 2.11) of

the Iwasawa 
omplexes de�ned using the fun
tor

D+(E,Zp)→ D(Λ(G))

obtained by 
omposing RΓ(X,−) with R lim
←−n

, or alternatively with lim
−→n

and

then RHom(−,Zp).

Se
tion 3. We review the basi
 fa
ts from K-theory whi
h are needed for our

purpose. This involves mainly the determinant fun
tor for perfe
t 
omplexes

from [Kn℄ and its behaviour with respe
t to distinguished triangles and lo
al-

ization following [FK℄. We also dis
uss the evaluation map whi
h appears in (4).

Se
tion 4. We begin by re
alling the de�nition of the derived fun
tor RΓZ(C, .)
of global se
tions vanishing at a 
losed subs
heme Z whi
h naturally appears in

the 
omparison theorem of [TV℄ and is denoted RΓar,V in [KT℄ (see Rem. 4.13

for a more pre
ise statement). Next we 
ompare the 
omplex of normi
 systems

RΓZ(C, Tp(A)) underlying NK∞
to the usual Selmer 
omplex of A/K. We take

the opportunity to give a tra
table de�nition for normi
 Selmer 
omplexes and

prove the expe
ted duality theorem in this setting.

Finally we re
all the 
omparison result of [TV℄ (whi
h takes pla
e in the small

étale topos of C) and write down the fundamental distinguished triangles that

follow from it, using (5):

RΓZ (C, Tp(A)) → RΓ(C♯/Zp, F il1Dlog(A)(−Z))
1−φ
→ RΓ(C♯/Zp,Dlog(A)(−Z))

+1
→

RΓ(C♯/Zp, F il1Dlog(A)(−Z))
1
→RΓ(C♯/Zp, Dlog(A)(−Z)) → RΓ(C,Lie(A)(−Z))

+1
→

(6)

Here φ is a semi-linear map su
h that φ1 = pFrob. By applying R lim
←−n

, these

in turn yield distinguished triangles of perfe
t 
omplexes of Λ(G)-modules

satisfying the derived 
odes
ent property. This will be the main ingredient for

the proof of 1.1.

Se
tion 5. We put everything together in order to prove the Iwasawa main


onje
ture. The third term of the �rst distinguished triangle above is a k-
ve
tor spa
e and the arrow denoted 1 thus be
omes invertible after inverting

S∗
. When
e an endomorphism (1−φ)S∗1

−1

S∗ a
ting on the lo
alization PK∞,S∗

of

PK∞
:= R lim

←−
RΓ(C♯n/Zp, Dlog(A)(−Z))

In the 
ase where G = Γ, the base 
hange formula in 
rystalline 
ohomology

together with a semi-linear argument shows that the �rst term in the se
ond

distinguished triangle above vanishes as well after S∗
-lo
alization. In the gen-

eral 
ase, an argument using Nakayama's lemma ensures that it is still the 
ase
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under the µ = 0 assumption. The endomorphism (1− φ)S∗1
−1
S∗ is thus invert-

ible, allowing us to de�ne LA/K∞
∈ K1(ΛS∗) as its determinant, rendering (3)

almost tautologi
al. Let us hint the idea of the proof of (4). Using the des
ent

properties of the normi
 se
tion fun
tor together with the 
omparison between


rystalline and rigid 
ohomology from [LST℄, we prove an isomorphism

L
L
⊗ΛO(G)(Vρ,ΛO(G))

∗
L
⊗Λ(G)PK∞

≃ RΓrig,c(U/L, pr
∗D† ⊗ U(ρ∨)) (7)

where U(ρ∨) denotes the unipotent 
onvergent iso
rystal asso
iated to ρ (Prop.
5.16). On the one hand the tra
e formula in rigid 
ohomology shows that

L(U,A/K, ρ∨, 1) 
oin
ides with the alternated produ
t of the determinants of

1 − p−1Frob a
ting on the L-valued 
ohomology of the right hand side. Sin
e

we have no morphism from ΛS∗
to L we may not use dire
tly the base 
hange

property of the Det fun
tor together with a lo
alized version of (7) in order to

relate the a
tion of 1−p−1Frob on the right hand side with ρ(L). We turn this

di�
ulty by investigating 
arefully the spe
tral sequen
e of 
odes
ent along

Kk∞/K with the de�nition of the evaluation map in mind.

Acknowledgements. The �rst author is supported by JSPS grant 15K04793.
Both authors thank the referees for their 
areful reading and suggestions to

simplify the paper.

2 The normic section functor

The purpose of this se
tion is to show that under reasonable 
onditions the


ohomology of a topos along a Galois tower with group G naturally gives rise

to perfe
t 
omplexes of Λ(G)-modules satisfying natural properties su
h as

derived des
ent, 
odes
ent and duality along the tower. This goal is a
hieved

in Thm. 2.11.

2.1 Normic systems

We de�ne and study brie�y the 
ategory of normi
 systems along a pro�nite

group G. The following de�nitions slightly generalize those given in [Va℄.

Definition 2.1. Consider a ring S, a pro�nite group G, and let (Hn)n∈N
denote the �ltered set of the normal open subgroups of G (N an appropriate

�ltered set of indi
es). For n ≤ m in N , we denote Gn = G/Hn and Gm,n =
Hn/Hm. In this setting we de�ne the following 
ategories.

(i) GMod(S) the 
ategory of S-modules endowed with a dis
rete a
tion of G,
ie. whi
h are the union of their �xed points by the Gn's.
(ii) Gn

Mod(S) the full sub
ategory of GMod(S) whose obje
ts are those on

whi
h Hn a
ts trivially. For m ≥ n, the in
lusion fun
tor Gn
Mod(S) →

Gm
Mod(S) has a left and a right adjoint, des
ribed respe
tively as the 
oin-

variants fun
tor (−)Gm,n
and the �xed points fun
tor (−)Gm,n

.
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(iv) GMod(S) the 
ategory of Mod(S)-valued normi
 systems is de�ned a fol-

lows:

- an obje
t is a triple M = ((Mn)n∈N , (jn,m : Mn → Mm)n≤m, (km,n : Mm →
Mn)n≤m) satisfying the following properties:

(Norm1) Mn is an obje
t of Gn
Mod(S), jn,m and km,n are morphisms of

GMod(S).

(Norm2) If n1 ≤ n2 ≤ n3 then jn2,n3 ◦ jn1,n2 = jn1,n3 and kn2,n1 ◦ kn3,n2 =
kn3,n1 .

(Norm3) If n ≤ m, jn,m ◦ km,n :Mm →Mm 
oin
ides with the endomorphism

∑

g∈Gm,n
cg of Mm. Note that this is not only a morphism in Mod(S), but also

in GMod(S) sin
e Hn ⊳G.
- a morphism φ : M → M ′

is a 
olle
tion of morphisms of GMod(S), (φn :
Mn →M ′

n)n∈N su
h that the following squares 
ommute for ea
h 
ouple n ≤ m:

Mm
φm // M ′

m Mm

km,n

��

φm // M ′
m

km,n

��
Mn

jn,m

OO

φn // M ′
n

jn,m

OO

Mn
φn // M ′

n

Let us make some remarks about the 
ategory GMod(S) of dis
rete G-obje
ts.
- For M,M ′ ∈G Mod(S):

Hom
GMod(S)(M,M ′) ≃ lim

←−
n

lim
−→
m

Hom
GMod(S)(M

Hn ,M ′Hm).

- The 
ategory GMod(S) is a full sub
ategory of Mod(S[G]). The in
lusion

fun
tor has a right adjoint M 7→ ∪nM
Hn

. In parti
ular, GMod(S) has enough
inje
tives sin
e Mod(S[G]) has.

We now turn to some properties of the 
ategory GMod(S) of normi
 systems.

Proposition 2.2. Small indu
tive and proje
tive limits exist in GMod(S) and

ommute to the 
omponent fun
tors GMod(S) → Gn

Mod(S). In parti
ular,

GMod(S) is an abelian 
ategory.

Proof. In order to form the indu
tive (resp. proje
tive) limit indexed by a set

I in GC, it su�
es to form the limit of the 
omponents and endow them with

the jn,m and km,n provided by fun
toriality. This prove the �rst statement.

The se
ond one follows sin
e being abelian is a property of limits ([KS℄, Def.

8.2.8 and Def. 8.3.5).

The following lemma, inspired by [TW℄ has been pointed out by B. Kahn.

Lemma 2.3. (i) If G is in fa
t a �nite group, then the 
ategory GMod(S)
is equivalent to Mod(µ⊳(G,S)) where µ⊳(G,S) is the normal Ma
key al-

gebra, de�ned as the quotient of the free asso
iative algebra S{{cg, g ∈
G}, {jn,m, km,n, n ≤ m}} by the following relations:
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- cg1cg2 = cg1g2 , cgjn,m = jn,mcg, cgkm,n = km,ncg, for g, g1, g2 ∈ G and n ≤ m
in N .

- jn2,n3jn1,n2 = jn1,n3 , kn2,n1kn3,n2 = kn3,n1 , for n1 ≤ n2 ≤ n3 in N .

- cgjn,n = jn,n, jn,n = kn,n, for n ∈ N and g ∈ Hn.

- jn,mkm,n =
∑

g∈Gm,n
cgjm,m, for n ≤ m in N .

-

∑

n∈N jn,n = 1.
(ii) In general, GMod(S) is equivalent to the 
ategory of 
o
artesian se
-

tions of the 
o�bered 
ategory above Nop
asso
iated to the 
ovariant pseudo-

fun
tor on Nop
mapping n to Mod(µ⊳(Gn, S)), and m ≥ n to the fun
tor

Mod(µ⊳(Gm, S)) → Mod(µ⊳(Gn, S)) given by extension of s
alars through

the morphism µ⊳(Gm, S) → µ⊳(Gn, S) de�ned by killing the ja,b's and kb,a's
with b � n.

Proof. (i) Let us des
ribe the fun
tor GMod(S)→Mod(µ⊳(G,S)). A normi


system M is sent to ⊕nMn, together with its obvious stru
ture of µ⊳(G,S)-
module: cg a
ts on every 
omponents whereas jn,m (resp. km,n) sends the

n-th (resp. m-th) 
omponent into the m-th (resp. n-th) one. By de�nition, a

morphism of normi
 systemsM →M ′

onsists in a 
olle
tion of morphisms φn :

Mn → M ′
n, 
ompatible with the cg's, the jn,m's and the km,n's. It thus gives

rise to a morphism ⊕nMn → ⊕nM
′
n, 
ompatible with the a
tion of µ⊳(G,S)

and this is 
learly 
ompatible to 
omposition. We thus have de�ned the desired

fun
tor GMod(S) → Mod(µ⊳(G,S)). It now remains to noti
e that both the

full faithfulness and the essential surje
tivity of this fun
tor immediately follow

from the isomorphism of algebras µ⊳(G,S) ≃
∏

n∈N jn,nµ⊳(G,S).
(ii) We apply (i) to the 
ase G = Gn. Letting n vary, this gives an equivalen
e

of 
o�bered 
ategories. When
e the result, sin
e GMod(S) is 
learly equivalent
to the 
ategory of 
o
artesian se
tions of the 
o�bered 
ategory asso
iated to

n 7→ Gn
Mod(S).

The following 
orollary answers a question of [Va℄.

Corollary 2.4. The 
ategory GMod(S) has enough inje
tives.

Proof. Let F/Nop
denote the �bered 
ategory n 7→ Mod(µ⊳(Gn, S)) 
onsid-

ered previously and let Sect(F/Nop) (resp. Cocart(F/Nop)) denote its 
ate-
gory of se
tions (resp. 
o
artesian se
tions). Denoting |N | the dis
rete 
ategory
underlying N , there are three obvious forgetful fun
tors

Cocart(F/Nop)
F1→ Sect(F/Nop)
F2→

∏

|N |Mod(µ⊳(Gn, S))
F3→ Mod(S)|N |

ea
h of whi
h is exa
t and whose 
omposition is faithful. The result will follow

formally if one proves that ea
h of them has a right adjoint. For F3, this is easy

and left to the reader. For F2, this results from [SGA4℄, Vbis, 1.2.10 (note that
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here F/Nop
is indeed bi�bered). For F1, we use the following general easy fa
t


on
erning an arbitrary 
o�bered 
ategory F/S with 
o
leavage f 7→ f!:
Fa
t : Assume that for any f : X → Y the following properties are veri�ed:

- The fun
tor "
omposition with f" :S/X → S/Y is 
o�nal.

- f! 
ommutes to proje
tive limits indexed by S/X .
Then the in
lusion fun
tor Cocart(F/S) → Sect(F/S) has a right ad-

joint, whi
h takes a se
tion X 7→ s(X) to the 
o
artesian se
tion X 7→
lim
←−f :Z→X

f!s(Z).

Remark 2.5. One may show that GMod(S) has enough proje
tives as well.

2.2 From sheaves to normic systems

As before let G = lim
←−n

Gn denote a pro�nite group and let Gn = G/Hn. Re
all

that the 
lassifying topos BG is the 
ategory of dis
rete left G-sets. Consider
another arbitrary topos E together with its stru
tural morphism π : E → Set
and assume given a proje
tive system X = (Xn) of G-obje
ts of E su
h that

Xn is a torsor of E under π−1Gn. In this situation we have for m ≥ n a


ommutative diagram of topoi as follows:

E
p∞

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣

pm
uu❧❧❧

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

pn||②②
②②
②②
②②
②

π

��
BG qm

// BGm qm,n

// BGn
// Set

Here the horizontal arrows are by fun
toriality of the 
lassifying topos with

respe
t to the group (their inverse and dire
t images fun
tors are in�ation and

�xed points by the adequate subgroup) and the oblique morphisms, de�ned by

X, are as follows:

- If Y is in BGn
and Y 0

denotes the underlying set, the formula g.(x, y) =
(gx, gy) de�nes an a
tion of π−1Gn on Xn×π

−1Y 0
and p−1

n Y = π−1Gn\(Xn×
π−1Y 0) is the 
oinvariant obje
t of this a
tion. If Z is an obje
t of E, then
pn,∗Z is the set Hom(Xn, Z) endowed with the left a
tion of Gn indu
ed by

the inverse a
tion on Xn: (g.f)(x) = f(g−1x).
- If Y is in BG then the formula g.(x, y) = (gx, gy) de�nes an a
tion of p−1

∞ G
on Xm × π

−1(Y Hn)0 for ea
h m,n in N and p−1
∞ Y = lim

−→n
lim
←−m

π−1G\(Xm ×

π−1(Y Hn)0) (Note that p−1
∞ is exa
t, sin
e lim

←−m
is essentially 
onstant while

lim
−→n

is �ltered). If Z is an obje
t of E then p∞,∗Z is the set lim
−→n

Hom(Xn, Z)
endowed with the left a
tion of G indu
ed by the inverse a
tion of G on f .
Endowing the set Gn with its left a
tion by translations turns it into an obje
t

of BG (resp. BGm
, if m ≥ n) whose image by p∞ (resp. pm) is nothing but

Xn.
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For the purpose of what follows we will 
onsider a ring S. Endowing it with a

trivial a
tion of G, we may as well view it as a ring of BGn
or BG.

Definition 2.6. We de�ne a fun
tor

Γ(G,−) :Mod(BG, S)→ GMod(S)

by sending an S-module M of BG to (Mn, jn,m, km,n), where Mn =MHn
, jn,m

is the in
lusion and km,n the tra
e map.

Lemma + definition 2.7. Let G, S, E and X be as above. Consider further-

more a ring R of E and a ring homomorphism S → π∗R. Letting Mod(E,R)
denote the 
ategory of R-modules of E, we de�ne the fun
tor of Normi
 se
tions

along X
Γ(X,−) :Mod(E,R)→ GMod(S)

by 
omposing p∞,∗ : Mod(E,R) → Mod(BG, S) with the fun
tor Γ(G,−) :
Mod(BG, S)→ GMod(S) of Def. 2.6.
For any F in Mod(E,R), the obje
t ((Mn), (jn,m), (km,n)) := Γ(X,F ) satis�es
the following properties:

- Mn is the restri
tion of s
alars to S of the R(Xn)-module F (Xn) endowed

with the a
tion of Gn 
oming from the right a
tion of Gn on Xn: (g, x) 7→ g−1x.
-jn,m : Mn →Mm is the restri
tion along Xm → Xn. and indu
es an isomor-

phism Mn ≃M
Gm,n
m (ie. F (Xn)→F (Xm)Gm,n

).

Proof. By de�nition we have Mn = MHn = qn,∗M , where M = p∞,∗F . Now,
qnp∞ ≃ pn, thereforeMn ≃ pn,∗F = F (Xn). The se
ond property is 
lear.

Remark 2.8. If the topos E is lo
ally 
onne
ted, it is possible to build tra
e

maps along �nite lo
ally free morphisms, su
h as Xm → Xn. One may then

show that km,n 
oin
ides with the tra
e map.

Lemma 2.9. Consider another topos E′
with stru
tural morphism π′ : E′ → Set

and a morphism of ringed topoi f : (E′, R′)→ (E,R). Let us moreover denote

X ′ = (f−1Xn) the proje
tive system of torsors of E′
dedu
ed from X and


onsider the morphism S → π′
∗R

′
indu
ed by h : S → π∗R and R→ f∗R

′
. The

fun
tor Γ(X ′,−) asso
iated to these data is subje
t to a 
anoni
al isomorphism

RΓ(X ′,−) ≃ RΓ(X,Rf∗(−))

of fun
tors D+(E′, R′)→ D+(GMod(S)).

Proof. This simply follows from the fa
t that the morphism of ringed topoi

(E′, R′)→ (BG, S) de�ned by X 
oin
ides with the one obtained by 
omposing

f with the morphism (E,R)→ (BG, S) de�ned by X.

The derived fun
tor

RΓ(X,−) : D+(Mod(E,R))→ D+(GMod(S))
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will be our tool to dedu
e the fundamental distinguished triangles (whi
h are

the main ingredient in our proof of the main 
onje
ture) from the 
omparison

isomorphism of [TV℄. It might be worth to emphasize that the nth 
omponent

fun
tor

(−)n : D+(GMod(S))→ D+(Gn
Mod(S))

sends RΓ(X,F ) to RΓ(Xn, F|Xn
).

2.3 Descent, codescent and duality

We now assume that the ring S of Def. 2.6 is Zp, and we dis
uss how to pass

from normi
 systems to Iwasawa modules.

In order to be able to invoke dire
tly the results of [Va℄, we now assume that

Λ := Zp[[G]] := lim
←−

Zp[Gn] is Noetherian of �nite global dimension d + 1 and

has an open pro-p-subgroup. As is well known, these 
ondition is in parti
ular

veri�ed if G is a 
ompa
t p-adi
 Lie group of dimension d without p-torsion.

- Limits. Forgetting the km,n's (resp. the jn,m's), in�ating from Gn-modules

to dis
rete G-modules (resp. abstra
t Λ-modules) and then forming the limit

of the resulting indu
tive (resp. proje
tive) system gives rise to a fun
tor whi
h

will abusively be denoted

lim
−→

: GMod(Zp)→ GMod(Zp) (resp. lim
←−

: GMod(Zp)→Mod(Λ))

The �rst is exa
t and thus passes to derived 
ategories while the se
ond is only

left exa
t, but right derivable. From now on, we always assume that R lim
←−

has

�nite 
ohomologi
al dimension. This is e.g. the 
ase if N has a numerable


o�nal subset (as is always the 
ase in pra
ti
e).

Proposition 2.10. There are 
anoni
al adjun
tions

(lim
−→

, RΓ(G,−)) : D+(GMod(Zp)) → D+(GMod(Zp))

(Λ
L
⊗Λ(−), R lim

←−
) : D−(GMod(Zp)) → D−(Λ)

Here, Λ denotes the natural normi
 system of right Λ-modules (Zp[Gn]) and

Λ⊗Λ (−) :Mod(Λ)→ GMod(Zp) denotes the indu
ed right exa
t, left derivable

fun
tor.

Proof. The derived version are easily dedu
ed from the obvious ordinary ad-

jun
tions using that GMod(Zp) and GMod(Zp) have enough inje
tives (
f.

Prop. 2.4). In [Va℄, this was not known and a �niteness assumption was

thus needed to avoid deriving lim
←−

(
f. lo
. 
it. Prop. 4.2. and Rem. 4.3).

In the above proposition, it is possible to make the adjun
tion morphisms

involved fun
torial at the level of the 
omplexes. Also, they 
an still be provided

a fun
torial 
one, as in lo
. 
it.

- Duality. Consider a Zp-module I. If M (resp. Mn) is a Zp-module

endowed with a left a
tion of G (resp. Gn) then HomZp
(M, I) (resp.
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HomZp
(Mn, I)) is endowed a left a
tion of G (resp. Gn) as well by re-

versing the a
tion on M (ie. (g.f)(m) = f(g−1m)). If the a
tion of G
is dis
rete the a
tion of G on HomZp

(M, I) extends to an a
tion of Λ.
If now M = (Mn, jn,m, km,n) is a normi
 system then HomZp

(M, I) :=
(HomZp

(Mn, I), HomZp
(km,n, I), HomZp

(jn,m, I)) is a normi
 system as well.

Using an inje
tive resolution of Zp we get duality fun
tors

RHomZp
(−,Zp) : Db(GMod(Zp)) → Db(Λ)

RHomZp
(−,Zp) : Db(GMod(Zp)) → Db(GMod(Zp))

It might be useful to point out the following relation to Pontryagin duality:

RHomZp
(M

L
⊗Qp/Zp,Qp/Zp) ≃ RHomZp

(M,Zp)

If nowM is a Λ-module we view HomΛ(M,Λ) as a left Λ-module via the right

a
tion of Λ on itself and the involution g 7→ g−1
. Using proje
tive resolutions

of M we get a fun
tor

RHomΛ(−,Λ) : Db(Λ) → Db(Λ)

Theorem 2.11. Let E, Xn be as in the previous paragraph.

(i) (Descent) There is a 
anoni
al isomorphism

RΓ(X,−)
∼
→RΓ(G, lim

−→
RΓ(X,−))

of fun
tors D+(E,Zp)→ D+(GMod(Zp)).
(ii) Consider a bounded 
omplex F of Zp-modules of E (resp. and assume

that there exists q0) su
h that Hq(Xn, F|Xn
) is �nitely generated over Zp (resp.

trivial) for any n ∈ N , q ≥ 0 (resp. q ≥ q0).
(Codescent) Fun
torially in F , There is a 
anoni
al isomorphism in

D+(GMod(Zp)):

Λ
L
⊗ΛR lim

←−
RΓ(X,F )

∼
→RΓ(X,F )

(Perfectness) R lim
←−

RΓ(X,F ) and RHomZp
(lim
−→

RΓ(X,F ),Zp) are in Dp(Λ)
(the derived 
ategory of perfe
t 
omplexes).

(Duality) Fun
torially in F , There is a 
anoni
al isomorphism in Dp(Λ):

RHomZp
(lim
−→

RΓ(X,F ),Zp) ≃ RHomΛ(lim←−
RΓ(X,F ),Λ)

Proof. (i) We are going to 
he
k that the adjun
tion morphism of

(lim
−→

, RΓ(G,−)) is an isomorphism. Repla
ing F by an inje
tive resolu-

tion and trun
ating, one redu
es to the 
ase where F is an inje
tive Zp-module

of E pla
ed in degree 0. Let M := Γ(X,F ). Then ∀n, Mn is inje
tive in

Gn
Mod(Zp) (indeed Mn 
orresponds to pn∗F ) and the des
ent map indu
es an

isomorphism Mn →M
Gm,n
m . Similarly lim

−→n
Mn is inje
tive and the adjun
tion
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morphism of des
ent o

urring in D+(GMod(Zp)) is represented at level n by

the isomorphism Γ(Xn, F|Xn
)→ Γ(Hn, lim−→m

Γ(Xm, F|Xm
)).

(ii) Under the stated assumptions,

- (Codescent) and (Perfectness) follow from (i), by [Va℄ 4.4 (ii) et 4.6 (i).

- (Duality) follows from (Codescent), by lo
. 
it. 4.6 (iii).

Remark 2.12. Properties (Codescent) and (Perfectness) are a 
ru
ial tool

in this paper. It seems plausible that they hold without assuming that G has

�nite 
ohomologi
al dimension but we have not tried to 
he
k this.

2.4 Examples

Start with a proje
tive system of C-s
hemes Cn whi
h are étale surje
tive over

C and assume that the Cn's are endowed with 
ompatible a
tions of the Gn's
su
h that ea
h Gn × Cn → Cn ×C Cn, (g, x) 7→ (gx, x) is an isomorphism.

(In view of our appli
ations, let us noti
e that if C and Cn are proper smooth


urves over a �eld with respe
tive fun
tion �elds K and Kn then the latter


ondition holds as soon as the unrami�ed extension Kn/K is Galois). These

data represent a proje
tive system of torsors, say X of the small étale topos

E = Cet and we are thus in the situation of the previous paragraphs.

Of 
ourse these data also produ
e a proje
tive system of torsors, say X ′
, of the

big, say �at, topos E′ = CFL. Note that if ǫ : CFL → Cet denotes the natural
morphism, then X ′ = ǫ−1X .

Consider now the small étale 
rystalline topos E′′
of C/Zp and the proje
tion

morphism u : E′′ = (C/Zp)crys,et → Cet = E. Then we de�ne a proje
tive

system of torsors of E′′
by pulling ba
k via u: X ′′ := u−1X .

As explained in the previous paragraph, these data give rise to 
ompatible

normi
 se
tion fun
tors, ie. to an essentially 
ommutative diagram

D+(CFL, R
′)

Rǫ∗ //

RΓ(X ′,−) ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
D+(Cet, R)

RΓ(X,−)

��

D+((C/Zp)crys,et, R′′)
Ru∗oo

RΓ(X′′,−)uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

D+(GMod(Zp))

whenever one is given Zp-algebras R, R′
, R′′

in E, E′
, E′′

and homomorphisms

R→ ǫ∗R
′
, R→ ǫ∗R

′′
.

The n-
omponent of the left (resp. middle, resp. right) normi
 se
tion fun
tor


omputes the 
ohomology of the lo
alized topos CFL/X
′
n, (resp. Cet/Xn, resp.

(C/Zp)crys,et/X ′′
n), ie. of Cn,FL (resp. Cn,et, resp. (Cn/Zp)crys,et). We will

thus use the more suggestive notations RΓ(CFL,−) (resp. RΓ(Cet,−), resp.
RΓcrys,et(C/Zp,−)).

Documenta Mathematica 24 (2019) 473–522



Non Commut. IMC for Ab. Varieties over Funct. Fields 485

3 K-theory for Λ(G)

For the 
onvenien
e of the reader, we review the K-groups and determinant

fun
tors whi
h are needed for our purpose. Unless spe
i�ed otherwise, R de-

notes a (unitary) ring.

3.1 Review of K0 and K1

The following de�nitions 
an be found in [Ba℄, 
h. VII, IX.

- K0(R) is the abelian group de�ned by generators [P ], where P is a �nitely

generated proje
tive R-modules, and relations

i. [P ] = [Q] if P is isomorphi
 to Q as a R-module.

ii. [P ⊕Q] = [P ] + [Q]

- K1(R) is the abelian group de�ned by generators [P, f ], where P is a �nitely

generated proje
tive R-module and f is an automorphism of P with relations

(the group law is denoted multipli
atively):

i. [P, f ] = [Q, g] if P is isomorphi
 to Q as a R-module via an isomorphism

whi
h is 
ompatible with f and g.

ii. [P ⊕Q, f ⊕ g] = [P, f ][Q, g]

iii. [P, fg] = [P, f ][P, g]

Note that if the ring R is Noetherian and regular, then forgetting the word

�proje
tive� does not 
hange the de�nitions (
f [Ba℄, IX, Proposition 2.1).

- The fun
tor HomR(−, R) realizes an anti-equivalen
e between �nitely gen-

erated proje
tive left modules and �nitely generated proje
tive right modules.

As a result, one gets an isomorphism Ki(R) ≃ Ki(R
op), if Rop denotes the

opposed ring. Both this isomorphism and its inverse will be denoted (−)∗ (eg.

[P, f ]∗ = [P ∗, f∗] if f∗
denotes the transpose of f).

- Morita equivalen
e. Let us �x a �nitely generated proje
tive right R-module

V and let V ∗ = HomR(V,R). Then V (resp. V ∗
) is naturally endowed with a

natural stru
ture of ((EndR(V ), R)-bimodule (resp. (R,EndR(V ))-bimodule).

Sin
e V is proje
tive and �nitely generated, one has a 
anoni
al isomorphism

of (R,R)-bimodules: V ∗ ⊗EndR(V ) V ≃ R (resp. of (EndR(V ), EndR(V ))-
bimodules: V ⊗R V

∗ ≃ EndR(V ).
The fun
tor V ∗ ⊗EndR(V ) (−) : Mod(EndR(V )) → Mod(R) is thus an equiv-

alen
e of 
ategories, with V ⊗R (−) as quasi-inverse. In parti
ular, there is a


anoni
al isomorphism Ki(EndR(V )) ≃ Ki(R), i = 0, 1.

3.2 The determinant functor

Let P(R) denote the 
ategory of stri
tly perfe
t (ie. bounded with proje
tive

�nitely generated obje
ts) 
omplexes,Kp(R) its homotopy 
ategory andDp(R)
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its essential image in the derived 
ategory (whi
h is naturally equivalent, and

identi�ed, to Kp(R)). If Dp(R)is denotes the sub
ategory of Dp(R) where

morphisms are the isomorphisms of the latter we have by [Kn℄, th. 2.3, 2.12 a


anoni
al fun
tor

DetR : Dp(R)is ≃ Kp(R)is → CR (8)

where CR is the Pi
ard 
ategory (ie. a 
ategory together with an endobifun
-

tor, referred to as the produ
t, endowed with asso
iativity and 
ommutativity

isomorphisms satisfying natural 
ompatibilities, unit obje
ts and where every

obje
t and every morphism is invertible; 
f [Kn℄ appendix A) 
onsidered in

[FK℄ 1.2:

• An obje
t of CR is a 
ouple (P,Q) of �nitely generated proje
tive R-
modules.

• Mor((P,Q), (P ′, Q′)) is empty if [P ]− [Q] 6= [P ′]− [Q′] in K0(R). Else,
there exists an R-module M su
h that

P ⊕Q′ ⊕M ≃ P ′ ⊕Q⊕M.

We set IM := Isom(P⊕Q′⊕M,P ′⊕Q⊕M) and GM := Aut(P ′⊕Q⊕M)
and we de�ne the set of morphisms from (P,Q) to (P ′, Q′) asK1(R)×

GM

IM where the right hand side denotes the quotient of K1(R)× IM by the

a
tion of GM given by

(x, y) 7→ (xḡ, g−1y))

where x ∈ K1(R), y ∈ IM , g ∈ GM and ḡ is its image in K1(R). As seen
easily, this set does not depend onM , up to a 
anoni
al isomorphism, and

this fa
t 
an be used to de�ne 
omposition in a natural way. Note that

by de�nition, one has a 
anoni
al identi�
ation AutCR
((P,Q)) = K1(R)

for any obje
t (P,Q).

• The produ
t is de�ned as

(P,Q).(P ′, Q′) := (P ⊕ P ′, Q⊕Q′).

and admits naturally (0, 0) as a unit. Every obje
t (P,Q) in CR admits

(P,Q)−1 := (Q,P ) as a natural inverse.

It follows immediately from its 
onstru
tion that the fun
tor (8) is 
ompatible

with base 
hange, ie. the diagram

Dp(R′)
DetR′

−−−−→ CR′

R′
L
⊗R(−)

x









x









R′⊗R(−)

Dp(R)
DetR−−−−→ CR
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is naturally pseudo-
ommutative for any R′/R. Let us qui
kly review the 
on-

stru
tion of DetR following [FK℄ 1.2.

• A stri
tly perfe
t 
omplex P is sent to DetR(P ) := (P+, P−) where

P+ := ⊕i∈2ZP
i
and P− := ⊕i∈1+2ZP

i
.

• Any exa
t sequen
e 0→ P ′ → P → P ′′ → 0 of P(R) indu
es a 
anoni
al
isomorphismDetR(P ) ≃ DetR(P

′).DetR(P
′′). Using this, one 
onstru
ts

a 
anoni
al trivialization canP : DetR(0) ≃ DetR(P ), for any stri
tly

perfe
t 
omplex P whi
h is a
y
li
.

• If Cone(f) denotes the mapping 
one of a morphism f : P → P ′
of

stri
tly perfe
t 
omplexes then HomCR
(DetR(P ), DetR(P

′)) identi�es

with HomCR
(DetR(0), DetR(Cone(f))) (indeed Cone(f)

+ ≃ P− ⊕ P ′+

and Cone(f)− ≃ P+ ⊕ P ′−
). In parti
ular, when f is a quasi-

isomorphism, then canCone(f) : DetR(0) → DetR(Cone(f)) indu
es a

morphism DetR(P ) → DetR(P
′), whi
h we denote DetR(f). One may


he
k that it is 
ompatible with 
omposition and only depends on the

homotopy 
lass of f so that the fun
tor DetR is �nally de�ned.

We will make essential use of the homorphism

DetR : AutDp(R)(P )→ AutCR
(DetR(P )) = K1(R) (9)

whi
h is indu
ed by (8) for any perfe
t 
omplex P . Of 
ourse if P is redu
ed to a

(�nitely generated proje
tive) module P 0
pla
ed in degree zero thenDetR(P ) =

(P 0, 0) and DetR(f) : (P
0, 0) → (P 0, 0) is the 
lass of f0 : P 0 → P 0

. In that


ase (9) is thus nothing but the tautologi
al map AutR(P
0)→ K1(R).

Let us now state some multipli
ative properties.

• Consider a morphism between exa
t sequen
es of stri
tly perfe
t 
om-

plexes

0 −−−−→ P ′
1 −−−−→ P1 −−−−→ P ′′

1 −−−−→ 0

f ′









y

f









y

f ′′









y

0 −−−−→ P ′
2 −−−−→ P2 −−−−→ P ′′

2 −−−−→ 0

where verti
al arrows are quasi-isomorphisms. The following square 
om-

mutes:

DetR(P1) ≃ DetR(P
′
1).DetR(P

′′
1 )

DetR(f)









y









y

DetR(f ′).DetR(f ′′)

DetR(P2) ≃ DetR(P
′
2).DetR(P

′′
2 )

• Consider an automorphism f of some P in Kp(R). Then:
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- DetR(f [1]) = DetR(f)
−1

in AutCR
(DetR(P )) = K1(R).

- f is the homotopy 
lass of some automorphism of the 
omplex P . Let
us �x su
h one and denote f q : P q → P q its 
omponent of degree q. Then
in K1(R) = AutCR

(DetR(P )) = AutCR
(DetR(P

q)), we have DetR(f) =
∏

DetR(f
q)(−1)q

.

- If P is 
ohomologi
ally perfe
t (ie. ea
h Hq
is an obje
t of Dp(R))

then DetR(f) =
∏

DetR(H
q(f))(−1)q

in K1(R) = AutCR
(DetR(P )) =

AutCR
(DetR(H

q(P ))).

3.3 Localization

The main K-group of interest for Iwasawa theory is a relative one. We re
all

its de�nition ([FK℄ 1.3). Consider a stri
tly full triangulated sub
ategory Σ
of Dp(R). The group K1(R,Σ) is then de�ned by generators and relations as

follows:

• Generators: [C, a] where C is an obje
t of Σ and a : DetR(0)→ DetR(C)
is a trivialization of C.

• Relations: Let C,C′, C” be obje
ts of Σ.

˘ If C ≃ 0 then [C, canC ] = 1.

˘ If f : C ≃ C′
, then 
ompatible trivializations of C and C′

give rise

to the same element in K1(R,Σ) (ie. [C′, DetR(f) ◦ a] = [C, a] if
a : DetR(0) ≃ DetR(C)).

˘ If 0 → C′ → C → C′′ → 0 is an exa
t sequen
e of P(R), and
a : 1 ≃ DetR(C), a

′ : 1 ≃ DetR(C
′), then

[C, a] = [C′, a′].[C′′, a′′]

where a : 1
a′.a′′
→ DetR(C

′).DetR(C
′′) ≃ DetR(C).

There is a lo
alization exa
t sequen
e (
f [FK℄ 1.3.15)

K1(R) −−−−→ K1(R,Σ)
∂

−−−−→ K0(Σ)−−−−→ K0(R)

(here K0(Σ) denotes the Grothendie
k group of the triangulated 
ategory Σ)
where:

- the �rst map sends [P, f ] ∈ K1(R) to the 
omplex [P
f
→P ] pla
ed in degrees

[−1, 0], together with the trivialization whi
h is represented by the identity of

P .
- ∂ sends [C, f ] ∈ K1(R,Σ) to the element −[C] ∈ K0(Σ).
- the last map sends the 
lass of a stri
tly perfe
t 
omplex [C] to the alternated
sum

∑

(−1)i[Ci].
As 
he
ked easily, this lo
alization sequen
e is fun
torial with respe
t to (R,Σ):
if R′

is an R-algebra, and if Σ′
is a stri
tly full triangulated sub
ategory of
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Dp(R′) 
ontaining the essential image of Σ under the fun
tor R′ ⊗LR (−) :
Dp(R) → Dp(R′) then one has a morphism K1(R,Σ) → K1(R

′,Σ′) whi
h is


ompatible with the obvious fun
toriality maps.

If now T ⊂ R is a left denominator set (
f [FK℄, 1.3.6) then we 
an apply the

above 
onstru
tions to the full triangulated sub
ategoryΣT ofDp(R) 
onsisting
of 
omplexes whose image under the fun
tor RT ⊗

L
R (−) : Dp(R) → Dp(RT )

be
ome a
y
li
. We note that if R is Noetherian and regular then K0(ΣT ) is
isomorphi
 to the Grothendie
k group of �nitely generated T -torsion modules,

by sending [C] to
∑

(−1)iHi(C). For a general R we have the following result.

Proposition 3.1. ([FK℄, 1.3.7) There is a 
anoni
al isomorphism of groups

K1(R,ΣT ) ≃ K1(RT )

sending [C, a] to the isomorphism DetRT
(0)

aT→DetRT
CT

can−1
CT→ DetRT

(0)
viewed as an element of K1(RT ) = AutCRT

(DetRT
(0)) (here aT and CT are

dedu
ed from a and C by lo
alization). This isomorphism is fun
torial with

respe
t to (R, T ).

Let us mention an alternative 
hara
terization of this isomorphism. Con-

sider an endomorphism f of a stri
tly perfe
t 
omplex P su
h that

fT is a quasi-isomorphism. Identifying HomCR
(DetR(P ), DetR(P )) with

Hom(DetR(0), DetR(Cone(f))) sends the identity of DetR(P ) to a morphism

triv : DetR(0)→ DetR(Cone(f)). Then the 
lass [Cone(f), triv] ∈ K1(R,ΣT )

orresponds to DetRT

(fT )
−1 ∈ K1(RT ) (both are indeed des
ribed by the same

endomorphism of P+
T ⊕ P

−
T 
oming from canCone(f)T ).

Cru
ial to us will be the following:

Lemma 3.2. Consider morphisms a, b : C → C′
in Dp(R) whose lo
alizations

aT , bT are isomorphisms in Dp(RT ). In K0(ΣT ), one has the equality

∂DetRT
(aT b

−1
T ) = [Cone(a)]− [Cone(b)]

as long as the following 
ondition holds:

(frac) In Dp(R), there exists a 
ommutative square of the form

C
a

−−−−→ C′

b









y

d









y

C′ c
−−−−→ C′

in whi
h c and d also be
ome isomorphisms after lo
alization by T .

Proof. An easy diagram 
hasing shows that [Cone(c)] − [Cone(a)] =
[Cone(d)] − [Cone(b)]. Sin
e DetRT

(aT b
−1
T ) = DetRT

(dT )
−1DetRT

(cT ) and

∂ is a homomorphism, it thus su�
es to prove that ∂DetRT
(cT ) = [Cone(c)]

and ∂DetRT
(dT ) = [Cone(d)]. But this is 
lear from the alternative 
hara
-

terization of the isomorphism K1(R,ΣT ) ≃ K1(RT ) mentioned above.
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We do not know whether or not the 
ondition (frac) always holds, neither if this

omputation of ∂DetRT

(aT b
−1
T ) is always 
orre
t. We thus 
ontent ourselves

with the following su�
ient 
ondition.

Lemma 3.3. Assume R is Noetherian and 
onsider a, b : C → C′
in Dp(R). If

there exists f in the 
enter of R su
h that R[ 1f ]⊗
L
R Cone(b) = 0, then one 
an

�nd c, d : C′ → C′
su
h that da = cb. In fa
t one 
an 
hose d = fn for n large

enough.

Proof. Sin
e 
ohomology modules of Cone(b) are �nitely generated and almost

all of them are zero, it is possible to �nd n su
h that fn : Cone(b)→ Cone(b)
is zero. But then, the long exa
t sequen
e of Ext's

· · · → Hom(C′, C′)
Hom(b,C′)
→ Hom(C,C′)→ Ext1(Cone(b), C′)→ · · ·

shows that fna has a trivial image in Ext1(Cone(b), C′) and thus 
omes from

some c ∈ Hom(C′, C′) as 
laimed.

3.4 The evaluation map at Artin representations

Consider a pro�nite group G = lim
←−n

Gn and a 
losed normal subgroup H su
h

that Γ := G/H is isomorphi
 to Zp. We use the following notations.

- We let Λ = Λ(G) := lim
←−n

Zp[Gn] denotes the Iwasawa algebra of G. We

assume that this ring is left Noetherian and regular (whi
h will be the 
ase when


onsidering the Galois group of a p-adi
 Lie extension as in the introdu
tion).

- If O is the ring of integers of a �nite extension L of Qp, then ΛO(G) :=
lim
←−n

O[Gn] ≃ O ⊗Zp
Λ(G) and ΛL(G) := L⊗O ΛO(G) have similar properties.

- S and S∗
denote the 
anoni
al Ore sets de�ned in [CFKSV℄. Re
all that

an element f of Λ(G) is in S if and only if Λ(G)/f is a �nitely generated

Λ(H)-module whereas S∗ = ∪kp
kS. As usual, ΛS = Λ(G)S and ΛS∗ = Λ(G)S∗

denote the 
orresponding lo
alizations of Λ. If G = Γ then QO(Γ) := Λ(Γ)S∗

is the fra
tion �eld of ΛO(Γ).
-MH(G) denotes the 
ategory of S∗

-torsion �nitely generated Λ(G)-modules.

We re
all that a �nitely generated Λ(G) module M is S-torsion (resp. S∗
-

torsion) if and only if it is a �nitely generated Λ(H)-module (resp. modulo its

p-torsion). In this 
ontext, the lo
alization exa
t sequen
e reads:

K1(Λ) −−−−→ K1(ΛS∗)
∂

−−−−→ K0(MH(G))−−−−→ K0(Λ)

- If R is one of the previous (lo
alized) Iwasawa algebras, one often prefers

to endow the dual of a left module with a left a
tion, dedu
ed from the right

one via the involution g 7→ g−1
. This is our 
onvention for duality of normi


systems and their limit modules. In this paragraph though, we leave right

modules on the right, for the sake of 
larity.

Consider a free O-module V of �nite rank. For any O-algebra R (eg. R =
ΛO(G)), we denote VR (resp. RV ) the right (resp. left) R-module V ⊗O R
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(resp. R ⊗O V ) dedu
ed from V by extending s
alars from O to R. Also,

(RV )∗ := HomR(RV ,R) (resp. (VR)
∗ := HomR(VR, R)) is systemati
ally

given its right (resp. left) R-module stru
ture 
oming from the (R,R)-bimodule

stru
ture of R.
It might be useful to re
all that one has a 
anoni
al isomorphism of left (resp.

right) R-modules (VR)
∗ ≃ R(V

∗) (resp. (RV )∗ ≃ (V ∗)R) and 
anoni
al iso-

morphisms of O-algebras EndR((VR)
∗) ≃ EndR(VR)

op
and End((RV )∗) ≃

End(RV )op (R-algebras). If now R is a 
entral O-algebra (eg. if R = ΛO(G))
we have moreover 
anoni
al isomorphisms of O-algebras EndR(RV ) ≃ Rop⊗O
EndO(V ), EndR(VR) ≃ EndO(V ) ⊗O R. These isomorphisms are subje
t to

natural 
ompatibilities, su
h as the 
ommutativity of the following diagram:

EndR((RV )∗) ≃ EndR(RV )op ≃ (Rop ⊗O EndO(V ))op

|≀ |≀
EndR((V

∗)R) ≃ EndO(V
∗)⊗O R ≃ EndO(V )op ⊗O R

Consider now an O-Artin representation ρ : G→ AutO(V ). By O-Artin repre-

sentation we mean that V is as above and ρ has a �nite image. Consider the

unique homomorphism of Zp-algebras

Φ : Λ(G)→ EndΛO(G)(VΛO(G))

sending g ∈ G ⊂ ΛO(G) to v ⊗ λ 7→ ρ(g)(v)⊗ gλ.
By fun
toriality of K1, one has a 
ommutative diagram:

K1(Λ(G))
GF ED

twρ

OO

K1(ρ) ++❱❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱

K1(Φ) // K1(EndΛO(G)(VΛO(G)))

K1(ǫV )

��

∼

Morita// K1(ΛO(G))

K1(ǫ)

��
K1(EndO(V )) ∼

Morita // K1(O)

where twρ is the map sending [P, f ] ∈ K1(Λ(G)) to [(VΛO(G))
∗⊗Λ(G)P, id⊗f ] ∈

K1(ΛO(G)) where (VΛO(G))
∗
is viewed as a (ΛO(G),Λ(G))-bimodule, the left

a
tion of ΛO(G) being the obvious one and the right a
tion of Λ(G) being

dedu
ed via Φ from the natural right a
tion of EndΛO(G)(VΛO(G)). Furthermore

the image of this element in K1(O) is [V ∗ ⊗Λ(G) P, idV ∗ ⊗ f ] where the right

Λ(G)-module stru
ture of V ∗
is dedu
ed from the right a
tion of G on V ∗

:

g 7→ ρ(g)∗. The 
omposed homomorphism

K1(Λ(G)) → K1(O) ≃ O
×

[P, f ] 7→ detO(idV ∗ ⊗ f |V ∗ ⊗Λ(G) P )

where detO denotes the usual (
ommutative) determinant, will simply be de-

noted ρ.
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Remark 3.4. (i) The element twρ([P, f ]) is also equal to [V ∗ ⊗Zp
P, id ⊗ f ].

Indeed, there are isomorphisms of left ΛO(G) modules

(VΛO(G))
∗ ⊗Λ(G) P

∼
← ΛO(G)(V

∗)⊗Λ(G) P
∼
→ V ∗ ⊗Zp

P

where the (ΛO(G),Λ(G))-bimodule stru
ture of ΛO(G)(V
∗) is given by h.(λ ⊗

φ) = hλ ⊗ φ and (λ ⊗ φ).h = λh ⊗ φ ◦ (ρ(h))), the left a
tion of ΛO(G) on

V ∗ ⊗Zp
P is given by h.(φ ⊗ p) = φ ◦ (ρ(h−1)) ⊗ hp, the �rst isomorphism is

indu
ed by ΛO(G)(V
∗)→ (VΛO(G))

∗
, λ⊗ φ 7→ (v ⊗ µ 7→ λφ(v)µ) and the se
ond

is given by g ⊗ φ⊗ p 7→ φ ◦ ρ(g−1)⊗ gp.
(ii) Let us examine the simple 
ase where P is free with basis e1, . . . , en to

�x the ideas. The element [V ∗ ⊗Zp
P, id⊗ f ] o

urring in (i) above has then a

more 
onvenient des
ription as follows. Sending φ⊗gei to φ◦ρ(g)⊗gei realises
an isomorphism of V ∗ ⊗Zp

P with V ∗ ⊗Zp
P viewed as a left ΛO(G)-module

via h.(φ ⊗ λ) = φ ⊗ hλ. Through this isomorphism id ⊗ f translates as the

automorphism sending φ⊗ λjej to ι(λjf(ej)) where ι : V
∗ ⊗Zp

P → V ∗ ⊗Zp
P

sends φ⊗ gei to φ ◦ ρ(g)⊗ gei. In parti
ular we �nd that via the determinant

isomorphism K1(O) ≃ O×
, ρ([P, f ]) is nothing but the determinant of the

automorphism of O ⊗ΛO(G) (V
∗ ⊗Zp

P ) ≃ ⊕iV
∗ ⊗ ei sending φ⊗ ej to

∑

i φ ◦
ρ(fi(ej)) if f(ej) =

∑

fi(ej)ei.

Next, following [CFKSV℄, we 
onsider the extension of ρ to a map

ρ : K1(Λ(G)S∗)→ L× ∪ {0;∞} (10)

de�ned as ǫρQO(Γ) where:

- the map ǫ : QO(Γ)
× → L∪ {∞} 
oin
ides with ΛO(Γ)I → L, the lo
alization

of the augmentation map at the augmentation ideal I, and takes the value ∞
elsewhere (ie. at the elements of QO(Γ) whi
h are not integral at I).
- the map ρQO(Γ) : K1(Λ(G)S∗)→ QO(Γ)

×
is de�ned by 
omposing the obvious

lo
alized version of twρ, K1(Λ(G)S∗) → K1(ΛO(G)S∗), the fon
tioriality map

K1(ΛO(G)S∗) → K1(QO(Γ)) and the isomorphism detQO(Γ) : K1(QO(Γ)) ≃
QO(Γ)

×
.

The map ρ is multipli
ative in the sense of the usual partial multipli
ation

(L × L) ∪ ((L× ∪ {∞})× (L× ∪ {∞}))→ L ∪ {∞}

This means that for x, y ∈ K1(Λ(G)S∗):
(i) ρ(x−1) = ρ(x)−1

.

(ii) the formula ρ(x)ρ(y) = ρ(xy) is true as soon as it makes sense, ie. whenever

(ρ(x), ρ(y)) 6= (0,∞), (∞, 0).

Lemma 3.5. Let [P, f ] in K1(Λ(G)S∗) and 
onsider its dual [P∨, f∨] where
(−)∨ stands for HomΛ(G)S∗

(−,Λ(G)S∗) viewed as a left Λ(G)S∗
-module via

the involution g 7→ g−1
. If ρ is an Artin representation with 
ontragredient ρ∨

then in K1(L):
ρ([P, f ]) = ρ∨([P∨, f∨])
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Proof. One easily redu
es to the analogous statement for Λ = Λ(G) in pla
e

of Λ(G)S∗
. In virtue of Rem. 3.4 (i), it is then su�
ient to prove that for a

�nitely generated proje
tive P over Λ(G) we have in L×
:

detL(id⊗ id⊗ f |L⊗ΛO
(V ∗ ⊗Zp

P ))
= detL(id⊗ id⊗HomΛ(f,Λ)|L⊗ΛO

((V ∨)∗ ⊗Zp
HomΛ(P,Λ)))

the a
tion of ΛO on V ∗ ⊗Zp
P (resp. (V ∨)∗ ⊗Zp

HomΛ(P,Λ) = V ⊗Zp

HomΛ(P,Λ)) being given by g.(φ ⊗ p) = φ ◦ ρ(g−1) ⊗ gp (resp. g.(v ⊗ φ) =
ρ(g)v ⊗ (p 7→ φ(p)g−1)). Sin
e the determinant of an endomorphism and its

transpose are equal it is su�
ient to build an isomorphism

HomL(L⊗ΛO
(V ∗ ⊗Zp

P ), L) ≃ L⊗ΛO
((V ∨)∗ ⊗Zp

HomΛ(P,Λ)) (11)

identifying HomL(id ⊗ id ⊗ f, L) to id ⊗ id ⊗ HomΛ(f,Λ). Let us examine

the left term of (11). Let us 
hose n su
h that ρ fa
tors through Gn = G/Hn.

Denoting VL = L⊗O V we have the following series of natural isomorphisms

HomL(L⊗ΛO
(V ∗ ⊗Zp

P ), L) ≃ HomL((V
∗
L ⊗Zp

P )G, L)
≃ HomL(V

∗
L ⊗Zp

PHn
, L)Gn

≃ (VL ⊗L HomZp
(PHn

, L))Gn

≃ (VL ⊗L HomZp
(PHn

, L))Gn

where the invariants or 
oinvariants o

urring respe
tively in the se
ond, third,

third and fourth term are taken with respe
t to the following left a
tions of

G or Gn: g.(φ ⊗ p) = φ ◦ ρ(g−1) ⊗ gp, g.ψ = (φ ⊗ p 7→ ψ(φ ◦ ρ(g) ⊗ g−1p)),
g.(v ⊗ φ) = ρ(g)v ⊗ (p 7→ φ(g−1p)), g.(v ⊗ φ) = ρ(g)v ⊗ (p 7→ φ(g−1p)).
Regarding the se
ond term of (11) we have

L⊗ΛO
((V ∨)∗ ⊗Zp

HomΛ(P,Λ)) ≃ (VL ⊗Zp
HomΛ(P,Λ))G

≃ (VL ⊗Zp
HomΛ(P,Λ)Hn

)Gn

≃ (VL ⊗L HomZp[Gn](PHn
, L[Gn]))Gn

where the 
oinvariants o

urring respe
tively in the se
ond, third and fourth

term are taken with respe
t to the following left a
tion of G, Hn, Gn and

Gn: g.(v ⊗ φ) = ρ(g)v ⊗ (p 7→ φ(p)g−1), h.φ = (p 7→ φ(p)h−1), g.(v ⊗ φ) =
ρ(g)v ⊗ (p 7→ φ(p)g−1), g.(v ⊗ φ) = ρ(g)v ⊗ (p 7→ φ(p)g−1). We �nally obtain

(11) by noti
ing the isomorphism

HomZp
(PHn

, L) ≃ HomZp[Gn](PHn
, L[Gn])

φ 7→ (p 7→
∑

g∈Gn
φ(gp)[g−1])

The reader may easily 
he
k by himself that (11) is 
ompatible with the auto-

morphisms indu
ed by f as desired.

The next results 
on
erning the 
omputation of (10) 
omposed with (8) will be

useful to us.
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Lemma 3.6. Consider an automorphism f of an obje
t C of Dp(Λ(G)S∗) as

well as its determinant DetΛ(G)S∗
(f) ∈ K1(Λ(G)S∗) (
f. (8)). In QO(Γ)

×
we

have:

ρQO(Γ)(DetΛ(G)S∗
(f)) =

∏

q

detQO(Γ)(H
q(id⊗ f)|Hq((VQO(Γ))

∗
L
⊗Λ(G)∗

S
C))(−1)q

where the tensor produ
t o

urring on the right hand side is taken with respe
t to

the right Λ(G)S∗
-module stru
ture of (VQO(Γ))

∗
de�ned using Φ in the obvious

way.

Proof. We 
an always assume that C is stri
tly perfe
t. In this 
ase we have

by de�nition of ρQO(Γ) and 
ompatibility of Det with s
alar extension:

ρQO(Γ)(DetΛ(G)S∗
(f)) = detQO(Γ)(DetQO(Γ)(id⊗ f))

where id ⊗ f is the automorphism of (VQO(Γ))
∗ ⊗Λ(G)∗

S
C ∈ Dp(QO(Γ)) de-

du
ed from f . Now QO(Γ) being a �eld, the 
omplex (VQO(Γ))
∗ ⊗Λ(G)S∗

C is


ohomologi
ally perfe
t, and thus

detQO(Γ)DetQO(Γ)(id⊗ f)

=
∏

q detQO(Γ)DetQO(Γ)(H
q(id⊗ f))(−1)q

=
∏

q detQO(Γ)(H
q(id⊗ f)|Hq((VQO(Γ))

∗ ⊗Λ(G)S∗
C))(−1)q

Lemma 3.7. Let ǫ, I, ΛO(Γ)I as in (10). Consider a �nitely generated

ΛO(Γ)I -module M together with an endomorphism f : M → M su
h that

QO(Γ)⊗ΛO(Γ)I f is invertible. The formula

ǫdetQO(Γ)(id⊗ f |QO(Γ)⊗ΛO(Γ)I M)

= detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M))

.detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M))−1

is true whenever the right hand term makes sense in L× ∪ {0,∞}.

Proof. Let M ′ ⊂ M denote the ΛO(Γ)I -torsion submodule of M , and M ′′ :=
M/M ′

. Let us denote f ′ : M ′ → M ′
, f ′′ : M ′′ → M ′′

the endomorphisms

indu
ed by f .
On the one hand, QO(Γ)⊗ΛO(Γ)I M

′ = 0, and thus

detQO(Γ)(id⊗ f |QO(Γ)⊗ΛO(Γ)I M) = detQO(Γ)(id⊗ f
′′|QO(Γ)⊗ΛO(Γ)I M

′′)

On the other hand, M ′′
is free sin
e ΛO(Γ)I is a dis
rete valuation ring. We

thus have a short exa
t sequen
e and an isomorphism

Tor
ΛO(Γ)I
0 (L,M ′) →֒ Tor

ΛO(Γ)I
0 (L,M) ։ Tor

ΛO(Γ)I
0 (L,M ′′)

Tor
ΛO(Γ)I
1 (L,M ′) ≃ Tor

ΛO(Γ)I
1 (L,M)
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both of whi
h are 
ompatible with f . When
e equalities:

detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M))

= detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′))

.detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′′))

and detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M))

= detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M ′))

Now M ′
is of �nite length, and is thus subje
t to Koszul duality:

HomL(Tor
ΛO(Γ)I
1 (L,M ′), L) ≃ Tor

ΛO(Γ)I
0 (L,HomL(M

′, L))

Sin
e detL isn't a�e
ted by L-linear duality, this shows that

detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M ′))

= detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′))

Now, in the formula to be proven, we see that the right hand term makes sense

if and only if detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′)) is non zero (ie. if and

only if detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M)) is non zero) in whi
h 
ase the

fa
tors detL(Tor
ΛO(Γ)I
q (id, f)|Tor

ΛO(Γ)I
q (L,M ′)), q = 0, 1, 
an
el ea
h other

and the desired formula redu
es to the obvious equality

ǫdetQO(Γ)(id⊗ f |QO(Γ)⊗ΛO(Γ)I M
′′)

= detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′′))

4 Selmer complexes and crystalline cohomology

In this se
tion we de�ne Selmer 
omplexes for abelian varieties over a one vari-

able fun
tion �eld. We begin with their basi
 properties and a duality theorem.

In the semistable 
ase we pursue with a review of the main result of [TV℄, whi
h

will be the 
ornerstone of our proof for the Iwasawa main 
onje
ture.

4.1 Preliminaries

Let us begin with some te
hni
al fa
ts regarding derived 
ategories.

4.1.1. We will frequently use derived 
ategories of the type D(CI), where CI

denotes the 
ategory of fun
tors I → C, C being an abelian 
ategory. Note

that CI is an abelian 
ategory. If C has enough inje
tives and if it has produ
ts

indexed by the subsets of Ob(I), then the same holds for CI . If C is the 
ategory
of modules on a ringed topos (E,A), Mod(E,A)I naturally identi�es with the


ategory of modules of the ringed topos (EI , A). This point of view o�ers
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the possibility to 
onsider the more general 
ategory Mod(EI , A.), with A. a
proje
tive system of rings of E indexed by I.
These 
ategories are espe
ially useful for some parti
ular 
hoi
es of I whi
h we

explain now.

- Let I = N viewed as the 
ategory where Hom(k, k′) has one element if k ≥ k′

and is empty otherwise (resp. I = Nop, resp. I = N2 := N ⊔|N| Nop). In that


ase, the obje
ts of the 
ategory CI are the proje
tive systems of C indexed

by integers (resp. the indu
tive systems of C indexed by integers, resp. the

triples ((Ak)k, (pk′,k)k′≥k, (ik,k′ )k≤k′ ) where ((Ak)k, (pk′,k)k′≥k) is in CN and

((Ak)k, (ik,k′ )k≤k′ ) is in C
Nop

).

- Let I = [1]a for some integer a ≥ 1, [1] denoting the 
ategory {0, 1,≤}. In that

ase, we think of obje
ts ofD(CI) as (a+1)-uple naive 
omplexes whi
h are zero

outside a spe
i�ed range of the form ]−∞,+∞[×[i1, i1+1]× . . . ,×[ia, ia+1].
The interest of this 
ategory lies in the fa
t that forming total 
omplexes (with

an appropriate sign 
onvention whi
h the interested reader is invited to spe
ify)

give rise to a triangulated fun
tor Tota+1 : D(C[1]
a

)→ D(C).

4.1.2. The 
ase I = [1] is already interesting sin
e Tot2 gives rise to a fun
torial
version of the mapping 
one / mapping �ber 
onstru
tion. Let us dis
uss a fa
t

whi
h will be used repeatedly. A natural transformation t : F1 → F2 between

fun
tors C → C′ 
an be thought as a fun
tor F taking its values in C′[1]. If C
has enough inje
tives we 
an form the derived fun
tor RF : D(C) → D(C′[1]).
Next, we de�ne MF (t) := Tot2 ◦ RF . Sin
e the mapping �ber 
onstru
tion

gives a fun
tor from D(C′[1]) to that of distinguished triangles in D(C′) we

�nd a 
anoni
al distinguished triangle MF (t)(C) → RF1(C) → RF2(C) →
MF (t)(C)[1] varying fun
torially with respe
t to C in D(C). Consider fur-

thermore F0(C) := Ker(F1(C) → F2(C)). Then F0 de�nes a right derivable

fun
tor. Sin
e RF0 ≃MF (t0) for t0 : F0 → 0 and t0 
anoni
ally maps to t, one
gets a 
anoni
al morphism RF0 → MF (t). This natural transformation is an

isomorphism as long as the morphism F1(C)→ F2(C) is epimorphi
 for inje
-

tive C (be
ause in that 
ase the sequen
e 0 → F0(C) → F1(C) → F2(C) → 0
is exa
t and the natural transformation in question is the one o

urring in the


onstru
tion of the distinguished triangle asso
iated to a short exa
t sequen
e).

4.2 Flat cohomology of C vanishing at Z

We review the de�nition of the fun
tor of vanishing 
ohomology, whi
h is a

ne
essary tool to even state the 
omparison result we need from [TV℄ (see Se
t.

4.4).

4.2.1. If S is any s
heme, we denote

ǫ : SFL → Set

the natural morphism from the big �at topos of S (ie. the 
ategory of sheaves

on Sch/S endowed with the topology generated by surje
tive families of �at

morphisms of �nite type) to the small étale one (ie. the 
ategory of sheaves
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one the 
ategory Et/S of étale S-s
hemes endowed with the topology generated

by surje
tive families, 
f SGA 4, VII, 1.2). The morphism ǫ is fun
torial with
respe
t to S, ie. there is a 
anoni
al isomorphism fǫS ≃ ǫS′f for any f : Set →
S′
et indu
ed by a morphism of s
hemes f : S → S′

. However, the reader should

be aware that the base 
hange morphism f−1ǫ∗ → ǫ∗f
−1

is 
ertainly not an

isomorphism in general if f is not étale.

Definition 4.1. Keep the above notations and let furthermore i : T →֒ S
be the in
lusion of a 
losed subs
heme as well as j : Y → S that of

its open 
omplement. We also assume given a proje
tive system of torsors

S = (Sn, Gn) where Gn is a �nite quotient of a pro�nite group G and denote

Γ(S,−) :Mod(Set,Z)→ GMod(Z) the asso
iated normi
 se
tions fun
tor.

We de�ne the following.

(i) The fun
tor of global se
tions vanishing at T ,

ΓT (S,−) :Mod(SFL,Z)→Mod(Z)

is de�ned as ΓT (S, F ) := Ker(F (S)→ F (T )).

(ii) The fun
tor of étale se
tions vanishing at T ,

ǫT∗ :Mod(SFL,Z)→Mod(Set,Z)

is de�ned as ǫT∗ F := Ker(ǫ∗F → ǫ∗i∗i
−1F ).

(iii) The fun
tor of normi
 se
tions vanishing at T ,

ΓT (S,−) :Mod(SFL,Z)→ GMod(Z)

is de�ned as ΓT (S, F ) := Γ(S, ǫT∗ F ). Its nth 
omponent is thus

Ker(F (Sn)→ F (Tn)) where Tn := Sn ×S T .

Note that by de�nition, one may respe
tively retrieve ΓT (S,−) and ΓT (S,−)
from ǫT∗ by forming global and normi
 se
tions (Def. 2.7).

Lemma 4.2. The above fun
tors are right derivable and their derived fun
-

tors are subje
t to natural distinguished triangles in D(Set), D(Mod(Z)) and

D(GMod(Z)) whi
h are fun
torial with respe
t to F in D+(SFL):

RǫT∗ F −−−−→ Rǫ∗F −−−−→ Ri∗Rǫ∗F|T
+1
−−−−→

RΓT (S, F ) −−−−→ RΓ(S, F ) −−−−→ RΓ(T, F|T )
+1
−−−−→

RΓT (S, F ) −−−−→ RΓ(S, F ) −−−−→ RΓ(T , F|T )
+1
−−−−→

where T denotes the proje
tive systems of torsors dedu
ed from S. Taking nth

omponents in the last distinguished triangles gives

RΓTn(S, F ) −−−−→ RΓ(Sn, F|Sn
) −−−−→ RΓ(Tn, F|Tn

)
+1
−−−−→
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Proof. Sin
e inje
tive abelian sheaves of SFL are �asque in the sense of [SGA

4, exp V, 4.7℄, it follows from the dis
ussion 4.1.2 that RǫT∗ identi�es with

the fun
torial mapping �ber of the natural transformation Rǫ∗ → R(ǫ∗i∗i
−1)

arising from ǫ∗ → ǫ∗i∗i
−1
. Now, i−1

preserves inje
tives (i is a lo
alization

morphism) and thus R(ǫ∗i∗i
−1) ≃ R(ǫ∗i∗)i

−1
. The �rst distinguished triangle

follows sin
e R(ǫ∗i∗) ≃ Ri∗Rǫ∗. The other 
ases are similar.

4.3 Selmer complexes

The purpose of this se
tion is to give a tra
table de�nition for (normi
) Selmer


omplexes, to establish their relation to the 
omplex of (normi
) 
ohomology

vanishing at Z (the relation with the 
omplexes RΓar,V appearing in [KT℄ will

also be explained brie�y in Rem. 4.13), as well as a duality theorem.

4.3.1. We 
onsider the following situation:

Zv
zv−−−−→ Cv

jv
←−−−− Uv

ιZv









y

ιCv









y

ιUv









y

Z
z

−−−−→ C
j

←−−−− U

(12)

where:

- C is a 
onne
ted proper smooth 1-dimensional Fp-s
heme with fun
tion �eld

K and 
onstant �eld k.
- Z is an e�e
tive divisor on C, ie. a �nite union of 0-dimensionnal irredu
ible


losed subs
hemes Zv. We denote Zredv = Spec(kv) and Zred = ⊔vZ
red
v the

underlying redu
ed s
hemes.

- U denotes the open sub
heme of C whi
h is 
omplementary to Z.
- For ea
h v in |Z|, we denote Ov the 
ompletion of the lo
al ring of C at v,
Kv its fra
tion �eld, Cv = Spec(Ov) and Uv = Spec(Kv).
- The arrows i, j, jv, iv, ιUv

, ιCv
and ιZv

are the obvious ones.

We �x moreover a pro�nite Galois extension K∞/K with group G = lim
←−n

Gn
satisfying the following properties:

- G is a p-adi
 Lie group without p-torsion,
- K∞/K is unrami�ed everywhere and 
ontains the 
onstant Zp-extension
Kar = Kk∞/K whose Galois group is denoted Γ.
Thanks to the se
ond assumption, there is an essentially unique proje
tive

system of torsors C = (Cn, Gn) over C 
orresponding to the Galois tower

K = (Kn, Gn) over F .

Finally we �x an abelian variety A over K and denote A its Néron model over

C. We always assume that A has good redu
tion outside Z (ie. A|U is an

abelian s
heme over U).

4.3.2. We pla
e ourselves in the situation des
ribed in 4.3.1. The divisor Z
will be allowed to vary, but its support will always 
ontain the points of bad
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redu
tion of A. Unless spe
i�ed otherwise, 
ohomology is meant in the sense of

big �at topoi. To de�ne the Selmer 
omplex we need the following intermediary

fun
tors. We use the notations ιCv
: Cv → C, jv : Uv → Cv for all pla
es of C

(not only those of Z).
- Loc(U) : Mod(CFL,Z) → Mod(Cet,Z)[1] is the fun
tor taking F ∈
Mod(CFL,Z) to

[

j∗ǫ∗F|U −−−−→ (
∏

v∈|U|

ιCv,∗ǫ∗F|Cv
)× (

∏

v∈|Z|

ιCv ,∗jv,∗ǫ∗F|Uv
)
]

Let U denote the �ltered set of open subs
hemes of C. Sin
e for Z ⊂ Z ′
, there

is an obvious natural transformation Loc(U) → Loc(U ′), we also have a fun
tor

Loc(U) :Mod(CFL,Z)→Mod(Cet,Z)[1]×U
.

- τ≥[0 1] : D(Mod(Z)[1]) → D(Mod(Z)[1]) (resp. D(GMod(Z)[1]) →
D(GMod(Z)[1]), resp. D(GMod(Z)[1]×U ) → D(GMod(Z)[1]×U )) is des
ribed

as

[

A −−−−→ B
]

7→
[

A −−−−→ τ≥1B
]

Definition 4.3. We de�ne Selmer fun
tors as follows.

(i) The (U)-Selmer fun
tor

Sel(U)(C,−) : D
+(CFL)→ D+(Mod(Z))

is de�ned as Sel(U)(C,−) := Tot2 ◦ τ≥[0 1] ◦RΓ(C,−) ◦RLoc(U).

(ii) The (U)-normi
 Selmer fun
tor

Sel(U)(C,−) : D
+(CFL)→ D+(GMod(Z))

is de�ned as Sel(U)(C,−) := Tot2 ◦τ≥[0 1] ◦RΓ(C,−)◦RLoc(U), where Γ(C,−)
is the normi
 se
tion fun
tor of Def. 2.7.

(iii) The U-normi
 Selmer fun
tor

Sel(U)(C,−) : D
+(CFL)→ D+(GMod(Z)U )

is de�ned as Sel(U)(C,−) := Tot2 ◦ τ≥[0 1] ◦RΓ(C,−) ◦RLoc(U).

Let us point out that those Selmer fun
tors are not triangulated, sin
e their

de�nition involves trun
ations.

Remark 4.4. (i) The fun
tor (ii) (resp. (i)) 
an be retrieved from fun
tor (iii)
(resp. (ii)) by taking U -
omponents of the indu
tive system (resp. 
omponent

0 of the normi
 systems).

(ii) It follows immediately from the de�nition that Sel(U)(C,F ) �ts into a dis-

tinguished triangle

Sel(U)(C,F ) −→ RΓ(U,F ) −→ (
∏

v∈|U|

τ≥1RΓ(Cv, F ))× (
∏

v∈|Z|

τ≥1RΓ(Uv, F ))
+1
−→

and similarly for Sel(U)(C,F ). In the literature, Selmer 
omplexes are usu-

ally designed to �t into a distinguished triangle where τ≥1RΓ(Cv, F )) does not
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appear. This fa
tor will disappear when F is the Néron model of an abelian

variety with good redu
tion over U (see Prop. 4.7 below). The reason why we

add this term is to get fun
toriality with respe
t to U . Note that the fun
tori-

ality of Sel(U)(C,F ) with respe
t to U not only o

urs in the derived 
ategory,

but already at the level of 
omplexes. This fa
t is re�e
ted by the existen
e of

Sel(U)(C,F ).

Lemma 4.5. Let Z ⊂ Z ′
, U ′ = C − Z ′

, U = C − Z, so that U ′ ⊂ U and let

A/C be as in 4.3.1.

(i) The following natural morphisms in D(GMod(Z)) are invertible:

Sel(U)(C,A)
(1)
−−−−→ Sel(U ′)(C,A)

(2)
−−−−→ lim

−→U
Sel(U)(C,A)

(ii) If Φv/Z
red
v denotes the 
omponent group of A at v, we have

τ≥1RΓ(Cv,A|Cv
) ≃ τ≥1RΓ(Z

red
v ,A|Zred

v
)

≃ H1(Zredv ,Φv)[−1]
(13)

This group is in parti
ular zero if A has good redu
tion at v.

Proof. (i) It su�
es to prove the assertion about (1). For any F ∈ D+(CFL),
one has a tautologi
al diagram in D(GMod(Z)) with distinguished rows and


olumns as follows:

Sel(U)(C,F ) −→ RΓ(U ) −→ (
∏

v∈|U|

τ≥1RΓ(Cv))× (
∏

v∈|Z|

τ≥1RΓ(Uv))
+1
−→

a ↓ b ↓ c ↓

Sel(U′)(C,F ) −→ RΓ(U ′) −→ (
∏

v∈|U′|

τ≥1RΓ(Cv))× (
∏

v∈|Z′|

τ≥1RΓ(Uv))
+1
−→

↓ ↓ ↓

Cone(a) −→ Cone(b) −→ Cone(c)
+1
−→

+1 ↓ +1 ↓ +1 ↓

where we wrote RΓ(U) instead of RΓ(U, F|U ) by la
k of spa
e and similarly for

U ′
, Cv, and Uv. The morphism b is indu
ed by restri
tion from U to U ′

. The

morphism c is indu
ed by restri
tion from Cv to Uv for v ∈ |Z
′|\|Z| = |U |\|U ′|

and is the identity for other v's. The de�nition of a, Cone(a), Cone(b), Cone(c)
is tautologi
al. Let us 
ompute these mapping 
ones.

To begin with, we note that by de�nition of relative 
ohomology

Cone(b) ≃ RΓU\U ′(U, F|U )[1]

Next we note that there is an natural morphism

∏

v∈|Z′|\|Z|

(RΓZv
(Uv, F|Uv

)[1])→ Cone(c)

whi
h is invertible if the restri
tion morphisms

RΓ(Cv, F|Cv
)→ RΓ(Uv, F|Uv

)
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are invertible in degree 0. This is the 
ase for F = A by the Néron extension

property.

The morphism Cone(b)→ Cone(c) is thus indu
ed by

RΓU\U ′(U,A)→
∏

v∈|Z′|\|Z|

RΓZv
(Cv,A)

and is thus an isomorphism by [Mi1℄, III, 1.28 and [Mi2℄, III, 7.14. It follows

that Cone(a) = 0, ie. that a is an isomorphism.

(ii) The �rst isomorphism is by [Mi1℄, III 3.11 and the se
ond is by Lang's

lemma for the smooth 
onne
ted algebrai
 group A0
|Zred

n,v
([La℄, Thm. 2).

4.3.3. We are now in position to de�ne the Selmer 
omplex of A/K. The reader

will retrieve the usual des
ription below (Prop. 4.7 (iii), Cor. 4.10).

Definition 4.6. We de�ne the following:

(i) The normi
 Selmer 
omplex of A is de�ned in Db(GMod(Z)) as

Sel(A/K) := lim
−→
U

Sel(U)(C,A).

(ii) The normi
 p.-Selmer 
omplex of A is de�ned in Db(GMod(Zp)N2) as

Selp.(A/K) := Z/p.
L
⊗Sel(A/K)[−1]

(iii) The normi
 p∞-Selmer 
omplex of A is de�ned in Db(GMod(Zp)) as

Selp∞(A/K) := lim
−→

Selp.(A/K)

(iv) The normi
 Tp-Selmer 
omplex of A is de�ned in Db(GMod(Zp)) as

SelTp
(A/K) := R lim

←−
Selp.(A/K)

The following proposition summarizes the relations between the normi
 Selmer


omplex of an abelian variety, its 
ohomology over C, its 
ohomology vanishing

at Z, its 
ohomology over U and its 
ompa
tly supported 
ohomology over U .

Proposition 4.7. (i) Sel(A/K) �ts into 
anoni
al distinguished triangles as

follows.

Sel(A/K) −−−−→RΓ(C,A) −−−−→
∏

v∈|Z|

H1(Cv,A|Cv
)[−1]

+1
−−−−→

Sel(A/K) −−−−→RΓ(U,A|U ) −−−−→
∏

v∈|Z|

H1(U v,A|Uv
)[−1]

+1
−−−−→

Sel(A/K) −−−−→RΓ(K,A) −−−−→ ⊕
v∈|C|

H1(Uv, A|Uv
)[−1]

+1
−−−−→
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(ii) Selp.(A/K) 
ompares to 
ohomology over C (resp. vanishing at Z) via


anoni
al distinguished triangles as follows.

Selp.(A/K)→ RΓ(C,Z/p.
L
⊗A[−1])→

∏

v∈|Z|

Z/p.
L
⊗H1(kv,Φv)[−2]

+1
→

RΓZ(C,Z/p.
L
⊗A[−1])→ Selp.(A/K)→ ⊕v∈|Z|Z/p.

L
⊗A(Zv)[−1]

+1
→

(iii) Selp.(A/K) 
ompares to (resp. 
ompa
tly supported) 
ohomology over U
via 
anoni
al distinguished triangles as follows.

Selp.(A/K) −→ RΓ(U, (A|U,p. )) −→
∏

v∈|Z|

Z/p.
L
⊗H1(Kv, A)[−2]

+1
−→

RΓc(U, (A|U,p. )) −→ Selp.(A/K) −→
∏

v∈|Z|

Z/p.
L
⊗A(Kv)[−1]

+1
−→

Proof. (i) The �rst and se
ond distinguished triangles follow immediately from

Rem. 4.4 (ii) and Prop. 4.5 (ii). The third one follows from the se
ond one

sin
e étale 
ohomology over Spec(K) = lim
←−U∈U

U 
an be 
omputed as a limit

by [SGA4℄, VII, 5.7 (note that the 
ohomology of A 
an be 
omputed with

respe
t to the étale topology sin
e it is a smooth algebrai
 group).

(ii) The �rst distinguished triangle is dedu
ed from the �rst one of (i) by

applying Z/p.⊗L(−)[−1] (observe that this fun
tor 
ommutes to RΓ(C,−) and
use (13)). To get the se
ond one, we remark that the 
ommutative diagram

RΓ(C,A)
spZ
−−−−→ RΓ(Z,A|Z)

d ↓ ‖ d′ ↓
RΓ(C,A)

sp1Z−−−−→ τ≥1RΓ(Z,A|Z)
c ↑ ‖ c′ ↑

RΓ(C,A)
loc1C−−−−→

∏

v∈|Z|

τ≥1RΓ(Cv,A|Cv
)

in the derived 
ategory of GMod(Z) has an 
anoni
al 
ounterpart in the derived

ategory of diagrams of GMod(Z) of this form sin
e it only uses trun
ation and

fun
toriality with respe
t to the base. It follows from this remark that there is

a 
anoni
al meaning for the mapping �ber of horizontal arrows and that there

are 
anoni
al morphisms between them. The mapping �ber of the middle one

is naturally isomorphi
 to Sel(A/K) (use Prop. 4.5 (i), (ii)). By Prop. 4.5(ii),
c′ is an isomorphism and we thus have

Sel(A/K) ≃MF (loc1C) ≃MF (sp1Z)

Now d being an isomorphism, we get a 
anoni
al distinguished triangle

MF (spZ)→MF (sp1Z)→MF (d′)→MF (spZ)[1], ie.

RΓZ(C,A)→ Sel(A/K)→ H0(Z,A|Z)
+1
→

The se
ond distinguished triangle follows by applying Z/p. ⊗L (−)[−1].
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(iii) The �rst distinguished triangle is dedu
ed from the se
ond of (i) by ap-

plying Z/p. ⊗L (−)[−1]. For the se
ond one, we observe that the 
ommutative

diagram

RΓ(U,A|U )
loc1U−−−−→

∏

v∈|Z|

τ≥1RΓ(Uv,A|Uv
)

e ↑ ‖ e′ ↑
RΓ(U,A|U )

locU−−−−→
∏

v∈|Z|

RΓ(Uv,A|Uv
)

has an obvious 
ounterpart in the derived 
ategory of su
h diagrams sin
e it

only uses trun
ation and fun
toriality with respe
t to the base. This justi�es

working with fun
torial mapping �bers as in (i) and (ii). We get a 
anoni
al

distinguished triangle MF (locU )→MF (loc1U )→MF (e′)→MF (locU )[1], ie.

RΓc(U,A|U )→ Sel(A/K)→
∏

v∈|Z|

H0(Uv,A|Uv
)
+1
→

The se
ond distinguished triangle follows by applying Z/p. ⊗L (−)[−1].

Proposition 4.8. Let Â/K denote the abelian variety whi
h is dual to A/K.

There is a 
anoni
al duality isomorphism in D[0,3](GMod(Zp)
N2):

Selp.(Â/K) ≃ Selp.(A/K)∨[−3]

where (−)∨ means the exa
t fun
tor HomZp
(−,Qp/Zp).

Proof. That Selp.(Â/K) has no 
ohomology outside [0, 3] follows for instan
e
from the third distinguished triangle in Prop. 4.7 (i) sin
e K has stri
t 
oho-

mologi
al dimension ≤ 3. Let us 
ome to the duality isomorphism. A sket
h

of proof is given in [KT℄ for a weaker statement (
f lo
. 
it 2.4) by 
ombin-

ing lo
al duality over Uv, v ∈ |Z| together with global duality over U . Here

we 
on
entrate on the ungrateful task of 
he
king that it is indeed possible to

prove the result in the setting of derived 
ategories of normi
 systems. For

this purpose referring to a 
olle
tion of pairings at ea
h level n and 
he
king


ompatibilities is not su�
ient. The main point is thus to build the required

duality morphism in Db(GMod(Zp)
N2). That it is an isomorphism, will follow

from the 
ompatibility of our 
onstru
tion with that of [Mi2℄, III.

For the purpose of the proof, let B/K := Â/K, B/C its Néron model and Ψ/C
its 
omponent group. Re
all ([SGA7℄ or [Mi2℄) that the Poin
aré biextension

P : A|U ⊗
L B|U → Gm|U [1] (whi
h is essentially given by de�nition of B̂/F )

indu
es the Grothendie
k pairing G : z−1Φ ⊗ z−1Ψ → Q/Z (essentially via

j∗Gm[1] → z∗Z[1] ← z∗Q/Z). We know that P extends over C to a (unique)

biextension AΦ′

⊗LB
Ψ′

→ Gm[1] as long as Φ′ ⊂ Φ and Ψ′ ⊂ Ψ are orthogonal

with respe
t to G. Taking (Φ′,Ψ′) = (0,Ψ) and then (Φ, 0), we thus get a


anoni
al 
ommutative square (in the smooth topos Csm)

A0 −−−−→ Ext1Csm
(B,Gm)

↓ ↓

A −−−−→ Ext1Csm
(B0,Gm)

(14)
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Our proof 
onsists in three steps.

Step 1. The 
ompatible pair of arrows (14) indu
es morphisms as follows:

[A0 → A]→ RHomCsm
([B0 → B],Gm[1]) in Db(C

[1]
sm), and then (15)

RΓ(C, [A0 → A])→ RΓ(C, [B0 → B])∨[−2] in Db(GMod(Z)[1]). (16)

Let us indi
ate how to get these. The arrows of (14) give rise to

[A0 → A]→ Ext1Csm
([B0 → B],Gm) in Mod(C

[1]
sm,Z), thus to

[A0 → A]→ (τ≥1RHomCsm
([B0 → B],Gm))[1] in Db(C

[1]
sm),

and (15) follows sin
e HomCsm
([B0 → B],Gm) = 0 by [SGA7℄, VIII, 3.2 sin
e

Gm →֒ j∗j
∗Gm. Applying RΓ(C,−) we get

RΓ(C, [A0 → A])→ RHomCsm
([B0 → B],Gm)

where HomCsm
([M1 → M2],M3) means the obje
t of GMod(Z)[1] whose nth


omponent is [HomCn,sm
(M2|Cn

,M3|Cn
) → HomCn,sm

(M1|Cn
,M3|Cn

)] with
Gn a
ting by 
onjugation and where going up (resp. down) transition maps are

given by restri
tion (resp. tra
e). We note that there is a natural morphism

HomCsm
([M1 →M2],M3)→ Hom(Γ(C, [M1 →M2]),Γ(C,M3))

whi
h is bifun
torial with respe
t to ([M1 → M2],M3) where for ([N1 →
N2], N3) in GMod(Z)[1] ×Mod(Z), Hom([N1 → N2], N3) means the normi


system whose nth 
omponent is [Hom(N2,n, N3)→ Hom(N1,n, N3)] and where
going down (resp. up) transition maps are dedu
ed from the going up (resp.

down) transition maps of N2 and N3. This natural transformation gives rise

to a map

RHomCsm
([M1 →M2],M3)→ RHom(Γ(C, [M1 →M2]),Γ(C,M3))

in D−(GMod(Z)[1]) as long as RΓ(C,M3) is bounded. Applying this to ([B0 →
B],Gm) and using the tra
e morphism RΓ(C,Gm) → Q/Z[−2] �nally gives

(16) as 
laimed.

It is worth noting that the pairings on 
ohomology resulting from (16) are 
om-

patible with those of [Mi2℄, III. To state this fa
t pre
isely, let us �x any 
losed

point v ∈ |C| as well as an open U ⊂ C over whi
h A has good redu
tion. Then

it follows from the de�nitions that one has a natural 
ommutative �diagram�

Hq(Zn,v,Φ|Zn,v
) × H1−q(Zn,v,Ψ|Zn,v

)
1
−→ H1(Zn,v ,Q/Z)

↑ ↑ ≀ ↑

Hq(Cn,v ,A|Cn,v
) × H1−q(Cn,v ,B|Cn,v

)
2
−→ H2(Cn,v , jv,∗Gm)

↓ ↓ ≀ ↓

Hq(Un,v, A|Un,v
) × H1−q(Un,v , B|Un,v

)
3
−→ H2(Un,v,Gm)

↑ ↓ ≀ ↓

Hq(Cn,v ,A|Cn,v
) × H2−q

Zn,v
(Cn,v ,B0

|Cn,v
)

4
−→ H3

Zn,v
(Cn,v ,Gm)

↑ ↓ ≀ ↓

Hq(Cn,A|Cn
) × H2−q(Cn,B0

|Cn
)

5
−→ H3(Cn,Gm)

Tr
−→
∼

Q/Z

↑ ↓ ≀ ↑

Hq
c (Un,A|Un,pk ) × H3−q(Un,B0

|Un,pk
)

6
−→ H3

c (Un,Gm)
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where:

- pairings 1 and 2 are the ones o

urring during the proof of [Mi2℄, III Thm.

7.11 and right verti
al isomorphism is by jv,∗Gm[1]→ zv,∗Z[1]← zv,∗Q/Z.
- pairing 3 (resp. 4, 6) is the one o

urring in [Mi2℄, III 7.8 (resp. 7.13, resp.

8.2).

- pairing 5 is de�ned using the Yoneda pairing for Ext's and the vanishing of

HomCn
(B0,Gm) (or alternatively, the vanishing of HomCn

(A,Gm)). By the

restri
tion-
orestri
tion formula, it 
oin
ides with the one indu
ed by (16);

It 
an be 
he
ked that similar 
ompatibilities hold in the derived 
ategory. The

proof however is not so easy to write down. We will thus avoid it and use the

following tri
k instead. The morphism (14) indu
es a map

Z/pk
L
⊗A[−1]→ RHomCsm

(Z/pk
L
⊗B0,Gm)

Now it it straightforward to 
he
k that this morphism indu
es 
ompatible pair-

ings 1′, . . . , 6′ just as 1, . . . , 6 above with A and B0
respe
tively repla
ed by

Z/pk ⊗L A[−1] and Z/pk ⊗L B0
. Moreover, the resulting pairing

Hq(Cn,Z/pk
L
⊗A|Cn

[−1]) × H2−q(Cn,Z/pk
L
⊗B0

|Cn
)

5′
→ H3(Cn,Gm)
≃ H3(C,Gm)
≃ Q/Z


oin
ides with the one dedu
ed from (16) by applying Z/pk ⊗L (−).

Step 2. The morphism (15) indu
es a 
anoni
al morphism of distinguished

triangles in Db(GMod(Z))

Sel(A/K) → RΓ(C,A) → H1(Z,Φ|Z)[−1]
+1
→

a ↓ b ↓ c ↓

Sel(B/K)∨[−2] → RΓ(C,B0)∨[−2] → H0(Z,Ψ|Z)
∨[−1]

+1
→

Let us explain this. Sin
e it 
an be expressed in terms of trun
ation, fun
to-

rial 
ones and natural transformation of fun
tors in the variable [M→N ] ∈
Mod(Csm,Z)[1], we observe that the following diagram of D(GMod(Z)):

RΓ(C,N)
β

−−−−→ τ≥1Cone(RΓ(C, [M → N ]))
↓ ↓

RΓ(C,N)
β′

−−−−→ τ≥1Cone(RΓ(Z, [z
−1M → z−1N ]))

↑ ↑
RΓ(C,N)

loc1C−−−−→
∏

v∈|Z|

τ≥1RΓ(Cv, N)

has an obvious 
ounterpart in the 
orresponding derived 
ategory of diagrams

of this form. Applying this to [M → N ] = [A0 → A] and forming mapping
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�bers of the horizontal arrows, we get 
anoni
al isomorphisms (using arguments

already explained in the proof of Prop. 4.7):

MF (β)
∼
←MF (β′)

∼
→MF (loc1C) ≃ Sel(A/K)

Consider the following diagram as a fun
tor whose argument [M
f
→N ] varies

in the 
ategory of 
omplexes C(GMod(Z)[1]):

τ≤1MF (f) ≃ τ≤1MF (f)








y

α









y

MF (f) −−−−→ M
f

−−−−→ N −−−−→ Cone(f)








y









y









y









y

τ≥2MF (f) −−−−→ MF (β) −−−−→ N
β

−−−−→ τ≥1Cone(f)

We remark the following:

- sin
e the left verti
al 
omposed morphism is zero, so is the middle verti
al

one. When
e a 
anoni
al morphism Cone(α) → MF (β). As shown by the

diagram, this is automati
ally a quasi-isomorphism.

- the fun
tors Cone(α) and MF (β) are ex
hanged by the exa
t 
ontravariant

endofun
tor (−)∨ = HomZ(−,Q/Z) of C(GMod(Z)[1]). Indeed:

(Cone(α)[M → N ])∨ ≃ (Cone([τ≤1MF (f)→M ]))∨

≃ MF ([M∨ → τ≥1Cone(f
∨)])

≃ MF (β)[N∨ →M∨]

Putting everything together we get in D(GMod(Z)):

Sel(A/K) ≃ MF (β)[A0 → A]
≃ MF (β)(RΓ(C, [A0 → A]))
→ MF (β)(RΓ(C, [B0 → B])∨[−2]) (
f. (16))

≃ (Cone(α)(RΓ(C, [B0 → B])))∨[−2]
≃ (MF (β)(RΓ(C, [B0 → B])))∨[−2]
≃ (MF (β)[B0 → B])∨[−2]
≃ Sel(B/K)∨[−2]

Step 3. The morphisms a, b, c of Step 2 be
ome invertible when applied

Z/p.⊗L (−).

It is of 
ourse su�
ient to prove this for b and c. By [Mi2℄, III, 7.11, c itself
is an isomorphism. Now the statement about b is equivalent to the horizontal

arrow b′ below being an isomorphism:
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↓ ↓

Hq
c (Un,Z/p

k
L
⊗A|Un

[−1]) −−−−→ H2−q(Un,Z/pk
L
⊗B0

|Un
)∨

↓ ↓

Hq(Cn,Z/pk
L
⊗A|Cn

[−1])
b′

−−−−→ H2−q(Cn,Z/pk
L
⊗B0

|Cn
)∨

↓ ↓
∏

v∈|Zn|

Hq(Cn,v,Z/pk
L
⊗A|Cn,v

[−1]) −−−−→
∏

v∈|Zn|

H2−q
Zn,v

(Cn,v,Z/pk
L
⊗B0

|Cn,v
)∨

This diagram 
ommutes thanks to the 
ompatibilities explained in Step 1 and

its 
olumns are long exa
t sequen
es as follows easily from the de�nition of


ompa
tly supported 
ohomology together with the 
omplete ex
ision property

∏

v∈|Zn|

H2−q
Zn,v

(Cn,v,Z/p
k
L
⊗B0

|Cn,v
) ≃ H2−q

Zn
(Cn,Z/p

k
L
⊗B0

|Cn
),

obtained by using [Mi1℄, III, 1.28 and [Mi2℄, III, 7.14. The �rst (resp. third)

horizontal morphism is invertible thanks to [Mi2℄, III, 8.2 (resp. [Mi2℄, III 7.13)

and the result follows.

Remark 4.9. The proof does not require any assumption about the redu
tion

of A at the points of Z.

Corollary 4.10. Consider the usual Selmer group

Sel1pk(A/Kn) := Ker

(

H1(Kn, A|Kn,pk)→ ⊕
v∈|C|

H1(Kn,vA|Kn,v
))

)

and let Sel1p.(A/F ) denote the obje
t of Mod(GMod(Z)N2) en
apsulating the

whole 
olle
tion (together with the various natural transition morphisms) for

varying n, k. The 
ohomology of the 
omplex Selp.(A/K) vanishes outside [0, 3]
and is des
ribed as follows in this range:

H0 = Ap.(K)
H1 = Sel1p.(A/K)

H2 ≃ Sel1p.(Â/K)∨

H3 ≃ Âp.(K)∨

Proof. The des
ription of H0
and H1

follows easily from the following distin-

guished triangle (Prop. 4.7 (i)):

Selp.(A/K)→ RΓ(K,Ap.)→ ⊕
v∈|C|

Z/p.
L
⊗H1(Uv, A|Uv

)[−2]
+1
→
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whose asso
iated long exa
t sequen
e of 
ohomology reads as the 
olle
tion of

the following ones for varying n, k:

0→ H0(Selpk(A/Kn))→ H0(Kn, Apk)→ 0→ H1(Selpk(A/Kn))
→ H1(Kn, Apk)→ ⊕

v∈|C|
Tor1(Z/pk, H1(Kn,v, A|Kn,v

))→ . . .

(note that for any abelian group M , Tor1(Z/pk,M) is identi�ed with the

kernel of pk on M . It it easy to 
he
k that modulo this identi�
ation, the

right arrow in the se
ond exa
t sequen
e is indu
ed from the lo
alization map

o

urring in the de�nition of Sel1pk(A/Kn)).

The des
ription of H2
and H3

follows by duality, thanks to Prop. 4.7 and

Prop. 4.8.

Corollary 4.11. In Db(GMod(Zp)), one has the duality isomorphism

SelTp
(Â/K) ≃ Selp∞(A/K)∨[−3]

and those 
omplexes are 
on
entrated in [1, 3].

Proof. Just apply R lim
←−k

to Prop. 4.8 and noti
e that H0
vanishes be
ause for

n �xed, Âpk(Kn) is bounded independently of k.

Corollary 4.12. RΓZ(C,Ap.) is 
on
entrated in [0, 3] and its 
ohomology

obje
ts �t into 
ompatible exa
t sequen
es and isomorphisms as follows:

H0 →֒ Ap.(K)→ Ap.(Z)→ H1 → Selp.(A/K) ։ A(Z)/p.

H2 ≃ Selp.(Â/K)∨

H3 ≃ Âp.(K)∨

Remark 4.13. Even though we won't use it, let us point out the relation to the


omplexes of [KT℄.

- The 
omplexes Selp∞(A/K) = lim
−→k

Selpk(A/K) and RΓar{p} have the same


ohomology (
ompare lo
. 
it. Lem. 2.4 and our Cor. 4.10).

- The 
ohomology of the 
omplexes lim
−→k

RΓZ(C,Apk) and RΓar,V {p} �ts into

similar exa
t sequen
es (
ompare [KT℄, 2.5.2, 2.5.3 and our Prop. 4.7 (ii)) for

V = (Vv)v∈Z and Vv = Ker(A(K)→ A(Zv)).

- In fa
t, one may easily form isomorphisms

Selp∞(A/K) ≃ RΓar{p}

and

lim
−→
k

RΓZ(C,Apk ) ≃ RΓar,V {p}.

Documenta Mathematica 24 (2019) 473–522



Non Commut. IMC for Ab. Varieties over Funct. Fields 509

4.4 Crystalline syntomic complexes

In this se
tion we assume that A/K is semistable and we re
all the 
omparison

result of [TV℄ and dedu
e from it the fundamental distinguished triangles (6),

announ
ed in the introdu
tion, relating (normi
) �at 
ohomology vanishing at

Z to (normi
) 
rystalline 
ohomology.

4.4.1. We keep the notations of the previous se
tion (A/K, A/C, U , Z, ǫ :
CFL → Cet) and we let furthermore C♯ denote the log-s
heme whose underlying

s
heme is C and whose log-stru
ture is indu
ed by Z. In the 
hapter 8 of [TV℄

is asso
iated to the semistable abelian variety A/K a log Dieudonné 
rystal

(D,F, V ). Re
all that su
h obje
t is a 
rystal of lo
ally free O-modules of �nite

rank in the 
rystalline small étale ringed topos ((C♯/Zp)crys,et,O) endowed

with two operators F : σ∗D → D, V : D → σ∗D (where σ denotes the

endomorphism of (C♯/Zp)crys,et indu
ed by the absolute Frobenius of C♯) su
h
that FV = V F = p. This log-
rystal extends the 
ovariant Dieudonné 
rystal
(DU (A|U ), F, V ) of [BBM℄ and is endowed with a 
anoni
al epimorphism

π : D → Lie(A),

where the Lie algebra Lie(A) is seen as a 
rystalline sheaf ([TV℄, 5.35 (i)).

We set Fil1D := Ker(π) and denote 1 : Fil1D → D the 
anoni
al inje
tion.

4.4.2. Let u : (C♯/Zp)crys,et → Cet denote the 
anoni
al proje
tion of the


rystalline topos on Cet. Following [TV℄, Prop. 5.49, we re
all the 
onstru
tion
of an operator

φ : Ru∗Fil
1D(−Z)→ Ru∗D(−Z),

where the twist by −Z of a 
rystalline sheaf is de�ned in [TV℄, Def. 4.42.

Consider (U ♯[.], Y
♯
[.], ι[.], σ̃) where U

♯
[.] is a semisimpli
ial �ne log-s
heme aboveC♯,

Y ♯[.] is a semisimpli
ial p-adi
 formal log s
heme with �nite lo
al p-bases over

Spf(Zp) (in the sense of [TV℄, 4.1 (v)), endowed with a lifting of Frobenius σ̃

and ι : U ♯[.] → Y ♯[.] is a 
losed immersion. We denote T ♯[.],n the log pd envelope

of U ♯[.] into the redu
tion Y ♯[.],n of Y ♯[.] modulo pn and, for a 
rystalline sheaf E,

ET ♯

[.],n
the realization of the sheaf at the pd-thi
kening (U ♯[.], T

♯
[.],n). It is proved

([TV℄, Lem. 4.9) that we 
an always 
hose these data su
h that (U ♯[.], T
♯
[.],n) is a

hyper
overing in the topos (C♯/Zp)crys,et. In [TV℄, 5.49 it is proved that there

exists a unique 
olle
tion (φn) of σ̃-semi-linear morphisms of OT[.],n
-modules

rendering the following diagram 
ommutative for all n:

Fil1D(−Z)T ♯

[.],n+1
/pn

φn //

1

��

D(−Z)T ♯

[.],n

p

��
D(−Z)T ♯

[.],n

Fr // (F̃ )∗D(−Z)T ♯

[.]
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(here Fr is the morphism built up from the operator F of D together with the

lifting of frobenius σ̃ of Tn). Finally, we set

φ := R lim
←−
n

RfT[.],n,∗φn,

where fT[.],n
: T[.],n,et → Cet. By 
ohomologi
al des
ent in the 
rystalline topos,

this yields a morphism ([TV℄, Prop. 5.55, (ii) and Rem. 5.56)

φ : Ru∗Fil
1D(−Z)→ Ru∗D(−Z).

4.4.3. To simplify the notations, we set:

i. N := RǫZ∗ R lim
←−n

Apn ,

ii. I := Ru∗Fil
1D(−Z),

iii. P := Ru∗D(−Z),

iv. L := Lie(A)(−Z).

All N, I, P, L are 
onsidered as obje
ts of the derived 
ategory D(Cet,Zp).
The main theorem of [TV℄ implies (note that ǫZ∗ as de�ned in 4.1 
oin
ides

with the fun
tor ǫ∗Γ
Z
used in lo
. 
it.):

Theorem 4.14. ([TV℄, Cor. 9.17) In Dp(Cet,Zp) there are 
anoni
al distin-

guished triangles as follows:

N → I
1−φ
→ P

+1
→

I
1
→ P → L

+1
→

�

4.4.4. For X ∈ N, I, P, L, we denote X := (Xn) the obje
t RΓ(C,X) ∈
Db(GMod(Zp)) (so that Xn = RΓ(Cn, X|Cn

), see Se
t. 2.4 for explanations).

Given a Galois subextension K ′/K of K∞/K, we denote XK′
(resp. X∗

K′) the

derived proje
tive limit of the proje
tive system of 
omplexes indexed by the

�nite subextensions of K ′/K (eg. XKn
= Xn, X

∗
Kn

= X∗
n, XK∞

:= R lim
←−n

Xn,

X∗
K∞

:= R lim
←−n

RHomZp
(Xn,Zp)). We have by Thm. 4.14 two pairs of distin-

guished triangles in D(Λ):

i. NK∞
→ IK∞

1−φ
→ PK∞

+1
→

ii. IK∞

1
→ PK∞

→ LK∞

+1
→

and

i. P ∗
K∞

1∗−φ∗

→ I∗K∞
→ N∗

K∞

+1
→
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ii. L∗
K∞
→ P ∗

K∞

1
→ I∗K∞

+1
→

Remark 4.15. These distinguished triangles are obtained from Thm. 4.14

by applying RΓ(C,−) then R lim
←−n

. Note that, even though [KT℄ might give

distinguished triangles in the derived 
ategory of modules at ea
h level n and

transition mophisms between them, this would formally not be enough to apply

R lim
←−n

(whose sour
e needs to be the derived 
ategory of proje
tive systems

rather than the 
ategory of proje
tive systems of the derived 
ategory) and get

the desired distinguished triangles in D(Λ). One 
ould of 
ourse easily give a

meaning to R lim
←−n

of ea
h term of the triangle using expli
it 
omplexes, but

this is far from 
lear for the morphisms, espe
ially for the morphism Nn → In.

In fa
t, the two 
ohomology theories XK∞
and X∗

K∞
are related as follows:

Proposition 4.16. Let X ∈ N, I, P, L. Then XK∞
and X∗

K∞
are in Dp(Λ).

Moreover:

(i) If Λ = (Z[Gn]) denotes the 
anoni
al normi
 system then we have in

D(GMod(Zp)) isomorphisms as follows:

Λ
L
⊗ΛXK∞

≃ X and Λ
L
⊗ΛX

∗
K∞
≃ X∗

(so that, in parti
ular, we have in D(Gn
Mod(Zp)):

Zp[Gn]
L
⊗ΛXK∞

≃ Xn and Zp[Gn]
L
⊗ΛX

∗
K∞
≃ X∗

n)

(ii) We have an isomorphism in Dp(Λ):

RHomΛ(X
∗
K∞

,Λ) ≃ XK∞
.

Proof. Sin
e C is proper and smooth, well known �niteness results imply that L
and P satisfy the �niteness 
ondition of Thm. 2.11. The perfe
tness statement

follows dire
tly from Thm. 2.11 for X = L or P . It then follows from the

distinguished triangle (ii) (resp. (i)) for X = I (resp. N). The remaining

statements follow from Thm. 2.11 as well (using [Va℄ 2.10.3 and 3.1).

5 The Main conjecture

5.1 The constant Zp-extension

Re
all that Kar := Kk∞ denotes the 
onstant Zp-extension of K. During this

paragraph, we index by kn the n-th layer of k∞/k.

Proposition 5.1. Let W := (W (kn)) ∈ GMod(Zp) denote the normi
 system

of Zp-modules formed by the Witt ve
tors along k∞/k. Also, let W ⊗Zp
(−) :

Mod(Zp)→ ΓMod(Zp) denote the obvious fun
tor. Then:

(i) For X ∈ {I, P, L}, there is a 
anoni
al isomorphism in Db(GMod(Zp)):

W
L
⊗XK ≃ X
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(ii) The morphism 1 : In → Pn (resp. φ : In → Pn) is W (kn)-linear
(resp. W (kn)-semi-linear with respe
t to the a
tion of the absolute frobenius

σ : W (kn) → W (kn)). In parti
ular, the morphism 1 − φ : I → P 
an be

des
ribed at level n as λ⊗ x0 7→ λ⊗ 1x0 − σλ⊗ φx0.

Proof. (i) follows from the Zariski log-
rystalline base 
hange theorem (note

that the base 
hange map is well de�ned at the level 
omplexes and thus makes

sense in Db
ΓMod(Zp)).

(ii) Linearity of 1 and semi-linearity of φ are immediate from the de�nitions.

The se
ond statement follows.

Corollary 5.2. Both NKar
and N∗

Kar
are torsion over Λ(Γ), ie.

Q(Γ)
L
⊗Λ(Γ)NKar

= 0 and Q(Γ)
L
⊗Λ(Γ)N

∗
Kar

= 0

Proof. Sin
e by Prop. 4.16, we have NKar
≃ RHomΛ(N

∗
Kar

,Λ), it su�
es to

prove that NKar
is torsion. Applying Qp⊗Zp

(−) to the distinguished triangles

of 4.4.3 gives rise to the distinguished triangle:

Qp ⊗Zp
NKar

→ Qp ⊗Zp
IKar

1−φ
→ Qp ⊗Zp

PKar
→ Qp ⊗Zp

NKar
[1]

whi
h 
an be rewritten as

Qp⊗Zp
NKar

→W∞

L
⊗Zp

(Qp⊗Zp
IK)→W∞

L
⊗Zp

(Qp⊗Zp
PK)→ Qp⊗Zp

NKar
[1]

Now Qp⊗Zp
LKar

= 0, sin
e Lie(D) is an Fp-ve
tor spa
e and 1 : Qp⊗Zp
IKar

→
Qp ⊗Zp

PKar
thus has an inverse. Sin
e moreover Qp and W∞ := lim

←−
W (kn)

are Zp-�at, the long exa
t sequen
e of 
ohomology of the previous triangle 
an

be written

Qp ⊗Zp H
q(NKar ) → W∞

L

⊗Zp(Qp ⊗Zp H
q(PK))

id−φ1−1

→ W∞

L

⊗Zp (Qp ⊗Zp H
q(PK))

where (id− φ1−1)(λ⊗ x) = λ⊗ x− σλ ⊗ φ1−1x.
To end the proof, we need the following result from σ-linear algebra:

Lemma 5.3. If ψ is a linear endomorphism of a �nite dimensional Qp-ve
tor
spa
e M then:

(i) The kernel of id−σ⊗ψ on W (kn)⊗Zp
M has Qp-dimension bounded by the

number of unit eigenvalues of ψ (
ounted with multipli
ities). In parti
ular, its

dimension is bounded independently of n.
(ii) The Qp-linear endomorphism id−σ⊗ψ of (lim

←−
W (kn))⊗Zp

M) is inje
tive.

Proof. (i) Set L = Frac(W (Fp)). Sin
e Lσ (the �xed points by σ) are redu
ed
to Qp and W (kn)⊗Zp

M ⊂ L⊗Qp
M , [EL2℄ 6.2 gives the result.

(ii) Let Γ a
t on ⊂ W (kn) ⊗Zp
M via W (kn). Thanks to (i), we know that

there is a open subgroup Γm ⊂ Γ whi
h �xes the kernel of id− σ⊗ψ a
ting on

W (kn)⊗Zp
M for all n. The result follows, sin
e

(W∞ ⊗Zp
M)Γm = (lim

←−
W (kn)

Γm)⊗Zp
M = 0.
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Applying the lemma to M = Qp ⊗Zp
Hq(PK) and ψ = φ1−1

shows that the

�rst distinguished triangle of 4.4.4 redu
es to short exa
t sequen
es

0→ Qp ⊗Zp
Hq(PKar

)
id−ψ
→ Qp ⊗Zp

Hq(PKar
)→ Qp ⊗Zp

Hq(NKar
)→ 0

and the result follows by applying Q(Γ) ⊗Λ(Γ) (−) to those, sin
e Q(Γ) ⊗Λ(Γ)

Hq(PKar
) is a �nite dimensional ve
tor spa
e over Q(Γ).

Following [Ja℄, we set Eq(−) := ExtqΛ(Γ)(−,Λ(Γ)). In lo
. 
it. these fun
tors

(and others) are used to 
lassify Λ(Γ)-modules up to isomorphism. Let us re
all

that, for a �nitely generated Λ(Γ)-module they verify the following properties:

- E0(M) is free. It is zero if and only if M is torsion.

- E1(M) is torsion and is (non 
anoni
ally) pseudo-isomorphi
 toM . It has no

non zero �nite submodules if M is torsion.

- E2(M) is �nite.

Corollary 5.4. NKar
and N∗

Kar

an be des
ribed as follows:

1. (i) NKar
is 
on
entrated in degrees [1, 3] and its 
ohomology Λ(Γ)-modules

are des
ribed by the following exa
t sequen
e and isomorphisms

H1(NKar
) →֒ lim

←−n
SelTp

(A/Kkn) ։ lim
←−k,n

∏

v∈Z A(kvkn)/p
k

H2(NKar
) ≃ HomZp

(lim
−→n

Selp∞(Â/Kkn),Qp/Zp)

H3(NKar
) ≃ HomZp

(lim
−→n

Âp∞(Kkn),Qp/Zp)

(ii) Moreover, one has the following isomorphism and exa
t sequen
es of Λ(Γ)-
modules:

H1(NKar
) ≃ E1(H0(N∗

Kar
))

E2(H0(N∗
Kar

)) →֒ H2(NKar
) ։ E1(H−1(N∗

Kar
))

E2(H−1(N∗
Kar

)) →֒ H3(NKar
) ։ E1(H−2(N∗

Kar
))

2. (i) N∗
Kar

is 
on
entrated in degrees [−2, 0] and its 
ohomology Λ(Γ)-modules

are des
ribed by the following isomorphism and exa
t sequen
e:

H−2(N∗
Kar

) ≃ lim
←−
n

SelTp
(Â/Kkn)

HomZp
(lim
−→n

Selp∞(A/Kkn),Qp/Zp) →֒ H−1(N∗
Kar

)→

HomZp
(lim
−→n

⊕v∈ZAp∞(kvkn),Qp/Zp)→ HomZp
(lim
−→n

Ap∞(Kkn),Qp/Zp)
։ H0(N∗

Kar
)

(ii) Moreover, one has the following isomorphism and exa
t sequen
es of Λ(Γ)-
modules:

H−2(N∗
Kar

) ≃ E1(H3(NKar
))

E2(H3(NKar
)) →֒ H−1(N∗

Kar
) ։ E1(H2(NKar

))
E2(H2(NKar

)) →֒ H0(N∗
Kar

) ։ E1(H1(NKar
))
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Proof. The des
ription of 
ohomology follows from Cor. 4.12 (re-


all that N = R lim
←−k

RΓZ(C,Apk) while N∗ = RHomZp
(N,Zp) ≃

RHomZp
(lim
−→k

RΓZ(C,Apk))) using only that Ap∞(Kkn) and Ap∞(kvkn)
are �nite. The stated relations between NKar

and N∗
Kar

follow from Thm.

4.16 thanks to the spe
tral sequen
e

ExtpΛ(Γ)(H
−q(N∗

Kar
),Λ(Γ)) ⇒ Extp+qΛ(Γ)(N

∗
Kar

,Λ(Γ))

(resp. ExtpΛ(Γ)(H
−q(NKar

),Λ(Γ)) ⇒ Extp+qΛ(Γ)(NKar
,Λ(Γ)) )

whi
h degenerates by Cor. 5.2.

Proposition 5.5. The following 
onditions are equivalent:

(i) NKar
is �nitely generated over Zp (that is for any i, Hi(NKar

) is a �nitely

generated Zp-module).

(ii) HomZp
(lim
−→n

Sel(Âp∞/Kkn),Qp/Zp) is �nitely generated over Zp.
(iii) N∗

Kar
is �nitely generated over Zp.

(iv) HomZp
(lim
−→n

Sel(Ap∞/Kkn),Qp/Zp) is �nitely generated over Zp.

Proof. (i) ⇔ (iii) follows from the previous 
orollary. Indeed if M is any

Λ(Γ)-module then Ei(M) is �nitely generated over Zp as soon as M is. The

remaining equivalen
e are obvious, be
ause the p-rank of torsion points remains

bounded along the tower.

From now on, we will often need to make the following assumption:

(µ = 0 - up to iso): There exists an abelian variety A′/K whi
h is isogenous

to A/K and veri�es the equivalent 
onditions of Prop. 5.5.

Remark 5.6. (i) What we know about this assumption is the following:

- It holds for 
onstant varieties ex
ept for supersingular abelian variety with

non-invertible Hasse-Witt matrix (see [OT℄, Theorem 1.8).

- If it holds for A/K and K ′/K is a �nite unrami�ed extension, then it also

holds for A/K ′
.

(ii) In 
hara
teristi
 0, it is generally expe
ted that the analogue of (µ = 0-up
to iso) always holds for ellipti
 
urves ([Gr℄, p. 9).

5.2 The case of a p-adic Lie extension

Let us begin by a 
heap result.

Proposition 5.7. Corollary 5.4 1. (i) and 2. (i) holds verbatim if one repla
es

Kkn by Kn and NKar
and N∗

Kar
respe
tively by NK∞

and N∗
K∞

.

�

To go further we need the following lemma whi
h (partly) is the derived version

of Nakayama's lemma.
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Lemma 5.8. Let M ∈ Dp(Λ(G)), then M is S-torsion (ie. ΛS
L
⊗M = 0) if and

only Λ(Γ)
L
⊗Λ(G)M ∈ D

p(Λ(Γ)) is �nitely generated over Zp.

Proof. First assume that M is a �nitely generated Λ(G)-module. In this 
ase,

the following statements are equivalent:

(i) M is S-torsion.
(ii) M is �nitely generated over Λ(H).
(iii) Λ(Γ)⊗Λ(G) M is �nitely generated over Zp.

(iv) ea
h Tor
Λ(G)
p (Λ(Γ),M) is �nitely generated over Zp.

Indeed (i) ⇔ (ii) is [CFKSV℄ 2.3, (ii) ⇔ (iii) is the topologi
al version of

Nakayama's lemma for the ring Λ(H) and the 
ompa
t Λ(H)-module M (note

that Λ(Γ) ⊗Λ(G) M ≃ Zp ⊗Λ(H) M). Finally (iii) ⇔ (iv) is an immediate


onsequen
e of the fa
t that M admits a resolution by a perfe
t 
omplex of

Λ(H)-modules as soon as it is �nitely generated over Λ(H).

Now we 
ome to the general 
ase. As in the 
ase of modules, the impli
ation �M
is S-torsion� ⇒ �Λ(Γ)⊗LΛ(G) M is �nitely generated over Zp� is immediate. It

thus remains to prove the re
ipro
al impli
ation. Assume thus that Λ(Γ)⊗LΛ(G)

M is �nitely generated over Zp, ie. that the �nal terms of the spe
tral sequen
e

TorΛ(G)
p (Λ(Γ), Hq(M))⇒ Torp−q(Λ(Γ),M)

are. Then using the above equivalen
e (iii) ⇔ (iv) for the module Hq(M) as
well as a des
ending indu
tion on q, one gets that ea
h initial term must also

be �nitely generated over Zp (see [Va℄ 4.1 for details).

Proposition 5.9. Under the assumption (µ = 0 - up to iso), NK∞
and N∗

K∞

are both S∗
-torsion.

Proof. Let A → A′
be an isogeny over K su
h that A′

veri�es (µ = 0). Then

learly

Qp ⊗
L
Zp
R lim
←−

RΓZ(C, Tp(A)) ≃ Qp ⊗
L
Zp
R lim
←−

RΓZ(C, Tp(A
′))

and we may thus assume that A = A′
. By Thm. 4.16, NK∞

(resp. N∗
K∞

) is

perfe
t. Taking R lim
←−

along Kk∞/K thus gives

Λ(Γ)
L
⊗Λ(G)NK∞

≃ NKar
(resp. Λ(Γ)

L
⊗Λ(G)N

∗
K∞
≃ N∗

Kar
)

and the result now follows dire
tly from the previous lemma.

Remark 5.10. Thanks to the previous proposition, we may form the 
lasses

[NK∞
] and [N∗

K∞
] of NK∞

and N∗
K∞

in K0(MG(H)).

Corollary 5.11. Under the assumption (µ = 0 - up to iso) ea
h one of the

following morphisms of Dp(Λ(G)S∗)

1, 1−φ : (IK∞
)S∗ → (PK∞

)S∗ , 1
∗, (1−φ)∗ : (P ∗

K∞
)S∗ → (I∗K∞

)S∗

indu
ed by 1, 1− φ : I → P , is an isomorphism.
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Proof. For 1, this is due to the fa
t that Lie(D)(−Z), and thus LK∞
, is killed

by p. For 1− φ, this is a dire
t 
onsequen
e of the previous proposition.

Remark 5.12. It is not the 
ase that LK∞
is S-torsion, be
ause of Prop. 5.1

(i).

We are now in position to de�ne the �p-adi
 L-fun
tion� (as well as its dual
version) whi
h appears in the main 
onje
ture.

Definition 5.13. Under the assumption (µ = 0), the p-adi
 L-fun
tion L =
L(A,U,G) and it dual version L∗ = L∗(A,U,G) are de�ned as follows:

(i) L := Det((1− φ)1−1| (PK∞
)S∗)−1 ∈ K1(ΛS∗).

(ii) L∗ := Det((1∗)−1(1− φ)∗| (P ∗
K∞

)S∗)−1 ∈ K1(ΛS∗).

Remark 5.14. (i) The notation L∗ is justi�ed by the fa
t that it is de-

du
ed from L via the duality involution of K1(Λ(G)S∗) (with the 
onvention

that duals are viewed as left modules via g 7→ g−1
). Indeed (P ∗

K∞
)S∗ ≃

RHomΛS∗ ((P
∗
K∞

)S∗ ,ΛS∗) and (1∗)−1(1 − φ)∗ is RHomΛS∗ (−,ΛS∗)-dual to
(1− φ)1−1| (PK∞

)S∗
.

(ii) Thanks to the previous remark and lemma 3.5, we see that for any Artin

representation ρ
ρ(L) = ρ∨(L∗)

Let us now review how one 
lassi
ally atta
hes twisted L-fun
tions to A and

U via over
onvergent iso
rystals. By [LST℄, the log Dieudonné 
rystal D over

C♯ indu
es an over
onvergent F -iso
rystal D†
over U/Fp. Let L be a �nite

extension of Qp whi
h is totally rami�ed, O its ring of integers, and 
onsider an

Artin representation ρ : G → AutO(Vρ). Chose n su
h that ρ fa
tors through

Gn = Gal(Un/U). Then we 
an see ρ as a O-representation of the fundamental

group of U , having �nite (in fa
t trivial) lo
al monodromy. This representation


orresponds to a unique unit-root over
onvergent F -iso
rystal U(ρ)† over U/L
(see e.g. [Tsz℄, 7.2.3) whi
h be
omes 
onstant over Un. Consider

pr∗ : F − iso†(U/Qp)→ F − iso†(U/L)

the natural base 
hange fun
tor from the 
ategory of over
onvergent F iso
rys-

tals over U/Qp to the 
ategory of over
onvergent F iso
rystals over U/L. Then
we set

L(U,A, ρ, s) := L(U, pr∗D† ⊗ U(ρ)†, p−s)

where the right hand side is the 
lassi
al L-fun
tion de�ned in [EL1℄ asso
iated

to the F -iso
rystal pr∗D† ⊗ U(ρ)†.

The rest of this se
tion will be devoted to proving the following theorem, whi
h

is our main result:

Theorem 5.15. The p-adi
 L-fun
tion and its dual version verify the following

properties.

1. (Char) In K0(MG(H)), one has the following equalities:
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(i) ∂(L) = [NK∞
] + [LK∞

].
(ii) ∂(L∗) = −[N∗

K∞
]− [L∗

K∞
].

2. (Interpolation): For any totally rami�ed extension L of Qp with ring of

integers denoted O and every ρ : G → AutO(V ) with 
ontragredient ρ∨ : G →
AutO(V

∗), one has, in L ∪ {∞}:
(i) ρ(L) = L(U,A, ρ∨, 1).
(ii) ρ(L∗) = L(U,A, ρ, 1).

Proof. 1. (i) A

ording to Lem. 3.3 there exists a 
ommutative square of the

form

IK∞

1−φ
−−−−→ PK∞

1









y









y

PK∞
−−−−→ PK∞

whose edges all be
ome isomorphisms after lo
alization by S∗
. The 
laimed

equality follows from Lem. 3.2 sin
e [Cone(1− φ)] = [NK∞
[1]] = −[NK∞

] and
[Cone(1)] = [LK∞

]. Here, the existen
e of su
h a diagram is ensured by Lem.

3.3. The proof of (ii) is similar using the dual distinguished triangles des
ribing

N∗
K∞

and L∗
K∞

.

2. Note that the formula (ii) follows from (i) by Rem. 5.14 (ii). In order to

prove (i) we begin with preliminary results.

Proposition 5.16. There is a 
anoni
al isomorphism as follows in the derived


ategory of L-ve
tor spa
es

L
L
⊗ΛO(G)(VΛO(G))

∗
L
⊗Λ(G)PK∞

≃ RΓrig,c(U/L, pr
∗D† ⊗ U(ρ∨))

(here the (ΛO(G),Λ(G))-bimodule stru
ture of (VΛO(G))
∗
is as in the de�nition

of the map ρ : K1(Λ(G)) → K1(O), see. paragraph 3.4). The a
tion of φ1−1

on the left hand term 
orresponds moreover to the a
tion of Frobenius divided

by p on the right hand side.

Proof. We have isomorphisms as follows:

L
L
⊗ΛO(G)(VΛO(G))

∗
L
⊗ΛO(G)PK∞

1
≃ L

L
⊗ΛO(G)(V

∗
L
⊗Zp

PK∞
)

2
≃ L

L
⊗L[Gn](V

∗
L

L
⊗Zp

Pn)
3
≃ L

L
⊗L[Gn](V

∗
L

L
⊗LRΓrig,c(Un/L, pr

∗D†))
4
≃ RΓrig,c(U/L, pr

∗D ⊗ U †(ρ∨))

Here the isomorphism 1 is by Rem. 3.4 (i), 2 is obvious and 4 follows from

étale 
ohomologi
al des
ent for 
ompa
tly supported rigid 
ohomology ([CT℄)

together with the de�nition of U(ρ∨). The isomorphism 3 follows from the fa
t

that in D(L[Gn]) we have a Frobenius 
ompatible isomorphism as follows:

L
L
⊗Zp

RΓ(C♯n/Zp, D(−Z)) ≃ RΓrig,c(Un/L, pr
∗D†)
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Let us explain the latter isomorphism. Sin
e (
ompa
tly supported) rigid 
oho-

mology is 
ompatible to base 
hange from Qp to L we may assume that L = Qp
(note that the Frobenius is L-linear sin
e L/Qp is totally rami�ed) and then

apply the following lemma to the diagram having C♯n as only vertex and edges

indexed by Gn.

Lemma 5.17. Consider a diagram (see [TV℄ Def. 2.1) X/∆ of proper smooth


urves over a perfe
t �eld k, Z a smooth divisor of X, X♯ = (X,Z), Y = X−Z,
E an F -
rystal on X♯

and E†
the indu
ed over
onvergent F -iso
rystal ([LST℄).

If ∆ satis�es the �niteness 
ondition of [TV℄ Lem. 5.7 then we have a 
anoni
al

isomorphism

Qp
L
⊗Zp

RΓ(X♯/Zp, E(−Z)) ≃ RΓrig,c(Y,E
†)

in D(Mod(Qp)∆). This isomorphism is 
ompatible with Frobenius.

Proof. By using Poin
aré duality on both sides of the isomorphism, we are

redu
ed to establish an isomorphism

Qp
L
⊗Zp

RΓ(X♯/Zp, E) ≃ RΓrig(Y,E
†)

in D(Mod(Qp)∆
op

). Moreover the 
ompatibility with Frobenius is a formal


onsequen
e of the rest sin
e one 
an repla
e the diagram X by the diagram

Frob : X → X of type ∆ × [1]. Using 
ohomologi
al des
ent on both the


rystalline and the rigid side (see [CT℄), we 
an always assume given an exa
t

immersion X♯ ⊂ P ♯ into a log smooth formal log s
heme P ♯/W (k) as in [TV℄

Lem. 5.7. Then, after tensorisation by Qp, the 
rystalline 
ohomology of E

an be 
omputed (see [Sh℄ and [Tr℄, proof of proposition 3.3) as the log de

Rham 
ohomology on the tube ]X [P of the asso
iated module with 
onne
tion

EK (K = Frac(W (k)) and maps naturally to the de Rham 
ohomology on V ,
some stri
t neighborhood of ]Y [P in ]X [P , of EK |V , whi
h is nothing but the

rigid 
ohomology of E†
. We have then 
onstru
ted a map

Qp
L
⊗Zp

RΓ(X♯/Zp, E)→ RΓrig(Y,E
†).

To show that this map is an isomorphism, we need to show that this is the


ase on ea
h vertex of the diagram. Now we 
an always assume given a proper

smooth lifting of ea
h vertex (they need not be 
ompatible) and we 
on
lude

using [LST℄, 4.2 and [Tsj℄, 1.5.

Proposition 5.18. [EL2℄ Let E† ∈ F − iso†(U/Qp).

L(U,E†, ρ, t) =

2
∏

i=0

detL(1 − tF |H
i
rig,c(U/L, pr

∗D† ⊗ U(ρ)†)(−1)i+1

�
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Now we 
an prove the interpolation formula 2.(i) of Thm. 5.15. For simpli
ity,

we set

RP := R
L
⊗ΛO(G)(VΛO(G))

∗
L
⊗Λ(G)PK∞

and RH
q := Hq(RP )

for any ΛO(G)-algebra R. Note that R′Hq ≃ R′ ⊗R RH
q
if R′/R is �at.

Applied to PK∞
, Lem. 3.6 gives

ρQO(Γ)L =
∏

q

detQO(Γ)((1− φ)1
−1|QO(Γ)H

q)(−1)q+1

(17)

and Lem. 3.7 applied to ΛO(Γ)IH
q
gives:

ǫdetQO(Γ)((1− φ)1
−1|QO(Γ)H

q)

= detL((1− φ)1
−1|Tor

ΛO(Γ)I
0 (L, ΛO(Γ)IH

q))

.detL((1− φ)1
−1|Tor

ΛO(Γ)I
1 (L, ΛO(Γ)IH

q))−1

(18)

whenever the right hand side makes sense (re
all that the map ǫ was de�ned
in (10)).

Now Prop. 5.16 shows that

RΓrig,c(U/L, pr
∗D† ⊗ U(ρ∨)) ≃ LP

≃ L
L
⊗ΛO(Γ)IΛO(Γ)IP

When
e a spe
tral sequen
e whi
h degenerates into short exa
t sequen
es

(where we write Hq
rig,c(U/L) instead of Hq

rig,c(U/L, pr
∗D†⊗U(ρ∨)), by la
k of

spa
e):

H2
rig,c(U/L) ։ Tor

ΛO(Γ)I
0 (L, ΛO(Γ)IH

2)

Tor
ΛO(Γ)I
1 (L, ΛO(Γ)IH

2) →֒ H1
rig,c(U/L) ։ Tor

ΛO(Γ)I
0 (L, ΛO(Γ)IH

1)

Tor
ΛO(Γ)I
1 (L, ΛO(Γ)IH

1) →֒ H0
rig,c(U/L) ։ Tor

ΛO(Γ)I
0 (L, ΛO(Γ)IH

0)

Tor
ΛO(Γ)I
1 (L, ΛO(Γ)IH

0) = 0
(19)

Claim. The operator (1− φ)1−1
is bije
tive on ea
h Tor

ΛO(Γ)I
−i (L, ΛO(Γ)IH

j))
ex
ept maybe for (i, j) = (0, 1). Moreover, the operator 1 − p−1F is bije
tive

on Hq
rig,c(U/L, pr

∗D† ⊗ U(ρ∨)) ex
ept maybe for q = 1.

Let us prove this 
laim. First we observe that the se
ond statement implies

the �rst one sin
e by Nakayama's lemma, (1− φ)1−1
is bije
tive on ΛO(Γ)IH

j

if and only if it is on Tor
ΛO(Γ)I
0 (L, ΛO(Γ)IH

j), in whi
h 
ase it is also bije
tive

on Tor
ΛO(Γ)I
1 (L, ΛO(Γ)IH

j)). Now the se
ond 
laim follows from the long exa
t

sequen
e (
f. Thm. 4.14 and the isomorphism between the third and last term

at the beginning of the proof of Prop. 5.16)

L⊗L[Gn] (V
∗
L

L
⊗Zp

Nn) → Hq
rig,c(U/L)

1−p−1F
→ Hq

rig,c(U/L) → . . .
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sin
e by Cor. 4.12 Q⊗Nn is 
on
entrated in degrees [1, 2].

We may now 
on
lude sin
e the 
laim ensures that no indeterminate produ
t

of the form 0.∞ o

urs in:

- the formula obtained by 
ombining (17) with (18) (note that the left hand

term is nothing but ρ(L)):

ǫρQO(Γ)(L)
∏

q detQO(Γ)((1− φ)1
−1|QO(Γ)H

q)(−1)q+1

=
∏

i,j detL((1− φ)1
−1|Tor

ΛO(Γ)I
−i (L, ΛO(Γ)IH

j))(−1)i+j+1

- the formula given by the exa
t sequen
es (19):

∏

i,j detL((1− φ)1
−1|Tor

ΛO(Γ)I
−i (L, ΛO(Γ)IH

j))(−1)i+j+1

=
∏

q detL(1− p
−1F |Hq

rig,c(U/L, pr
∗D† ⊗ U(ρ∨))(−1)(q+1)

- the formula given by Lem. 5.18:

∏

q

detL(1− p
−1F |Hq

rig,c(U/L, pr
∗D† ⊗ U(ρ∨))(−1)(q+1)

= L(U,A, ρ∨, 1).

�

Remark 5.19. (i) In the above proof we have retrieved the well known fa
t that

ρ(L) = L(U,A, ρ∨, 1) may take the value 0, but not ∞.

(ii) In [LLTT℄, the author 
onsiders the 
omplex RHomZp
(L,Qp/Zp) = L∗[1]

instead of L∗
. This explains the di�eren
e of signs between formula 1. (ii) and

those of lo
. 
it.
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