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Abstract. We establish the Iwasawa main onjeture for semistable

abelian varieties over a funtion �eld of harateristi p under ertain
restritive assumptions. Namely we onsider p-torsion free p-adi Lie
extensions of the base �eld whih ontain the onstant Zp-extension
and are everywhere unrami�ed. Under the usual µ = 0 hypothesis, we
give a proof whih mainly relies on the interpretation of the Selmer

omplex in terms of p-adi ohomology [TV℄ together with the trae

formulas of [EL1℄.
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1 Introduction

1.1 Statement of the main theorem

Consider a funtion �eld K of harateristi p, C the orresponding proper

smooth geometrially irreduible urve over a �nite �eld k and an abelian

variety A/K with Néron model A/C. Assume for simpliity that A has good

redution everywhere and that the Hasse-Weil L funtion of A/K does not

vanish at s = 1. In this situation the BSD onjeture predits that eah group

involved in the right hand term below is �nite and that the following formula

holds (where Â denotes the dual abelian variety):

L(A/K, 1) =
#X(A/K)

#A(K)#Â(K)
.
#H0(C,Lie(A))

#H1(C,Lie(A))
(1)
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Let us restrit our attention to the p-adi valuations on both sides. There

are natural perfet omplexes of Zp-modules RΓ(C, Tp(A)), RΓ(C,Lie(A))
whose ohomology groups are the p-part of the groups appearing above. These
omplexes thus beome ayli after extension of salars to Qp, hene pro-

due lasses in K0(Zp,Qp) ≃ Z. Looking at L(A/K, 1) as an element of

K1(Qp) ≃ Qp
×
, the p-part of (1) simply beomes

∂(L(A/K, 1)) = [RΓ(C, Tp(A))] + [RΓ(C,Lie(A))] (2)

where ∂ : K1(Qp) → K0(Zp,Qp) is the onneting map of lower K-theory

(ie. the p-adi valuation vp : Qp
× → Z). As explained in [KT℄ the omplexes

appearing on the right hand side an be related to p-adi (rystalline and then

rigid) ohomology and the trae formulae whih are known in this ontext are

then su�ient to atually prove (2).

The main purpose of this paper is to establish a similar statement in the setting

of non ommutative Iwasawa theory. We don't assume that L(A/K, 1) 6= 0
anymore and A is now allowed to have semistable redution at some given

set Z of points of C. Consider a Galois extension K∞/K whih ontains the

onstant Zp-extension Kk∞/K, is unrami�ed everywhere, and whose Galois

group G = lim
←−n

Gn is p-adi Lie without p-torsion. In that situation, a general

result explained in setion 2 will allow us to form perfet omplexes of modules

over the Iwasawa algebra Λ(G) := lim
←−n

Zp[Gn]:

NK∞
:= R lim

←−n
RΓZn(Cn, Tp(A))

LK∞
:= R lim

←−n
RΓZn(Cn, Lie(A))

where RΓZn(Cn,−) is the funtor of ohomology vanishing at Zn (see. setion

4 for a preise de�nition and the relation to usual Selmer omplexes) and is

designed to take out the ontribution of Z. A signi�ant di�erene with the

BSD statement is that here, the ohomology of these omplexes are expeted

to be torsion Λ(G)-modules even if L(A/K, 1) = 0. This is well known if

K = Kk∞ (see. Cor. 5.2 or [LLTT℄ Cor. 2.1.5). To go from this ase to the

general one, we follow the strategy of [CFKSV℄, whih unfortunately requires an

extra assumption, namely the usual µ = 0 hypothesis. More preisely, we will

prove the following generalization of [LLTT℄, where only the ase K = Kk∞
was onsidered.

Theorem 1.1. (Thm. 5.15) Let A/K, K∞/K and G as above. If the µ-
invariant of the Pontrjagin dual of the disrete Selmer group of A over Kk∞
is trivial, then

(i) The ohomology Λ(G)-modules of NK∞
and LK∞

are S∗
-torsion, where

S∗
is the anonial Ore set of [CFKSV℄. The latter omplexes

thus produe lasses [NK∞
] and [LK∞

] in K0(Λ(G),Λ(G)S∗) (denoted

K0(MH(G)) in lo. it.).
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(ii) There exists a anonial element LA/K∞
∈ K1(Λ(G)S∗) satisfying

∂LA/K∞
= [NK∞

] + [LK∞
] (3)

where ∂ : K1(Λ(G)S∗)→ K0(Λ(G),Λ(G)S∗) denotes the onneting map

in lower K-theory.

(iii) The element LA/K∞
veri�es the interpolation property

ρ(LA/K∞
) = L(U,A/K, ρ∨, 1) (4)

for eah Artin O-valued representation ρ of G (O/Zp, a totally ram-

i�ed extension), where ρ(−) : K1(Λ(G)S∗) → L× ∪ {0,∞} denotes

the orresponding evaluation map, (−)∨ denotes the ontragredient, and

L(U,A/K, ρ, s) is the ρ-twisted Hasse-Weil L-funtion of A/K without

Euler fators at Z = C − U .

We also give a similar statement involving omplexes N∗
K∞

and L∗
K∞

whih

are Λ(G)-dual to NK∞
and LK∞

(see Prop. 2.11 (ii), as well as Prop. 4.16,

(ii) for the preise statement).

Here, the onstrution of LA/K∞
, the proof that NK∞

is torsion and the proof

of (3) are simultaneous and rely essentially on the main result of [TV℄ (a

shea��ed version of [KT℄ Prop. 5.13) whih yields distinguished triangles of

perfet omplexes of Λ(G)-modules relating �at and rystalline ohomology

(see Set. 4.4.4 and Rem. 4.15). The proof of (4) relies on the omparison of

rystalline and rigid ohomology [LST℄ together with the trae formula for the

latter and the odesent properties of the Iwasawa omplexes along the tower

K∞/K (Prop. 4.16, relying on Thm. 2.11).

1.2 Outline of the paper

Setion 2. De�ning the omplexes NK∞
, LK∞

or N∗
K∞

, L∗
K∞

ourring in the

main onjeture (3) involves forming projetive limits along the Galois tower

formed by the Cn's or alternatively indutive limits and taking duals. In order

to perform these operations, a onvenient framework is given by the derived at-

egory of normi systems Db(GMod(Zp)) de�ned and studied in [Va℄. A normi

system is a olletion Mn of Gn-modules together with equivariant morphisms

Mn →Mm, Mm →Mn satisfying a natural ompatibility (Def. 2.1). The pur-

pose of this setion is to show that the olletion of derived funtors RΓ(Cn,−)
omes from a funtor RΓ(C,−) with values in Db(GMod(Zp)).
We plae ourself in a setting whih is general enough to handle the various

ohomology theories (�at, étale, rystalline...) involved here. Namely we show

(Lem.-Def. 2.7) that in a ringed topos (E,R) any pro-torsor X = (Xn, Gn)n
gives rise to a funtor

Γ(X,−) :Mod(E,R)→ GMod(Γ(E,R)) (5)
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from the ategory of R-modules of E to that of normi systems of Γ(E,R)-
modules. Using [Va℄, the �nal subsetion ollets the basi properties (desent,

odesent, perfetness, duality, under suitable assumptions, see. Thm. 2.11) of

the Iwasawa omplexes de�ned using the funtor

D+(E,Zp)→ D(Λ(G))

obtained by omposing RΓ(X,−) with R lim
←−n

, or alternatively with lim
−→n

and

then RHom(−,Zp).

Setion 3. We review the basi fats from K-theory whih are needed for our

purpose. This involves mainly the determinant funtor for perfet omplexes

from [Kn℄ and its behaviour with respet to distinguished triangles and loal-

ization following [FK℄. We also disuss the evaluation map whih appears in (4).

Setion 4. We begin by realling the de�nition of the derived funtor RΓZ(C, .)
of global setions vanishing at a losed subsheme Z whih naturally appears in

the omparison theorem of [TV℄ and is denoted RΓar,V in [KT℄ (see Rem. 4.13

for a more preise statement). Next we ompare the omplex of normi systems

RΓZ(C, Tp(A)) underlying NK∞
to the usual Selmer omplex of A/K. We take

the opportunity to give a tratable de�nition for normi Selmer omplexes and

prove the expeted duality theorem in this setting.

Finally we reall the omparison result of [TV℄ (whih takes plae in the small

étale topos of C) and write down the fundamental distinguished triangles that

follow from it, using (5):

RΓZ (C, Tp(A)) → RΓ(C♯/Zp, F il1Dlog(A)(−Z))
1−φ
→ RΓ(C♯/Zp,Dlog(A)(−Z))

+1
→

RΓ(C♯/Zp, F il1Dlog(A)(−Z))
1
→RΓ(C♯/Zp, Dlog(A)(−Z)) → RΓ(C,Lie(A)(−Z))

+1
→

(6)

Here φ is a semi-linear map suh that φ1 = pFrob. By applying R lim
←−n

, these

in turn yield distinguished triangles of perfet omplexes of Λ(G)-modules

satisfying the derived odesent property. This will be the main ingredient for

the proof of 1.1.

Setion 5. We put everything together in order to prove the Iwasawa main

onjeture. The third term of the �rst distinguished triangle above is a k-
vetor spae and the arrow denoted 1 thus beomes invertible after inverting

S∗
. Whene an endomorphism (1−φ)S∗1

−1

S∗ ating on the loalization PK∞,S∗

of

PK∞
:= R lim

←−
RΓ(C♯n/Zp, Dlog(A)(−Z))

In the ase where G = Γ, the base hange formula in rystalline ohomology

together with a semi-linear argument shows that the �rst term in the seond

distinguished triangle above vanishes as well after S∗
-loalization. In the gen-

eral ase, an argument using Nakayama's lemma ensures that it is still the ase
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under the µ = 0 assumption. The endomorphism (1− φ)S∗1
−1
S∗ is thus invert-

ible, allowing us to de�ne LA/K∞
∈ K1(ΛS∗) as its determinant, rendering (3)

almost tautologial. Let us hint the idea of the proof of (4). Using the desent

properties of the normi setion funtor together with the omparison between

rystalline and rigid ohomology from [LST℄, we prove an isomorphism

L
L
⊗ΛO(G)(Vρ,ΛO(G))

∗
L
⊗Λ(G)PK∞

≃ RΓrig,c(U/L, pr
∗D† ⊗ U(ρ∨)) (7)

where U(ρ∨) denotes the unipotent onvergent isorystal assoiated to ρ (Prop.
5.16). On the one hand the trae formula in rigid ohomology shows that

L(U,A/K, ρ∨, 1) oinides with the alternated produt of the determinants of

1 − p−1Frob ating on the L-valued ohomology of the right hand side. Sine

we have no morphism from ΛS∗
to L we may not use diretly the base hange

property of the Det funtor together with a loalized version of (7) in order to

relate the ation of 1−p−1Frob on the right hand side with ρ(L). We turn this

di�ulty by investigating arefully the spetral sequene of odesent along

Kk∞/K with the de�nition of the evaluation map in mind.

Acknowledgements. The �rst author is supported by JSPS grant 15K04793.
Both authors thank the referees for their areful reading and suggestions to

simplify the paper.

2 The normic section functor

The purpose of this setion is to show that under reasonable onditions the

ohomology of a topos along a Galois tower with group G naturally gives rise

to perfet omplexes of Λ(G)-modules satisfying natural properties suh as

derived desent, odesent and duality along the tower. This goal is ahieved

in Thm. 2.11.

2.1 Normic systems

We de�ne and study brie�y the ategory of normi systems along a pro�nite

group G. The following de�nitions slightly generalize those given in [Va℄.

Definition 2.1. Consider a ring S, a pro�nite group G, and let (Hn)n∈N
denote the �ltered set of the normal open subgroups of G (N an appropriate

�ltered set of indies). For n ≤ m in N , we denote Gn = G/Hn and Gm,n =
Hn/Hm. In this setting we de�ne the following ategories.

(i) GMod(S) the ategory of S-modules endowed with a disrete ation of G,
ie. whih are the union of their �xed points by the Gn's.
(ii) Gn

Mod(S) the full subategory of GMod(S) whose objets are those on

whih Hn ats trivially. For m ≥ n, the inlusion funtor Gn
Mod(S) →

Gm
Mod(S) has a left and a right adjoint, desribed respetively as the oin-

variants funtor (−)Gm,n
and the �xed points funtor (−)Gm,n

.
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(iv) GMod(S) the ategory of Mod(S)-valued normi systems is de�ned a fol-

lows:

- an objet is a triple M = ((Mn)n∈N , (jn,m : Mn → Mm)n≤m, (km,n : Mm →
Mn)n≤m) satisfying the following properties:

(Norm1) Mn is an objet of Gn
Mod(S), jn,m and km,n are morphisms of

GMod(S).

(Norm2) If n1 ≤ n2 ≤ n3 then jn2,n3 ◦ jn1,n2 = jn1,n3 and kn2,n1 ◦ kn3,n2 =
kn3,n1 .

(Norm3) If n ≤ m, jn,m ◦ km,n :Mm →Mm oinides with the endomorphism

∑

g∈Gm,n
cg of Mm. Note that this is not only a morphism in Mod(S), but also

in GMod(S) sine Hn ⊳G.
- a morphism φ : M → M ′

is a olletion of morphisms of GMod(S), (φn :
Mn →M ′

n)n∈N suh that the following squares ommute for eah ouple n ≤ m:

Mm
φm // M ′

m Mm

km,n

��

φm // M ′
m

km,n

��
Mn

jn,m

OO

φn // M ′
n

jn,m

OO

Mn
φn // M ′

n

Let us make some remarks about the ategory GMod(S) of disrete G-objets.
- For M,M ′ ∈G Mod(S):

Hom
GMod(S)(M,M ′) ≃ lim

←−
n

lim
−→
m

Hom
GMod(S)(M

Hn ,M ′Hm).

- The ategory GMod(S) is a full subategory of Mod(S[G]). The inlusion

funtor has a right adjoint M 7→ ∪nM
Hn

. In partiular, GMod(S) has enough
injetives sine Mod(S[G]) has.

We now turn to some properties of the ategory GMod(S) of normi systems.

Proposition 2.2. Small indutive and projetive limits exist in GMod(S) and
ommute to the omponent funtors GMod(S) → Gn

Mod(S). In partiular,

GMod(S) is an abelian ategory.

Proof. In order to form the indutive (resp. projetive) limit indexed by a set

I in GC, it su�es to form the limit of the omponents and endow them with

the jn,m and km,n provided by funtoriality. This prove the �rst statement.

The seond one follows sine being abelian is a property of limits ([KS℄, Def.

8.2.8 and Def. 8.3.5).

The following lemma, inspired by [TW℄ has been pointed out by B. Kahn.

Lemma 2.3. (i) If G is in fat a �nite group, then the ategory GMod(S)
is equivalent to Mod(µ⊳(G,S)) where µ⊳(G,S) is the normal Makey al-

gebra, de�ned as the quotient of the free assoiative algebra S{{cg, g ∈
G}, {jn,m, km,n, n ≤ m}} by the following relations:
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- cg1cg2 = cg1g2 , cgjn,m = jn,mcg, cgkm,n = km,ncg, for g, g1, g2 ∈ G and n ≤ m
in N .

- jn2,n3jn1,n2 = jn1,n3 , kn2,n1kn3,n2 = kn3,n1 , for n1 ≤ n2 ≤ n3 in N .

- cgjn,n = jn,n, jn,n = kn,n, for n ∈ N and g ∈ Hn.

- jn,mkm,n =
∑

g∈Gm,n
cgjm,m, for n ≤ m in N .

-

∑

n∈N jn,n = 1.
(ii) In general, GMod(S) is equivalent to the ategory of oartesian se-

tions of the o�bered ategory above Nop
assoiated to the ovariant pseudo-

funtor on Nop
mapping n to Mod(µ⊳(Gn, S)), and m ≥ n to the funtor

Mod(µ⊳(Gm, S)) → Mod(µ⊳(Gn, S)) given by extension of salars through

the morphism µ⊳(Gm, S) → µ⊳(Gn, S) de�ned by killing the ja,b's and kb,a's
with b � n.

Proof. (i) Let us desribe the funtor GMod(S)→Mod(µ⊳(G,S)). A normi

system M is sent to ⊕nMn, together with its obvious struture of µ⊳(G,S)-
module: cg ats on every omponents whereas jn,m (resp. km,n) sends the

n-th (resp. m-th) omponent into the m-th (resp. n-th) one. By de�nition, a

morphism of normi systemsM →M ′
onsists in a olletion of morphisms φn :

Mn → M ′
n, ompatible with the cg's, the jn,m's and the km,n's. It thus gives

rise to a morphism ⊕nMn → ⊕nM
′
n, ompatible with the ation of µ⊳(G,S)

and this is learly ompatible to omposition. We thus have de�ned the desired

funtor GMod(S) → Mod(µ⊳(G,S)). It now remains to notie that both the

full faithfulness and the essential surjetivity of this funtor immediately follow

from the isomorphism of algebras µ⊳(G,S) ≃
∏

n∈N jn,nµ⊳(G,S).
(ii) We apply (i) to the ase G = Gn. Letting n vary, this gives an equivalene

of o�bered ategories. Whene the result, sine GMod(S) is learly equivalent
to the ategory of oartesian setions of the o�bered ategory assoiated to

n 7→ Gn
Mod(S).

The following orollary answers a question of [Va℄.

Corollary 2.4. The ategory GMod(S) has enough injetives.

Proof. Let F/Nop
denote the �bered ategory n 7→ Mod(µ⊳(Gn, S)) onsid-

ered previously and let Sect(F/Nop) (resp. Cocart(F/Nop)) denote its ate-
gory of setions (resp. oartesian setions). Denoting |N | the disrete ategory
underlying N , there are three obvious forgetful funtors

Cocart(F/Nop)
F1→ Sect(F/Nop)
F2→

∏

|N |Mod(µ⊳(Gn, S))
F3→ Mod(S)|N |

eah of whih is exat and whose omposition is faithful. The result will follow

formally if one proves that eah of them has a right adjoint. For F3, this is easy

and left to the reader. For F2, this results from [SGA4℄, Vbis, 1.2.10 (note that
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here F/Nop
is indeed bi�bered). For F1, we use the following general easy fat

onerning an arbitrary o�bered ategory F/S with oleavage f 7→ f!:
Fat : Assume that for any f : X → Y the following properties are veri�ed:

- The funtor "omposition with f" :S/X → S/Y is o�nal.

- f! ommutes to projetive limits indexed by S/X .
Then the inlusion funtor Cocart(F/S) → Sect(F/S) has a right ad-

joint, whih takes a setion X 7→ s(X) to the oartesian setion X 7→
lim
←−f :Z→X

f!s(Z).

Remark 2.5. One may show that GMod(S) has enough projetives as well.

2.2 From sheaves to normic systems

As before let G = lim
←−n

Gn denote a pro�nite group and let Gn = G/Hn. Reall

that the lassifying topos BG is the ategory of disrete left G-sets. Consider
another arbitrary topos E together with its strutural morphism π : E → Set
and assume given a projetive system X = (Xn) of G-objets of E suh that

Xn is a torsor of E under π−1Gn. In this situation we have for m ≥ n a

ommutative diagram of topoi as follows:

E
p∞

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣

pm
uu❧❧❧

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

pn||②②
②②
②②
②②
②

π

��
BG qm

// BGm qm,n

// BGn
// Set

Here the horizontal arrows are by funtoriality of the lassifying topos with

respet to the group (their inverse and diret images funtors are in�ation and

�xed points by the adequate subgroup) and the oblique morphisms, de�ned by

X, are as follows:

- If Y is in BGn
and Y 0

denotes the underlying set, the formula g.(x, y) =
(gx, gy) de�nes an ation of π−1Gn on Xn×π

−1Y 0
and p−1

n Y = π−1Gn\(Xn×
π−1Y 0) is the oinvariant objet of this ation. If Z is an objet of E, then
pn,∗Z is the set Hom(Xn, Z) endowed with the left ation of Gn indued by

the inverse ation on Xn: (g.f)(x) = f(g−1x).
- If Y is in BG then the formula g.(x, y) = (gx, gy) de�nes an ation of p−1

∞ G
on Xm × π

−1(Y Hn)0 for eah m,n in N and p−1
∞ Y = lim

−→n
lim
←−m

π−1G\(Xm ×

π−1(Y Hn)0) (Note that p−1
∞ is exat, sine lim

←−m
is essentially onstant while

lim
−→n

is �ltered). If Z is an objet of E then p∞,∗Z is the set lim
−→n

Hom(Xn, Z)
endowed with the left ation of G indued by the inverse ation of G on f .
Endowing the set Gn with its left ation by translations turns it into an objet

of BG (resp. BGm
, if m ≥ n) whose image by p∞ (resp. pm) is nothing but

Xn.

Documenta Mathematica 24 (2019) 473–522



Non Commut. IMC for Ab. Varieties over Funct. Fields 481

For the purpose of what follows we will onsider a ring S. Endowing it with a

trivial ation of G, we may as well view it as a ring of BGn
or BG.

Definition 2.6. We de�ne a funtor

Γ(G,−) :Mod(BG, S)→ GMod(S)

by sending an S-module M of BG to (Mn, jn,m, km,n), where Mn =MHn
, jn,m

is the inlusion and km,n the trae map.

Lemma + definition 2.7. Let G, S, E and X be as above. Consider further-

more a ring R of E and a ring homomorphism S → π∗R. Letting Mod(E,R)
denote the ategory of R-modules of E, we de�ne the funtor of Normi setions

along X
Γ(X,−) :Mod(E,R)→ GMod(S)

by omposing p∞,∗ : Mod(E,R) → Mod(BG, S) with the funtor Γ(G,−) :
Mod(BG, S)→ GMod(S) of Def. 2.6.
For any F in Mod(E,R), the objet ((Mn), (jn,m), (km,n)) := Γ(X,F ) satis�es
the following properties:

- Mn is the restrition of salars to S of the R(Xn)-module F (Xn) endowed

with the ation of Gn oming from the right ation of Gn on Xn: (g, x) 7→ g−1x.
-jn,m : Mn →Mm is the restrition along Xm → Xn. and indues an isomor-

phism Mn ≃M
Gm,n
m (ie. F (Xn)→F (Xm)Gm,n

).

Proof. By de�nition we have Mn = MHn = qn,∗M , where M = p∞,∗F . Now,
qnp∞ ≃ pn, thereforeMn ≃ pn,∗F = F (Xn). The seond property is lear.

Remark 2.8. If the topos E is loally onneted, it is possible to build trae

maps along �nite loally free morphisms, suh as Xm → Xn. One may then

show that km,n oinides with the trae map.

Lemma 2.9. Consider another topos E′
with strutural morphism π′ : E′ → Set

and a morphism of ringed topoi f : (E′, R′)→ (E,R). Let us moreover denote

X ′ = (f−1Xn) the projetive system of torsors of E′
dedued from X and

onsider the morphism S → π′
∗R

′
indued by h : S → π∗R and R→ f∗R

′
. The

funtor Γ(X ′,−) assoiated to these data is subjet to a anonial isomorphism

RΓ(X ′,−) ≃ RΓ(X,Rf∗(−))

of funtors D+(E′, R′)→ D+(GMod(S)).

Proof. This simply follows from the fat that the morphism of ringed topoi

(E′, R′)→ (BG, S) de�ned by X oinides with the one obtained by omposing

f with the morphism (E,R)→ (BG, S) de�ned by X.

The derived funtor

RΓ(X,−) : D+(Mod(E,R))→ D+(GMod(S))
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will be our tool to dedue the fundamental distinguished triangles (whih are

the main ingredient in our proof of the main onjeture) from the omparison

isomorphism of [TV℄. It might be worth to emphasize that the nth omponent

funtor

(−)n : D+(GMod(S))→ D+(Gn
Mod(S))

sends RΓ(X,F ) to RΓ(Xn, F|Xn
).

2.3 Descent, codescent and duality

We now assume that the ring S of Def. 2.6 is Zp, and we disuss how to pass

from normi systems to Iwasawa modules.

In order to be able to invoke diretly the results of [Va℄, we now assume that

Λ := Zp[[G]] := lim
←−

Zp[Gn] is Noetherian of �nite global dimension d + 1 and

has an open pro-p-subgroup. As is well known, these ondition is in partiular

veri�ed if G is a ompat p-adi Lie group of dimension d without p-torsion.

- Limits. Forgetting the km,n's (resp. the jn,m's), in�ating from Gn-modules

to disrete G-modules (resp. abstrat Λ-modules) and then forming the limit

of the resulting indutive (resp. projetive) system gives rise to a funtor whih

will abusively be denoted

lim
−→

: GMod(Zp)→ GMod(Zp) (resp. lim
←−

: GMod(Zp)→Mod(Λ))

The �rst is exat and thus passes to derived ategories while the seond is only

left exat, but right derivable. From now on, we always assume that R lim
←−

has

�nite ohomologial dimension. This is e.g. the ase if N has a numerable

o�nal subset (as is always the ase in pratie).

Proposition 2.10. There are anonial adjuntions

(lim
−→

, RΓ(G,−)) : D+(GMod(Zp)) → D+(GMod(Zp))

(Λ
L
⊗Λ(−), R lim

←−
) : D−(GMod(Zp)) → D−(Λ)

Here, Λ denotes the natural normi system of right Λ-modules (Zp[Gn]) and

Λ⊗Λ (−) :Mod(Λ)→ GMod(Zp) denotes the indued right exat, left derivable

funtor.

Proof. The derived version are easily dedued from the obvious ordinary ad-

juntions using that GMod(Zp) and GMod(Zp) have enough injetives (f.

Prop. 2.4). In [Va℄, this was not known and a �niteness assumption was

thus needed to avoid deriving lim
←−

(f. lo. it. Prop. 4.2. and Rem. 4.3).

In the above proposition, it is possible to make the adjuntion morphisms

involved funtorial at the level of the omplexes. Also, they an still be provided

a funtorial one, as in lo. it.

- Duality. Consider a Zp-module I. If M (resp. Mn) is a Zp-module

endowed with a left ation of G (resp. Gn) then HomZp
(M, I) (resp.
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HomZp
(Mn, I)) is endowed a left ation of G (resp. Gn) as well by re-

versing the ation on M (ie. (g.f)(m) = f(g−1m)). If the ation of G
is disrete the ation of G on HomZp

(M, I) extends to an ation of Λ.
If now M = (Mn, jn,m, km,n) is a normi system then HomZp

(M, I) :=
(HomZp

(Mn, I), HomZp
(km,n, I), HomZp

(jn,m, I)) is a normi system as well.

Using an injetive resolution of Zp we get duality funtors

RHomZp
(−,Zp) : Db(GMod(Zp)) → Db(Λ)

RHomZp
(−,Zp) : Db(GMod(Zp)) → Db(GMod(Zp))

It might be useful to point out the following relation to Pontryagin duality:

RHomZp
(M

L
⊗Qp/Zp,Qp/Zp) ≃ RHomZp

(M,Zp)

If nowM is a Λ-module we view HomΛ(M,Λ) as a left Λ-module via the right

ation of Λ on itself and the involution g 7→ g−1
. Using projetive resolutions

of M we get a funtor

RHomΛ(−,Λ) : Db(Λ) → Db(Λ)

Theorem 2.11. Let E, Xn be as in the previous paragraph.

(i) (Descent) There is a anonial isomorphism

RΓ(X,−)
∼
→RΓ(G, lim

−→
RΓ(X,−))

of funtors D+(E,Zp)→ D+(GMod(Zp)).
(ii) Consider a bounded omplex F of Zp-modules of E (resp. and assume

that there exists q0) suh that Hq(Xn, F|Xn
) is �nitely generated over Zp (resp.

trivial) for any n ∈ N , q ≥ 0 (resp. q ≥ q0).
(Codescent) Funtorially in F , There is a anonial isomorphism in

D+(GMod(Zp)):

Λ
L
⊗ΛR lim

←−
RΓ(X,F )

∼
→RΓ(X,F )

(Perfectness) R lim
←−

RΓ(X,F ) and RHomZp
(lim
−→

RΓ(X,F ),Zp) are in Dp(Λ)
(the derived ategory of perfet omplexes).

(Duality) Funtorially in F , There is a anonial isomorphism in Dp(Λ):

RHomZp
(lim
−→

RΓ(X,F ),Zp) ≃ RHomΛ(lim←−
RΓ(X,F ),Λ)

Proof. (i) We are going to hek that the adjuntion morphism of

(lim
−→

, RΓ(G,−)) is an isomorphism. Replaing F by an injetive resolu-

tion and trunating, one redues to the ase where F is an injetive Zp-module

of E plaed in degree 0. Let M := Γ(X,F ). Then ∀n, Mn is injetive in

Gn
Mod(Zp) (indeed Mn orresponds to pn∗F ) and the desent map indues an

isomorphism Mn →M
Gm,n
m . Similarly lim

−→n
Mn is injetive and the adjuntion
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morphism of desent ourring in D+(GMod(Zp)) is represented at level n by

the isomorphism Γ(Xn, F|Xn
)→ Γ(Hn, lim−→m

Γ(Xm, F|Xm
)).

(ii) Under the stated assumptions,

- (Codescent) and (Perfectness) follow from (i), by [Va℄ 4.4 (ii) et 4.6 (i).

- (Duality) follows from (Codescent), by lo. it. 4.6 (iii).

Remark 2.12. Properties (Codescent) and (Perfectness) are a ruial tool

in this paper. It seems plausible that they hold without assuming that G has

�nite ohomologial dimension but we have not tried to hek this.

2.4 Examples

Start with a projetive system of C-shemes Cn whih are étale surjetive over

C and assume that the Cn's are endowed with ompatible ations of the Gn's
suh that eah Gn × Cn → Cn ×C Cn, (g, x) 7→ (gx, x) is an isomorphism.

(In view of our appliations, let us notie that if C and Cn are proper smooth

urves over a �eld with respetive funtion �elds K and Kn then the latter

ondition holds as soon as the unrami�ed extension Kn/K is Galois). These

data represent a projetive system of torsors, say X of the small étale topos

E = Cet and we are thus in the situation of the previous paragraphs.

Of ourse these data also produe a projetive system of torsors, say X ′
, of the

big, say �at, topos E′ = CFL. Note that if ǫ : CFL → Cet denotes the natural
morphism, then X ′ = ǫ−1X .

Consider now the small étale rystalline topos E′′
of C/Zp and the projetion

morphism u : E′′ = (C/Zp)crys,et → Cet = E. Then we de�ne a projetive

system of torsors of E′′
by pulling bak via u: X ′′ := u−1X .

As explained in the previous paragraph, these data give rise to ompatible

normi setion funtors, ie. to an essentially ommutative diagram

D+(CFL, R
′)

Rǫ∗ //

RΓ(X ′,−) ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
D+(Cet, R)

RΓ(X,−)

��

D+((C/Zp)crys,et, R′′)
Ru∗oo

RΓ(X′′,−)uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

D+(GMod(Zp))

whenever one is given Zp-algebras R, R′
, R′′

in E, E′
, E′′

and homomorphisms

R→ ǫ∗R
′
, R→ ǫ∗R

′′
.

The n-omponent of the left (resp. middle, resp. right) normi setion funtor

omputes the ohomology of the loalized topos CFL/X
′
n, (resp. Cet/Xn, resp.

(C/Zp)crys,et/X ′′
n), ie. of Cn,FL (resp. Cn,et, resp. (Cn/Zp)crys,et). We will

thus use the more suggestive notations RΓ(CFL,−) (resp. RΓ(Cet,−), resp.
RΓcrys,et(C/Zp,−)).
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3 K-theory for Λ(G)

For the onveniene of the reader, we review the K-groups and determinant

funtors whih are needed for our purpose. Unless spei�ed otherwise, R de-

notes a (unitary) ring.

3.1 Review of K0 and K1

The following de�nitions an be found in [Ba℄, h. VII, IX.

- K0(R) is the abelian group de�ned by generators [P ], where P is a �nitely

generated projetive R-modules, and relations

i. [P ] = [Q] if P is isomorphi to Q as a R-module.

ii. [P ⊕Q] = [P ] + [Q]

- K1(R) is the abelian group de�ned by generators [P, f ], where P is a �nitely

generated projetive R-module and f is an automorphism of P with relations

(the group law is denoted multipliatively):

i. [P, f ] = [Q, g] if P is isomorphi to Q as a R-module via an isomorphism

whih is ompatible with f and g.

ii. [P ⊕Q, f ⊕ g] = [P, f ][Q, g]

iii. [P, fg] = [P, f ][P, g]

Note that if the ring R is Noetherian and regular, then forgetting the word

�projetive� does not hange the de�nitions (f [Ba℄, IX, Proposition 2.1).

- The funtor HomR(−, R) realizes an anti-equivalene between �nitely gen-

erated projetive left modules and �nitely generated projetive right modules.

As a result, one gets an isomorphism Ki(R) ≃ Ki(R
op), if Rop denotes the

opposed ring. Both this isomorphism and its inverse will be denoted (−)∗ (eg.

[P, f ]∗ = [P ∗, f∗] if f∗
denotes the transpose of f).

- Morita equivalene. Let us �x a �nitely generated projetive right R-module

V and let V ∗ = HomR(V,R). Then V (resp. V ∗
) is naturally endowed with a

natural struture of ((EndR(V ), R)-bimodule (resp. (R,EndR(V ))-bimodule).

Sine V is projetive and �nitely generated, one has a anonial isomorphism

of (R,R)-bimodules: V ∗ ⊗EndR(V ) V ≃ R (resp. of (EndR(V ), EndR(V ))-
bimodules: V ⊗R V

∗ ≃ EndR(V ).
The funtor V ∗ ⊗EndR(V ) (−) : Mod(EndR(V )) → Mod(R) is thus an equiv-

alene of ategories, with V ⊗R (−) as quasi-inverse. In partiular, there is a

anonial isomorphism Ki(EndR(V )) ≃ Ki(R), i = 0, 1.

3.2 The determinant functor

Let P(R) denote the ategory of stritly perfet (ie. bounded with projetive

�nitely generated objets) omplexes,Kp(R) its homotopy ategory andDp(R)
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its essential image in the derived ategory (whih is naturally equivalent, and

identi�ed, to Kp(R)). If Dp(R)is denotes the subategory of Dp(R) where

morphisms are the isomorphisms of the latter we have by [Kn℄, th. 2.3, 2.12 a

anonial funtor

DetR : Dp(R)is ≃ Kp(R)is → CR (8)

where CR is the Piard ategory (ie. a ategory together with an endobifun-

tor, referred to as the produt, endowed with assoiativity and ommutativity

isomorphisms satisfying natural ompatibilities, unit objets and where every

objet and every morphism is invertible; f [Kn℄ appendix A) onsidered in

[FK℄ 1.2:

• An objet of CR is a ouple (P,Q) of �nitely generated projetive R-
modules.

• Mor((P,Q), (P ′, Q′)) is empty if [P ]− [Q] 6= [P ′]− [Q′] in K0(R). Else,
there exists an R-module M suh that

P ⊕Q′ ⊕M ≃ P ′ ⊕Q⊕M.

We set IM := Isom(P⊕Q′⊕M,P ′⊕Q⊕M) and GM := Aut(P ′⊕Q⊕M)
and we de�ne the set of morphisms from (P,Q) to (P ′, Q′) asK1(R)×

GM

IM where the right hand side denotes the quotient of K1(R)× IM by the

ation of GM given by

(x, y) 7→ (xḡ, g−1y))

where x ∈ K1(R), y ∈ IM , g ∈ GM and ḡ is its image in K1(R). As seen
easily, this set does not depend onM , up to a anonial isomorphism, and

this fat an be used to de�ne omposition in a natural way. Note that

by de�nition, one has a anonial identi�ation AutCR
((P,Q)) = K1(R)

for any objet (P,Q).

• The produt is de�ned as

(P,Q).(P ′, Q′) := (P ⊕ P ′, Q⊕Q′).

and admits naturally (0, 0) as a unit. Every objet (P,Q) in CR admits

(P,Q)−1 := (Q,P ) as a natural inverse.

It follows immediately from its onstrution that the funtor (8) is ompatible

with base hange, ie. the diagram

Dp(R′)
DetR′

−−−−→ CR′

R′
L
⊗R(−)

x









x









R′⊗R(−)

Dp(R)
DetR−−−−→ CR
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is naturally pseudo-ommutative for any R′/R. Let us quikly review the on-

strution of DetR following [FK℄ 1.2.

• A stritly perfet omplex P is sent to DetR(P ) := (P+, P−) where

P+ := ⊕i∈2ZP
i
and P− := ⊕i∈1+2ZP

i
.

• Any exat sequene 0→ P ′ → P → P ′′ → 0 of P(R) indues a anonial
isomorphismDetR(P ) ≃ DetR(P

′).DetR(P
′′). Using this, one onstruts

a anonial trivialization canP : DetR(0) ≃ DetR(P ), for any stritly

perfet omplex P whih is ayli.

• If Cone(f) denotes the mapping one of a morphism f : P → P ′
of

stritly perfet omplexes then HomCR
(DetR(P ), DetR(P

′)) identi�es

with HomCR
(DetR(0), DetR(Cone(f))) (indeed Cone(f)

+ ≃ P− ⊕ P ′+

and Cone(f)− ≃ P+ ⊕ P ′−
). In partiular, when f is a quasi-

isomorphism, then canCone(f) : DetR(0) → DetR(Cone(f)) indues a

morphism DetR(P ) → DetR(P
′), whih we denote DetR(f). One may

hek that it is ompatible with omposition and only depends on the

homotopy lass of f so that the funtor DetR is �nally de�ned.

We will make essential use of the homorphism

DetR : AutDp(R)(P )→ AutCR
(DetR(P )) = K1(R) (9)

whih is indued by (8) for any perfet omplex P . Of ourse if P is redued to a

(�nitely generated projetive) module P 0
plaed in degree zero thenDetR(P ) =

(P 0, 0) and DetR(f) : (P
0, 0) → (P 0, 0) is the lass of f0 : P 0 → P 0

. In that

ase (9) is thus nothing but the tautologial map AutR(P
0)→ K1(R).

Let us now state some multipliative properties.

• Consider a morphism between exat sequenes of stritly perfet om-

plexes

0 −−−−→ P ′
1 −−−−→ P1 −−−−→ P ′′

1 −−−−→ 0

f ′









y

f









y

f ′′









y

0 −−−−→ P ′
2 −−−−→ P2 −−−−→ P ′′

2 −−−−→ 0

where vertial arrows are quasi-isomorphisms. The following square om-

mutes:

DetR(P1) ≃ DetR(P
′
1).DetR(P

′′
1 )

DetR(f)









y









y

DetR(f ′).DetR(f ′′)

DetR(P2) ≃ DetR(P
′
2).DetR(P

′′
2 )

• Consider an automorphism f of some P in Kp(R). Then:
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- DetR(f [1]) = DetR(f)
−1

in AutCR
(DetR(P )) = K1(R).

- f is the homotopy lass of some automorphism of the omplex P . Let
us �x suh one and denote f q : P q → P q its omponent of degree q. Then
in K1(R) = AutCR

(DetR(P )) = AutCR
(DetR(P

q)), we have DetR(f) =
∏

DetR(f
q)(−1)q

.

- If P is ohomologially perfet (ie. eah Hq
is an objet of Dp(R))

then DetR(f) =
∏

DetR(H
q(f))(−1)q

in K1(R) = AutCR
(DetR(P )) =

AutCR
(DetR(H

q(P ))).

3.3 Localization

The main K-group of interest for Iwasawa theory is a relative one. We reall

its de�nition ([FK℄ 1.3). Consider a stritly full triangulated subategory Σ
of Dp(R). The group K1(R,Σ) is then de�ned by generators and relations as

follows:

• Generators: [C, a] where C is an objet of Σ and a : DetR(0)→ DetR(C)
is a trivialization of C.

• Relations: Let C,C′, C” be objets of Σ.

˘ If C ≃ 0 then [C, canC ] = 1.

˘ If f : C ≃ C′
, then ompatible trivializations of C and C′

give rise

to the same element in K1(R,Σ) (ie. [C′, DetR(f) ◦ a] = [C, a] if
a : DetR(0) ≃ DetR(C)).

˘ If 0 → C′ → C → C′′ → 0 is an exat sequene of P(R), and
a : 1 ≃ DetR(C), a

′ : 1 ≃ DetR(C
′), then

[C, a] = [C′, a′].[C′′, a′′]

where a : 1
a′.a′′
→ DetR(C

′).DetR(C
′′) ≃ DetR(C).

There is a loalization exat sequene (f [FK℄ 1.3.15)

K1(R) −−−−→ K1(R,Σ)
∂

−−−−→ K0(Σ)−−−−→ K0(R)

(here K0(Σ) denotes the Grothendiek group of the triangulated ategory Σ)
where:

- the �rst map sends [P, f ] ∈ K1(R) to the omplex [P
f
→P ] plaed in degrees

[−1, 0], together with the trivialization whih is represented by the identity of

P .
- ∂ sends [C, f ] ∈ K1(R,Σ) to the element −[C] ∈ K0(Σ).
- the last map sends the lass of a stritly perfet omplex [C] to the alternated
sum

∑

(−1)i[Ci].
As heked easily, this loalization sequene is funtorial with respet to (R,Σ):
if R′

is an R-algebra, and if Σ′
is a stritly full triangulated subategory of
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Dp(R′) ontaining the essential image of Σ under the funtor R′ ⊗LR (−) :
Dp(R) → Dp(R′) then one has a morphism K1(R,Σ) → K1(R

′,Σ′) whih is

ompatible with the obvious funtoriality maps.

If now T ⊂ R is a left denominator set (f [FK℄, 1.3.6) then we an apply the

above onstrutions to the full triangulated subategoryΣT ofDp(R) onsisting
of omplexes whose image under the funtor RT ⊗

L
R (−) : Dp(R) → Dp(RT )

beome ayli. We note that if R is Noetherian and regular then K0(ΣT ) is
isomorphi to the Grothendiek group of �nitely generated T -torsion modules,

by sending [C] to
∑

(−1)iHi(C). For a general R we have the following result.

Proposition 3.1. ([FK℄, 1.3.7) There is a anonial isomorphism of groups

K1(R,ΣT ) ≃ K1(RT )

sending [C, a] to the isomorphism DetRT
(0)

aT→DetRT
CT

can−1
CT→ DetRT

(0)
viewed as an element of K1(RT ) = AutCRT

(DetRT
(0)) (here aT and CT are

dedued from a and C by loalization). This isomorphism is funtorial with

respet to (R, T ).

Let us mention an alternative haraterization of this isomorphism. Con-

sider an endomorphism f of a stritly perfet omplex P suh that

fT is a quasi-isomorphism. Identifying HomCR
(DetR(P ), DetR(P )) with

Hom(DetR(0), DetR(Cone(f))) sends the identity of DetR(P ) to a morphism

triv : DetR(0)→ DetR(Cone(f)). Then the lass [Cone(f), triv] ∈ K1(R,ΣT )
orresponds to DetRT

(fT )
−1 ∈ K1(RT ) (both are indeed desribed by the same

endomorphism of P+
T ⊕ P

−
T oming from canCone(f)T ).

Cruial to us will be the following:

Lemma 3.2. Consider morphisms a, b : C → C′
in Dp(R) whose loalizations

aT , bT are isomorphisms in Dp(RT ). In K0(ΣT ), one has the equality

∂DetRT
(aT b

−1
T ) = [Cone(a)]− [Cone(b)]

as long as the following ondition holds:

(frac) In Dp(R), there exists a ommutative square of the form

C
a

−−−−→ C′

b









y

d









y

C′ c
−−−−→ C′

in whih c and d also beome isomorphisms after loalization by T .

Proof. An easy diagram hasing shows that [Cone(c)] − [Cone(a)] =
[Cone(d)] − [Cone(b)]. Sine DetRT

(aT b
−1
T ) = DetRT

(dT )
−1DetRT

(cT ) and

∂ is a homomorphism, it thus su�es to prove that ∂DetRT
(cT ) = [Cone(c)]

and ∂DetRT
(dT ) = [Cone(d)]. But this is lear from the alternative hara-

terization of the isomorphism K1(R,ΣT ) ≃ K1(RT ) mentioned above.
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We do not know whether or not the ondition (frac) always holds, neither if this
omputation of ∂DetRT

(aT b
−1
T ) is always orret. We thus ontent ourselves

with the following su�ient ondition.

Lemma 3.3. Assume R is Noetherian and onsider a, b : C → C′
in Dp(R). If

there exists f in the enter of R suh that R[ 1f ]⊗
L
R Cone(b) = 0, then one an

�nd c, d : C′ → C′
suh that da = cb. In fat one an hose d = fn for n large

enough.

Proof. Sine ohomology modules of Cone(b) are �nitely generated and almost

all of them are zero, it is possible to �nd n suh that fn : Cone(b)→ Cone(b)
is zero. But then, the long exat sequene of Ext's

· · · → Hom(C′, C′)
Hom(b,C′)
→ Hom(C,C′)→ Ext1(Cone(b), C′)→ · · ·

shows that fna has a trivial image in Ext1(Cone(b), C′) and thus omes from

some c ∈ Hom(C′, C′) as laimed.

3.4 The evaluation map at Artin representations

Consider a pro�nite group G = lim
←−n

Gn and a losed normal subgroup H suh

that Γ := G/H is isomorphi to Zp. We use the following notations.

- We let Λ = Λ(G) := lim
←−n

Zp[Gn] denotes the Iwasawa algebra of G. We

assume that this ring is left Noetherian and regular (whih will be the ase when

onsidering the Galois group of a p-adi Lie extension as in the introdution).

- If O is the ring of integers of a �nite extension L of Qp, then ΛO(G) :=
lim
←−n

O[Gn] ≃ O ⊗Zp
Λ(G) and ΛL(G) := L⊗O ΛO(G) have similar properties.

- S and S∗
denote the anonial Ore sets de�ned in [CFKSV℄. Reall that

an element f of Λ(G) is in S if and only if Λ(G)/f is a �nitely generated

Λ(H)-module whereas S∗ = ∪kp
kS. As usual, ΛS = Λ(G)S and ΛS∗ = Λ(G)S∗

denote the orresponding loalizations of Λ. If G = Γ then QO(Γ) := Λ(Γ)S∗

is the fration �eld of ΛO(Γ).
-MH(G) denotes the ategory of S∗

-torsion �nitely generated Λ(G)-modules.

We reall that a �nitely generated Λ(G) module M is S-torsion (resp. S∗
-

torsion) if and only if it is a �nitely generated Λ(H)-module (resp. modulo its

p-torsion). In this ontext, the loalization exat sequene reads:

K1(Λ) −−−−→ K1(ΛS∗)
∂

−−−−→ K0(MH(G))−−−−→ K0(Λ)

- If R is one of the previous (loalized) Iwasawa algebras, one often prefers

to endow the dual of a left module with a left ation, dedued from the right

one via the involution g 7→ g−1
. This is our onvention for duality of normi

systems and their limit modules. In this paragraph though, we leave right

modules on the right, for the sake of larity.

Consider a free O-module V of �nite rank. For any O-algebra R (eg. R =
ΛO(G)), we denote VR (resp. RV ) the right (resp. left) R-module V ⊗O R
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(resp. R ⊗O V ) dedued from V by extending salars from O to R. Also,

(RV )∗ := HomR(RV ,R) (resp. (VR)
∗ := HomR(VR, R)) is systematially

given its right (resp. left) R-module struture oming from the (R,R)-bimodule

struture of R.
It might be useful to reall that one has a anonial isomorphism of left (resp.

right) R-modules (VR)
∗ ≃ R(V

∗) (resp. (RV )∗ ≃ (V ∗)R) and anonial iso-

morphisms of O-algebras EndR((VR)
∗) ≃ EndR(VR)

op
and End((RV )∗) ≃

End(RV )op (R-algebras). If now R is a entral O-algebra (eg. if R = ΛO(G))
we have moreover anonial isomorphisms of O-algebras EndR(RV ) ≃ Rop⊗O
EndO(V ), EndR(VR) ≃ EndO(V ) ⊗O R. These isomorphisms are subjet to

natural ompatibilities, suh as the ommutativity of the following diagram:

EndR((RV )∗) ≃ EndR(RV )op ≃ (Rop ⊗O EndO(V ))op

|≀ |≀
EndR((V

∗)R) ≃ EndO(V
∗)⊗O R ≃ EndO(V )op ⊗O R

Consider now an O-Artin representation ρ : G→ AutO(V ). By O-Artin repre-

sentation we mean that V is as above and ρ has a �nite image. Consider the

unique homomorphism of Zp-algebras

Φ : Λ(G)→ EndΛO(G)(VΛO(G))

sending g ∈ G ⊂ ΛO(G) to v ⊗ λ 7→ ρ(g)(v)⊗ gλ.
By funtoriality of K1, one has a ommutative diagram:

K1(Λ(G))
GF ED

twρ

OO

K1(ρ) ++❱❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱

K1(Φ) // K1(EndΛO(G)(VΛO(G)))

K1(ǫV )

��

∼

Morita// K1(ΛO(G))

K1(ǫ)

��
K1(EndO(V )) ∼

Morita // K1(O)

where twρ is the map sending [P, f ] ∈ K1(Λ(G)) to [(VΛO(G))
∗⊗Λ(G)P, id⊗f ] ∈

K1(ΛO(G)) where (VΛO(G))
∗
is viewed as a (ΛO(G),Λ(G))-bimodule, the left

ation of ΛO(G) being the obvious one and the right ation of Λ(G) being

dedued via Φ from the natural right ation of EndΛO(G)(VΛO(G)). Furthermore

the image of this element in K1(O) is [V ∗ ⊗Λ(G) P, idV ∗ ⊗ f ] where the right

Λ(G)-module struture of V ∗
is dedued from the right ation of G on V ∗

:

g 7→ ρ(g)∗. The omposed homomorphism

K1(Λ(G)) → K1(O) ≃ O
×

[P, f ] 7→ detO(idV ∗ ⊗ f |V ∗ ⊗Λ(G) P )

where detO denotes the usual (ommutative) determinant, will simply be de-

noted ρ.
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Remark 3.4. (i) The element twρ([P, f ]) is also equal to [V ∗ ⊗Zp
P, id ⊗ f ].

Indeed, there are isomorphisms of left ΛO(G) modules

(VΛO(G))
∗ ⊗Λ(G) P

∼
← ΛO(G)(V

∗)⊗Λ(G) P
∼
→ V ∗ ⊗Zp

P

where the (ΛO(G),Λ(G))-bimodule struture of ΛO(G)(V
∗) is given by h.(λ ⊗

φ) = hλ ⊗ φ and (λ ⊗ φ).h = λh ⊗ φ ◦ (ρ(h))), the left ation of ΛO(G) on

V ∗ ⊗Zp
P is given by h.(φ ⊗ p) = φ ◦ (ρ(h−1)) ⊗ hp, the �rst isomorphism is

indued by ΛO(G)(V
∗)→ (VΛO(G))

∗
, λ⊗ φ 7→ (v ⊗ µ 7→ λφ(v)µ) and the seond

is given by g ⊗ φ⊗ p 7→ φ ◦ ρ(g−1)⊗ gp.
(ii) Let us examine the simple ase where P is free with basis e1, . . . , en to

�x the ideas. The element [V ∗ ⊗Zp
P, id⊗ f ] ourring in (i) above has then a

more onvenient desription as follows. Sending φ⊗gei to φ◦ρ(g)⊗gei realises
an isomorphism of V ∗ ⊗Zp

P with V ∗ ⊗Zp
P viewed as a left ΛO(G)-module

via h.(φ ⊗ λ) = φ ⊗ hλ. Through this isomorphism id ⊗ f translates as the

automorphism sending φ⊗ λjej to ι(λjf(ej)) where ι : V
∗ ⊗Zp

P → V ∗ ⊗Zp
P

sends φ⊗ gei to φ ◦ ρ(g)⊗ gei. In partiular we �nd that via the determinant

isomorphism K1(O) ≃ O×
, ρ([P, f ]) is nothing but the determinant of the

automorphism of O ⊗ΛO(G) (V
∗ ⊗Zp

P ) ≃ ⊕iV
∗ ⊗ ei sending φ⊗ ej to

∑

i φ ◦
ρ(fi(ej)) if f(ej) =

∑

fi(ej)ei.

Next, following [CFKSV℄, we onsider the extension of ρ to a map

ρ : K1(Λ(G)S∗)→ L× ∪ {0;∞} (10)

de�ned as ǫρQO(Γ) where:

- the map ǫ : QO(Γ)
× → L∪ {∞} oinides with ΛO(Γ)I → L, the loalization

of the augmentation map at the augmentation ideal I, and takes the value ∞
elsewhere (ie. at the elements of QO(Γ) whih are not integral at I).
- the map ρQO(Γ) : K1(Λ(G)S∗)→ QO(Γ)

×
is de�ned by omposing the obvious

loalized version of twρ, K1(Λ(G)S∗) → K1(ΛO(G)S∗), the fontioriality map

K1(ΛO(G)S∗) → K1(QO(Γ)) and the isomorphism detQO(Γ) : K1(QO(Γ)) ≃
QO(Γ)

×
.

The map ρ is multipliative in the sense of the usual partial multipliation

(L × L) ∪ ((L× ∪ {∞})× (L× ∪ {∞}))→ L ∪ {∞}

This means that for x, y ∈ K1(Λ(G)S∗):
(i) ρ(x−1) = ρ(x)−1

.

(ii) the formula ρ(x)ρ(y) = ρ(xy) is true as soon as it makes sense, ie. whenever

(ρ(x), ρ(y)) 6= (0,∞), (∞, 0).

Lemma 3.5. Let [P, f ] in K1(Λ(G)S∗) and onsider its dual [P∨, f∨] where
(−)∨ stands for HomΛ(G)S∗

(−,Λ(G)S∗) viewed as a left Λ(G)S∗
-module via

the involution g 7→ g−1
. If ρ is an Artin representation with ontragredient ρ∨

then in K1(L):
ρ([P, f ]) = ρ∨([P∨, f∨])
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Proof. One easily redues to the analogous statement for Λ = Λ(G) in plae

of Λ(G)S∗
. In virtue of Rem. 3.4 (i), it is then su�ient to prove that for a

�nitely generated projetive P over Λ(G) we have in L×
:

detL(id⊗ id⊗ f |L⊗ΛO
(V ∗ ⊗Zp

P ))
= detL(id⊗ id⊗HomΛ(f,Λ)|L⊗ΛO

((V ∨)∗ ⊗Zp
HomΛ(P,Λ)))

the ation of ΛO on V ∗ ⊗Zp
P (resp. (V ∨)∗ ⊗Zp

HomΛ(P,Λ) = V ⊗Zp

HomΛ(P,Λ)) being given by g.(φ ⊗ p) = φ ◦ ρ(g−1) ⊗ gp (resp. g.(v ⊗ φ) =
ρ(g)v ⊗ (p 7→ φ(p)g−1)). Sine the determinant of an endomorphism and its

transpose are equal it is su�ient to build an isomorphism

HomL(L⊗ΛO
(V ∗ ⊗Zp

P ), L) ≃ L⊗ΛO
((V ∨)∗ ⊗Zp

HomΛ(P,Λ)) (11)

identifying HomL(id ⊗ id ⊗ f, L) to id ⊗ id ⊗ HomΛ(f,Λ). Let us examine

the left term of (11). Let us hose n suh that ρ fators through Gn = G/Hn.

Denoting VL = L⊗O V we have the following series of natural isomorphisms

HomL(L⊗ΛO
(V ∗ ⊗Zp

P ), L) ≃ HomL((V
∗
L ⊗Zp

P )G, L)
≃ HomL(V

∗
L ⊗Zp

PHn
, L)Gn

≃ (VL ⊗L HomZp
(PHn

, L))Gn

≃ (VL ⊗L HomZp
(PHn

, L))Gn

where the invariants or oinvariants ourring respetively in the seond, third,

third and fourth term are taken with respet to the following left ations of

G or Gn: g.(φ ⊗ p) = φ ◦ ρ(g−1) ⊗ gp, g.ψ = (φ ⊗ p 7→ ψ(φ ◦ ρ(g) ⊗ g−1p)),
g.(v ⊗ φ) = ρ(g)v ⊗ (p 7→ φ(g−1p)), g.(v ⊗ φ) = ρ(g)v ⊗ (p 7→ φ(g−1p)).
Regarding the seond term of (11) we have

L⊗ΛO
((V ∨)∗ ⊗Zp

HomΛ(P,Λ)) ≃ (VL ⊗Zp
HomΛ(P,Λ))G

≃ (VL ⊗Zp
HomΛ(P,Λ)Hn

)Gn

≃ (VL ⊗L HomZp[Gn](PHn
, L[Gn]))Gn

where the oinvariants ourring respetively in the seond, third and fourth

term are taken with respet to the following left ation of G, Hn, Gn and

Gn: g.(v ⊗ φ) = ρ(g)v ⊗ (p 7→ φ(p)g−1), h.φ = (p 7→ φ(p)h−1), g.(v ⊗ φ) =
ρ(g)v ⊗ (p 7→ φ(p)g−1), g.(v ⊗ φ) = ρ(g)v ⊗ (p 7→ φ(p)g−1). We �nally obtain

(11) by notiing the isomorphism

HomZp
(PHn

, L) ≃ HomZp[Gn](PHn
, L[Gn])

φ 7→ (p 7→
∑

g∈Gn
φ(gp)[g−1])

The reader may easily hek by himself that (11) is ompatible with the auto-

morphisms indued by f as desired.

The next results onerning the omputation of (10) omposed with (8) will be

useful to us.
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Lemma 3.6. Consider an automorphism f of an objet C of Dp(Λ(G)S∗) as

well as its determinant DetΛ(G)S∗
(f) ∈ K1(Λ(G)S∗) (f. (8)). In QO(Γ)

×
we

have:

ρQO(Γ)(DetΛ(G)S∗
(f)) =

∏

q

detQO(Γ)(H
q(id⊗ f)|Hq((VQO(Γ))

∗
L
⊗Λ(G)∗

S
C))(−1)q

where the tensor produt ourring on the right hand side is taken with respet to

the right Λ(G)S∗
-module struture of (VQO(Γ))

∗
de�ned using Φ in the obvious

way.

Proof. We an always assume that C is stritly perfet. In this ase we have

by de�nition of ρQO(Γ) and ompatibility of Det with salar extension:

ρQO(Γ)(DetΛ(G)S∗
(f)) = detQO(Γ)(DetQO(Γ)(id⊗ f))

where id ⊗ f is the automorphism of (VQO(Γ))
∗ ⊗Λ(G)∗

S
C ∈ Dp(QO(Γ)) de-

dued from f . Now QO(Γ) being a �eld, the omplex (VQO(Γ))
∗ ⊗Λ(G)S∗

C is

ohomologially perfet, and thus

detQO(Γ)DetQO(Γ)(id⊗ f)

=
∏

q detQO(Γ)DetQO(Γ)(H
q(id⊗ f))(−1)q

=
∏

q detQO(Γ)(H
q(id⊗ f)|Hq((VQO(Γ))

∗ ⊗Λ(G)S∗
C))(−1)q

Lemma 3.7. Let ǫ, I, ΛO(Γ)I as in (10). Consider a �nitely generated

ΛO(Γ)I -module M together with an endomorphism f : M → M suh that

QO(Γ)⊗ΛO(Γ)I f is invertible. The formula

ǫdetQO(Γ)(id⊗ f |QO(Γ)⊗ΛO(Γ)I M)

= detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M))

.detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M))−1

is true whenever the right hand term makes sense in L× ∪ {0,∞}.

Proof. Let M ′ ⊂ M denote the ΛO(Γ)I -torsion submodule of M , and M ′′ :=
M/M ′

. Let us denote f ′ : M ′ → M ′
, f ′′ : M ′′ → M ′′

the endomorphisms

indued by f .
On the one hand, QO(Γ)⊗ΛO(Γ)I M

′ = 0, and thus

detQO(Γ)(id⊗ f |QO(Γ)⊗ΛO(Γ)I M) = detQO(Γ)(id⊗ f
′′|QO(Γ)⊗ΛO(Γ)I M

′′)

On the other hand, M ′′
is free sine ΛO(Γ)I is a disrete valuation ring. We

thus have a short exat sequene and an isomorphism

Tor
ΛO(Γ)I
0 (L,M ′) →֒ Tor

ΛO(Γ)I
0 (L,M) ։ Tor

ΛO(Γ)I
0 (L,M ′′)

Tor
ΛO(Γ)I
1 (L,M ′) ≃ Tor

ΛO(Γ)I
1 (L,M)
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both of whih are ompatible with f . Whene equalities:

detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M))

= detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′))

.detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′′))

and detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M))

= detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M ′))

Now M ′
is of �nite length, and is thus subjet to Koszul duality:

HomL(Tor
ΛO(Γ)I
1 (L,M ′), L) ≃ Tor

ΛO(Γ)I
0 (L,HomL(M

′, L))

Sine detL isn't a�eted by L-linear duality, this shows that

detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M ′))

= detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′))

Now, in the formula to be proven, we see that the right hand term makes sense

if and only if detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′)) is non zero (ie. if and

only if detL(Tor
ΛO(Γ)I
1 (id, f)|Tor

ΛO(Γ)I
1 (L,M)) is non zero) in whih ase the

fators detL(Tor
ΛO(Γ)I
q (id, f)|Tor

ΛO(Γ)I
q (L,M ′)), q = 0, 1, anel eah other

and the desired formula redues to the obvious equality

ǫdetQO(Γ)(id⊗ f |QO(Γ)⊗ΛO(Γ)I M
′′)

= detL(Tor
ΛO(Γ)I
0 (id, f)|Tor

ΛO(Γ)I
0 (L,M ′′))

4 Selmer complexes and crystalline cohomology

In this setion we de�ne Selmer omplexes for abelian varieties over a one vari-

able funtion �eld. We begin with their basi properties and a duality theorem.

In the semistable ase we pursue with a review of the main result of [TV℄, whih

will be the ornerstone of our proof for the Iwasawa main onjeture.

4.1 Preliminaries

Let us begin with some tehnial fats regarding derived ategories.

4.1.1. We will frequently use derived ategories of the type D(CI), where CI

denotes the ategory of funtors I → C, C being an abelian ategory. Note

that CI is an abelian ategory. If C has enough injetives and if it has produts

indexed by the subsets of Ob(I), then the same holds for CI . If C is the ategory
of modules on a ringed topos (E,A), Mod(E,A)I naturally identi�es with the

ategory of modules of the ringed topos (EI , A). This point of view o�ers

Documenta Mathematica 24 (2019) 473–522



496 Fabien Trihan and David Vauclair

the possibility to onsider the more general ategory Mod(EI , A.), with A. a
projetive system of rings of E indexed by I.
These ategories are espeially useful for some partiular hoies of I whih we

explain now.

- Let I = N viewed as the ategory where Hom(k, k′) has one element if k ≥ k′

and is empty otherwise (resp. I = Nop, resp. I = N2 := N ⊔|N| Nop). In that

ase, the objets of the ategory CI are the projetive systems of C indexed

by integers (resp. the indutive systems of C indexed by integers, resp. the

triples ((Ak)k, (pk′,k)k′≥k, (ik,k′ )k≤k′ ) where ((Ak)k, (pk′,k)k′≥k) is in CN and

((Ak)k, (ik,k′ )k≤k′ ) is in C
Nop

).

- Let I = [1]a for some integer a ≥ 1, [1] denoting the ategory {0, 1,≤}. In that
ase, we think of objets ofD(CI) as (a+1)-uple naive omplexes whih are zero

outside a spei�ed range of the form ]−∞,+∞[×[i1, i1+1]× . . . ,×[ia, ia+1].
The interest of this ategory lies in the fat that forming total omplexes (with

an appropriate sign onvention whih the interested reader is invited to speify)

give rise to a triangulated funtor Tota+1 : D(C[1]
a

)→ D(C).

4.1.2. The ase I = [1] is already interesting sine Tot2 gives rise to a funtorial
version of the mapping one / mapping �ber onstrution. Let us disuss a fat

whih will be used repeatedly. A natural transformation t : F1 → F2 between

funtors C → C′ an be thought as a funtor F taking its values in C′[1]. If C
has enough injetives we an form the derived funtor RF : D(C) → D(C′[1]).
Next, we de�ne MF (t) := Tot2 ◦ RF . Sine the mapping �ber onstrution

gives a funtor from D(C′[1]) to that of distinguished triangles in D(C′) we

�nd a anonial distinguished triangle MF (t)(C) → RF1(C) → RF2(C) →
MF (t)(C)[1] varying funtorially with respet to C in D(C). Consider fur-

thermore F0(C) := Ker(F1(C) → F2(C)). Then F0 de�nes a right derivable

funtor. Sine RF0 ≃MF (t0) for t0 : F0 → 0 and t0 anonially maps to t, one
gets a anonial morphism RF0 → MF (t). This natural transformation is an

isomorphism as long as the morphism F1(C)→ F2(C) is epimorphi for inje-

tive C (beause in that ase the sequene 0 → F0(C) → F1(C) → F2(C) → 0
is exat and the natural transformation in question is the one ourring in the

onstrution of the distinguished triangle assoiated to a short exat sequene).

4.2 Flat cohomology of C vanishing at Z

We review the de�nition of the funtor of vanishing ohomology, whih is a

neessary tool to even state the omparison result we need from [TV℄ (see Set.

4.4).

4.2.1. If S is any sheme, we denote

ǫ : SFL → Set

the natural morphism from the big �at topos of S (ie. the ategory of sheaves

on Sch/S endowed with the topology generated by surjetive families of �at

morphisms of �nite type) to the small étale one (ie. the ategory of sheaves
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one the ategory Et/S of étale S-shemes endowed with the topology generated

by surjetive families, f SGA 4, VII, 1.2). The morphism ǫ is funtorial with
respet to S, ie. there is a anonial isomorphism fǫS ≃ ǫS′f for any f : Set →
S′
et indued by a morphism of shemes f : S → S′

. However, the reader should

be aware that the base hange morphism f−1ǫ∗ → ǫ∗f
−1

is ertainly not an

isomorphism in general if f is not étale.

Definition 4.1. Keep the above notations and let furthermore i : T →֒ S
be the inlusion of a losed subsheme as well as j : Y → S that of

its open omplement. We also assume given a projetive system of torsors

S = (Sn, Gn) where Gn is a �nite quotient of a pro�nite group G and denote

Γ(S,−) :Mod(Set,Z)→ GMod(Z) the assoiated normi setions funtor.

We de�ne the following.

(i) The funtor of global setions vanishing at T ,

ΓT (S,−) :Mod(SFL,Z)→Mod(Z)

is de�ned as ΓT (S, F ) := Ker(F (S)→ F (T )).

(ii) The funtor of étale setions vanishing at T ,

ǫT∗ :Mod(SFL,Z)→Mod(Set,Z)

is de�ned as ǫT∗ F := Ker(ǫ∗F → ǫ∗i∗i
−1F ).

(iii) The funtor of normi setions vanishing at T ,

ΓT (S,−) :Mod(SFL,Z)→ GMod(Z)

is de�ned as ΓT (S, F ) := Γ(S, ǫT∗ F ). Its nth omponent is thus

Ker(F (Sn)→ F (Tn)) where Tn := Sn ×S T .

Note that by de�nition, one may respetively retrieve ΓT (S,−) and ΓT (S,−)
from ǫT∗ by forming global and normi setions (Def. 2.7).

Lemma 4.2. The above funtors are right derivable and their derived fun-

tors are subjet to natural distinguished triangles in D(Set), D(Mod(Z)) and

D(GMod(Z)) whih are funtorial with respet to F in D+(SFL):

RǫT∗ F −−−−→ Rǫ∗F −−−−→ Ri∗Rǫ∗F|T
+1
−−−−→

RΓT (S, F ) −−−−→ RΓ(S, F ) −−−−→ RΓ(T, F|T )
+1
−−−−→

RΓT (S, F ) −−−−→ RΓ(S, F ) −−−−→ RΓ(T , F|T )
+1
−−−−→

where T denotes the projetive systems of torsors dedued from S. Taking nth
omponents in the last distinguished triangles gives

RΓTn(S, F ) −−−−→ RΓ(Sn, F|Sn
) −−−−→ RΓ(Tn, F|Tn

)
+1
−−−−→
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Proof. Sine injetive abelian sheaves of SFL are �asque in the sense of [SGA

4, exp V, 4.7℄, it follows from the disussion 4.1.2 that RǫT∗ identi�es with

the funtorial mapping �ber of the natural transformation Rǫ∗ → R(ǫ∗i∗i
−1)

arising from ǫ∗ → ǫ∗i∗i
−1
. Now, i−1

preserves injetives (i is a loalization

morphism) and thus R(ǫ∗i∗i
−1) ≃ R(ǫ∗i∗)i

−1
. The �rst distinguished triangle

follows sine R(ǫ∗i∗) ≃ Ri∗Rǫ∗. The other ases are similar.

4.3 Selmer complexes

The purpose of this setion is to give a tratable de�nition for (normi) Selmer

omplexes, to establish their relation to the omplex of (normi) ohomology

vanishing at Z (the relation with the omplexes RΓar,V appearing in [KT℄ will

also be explained brie�y in Rem. 4.13), as well as a duality theorem.

4.3.1. We onsider the following situation:

Zv
zv−−−−→ Cv

jv
←−−−− Uv

ιZv









y

ιCv









y

ιUv









y

Z
z

−−−−→ C
j

←−−−− U

(12)

where:

- C is a onneted proper smooth 1-dimensional Fp-sheme with funtion �eld

K and onstant �eld k.
- Z is an e�etive divisor on C, ie. a �nite union of 0-dimensionnal irreduible

losed subshemes Zv. We denote Zredv = Spec(kv) and Zred = ⊔vZ
red
v the

underlying redued shemes.

- U denotes the open subheme of C whih is omplementary to Z.
- For eah v in |Z|, we denote Ov the ompletion of the loal ring of C at v,
Kv its fration �eld, Cv = Spec(Ov) and Uv = Spec(Kv).
- The arrows i, j, jv, iv, ιUv

, ιCv
and ιZv

are the obvious ones.

We �x moreover a pro�nite Galois extension K∞/K with group G = lim
←−n

Gn
satisfying the following properties:

- G is a p-adi Lie group without p-torsion,
- K∞/K is unrami�ed everywhere and ontains the onstant Zp-extension
Kar = Kk∞/K whose Galois group is denoted Γ.
Thanks to the seond assumption, there is an essentially unique projetive

system of torsors C = (Cn, Gn) over C orresponding to the Galois tower

K = (Kn, Gn) over F .

Finally we �x an abelian variety A over K and denote A its Néron model over

C. We always assume that A has good redution outside Z (ie. A|U is an

abelian sheme over U).

4.3.2. We plae ourselves in the situation desribed in 4.3.1. The divisor Z
will be allowed to vary, but its support will always ontain the points of bad
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redution of A. Unless spei�ed otherwise, ohomology is meant in the sense of

big �at topoi. To de�ne the Selmer omplex we need the following intermediary

funtors. We use the notations ιCv
: Cv → C, jv : Uv → Cv for all plaes of C

(not only those of Z).
- Loc(U) : Mod(CFL,Z) → Mod(Cet,Z)[1] is the funtor taking F ∈
Mod(CFL,Z) to

[

j∗ǫ∗F|U −−−−→ (
∏

v∈|U|

ιCv,∗ǫ∗F|Cv
)× (

∏

v∈|Z|

ιCv ,∗jv,∗ǫ∗F|Uv
)
]

Let U denote the �ltered set of open subshemes of C. Sine for Z ⊂ Z ′
, there

is an obvious natural transformation Loc(U) → Loc(U ′), we also have a funtor

Loc(U) :Mod(CFL,Z)→Mod(Cet,Z)[1]×U
.

- τ≥[0 1] : D(Mod(Z)[1]) → D(Mod(Z)[1]) (resp. D(GMod(Z)[1]) →
D(GMod(Z)[1]), resp. D(GMod(Z)[1]×U ) → D(GMod(Z)[1]×U )) is desribed

as

[

A −−−−→ B
]

7→
[

A −−−−→ τ≥1B
]

Definition 4.3. We de�ne Selmer funtors as follows.

(i) The (U)-Selmer funtor

Sel(U)(C,−) : D
+(CFL)→ D+(Mod(Z))

is de�ned as Sel(U)(C,−) := Tot2 ◦ τ≥[0 1] ◦RΓ(C,−) ◦RLoc(U).

(ii) The (U)-normi Selmer funtor

Sel(U)(C,−) : D
+(CFL)→ D+(GMod(Z))

is de�ned as Sel(U)(C,−) := Tot2 ◦τ≥[0 1] ◦RΓ(C,−)◦RLoc(U), where Γ(C,−)
is the normi setion funtor of Def. 2.7.

(iii) The U-normi Selmer funtor

Sel(U)(C,−) : D
+(CFL)→ D+(GMod(Z)U )

is de�ned as Sel(U)(C,−) := Tot2 ◦ τ≥[0 1] ◦RΓ(C,−) ◦RLoc(U).

Let us point out that those Selmer funtors are not triangulated, sine their

de�nition involves trunations.

Remark 4.4. (i) The funtor (ii) (resp. (i)) an be retrieved from funtor (iii)
(resp. (ii)) by taking U -omponents of the indutive system (resp. omponent

0 of the normi systems).

(ii) It follows immediately from the de�nition that Sel(U)(C,F ) �ts into a dis-

tinguished triangle

Sel(U)(C,F ) −→ RΓ(U,F ) −→ (
∏

v∈|U|

τ≥1RΓ(Cv, F ))× (
∏

v∈|Z|

τ≥1RΓ(Uv, F ))
+1
−→

and similarly for Sel(U)(C,F ). In the literature, Selmer omplexes are usu-

ally designed to �t into a distinguished triangle where τ≥1RΓ(Cv, F )) does not
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appear. This fator will disappear when F is the Néron model of an abelian

variety with good redution over U (see Prop. 4.7 below). The reason why we

add this term is to get funtoriality with respet to U . Note that the funtori-

ality of Sel(U)(C,F ) with respet to U not only ours in the derived ategory,

but already at the level of omplexes. This fat is re�eted by the existene of

Sel(U)(C,F ).

Lemma 4.5. Let Z ⊂ Z ′
, U ′ = C − Z ′

, U = C − Z, so that U ′ ⊂ U and let

A/C be as in 4.3.1.

(i) The following natural morphisms in D(GMod(Z)) are invertible:

Sel(U)(C,A)
(1)
−−−−→ Sel(U ′)(C,A)

(2)
−−−−→ lim

−→U
Sel(U)(C,A)

(ii) If Φv/Z
red
v denotes the omponent group of A at v, we have

τ≥1RΓ(Cv,A|Cv
) ≃ τ≥1RΓ(Z

red
v ,A|Zred

v
)

≃ H1(Zredv ,Φv)[−1]
(13)

This group is in partiular zero if A has good redution at v.

Proof. (i) It su�es to prove the assertion about (1). For any F ∈ D+(CFL),
one has a tautologial diagram in D(GMod(Z)) with distinguished rows and

olumns as follows:

Sel(U)(C,F ) −→ RΓ(U ) −→ (
∏

v∈|U|

τ≥1RΓ(Cv))× (
∏

v∈|Z|

τ≥1RΓ(Uv))
+1
−→

a ↓ b ↓ c ↓

Sel(U′)(C,F ) −→ RΓ(U ′) −→ (
∏

v∈|U′|

τ≥1RΓ(Cv))× (
∏

v∈|Z′|

τ≥1RΓ(Uv))
+1
−→

↓ ↓ ↓

Cone(a) −→ Cone(b) −→ Cone(c)
+1
−→

+1 ↓ +1 ↓ +1 ↓

where we wrote RΓ(U) instead of RΓ(U, F|U ) by lak of spae and similarly for

U ′
, Cv, and Uv. The morphism b is indued by restrition from U to U ′

. The

morphism c is indued by restrition from Cv to Uv for v ∈ |Z
′|\|Z| = |U |\|U ′|

and is the identity for other v's. The de�nition of a, Cone(a), Cone(b), Cone(c)
is tautologial. Let us ompute these mapping ones.

To begin with, we note that by de�nition of relative ohomology

Cone(b) ≃ RΓU\U ′(U, F|U )[1]

Next we note that there is an natural morphism

∏

v∈|Z′|\|Z|

(RΓZv
(Uv, F|Uv

)[1])→ Cone(c)

whih is invertible if the restrition morphisms

RΓ(Cv, F|Cv
)→ RΓ(Uv, F|Uv

)
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are invertible in degree 0. This is the ase for F = A by the Néron extension

property.

The morphism Cone(b)→ Cone(c) is thus indued by

RΓU\U ′(U,A)→
∏

v∈|Z′|\|Z|

RΓZv
(Cv,A)

and is thus an isomorphism by [Mi1℄, III, 1.28 and [Mi2℄, III, 7.14. It follows

that Cone(a) = 0, ie. that a is an isomorphism.

(ii) The �rst isomorphism is by [Mi1℄, III 3.11 and the seond is by Lang's

lemma for the smooth onneted algebrai group A0
|Zred

n,v
([La℄, Thm. 2).

4.3.3. We are now in position to de�ne the Selmer omplex of A/K. The reader

will retrieve the usual desription below (Prop. 4.7 (iii), Cor. 4.10).

Definition 4.6. We de�ne the following:

(i) The normi Selmer omplex of A is de�ned in Db(GMod(Z)) as

Sel(A/K) := lim
−→
U

Sel(U)(C,A).

(ii) The normi p.-Selmer omplex of A is de�ned in Db(GMod(Zp)N2) as

Selp.(A/K) := Z/p.
L
⊗Sel(A/K)[−1]

(iii) The normi p∞-Selmer omplex of A is de�ned in Db(GMod(Zp)) as

Selp∞(A/K) := lim
−→

Selp.(A/K)

(iv) The normi Tp-Selmer omplex of A is de�ned in Db(GMod(Zp)) as

SelTp
(A/K) := R lim

←−
Selp.(A/K)

The following proposition summarizes the relations between the normi Selmer

omplex of an abelian variety, its ohomology over C, its ohomology vanishing

at Z, its ohomology over U and its ompatly supported ohomology over U .

Proposition 4.7. (i) Sel(A/K) �ts into anonial distinguished triangles as

follows.

Sel(A/K) −−−−→RΓ(C,A) −−−−→
∏

v∈|Z|

H1(Cv,A|Cv
)[−1]

+1
−−−−→

Sel(A/K) −−−−→RΓ(U,A|U ) −−−−→
∏

v∈|Z|

H1(U v,A|Uv
)[−1]

+1
−−−−→

Sel(A/K) −−−−→RΓ(K,A) −−−−→ ⊕
v∈|C|

H1(Uv, A|Uv
)[−1]

+1
−−−−→
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(ii) Selp.(A/K) ompares to ohomology over C (resp. vanishing at Z) via

anonial distinguished triangles as follows.

Selp.(A/K)→ RΓ(C,Z/p.
L
⊗A[−1])→

∏

v∈|Z|

Z/p.
L
⊗H1(kv,Φv)[−2]

+1
→

RΓZ(C,Z/p.
L
⊗A[−1])→ Selp.(A/K)→ ⊕v∈|Z|Z/p.

L
⊗A(Zv)[−1]

+1
→

(iii) Selp.(A/K) ompares to (resp. ompatly supported) ohomology over U
via anonial distinguished triangles as follows.

Selp.(A/K) −→ RΓ(U, (A|U,p. )) −→
∏

v∈|Z|

Z/p.
L
⊗H1(Kv, A)[−2]

+1
−→

RΓc(U, (A|U,p. )) −→ Selp.(A/K) −→
∏

v∈|Z|

Z/p.
L
⊗A(Kv)[−1]

+1
−→

Proof. (i) The �rst and seond distinguished triangles follow immediately from

Rem. 4.4 (ii) and Prop. 4.5 (ii). The third one follows from the seond one

sine étale ohomology over Spec(K) = lim
←−U∈U

U an be omputed as a limit

by [SGA4℄, VII, 5.7 (note that the ohomology of A an be omputed with

respet to the étale topology sine it is a smooth algebrai group).

(ii) The �rst distinguished triangle is dedued from the �rst one of (i) by

applying Z/p.⊗L(−)[−1] (observe that this funtor ommutes to RΓ(C,−) and
use (13)). To get the seond one, we remark that the ommutative diagram

RΓ(C,A)
spZ
−−−−→ RΓ(Z,A|Z)

d ↓ ‖ d′ ↓
RΓ(C,A)

sp1Z−−−−→ τ≥1RΓ(Z,A|Z)
c ↑ ‖ c′ ↑

RΓ(C,A)
loc1C−−−−→

∏

v∈|Z|

τ≥1RΓ(Cv,A|Cv
)

in the derived ategory of GMod(Z) has an anonial ounterpart in the derived
ategory of diagrams of GMod(Z) of this form sine it only uses trunation and

funtoriality with respet to the base. It follows from this remark that there is

a anonial meaning for the mapping �ber of horizontal arrows and that there

are anonial morphisms between them. The mapping �ber of the middle one

is naturally isomorphi to Sel(A/K) (use Prop. 4.5 (i), (ii)). By Prop. 4.5(ii),
c′ is an isomorphism and we thus have

Sel(A/K) ≃MF (loc1C) ≃MF (sp1Z)

Now d being an isomorphism, we get a anonial distinguished triangle

MF (spZ)→MF (sp1Z)→MF (d′)→MF (spZ)[1], ie.

RΓZ(C,A)→ Sel(A/K)→ H0(Z,A|Z)
+1
→

The seond distinguished triangle follows by applying Z/p. ⊗L (−)[−1].
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(iii) The �rst distinguished triangle is dedued from the seond of (i) by ap-

plying Z/p. ⊗L (−)[−1]. For the seond one, we observe that the ommutative

diagram

RΓ(U,A|U )
loc1U−−−−→

∏

v∈|Z|

τ≥1RΓ(Uv,A|Uv
)

e ↑ ‖ e′ ↑
RΓ(U,A|U )

locU−−−−→
∏

v∈|Z|

RΓ(Uv,A|Uv
)

has an obvious ounterpart in the derived ategory of suh diagrams sine it

only uses trunation and funtoriality with respet to the base. This justi�es

working with funtorial mapping �bers as in (i) and (ii). We get a anonial

distinguished triangle MF (locU )→MF (loc1U )→MF (e′)→MF (locU )[1], ie.

RΓc(U,A|U )→ Sel(A/K)→
∏

v∈|Z|

H0(Uv,A|Uv
)
+1
→

The seond distinguished triangle follows by applying Z/p. ⊗L (−)[−1].

Proposition 4.8. Let Â/K denote the abelian variety whih is dual to A/K.

There is a anonial duality isomorphism in D[0,3](GMod(Zp)
N2):

Selp.(Â/K) ≃ Selp.(A/K)∨[−3]

where (−)∨ means the exat funtor HomZp
(−,Qp/Zp).

Proof. That Selp.(Â/K) has no ohomology outside [0, 3] follows for instane
from the third distinguished triangle in Prop. 4.7 (i) sine K has strit oho-

mologial dimension ≤ 3. Let us ome to the duality isomorphism. A sketh

of proof is given in [KT℄ for a weaker statement (f lo. it 2.4) by ombin-

ing loal duality over Uv, v ∈ |Z| together with global duality over U . Here

we onentrate on the ungrateful task of heking that it is indeed possible to

prove the result in the setting of derived ategories of normi systems. For

this purpose referring to a olletion of pairings at eah level n and heking

ompatibilities is not su�ient. The main point is thus to build the required

duality morphism in Db(GMod(Zp)
N2). That it is an isomorphism, will follow

from the ompatibility of our onstrution with that of [Mi2℄, III.

For the purpose of the proof, let B/K := Â/K, B/C its Néron model and Ψ/C
its omponent group. Reall ([SGA7℄ or [Mi2℄) that the Poinaré biextension

P : A|U ⊗
L B|U → Gm|U [1] (whih is essentially given by de�nition of B̂/F )

indues the Grothendiek pairing G : z−1Φ ⊗ z−1Ψ → Q/Z (essentially via

j∗Gm[1] → z∗Z[1] ← z∗Q/Z). We know that P extends over C to a (unique)

biextension AΦ′

⊗LB
Ψ′

→ Gm[1] as long as Φ′ ⊂ Φ and Ψ′ ⊂ Ψ are orthogonal

with respet to G. Taking (Φ′,Ψ′) = (0,Ψ) and then (Φ, 0), we thus get a

anonial ommutative square (in the smooth topos Csm)

A0 −−−−→ Ext1Csm
(B,Gm)

↓ ↓

A −−−−→ Ext1Csm
(B0,Gm)

(14)
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Our proof onsists in three steps.

Step 1. The ompatible pair of arrows (14) indues morphisms as follows:

[A0 → A]→ RHomCsm
([B0 → B],Gm[1]) in Db(C

[1]
sm), and then (15)

RΓ(C, [A0 → A])→ RΓ(C, [B0 → B])∨[−2] in Db(GMod(Z)[1]). (16)

Let us indiate how to get these. The arrows of (14) give rise to

[A0 → A]→ Ext1Csm
([B0 → B],Gm) in Mod(C

[1]
sm,Z), thus to

[A0 → A]→ (τ≥1RHomCsm
([B0 → B],Gm))[1] in Db(C

[1]
sm),

and (15) follows sine HomCsm
([B0 → B],Gm) = 0 by [SGA7℄, VIII, 3.2 sine

Gm →֒ j∗j
∗Gm. Applying RΓ(C,−) we get

RΓ(C, [A0 → A])→ RHomCsm
([B0 → B],Gm)

where HomCsm
([M1 → M2],M3) means the objet of GMod(Z)[1] whose nth

omponent is [HomCn,sm
(M2|Cn

,M3|Cn
) → HomCn,sm

(M1|Cn
,M3|Cn

)] with
Gn ating by onjugation and where going up (resp. down) transition maps are

given by restrition (resp. trae). We note that there is a natural morphism

HomCsm
([M1 →M2],M3)→ Hom(Γ(C, [M1 →M2]),Γ(C,M3))

whih is bifuntorial with respet to ([M1 → M2],M3) where for ([N1 →
N2], N3) in GMod(Z)[1] ×Mod(Z), Hom([N1 → N2], N3) means the normi

system whose nth omponent is [Hom(N2,n, N3)→ Hom(N1,n, N3)] and where
going down (resp. up) transition maps are dedued from the going up (resp.

down) transition maps of N2 and N3. This natural transformation gives rise

to a map

RHomCsm
([M1 →M2],M3)→ RHom(Γ(C, [M1 →M2]),Γ(C,M3))

in D−(GMod(Z)[1]) as long as RΓ(C,M3) is bounded. Applying this to ([B0 →
B],Gm) and using the trae morphism RΓ(C,Gm) → Q/Z[−2] �nally gives

(16) as laimed.

It is worth noting that the pairings on ohomology resulting from (16) are om-

patible with those of [Mi2℄, III. To state this fat preisely, let us �x any losed

point v ∈ |C| as well as an open U ⊂ C over whih A has good redution. Then

it follows from the de�nitions that one has a natural ommutative �diagram�

Hq(Zn,v,Φ|Zn,v
) × H1−q(Zn,v,Ψ|Zn,v

)
1
−→ H1(Zn,v ,Q/Z)

↑ ↑ ≀ ↑

Hq(Cn,v ,A|Cn,v
) × H1−q(Cn,v ,B|Cn,v

)
2
−→ H2(Cn,v , jv,∗Gm)

↓ ↓ ≀ ↓

Hq(Un,v, A|Un,v
) × H1−q(Un,v , B|Un,v

)
3
−→ H2(Un,v,Gm)

↑ ↓ ≀ ↓

Hq(Cn,v ,A|Cn,v
) × H2−q

Zn,v
(Cn,v ,B0

|Cn,v
)

4
−→ H3

Zn,v
(Cn,v ,Gm)

↑ ↓ ≀ ↓

Hq(Cn,A|Cn
) × H2−q(Cn,B0

|Cn
)

5
−→ H3(Cn,Gm)

Tr
−→
∼

Q/Z

↑ ↓ ≀ ↑

Hq
c (Un,A|Un,pk ) × H3−q(Un,B0

|Un,pk
)

6
−→ H3

c (Un,Gm)
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where:

- pairings 1 and 2 are the ones ourring during the proof of [Mi2℄, III Thm.

7.11 and right vertial isomorphism is by jv,∗Gm[1]→ zv,∗Z[1]← zv,∗Q/Z.
- pairing 3 (resp. 4, 6) is the one ourring in [Mi2℄, III 7.8 (resp. 7.13, resp.

8.2).

- pairing 5 is de�ned using the Yoneda pairing for Ext's and the vanishing of

HomCn
(B0,Gm) (or alternatively, the vanishing of HomCn

(A,Gm)). By the

restrition-orestrition formula, it oinides with the one indued by (16);

It an be heked that similar ompatibilities hold in the derived ategory. The

proof however is not so easy to write down. We will thus avoid it and use the

following trik instead. The morphism (14) indues a map

Z/pk
L
⊗A[−1]→ RHomCsm

(Z/pk
L
⊗B0,Gm)

Now it it straightforward to hek that this morphism indues ompatible pair-

ings 1′, . . . , 6′ just as 1, . . . , 6 above with A and B0
respetively replaed by

Z/pk ⊗L A[−1] and Z/pk ⊗L B0
. Moreover, the resulting pairing

Hq(Cn,Z/pk
L
⊗A|Cn

[−1]) × H2−q(Cn,Z/pk
L
⊗B0

|Cn
)

5′
→ H3(Cn,Gm)
≃ H3(C,Gm)
≃ Q/Z

oinides with the one dedued from (16) by applying Z/pk ⊗L (−).

Step 2. The morphism (15) indues a anonial morphism of distinguished

triangles in Db(GMod(Z))

Sel(A/K) → RΓ(C,A) → H1(Z,Φ|Z)[−1]
+1
→

a ↓ b ↓ c ↓

Sel(B/K)∨[−2] → RΓ(C,B0)∨[−2] → H0(Z,Ψ|Z)
∨[−1]

+1
→

Let us explain this. Sine it an be expressed in terms of trunation, funto-

rial ones and natural transformation of funtors in the variable [M→N ] ∈
Mod(Csm,Z)[1], we observe that the following diagram of D(GMod(Z)):

RΓ(C,N)
β

−−−−→ τ≥1Cone(RΓ(C, [M → N ]))
↓ ↓

RΓ(C,N)
β′

−−−−→ τ≥1Cone(RΓ(Z, [z
−1M → z−1N ]))

↑ ↑
RΓ(C,N)

loc1C−−−−→
∏

v∈|Z|

τ≥1RΓ(Cv, N)

has an obvious ounterpart in the orresponding derived ategory of diagrams

of this form. Applying this to [M → N ] = [A0 → A] and forming mapping
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�bers of the horizontal arrows, we get anonial isomorphisms (using arguments

already explained in the proof of Prop. 4.7):

MF (β)
∼
←MF (β′)

∼
→MF (loc1C) ≃ Sel(A/K)

Consider the following diagram as a funtor whose argument [M
f
→N ] varies

in the ategory of omplexes C(GMod(Z)[1]):

τ≤1MF (f) ≃ τ≤1MF (f)








y

α









y

MF (f) −−−−→ M
f

−−−−→ N −−−−→ Cone(f)








y









y









y









y

τ≥2MF (f) −−−−→ MF (β) −−−−→ N
β

−−−−→ τ≥1Cone(f)

We remark the following:

- sine the left vertial omposed morphism is zero, so is the middle vertial

one. Whene a anonial morphism Cone(α) → MF (β). As shown by the

diagram, this is automatially a quasi-isomorphism.

- the funtors Cone(α) and MF (β) are exhanged by the exat ontravariant

endofuntor (−)∨ = HomZ(−,Q/Z) of C(GMod(Z)[1]). Indeed:

(Cone(α)[M → N ])∨ ≃ (Cone([τ≤1MF (f)→M ]))∨

≃ MF ([M∨ → τ≥1Cone(f
∨)])

≃ MF (β)[N∨ →M∨]

Putting everything together we get in D(GMod(Z)):

Sel(A/K) ≃ MF (β)[A0 → A]
≃ MF (β)(RΓ(C, [A0 → A]))
→ MF (β)(RΓ(C, [B0 → B])∨[−2]) (f. (16))

≃ (Cone(α)(RΓ(C, [B0 → B])))∨[−2]
≃ (MF (β)(RΓ(C, [B0 → B])))∨[−2]
≃ (MF (β)[B0 → B])∨[−2]
≃ Sel(B/K)∨[−2]

Step 3. The morphisms a, b, c of Step 2 beome invertible when applied

Z/p.⊗L (−).

It is of ourse su�ient to prove this for b and c. By [Mi2℄, III, 7.11, c itself
is an isomorphism. Now the statement about b is equivalent to the horizontal

arrow b′ below being an isomorphism:
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↓ ↓

Hq
c (Un,Z/p

k
L
⊗A|Un

[−1]) −−−−→ H2−q(Un,Z/pk
L
⊗B0

|Un
)∨

↓ ↓

Hq(Cn,Z/pk
L
⊗A|Cn

[−1])
b′

−−−−→ H2−q(Cn,Z/pk
L
⊗B0

|Cn
)∨

↓ ↓
∏

v∈|Zn|

Hq(Cn,v,Z/pk
L
⊗A|Cn,v

[−1]) −−−−→
∏

v∈|Zn|

H2−q
Zn,v

(Cn,v,Z/pk
L
⊗B0

|Cn,v
)∨

This diagram ommutes thanks to the ompatibilities explained in Step 1 and

its olumns are long exat sequenes as follows easily from the de�nition of

ompatly supported ohomology together with the omplete exision property

∏

v∈|Zn|

H2−q
Zn,v

(Cn,v,Z/p
k
L
⊗B0

|Cn,v
) ≃ H2−q

Zn
(Cn,Z/p

k
L
⊗B0

|Cn
),

obtained by using [Mi1℄, III, 1.28 and [Mi2℄, III, 7.14. The �rst (resp. third)

horizontal morphism is invertible thanks to [Mi2℄, III, 8.2 (resp. [Mi2℄, III 7.13)

and the result follows.

Remark 4.9. The proof does not require any assumption about the redution

of A at the points of Z.

Corollary 4.10. Consider the usual Selmer group

Sel1pk(A/Kn) := Ker

(

H1(Kn, A|Kn,pk)→ ⊕
v∈|C|

H1(Kn,vA|Kn,v
))

)

and let Sel1p.(A/F ) denote the objet of Mod(GMod(Z)N2) enapsulating the

whole olletion (together with the various natural transition morphisms) for

varying n, k. The ohomology of the omplex Selp.(A/K) vanishes outside [0, 3]
and is desribed as follows in this range:

H0 = Ap.(K)
H1 = Sel1p.(A/K)

H2 ≃ Sel1p.(Â/K)∨

H3 ≃ Âp.(K)∨

Proof. The desription of H0
and H1

follows easily from the following distin-

guished triangle (Prop. 4.7 (i)):

Selp.(A/K)→ RΓ(K,Ap.)→ ⊕
v∈|C|

Z/p.
L
⊗H1(Uv, A|Uv

)[−2]
+1
→

Documenta Mathematica 24 (2019) 473–522



508 Fabien Trihan and David Vauclair

whose assoiated long exat sequene of ohomology reads as the olletion of

the following ones for varying n, k:

0→ H0(Selpk(A/Kn))→ H0(Kn, Apk)→ 0→ H1(Selpk(A/Kn))
→ H1(Kn, Apk)→ ⊕

v∈|C|
Tor1(Z/pk, H1(Kn,v, A|Kn,v

))→ . . .

(note that for any abelian group M , Tor1(Z/pk,M) is identi�ed with the

kernel of pk on M . It it easy to hek that modulo this identi�ation, the

right arrow in the seond exat sequene is indued from the loalization map

ourring in the de�nition of Sel1pk(A/Kn)).

The desription of H2
and H3

follows by duality, thanks to Prop. 4.7 and

Prop. 4.8.

Corollary 4.11. In Db(GMod(Zp)), one has the duality isomorphism

SelTp
(Â/K) ≃ Selp∞(A/K)∨[−3]

and those omplexes are onentrated in [1, 3].

Proof. Just apply R lim
←−k

to Prop. 4.8 and notie that H0
vanishes beause for

n �xed, Âpk(Kn) is bounded independently of k.

Corollary 4.12. RΓZ(C,Ap.) is onentrated in [0, 3] and its ohomology

objets �t into ompatible exat sequenes and isomorphisms as follows:

H0 →֒ Ap.(K)→ Ap.(Z)→ H1 → Selp.(A/K) ։ A(Z)/p.

H2 ≃ Selp.(Â/K)∨

H3 ≃ Âp.(K)∨

Remark 4.13. Even though we won't use it, let us point out the relation to the

omplexes of [KT℄.

- The omplexes Selp∞(A/K) = lim
−→k

Selpk(A/K) and RΓar{p} have the same

ohomology (ompare lo. it. Lem. 2.4 and our Cor. 4.10).

- The ohomology of the omplexes lim
−→k

RΓZ(C,Apk) and RΓar,V {p} �ts into

similar exat sequenes (ompare [KT℄, 2.5.2, 2.5.3 and our Prop. 4.7 (ii)) for

V = (Vv)v∈Z and Vv = Ker(A(K)→ A(Zv)).

- In fat, one may easily form isomorphisms

Selp∞(A/K) ≃ RΓar{p}

and

lim
−→
k

RΓZ(C,Apk ) ≃ RΓar,V {p}.
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4.4 Crystalline syntomic complexes

In this setion we assume that A/K is semistable and we reall the omparison

result of [TV℄ and dedue from it the fundamental distinguished triangles (6),

announed in the introdution, relating (normi) �at ohomology vanishing at

Z to (normi) rystalline ohomology.

4.4.1. We keep the notations of the previous setion (A/K, A/C, U , Z, ǫ :
CFL → Cet) and we let furthermore C♯ denote the log-sheme whose underlying

sheme is C and whose log-struture is indued by Z. In the hapter 8 of [TV℄

is assoiated to the semistable abelian variety A/K a log Dieudonné rystal

(D,F, V ). Reall that suh objet is a rystal of loally free O-modules of �nite

rank in the rystalline small étale ringed topos ((C♯/Zp)crys,et,O) endowed

with two operators F : σ∗D → D, V : D → σ∗D (where σ denotes the

endomorphism of (C♯/Zp)crys,et indued by the absolute Frobenius of C♯) suh
that FV = V F = p. This log-rystal extends the ovariant Dieudonné rystal
(DU (A|U ), F, V ) of [BBM℄ and is endowed with a anonial epimorphism

π : D → Lie(A),

where the Lie algebra Lie(A) is seen as a rystalline sheaf ([TV℄, 5.35 (i)).

We set Fil1D := Ker(π) and denote 1 : Fil1D → D the anonial injetion.

4.4.2. Let u : (C♯/Zp)crys,et → Cet denote the anonial projetion of the

rystalline topos on Cet. Following [TV℄, Prop. 5.49, we reall the onstrution
of an operator

φ : Ru∗Fil
1D(−Z)→ Ru∗D(−Z),

where the twist by −Z of a rystalline sheaf is de�ned in [TV℄, Def. 4.42.

Consider (U ♯[.], Y
♯
[.], ι[.], σ̃) where U

♯
[.] is a semisimpliial �ne log-sheme aboveC♯,

Y ♯[.] is a semisimpliial p-adi formal log sheme with �nite loal p-bases over

Spf(Zp) (in the sense of [TV℄, 4.1 (v)), endowed with a lifting of Frobenius σ̃

and ι : U ♯[.] → Y ♯[.] is a losed immersion. We denote T ♯[.],n the log pd envelope

of U ♯[.] into the redution Y ♯[.],n of Y ♯[.] modulo pn and, for a rystalline sheaf E,

ET ♯

[.],n
the realization of the sheaf at the pd-thikening (U ♯[.], T

♯
[.],n). It is proved

([TV℄, Lem. 4.9) that we an always hose these data suh that (U ♯[.], T
♯
[.],n) is a

hyperovering in the topos (C♯/Zp)crys,et. In [TV℄, 5.49 it is proved that there

exists a unique olletion (φn) of σ̃-semi-linear morphisms of OT[.],n
-modules

rendering the following diagram ommutative for all n:

Fil1D(−Z)T ♯

[.],n+1
/pn

φn //

1

��

D(−Z)T ♯

[.],n

p

��
D(−Z)T ♯

[.],n

Fr // (F̃ )∗D(−Z)T ♯

[.]
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(here Fr is the morphism built up from the operator F of D together with the

lifting of frobenius σ̃ of Tn). Finally, we set

φ := R lim
←−
n

RfT[.],n,∗φn,

where fT[.],n
: T[.],n,et → Cet. By ohomologial desent in the rystalline topos,

this yields a morphism ([TV℄, Prop. 5.55, (ii) and Rem. 5.56)

φ : Ru∗Fil
1D(−Z)→ Ru∗D(−Z).

4.4.3. To simplify the notations, we set:

i. N := RǫZ∗ R lim
←−n

Apn ,

ii. I := Ru∗Fil
1D(−Z),

iii. P := Ru∗D(−Z),

iv. L := Lie(A)(−Z).

All N, I, P, L are onsidered as objets of the derived ategory D(Cet,Zp).
The main theorem of [TV℄ implies (note that ǫZ∗ as de�ned in 4.1 oinides

with the funtor ǫ∗Γ
Z
used in lo. it.):

Theorem 4.14. ([TV℄, Cor. 9.17) In Dp(Cet,Zp) there are anonial distin-

guished triangles as follows:

N → I
1−φ
→ P

+1
→

I
1
→ P → L

+1
→

�

4.4.4. For X ∈ N, I, P, L, we denote X := (Xn) the objet RΓ(C,X) ∈
Db(GMod(Zp)) (so that Xn = RΓ(Cn, X|Cn

), see Set. 2.4 for explanations).

Given a Galois subextension K ′/K of K∞/K, we denote XK′
(resp. X∗

K′) the

derived projetive limit of the projetive system of omplexes indexed by the

�nite subextensions of K ′/K (eg. XKn
= Xn, X

∗
Kn

= X∗
n, XK∞

:= R lim
←−n

Xn,

X∗
K∞

:= R lim
←−n

RHomZp
(Xn,Zp)). We have by Thm. 4.14 two pairs of distin-

guished triangles in D(Λ):

i. NK∞
→ IK∞

1−φ
→ PK∞

+1
→

ii. IK∞

1
→ PK∞

→ LK∞

+1
→

and

i. P ∗
K∞

1∗−φ∗

→ I∗K∞
→ N∗

K∞

+1
→
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ii. L∗
K∞
→ P ∗

K∞

1
→ I∗K∞

+1
→

Remark 4.15. These distinguished triangles are obtained from Thm. 4.14

by applying RΓ(C,−) then R lim
←−n

. Note that, even though [KT℄ might give

distinguished triangles in the derived ategory of modules at eah level n and

transition mophisms between them, this would formally not be enough to apply

R lim
←−n

(whose soure needs to be the derived ategory of projetive systems

rather than the ategory of projetive systems of the derived ategory) and get

the desired distinguished triangles in D(Λ). One ould of ourse easily give a

meaning to R lim
←−n

of eah term of the triangle using expliit omplexes, but

this is far from lear for the morphisms, espeially for the morphism Nn → In.

In fat, the two ohomology theories XK∞
and X∗

K∞
are related as follows:

Proposition 4.16. Let X ∈ N, I, P, L. Then XK∞
and X∗

K∞
are in Dp(Λ).

Moreover:

(i) If Λ = (Z[Gn]) denotes the anonial normi system then we have in

D(GMod(Zp)) isomorphisms as follows:

Λ
L
⊗ΛXK∞

≃ X and Λ
L
⊗ΛX

∗
K∞
≃ X∗

(so that, in partiular, we have in D(Gn
Mod(Zp)):

Zp[Gn]
L
⊗ΛXK∞

≃ Xn and Zp[Gn]
L
⊗ΛX

∗
K∞
≃ X∗

n)

(ii) We have an isomorphism in Dp(Λ):

RHomΛ(X
∗
K∞

,Λ) ≃ XK∞
.

Proof. Sine C is proper and smooth, well known �niteness results imply that L
and P satisfy the �niteness ondition of Thm. 2.11. The perfetness statement

follows diretly from Thm. 2.11 for X = L or P . It then follows from the

distinguished triangle (ii) (resp. (i)) for X = I (resp. N). The remaining

statements follow from Thm. 2.11 as well (using [Va℄ 2.10.3 and 3.1).

5 The Main conjecture

5.1 The constant Zp-extension

Reall that Kar := Kk∞ denotes the onstant Zp-extension of K. During this

paragraph, we index by kn the n-th layer of k∞/k.

Proposition 5.1. Let W := (W (kn)) ∈ GMod(Zp) denote the normi system

of Zp-modules formed by the Witt vetors along k∞/k. Also, let W ⊗Zp
(−) :

Mod(Zp)→ ΓMod(Zp) denote the obvious funtor. Then:

(i) For X ∈ {I, P, L}, there is a anonial isomorphism in Db(GMod(Zp)):

W
L
⊗XK ≃ X
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(ii) The morphism 1 : In → Pn (resp. φ : In → Pn) is W (kn)-linear
(resp. W (kn)-semi-linear with respet to the ation of the absolute frobenius

σ : W (kn) → W (kn)). In partiular, the morphism 1 − φ : I → P an be

desribed at level n as λ⊗ x0 7→ λ⊗ 1x0 − σλ⊗ φx0.

Proof. (i) follows from the Zariski log-rystalline base hange theorem (note

that the base hange map is well de�ned at the level omplexes and thus makes

sense in Db
ΓMod(Zp)).

(ii) Linearity of 1 and semi-linearity of φ are immediate from the de�nitions.

The seond statement follows.

Corollary 5.2. Both NKar
and N∗

Kar
are torsion over Λ(Γ), ie.

Q(Γ)
L
⊗Λ(Γ)NKar

= 0 and Q(Γ)
L
⊗Λ(Γ)N

∗
Kar

= 0

Proof. Sine by Prop. 4.16, we have NKar
≃ RHomΛ(N

∗
Kar

,Λ), it su�es to

prove that NKar
is torsion. Applying Qp⊗Zp

(−) to the distinguished triangles

of 4.4.3 gives rise to the distinguished triangle:

Qp ⊗Zp
NKar

→ Qp ⊗Zp
IKar

1−φ
→ Qp ⊗Zp

PKar
→ Qp ⊗Zp

NKar
[1]

whih an be rewritten as

Qp⊗Zp
NKar

→W∞

L
⊗Zp

(Qp⊗Zp
IK)→W∞

L
⊗Zp

(Qp⊗Zp
PK)→ Qp⊗Zp

NKar
[1]

Now Qp⊗Zp
LKar

= 0, sine Lie(D) is an Fp-vetor spae and 1 : Qp⊗Zp
IKar

→
Qp ⊗Zp

PKar
thus has an inverse. Sine moreover Qp and W∞ := lim

←−
W (kn)

are Zp-�at, the long exat sequene of ohomology of the previous triangle an

be written

Qp ⊗Zp H
q(NKar ) → W∞

L

⊗Zp(Qp ⊗Zp H
q(PK))

id−φ1−1

→ W∞

L

⊗Zp (Qp ⊗Zp H
q(PK))

where (id− φ1−1)(λ⊗ x) = λ⊗ x− σλ ⊗ φ1−1x.
To end the proof, we need the following result from σ-linear algebra:

Lemma 5.3. If ψ is a linear endomorphism of a �nite dimensional Qp-vetor
spae M then:

(i) The kernel of id−σ⊗ψ on W (kn)⊗Zp
M has Qp-dimension bounded by the

number of unit eigenvalues of ψ (ounted with multipliities). In partiular, its

dimension is bounded independently of n.
(ii) The Qp-linear endomorphism id−σ⊗ψ of (lim

←−
W (kn))⊗Zp

M) is injetive.

Proof. (i) Set L = Frac(W (Fp)). Sine Lσ (the �xed points by σ) are redued
to Qp and W (kn)⊗Zp

M ⊂ L⊗Qp
M , [EL2℄ 6.2 gives the result.

(ii) Let Γ at on ⊂ W (kn) ⊗Zp
M via W (kn). Thanks to (i), we know that

there is a open subgroup Γm ⊂ Γ whih �xes the kernel of id− σ⊗ψ ating on

W (kn)⊗Zp
M for all n. The result follows, sine

(W∞ ⊗Zp
M)Γm = (lim

←−
W (kn)

Γm)⊗Zp
M = 0.
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Applying the lemma to M = Qp ⊗Zp
Hq(PK) and ψ = φ1−1

shows that the

�rst distinguished triangle of 4.4.4 redues to short exat sequenes

0→ Qp ⊗Zp
Hq(PKar

)
id−ψ
→ Qp ⊗Zp

Hq(PKar
)→ Qp ⊗Zp

Hq(NKar
)→ 0

and the result follows by applying Q(Γ) ⊗Λ(Γ) (−) to those, sine Q(Γ) ⊗Λ(Γ)

Hq(PKar
) is a �nite dimensional vetor spae over Q(Γ).

Following [Ja℄, we set Eq(−) := ExtqΛ(Γ)(−,Λ(Γ)). In lo. it. these funtors

(and others) are used to lassify Λ(Γ)-modules up to isomorphism. Let us reall

that, for a �nitely generated Λ(Γ)-module they verify the following properties:

- E0(M) is free. It is zero if and only if M is torsion.

- E1(M) is torsion and is (non anonially) pseudo-isomorphi toM . It has no

non zero �nite submodules if M is torsion.

- E2(M) is �nite.

Corollary 5.4. NKar
and N∗

Kar
an be desribed as follows:

1. (i) NKar
is onentrated in degrees [1, 3] and its ohomology Λ(Γ)-modules

are desribed by the following exat sequene and isomorphisms

H1(NKar
) →֒ lim

←−n
SelTp

(A/Kkn) ։ lim
←−k,n

∏

v∈Z A(kvkn)/p
k

H2(NKar
) ≃ HomZp

(lim
−→n

Selp∞(Â/Kkn),Qp/Zp)

H3(NKar
) ≃ HomZp

(lim
−→n

Âp∞(Kkn),Qp/Zp)

(ii) Moreover, one has the following isomorphism and exat sequenes of Λ(Γ)-
modules:

H1(NKar
) ≃ E1(H0(N∗

Kar
))

E2(H0(N∗
Kar

)) →֒ H2(NKar
) ։ E1(H−1(N∗

Kar
))

E2(H−1(N∗
Kar

)) →֒ H3(NKar
) ։ E1(H−2(N∗

Kar
))

2. (i) N∗
Kar

is onentrated in degrees [−2, 0] and its ohomology Λ(Γ)-modules

are desribed by the following isomorphism and exat sequene:

H−2(N∗
Kar

) ≃ lim
←−
n

SelTp
(Â/Kkn)

HomZp
(lim
−→n

Selp∞(A/Kkn),Qp/Zp) →֒ H−1(N∗
Kar

)→

HomZp
(lim
−→n

⊕v∈ZAp∞(kvkn),Qp/Zp)→ HomZp
(lim
−→n

Ap∞(Kkn),Qp/Zp)
։ H0(N∗

Kar
)

(ii) Moreover, one has the following isomorphism and exat sequenes of Λ(Γ)-
modules:

H−2(N∗
Kar

) ≃ E1(H3(NKar
))

E2(H3(NKar
)) →֒ H−1(N∗

Kar
) ։ E1(H2(NKar

))
E2(H2(NKar

)) →֒ H0(N∗
Kar

) ։ E1(H1(NKar
))
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Proof. The desription of ohomology follows from Cor. 4.12 (re-

all that N = R lim
←−k

RΓZ(C,Apk) while N∗ = RHomZp
(N,Zp) ≃

RHomZp
(lim
−→k

RΓZ(C,Apk))) using only that Ap∞(Kkn) and Ap∞(kvkn)
are �nite. The stated relations between NKar

and N∗
Kar

follow from Thm.

4.16 thanks to the spetral sequene

ExtpΛ(Γ)(H
−q(N∗

Kar
),Λ(Γ)) ⇒ Extp+qΛ(Γ)(N

∗
Kar

,Λ(Γ))

(resp. ExtpΛ(Γ)(H
−q(NKar

),Λ(Γ)) ⇒ Extp+qΛ(Γ)(NKar
,Λ(Γ)) )

whih degenerates by Cor. 5.2.

Proposition 5.5. The following onditions are equivalent:

(i) NKar
is �nitely generated over Zp (that is for any i, Hi(NKar

) is a �nitely

generated Zp-module).

(ii) HomZp
(lim
−→n

Sel(Âp∞/Kkn),Qp/Zp) is �nitely generated over Zp.
(iii) N∗

Kar
is �nitely generated over Zp.

(iv) HomZp
(lim
−→n

Sel(Ap∞/Kkn),Qp/Zp) is �nitely generated over Zp.

Proof. (i) ⇔ (iii) follows from the previous orollary. Indeed if M is any

Λ(Γ)-module then Ei(M) is �nitely generated over Zp as soon as M is. The

remaining equivalene are obvious, beause the p-rank of torsion points remains

bounded along the tower.

From now on, we will often need to make the following assumption:

(µ = 0 - up to iso): There exists an abelian variety A′/K whih is isogenous

to A/K and veri�es the equivalent onditions of Prop. 5.5.

Remark 5.6. (i) What we know about this assumption is the following:

- It holds for onstant varieties exept for supersingular abelian variety with

non-invertible Hasse-Witt matrix (see [OT℄, Theorem 1.8).

- If it holds for A/K and K ′/K is a �nite unrami�ed extension, then it also

holds for A/K ′
.

(ii) In harateristi 0, it is generally expeted that the analogue of (µ = 0-up
to iso) always holds for ellipti urves ([Gr℄, p. 9).

5.2 The case of a p-adic Lie extension

Let us begin by a heap result.

Proposition 5.7. Corollary 5.4 1. (i) and 2. (i) holds verbatim if one replaes

Kkn by Kn and NKar
and N∗

Kar
respetively by NK∞

and N∗
K∞

.

�

To go further we need the following lemma whih (partly) is the derived version

of Nakayama's lemma.
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Lemma 5.8. Let M ∈ Dp(Λ(G)), then M is S-torsion (ie. ΛS
L
⊗M = 0) if and

only Λ(Γ)
L
⊗Λ(G)M ∈ D

p(Λ(Γ)) is �nitely generated over Zp.

Proof. First assume that M is a �nitely generated Λ(G)-module. In this ase,

the following statements are equivalent:

(i) M is S-torsion.
(ii) M is �nitely generated over Λ(H).
(iii) Λ(Γ)⊗Λ(G) M is �nitely generated over Zp.

(iv) eah Tor
Λ(G)
p (Λ(Γ),M) is �nitely generated over Zp.

Indeed (i) ⇔ (ii) is [CFKSV℄ 2.3, (ii) ⇔ (iii) is the topologial version of

Nakayama's lemma for the ring Λ(H) and the ompat Λ(H)-module M (note

that Λ(Γ) ⊗Λ(G) M ≃ Zp ⊗Λ(H) M). Finally (iii) ⇔ (iv) is an immediate

onsequene of the fat that M admits a resolution by a perfet omplex of

Λ(H)-modules as soon as it is �nitely generated over Λ(H).

Now we ome to the general ase. As in the ase of modules, the impliation �M
is S-torsion� ⇒ �Λ(Γ)⊗LΛ(G) M is �nitely generated over Zp� is immediate. It

thus remains to prove the reiproal impliation. Assume thus that Λ(Γ)⊗LΛ(G)

M is �nitely generated over Zp, ie. that the �nal terms of the spetral sequene

TorΛ(G)
p (Λ(Γ), Hq(M))⇒ Torp−q(Λ(Γ),M)

are. Then using the above equivalene (iii) ⇔ (iv) for the module Hq(M) as
well as a desending indution on q, one gets that eah initial term must also

be �nitely generated over Zp (see [Va℄ 4.1 for details).

Proposition 5.9. Under the assumption (µ = 0 - up to iso), NK∞
and N∗

K∞

are both S∗
-torsion.

Proof. Let A → A′
be an isogeny over K suh that A′

veri�es (µ = 0). Then
learly

Qp ⊗
L
Zp
R lim
←−

RΓZ(C, Tp(A)) ≃ Qp ⊗
L
Zp
R lim
←−

RΓZ(C, Tp(A
′))

and we may thus assume that A = A′
. By Thm. 4.16, NK∞

(resp. N∗
K∞

) is

perfet. Taking R lim
←−

along Kk∞/K thus gives

Λ(Γ)
L
⊗Λ(G)NK∞

≃ NKar
(resp. Λ(Γ)

L
⊗Λ(G)N

∗
K∞
≃ N∗

Kar
)

and the result now follows diretly from the previous lemma.

Remark 5.10. Thanks to the previous proposition, we may form the lasses

[NK∞
] and [N∗

K∞
] of NK∞

and N∗
K∞

in K0(MG(H)).

Corollary 5.11. Under the assumption (µ = 0 - up to iso) eah one of the

following morphisms of Dp(Λ(G)S∗)

1, 1−φ : (IK∞
)S∗ → (PK∞

)S∗ , 1
∗, (1−φ)∗ : (P ∗

K∞
)S∗ → (I∗K∞

)S∗

indued by 1, 1− φ : I → P , is an isomorphism.
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Proof. For 1, this is due to the fat that Lie(D)(−Z), and thus LK∞
, is killed

by p. For 1− φ, this is a diret onsequene of the previous proposition.

Remark 5.12. It is not the ase that LK∞
is S-torsion, beause of Prop. 5.1

(i).

We are now in position to de�ne the �p-adi L-funtion� (as well as its dual
version) whih appears in the main onjeture.

Definition 5.13. Under the assumption (µ = 0), the p-adi L-funtion L =
L(A,U,G) and it dual version L∗ = L∗(A,U,G) are de�ned as follows:

(i) L := Det((1− φ)1−1| (PK∞
)S∗)−1 ∈ K1(ΛS∗).

(ii) L∗ := Det((1∗)−1(1− φ)∗| (P ∗
K∞

)S∗)−1 ∈ K1(ΛS∗).

Remark 5.14. (i) The notation L∗ is justi�ed by the fat that it is de-

dued from L via the duality involution of K1(Λ(G)S∗) (with the onvention

that duals are viewed as left modules via g 7→ g−1
). Indeed (P ∗

K∞
)S∗ ≃

RHomΛS∗ ((P
∗
K∞

)S∗ ,ΛS∗) and (1∗)−1(1 − φ)∗ is RHomΛS∗ (−,ΛS∗)-dual to
(1− φ)1−1| (PK∞

)S∗
.

(ii) Thanks to the previous remark and lemma 3.5, we see that for any Artin

representation ρ
ρ(L) = ρ∨(L∗)

Let us now review how one lassially attahes twisted L-funtions to A and

U via overonvergent isorystals. By [LST℄, the log Dieudonné rystal D over

C♯ indues an overonvergent F -isorystal D†
over U/Fp. Let L be a �nite

extension of Qp whih is totally rami�ed, O its ring of integers, and onsider an

Artin representation ρ : G → AutO(Vρ). Chose n suh that ρ fators through

Gn = Gal(Un/U). Then we an see ρ as a O-representation of the fundamental

group of U , having �nite (in fat trivial) loal monodromy. This representation

orresponds to a unique unit-root overonvergent F -isorystal U(ρ)† over U/L
(see e.g. [Tsz℄, 7.2.3) whih beomes onstant over Un. Consider

pr∗ : F − iso†(U/Qp)→ F − iso†(U/L)

the natural base hange funtor from the ategory of overonvergent F isorys-

tals over U/Qp to the ategory of overonvergent F isorystals over U/L. Then
we set

L(U,A, ρ, s) := L(U, pr∗D† ⊗ U(ρ)†, p−s)

where the right hand side is the lassial L-funtion de�ned in [EL1℄ assoiated

to the F -isorystal pr∗D† ⊗ U(ρ)†.

The rest of this setion will be devoted to proving the following theorem, whih

is our main result:

Theorem 5.15. The p-adi L-funtion and its dual version verify the following

properties.

1. (Char) In K0(MG(H)), one has the following equalities:

Documenta Mathematica 24 (2019) 473–522



Non Commut. IMC for Ab. Varieties over Funct. Fields 517

(i) ∂(L) = [NK∞
] + [LK∞

].
(ii) ∂(L∗) = −[N∗

K∞
]− [L∗

K∞
].

2. (Interpolation): For any totally rami�ed extension L of Qp with ring of

integers denoted O and every ρ : G → AutO(V ) with ontragredient ρ∨ : G →
AutO(V

∗), one has, in L ∪ {∞}:
(i) ρ(L) = L(U,A, ρ∨, 1).
(ii) ρ(L∗) = L(U,A, ρ, 1).

Proof. 1. (i) Aording to Lem. 3.3 there exists a ommutative square of the

form

IK∞

1−φ
−−−−→ PK∞

1









y









y

PK∞
−−−−→ PK∞

whose edges all beome isomorphisms after loalization by S∗
. The laimed

equality follows from Lem. 3.2 sine [Cone(1− φ)] = [NK∞
[1]] = −[NK∞

] and
[Cone(1)] = [LK∞

]. Here, the existene of suh a diagram is ensured by Lem.

3.3. The proof of (ii) is similar using the dual distinguished triangles desribing

N∗
K∞

and L∗
K∞

.

2. Note that the formula (ii) follows from (i) by Rem. 5.14 (ii). In order to

prove (i) we begin with preliminary results.

Proposition 5.16. There is a anonial isomorphism as follows in the derived

ategory of L-vetor spaes

L
L
⊗ΛO(G)(VΛO(G))

∗
L
⊗Λ(G)PK∞

≃ RΓrig,c(U/L, pr
∗D† ⊗ U(ρ∨))

(here the (ΛO(G),Λ(G))-bimodule struture of (VΛO(G))
∗
is as in the de�nition

of the map ρ : K1(Λ(G)) → K1(O), see. paragraph 3.4). The ation of φ1−1

on the left hand term orresponds moreover to the ation of Frobenius divided

by p on the right hand side.

Proof. We have isomorphisms as follows:

L
L
⊗ΛO(G)(VΛO(G))

∗
L
⊗ΛO(G)PK∞

1
≃ L

L
⊗ΛO(G)(V

∗
L
⊗Zp

PK∞
)

2
≃ L

L
⊗L[Gn](V

∗
L

L
⊗Zp

Pn)
3
≃ L

L
⊗L[Gn](V

∗
L

L
⊗LRΓrig,c(Un/L, pr

∗D†))
4
≃ RΓrig,c(U/L, pr

∗D ⊗ U †(ρ∨))

Here the isomorphism 1 is by Rem. 3.4 (i), 2 is obvious and 4 follows from

étale ohomologial desent for ompatly supported rigid ohomology ([CT℄)

together with the de�nition of U(ρ∨). The isomorphism 3 follows from the fat

that in D(L[Gn]) we have a Frobenius ompatible isomorphism as follows:

L
L
⊗Zp

RΓ(C♯n/Zp, D(−Z)) ≃ RΓrig,c(Un/L, pr
∗D†)
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Let us explain the latter isomorphism. Sine (ompatly supported) rigid oho-

mology is ompatible to base hange from Qp to L we may assume that L = Qp
(note that the Frobenius is L-linear sine L/Qp is totally rami�ed) and then

apply the following lemma to the diagram having C♯n as only vertex and edges

indexed by Gn.

Lemma 5.17. Consider a diagram (see [TV℄ Def. 2.1) X/∆ of proper smooth

urves over a perfet �eld k, Z a smooth divisor of X, X♯ = (X,Z), Y = X−Z,
E an F -rystal on X♯

and E†
the indued overonvergent F -isorystal ([LST℄).

If ∆ satis�es the �niteness ondition of [TV℄ Lem. 5.7 then we have a anonial

isomorphism

Qp
L
⊗Zp

RΓ(X♯/Zp, E(−Z)) ≃ RΓrig,c(Y,E
†)

in D(Mod(Qp)∆). This isomorphism is ompatible with Frobenius.

Proof. By using Poinaré duality on both sides of the isomorphism, we are

redued to establish an isomorphism

Qp
L
⊗Zp

RΓ(X♯/Zp, E) ≃ RΓrig(Y,E
†)

in D(Mod(Qp)∆
op

). Moreover the ompatibility with Frobenius is a formal

onsequene of the rest sine one an replae the diagram X by the diagram

Frob : X → X of type ∆ × [1]. Using ohomologial desent on both the

rystalline and the rigid side (see [CT℄), we an always assume given an exat

immersion X♯ ⊂ P ♯ into a log smooth formal log sheme P ♯/W (k) as in [TV℄

Lem. 5.7. Then, after tensorisation by Qp, the rystalline ohomology of E
an be omputed (see [Sh℄ and [Tr℄, proof of proposition 3.3) as the log de

Rham ohomology on the tube ]X [P of the assoiated module with onnetion

EK (K = Frac(W (k)) and maps naturally to the de Rham ohomology on V ,
some strit neighborhood of ]Y [P in ]X [P , of EK |V , whih is nothing but the

rigid ohomology of E†
. We have then onstruted a map

Qp
L
⊗Zp

RΓ(X♯/Zp, E)→ RΓrig(Y,E
†).

To show that this map is an isomorphism, we need to show that this is the

ase on eah vertex of the diagram. Now we an always assume given a proper

smooth lifting of eah vertex (they need not be ompatible) and we onlude

using [LST℄, 4.2 and [Tsj℄, 1.5.

Proposition 5.18. [EL2℄ Let E† ∈ F − iso†(U/Qp).

L(U,E†, ρ, t) =

2
∏

i=0

detL(1 − tF |H
i
rig,c(U/L, pr

∗D† ⊗ U(ρ)†)(−1)i+1

�
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Now we an prove the interpolation formula 2.(i) of Thm. 5.15. For simpliity,

we set

RP := R
L
⊗ΛO(G)(VΛO(G))

∗
L
⊗Λ(G)PK∞

and RH
q := Hq(RP )

for any ΛO(G)-algebra R. Note that R′Hq ≃ R′ ⊗R RH
q
if R′/R is �at.

Applied to PK∞
, Lem. 3.6 gives

ρQO(Γ)L =
∏

q

detQO(Γ)((1− φ)1
−1|QO(Γ)H

q)(−1)q+1

(17)

and Lem. 3.7 applied to ΛO(Γ)IH
q
gives:

ǫdetQO(Γ)((1− φ)1
−1|QO(Γ)H

q)

= detL((1− φ)1
−1|Tor

ΛO(Γ)I
0 (L, ΛO(Γ)IH

q))

.detL((1− φ)1
−1|Tor

ΛO(Γ)I
1 (L, ΛO(Γ)IH

q))−1

(18)

whenever the right hand side makes sense (reall that the map ǫ was de�ned
in (10)).

Now Prop. 5.16 shows that

RΓrig,c(U/L, pr
∗D† ⊗ U(ρ∨)) ≃ LP

≃ L
L
⊗ΛO(Γ)IΛO(Γ)IP

Whene a spetral sequene whih degenerates into short exat sequenes

(where we write Hq
rig,c(U/L) instead of Hq

rig,c(U/L, pr
∗D†⊗U(ρ∨)), by lak of

spae):

H2
rig,c(U/L) ։ Tor

ΛO(Γ)I
0 (L, ΛO(Γ)IH

2)

Tor
ΛO(Γ)I
1 (L, ΛO(Γ)IH

2) →֒ H1
rig,c(U/L) ։ Tor

ΛO(Γ)I
0 (L, ΛO(Γ)IH

1)

Tor
ΛO(Γ)I
1 (L, ΛO(Γ)IH

1) →֒ H0
rig,c(U/L) ։ Tor

ΛO(Γ)I
0 (L, ΛO(Γ)IH

0)

Tor
ΛO(Γ)I
1 (L, ΛO(Γ)IH

0) = 0
(19)

Claim. The operator (1− φ)1−1
is bijetive on eah Tor

ΛO(Γ)I
−i (L, ΛO(Γ)IH

j))
exept maybe for (i, j) = (0, 1). Moreover, the operator 1 − p−1F is bijetive

on Hq
rig,c(U/L, pr

∗D† ⊗ U(ρ∨)) exept maybe for q = 1.

Let us prove this laim. First we observe that the seond statement implies

the �rst one sine by Nakayama's lemma, (1− φ)1−1
is bijetive on ΛO(Γ)IH

j

if and only if it is on Tor
ΛO(Γ)I
0 (L, ΛO(Γ)IH

j), in whih ase it is also bijetive

on Tor
ΛO(Γ)I
1 (L, ΛO(Γ)IH

j)). Now the seond laim follows from the long exat

sequene (f. Thm. 4.14 and the isomorphism between the third and last term

at the beginning of the proof of Prop. 5.16)

L⊗L[Gn] (V
∗
L

L
⊗Zp

Nn) → Hq
rig,c(U/L)

1−p−1F
→ Hq

rig,c(U/L) → . . .
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sine by Cor. 4.12 Q⊗Nn is onentrated in degrees [1, 2].

We may now onlude sine the laim ensures that no indeterminate produt

of the form 0.∞ ours in:

- the formula obtained by ombining (17) with (18) (note that the left hand

term is nothing but ρ(L)):

ǫρQO(Γ)(L)
∏

q detQO(Γ)((1− φ)1
−1|QO(Γ)H

q)(−1)q+1

=
∏

i,j detL((1− φ)1
−1|Tor

ΛO(Γ)I
−i (L, ΛO(Γ)IH

j))(−1)i+j+1

- the formula given by the exat sequenes (19):

∏

i,j detL((1− φ)1
−1|Tor

ΛO(Γ)I
−i (L, ΛO(Γ)IH

j))(−1)i+j+1

=
∏

q detL(1− p
−1F |Hq

rig,c(U/L, pr
∗D† ⊗ U(ρ∨))(−1)(q+1)

- the formula given by Lem. 5.18:

∏

q

detL(1− p
−1F |Hq

rig,c(U/L, pr
∗D† ⊗ U(ρ∨))(−1)(q+1)

= L(U,A, ρ∨, 1).

�

Remark 5.19. (i) In the above proof we have retrieved the well known fat that

ρ(L) = L(U,A, ρ∨, 1) may take the value 0, but not ∞.

(ii) In [LLTT℄, the author onsiders the omplex RHomZp
(L,Qp/Zp) = L∗[1]

instead of L∗
. This explains the di�erene of signs between formula 1. (ii) and

those of lo. it.
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