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Jonsson where K was assumed to be discretely valued with residue
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1. Introduction

An arithmetic intersection theory on arithmetic surfaces was introduced by
Arakelov and used by Faltings to prove the Mordell conjecture. In higher
dimensions, the theory was developed by Gillet and Soulé which proved to be
a very useful tool in diophantine geometry. To produce arithmetic intersection
numbers from a given line bundle L on a proper variety X over a number field
K, one has to endow the complexification of L with a smooth hermitian metric
and one has to choose an OK-model (X ,L ) for (X,L).
Zhang [Zha95] realized that the contribution of a non-archimedean place v
to this arithmetic intersection number is completely determined by a metric
on L(Kv) associated with L , where Kv is the completion of K at v. This
adelic point of view is very pleasant as it allows to deal with archimedean
and non-archimedean places in a similar way. Motivated by his studies of the
Bogomolov conjecture [Zha93], Zhang [Zha95] introduced semipositive adelic
metrics as a uniform limit of metrics induced by nef models and he showed that
every polarized dynamical system has a canonical metric inducing the canonical
height of Call and Silverman.
In [Gub98], it became clear that Zhang’s metrics can be generalized over any
non-archimedean fieldK working with formal models of the line bundle over the
valuation ring. It turned out that such metrics are continuous on the Berkovich
analytification of the line bundle and so we call them continuous semipositive
metrics.
Chambert-Loir introduced measures c1(L, ‖ ‖)∧n on the Berkovich space Xan

for a continuous semipositive metric ‖ ‖ of a line bundle L over X ([Cha06],
[Gub07a]). These measures are non-archimedean equidistribution measures as
in Yuan’s equidistribution theorem [Yua08] over number fields (see also [CT09]).
The analogue over function fields was proven in [Fab09], [Gub08] and gave rise
to progress for the geometric Bogomolov conjecture [Gub07a], [Yam13, Yam16].
Continuous semipositive metrics played an important role in the study of the
arithmetic geometry of toric varieties due to Burgos-Gil, Philippon and Som-
bra, see [BPS14], [BPS15], [BPS16], [BMPS16] with Moriwaki and [BPRS15]
with Rivera-Letelier. Katz–Rabinoff–Zureick-Brown [KRZ16] used semiposi-
tive model metrics to give explicit uniform bounds for the number of rational
points in situations suitable to the Chabauty–Coleman method.
For the non-archimedean Monge–Ampère problem, continuous semipositive
metrics are of central importance. Uniqueness up to scaling was shown by
Yuan and Zhang [YZ17]. In case of residue characteristic 0, a solution was
given by Boucksom, Favre and Jonsson [BFJ16, BFJ15] using an algebraicity
condition which was removed in [BGJKM].
Semipositive model metrics also played a role in the thesis of Thuillier [Thu05]
on potential theory on curves, in the work of Chambert-Loir and Ducros on
forms and currents on Berkovich spaces [CD12] and in the study of delta-forms
in [GK17, GK15].
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Looking at the above references, one observes that the authors work either
under the hypothesis that the valuation is discrete or that K is algebraically
closed. The reasoning behind the former is that the valuation ring and hence
the models are noetherian. If K is algebraically closed, then the valuation
ring is not noetherian (unless the valuation is trivial, but we exclude this case
here). Working with formal models using Raynaud’s theory, this is not really a
problem. The assumption thatK is algebraically closed is used to have plenty of
formal models which have locally the form Spf(A 0), where A 0 is the subring
of power bounded elements in an K-affinoid algebra A . It has further the
advantage that finite base changes are not necessary in the semistable reduction
theorem or in de Jong’s alteration theorems. This division has the annoying
consequence that many results obtained under one of these hypotheses cannot
be used under the other hypothesis. Moreover, there is a growing group of
people who would like to use Zhang’s metrics over any non-archimedean base
field1. The goal of this paper is to remedy this situation and to study these
metrics in the utmost generality which is available to us.
From now on, we assume thatK is a non-archimedean field which means in this
paper that K is a field endowed with a non-trivial non-archimedean complete
absolute value. We denote the valuation ring by K◦.
We first restrict our attention to the case of a line bundle L on a proper scheme
X over K. We call a metric ‖ ‖ on Lan algebraic (resp. formal) if it is induced
by a line bundle L on a flat proper scheme X (resp. a line bundle L on an
admissible formal scheme X) over K◦ with generic fibre X and with L = L |X .
We use the notation ‖ ‖ = ‖ ‖

L
. Such a metric is called semipositive if L

(resp. L) restricts to a nef line bundle on the special fibre of X (resp. X).
More generally, we call ‖ ‖ a model metric if there is a non-zero k ∈ N such that

‖ ‖⊗k is an algebraic metric. Then a model metric ‖ ‖ is called semipositive

if ‖ ‖⊗k is semipositive in the previous sense. We say that ‖ ‖ is a continuous
semipositive metric if it is the uniform limit of a sequence of semipositive model
metrics on Lan.
We note that the above definitions are global definitions. It is desirable to have
local analytic definitions. Let V be a paracompact strictly K-analytic space
and L a line bundle on V . First, we say that a metric ‖ ‖ on L is a piecewise
linear metric if there is a G-covering (Vi)i∈I of V (i.e. a covering with respect
to the G-topology on V ) and frames si of L over Vi with ‖si‖ ≡ 1. Note that
such metrics are already considered in [Gub98], but they were called formal
there which is a bit confusing. We say that a metric ‖ ‖ is piecewise Q-linear if
there is a G-covering (Vi)i∈I of V and some integers (ki)i∈I such that for each

i ∈ I, the restriction of ‖ ‖⊗ki to Vi is a piecewise linear metric on Vi. We refer
to Section 2 for details and properties.
Following a suggestion of Tony Yue Yu, we call a piecewise linear metric ‖ ‖
semipositive at x ∈ V if x has a strictly K-affinoid domain W of V as a
neighborhood (in the Berkovich topology) such that the restriction of ‖ ‖ to

1The new paper of Boucksom and Eriksson [BE18] is an example for this point of view.
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L|W is a semipositive formal metric. This notion was studied in [GK15] for K
algebraically closed. A semipositive piecewise linear metric on L is a piecewise
linear metric which is semipositive at every x ∈ V . Semipositive metrics are
studied in Section 3. We highlight here the following result which is useful in
comparing the various definitions mentioned above.

Theorem 1.1. The following are equivalent for a metric ‖ ‖ on the line bundle
Lan over a proper scheme X:

(a) ‖ ‖ is an algebraic metric;
(b) ‖ ‖ is a formal metric;
(c) ‖ ‖ is a piecewise linear metric.

The equivalence remains true if we replace “metric” by “semipositive metric”
in every item.

As seen in Remark 2.6, the equivalence of (a) and (b) follows from [GK17,
Proposition 8.13] (as the argument does not use the assumption that K is
algebraically closed). The equivalence of (b) and (c) holds more generally over
any paracompact strictly K-analytic space as shown in Proposition 2.10. This
equivalence was known before only in case of a compact reduced space over
an algebraically closed field. Neither base change nor the old argument can
be used and so we give an entirely new argument here. In the semipositive
case, the equivalence of (a) and (b) follows immediately from Proposition 3.5.
Finally, the equivalence of (b) and (c) is shown in Proposition 3.11. It holds
more generally for a separated paracompact strictly K-analytic space.
We also prove the following result (Theorem 2.17) which generalizes [Gub98,
Theorem 7.12] from the compact to the paracompact case.

Theorem 1.2. Let V be a paracompact strictly K-analytic space with a line
bundle L. If ‖ ‖ is a continuous metric on L, then there is a sequence (‖ ‖n)n∈N

of piecewise Q-linear metrics on L which converges uniformly to ‖ ‖.

Let us come back to semipositive metrics. For this, let us consider X a proper
scheme over K. It is a natural question if the notion of semipositivity is closed
in the space of model metrics of a given line bundle L of X . First, we look
at this question for uniform convergence of metrics. We consider a model
metric ‖ ‖ on Lan which is semipositive as a continuous metric, which means
by definition that it is uniform limit of semipositive model metrics on Lan.
Then the closedness problem is equivalent to show that ‖ ‖ is semipositive as a
model metric. By passing to a tensor power, we may assume that ‖ ‖ = ‖ ‖

L

for a line bundle L on a model X of X . By assumption, ‖ ‖ is the uniform
limit of semipositive model metrics ‖ ‖n on Lan. For every n ∈ N, there is a

non-zero kn ∈ N such that ‖ ‖⊗knn is an algebraic metric associated with a nef
line bundle Ln living on a proper flat scheme Xn over K◦ with generic fiber X .
Since the models Xn might be completely unrelated to X , it is non-obvious
to show that L is nef if all the line bundles Ln are nef.

Documenta Mathematica 24 (2019) 331–372



On Zhang’s Semipositive Metrics 335

An even more challenging problem is to show that the space of model metrics
is closed with respect to pointwise convergence. The solution of this problem
is the main result of this paper:

Theorem 1.3. Let X be a proper scheme over K with a line bundle L. We
assume that the model metric ‖ ‖ on Lan is a pointwise limit of semipositive
model metrics on Lan. Then ‖ ‖ is a semipositive model metric.

If K is discretely valued of residue characteristic zero and if X is a smooth pro-
jective variety, then this theorem was proven by Boucksom, Favre and Jonsson
[BFJ16, Theorem 5.11] using multiplier ideals. They said in [BFJ16] Remark
5.13 that it would be interesting to have a proof along the lines of Goodman’s
paper [Goo69, p.178, Proposition 8]. This is what we provide in Theorem 1.3
with a proof holding for any non-archimedean field and hence we obtain as an
immediate consequence:

Corollary 1.4. A model metric is semipositive as a model metric if and only
if it is semipositive as a continuous metric.

For arbitrary non-archimedean fields, this result was first proven in [GK15,
Proposition 8.13] using a lifting theorem for closed subvarieties of the special
fibre. Amaury Thuillier told us that he found a similar (unpublished) lifting
argument to prove Corollary 1.4.
Theorem 1.3 will follow from Theorem 5.5 which is a slightly more general
version about pointwise convergence of θ-plurisubharmonic model functions
for a closed (1, 1)-form θ. These notions from [BFJ16] will be introduced in
Section 4. In Theorem 1.3 and in Theorem 5.5, it is enough to require pointwise
convergence over all divisorial points of Xan. Such points will be introduced
and studied in Appendix A.

1.1. Terminology. For sets, in A ⊂ B equality is not excluded and A \ B
denotes the complement of B in A. N includes 0. All the rings and algebras
are commutative with unity. For a ring A, the group of units is denoted by A×.
If V is a topological space, for a set U ⊂ V we denote by U◦ the topological
interior of U in V . A variety over a field k is an irreducible and reduced scheme
which is separated and of finite type over k.
For the rest of the paper we fix a non-archimedean fieldK. This means here that
the field K is equipped with a non-archimedean absolute value | | : K → R+

which is complete and non-trivial. Let v := − log | | be the corresponding
valuation. We have a valuation ring K◦ := {x ∈ K | v(x) ≥ 0} with maximal

ideal K◦◦ := {x ∈ K | v(x) > 0} and residue field K̃ := K◦/K◦◦. We set
Γ := v(K×). It is a subgroup of (R,+) called the value group of K. We denote
by K an algebraic closure of K and we set CK for the completion of K. It is
a minimal algebraically closed non-archimedean field extension of K [BGR84,
§3.4.1].

1.2. Acknowledgements. We thank Vladimir Berkovich, Antoine Ducros
and Tony Yue Yu for helpful discussions. We thank Ofer Gabber for thoroughly

Documenta Mathematica 24 (2019) 331–372



336 Walter Gubler and Florent Martin

answering a question posed by email and we thank the referees for their helpful
comments. This work was supported by the collaborative research center SFB
1085 funded by the Deutsche Forschungsgemeinschaft.

2. Formal and piecewise linear metrics

For line bundles on paracompact strictly K-analytic spaces, we will introduce
the global notion of formal metrics and the local notion of piecewise linear
metrics. We will collect many properties and we will show that both notions
agree. At the end, we will prove a density result for piecewise Q-linear metrics.

2.1. Let X be a proper scheme over K. Then an algebraic K◦-model of X is a
proper flat scheme X over K◦ with a fixed isomorphism from the generic fiber
Xη to X . Usually, we will identify Xη with X along this fixed isomorphism.
It follows from Nagata’s compactification theorem [Con07, Theorem 4.1] that
an algebraic K◦-model of X exists. The set of isomorphism classes of algebraic
K◦-models of X is partially ordered by morphisms of K◦-models of X (where
by definition such a map extends the identity on X). A diagonal argument
shows easily that the set of isomorphism classes is directed with respect to this
partial order.
Let L be a line bundle on X . An algebraic K◦-model (X ,L ) of (X,L) consists
of an algebraic K◦-model X of X and of a line bundle L on X with a fixed
isomorphism from L |X to L which we use again for identification.
It follows from Vojta’s version of Nagata’s compactification theorem [Voj07,
Theorem 5.7] and noetherian approximation that (X,L) has always an algebraic
K◦-model. Alternatively, one can use the non-noetherian version of Nagata’s
compactification theorem [Con07, Theorem 4.1] to get an algebraic K◦-model
X of X , then by [Sta16, Tag 01PI] one can extend L to an OX -module of
finite presentation F , and finally by [RG71, Théorème 5.2.2], replacing X by
a dominating K◦-model, one can ensure that F is flat, hence a line bundle on
X .

2.2. Let V be a paracompact strictly K-analytic space. We use here the an-
alytic spaces and the terminology introduced by Berkovich in [Ber93, Section
1]. Then a formal K◦-model is an admissible formal scheme V over K◦ [Bos14,
§7.4] with a fixed isomorphism Vη

∼= V on the generic fiber Vη which we again
use for identification. Note that we have a canonical reduction map π : V → Vs

to the special fiber Vs (see [GRW17, Section 2]). We say that a covering (Vi)i∈I
of V is of finite type if for each i ∈ I, the intersection Vi ∩ Vj is nonempty only
for finitely many j ∈ I.
The category of paracompact strictly K-analytic spaces is equivalent to the
category of quasiseparated rigid analytic varieties over K with a strictly K-
affinoid G-covering of finite type (see [Ber93, §1.6]) and hence we may apply
Raynaud’s theorem from [Bos14, Theorem 8.4.3]. In particular, we see that a
formal K◦-model of V exists and that the set of isomorphism classes of formal
K◦-models is again directed. Some of the references in the following require
that V is compact, because the original formulation of Raynaud’s theorem in
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[BL93a, Theorem 4.1] used that the underlying rigid space is quasicompact
and quasiseparated. This will be bypassed by using the more general version
in [Bos14, Theorem 8.4.3] for paracompact V (remember that paracompact
includes Hausdorff).
We always consider the G-topology on V induced by the strictly K-affinoid
domains in V (see [Ber93, §1.6]). The G-topology is finer than the Berkovich
topology and the strictly K-affinoid domains may be seen as the basic open
subsets of the G-topology while they are compact in the Berkovich topology
of V . There is a canonical structure sheaf OXG

on the G-topology of V such
that for every strictly K-affinoid domain W of V the corresponding strictly
K-affinoid algebra is OXG

(W ). A G-covering (Vi)i∈I is called of finite type if
for every i ∈ I there are only finitely many j ∈ I with Vi ∩ Vj 6= ∅.
Let L be a line bundle on V which means that L is a locally free sheaf of rank
1 on the G-topology. A formal K◦-model (V,L) of (V, L) consists of a formal
K◦-model V of V and a line bundle L on V with a fixed isomorphism from L|V
to L which we use for identification. By [CD12, Proposition 6.2.13], a formal
K◦-model of (V, L) always exists.

Remark 2.3. If X is a proper scheme over K with a line bundle L, then
we denote the analytifications by Xan and Lan (in the category of Berkovich
spaces). By formal completion, every algebraic K◦-model (X ,L ) of (X,L)

induces a formal K◦-model (X̂ , L̂ ) of (Xan, Lan). Note that the special fiber
Xs of X is canonically isomorphic to the special fiber of the formal completion

X̂ and hence the above yields a reduction map π : Xan → Xs.

Lemma 2.4. Let X be a proper scheme over K and let X be a formal K◦-

model of Xan. Then there exists an algebraic K◦-model X of X such that X̂

dominates X.

Proof. Let us fix an algebraic K◦-model X0 of X . As recalled in 2.2, the set
of isomorphism classes of formal K◦-models of Xan is a directed set, hence

there exists a formal K◦-model V which dominates both X̂0 and X. Replacing
V by a larger formal K◦-model of Xan, it follows from [Bos14, Lemma 8.4.4

(d)] that the canonical map ϕ : V → X̂0 may be assumed to be an admissible

formal blowing up in an open coherent ideal b of X̂0. Using the formal GAGA-
principle proved by Fujiwara–Kato [FK18, Theorem I.10.1.2], b is actually the
formal completion of a coherent vertical ideal a on X0. Hence if X is the
vertical blowing up of X0 in the ideal a, by [Bos14, Proposition 8.2.6] we have

V ∼= X̂ which dominates X. �

Definition 2.5. Let (V,L) be a formal K◦-model of (V, L) as in 2.2. Then we
get an associated formal metric ‖ ‖

L
on L uniquely determined by requiring

‖s‖L = 1 on the generic fibre W of any frame s of L over any formal open
subset W of V. This is well-defined because a change of frame involves an
invertible function f on W and we have |f | = 1 on W .

Documenta Mathematica 24 (2019) 331–372



338 Walter Gubler and Florent Martin

Remark 2.6. If (X ,L ) is an algebraic K◦-model of (X,L) as in 2.1, then
we get an associated algebraic metric ‖ ‖

L
on Lan by using the above con-

struction for the formal K◦-model (X̂ , L̂ ) of (Xan, Lan) from Remark 2.3. By
construction, every algebraic metric is a formal metric. The converse is also
true as shown in [GK17, Proposition 8.13] (as the argument does not use the
assumption that K is algebraically closed).

We have the following extension result from [GK15, Proposition 5.11]

Proposition 2.7. Let L be line bundle on a paracompact strictly K-analytic
space V and let W be a compact strictly K-analytic domain of V . Then every
formal metric on the restriction of L to W extends to a formal metric on L.

Proof. Since this is stated here under more general assumptions than in [GK15,
Proposition 5.11], we sketch the argument. Let (W,L) be the formalK◦-model
for the given formal metric on L|W . We may assume that W is a formal open
subset of a formalK◦-model V of V [Bos14, Lemma 8.4.5]. By the argument in
[BL93a, Lemma 5.7], there is a coherent OV-module F on V which extends L.
This works even for paracompact V as noted in the proof of [CD12, Proposition
6.2.13] and the argument there (or in the proof of [Gub98, Lemma 7.6]) shows
that after replacingV by a suitable admissible blowing-up, we may assume that
F is a line bundle. Then the associated formal metric satisfies the claim. �

Definition 2.8. Let V be a paracompact strictly K-analytic space with a line
bundle L. A metric ‖ ‖ on L is called piecewise linear if there is a G-covering
(Vi)i∈I and frames si of L over Vi for every i ∈ I such that ‖si‖ = 1 on
Vi. A function ϕ : V → R is called a piecewise linear function if it induces a
piecewise linear metric on the trivial line bundle OV . Note that these are G-
local definitions (see [GK15, Proposition 5.10] for the argument). In particular,
these properties are local with respect to the Berkovich topology.

Lemma 2.9. Any given G-covering of a connected paracompact strictly K-
analytic space V can be refined to an at most countable G-covering (Wi)i∈I
of finite type (see 2.2) made by strictly K-affinoid domains Wi. Moreover,
there is always a second G-covering (Ui)i∈I of finite type made by compact
strictly K-analytic domains Ui such that every Wi is contained in the interior
U◦
i of Ui with respect to the Berkovich topology.

Proof. By [Bou71, chap. 1, §9, Théorème 5], V is countable at infinity. For
the proof of the lemma, we assume that V is not compact (the compact case is
similar and even easier). Since compact strictly K-analytic domains of V form
a basis of neighborhoods of V , we deduce that there is a sequence (Tj)j∈N of
compact strictly K-analytic domains Tj of V such that Tj ⊂ T ◦

j+1 for all j ∈ N
and V = ∪j∈NTj .
For each j ∈ N, T ◦

j+3\Tj is an open neighborhood of the compact set Tj+2\T ◦
j+1.

Since compact strictly K-analytic domains of Tj+3\Tj contain a basis of neigh-
borhoods of Tj+3 \ Tj, for each j ∈ N, we can find mj ∈ N and finitely many
compact strictly K-analytic domains (Tjk)k=0,...,mj

contained in T ◦
j+3 \ Tj and
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covering Tj+2\T ◦
j+1. Since V = T1∪

⋃
j∈N

(Tj+2\T ◦
j+1), we deduce that the cov-

ering (Vh)h∈H defined after re-indexing the covering {T1}∪{Tjk}j∈N, k=0,...,mj

is a countable G-covering of finite type (to see that (Vh)h∈H is a G-covering,
one can use [Ber93, Lemma 1.6.2 (ii)]). Since any compact strictly K-analytic
domain is a finite union of strictly K-affinoid domains, we can easily assume
that every Vh is actually a strictly K-affinoid domain.
Let us first construct the covering (Wi)i∈I refining a given G-covering (Zl)l∈L
of V . We can replace the latter by a finer G-covering and hence we may assume
that every Zl is a strictly K-affinoid domain. For each index h ∈ H , there are
finitely many lh1, . . . , lhqh ∈ L such that the family {Zlhq

∩ Vh}q=1,...,qh is a
G-covering of Vh. Hence the countable family (Zlhq

∩ Vh)h∈H,q=1,...,qh is a G-
covering of V of finite type refining (Zl)l∈L. By assumption, the underlying
topological space of V is Hausdorff and hence it follows from [Ber93, Theorem
1.6.1] that the intersection of two strictly K-affinoid domains is a finite union of
strictly K-affinoid domains. We conclude that every Zlhq

∩ Vh is a finite union
of strictly K-affinoid domains. Using them all, we get a G-covering (Wi)i∈I of
V of finite type by strictly K-affinoid domains Wi refining (Zl)l∈L.
Finally, for any G-covering (Wi)i∈I of finite type by strictly K-affinoid domains
Wi, we construct a G-covering (Ui)i∈I with the required properties. For i ∈ I
and using the above notations, let j ∈ N be the largest number such that
Wi ∩ Tj = ∅. If T0 ∩Wi is non-empty, then we set j := −1 and Tj := ∅. Since
the strictly K-analytic domains form a basis of neighborhoods in V , there is
for every x ∈ Wi a strictly K-analytic domain Ux of V such that Ux is a
neighborhood of x contained in the complement of Tj . Since Wi is compact,
it is covered by finitely many U◦

x . Let Ui be the union of these finitely many
Ux. Then Ui is a compact strictly K-analytic domain of V contained in the
complement of Tj and with Wi ⊂ U◦

i . Since (Wi)i∈I is a G-covering refining
(Ui)i∈I , the latter is also a G-covering of V .
It remains to prove that (Ui)i∈I is a covering of finite type. We pick k ∈ I.
Since Uk is compact, there is a j ∈ J such that Uk ⊂ T ◦

j . Since (Wi)i∈I is a

G-covering, [Ber93, Lemma 1.6.2 (ii)] again shows that the compact set Tj is
covered by finitely many of the Wi. Since (Wi)i∈I is a covering of finite type,
we conclude that Tj is intersected by at most finitely many Wi. Let us choose
any i ∈ I with Wi ∩ Tj = ∅. By construction of Ui, we have Ui ∩ Tj = ∅ and
hence Ui is disjoint from Uk ⊂ Tj . We conclude that the covering (Ui)i∈I is of
finite type. �

Proposition 2.10. Let ‖ ‖ be a metric on a line bundle L on a paracompact
strictly K-analytic space V . Then ‖ ‖ is formal if and only if it is piecewise
linear.

Proof. Clearly, every formal metric is piecewise linear. Let us prove the con-
verse. For a piecewise linear metric ‖ ‖ on L, there is a G-covering (Vi)i∈I
of V with frames si of L|Vi

such that ‖si‖ = 1 on Vi. By Lemma 2.9,
we may assume that the G-covering is of finite type and that every Vi is a
strictly K-affinoid domain. By Raynaud’s theorem [Bos14, Theorem 8.4.3]
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and using [Bos14, Lemma 8.4.5], there is a formal K◦-model V and a cov-
ering (Vi)i∈I of V of finite type by quasi-compact formal open subschemes
Vi with generic fiber Vi. Note that any formal K◦-model is quasi-separated
[Bos14, bottom of p. 204]. For every i, j ∈ I, we conclude that the formal
open subscheme Vi ∩ Vj is a finite union of formal affine open subschemes
Vijk = Spf(Aijk). For fij := si/sj ∈ O(Vi ∩ Vj)

×, the identity ‖si‖ ≡ ‖sj‖
on Vi ∩ Vj yields that |fij | ≡ 1 on Vi ∩ Vj . Then [Bos14, Lemma 8.4.6] shows
that V′

ijk = Spf(Aijk [fijk, fjik]) is an admissible formal scheme and that the

canonical morphism V′
ijk → Vijk is an admissible formal blowing up. By

construction, we have fij ∈ O(V′
ijk)

×.

We apply now [Bos14, Proposition 8.2.14] to the covering {Vijk} of V of finite
type. This gives the existence of an admissible formal blowing up ϕ : V′ → V

which factorizes throughV′
ijk → Vijk for every ijk. We note that (ϕ−1(Vi))i∈I

is a formal open covering of V′ of finite type and that

ϕ−1(Vi) ∩ ϕ
−1(Vj) = ϕ−1(Vi ∩Vj) =

⋃

k

ϕ−1(Vijk).

Since ϕ−1(Vijk) is the preimage of V′
ijk with respect to V′

ijk → Vijk, the

above factorization yields fij ◦ ϕ ∈ O((ϕ−1(Vijk))
× for every ijk and hence

fij ◦ϕ ∈ O(ϕ−1(Vi)∩ϕ
−1(Vj))

×. Let L be the model of L on V′ given by the
transition functions fij ◦ ϕ with respect to the covering (ϕ−1(Vi))i∈I . Then
the construction shows that ‖ ‖ = ‖ ‖

L
. �

Definition 2.11. Let V be a paracompact strictly K-analytic space with a
line bundle L. A metric ‖ ‖ on L is called piecewise Q-linear if for every x ∈ V
there exists an open neighborhood W of x and a non-zero n ∈ N such that
‖ ‖⊗n|W is a piecewise linear metric on L⊗n

|W . A function ϕ : V → R is called

a piecewise Q-linear function if it induces a piecewise Q-linear metric on the
trivial line bundle OV .

Proposition 2.12. Let V be a paracompact strictly K-analytic space with a
line bundle L. Then the following properties hold:

(a) A piecewise Q-linear metric on L is continuous.
(b) The isometry classes of piecewise linear (resp. piecewise Q-linear) met-

rics on line bundles of V form an abelian group with respect to ⊗.
(c) The pull-back f∗‖ ‖ of a piecewise linear (resp. piecewise Q-linear)

metric ‖ ‖ on L with respect to a morphism f : W → V of para-
compact strictly K-analytic spaces is a piecewise linear (resp. piecewise
Q-linear) metric on f∗L.

(d) The minimum and the maximum of two piecewise linear (resp. piece-
wise Q-linear) metrics on L are again piecewise linear (resp. piecewise
Q-linear) metrics on L.
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Proof. These properties are proved in [Gub98, Section 7] under the assump-
tion that K is algebraically closed and V is compact. The assumption K alge-
braically closed was not used in the arguments. Since (a)–(d) are local state-
ments, we can deduce them from the corresponding statements in loc. cit. �

Let V be a paracompact strictly K-analytic space. Recall that for U ⊂ V , we
denote the topological interior of U in V by U◦.

Lemma 2.13. Let W ⊂ U ⊂ V where W,U are compact strictly K-analytic
domains of V with W ⊂ U◦. Let f : W → R be a piecewise linear function.
Then f extends to a piecewise linear function ϕ : V → R such that supp(ϕ) ⊂
U .

Proof. By compactness of U \ U◦, there exists a compact strictly K-analytic
domain Z ⊂ V such that Z is a neighborhood of U \ U◦ and W ∩ Z = ∅.
Hence W

∐
Z is a compact strictly K-analytic domain of V and we consider

the piecewise linear function onW
∐
Z defined by f onW and by 0 on Z. Then

we apply Proposition 2.7 to L = OV , in which case formal metrics correspond
to piecewise linear functions (see Proposition 2.10). We deduce that there exists
a piecewise linear function g : V → R which agrees with f on W and which
agrees with 0 on Z. But since Z is a neighborhood of U \ U◦, we deduce that
the function ϕ : V → R defined by

ϕ(x) =

{
g(x) if x ∈ U

0 if x /∈ U

is still piecewise linear as this is a local property. Since ϕ extends f and
supp(ϕ) ⊂ U , we get the claim. �

Lemma 2.14. Let V be a paracompact strictly K-analytic space. Let W ⊂ V be
a compact strictly K-analytic domain of V and let f : W → R be a continuous
function with f ≥ 0. Then for any ε > 0 there exists a piecewise Q-linear
function ϕ on V such that ϕ ≥ 0 and for all x ∈W we have f(x)− ε ≤ ϕ(x) ≤
f(x).

Proof. Since piecewiseQ-linear functions are dense in the compact case [Gub98,
Theorem 7.12], there exists a piecewise Q-linear function g : W → R such that
f − ε ≤ g ≤ f on W . Since W is compact, there is a non-zero k ∈ N such
that kg is piecewise linear. By Proposition 2.7 and Proposition 2.10 applied
to the formal metric on OV associated with kg, there exists a piecewise Q-
linear function ψ : V → R which extends g. We then set ϕ := max(ψ, 0). By
Proposition 2.12 (d), ϕ is piecewise Q-linear. By definition, we have ϕ ≥ 0. We
have ψ ≤ f on W and f is non-negative, hence we have ϕ ≤ f on W . Finally,
since f − ε ≤ ψ on W we also have that f − ε ≤ max(ψ, 0) = ϕ on W . �

Proposition 2.15. Let V be a paracompact strictly K-analytic space. Let
f : V → R be a continuous function on V . Then f can be uniformly approxi-
mated by piecewise Q-linear functions. In other words, for every ε > 0 there ex-
ists a piecewise Q-linear function ϕ : V → R such that supx∈V |f(x)−ϕ(x)| ≤ ε.
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Proof. We will use that the result holds when V is compact [Gub98, Theorem
7.12]. Note that in [Gub98, §7], K was assumed to be algebraically closed, but
the argument for [Gub98, Theorem 7.12] does not use this assumption and so
we can use the result over any non-archimedean field. Let f+ := max(f, 0) and
f− := max(−f, 0) so that f = f+ − f−. Hence replacing f by f+ or f− we can
assume that f ≥ 0.
We can work separately on the connected components of V , hence we may
assume that V is connected. By Lemma 2.9, we can find (Wi)i∈I and (Ui)i∈I
two G-coverings of V of finite type with a finite or countable I and Wi ⊂ U◦

i

for all i ∈ I. In the following, we assume I = N \ {0}. The finite case is similar
and easier. Let us now fix ε > 0 and let us construct a family of piecewise
Q-linear functions (ϕi)i∈I with ϕi : V → R such that

(i) for all i ∈ I, supp(ϕi) ⊂ Ui and ϕi ≥ 0.
(ii) for all n ∈ I we have f ≥

∑n

i=1 ϕi ≥ f − ε on ∪ni=1Wi.
(iii) f ≥

∑n

i=1 ϕi on V .

Observe that this will conclude the proof of the proposition since then ϕ :=∑
i∈I ϕi is a well defined piecewise Q-linear function such that |f−ϕ| ≤ ε. The

rest of the proof is dedicated to construct inductively a family (ϕi)i∈I satisfying
the conditions (i), (ii) and (iii).
Let us consider n ≥ 1 and let us assume that we are given piecewise Q-linear
functions ϕ1, . . . , ϕn satisfying the above conditions. We will now construct a
piecewise Q-linear function ϕn+1 such that ϕ1, . . . , ϕn+1 satisfies the conditions
(i), (ii) and (iii).
By the density result in the compact case [Gub98, Theorem 7.12], we know
that there exists a piecewise Q-linear function g : Wn+1 → R such that

(2.15.1) f −
n∑

i=1

ϕi − ε ≤ g ≤ f −
n∑

i=1

ϕi on Wn+1

Then by Lemma 2.13 applied to g and Wn+1 ⊂ Un+1 ⊂ V , there exists a
piecewise Q-linear function Ψ: V → R which extends g and with supp(Ψ) ⊂
Un+1. Then (2.15.1) becomes

(2.15.2) f − ε ≤ Ψ+

n∑

i=1

ϕi ≤ f on Wn+1.

Then we set

ψ := max(0,Ψ).

From this definition, we get that supp(ψ) ⊂ supp(Ψ) ⊂ Un+1. It is a piecewise
Q-linear function by Proposition 2.12 (d) and it satisfies ψ ≥ 0. Now, (2.15.2)
combined with the condition (iii) for n yields

(2.15.3) ψ +

n∑

i=1

ϕi ≤ f on Wn+1.
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Also, since Ψ ≤ ψ, we deduce from (2.15.2) that

(2.15.4) f − ε ≤ ψ +

n∑

i=1

ϕi on Wn+1.

On the other hand, since ψ ≥ 0, the condition (ii) for n yields

(2.15.5) f − ε ≤ ψ +

n∑

i=1

ϕi on

n⋃

i=1

Wi.

From (2.15.4) and (2.15.5), we deduce that

(2.15.6) f − ε ≤ ψ +
n∑

i=1

ϕi on
n+1⋃

i=1

Wi.

Lemma 2.14 applied to the non negative function f −
∑n

i=1 ϕi : V → R and

to the compact K-analytic domain ∪n+1
i=1 Ui yields a piecewise Q-linear function

χ : V → R such that χ ≥ 0 and

(2.15.7) f −
n∑

i=1

ϕi − ε ≤ χ ≤ f −
n∑

i=1

ϕi on

n+1⋃

i=1

Ui.

We then set
ϕn+1 := min(ψ, χ).

By Proposition 2.12 (d), ϕn+1 is a piecewise Q-linear function. Since ψ ≥ 0
and χ ≥ 0 we get that ϕn+1 ≥ 0 and we also get that for x ∈ V , ψ(x) = 0 ⇒
ϕn+1(x) = 0. This implies that supp(ϕn+1) ⊂ supp(ψ) ⊂ Un+1. Hence (i) is
satisfied for ϕn+1.
Let us now prove that

(2.15.8)

n+1∑

i=1

ϕi ≤ f on V.

Let x ∈ V . We first suppose that x ∈ Un+1. Then by (2.15.7), we have
χ(x) +

∑n
i=1 ϕi(x) ≤ f(x). By definition of ϕn+1, we have ϕn+1 ≤ χ hence

ϕn+1(x) +

n∑

i=1

ϕi(x) ≤ χ(x) +

n∑

i=1

ϕi(x) ≤ f(x).

If x /∈ Un+1, then we have ψ(x) = 0 since supp(ψ) ⊂ Un+1, hence ϕn+1(x) = 0.
So by the condition (iii) for n, we get

n+1∑

i=1

ϕi(x) =

n∑

i=1

ϕi(x) ≤ f(x).

This proves (2.15.8), whence condition (iii) holds for n+ 1.
Let us finally prove that

f − ε ≤
n+1∑

i=1

ϕi ≤ f on

n+1⋃

i=1

Wi.
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The right inequality has been proven in (2.15.8) so it only remains to prove the
left inequality. By (2.15.6), we have

(2.15.9) f − ε ≤ ψ +

n∑

i=1

ϕi on

n+1⋃

i=1

Wi

and by construction (see (2.15.7) having in mind that Wi ⊂ Ui), we have

(2.15.10) f − ε ≤ χ+

n∑

i=1

ϕi on

n+1⋃

i=1

Wi.

Hence (2.15.9) and (2.15.10) yield that

f − ε ≤ min(ψ, χ) +

n∑

i=1

ϕi =

n+1∑

i=1

ϕi on

n+1⋃

i=1

Wi

which proves condition (ii) for ϕ1, . . . , ϕn+1. By induction, this proves the
existence of a family (ϕi)i∈I satisfying conditions (i), (ii) and (iii). �

Remark 2.16. The proof of Proposition 2.15 also gives that if ϕ : V → R is a
piecewise Q-linear function on a paracompact strictly K-analytic space V , then
there exists a family (ϕi)i∈I of piecewise Q-linear functions on V such that the
family supp(ϕi)i∈I is a locally finite family of compact sets subordinate to any
given open covering of V and such that ϕ =

∑
i∈I ϕi. Indeed, in the above

proof we may construct the covering Ui finer than the given open covering and
then we may use ε = 0 in the construction due to piecewise Q-linearity.

Theorem 2.17. Let V be a paracompact strictly K-analytic space with a line
bundle L. If ‖ ‖ is a continuous metric on L, then there is a sequence (‖ ‖n)n∈N

of piecewise Q-linear metrics on L which converges uniformly to ‖ ‖.

Proof. We have seen at the end of 2.2 that L admits a formal metric. Hence,
tensoring by L−1, we can assume that L = OV and we are reduced to prove
that for any continuous function f : V → R there exists a sequence of piecewise
Q-linear functions (ϕn)n∈N which converges uniformly to f which was done in
Proposition 2.15. �

The next result deals with base change of piecewise linear metrics. We denote
by ⊗̂KF the base change functor from the base field K to a non-archimedean
extension field F applied to the category of strictly K-analytic spaces or to the
line bundles on such spaces. The argument for (b) is due to Yuan (see [Yua08,
Lemma 3.5]).

Proposition 2.18. Let L be a line bundle on a paracompact strictly K-analytic
space V and let F/K be a non-archimedean field extension.

(a) The base change of a piecewise linear (resp. piecewise Q-linear) metric
on L is a piecewise linear (resp. piecewise Q-linear) metric on L⊗̂KF .
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(b) If F is a subfield of CK and if V is compact, then every piecewise
linear (resp. piecewise Q-linear) metric on L⊗̂KF is the base change of
a unique piecewise linear (resp. piecewise Q-linear) metric on L⊗̂KK ′

for a suitable finite subextension K ′/K of F/K.

Proof. It follows from [Ber93, Theorem 1.6.1] that the base change of V to F
is a paracompact strictly F -analytic space. Property (a) is obvious.
To prove (b), we assume that ‖ ‖ is a piecewise linear metric on L⊗̂KF . We
have seen in 2.2 that (V, L) has a formal K◦-model (V,L) and so we may
assume that L = OV by passing to ‖ ‖/‖ ‖

L⊗̂K◦F◦ . By Proposition 2.10, there

is a formal F ◦-model (V′′,L′′) of (V ⊗̂KF,L⊗̂KF ) such that ‖ ‖ = ‖ ‖
L′′ . By

Raynaud’s theorem [BL93a, Theorem 4.1], we may assume that there is an
admissible formal blowing up V′′ → V⊗̂K◦F ◦. Note that L = OV yields that
L′′ = O(E) for a vertical Cartier divisor E on V′′. Replacing ‖ ‖ by a suitable
multiple, we may assume that E is an effective Cartier divisor.
An approximation argument based on the density of the algebraic closure of
K in F shows that the coherent ideal of the admissible formal blowing up
is defined over (K ′)◦ for a finite subextension K ′/K of F/K. We conclude
that V′′ → V⊗̂K◦F ◦ is the base change of an admissible formal blowing up
V′ → V⊗̂K◦(K ′)◦ for a formal (K ′)◦-model V′ of V ⊗̂KK ′. We choose a finite
covering (U′

i)i∈I ofV
′ by formal affine open subsets U′

i ofV
′. Then the coherent

sheaf of ideals O(−E) restricted to U′
i⊗̂(K′)◦F

◦ is generated by finitely many
regular functions. A similar approximation argument as above shows that all
these generators can be replaced by regular functions on U′

i if we replace K
′ by

a larger finite subextension of F/K. We conclude that L′′ = O(E) is defined
on V′ proving (b). Note that uniqueness is obvious. �

3. Semipositive metrics

We will first introduce semipositive formal metrics. We have seen in Proposition
2.10 that formal metrics are the same as piecewise linear metrics and hence
everything applies to piecewise linear metrics as well.

3.1. Let X be a proper scheme over K with a line bundle L over X . We call
an algebraic K◦-model (X ,L ) of (X,L) numerically effective (briefly nef) if
degL (C) ≥ 0 for every closed curve C in X which is proper over K◦. Of
course, properness implies that C is contained in the special fiber Xs. An
algebraic metric ‖ ‖ on Lan is said to be semipositive if there is a nef algebraic
K◦-model (X ,L ) of (X,L) such that ‖ ‖ = ‖ ‖

L
. We say that a line bundle

L on X is numerically trivial if degL (C) = 0 for every closed curve C in X

which is proper over K◦. Equivalently, we can require that L and L −1 are
both nef. We say that L is numerically equivalent to a line bundle L ′ on X

if L ′ ⊗ L −1 is numerically trivial.

3.2. The above definition is easily generalized to the analytic setting: Let L
be a line bundle on a paracompact strictly K-analytic space V . A formal K◦-
model (V,L) of (V, L) is called nef if degL(C) ≥ 0 for any closed curve C in the
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special fiber Vs which is proper over the residue field K̃. A formal metric ‖ ‖
on L is called semipositive if there is a nef formal K◦-model (V,L) of (V, L)
such that ‖ ‖ = ‖ ‖

L
. Obviously, the trivial metric on OV is a semipositive

formal metric.

It will follow from Proposition 3.5 below that we may use any model to test
semipositivity of the associated metrics. Based on this result, it is easy to
check that the tensor product of two semipositive formal metrics is again a
semipositive formal metric.

Lemma 3.3. Let V be a paracompact strictly K-analytic space, L a line bundle
on V and (V,L) a formal K◦-model of (V, L). Let F be a non-archimedean
extension of K and (VF ,LF ) the formal F ◦-model of (VF , LF ) obtained by base
change. Then L is nef if and only if LF is nef.

Proof. We remark that Vs ⊗K̃ L̃ ∼= (V⊗̂K◦L◦)s. Hence the result follows from

the fact that a line bundle on a proper scheme over K̃ is nef if and only if its
pull-back to F̃ is nef. This is proven in the projective case in [EFM, Remark
1.3.25] and the proper case follows from Chow’s lemma and the projection
formula. �

Lemma 3.4. Let V be a paracompact strictly K-analytic space, L a line bundle
on V and (V,L) a formal K◦-model of (V, L). Let (Vred,Lred) be the for-
mal K◦-model of (Vred, Lred) obtained by putting the induced reduced structure.
Then L is nef if and only if Lred is nef.

Proof. Let Vred be the induced reduced structure on V. Since Vred → V is
finite (in fact a closed immersion), we deduce that the induced map (Vred)s →
Vs between the special fibers is finite. By the projection formula, we conclude
that L is nef if and only if Lred is nef. �

Proposition 3.5. Let (V,L) be a formal K◦-model of (V, L). Then ‖ ‖
L
is a

semipositive formal metric if and only if L is a nef formal K◦-model.

Proof. By definition if L is nef, then ‖ ‖L is semipositive, so we only have to
prove the reverse implication. Hence we assume that ‖ ‖

L
is a semipositive

formal metric and we have to show that L is nef. Using Lemma 3.3, we can
replace K by CK and hence we may assume that K is algebraically closed.
By definition of semipositivity, there is a nef formal K◦-model M of L on some
formal K◦-model W of V with ‖ ‖

L
= ‖ ‖

M
. There exists a model X of V

which dominates both V and W. Let π : X → V be the induced morphism.
Since the induced morphism on the special fibers πs : Xs → Vs is proper and
surjective, by the projection formula, L is nef if and only π∗L is nef. Hence
replacing (V,L) by (X, π∗L), we can assume that V dominates W.
Let Vred be the induced reduced structure on V. Hence Vred → V is finite.
Locally, Vred is given by Spf(A) for some reduced admissible K◦-algebra A.
Let A := A⊗K◦ K. It is a strictly K-affinoid algebra, and by [BGR84, 6.4.3]
A′ := A ◦ is an admissible K◦-algebra as K is algebraically closed, and by

Documenta Mathematica 24 (2019) 331–372



On Zhang’s Semipositive Metrics 347

[BPR16, Proposition 3.8], A → A′ is finite. By definition of A′ we have an
isomorphism A⊗̂K◦K ∼= A′⊗̂K◦K ∼= A . By [BGR84, Proposition 7.2.6/3], we
can glue the morphisms Spf(A′) → Spf(A) to get a formal K◦-model V′ of
Vred such that V′ → Vred is finite. In particular, we deduce that the induced
morphisms V′

s → (Vred)s → Vs are proper and surjective, and we conclude
from the projection formula that L is nef if and only if its pull-back L′ to V′

is nef.
By construction, V′ is locally of the form Spf(A ◦), hence we deduce that

V′
s is locally given by Spec(Ã ) which is reduced. Now we use the fact that

on an admissible formal scheme with reduced special fibre and with K alge-
braically closed, the metric ‖ ‖

L′ determines the model L′ up to isomorphism
(see [Gub98, Proposition 7.5]). Using that ‖ ‖

M′ = ‖ ‖
L
= ‖ ‖

L′ for the pull-
back M′ of M to V′, we deduce that M′ ∼= L′. As above, the pull-back M′ of
M is nef and hence L′ is nef. �

Proposition 3.6. Let f : V ′ → V be a morphism of paracompact strictly
K-analytic spaces and let ‖ ‖ be a formal metric on a line bundle L of V .

(a) If ‖ ‖ is a semipositive formal metric, then f∗‖ ‖ is a semipositive
formal metric.

(b) If f is a surjective proper morphism and if f∗‖ ‖ is a semipositive
formal metric, then ‖ ‖ is a semipositive formal metric.

Proof. There is a formal K◦-model (V,L) of (V, L) such that ‖ ‖ = ‖ ‖
L
. We

use Raynaud’s theorem to extend f to a morphism ϕ : V′ → V of formal
K◦-models. Then

(3.6.1) f∗‖ ‖ = ‖ ‖ϕ∗L

shows that f∗‖ ‖ is a formal metric. To check semipositivity, Lemma 3.3 shows
that K may be assumed to be algebraically closed which will allow us to use the
results of [Kle66]. Then the claims follow from [Kle66, Proposition I.4.1] applied
to ϕs. For (b), we use additionally that ϕs is proper by [Tem00, Corollary 4.4]
and surjective (as f and the reduction map V → Vs are surjective).

�

Lemma 3.7. Let X be a proper scheme over K, L a line bundle on X and
(X ,L ) an algebraic K◦-model of (X,L) with ‖ ‖ := ‖ ‖L . Let (Xi)i∈I be
the irreducible components of X equipped with their induced reduced structures.
Then ‖ ‖ is semipositive if and only if ‖ ‖|Xi

is semipositive for all i ∈ I.

Proof. For each i ∈ I, let Xi be the closed subscheme of X defined as the
topological closure of Xi in X equipped with the induced reduced structure.
We then get for each i ∈ I a cartesian diagram

Xi
//

��

X

��

Xi
// X
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Since the morphism
∐
i∈I Xi → X is finite surjective, the projection formula

shows that L is nef on X if and only if L |Xi
is nef on Xi for all i. �

3.8. Following a suggestion of Tony Yue Yu, we can define semipositivity locally
on V . We say that a piecewise linear metric on L is semipositive at x ∈ V if
there is a compact strictly K-analytic domainW in V which is a neighborhood
of x such that the restriction of ‖ ‖ to L|W is a semipositive formal metric in
the sense of 3.2 (using the equivalence of Proposition 2.10). We say that ‖ ‖ is
a semipositive piecewise linear metric if it is semipositive at all x ∈ V . We will
see in Proposition 3.11 that this fits with the definition in 3.2 assuming that V
is separated.

Definition 3.9. Let ‖ ‖ be a piecewise Q-linear metric on the line bundle L
over V and let x ∈ V . Then ‖ ‖ is called semipositive at x ∈ V if and only if we
may choose a compact strictly K-analytic domain W which is a neighborhood

of x and some integer k ≥ 1 such that ‖ ‖⊗k|W is a semipositive formal metric.

It follows easily from Proposition 3.5 that a piecewise linear metric on L is
semipositive as a piecewise linear metric if and only if it is semipositive as a
piecewise Q-linear metric.

Proposition 3.10. Let L be a line bundle on a paracompact strictly K-analytic
space V . Let x ∈ V and let ‖ ‖ be a piecewise Q-linear metric on L.

(a) The set of points in V where ‖ ‖ is semipositive is open in V .
(b) The tensor product of two piecewise Q-linear metrics which are semi-

positive at x is again semipositive at x.
(c) Let f : V ′ → V be a morphism of paracompact strictly K-analytic

spaces. If ‖ ‖ is semipositive at x, then f∗‖ ‖ is semipositive at any
point of f−1(x).

Proof. Property (a) is obvious from the definitions. Property (b) follows easily
from Proposition 3.5 and the linearity of the degree of a proper curve with
respect to the divisor. Finally (c) follows from Proposition 3.6. �

Proposition 3.11. Let L be a line bundle on the separated paracompact strictly
K-analytic space V and let ‖ ‖ be a formal metric on L. Then ‖ ‖ is a semipos-
itive formal metric as globally defined in 3.2 if and only if ‖ ‖ is a semipositive
piecewise linear metric in every x ∈ V as defined in 3.8.

Proof. The proof follows mainly the arguments in [GK15, Proposition 6.4]. It
is clear that a semipositive formal metric is a semipositive piecewise linear
metric in every x ∈ X and we will prove now the converse. Let (V,L) be
a formal K◦-model of (V, L) with ‖ ‖ = ‖ ‖

L
. Since the generic fiber V is

separated, it follows from [BL93a, Proposition 4.7] that the model V is also
separated and hence we may apply [CD12, Lemma 6.5.1]. This is a criterion
which characterizes the points v in the relative interior Int(V ) over the base
K (defined in [Ber93, Definition 1.5.4]) by the property that the closure of the

reduction of v in the special fiber Vs is proper over K̃.
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We assume that ‖ ‖ is semipositive at every x ∈ V . We choose a closed curve

C in Vs which is proper over K̃. We have to show that degL(C) ≥ 0. By
surjectivity of the reduction map π : V → Vs, there is x ∈ V such that π(x) is
the generic point of C. Using [CD12, Lemma 6.5.1], the properness of C yields
that x ∈ Int(V ). Since ‖ ‖ is semipositive at x, there is a compact strictly
K-analytic neighborhood W of x, a nef formal K◦-model (W,M) of (W,L|W )

and a non-zero k ∈ N such that ‖ ‖⊗k = ‖ ‖
M

over W . Using Proposition 3.5,
we may always replace the models W and V by dominating formal K◦-models
and the line bundles M and L by their pull-backs. By [BL93b, Corollary 5.4
(b)]2, we may therefore assume that W is a formal open subset of V. Then

L|⊗k
W

is also a formal K◦-model of L|⊗kW and hence Proposition 3.5 implies that
L|W is nef.
SinceW is a neighborhood of x and since Int(W ) is contained in the intersection
of Int(V ) with the topological interior of W in V by [Ber93, Proposition 1.5.5],
we conclude that x ∈ Int(W ). Using [CD12, Lemma 6.5.1] again, the closure

of the reduction of x in Ws is proper over K̃ and hence equal to C. Since L|W
is nef, it follows that degL(C) ≥ 0. �

Proposition 3.12. Let ‖ ‖1 and ‖ ‖2 be algebraic metrics of the line bundle
L over the proper scheme X over K. Then ‖ ‖ := min(‖ ‖1, ‖ ‖2) is an
algebraic metric on L. If ‖ ‖1 and ‖ ‖2 are semipositive at x ∈ Xan, then ‖ ‖
is semipositive at x.

Proof. Since formal and algebraic metrics are the same as noted in Remark 2.6
and hence also the same as piecewise linear metrics, we deduce from Proposition
2.12 (d) that ‖ ‖ is an algebraic metric. If the given metrics are semipositive
at x, then it remains to prove that ‖ ‖ is semipositive at x. By base change
again, we may assume that K is algebraically closed. By Lemma 3.7, we may
assume that X is a proper variety over K. Let us pick models L1, L2 and L

of L defining the algebraic metrics ‖ ‖, ‖ ‖1 and ‖ ‖2. There is an algebraic
K◦-model X of X on which L1, L2 and L are defined. There is an open
neighborhood W of x in Xan such that ‖ ‖1 and ‖ ‖2 are semipositive at all
points of W . We will show that ‖ ‖ is semipositive at every point of W . By
[GK15, 6.5], it is equivalent to show that degL (C) ≥ 0 for any closed curve C
of Xs contained in the reduction of W . Moreover, the same result yields that
L1 and L2 restrict to nef line bundles on C. By [GK15, Theorem 4.1], there is
a closed curve Y in X such that C is an irreducible component of the special
fibre of the closure Y in X . By restriction, we may assume that X = Y is
a curve and hence C is an irreducible component of Xs. Let X be the formal
completion of X and let L,L1,L2 be the line bundles on X induced by the
pull-backs of L ,L1,L2.
We have seen in the proof of Proposition 3.5 that we can associate to X a
canonical formalK◦-model X′ ofXan with reduced special fibre and a canonical

2Note the misprint in [BL93b, Corollary 5.4 (b)]: immersion should be replaced by open

immersion.
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finite surjective morphism ι : X′ → X. So there is a closed curve C′ in X′
s

which maps onto C in Xs = Xs. Let L′,L′
1,L

′
2 be the line bundles on X′

given by pull-back of L,L1,L2. Note that L′,L′
1,L

′
2 are formal K◦-models of

the metrics ‖ ‖, ‖ ‖1, ‖ ‖2 on Lan. By the projection formula, the line bundles
L′
1,L

′
2 restrict to nef line bundles on C′ and it remains to show that

(3.12.1) degL′(C′) ≥ 0.

Let ζ be the generic point of C′. Then there is a unique point ξ in Xan with
reduction ζ. This follows from [Ber90, Proposition 2.4.4] since ζ has a formal
affine open neighborhood in X′ of the form Spf(A ◦) for a strictly K-affinoid
algebra A . Using ‖ ‖ = min(‖ ‖1, ‖ ‖2), we may assume ‖ ‖(ξ) = ‖ ‖1(ξ).
Since Lan is algebraic, there is a non-trivial meromorphic section t of L′. Note
that the restriction of t to the generic fibre Lan induces also a meromorphic
section t1 of L′

1. The meromorphic section t/t1 of M := L′ ⊗ (L′
1)

−1 restricts
to the trivial section 1 of OXan and we have

‖t/t1‖M = ‖t‖/‖t1‖1 = ‖t‖/‖t‖1 ≤ 1.

By [Gub98, Proposition 7.5], we deduce that t/t1 is a global section of M. The
definition of formal metrics and ‖t/t1‖M(ξ) = ‖t‖(ξ)/‖t‖1(ξ) = 1 yield that
{y ∈ Xan | ‖t/t1‖M(y) ≥ 1} is the generic fibre of a formal open neighborhood
U of ζ. Hence [Gub98, Proposition 7.5] again shows that t/t1 is a nowhere
vanishing regular section of M on U. We conclude that the restriction of the
global section t/t1 to C′ is not identically zero inducing an effective Cartier
divisor D on C′. This shows

degM(C′) = degD(C
′) ≥ 0.

Using that L′
1 is nef on C′ and L′ = M⊗ L′

1, we get

degL′(C′) ≥ degL′

1

(C′) ≥ 0

proving (3.12.1). �

4. Plurisubharmonic model functions

We will introduce closed (1, 1)-forms θ on a proper scheme X over K and θ-psh
model functions following the terminology in [BFJ16].

4.1. Let L be a line bundle on X . We say that a metric ‖ ‖ on Lan is a model

metric if there is a non-zero d ∈ N such that ‖ ‖⊗d is an algebraic metric on
(Lan)⊗d. By Proposition 2.10 and Remark 2.6, ‖ ‖ is a model metric if and
only if it is a piecewise Q-linear metric.

4.2. We say that a function ϕ : Xan → R is a model function if there exists
d ∈ N>0 and ‖ ‖ an algebraic metric on OXan such that ϕ = − 1

d
log ‖1‖. If we

can take d = 1, we say that ϕ is a Z-model function. The set of model functions
on X is denoted by D(X).
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4.3. Let X be an algebraic K◦-model of X . A vertical Cartier divisor on X

is a Cartier divisor D on X which is supported on the special fiber Xs. A
vertical Cartier divisor D on X determines a model O(D) of OX hence an
associated model function

ϕD := − log ‖1‖O(D) : X
an → R

Note that every Z-model function has this form. Indeed, if L is an algebraic
K◦-model of OX with ϕ = − log ‖ ‖

L
, then the section 1 of OX extends to

a meromorphic section s of L and the vertical Cartier divisor D := div(s)
satisfies ϕ = ϕD.
For example, the constant functions on Xan with values in the value group
Γ = − log |K×| are the Z-model functions of the form ϕD with D = div(α)
for non-zero elements α ∈ K. Moreover, the constant functions on Xan with
values in QΓ are Q-model functions.

4.4. We set Pic(X )R := Pic(X ) ⊗Z R. We define the Néron-Severi group as
the R-vector space Pic(X )R modulo the subspace generated by numerically
trivial line bundles. We denote this space by N1(X /S), where S := Spec(K◦).
The space of closed (1, 1)-forms on X is defined as the direct limit

Z1,1(X) := lim
−→

N1(X /S)

where the limit is taken over all algebraic K◦-models of X . We say that a
closed (1, 1)-form θ is determined on some model X if it is in the image of the
map N1(X /S) → Z1,1(X).

4.5. We denote by P̂ic(X) the group of isomorphism classes of line bundles on

X equipped with a model metric. There is a map c1 : P̂ic(X) → Z1,1(X) which
sends the class of (L, ‖ ‖L ) to the class of L . We will show below that this map
is well defined. We denote its image by c1(L, ‖ ‖L ) and call it the curvature
form of (L, ‖ ‖L ). We get a natural linear map ddc : D(X) → Z1,1(X) which
maps a Z-model function ϕ to c1(OXan , ‖ ‖ϕ), where ‖ ‖ϕ is the corresponding

algebraic metric on OXan
3.

To show that the curvature c1(L, ‖ ‖L ) is well defined in Z1,1(X), we consider
algebraic K◦-models L ,L ′ of L with ‖ ‖

L
= ‖ ‖

L ′ . We have to show that
L and L ′ are numerically equivalent on a suitable algebraic K◦-model of X .
Since the isomorphism classes of algebraic K◦-models of X form a directed set,
we may assume that L and L ′ are line bundles on the same algebraic K◦-
model X . Using base change to CK , Lemma 3.3 shows that we may assume K
algebraically closed. By Lemma 3.4, we may assume that X is reduced. Then
the formal completion X of X is also reduced. We consider the canonical formal
K◦-model X′ with reduced special fibre and with a finite surjective morphism
X′ → X extending idXan as in the proof of Proposition 3.5. We may apply
[Gub98, Proposition 7.5] to the line bundles L,L′ on X′ induced by L ,L ′.
Since ‖ ‖

L
= ‖ ‖

L
= ‖ ‖

L ′ = ‖ ‖
L′ , we deduce that L ∼= L′. Using that

3For a ddc-lemma, see [BFJ16, Theorem 4.3] in the discretely valued case and [Jel16,
Theorem 4.2.7] for a generalization to non-discrete valuations.
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Xs = Xs, the projection formula applied to the finite surjective morphism
X′
s → Xs shows that L is numerically equivalent to L ′.

4.6. We say that an element of N1(X /S) is ample if it is the class of a non-
empty sum

∑
i aic1(Li) for some real numbers ai > 0 and some ample line

bundles Li. For an algebraic K◦-model X of X , a closed (1, 1)-form θ is called
X -positive if it is determined on X by some θX ∈ N1(X /S) which is ample.
We say that a model metric ‖ ‖ of a line bundle L is X -positive if the same
holds for the curvature form c1(L, ‖ ‖). We say that an element θ ∈ N1(X /S)
is nef if θ ·C ≥ 0 for any closed curve C ⊂ Xs. A closed (1, 1)-form θ is said to
be semipositive if it is determined by a nef class θX ∈ N1(X /S) on a model
X .
If θ is a closed (1, 1)-form, we say that a model function ϕ is θ-plurisubharmonic
(briefly θ-psh) if θ+ddcϕ is semipositive. If θ is the closed (1, 1)-form associated
with some line bundle L on X and if D is a vertical Cartier divisor on X ,
then by definition ϕD is a θ-psh function if and only if L ⊗O(D) is nef if and
only if ‖ ‖L⊗O(D) is a semipositive metric.

4.7. Let L be a line bundle on X . Let ‖ ‖ be a model metric on Lan and
θ := c1(L, ‖ ‖). Let ‖ ‖′ be another metric on Lan and let ϕ := − log(‖ ‖′/‖ ‖).
Then ‖ ‖′ is a model metric if and only if ϕ is a model function. Moreover ‖ ‖′

is a semipositive model metric if and only if ϕ is a θ-psh model function.

4.8. The Néron–Severi groupN1(X) of X is the group Pic(X)⊗ZR modulo the
subspace generated by the numerically trivial line bundles. For a closed (1, 1)-
form θ, let {θ} be the associated de Rham class, given by {θ} = θX |X ∈ N1(X)
for any algebraic K◦-model X on which θ is determined by θX ∈ N1(X /S).
If θ is semipositive, then {θ} is nef.
To see this, we choose any closed curve C in X and non-zero ρ in the maximal
ideal of the valuation ring K◦. Then using the divisorial intersection theory in
[Gub98], we have

v(ρ) deg{θ}(C) = deg(div(ρ).θX .C) = deg(θX .div(ρ).C) = v(ρ) degθX
(Cs).

Since θX is nef, the degree of the special fibre Cs of the closure C in X is
non-negative proving the claim.

Lemma 4.9. Let us assume that K is algebraically closed. Let ϕ be a model
function determined by a vertical Cartier divisor D on the algebraic K◦-model
X of X. We assume that the special fibre Xs is reduced. Then ϕ ≥ 0 if and
only if the Cartier divisor D is effective.

Proof. By definition of a Cartier divisor, OX (−D) is a coherent subsheaf of the
sheaf of meromorphic functions on X , andD is effective if and only ifOX (−D)
happens to be a subsheaf of OX . Since D is a vertical Cartier divisor, there
exists a ∈ K◦ \ {0} such that D + div(a) is effective, i.e. aOX (−D) is a
subsheaf of OX . Now D is effective if and only if aOX (−D) is a subsheaf
of aOX when they are both considered as coherent subsheaves of OX . Since
the completion functor is fully faithful on the category of coherent sheaves by
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[FK18, Proposition I.9.4.2], it is equivalent to check the associated inclusion on

the formal completion of X̂ .
We now get the claim from the corresponding statement for admissible formal
schemes which is proven in [GRW16, Proposition A.7] and hence applies to the

formal completion X̂ of X and its Cartier divisor D̂ given by pull-back of
D. �

Remark 4.10. If we assume that X is normal instead of assuming that Xs is
reduced, then Lemma 4.9 holds for any non-archimedean field K (see [GS15,
Corollary 2.12]).

We recall the following result from [BFJ16, Corollary 1.5]. For convenience of
the reader and to check that no noetherian hypotheses are used, we give here
a proof.

Proposition 4.11. Let L be an ample line bundle on the projective scheme X
over K and let X0 be any algebraic K◦-model of X. Then there is an algebraic
K◦-model X of X dominating X0 and an ample line bundle L on X which
is a K◦-model of L⊗m for a suitable m ∈ N.

Proof. Every algebraic K◦-model of a projective scheme X is dominated by
a projective algebraic K◦-model [Gub03, Proposition 10.5]. Hence we may
assume that X0 is projective. There is m1 ∈ N and a closed immersion of X
into PNK such that L⊗m1 = OPN

K
(1)|X . Then the schematic closure of X in PNK◦

is an algebraic K◦-model X1 of X . Moreover, X1 has an ample line bundle
L1 such that L1|X = L⊗m1 . Then the schematic closure of the diagonal in
X0 ×K◦ X1 is a projective K◦-model X of X . Now the claim follows from the
following lemma applied to f := p1. �

Lemma 4.12. Let f : X → X1 be a morphism of projective algebraic K◦-
models of X extending idX and assume that L⊗m1 extends to an ample line
bundle L1 on X1 for some m1 ∈ N. Then there is a positive multiple m of m1

such that L⊗m extends to an ample line bundle on X .

Proof. Note that f is a projective morphism, hence there is a closed immersion
of X into a projective space Pk

X1
over X1. Let E be the restriction of OPk

X1

(1)

to X . Since E is relatively ample with respect to f and since L1 is an ample
line bundle on X1, there is m2 ∈ N such that L := f∗(L1)

⊗m2 ⊗ E is ample
on X . Then L is an ample K◦-model of L⊗m for m := m1m2. �

Proposition 4.13. Let ω be X -positive and let θ be any closed (1, 1)-form
determined on X . Then ω+ εθ is X -positive for ε ∈ R sufficiently close to 0.

Proof. Since Spec(K◦) is affine, ample is the same as relatively ample. It
remains to check that the restriction of ω+ εθ to the special fibre is ample (see
[Gro66, 9.6.4 and 9.6.5]). The ample cone on the special fiber is the interior of
the nef cone. This proves immediately the claim. �
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The following result generalizes [BFJ16, Proposition 5.2]. Again, we follow
their arguments.

Proposition 4.14. Let θ be a closed (1, 1)-form with ample de Rham class
{θ} ∈ N1(X) and let X0 be any algebraic K◦-model of X. Then there is an
algebraic K◦-model X of X dominating X0 such that θ is determined on X

and a model function ϕ such that θ + ddcϕ is X -positive. If θ is semipositive
and ε > 0, then we may find such a model function with −ε ≤ ϕ ≤ 0.

Proof. For any algebraic K◦-model X , the canonical homomorphism
N1(X /S) → N1(Xs) is injective by definition of numerical equivalence.
The ample cone of N1(X /S) is the preimage of the ample cone of N1(Xs)
(see the proof of Proposition 4.13).
By assumption, θ can be represented by a finite sum

∑
i λic1(Li) with line

bundles Li on algebraic K◦-models Xi of X and λi ∈ R. We set Li := Li|X .
Hence

∑
i λic1(Li) represents {θ}. Since {θ} is ample, there are finitely many

ample line bundles Hj on X and µj > 0 such that
∑

j µjc1(Hj) also represents

{θ}. Clearly, we may assume that every Hj is very ample and hence Hj has
a very ample K◦-model Hj on a projective algebraic K◦-model Yj of X . Let
ϑ ∈ Z1,1(X) be the class of

∑
j µjc1(Hj). We recall that the isomorphism

classes of K◦-models of X form a directed set and that any K◦-model of the
projective variety X is dominated by a projective K◦-model. We conclude that
there is a projective K◦-model X of X such that idX extends to morphisms
X → Xi and X → Yj for every i and j. Replacing Li by its pull-back to
X , we may assume that Xi = X meaning that Li lives on X for every i.
Moreover, it follows from Lemma 4.12 that Hj extends to an ample line bundle
on X and hence we may assume that every Hj lives on X as well. This means
that ϑ is X -positive.
We now consider the linear equation in the variables (λ′i), (µ

′
j)

(4.14.1)
∑

i

λ′ic1(Li)−
∑

j

µ′
jc1(Hj) = 0

which we consider as an equation in Pic(X) ⊗Z Q ⊂ Pic(X) ⊗Z R. By as-
sumption, (λi), (µj) is a real solution of (4.14.1). Hence, by a linear algebra
argument, for any δ > 0, we can find a solution (λ′i), (µ′

j) of (4.14.1) with

λ′i, µ
′
j ∈ Q such that |λ′i − λi| < δ and |µ′

j − µj | < δ. We can take δ small
enough to get µ′

j > 0. We may assume that the Q-line bundles

L
′ :=

⊗

i

L
⊗λ′

i

i and H
′ :=

⊗

j

H
⊗µ′

j

j

agree on the generic fibre X . Let ϕ be the model function corresponding to
H ′ ⊗ (L ′)−1. As all µ′

j are positive and all Hj are ample on X , H ′ is an
ample Q-line bundle on X . By definition we have

θ + ddcϕ = θ + c1(H
′)− c1(L

′) = (θ − c1(L
′)) + (c1(H

′)− ϑ) + ϑ.
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Taking δ small enough, we can make the first two terms (θ − c1(L
′)) and

(c1(H
′)−ϑ) as small as we want in N1(X /S). In addition, we know that ϑ is

ample on X . It follows from our remark at the beginning that the ample cone
is open in N1(X /S). For δ small enough, we deduce that θ + ddcϕ is ample
on X .
Now let us assume that θ is semipositive. Since a function inD(X) is continuous
on Xan, it is bounded. We may replace ϕ by ϕ − c for any sufficiently large c
in the value group Γ without changing ddcϕ and hence we may assume ϕ ≤ 0.
Since the sum of a nef and an ample class in N1(X /S) remains ample (as
we can check that on the special fibre, see the remark at the beginning of the
proof), we know that

θ + ddc(εϕ) = ε(θ + ddcϕ) + (1 − ε)θ

is also X -positive for all 0 < ε ≤ 1. Using a rational ε > 0 sufficiently close to
0, we get the last claim for the model function εϕ. �

4.15. We want to recall a result due to Kiehl [Kie72, Theorem 2.9] that we
will use later. Let Y be a K◦-scheme. Let f : X → Y be a proper morphism
of finite presentation and let M be a coherent OX -module. Then f∗(M ) is a
coherent OY -module. For some explanation on why Kiehl’s result implies this,
we refer to Example 3.3 and 3.5 in [Ull95].
We will apply this result in the case of proper flat schemes X ,Y over K◦.
By [Raynaud-Gruson, Corollaire 3.4.7], they are finitely presented over K◦ and
hence any f : X → Y is proper and of finite presentation.

4.16. We also recall a non-noetherian version of the Stein factorization theorem
that will be used later. We quote the following result from [Sta16, Tag 03GY].
Let f : X → S be a universally closed and quasi-separated morphism of
schemes. Then there exists a factorization

X
f ′

//

f
��
❅❅

❅❅
❅❅

❅❅
S′

g
��⑦⑦
⑦⑦
⑦⑦
⑦⑦

S

with the following properties:

(1) the morphism f ′ is universally closed, quasi-compact, quasi-separated
and surjective;

(2) the morphism g : S′ → S is integral;
(3) f ′

∗OX = OS′ ;
(4) The relative spectrum of f∗OX over S is equal to S′;

In the following, we consider an admissible formal scheme X overK◦. A vertical
coherent fractional ideal a on X is an OX-submodule of OX⊗K◦K with generic
fibre aη = OXη

such that for every formal open affine subset U, there is a non-
zero α ∈ K◦ with αa|U a coherent ideal sheaf on U.
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Definition 4.17. Let a be a vertical coherent fractional ideal on X. We define
the function

(4.17.1)
log |a| : Xη → R

x 7→ max{log |f(x)|
∣∣ f ∈ aπ(x)}

where π : Xη → Xs is the reduction map. This is a continuous map because a

is a coherent sheaf.

We will now use divisorial points as introduced and studied in Appendix A.

Lemma 4.18. Let X be an admissible formal scheme over K◦ and let f ∈ O(Xη).
Let I be the set of divisorial points associated with X. Then

sup
x∈Xη

|f(x)| = sup
x∈I

|f(x)|.

Proof. Since we can work locally on X, we can assume that X = Spf(A) is formal
affine, in which case the supremum is not +∞. It follows from Proposition A.3
that the set of divisorial points I is the Shilov boundary of Xη proving precisely
our claim. �

Corollary 4.19. Let X be an admissible formal scheme over K◦ and let ϕ :=
log |a| for a vertical coherent fractional ideal a on X. Let I be the set of divisorial
points associated with X. Then

sup
x∈Xη

ϕ(x) = sup
x∈I

ϕ(x).

Proof. We can easily replace X by one of its open formal subschemes because
divisorial points are compatible with formal open subsets. So we can assume
that X is an admissible formal affine scheme. Hence a is generated by finitely
many functions f1, . . . , fn. Then ϕ(x) = maxj=1...n log |fj(x)|. The result
follows from Lemma 4.18. �

Let us return to our algebraic setting with an algebraic K◦-model X of the
proper scheme X . We will apply the above to the formal completion X′ of the
algebraic K◦-model X ′ from the following result.

Lemma 4.20. Let θ be a closed (1, 1)-form determined on X and let ϕ be a
θ-psh model function on X. Then there is an algebraic K◦-model X ′ of X
with a finite morphism X ′ → X extending idX and a sequence am of vertical
coherent fractional ideals on X ′ such that 1

m
log |am| converges uniformly to

ϕ.

Proof. The proof of [BFJ16, 5.7] can be adapted in our non-noetherian context.
For the convenience of the reader we detail this.
Step 1. We have seen in 4.3 that there is an algebraic K◦-model Y and a
vertical Cartier divisor D on Y with ϕ = ϕD. By 2.1, we may assume that the
identity idX extends to a morphism π : Y → X . It follows from Raynaud’s

theorem that there is an admissible formal blowing up ψ : Y → X̂ of the

formal completion X̂ in an open coherent ideal b′ such that Y dominates the

Documenta Mathematica 24 (2019) 331–372



On Zhang’s Semipositive Metrics 357

formal completion of Y . By the formal GAGA-principle for proper schemes
over K◦ proved by Fujiwara–Kato [FK18, Theorem I.10.1.2], the coherent ideal
b′ is the formal completion of a coherent vertical ideal b on X and hence ψ
is the formal completion of the blowing up of X in b. Hence we may assume
that π is precisely this algebraic blow up morphism.
Step 2. Note that π is a proper morphism and hence π∗(OY ) is a coherent sheaf
by 4.15. Let π = g ◦ π′ be the Stein factorization of π as in 4.16. It follows
from coherence of π∗(OY ) and from 4.16(4) that the morphism g : X ′ → X

is finite. By construction, X ′ is a model of X and π′, g restrict to the identity
on X .
Step 3. Let C ⊂ Ys be a curve which is contracted by π i.e. such that
π(C) = {x} for some closed point x ∈ Xs. Since ϕ is θ-psh, by definition we
get that (D + π∗(θ)) · C ≥ 0. On the other hand, by the projection formula,
π∗(π

∗(θ).C) = θ.π∗(C) = 0. Hence π∗(θ) · C = 0 and so D · C ≥ 0. By
definition, this means that D is π-nef.
Step 4. By the construction in Step 1, there is a vertical ideal sheaf b on X

such that π is the blow up of X along b. By the universal property of the blow
up, bOY = OY (H) for an effective π-ample vertical Cartier divisor H on Y .
Step 5. We choose a non-zero k ∈ N. Let x ∈ Xs be a closed point. We
denote by Yx the fiber over x with respect to the morphism Ys → Xs. Note
that Yx is a proper scheme over the residue field of x. Since H is π-ample,
O(H)|Yx

is ample. Similarly, since D is π-nef, O(D)|Yx
is nef. It follows from

Kleiman’s criterion that O(kD +H)|Yx
is ample. Hence by [Gro66, Corollaire

9.6.5], kD +H is π-ample and hence kD +H is also π′-ample.
Step 6. By 4.16(3), we have π′

∗OY = OX ′ . It follows that π′
∗ maps vertical

coherent fractional ideals on Y to vertical coherent fractional ideals on X ′. It
follows that a := π′

∗OY (n(kD+H)+ lD) is a vertical coherent fractional ideal
on X ′ for every n ∈ N and l = 0, . . . , k − 1.
Step 7. Hence by the characterization given in [Gro61, Proposition 4.6.8] of π′-
ampleness, for all sufficiently large n ∈ N, the map π′∗π′

∗OY (n(kD+H)+lD) →
OY (n(kD+H)+ lD) is surjective which means that π′∗a → OY (n(kD+H)+
lD) is surjective. This implies that log |a| = ϕn(kD+H)+lD and hence

1

m
log |a| = ϕD +

n

m
ϕH

for m := nk + l. We have 0 ≤ n
m
ϕH ≤ 1

k
ϕH and this is arbitrarily small for

sufficiently large k independently of the choice of n and l. This leads easily to
the construction of an approximating sequence as in the claim. �

Remark 4.21. If X is normal, then we have X = X ′ in Lemma 4.20.

Proposition 4.22. Let X be an algebraic K◦-model of the proper scheme X
over K. Let I be the set of divisorial points of Xan associated with X . Let θ
be a closed (1, 1)-form which is determined on X and let ϕ be a θ-psh model
function on X. Then

sup
x∈Xan

ϕ(x) = sup
x∈I

ϕ(x).
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Proof. Let X ′ be the model of X from Lemma 4.20. Since the constructed
morphism X ′ → X is finite, the set of divisorial points of Xan associated
with X ′ agrees with I. Then the claim follows from Lemma 4.20 and from
Corollary 4.19 applied to the formal completion X′ of X ′. �

5. Semipositivity and pointwise convergence

Our goal is to generalize [BFJ16, Theorem 5.11] to a line bundle L on a proper
scheme X over any non-archimedean field K. This is a generalization in various
aspects as in [BFJ16], X was assumed to be a smooth projective variety and
the valuation was discrete with residue characteristic zero (due to a use of the
theory of multiplier ideals).
In terms of metrics, the main result means that pointwise convergence of semi-
positive model metrics on Lan to a model metric implies that the limit is a
semipositive model metric. By Chow’s lemma, we will reduce to the case of
projective varieties.
We will first prove an analogue of [BFJ16, Lemma 5.12]. Recall that we denote
by Xdiv the set of divisorial points of the analytification Xan (see Appendix
A).

Proposition 5.1. Let X be a projective scheme over K with an ample line
bundle L. We consider an algebraic K◦-model X of X and a line bundle L

on X extending L. Let ‖ ‖ = ‖ ‖
L

be the corresponding model metric on

Lan which is assumed to be the pointwise limit over Xdiv of semipositive model
metrics on Lan. Then ‖ ‖ is a semipositive model metric.

By Lemma 3.3 and Lemma 3.7, it is enough to check the claim for a projective
variety over an algebraically closed fieldK. Here we have used that (X⊗CK)div

is the preimage of Xdiv with respect to base change morphism (X ⊗CK)an →
Xan (see Proposition A.7), and that Xdiv =

⋃
(Xi)

div where Xi ranges over
the irreducible components of X (see Proposition A.12) Then Proposition 5.1
follows immediately from Lemma 5.3 and Lemma 5.4 below.
Recall that the base-ideal am of L ⊗m is defined as the image of the canonical
map

H0(X ,L ⊗m)⊗ L
⊗(−m) → OX .

Since L is ample on X , am is a vertical coherent ideal sheaf for m sufficiently
large.
We give now the analogue of Definition 4.17 in the algebraic setting:

Definition 5.2. Let a be a coherent fractional ideal on the algebraicK◦-model
X of the proper scheme X over K. Then we set

log |a|(x) := max{log |f(x)|
∣∣ f ∈ aπ(x)} ∈ [−∞,∞[

where π : Xan → Xs is the reduction map.

Lemma 5.3. We keep the same hypotheses as in Proposition 5.1. We assume
additionally that K is algebraically closed and that X is a variety. We fix a
finite subset S of Xdiv. Then there is a sequence of algebraic K◦-models Zm
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such that idX extends to finite morphisms gm : Zm → X with the following
property: Let bm be the base-ideal of g∗m(L )⊗m. For m sufficiently large, bm
is a vertical coherent ideal on Zm and 1

m
log |bm| converges pointwise to 0 on

S.

This lemma is similar to the first step in the proof of [BFJ16, Lemma 5.12].
Note that we do not assume here that X and the model X are normal. This
leads to additional complications. In case of a normal model X (as in loc.
cit.), the finite morphisms gm are the identity and bm is just the base-ideal
am of L ⊗m on Zm = X . Then pointwise convergence holds on Xdiv. If the
normalization Z of X would be finite over X , then we could use Zm = Z

for all m.
After we have submitted this paper, Boucksom and Eriksson [BE18, Theorem
4.20] showed that the normalization Z is indeed finite over X and so we may
use Zm = Z in the lemma. Moreover, the pointwise convergence holds onXdiv.
We were informed by Ofer Gabber that the finiteness of the normalization Z

over X was also shown by Anantharaman in [Ana73, Théorème 1’ in Appendice
II]. We thank Ofer Gabber very much for providing us with this reference.

Proof. We have am · al ⊂ am+l by definition of the base-ideal am of L ⊗m. It
follows that the sequence (log |am|) is super-additive, i.e.

log |am+l| ≥ log |am|+ log |al|

for all m, l ∈ N. For m sufficiently large, am is a coherent vertical ideal sheaf
and hence log |am| > −∞. By Fekete’s super-additivity lemma, the limit of the
sequence 1

m
log |am| exists pointwise in ] −∞,∞]. Since am is an ideal sheaf,

we have 1
m
log |am| ≤ 0 anyway and so Fekete’s super-additivity lemma gives

in fact

(5.3.1) −∞ < lim
m→∞

1

m
log |am| = sup

m

1

m
log |am| ≤ 0

pointwise on Xan.
We choose ε > 0 in the value group Γ and we set θ := c1(L, ‖ ‖). Now we
use that ‖ ‖ is the pointwise limit of semipositive model metrics on L over
Xdiv. This is equivalent to the property that 0 is the pointwise limit of θ-psh
model-functions over Xdiv(see 4.7). It follows from 4.3 that there is a vertical
Q-Cartier divisor D on a model X ′ of X such that ϕD is θ-psh and such that

(5.3.2) ϕD(x) ≥ −ε, ϕD(y) ≤ ε

for all x ∈ S and all divisorial points y associated with X . We may assume D
lives on a K◦-model X ′ with a morphism π : X ′ → X extending the identity
on X . By Proposition 4.22, we get ϕD ≤ ε.
Let us consider the model function ϕD′ := ϕD−ε on X with associated vertical
Q-Cartier divisor D′ on X ′. We conclude that

(5.3.3) ϕD′(x) ≥ −2ε, ϕD′ ≤ 0
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for all x ∈ S. We note that O(D′) ∼= O(D) as Q-line bundles (which means
that D and D′ are Q-linearly equivalent) and hence π∗(L )⊗O(D′) is nef using
that ϕD is θ-psh. Let θ′ be the corresponding semipositive closed (1, 1)-form
on X . Since {θ′} = {θ} is ample, we may apply Proposition 4.14 to deduce
that there is a sufficiently large K◦-model X ′′ dominating X ′ and a model
function ϕ′′ with

(5.3.4) − ε ≤ ϕ′′ ≤ 0

such that θ′ + ddcϕ′′ is X ′′-positive. Let D′′ be the vertical Q-Cartier divisor
on X ′′ such that ϕ′′ = ϕD′′ .
To ease notation, we may assume that X ′ = X ′′. Then we deduce that
π∗(L )⊗O(D′ +D′′) is an ample Q-line bundle. Using that K is algebraically
closed, the reduced fibre theorem [BLR95, Theorem 2.1’] shows that there
is a proper model Y of X dominating X ′ with reduced special fibre. By
Lemma 4.9, (5.3.3) and (5.3.4), the pull-backs −E′,−E′′ of −D′,−D′′ to Y

are both effective vertical Q-Cartier divisors. Let ρ : Y → X be the morphism
extending the identity on the generic fibre. We note that ρ∗(L )⊗O(E′ +E′′)
is semiample which means that ρ∗(L )⊗m0 ⊗O(m0(E

′ + E′′)) is a honest line
bundle on Y generated by global sections for a suitable m0 ∈ N \ {0}.
Since models are proper over K◦, any K◦-morphism between models is proper
and hence we may consider the Stein factorization ρ = g ◦ ρ′ as in 4.16 for
morphisms g : Z → X and ρ′ : Y → Z of schemes over K◦. Similarly as
in Step 2 of the proof of Lemma 4.20, we deduce that g : Z → X is a finite
morphism of K◦-models of X extending idX . By (3) in 4.16, we have

(5.3.5) ρ′∗(OY ) = OZ .

By the projection formula and (5.3.5), we get ρ′∗(ρ
∗(L ⊗m)) ∼= g∗(L ⊗m) and

hence

(5.3.6) H0(Z , g∗(L ⊗m)) = H0(Y , ρ∗(L ⊗m)).

For all m ∈ N divisible by m0, we have seen that −mE′ −mE′′ is an effective
vertical Cartier divisor and hence O(mE′ +mE′′) is a vertical ideal sheaf in
OY . We get a canonical inclusion

(5.3.7) ρ∗(L )⊗m ⊗O(m(E′ + E′′)) ⊂ ρ∗(L )⊗m

for all m ∈ N divisible by m0. The left hand side is globally generated. Let bm
be the base ideal of g∗(L ⊗m) on Z . We claim that

(5.3.8) O(m(E′ + E′′)) ⊂ OY bm ⊂ OY .

Note that the inclusion O(m(E′ + E′′)) ⊂ OY is given by multiplication with
the canonical global section s−m(E′+E′′) of O(−mE′−mE′′). We check (5.3.8)

at y ∈ Y . Using semiampleness, there is a global section s of ρ∗(L )⊗m ⊗
O(m(E′+E′′)) which does not vanish at y, i.e. s−1 is a local section at y. Let t
be any section ofO(m(E′+E′′)) around y. We have to show that t⊗s−m(E′+E′′)

is a section of OY bm around y. To see this, we write

t⊗ s−m(E′+E′′) = (s⊗ s−m(E′+E′′))⊗ (t⊗ s−1).
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Since −mE′ −mE′′ is an effective vertical Cartier divisor, s⊗ s−m(E′+E′′) is a

global section of ρ∗(L ⊗m) and hence it is the pull-back of a global section of
g∗(L ⊗m) by (5.3.6). Moreover, t⊗ s−1 is a local section of ρ∗(L −m) around y
and hence it is an OY -multiple of the pull-back of a local section of g∗(L −m)
at ρ′(y). It follows from the definition of the base-ideal bm that t⊗s−m(E′+E′′)

is a local section of OY bm around y proving (5.3.8).
It follows from (5.3.3), (5.3.4) and (5.3.8) that

−3ε ≤ ϕE′+E′′(x) ≤
1

m
log |bm|(x)

for all m ∈ N divisible by m0 and all x ∈ S. By (5.3.1) applied to the base
ideals bm on Z instead of am, we deduce that

(5.3.9) − 3ε ≤ lim
m→∞

1

m
log |bm|(x) ≤ 0

for all x ∈ S. Using a sequence ε → 0, we construct easily from (5.3.9) a
sequence of finite morphisms gm : Zm → X with the required property. �

The following result is similar to step 2 in the proof of [BFJ16, Lemma 5.12].
Note that we need here another argument as the multiplier ideals used in
[BFJ16] do not work in residue characteristic p > 0. Let us recall that a
line bundle L on a scheme is called semiample if L⊗m is globally generated for
some m ∈ N>0.

Lemma 5.4. Let L be a semiample line bundle on the projective variety X
over the algebraically closed non-archimedean field K with a K◦-model L on
the algebraic K◦-model X of X. Suppose that for any finite S ⊂ Xdiv, there
is a sequence of algebraic K◦-models Zm of X with idX extending to finite
morphisms gm : Zm → X such that 1

m
log |bm| converges pointwise to 0 on S,

where bm is the base-ideal of g∗m(L )⊗m as before. Then ‖ ‖
L

is a semipositive
model metric.

Proof. In this proof, we will need intersection theory on K◦-models. Since the
base K◦ is not noetherian, we will use the intersection theory with Cartier
divisors from [Gub98] (see also [GS15, Section 2] and [GRW16, Appendix] for
algebraic versions). The main ingredient is that every vertical Cartier divisor
D has an associated Weil divisor cyc(D) with multiplicities in the value group
Γ. To define the multiplicities, we pass to a dominating model with reduced
special fibre and use the projection formula (see [Gub98, 3.8, 3.10]). In the
algebraic setting, such a dominating model exists by the reduced fibre theorem
[BLR95, Theorem 2.1’].
Let n := dim(X). Hence X is irreducible of dimension n+1. We choose a closed
curve Y in the special fibre Xs. Then we have to show that degL (Y ) ≥ 0.
We follow the strategy of [Goo69] to use the blow-up π : X ′ → X along Y
(as suggested in [BFJ16, Remark 5.13]). Then E := π−1(Y ) is an effective
Cartier divisor on X ′ which is vertical. Note that any K◦-model of X is
dominated by a projective K◦-model of X [Gub03, Proposition 10.5] and so
we may replace X ′ by a projective dominating model. Then we have a very
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ample invertible sheaf H ′ on X ′. We may view the vertical closed subscheme
E of X ′ as a projective scheme of pure dimension n over the residue field
K̃ and we consider the surjective morphism E → Y induced by π. Then the
support of the Weil divisor cyc(E) is contained in E. Using a dominating model
with reduced special fibre, using [GRW16, Proposition A.7] and the projection
formula [Gub98, Proposition 4.5], it is clear that cyc(E) has a component
mapping onto Y . It follows from using generic hyperplane sections and the
fibre theorem [Har77, Exercise II.3.22] that π∗(c1(H

′)n−1.cyc(E)) is a positive
multiple of Y . By the projection formula, it is enough to show

(5.4.1) degL ′(c1(H
′)n−1.cyc(E)) ≥ 0

for L ′ := π∗(L ).
Let S be the set of divisorial points of Xan associated with the K◦-model X ′.
By A.10 the set S is finite. By our standing assumptions in Lemma 5.4, there is
a sequence of finite morphisms gm : Zm → X with base-ideal bm of g∗m(L )⊗m

such that 1
m
log |bm| converges pointwise to 0 on S. The crucial new idea is to

consider a sequence of morphisms ψm : Xm → X ′ related to the base-ideals
bm. In the following, m is a sufficiently divisible integer such that the base-
ideal bm is vertical. Let π′ : Z ′

m → Zm be the base change of π to Zm and let
ψ′
m : Xm → Z ′

m be the blow up of Z ′
m in the closed subscheme (π′)−1(V (bm)).

Then we have a commutative diagram

Xm

ψm
""
❉❉

❉❉
❉❉

❉❉

ψ′

m
// Z ′

m
π′

//

g′m
��

Zm

gm

��

X ′ π
// X

of morphisms of K◦-models of X extending idX . Note that the base change
g′m of gm is a finite morphism. Setting π′

m := π′ ◦ ψ′
m, we have an effective

vertical Cartier divisor Dm := (π′
m)−1(V (bm)) on Xm and we denote by s−Dm

the canonical meromorphic section of O(−Dm). We define πm := π ◦ψm. Note
that Em := π−1

m (Y ) = ψ−1
m (E) is an effective Cartier divisor on Xm and that

Hm := ψ∗
m(H ′) is a line bundle on Xm which is generated by global sections.

We conclude from refined intersection theory that

(5.4.2) cl(C) = c1(Hm)n−1.cyc(Em) ∈ CH1(Em)

for an effective 1-dimensional cycle C of Xm with support over Y . We consider
the invertible sheaf Lm := π∗

m(L ⊗m) ∼= ψ∗
m(L ′⊗m) ∼= (π′

m)∗(g∗m(L ⊗m)) of
Xm. We claim that

(5.4.3) degLm
(C) ≥ degO(Dm)(C).

To prove this, let Cm be any irreducible component of C. We choose ζm ∈ Cm
and let ζ := π′

m(ζm). We note first that the stalk of Lm(−Dm) at ζm is
generated by global sections. Indeed, it follows from the definitions that there
is a global section sm of g∗m(L ⊗m) and an invertible section ℓm of g∗m(L ⊗m)
at ζ such that (π′

m)∗(sm/ℓm) is an equation of the Cartier divisor Dm at ζm.
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Using that Dm = π′−1
m (V (bm)), a similar local consideration in any point of

Xm shows that tm := (π′
m)∗(sm)⊗ s−Dm

is a global section of Lm(−Dm) and
the choice of sm yields that tm generates the stalk at ζm. We deduce that the
restriction of tm to Cm is a global section which is not identically zero and
hence

degLm
(Cm) = degO(Dm)(Cm) + deg(div(tm|Cm

)) ≥ degO(Dm)(Cm)

proving (5.4.3). By the projection formula [Gub98, Proposition 4.5] and (5.4.2),
we have

m degL ′(c1(H
′)n−1.E) = degLm

(C)

and hence (5.4.3) leads to

m degL ′(c1(H
′)n−1.E) ≥ degO(Dm)(C) = degO(Dm)(c1(Hm)n−1.cyc(Em)).

Commutativity of intersection product [Gub98, Theorem 5.9] shows

(5.4.4) m degL ′(c1(H
′)n−1.cyc(E)) ≥ deg(c1(Hm)n−1.Em.cyc(Dm)).

As we may replace Xm in the above considerations by any dominating K◦-
model of X , the reduced fibre theorem [BLR95, Theorem 2.1’] shows that we
may assume that Xm has reduced special fibre. We have

cyc(Dm) =
∑

W

µWW,

where W ranges over all irreducible components of the special fibre of Xm.
Since the special fibre of Xm is reduced, [Gub98, Lemma 3.21] shows that
there is a unique point ξW of the analytification Xan of the generic fibre of Xm

with reduction equal to the generic point of W and the multiplicities µW are
given by

µW = − log ‖sDm
(ξW )‖O(Dm).

We insert this in (5.4.4) and use again projection formula to get

m degL ′(c1(H
′)n−1.cyc(E))

≥
∑

V

∑

W :ψm(W )=V

µW [W : V ] deg(c1(H
′)n−1.E.V ),(5.4.5)

where V ranges over all irreducible components of (X ′)s and W ranges over
the irreducible components of (Xm)s with ψm(W ) = V . Here, [W : V ] is the
degree of the induced map W → V . Note that ξW = ψm(ξW ) is a divisorial
point of Xan which reduces to the generic point of V in the model X ′ and
hence ξW is an element of the set S of divisorial points of Xan associated with
the K◦-model X ′.
We choose ε > 0 small. By the convergence assumption on the base-ideals bm
and using that S is finite, there is a sufficiently divisible m such that

0 ≤ −
1

m
log |bm|(ξW ) ≤ ε

for all W as above. We conclude that

(5.4.6) 0 ≤ µW = − log ‖sDm
(ξW )‖O(Dm) = − log |bm|(ξW ) ≤ mε
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for all V and W as above with ψm(W ) = V . Let −R be the minimum of the
finitely many intersection numbers deg(c1(H

′)n−1.E.V ) and 0. Then (5.4.5)
and (5.4.6) lead to

degL ′(c1(H
′)n−1.cyc(E)) ≥ −Rε

∑

V

∑

W :ψm(W )=V

[W : V ].

By the projection formula for ψm applied to the Cartier divisor div(ρ) on X ′

for any non-zero ρ in the maximal ideal of K◦ and using that the special fibre
of Xm is reduced, we deduce easily that

∑

W :ψm(W )=V

[W : V ] = mV

for the multiplicity mV of (X ′)s along V . We conclude that

degL ′(c1(H
′)n−1.cyc(E)) ≥ −Rε

∑

V

mV .

The numbers R and mV are independent of ε. This proves (5.4.1) and hence
the claim. �

In the following, we use the notation introduced in §4. Recall that D(X)
denotes the space of model functions on X .

Theorem 5.5. Let X be a proper scheme over K and let θ be a closed (1, 1)-
form on X. Then the set of θ-psh model functions is closed in D(X) with
respect to pointwise convergence on Xdiv.

This is a generalization of Theorem 5.11 in [BFJ16] as we allow K to be an
arbitrary non-archimedean field and also because we allow any proper scheme
X .

Proof. We may check semipositivity for the pull-back with respect to a proper
surjective morphism X ′ → X by Proposition 3.6 (b). Using Chow’s lemma and
Proposition A.11, we conclude that we may assume X projective.
Let ϕ be a model function on X which is the pointwise limit over Xdiv of θ-
psh model functions on Xan. Replacing θ by θ + ddcϕ, we may assume that
ϕ = 0. Then the existence of a θ-psh model function ψ yields that θ+ddcψ is
semipositive and hence {θ} is nef (see 4.8). Let X be an algebraic K◦-model
of X such that θ is determined on X . Then the restriction of θX to X is nef.
Since any K◦-model of X is dominated by a projective K◦-model of X [Gub03,
Proposition 10.5], we may assume that X is projective.
The proof of Proposition 4.14 shows that N1(X /S) is a finite dimensional R-
vector space as we can see it as a subspace of N1(Xs). We have also seen that
the ample cone in N1(X /S) is the intersection of N1(X /S) with the ample
cone in N1(Xs) and hence it is open in N1(X /S). We conclude that there are
H1, . . . ,Hn ample line bundles on X such that their numerical classes αj form
a basis ofN1(X /S). Then there are λj ∈ R such that

∑
j λjc1(Hj) ∈ Pic(X )R
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represents θ. Let εj be small positive numbers such that the numbers λj + εj
are rational. We consider the Q-line bundle

Lε :=
⊗

j

H
⊗(λj+εj)
j

on X and let Lε := Lε|X . Since {θ} is nef and εj > 0, it follows that Lε is
ample. For any model function ψ on X , we have

c1(Lε, e
−ψ‖ ‖

Lε
) = ddcψ + θ +

∑

j

εjαj .

We conclude that a θ-psh model function ψ yields a semipositive model metric
e−ψ‖ ‖

Lε
. Since ϕ = 0 is the pointwise limit overXdiv of θ-psh model functions

ψ on X , we deduce that ‖ ‖
Lε

is the pointwise limit over Xdiv of semipositive

model metrics on Lε. It follows from Proposition 5.1 that ‖ ‖
Lε

is semipositive.
This means that Lε is nef.
By definition of nef and using N1(X /S) ⊂ N1(Xs), we see that the cone in
N1(X /S) of nef classes is the intersection of N1(X /S) with the nef cone in
N1(Xs). In particular, the cone of nef classes is closed in N1(X /S). Using
ε = (ε1, . . . , εn) → 0, we deduce that

∑
j λjc1(Hj) is nef. Since the latter

represents θ, we conclude that ϕ = 0 is θ-psh. �

Remark 5.6. Note that Theorem 1.3 is a special case of Theorem 5.5 by using
4.7.

Appendix A. Divisorial points

Definition A.1. Let V be a paracompact strictly K-analytic space. A diviso-
rial point x of V is a point x ∈ V such that there is a formal K◦-model V with
reduction map π : V → Vs such that π(x) is the generic point of an irreducible
component of Vs. We call x also a divisorial point associated with the model
V.

A.2. Let V be a strictly K-affinoid space. We recall the following facts from
[Ber90, Proposition 2.4.4]: The Shilov boundary of V is the unique minimal
closed subset Γ of V with the property that maxx∈Γ |f(x)| = maxx∈V |f(x)|
for every f ∈ A := O(V ). Note that A is a strictly K-affinoid algebra and let

Ã := {a ∈ A | |a|sup ≤ 1}/{a ∈ A | |a|sup < 1} be its canonical reduction.

There is a canonical reduction map V → Spec(Ã ) which is surjective. The

generic point of an irreducible component E of Spec(Ã ) has a unique preimage
in V denoted by ξE . The Shilov boundary Γ is equal to the finite set of points
ξE with E ranging over all irreducible components of the canonical reduction
Spec(Ã ).

Proposition A.3. Let V = Spf(A) be a formal affine K◦-model of the strictly
K-affinoid space V . Then the set of divisorial points of V associated with V is
equal to the Shilov boundary of V . In particular, this set is finite.
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Proof. Let A := A ⊗K◦ K be the associated strictly K-affinoid algebra. By
[GRW17, Proposition 2.12], the canonical morphism ι : Spec(Ã ) → Vs is
finite and surjective. Let π : V → Vs be the reduction map of V and let
π′ : V → Spec(Ã ) be the canonical reduction map of V . Using that π = π′ ◦ ι,
we conclude for x ∈ V that π(x) is the generic point of an irreducible component

ofVs if and only if π′(x) is the generic point of an irreducible point of Spec(Ã ).
It follows that the set of divisorial points associated with V is given by the
points ξE with E ranging over the irreducible components of Spec(Ã ). We
have seen in A.2 that this set is the Shilov boundary of V = Vη proving
precisely our claim. �

A.4. For a point x of a paracompact strictly K-analytic space V , recall that
OV,x is endowed with a canonical seminorm px which induces a canonical ab-
solute value on the fraction field of OV,x/{px = 0}. The completion of this
fraction field is a non-archimedean field extension of K denoted by H (x). As
in [Ber90, 9.1], we define s(x) as the transcendence degree of the residue field

of H (x) over K̃.
We define dimx(V ) as the minimum of the dimensions of the strictly K-affinoid
domains in V containing x. Let us pick any strictly K-affinoid domain W of
V containing x. Then

(A.4.1) dimx(V ) = max
i

dim(O(Wi))

whereWi ranges over the irreducible components ofW containing x and where
we use the Krull dimension of the strictly K-affinoid algebra O(Wi) on the
right. We refer to [Duc07, Section 1] for more details and additional properties
on the dimension of K-analytic spaces. It follows easily from [Ber93, Lemma
2.5.2] that

(A.4.2) s(x) ≤ dimx(V ).

Proposition A.5. Let x be a point of a paracompact strictly K-analytic space
V . Then x is a divisorial point of V if and only if s(x) = dimx(V ).

Let us remark that the result and its proof are similar to [Poi13, Corollaire
4.18].

Proof. Let us prove that if s(x) = dimx(V ) then x is a divisorial point (the
other implication follows easily from the definition of divisorial points, see for
instance [Poi13, Lemme 4.4]). Let g1, . . . , gn be elements in the residue field

of H (x) which are algebraically independent over K̃ where n = dimx(V ). Let
U be an n-dimensional strictly K-affinoid domain in V containing x and let
A = O(U) be the corresponding strictly K-affinoid algebra. The residue field
of H (x) can be identified with the residue field of the fraction field of A /px
for the prime ideal px := {a ∈ A | |a(x)| = 0}. For each i = 1 . . . n we can then
find some functions αi, βi ∈ A such that |βi(x)| 6= 0, |αi(x)/βi(x)| = 1 and
such that the residue classes of αi(x)/βi(x) are equal to gi in the residue field of
H (x). Shrinking U if necessary, we can then assume that the βi’s are invertible
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on U (it suffices to consider strictly K-affinoid Laurent domains of the form
{|βi| ≥ r}). Replacing U by the Weierstrass domain {|αi/βi| ≤ 1, i = 1 . . . n},
we can even assume that fi := αi/βi ∈ A ◦ for i = 1, . . . , n. These functions

have residue classes f̃i = gi in the residue field of H (x). Let us now denote by

x̃ ∈ Spec(Ã ) the canonical reduction of x. Let κ(x̃) be the residue field of x̃.
In the following diagram

A
◦ → Ã → κ(x̃) →֒ H̃ (x)

the last map is injective. Since the gi’s are algebraically independent, it follows
that the f̃i’s are algebraically independent in κ(x̃). Since dim(Ã ) = dim(A ) =
n (see the remark at the end of § 6.3.4 in [BGR84]), it follows that x̃ is a generic

point of Spec(Ã ) and hence it is a divisorial point of U . According to [Bos14,
Lemma 8.4.5], there exists an admissible formal scheme V with generic fibre V
such that U is the generic fibre of a formal affine open subset U of V. It follows
that x is a divisorial point associated with V. �

Corollary A.6. Let x be a point of a strictly K-affinoid domain W of the
paracompact strictly K-analytic space V . Then x is a divisorial point of W if
and only if x is a divisorial point of V .

Proof. Since the invariants s(x) and dimx(V ) do not change if we pass from V
to W , the claim follows from Proposition A.5. �

Proposition A.7. Let F be a non-archimedean field extension of K which is a
subfield of CK and let x be a point of the base change V ⊗̂KF of the paracompact
strictly K-analytic space V . Let ϕ : V ⊗̂KF → V be the natural map. Then
ϕ(x) is a divisorial point of V if and only if x is a divisorial point of V ⊗̂KF .

Proof. By [Duc07, Proposition 1.22] we have

(A.7.1) dimx(V ⊗̂KF ) = dimϕ(x)(V ).

The equality s(x) = s(ϕ(x)) follows easily from [Ber90, Lemma 9.1.1]. Then
the claim follows from (A.7.1) and Proposition A.5. �

Remark A.8. In general, if F is an arbitrary non-archimedean extension of
K, with the above notations, it is not true that divisorial points of V ⊗̂KF are
mapped to divisorial points of V . For instance, let r ∈ |F ∗| with 0 < r < 1 and
assume that rn 6∈ |K∗| for all non-zero n ∈ N. If D denotes the closed unit disc
over K, then the point ηr ∈ D⊗̂KF given by the supremum over the closed disc
of radius r is a divisorial point of D⊗̂KF (it is a point of type 2 in D⊗̂KF ),
but it is mapped to a point of type 3 in D, namely the point corresponding to
the closed disc of radius r in D, which is not a divisorial point of D.

Now we restrict to the algebraic setting. For a proper scheme X over K, let
Xdiv denote the set of divisorial points of Xan. The next result shows that it
is enough to consider algebraic models.
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Proposition A.9. Let X be a proper scheme over K. Then x ∈ Xdiv if and
only if there is an algebraic K◦-model X of X such that x is a divisorial point

associated with the formal completion X̂ .

Proof. It is enough to show that a divisorial point x of Xan associated with

a formal K◦-model V of V is also associated with X̂ for a suitable algebraic
K◦-model X of X . This follows easily from the fact that V is dominated by
the formal completion of an algebraic K◦-model (see Lemma 2.4). �

A.10. We say that x ∈ Xan is a divisorial point associated with the algebraic
K◦-model X if x is a divisorial point associated with the formal completion

X̂ in the sense of Definition A.1. Equivalently, this means that the reduction
of x is a generic point of an irreducible component of the special fibre Xs.

Note that X̂ has a finite covering by formal affine open subsets. It follows
from Proposition A.3 and Corollary A.6 that the set of divisorial points of Xan

associated with X is finite.

Proposition A.11. Let f : X → Y be a generically finite surjective morphism
of proper varieties over K. Then we have Xdiv = f−1(Y div).

Proof. There is an open dense subset U of Y such that f induces a finite
surjective morphism f−1(U) → U . For x ∈ (f−1(U))an and y := f(x), we note
that H (x)/H (y) is a finite extension. Since dimx(X) = dim(X) = dim(Y ) =
dimy(Y ), it follows from Proposition A.5 that x is a divisorial point of Xan if
and only if y is a divisorial point of Y an. The same criterion shows that every
divisorial point of X (resp. Y ) is contained in the analytification of f−1(U)
(resp. U). �

Proposition A.12. Let (Xi)i∈I be the irreducible components of a proper
scheme X over K. Then we have

Xdiv =
⋃

i∈I

(Xi)
div.

Proof. It follows from (A.4.2) and Proposition A.5 that the divisorial points of
Xan or of any (Xi)

an are contained in the Zariski open subset of Xan consisting
of those divisorial points which are contained in the analytification of only one
irreducible component of X . Now the claim follows from the fact shown in
Corollary A.6 that divisorial points can be checked G-locally and hence Zariski-
locally. Note also that divisorial points depend only on the induced reduced
structure. �
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mogènes et espaces algébriques sur une base de dimension 1. In Sur
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