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Abstract. We present a Geometric Invariant Theory (GIT) con-
struction which allows us to construct good projective degenerations
of Hilbert schemes of points for simple degenerations. A comparison
with the construction of Li and Wu shows that our GIT stack and the
stack they construct are isomorphic, as are the associated coarse mod-
uli schemes. Our construction is sufficiently explicit to obtain good
control over the geometry of the singular fibres. We illustrate this
by giving a concrete description of degenerations of degree n Hilbert
schemes of a simple degeneration with two components.
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Constructing and understanding degenerations of moduli spaces is a crucial
problem in algebraic geometry, as well as a vitally important technique, going
back to the classical German and Italian schools where it was used for solving
enumerative problems. New techniques for studying degenerations were intro-
duced by Li and Li–Wu respectively. Their approach is based on the technique
of expanded degenerations, which first appeared in [Li01]. This method is very
general and can be used to study degenerations of various types of moduli prob-
lems, including Hilbert schemes and moduli spaces of sheaves. In [LW11] Li
and Wu used degenerations of Quot-schemes and coherent systems to obtain
degeneration formulae for Donaldson–Thomas invariants and Pandharipande–
Thomas stable pairs. The reader can find a good introduction to these tech-
niques in Li’s article [Li13].
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The motivation for our work was a concrete geometric question: we wanted
to understand degenerations of irreducible holomorphic symplectic manifolds.
Clearly, a starting point for this is to study degenerations of K3 surfaces and
their Hilbert schemes. Our guiding example were type II degenerations of
K3 surfaces, but we were soon led to investigate the degeneration of Hilbert
schemes of points for simple degenerations X → C where we make no a priori
restriction on the type of the fibre nor its dimension. A simple degeneration
means in particular that the total space is smooth and that the central fibre
X0 over the point 0 ∈ C of the 1-dimensional base C has normal crossing
along smooth varieties. The aim of this paper is to develop the technique for
the construction of degenerations of Hilbert schemes which give us not only
abstract existence results, but also allow us to control the geometry of the
degenerate fibres. In the forthcoming paper [GHHZ] we will then investigate
the properties of these degenerations.

At this point we would like to explain the common ground, but also the differ-
ences of our approach to that of Li and Wu. First of all we only consider Hilbert
schemes of points, whereas Li and Wu consider more generally Hilbert schemes
of ideal sheaves with arbitrary Hilbert polynomial, and even Quot schemes. We
have not investigated in how far our techniques can be extended to non-constant
Hilbert polynomials. This might indeed be a question well worth pursuing, but
one which would go far beyond the scope of this paper. The common ground
with the approach of Li and Wu is that we also use Li’s method of expanded
degenerations X [n] → C[n]. In the case of constant Hilbert polynomial the
relevance of this construction is the following: ideally, one wants to construct
a family whose special fibre over 0 parametrizes length n subschemes of the de-
generate fibre X0. Clearly, the difficult question is how to describe subschemes
whose support meets the singular locus of X0. The main idea of the construc-
tion of expanded degenerations X [n] → C[n] is that, whenever a subscheme
approaches a singularity in X0, a new ruled component is inserted into X0 and
thus it will be sufficient to work with subschemes supported on the smooth
loci of the fibres of X [n] → C[n]. The price one pays for this is that the di-
mension of the base C[n] is increased at each step of increasing n, and finally
one has to take equivalence classes of subschemes supported on the fibres of
X [n] → C[n]. Indeed, the construction of expanded degenerations also includes
the action of an n-dimensional torus G[n] which acts on X [n] → C[n] such that
C[n]//G[n] = C.

The way Li and Wu then proceed is by constructing the stack X/C of expanded
degenerations associated to X → C, which is done by introducing a suitable
notion of equivalence on expanded degenerations. For fixed Hilbert polynomial
P they then introduce the notion of stable ideal sheaves with Hilbert polyno-
mial P , and use this to define a stack IP

X/C over C parametrizing such stable
ideal sheaves. In the case of constant Hilbert polynomial P = n this leads to
subschemes of length n supported on the smooth locus of a fibre of an expanded
degeneration, and having finite automorphism group. We call the stack In

X/C

the Li–Wu stack. For details see [LW11] and, for a survey, also [Li13]. In con-
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trast to this approach our method does not use the Li–Wu stack, but is based
on a Geometric Invariant Theory approach (GIT, [MFK94]), which we will now
outline.
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0.1 The main results

The main technical achievement of the paper is to construct a suitable set-
up which allows us to apply GIT methods. To perform this we must make
one assumption on the dual graph Γ(X0) associated to the singular fibre X0,
namely that it is bipartite, or equivalently it has no cycles of odd length. This
is not a crucial restriction as we can always perform a quadratic base change
to get into this situation. We first construct a relatively ample line bundle L

on X [n] → C[n]. The bipartite assumption allows us to construct a particular
G[n]-linearization on L which will then turn out to be well adapted for our
applications to Hilbert schemes. The definition of the correct G[n]-linearization
is the most important technical tool of this paper. Using L we can construct an
ample line bundle Mℓ on the relative Hilbert scheme H

n := Hilbn(X [n]/C[n]),
which comes equipped with a natural G[n]-linearization. (The integer ℓ ≫ 0
only plays an auxiliary role.) This construction is sufficiently explicit to allow
us to analyse GIT stability, using a relative version of the Hilbert-Mumford
numerical criterion (see [GHH15, Cor. 1.1]). In particular, we are able to prove
that (semi-)stability of a point [Z] ⊂ H

n only depends on the degree n cycle
associated to Z (and not on its scheme structure).

After having fixed the G[n]-linearized sheaf L , our construction depends a
priori on several choices. One choice is the orientation of the dual graph Γ(X0).
As we work with a bipartite graph, it admits exactly two bipartite orientations
and we will show that these lead to isomorphic GIT quotients. We moreover
need to select a suitable ℓ in the construction of Mℓ. Our characterization of
stable n cycles will a posteriori show that the final result is independent also
of this choice.

This characterization is indeed crucial and in order to formulate this theorem,
we first need some notation. Let [Z] ∈ H

n be represented by a subscheme
Z ⊂ X [n]q for some point q ∈ C[n]. Using a local étale coordinate t on C
we obtain coordinates ti, i ∈ {1, . . . n + 1} on C[n] and we define {a1, . . . , ar}
to be the subset indexing coordinates with ti(q) = 0. Setting a0 = 1 and
ar+1 = n + 1 we obtain a vector a = (a0, . . . , ar+1) ∈ Zr+2, which, in turn,
determines a vector va ∈ Zr+1 whose i-th component is ai − ai−1.

We say that Z has smooth support if Z is supported in the smooth part of the
fibre X [n]q. Then each point Pi in the support of Z is contained in a unique
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component of X [n]q with some multiplicity ni. This allows us to define the
numerical support v(Z) ∈ Zr+1, see Definition 2.6. Our characterization then
reads as follows:

Theorem 0.1. Let ℓ ≫ 2n2. The (semi-)stable locus in H
n with respect to Mℓ

can be described as follows:

1. If [Z] ∈ H
n has smooth support, then [Z] ∈ H

n(Mℓ)
ss if and only if

v(Z) = va.

In this case, it also holds that [Z] ∈ H
n(Mℓ)

s.

2. If [Z] ∈ H
n does not have smooth support, then [Z] /∈ H

n(Mℓ)
ss.

We denote the locus of stable points by H
n
GIT := H

n(Mℓ)
s (it does not depend

on ℓ). It is interesting to note that our GIT approach independently also
leads to the property that stable cycles have smooth support, a condition also
appearing in Li–Wu stability. In fact, GIT stable cycles are always Li–Wu
stable, but the converse does not hold in general. In other words we obtain an
inclusion H

n
GIT ⊂ H

n
LW of GIT stable cycles in Li–Wu stable cycles, which, in

general, is strict, see Lemma 3.7 and the comment following it.

We can now form the GIT-quotient

In
X/C = H

n
GIT/G[n].

This is the main new object which we construct in this paper. The advantage
of our method is that we can control the GIT stable points very explicitly and
this allows us to analyse the geometry of the fibres of the degenerate Hilbert
schemes in great detail. Moreover, we can also use the results of [GHH15],
where it was shown, in particular, that In

X/C is projective over C.

We can also form the stack quotient

In
X/C = [Hn

GIT/G[n]].

Our main result about this stack is

Theorem 0.2. The GIT quotient In
X/C is projective over C. The stack In

X/C

is a Deligne-Mumford stack, proper and of finite type over C, having In
X/C as

coarse moduli space.

We also investigate how the GIT stack quotient and the Li–Wu stack compare.
For this we construct a natural morphism f : In

X/C → In
X/C between the two

stacks and show

Theorem 0.3. The morphism f : In
X/C → In

X/C is an isomorphism of Deligne-
Mumford stacks.
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In this way our approach gives an alternative proof of the properness over
the base curve C of the Li–Wu stack In

X/C for Hilbert schemes of points, see

[Li13, Thm. 3.54]. It thus turns out that our GIT approach and the Li–Wu
construction of degenerations of Hilbert schemes of points are in fact equivalent.
The main advantage which we have thus gained is, in addition to constructing a
relatively projective coarse moduli space for the Li–Wu stack, that we have the
tools to explicitly describe the degenerate Hilbert schemes. We will illustrate
this with the example of degree n Hilbert schemes on two components, which
we treat in detail in Section 4.
Of course, one of the main objectives of this research is to construct good
degenerations of, in particular, Hilbert schemes of K3 surfaces, such as in the
work of Nagai [Nag08] who used an ad hoc approach which works very well
in degree 2. At this point it is also worth noting that the simple approach of
taking the relative Hilbert scheme will not work as this is hard to control and
badly behaved. We will study the properties of our degenerations in detail in
[GHHZ], but we would like to mention at least the main results in support of
our approach. First of all, starting with a strict simple degeneration X → C
of surfaces, the GIT stack In

X/C is smooth and semi-stable as a DM -stack over
C. The scheme In

X/C has finite quotient singularities – see also Section 4 for

the degree 2 case – and (In
X/C , (I

n
X/C)0) is simple normal crossing up to finite

group actions. In particular, this allows us to attach a dual complex to the
central fibre and due to our good control of the degenerations we can describe
this complex explicitly. If X → C is a type II degeneration of K3 surfaces,
then the stack In

X/C carries a nowhere degenerate relative logarithmic 2-form.

If X → C is any strict simple degeneration of surfaces, then (In
X/C , (I

n
X/C)0) is

a dlt (divisorial log terminal) pair. Moreover, if we start with a type II Kulikov
model of K3 surfaces In

X/C → C is a minimal dlt model. In this case the dual
complex can be identified with the Kontsevich–Soibelman skeleton.
Lastly, let us remark that for a simple degeneration f : X → C, it is also
natural to consider configurations of n points in the fibres of f (rather than
length n subschemes, as in this article). This has been studied thoroughly by
Abramovich and Fantechi in [AF14]. In particular, they exhibit a moduli space,
which is projective over C, parametrizing stable configurations.

0.2 Organization of the paper

The paper is organized as follows. Section 1 introduces most of the main
concepts and technical tools. In particular, we will review the notions of a
simple degeneration X → C and of expanded degenerations X [n] → C[n], as
well as the action of the rank n torus G[n] on X [n] → C[n]. The construction
of X [n] → C[n] depends on the choice of an orientation of the dual graph
Γ(X0) of the central fibre X0. In Proposition 1.7 we shall give a concrete
description and local equations for X [n] → C[n], see also [Wu07, §4.2]. We
then enter into a discussion of the properties of X [n] → C[n]. We will prove
in Proposition 1.9 that the algebraic space X [n] is a scheme if and only if the
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degeneration X → C is strict, i.e. all components of X0 are smooth. Our next
aim is to understand when the morphism X [n] → C[n] is projective. It turns
out that this is the case if and only if the directed graph Γ(X0) contains no
directed cycles, see Proposition 1.10. Since we aim at a GIT approach we need
a relatively ample line bundle L on X [n] → C[n] together with a suitable
G[n]-linearization. This will be achieved in Section 1.4 and this construction
is the technical core of our approach. At this point we must impose another
condition on the degeneration X → C, namely that the dual graph Γ(X0)
can be equipped with a bipartite orientation, see Section 1.4. In Proposition
1.11 we shall prove that reversing the orientation of the graph Γ(X0) leads
to an isomorphic quotient. Finally, we investigate the fibres of the morphism
X [n] → C[n] in detail and enumerate their components in Proposition 1.12,
an essential tool for all practical computations, in particular also for the GIT
analysis.

In Section 2 we perform a careful analysis of GIT stability. Using the
line bundle L we construct the relatively ample line bundle Mℓ on H

n =
Hilbn(X [n]/C[n]), which inherits a G[n]-linearization. The main result of this
section is Theorem 2.10 (Theorem 0.1) where we characterize the stable locus.
For these calculations we will make extensive use of the local coordinates which
we introduce in Section 1.1.5.

Section 3 is devoted to the comparison of our construction with the Li–Wu stack.
For this we introduce the GIT quotient stack In

X/C and prove the properness

Theorem 3.2 (Theorem 0.2). Finally we construct a map between the GIT
quotient stack and the Li–Wu stack and prove their equivalence in Theorem
3.10 (Theorem 0.3).

In Section 4 we discuss one example in detail in order to illustrate how the
machinery works. The example we have chosen is a simple degenerationX → C
where X0 has two components. We shall describe the geometry of the central
fibre (IX/C)0 in detail and, in case of degree 2 give a complete classification
of the singularities of the total space. We also compute the dual complex for
arbitrary degree n, which turns out to be the standard n-simplex.

0.3 Notation

We work over a field k which is algebraically closed of characteristic zero. By
a point of a k-scheme of finite type, we will always mean a closed point, unless
further specification is given. The projectivization P(E ) of a coherent sheaf E

is Grothendieck’s contravariant one, parametrizing rank one quotients.

For an integer n we denote [n] = {1, . . . , n}.

1 Expanded degenerations

Here we recall a construction, due to Li [Li01], which to a simple degeneration
X → C over a curve (Definition 1.1), together with an orientation of the dual
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graph Γ of the degenerate fibre X0, associates a family of expanded degenera-
tions X [n] → C[n] over an (n + 1)-dimensional base C[n], equipped with an
action by an algebraic torus G[n] ∼= Gn

m.
The aim of the current section is to set the stage for applying GIT to the
induced G[n]-action on the relative Hilbert scheme Hilbn(X [n]/C[n]). Thus,
after recalling Li’s construction in Section 1.1 we study under which circum-
stances X [n] → C[n] is a projective scheme in Section 1.2. In Section 1.3 we
study its fibres. Finally, in Section 1.4 we restrict to the case of a bipartite
oriented graph Γ and in this situation equip X [n] with a particular linearization
of the G[n]-action and compute the associated Hilbert–Mumford invariants.

1.1 Construction of the family X [n] → C[n]

In this section we summarize work from Li [Li01, Li13], Wu [Wu07] and Li–Wu
[LW11] on expanded degenerations.

1.1.1 Setup

Let C be a smooth curve with a distinguished point 0 ∈ C. Following the
terminology of Li–Wu [LW11, Def. 1.1] we define:

Definition 1.1. A simple degeneration is a flat morphism π : X → C from a
smooth algebraic space X to a k-smooth curve C with a distinguished point
0 ∈ C, such that

(i) π is smooth outside the central fibre X0 = π−1(0) and

(ii) the central fibre X0 has normal crossing singularities and its singular locus
D ⊂ X0 is smooth.

We call a simple degeneration strict if all components of X0 are smooth.

In étale local coordinates, a simple degeneration X → C is thus of the form
t = xy. The main motivation for us is degenerations of K3 surfaces: Kulikov
models of type II are simple degenerations, whereas Kulikov models of type III
are not, because of triple intersections in the central fibre.

Input. The input data to Li’s construction are

• a smooth base curve C with a distinguished point 0 ∈ C and an étale
morphism t : C → A1 with t−1(0) = {0},

• a strict simple degeneration X → C and

• an orientation of the dual graph Γ of the special fibre X0.

Let G[n] ⊂ SL(n + 1) be the diagonal maximal torus and let C[n] be the
fibre product C ×A1 An+1 with respect to t : C → A1 and the multiplication
morphism A

n+1 → A
1. Then G[n] acts naturally on A

n+1 such that An+1 → A
1

is invariant. Hence there are induced actions on C[n] and on X ×C C[n].
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Output. The output of Li’s construction is an explicit small G[n]-equivariant
resolution X [n] of the fibre product X ×C C[n].

Remark 1.2.

• The logic here is not axiomatic; rather we give the explicit construction
of X [n] first and study its properties afterwards.

• Li’s construction applies also to non-strict simple degenerations, but this
requires an additional hypothesis and is more cumbersome to state. We
briefly treat the non-strict case in Section 1.2.2.

• It suffices to treat C = A1 sinceX×CC[n] ∼= X×A1An+1. We occasionally
take advantage of this, notably in Section 1.1.2, but otherwise keep the
base curve C as this is notationally convenient.

Remark 1.3. Li does not use the language of an orientation of the dual graph Γ.
Instead, let ν : X̃0 → X0 be the normalization morphism. For each component
D of the singular locus of X0 the inverse image ν−1(D) is a disjoint union
of two copies of D. Li fixes a labelling ν−1(D) = D+ ∪ D− for each such
D, and in fact considers this labelling as part of the data defining a simple
degeneration. This is equivalent to our orientation of Γ: viewing the nodes
of Γ as the components of X̃0, the corresponding orientation of the edge [D]
points from the (node corresponding to the) component containing D− to that
containing D+.

1.1.2 The basic case

We first define X [n] in the special case where X0 = Y1 ∪ Y2 has two smooth
components with irreducible intersection D = Y1 ∩ Y2. The dual graph Γ
consists of two nodes [Yi] connected by one edge [D]. Fix one out of the two
possible orientations and then relabel the two components Yi if necessary so
that [D] points from [Y1] to [Y2]:

[Y1]
[D]
−−→ [Y2]

Recursively assume a small resolution X [n − 1] → X ×A1 An has been con-
structed. View this first as a morphism over An and then via the last coordinate
tn : An → A1 as a morphism over A1. Now pull back along the multiplication
morphism m : A2 → A

1 to obtain a partial resolution

X [n− 1] ×A1 A
2 → X ×A1 A

n+1 (1)

as in the diagram

X [n− 1] ×A1 A2 X ×A1 An+1 An+1 A2

X [n− 1] X ×A1 An An A1

(t1,...,tn−1,m)

(tn,tn+1)

m

tn
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where all squares are Cartesian.

Proposition 1.4. The following recursion defines a small G[n]-equivariant
resolution X [n] of the fibre product X ×A1 An+1 for all natural numbers n:

(i) X [0] = X

(ii) X [n] is the blow-up of X [n− 1] ×A1 A2 along the strict transform of

Y1 × V (tn+1) ⊂ X ×A1 A
n+1

under the partial resolution (1). Here the chosen orientation of the dual
graph Γ is used to order the components Yi of X0 by the convention that
the arrow [D] has source [Y1] and target [Y2].

Proof. First consider X [1]. This is defined to be the blow-up of X×A1 A2 along
Y1 × V (t2). In étale local coordinates X → A1 is t = xy and the fibre product
X ×A1 A2 is t1t2 = xy. Blowing up either of the Weil divisors x = t2 = 0
or y = t2 = 0 yields a small resolution. Explicitly, let U be an étale local
neighbourhood in X with coordinates x and y such that Y1 is given by the
equation y = 0. The blow-up along y = t2 = 0 is then the locus

ux = t1v

vy = t2u

in U × A2 × P1, where (u : v) are homogeneous coordinates on P1. Thus X [1]
is indeed a small resolution.
This basic construction is now repeated: view X [n− 1] as a family over A1 via
the last coordinate tn : An → A1.

Claim: X [n − 1] → A1 is a simple degeneration. Its central fibre

has two components, the strict transforms Y
(n−1)

i of Yi × V (tn) ⊂
X ×A1 An. Their intersection D(n−1) is the strict transform of
D × V (tn) and it is irreducible.

Granted this, the dual graph of X [n− 1]|tn=0 is identified with that of X0 and
inherits an orientation

[Y
(n−1)

1 ]
[D(n−1)]
−−−−−→ [Y

(n−1)
2 ].

Now the strict transform of Y1 × V (tn+1) in X [n− 1] ×A1 A
2 is precisely

Y
(n−1)

1 × V (tn+1) ⊂ X [n− 1] ×A1 A
2

(writing (tn, tn+1) for the coordinates on the last factor A2). Thus the recipe
says X [n] = X [n− 1][1]. In view of this it suffices to verify the claim for X [1]
viewed as a family over A1 via t2: in fact under the blow-up

X [1] → X ×A1 A
2
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the strict transform of Y1 × V (t2) is an isomorphic copy of it, the strict trans-
form of Y2 × V (t2) is its blow-up along D × {(0, 0)}, and they are normal
crossing divisors intersecting along the strict transform of D × V (t2), which is
an isomorphic copy of it. These statements are readily verified with the help
of the local equations for X [1] given above.

1.1.3 The general case

Return to the situation of an arbitrary strict simple degeneration X → C,
where the central fibre X0 ⊂ X and its singular locus are allowed to have several
components. Fix an orientation of the dual graph Γ. We phrase the definition
of X [n] in somewhat informal language and expand the precise meaning below.

Definition 1.5. Let X [n] → X ×C C[n] be the small resolution obtained by
applying Proposition 1.4 locally around each component of the singular locus
of X0.

Explicitly:

• For each component D of the singular locus of X0 there are unique com-
ponents Y1 and Y2 of X0 such that D is a component of Y1 ∩ Y2. Use
the chosen orientation of Γ to distinguish the role of the two components
Yi, by labelling them so that the arrow [D] in the oriented dual graph Γ
points from [Y1] to [Y2].

• Define U ⊂ X to be the Zariski open subset whose complement is the
union of all components of X0 except Y1 and Y2 together with all compo-
nents of Y1∩Y2 except D. Thus U is a Zariski open neighbourhood around
D such that U0 has exactly two components Yi ∩ U with intersection D.

• Apply Proposition 1.4 to obtain the small resolution U [n] → U ×C C[n].

• This small resolution is an isomorphism away from D ×C C[n], and the
collection of all U as D varies covers X . Thus the various U [n] glue to
yield the global small resolution X [n] → X ×C C[n].

1.1.4 The group action

We equip X [n] with a G[n]-action such that X [n] → X ×C C[n] is equivariant.
The target is here equipped with the action induced by the natural action of
G[n] on An+1 and (hence) on C[n].
Recall that an element in G[n] is an (n+ 1)-tuple (σ1, . . . , σn+1) of elements in
Gm such that

∏
i σi = 1. There is a Cartesian diagram

G[n] G2
m

G[n− 1] Gm

prn,n+1

mn,n+1 m

prn
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where prn and prn,n+1 are projections onto the last and the last two coordinates,
m is multiplication and mn,n+1 multiplies together the last two coordinates.

Proposition 1.6. There is a unique G[n]-action on X [n] such that

X [n] → X [n− 1] ×A1 A
2

is equivariant with respect to the natural action of G[n] ∼= G[n− 1] ×Gm
G2

m on
the target.

Proof. In view of the local nature of Definition 1.5 it suffices to treat the basic
situation in Proposition 1.4. Then X [n] → X [n − 1] ×A1 A2 is the blow-up
along the strict transform of Y1 × V (t2), which is G[n]-invariant. Hence the
action lifts uniquely.

1.1.5 Local equations

It is useful to have explicit equations for X [n] in the case of the local model

X = Spec k[x, y, z, . . . ]
t=xy
−−−→ C = Spec k[t]. (2)

Consider the product

(X × A
n+1) ×

(
P

1
)n

= Spec k[x, y, z, . . . , t1, . . . , tn+1] ×
∏

i

Projk[ui, vi]

and its subvariety (X ×A1 An+1) ×
(
P1

)n
defined by xy = t1t2 · · · tn+1.

Proposition 1.7 (Wu [Wu07, §4.2]). Let X → C be the simple degeneration
(2), with dual graph oriented as [V (y)] → [V (x)]. Then

(i) X [n] is the subvariety of (X ×A1 An+1) ×
(
P1

)n
defined by the equations

u1x = v1t1

uivi−1 = viui−1ti (1 < i ≤ n)

vny = untn+1.

(ii) The G[n]-action on X [n] ⊂ (X×A1 An+1)× (P1)n is the restriction of the
action which is trivial on X, given by

(t1, . . . , tn+1)
σ
7→ (σ1t1, . . . , σn+1tn+1)

on A
n+1, and given by

(ui : vi)
σ
7→ (σ1σ2 · · ·σiui : vi)

on the i’th copy of P1.

This is straight forward to verify from the construction in Proposition 1.4.
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Remark 1.8. There is an isomorphism:

G
n
m

∼= G[n] ⊂ G
n+1
m

(τ1, τ2, . . . , τn) 7→ (τ1, τ
−1
1 τ2, τ

−1
2 τ3, . . . , τ

−1
n−1τn, τ

−1
n )

In τ -coordinates, the action on the P1-factors above is conveniently written as
(ui : vi) 7→ (τiui : vi). (Note that Li [Li01] writes σ for our σ, and σ for our τ .)

Let (u0 : v0) = (1 : x) and (un+1 : vn+1) = (y : 1), so that the equations in
Proposition 1.7 can be written uniformly as

uivi−1 = viui−1ti, (1 ≤ i ≤ n+ 1) . (3)

These local equations immediately lead to the explicit affine open cover given
by Li [Li01, Lemma 1.2]: we have X [n] =

⋃n+1
k=1 Wk , where

Wk :

{
ui 6= 0 for i < k

vi 6= 0 for i ≥ k.

In each chart Wk, most of the equations (3) result in elimination of either ui/vi

or vi/ui, so that Wk has coordinates

t1, . . . , tn+1,
vk−1

uk−1
, uk

vk

(together with z, . . . ) subject to the single relation tk = uk

vk

vk−1

uk−1
. Each Wk is

clearly G[n]-invariant, and the G[n]-action is

(t1, . . . , tn)
σ
7→ (σ1t1, . . . , σntn)

(
vk−1

uk−1
, uk

vk

)
σ
7→

(
τ−1

k−1
vk−1

uk−1
, τk

uk

vk

)

on points; here τi = σ1 · · ·σi as in Remark 1.8.

1.2 Projectivity criteria

1.2.1 Preliminaries

In the arguments that follow, we shall frequently make use of the exactness of
⊕

iZDi → Pic(Y ) → Pic(Y \ ∪iDi) → 0

whenever {Di} is a finite set of effective prime divisors in a nonsingular variety
Y (see e.g. [Har77, Prop. II.6.5]). Whenever P → Y is a principal Gm-bundle,
with associated line bundle L, we also have an exact sequence

Z
c1(L)
−−−→ Pic(Y ) → Pic(P ) → 0.

This follows by applying the first short exact sequence to the line bundle L and
its 0-section H0, together with the fact that pullback defines an isomorphism
Pic(Y ) → Pic(L) which identifies c1(L) with H0.
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1.2.2 Criterion for X [n] to be a scheme.

Let X → C be a non-strict simple degeneration. Thus the central fibre X0

contains at least one singular (“self intersecting”) component Y . Let D ⊂ Y
be a component of the singular locus of such a component.
We can no longer apply Proposition 1.4 Zariski locally around D, but we still
can do so in an étale local sense provided we can distinguish étale locally around
D between the two branches of Y meeting there. This blends well with Li’s use
of the normalization morphism ν : X̃0 → X0 explained in Remark 1.3: we define
a non-strict simple degeneration as in Definition 1.1, but replace strictness by
the following condition on each component D of the singular locus of X0:

Assume the preimage ν−1(D) is a disjoint union of two copies of D.

Under this condition Definition 1.5 of X [n] → C[n] applies to non-strict simple
degenerations when the word “locally” is interpreted in the étale topology.
We refrain from giving further details as our aim here is just to point out that
in the non-strict situation X [n] is an algebraic space but never a scheme.

Proposition 1.9. Let X → C be a simple degeneration where X is a scheme.
Then, for all n > 0, the algebraic space X [n] is a scheme if and only if X → C
is strict, i.e. if and only if the graph Γ(X0) contains no loops.

Proof. If X → C is strict, then X [n] is a scheme by construction: it is recur-
sively defined as a resolution X [n] → X [n− 1] ×A1 A2 given Zariski locally on
the target by blowing up Weil divisors.
Conversely let X → C be non-strict. We reduce to n = 1: let A2 → An+1 be
the map (t1, t2) 7→ (t1, t2, 1, . . . , 1) and let C[1] → C[n] be the induced map.
Then there is a Cartesian diagram (see e.g. [Li13, 2.14 and 2.15])

X [1] X [n]

C[1] C[n]

so that if X [1] fails to be a scheme, then so does X [n].
As X0 is non-strict there exists a singular component Y ⊂ X0. Fix a singular
point P ∈ Y . The inverse image of (P ; 0, 0) by X [1] → X×A1A

2 is a P
1. If X [1]

is a scheme, hence a nonsingular variety, then there exists an effective divisor
H ⊂ X [1] intersecting this P1 in a positive number of points. In particular
the corresponding line bundle L = OX[1](H) has nontrivial restriction to P1.
Choose a Zariski open neighbourhood U ⊂ X of P , such that U does not
intersect any other component of X0 besides Y . Then U [1] is a Zariski open
neighbourhood of P1 ⊂ X [1]. The inverse image by U [1] → A2 of each of
the coordinate axes V (ti) ⊂ A2 is a principal prime divisor Di ⊂ U [1]. Thus
Pic(U [1]) ∼= Pic(U [1] \ (D1 ∪ D2)) by restriction. Also, the fibre U0 ⊂ U over
0 ∈ A1 is a principal prime divisor, so Pic(U) ∼= Pic(U \U0) by restriction. But
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U [1] \ D1 ∪ D2 is a principal Gm-bundle over U \ U0, being a pullback of the
multiplication map A2 \ {t1t2 = 0} → A1 \ {0}. Thus pullback π∗ : Pic(U) →
Pic(U [1]) is surjective, and thus there is a line bundle M on U such that
π∗(M ) ∼= L |U [1]. But the restriction of π∗(M ) to P1 is trivial.

1.2.3 Criterion for X [n] → C[n] to be projective

Proposition 1.10. Let X → C be a projective strict simple degeneration with
oriented dual graph Γ(X0). Then, for each n > 0, the morphism X [n] → C[n]
is projective if and only if Γ(X0) contains no directed cycles.

Proof that no cycles =⇒ projective. By induction we can assume that X [n−
1] → C[n− 1] is projective. Then X [n− 1] ×C[n−1]C[n] → C[n] is projective as
well. It thus suffices to show that the resolution X [n] of X [n−1]×C[n−1]C[n] ∼=
X [n − 1] ×A1 A2 is globally given by blowing up Weil divisors and their strict
transforms in a certain order. The required order will be dictated by the
oriented graph Γ(X0).
As Γ(X0) has no directed cycles, the components Y of X0 are partially ordered
by the rule Y ≤ Y ′ if there is a directed path from the node [Y ] to [Y ′] in
Γ(X0). We first claim that the resolution

X [1] → X ×A1 A
2

is the blow-up of all the Weil divisors Y × V (t2) and their strict transforms,
in increasing order with respect to the partial order of the components Y just
introduced. In fact, if D ⊂ Y ∩ Y ′ is a component corresponding to an arrow
in the direction

[Y ]
[D]
−−→ [Y ′]

then the construction of X [1] in Definition 1.5 and Proposition 1.4 instructs us
to blow up along Y × V (t2) in a neighbourhood of D × {0, 0}. Thus globally
blowing up along Y × V (t2) has the required effect there. Moreover, having
resolved the singularity at D× {(0, 0)}, the strict transform of the Weil divisor
Y ′ ×V (t2) is now Cartier over D×A1 A

2, so a later blow-up in the given partial
order has no effect over those loci D × {(0, 0)} already resolved. Lastly, if Y
and Y ′ are unrelated in the partial order they are disjoint, so the blow-up order
is irrelevant. This proves the claim for X [1].
X [1] viewed as a family over A1 via second projection A2 → A1 is again simple
with dual graph Γ(X [1]|t2=0) canonically isomorphic to Γ(X0). More precisely,
for Y and D running through the components of X0 and the components of
its singular locus respectively, let Y (1) and D(1) denote the strict transforms of
Y ×V (t2) and of D×V (t2) by the resolution X [1] → X×A1 A

2. Then Y (1) are
precisely the components of X [1]|t2=0 and D(1) are precisely the components of
its singular locus. This follows by applying the claim in the proof of Proposition
1.4 to Zariski open neighbourhoods U around D. By induction the resolution

X [n] = X [n− 1][1] → X [n− 1] ×A1 A
2

Documenta Mathematica 24 (2019) 421–472



Degenerations of Hilbert Schemes 435

is thus the composition of the blow-ups along the strict transforms of Y (n−1) ×
V (t2) in increasing order with respect to the partial order of the components
Y . It is thus projective.

Proof that cycle =⇒ not projective. As in the proof of Proposition 1.9, we
reduce to n = 1 by pullback along C[1] → C[n].
Let X0 =

⋃
Yi and D =

⋃
Du be the decompositions of the special fibre and

its singular locus into irreducible components. Fix a point Pu on each Du. The
fibre of X [1] → X ×A1 A2 over each (Pu; 0, 0) is a P1, which we denote P1

u. If
X [1] → C[1] is projective, there exists a relatively ample line bundle L on
X [1]. Thus L restricts to an ample line bundle on the fibres of X [1] → C[1];
in particular it restricts to a line bundle of positive degree on each P1

u.
For m = 1, 2, let Him ⊂ X [1] be the divisor obtained as strict transform of
Yi ×A1 V (tm) ⊂ X×A1 A2. Arguing as in the proof of Proposition 1.9, we arrive
at the diagram

⊕
ZHim Pic(X [1]) Pic(X [1] \ ∪Him) 0

⊕
ZYi Pic(X) Pic(X \X0) 0

π∗

(where the rightmost vertical map is surjective by the principal Gm-bundle
argument). Hence L can be written OX[1](

∑
km nkmHkm) ⊗ π∗(M ) for some

line bundle M on X . But the restriction of π∗(M ) to each P
1
u is trivial,

hence also
∑

km nkmHkm has positive degree on each P1
u. We shall show that

this imposes conditions on the coefficients nkm that are incompatible with the
presence of a cycle in Γ(X0).
For each Du, there is a corresponding arrow [Yj ] → [Yi] in Γ(X0). Replace X
with a Zariski local neighbourhood of Du such that X0 just consists of the two
components Yi and Yj , with irreducible intersection Du. This has the effect
of replacing X [1] with a Zariski open neighbourhood of P1

u. Then X [1] is the
blow-up of X ×A1 A2 along the Weil divisor Yj ×A1 V (t2). One can check, e.g.
by a computation in local coordinates, that the total and strict transforms
of Yj × V (t2) agree. Hence Hj,2, viewed as the inverse image of the blow-up
centre, restricts to OP1

u
(−1) on P1. Locally around P1

u, the divisors Hi,1 +Hj,1,
Hi,2 +Hj,2, Hi,1 +Hi,2 and Hj,1 +Hj,2 are all principal, given by t1 = 0, t2 = 0,
a local equation for Yi and a local equation for Yj , respectively. So we have

OP1
u
(Hi,1) = OP1

u
(−1) OP1

u
(Hi,2) = OP1

u
(1)

OP1
u
(Hj,1) = OP1

u
(1) OP1

u
(Hj,2) = OP1

u
(−1)

whereas all other OP1
u
(Hk,m) are trivial, for m = 1, 2 and k anything but i and

j. Thus, the condition for
∑

km nkmHkm to have positive degree on P1
u is

(nj,1 − nj,2) + (ni,2 − ni,1) > 0.
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Now label the nodes [Yj ] in a directed loop as j = 1, . . . , r. Then

(n1,1 − n1,2) + (n2,2 − n2,1) > 0

(n2,1 − n2,2) + (n3,2 − n3,1) > 0

(n3,1 − n3,2) + (n4,2 − n4,1) > 0

...

(nr,1 − nr,2) + (n1,2 − n1,1) > 0

and the sum of the left hand sides is zero; this is the required contradiction.

1.2.4 Inversion of orientation

The expanded degeneration X [n] → C[n] depends on a choice of orientation of
the dual graph Γ(X0). We observe that the effect of reversing the orientation,
i.e. reversing the direction of all arrows, is only to permute the coordinates in
C[n]:

Proposition 1.11. Let X [n] → C[n] and X [n]′ → C[n] be the two expanded
degenerations associated with opposite orientations of the dual graph Γ(X0).
Then there is a G[n]-equivariant isomorphism X [n] ∼= X [n]′ covering the invo-
lution ρ of C[n] = C ×A1 An+1 induced by

A
n+1 → A

n+1, (t1, t2, . . . , tn+1) 7→ (tn+1, tn, . . . , t1).

Proof. X [n] and X [n]′ are both resolutions of X ×C C[n], so there is a unique
birational map φ making the following diagram commute:

X [n] X [n]′

X ×C C[n] X ×C C[n]

φ

1X×ρ

We claim that φ is in fact biregular. This is an étale local claim over X , so it
suffices to verify that φ is biregular in the situation of the local equations in
Proposition 1.7 (i). This is immediate, since reversal of the orientation amounts
to interchanging the roles of x and y in these equations. It is clear that φ is
equivariant.

1.3 The fibres of X [n] → C[n]

Fix a strict simple degeneration X → C and an orientation of the dual graph
Γ. We shall introduce notation describing the fibres of X [n] → C[n] and how
they are smoothed as coordinates in An+1 move from zero to nonzero.
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1.3.1 Expanded graphs

Let I ⊂ [n + 1] be a subset and let A
n+1
I ⊂ An+1 be the locus where all the

coordinates ti vanish for i ∈ I. Let C[n]I = C×A1 A
n+1
I and let X [n]I → C[n]I

be the restriction of X [n] → C[n]. Let Γ be the dual graph of X0 equipped
with an orientation.
In view of future applications we will use the following notation. If I ⊂ [n+ 1]
is a non-empty subset, then we denote its elements by

I = {a1, . . . , ar}, a1 < a2 < . . . < ar.

We construct an oriented graph ΓI (associated to Γ) by replacing each arrow

• → •

in Γ with |I| arrows labelled by I in ascending order in the direction of the
arrow:

•
a1−→ ◦

a2−→ ◦ → · · ·
ar−→ • (4)

It is useful to colour the old nodes black and the new ones white — so the
valence of any white node is 2, and the valence of any black node is unchanged
from Γ. Label the black nodes [YI ], where [Y ] is the corresponding node in Γ.

Label the white nodes ∆D,ai

I , where ai is the incoming arrow and [D] is the

corresponding arrow in Γ. We frequently suppress D and write ∆ai

I = ∆D,ai

I .

1.3.2 Components of X [n]I

When I ⊂ J are two non-empty subsets of [n+1] we may view ΓI as constructed
from ΓJ by deleting all arrows labelled by J \ I, and identifying the nodes at
the ends of each deleted arrow. Thus the set of nodes in ΓI is a quotient of the
set of nodes in ΓJ , and we let

q = qJ,I : ΓJ → ΓI

denote the quotient map on nodes (it is not defined on arrows, despite the
notation).

Proposition 1.12. Let X → C be a strict simple degeneration with oriented
dual graph Γ(X0) and let I ⊂ [n+ 1] be non-empty.

a) X [n]I is a union of nonsingular components with normal crossings with-
out triple intersections, i.e. it is étale locally isomorphic to the union of
two hyperplanes in affine space. Furthermore, each component is flat over
C[n]I and is a simple degeneration over the pointed curve (A1, 0), via any
coordinate ti : An+1

I → A1 for i 6∈ I.

b) There is a natural isomorphism between ΓI and the dual graph of X [n]I ,
uniquely determined by the following: each (black) node [YI ] in ΓI cor-
responds to a component YI ⊂ X [n]I wich is mapped birationally onto
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t1 t2

Figure 1: X [1] over A2

Y ×C C[n]I by the natural birational map X [n] → X ×C C[n], whereas

the (white) nodes [∆D,ai

I ] correspond to components ∆D,ai

I ⊂ X [n]I which
are contracted onto D ×C C[n]I .

c) When V is a component of X [n]I and I ⊂ J are non-empty, the intersection
V ∩X [n]J is the union of all components W of X [n]J such that q([W ]) = [V ].

The Proposition can be seen as a detailed version of [LW11, Lemma 2.2] by
Li–Wu and we only sketch a proof.

Proof. The base curve C plays no role so we let C = A
1. Argueing via an

appropriate Zariski open cover of X it suffices to treat the basic situation with
central fibre X0 = Y ∪ Y ′ having two irreducible components and irreducible
intersection D = Y ∩ Y ′. Label the components such that the arrow [D] in
Γ(X0) points from [Y ′] to [Y ].
Firstly the small resolution π : X [1] → X ×A1 A2 is the blow-up along the Weil
divisor Y ′×(A1×{0}). Let E ⊂ X [1] denote the inverse image ofD×{(0, 0)}. It
is straight forward to verify the following by computing the blow-up explicitly:

• The restriction of X [1] to {0} × A1 ⊂ A2 is a normal crossing union
X [1]{1} = Y ′

{1} ∪ Y{1}, where π restricts to an isomorphism Y ′
{1} → Y ′ ×

({0} × A1) and a blow-up Y{1} → Y × ({0} × A1) along D × {(0, 0)}.
The exceptional divisor of the blow-up is E ⊂ Y{1}. The intersection
Y ′

{1} ∩ Y{1} maps isomorphically to D × ({0} × A1).

• The restriction of X [1] to A
1 × {0} ⊂ A

2 is similar with the roles of Y
and Y ′ interchanged.
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• The restriction of X [1] to (0, 0) ∈ A2 is a normal crossing union
X [1]{1,2} = Y ′

{1,2} ∪ ∆1
{1,2} ∪ Y{1,2}, where ∆1

{1,2} = E and π restricts

to isomorphisms Y ′
{1,2} → Y ′ × {(0, 0)} and Y{1,2} → Y × {(0, 0)}. Via

these identifications, Y ′
{1,2} ∩ E is D ⊂ Y ′ and Y{1,2} ∩ E is D ⊂ Y ,

whereas Y ′
{1,2} and Y{1,2} are disjoint.

The proposition follows for X [1].
Before continuing it is useful to observe that by Proposition 1.11 inverting the
orientation of Γ(X0) has the same effect as interchanging the coordinates on
A2. Thus X [1] can equally well be obtained by blowing up X ×A1 A2 along
Y × ({0} × A1).
Inductively assume the proposition holds for X [n− 1]. Let I ⊂ [n + 1] be an
index set containing neither n nor n+1 and denote by I the same set considered
as a subset of [n].
Claim: There is a fibre diagram

X [n]I X [n− 1]I ×A1 A2

YI YI ×A1 A2

πI

where

• πI is the restriction of π to A
n+1
I

• πI is an isomorphism outside YI

• YI = YI [1] viewing YI as a simple degeneration over A1 via tn : An → A1

with dual graph oriented such that its unique arrow points towards the
node [YI∪{n}].

To verify the claim, take advantage of the observation preceeding it to view π
as the blow-up of X [n − 1] ×A1 A2 along the Weil divisor Y{n} × ({0} × A1).
This blow-up centre restricts to

(
Y{n} × ({0} × A

1)
)

∩
(
X [n− 1]I ×A1 A

2
)

= YI∪{n} × ({0} × A
1).

by part (c) for X [n− 1]. By a local computation one checks that the total and
strict transforms of YI ×A1 A2 agree, so that YI is in fact its blow-up along
YI∪{n} × ({0} × A1). Again this is YI [1]. This proves the claim.

By the claim one can read off the components of X [n]I inductively from X [n−
1]I . Applying the n = 1 case to YI = YI [1] one also obtains the components of
X [n]I∪{n}, X [n]I∪{n+1} and X [n]I∪{n,n+1}. The verification of the proposition
from the claim and the n = 1 case is then reduced to a book keeping exercise
we refrain from writing out.
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Figure 1 depicts X [1] over the coordinate axes in A2. With notation as in
the proof the uppermost components are Y ′

{1} and Y ′
{2} whereas the lowermost

components are Y{1} and Y{2}. The fibre over the origin has the additional
component ∆1

{1,2}.

1.3.3 In local coordinates

Consider the étale local situation from Section 1.1.5, whereX [n] has the explicit
open affine cover {Wk}. Let Wk,I = Wk ∩ X [n]I . Let (i, j) be a pair of
consecutive elements in I ∪ {0, n+ 2}. As one immediately verifies, each ∆i

I is
given by the local expressions

∆i
I ∩Wi,I = V

(
vi−1

ui−1

)
,

∆i
I ∩Wk,I = Wk,I for i < k < j,

∆i
I ∩Wj,I = V

(
uj

vj

)
.

These expressions include Y ′
I and YI for Y ′ = V (y) and Y = V (x) as the

extremal cases i = 0 and i = max I.

1.4 Linearization

In this section we shall assume that X → C is a projective simple degeneration,
and we moreover assume that the dual graph Γ(X0) is equipped with a bipartite
orientation (see below for a formal definition). The main aim of this section is
to exhibit a particular G[n]-linearized line bundle on X [n], which will then be
used for our application of GIT to the relative Hilbert scheme of X [n] → C[n]
in Section 2. The choice of linearization we make is not obvious. The one we
have found has the advantage that it gives a well behaved semi-stable locus in
the Hilbert scheme. The bipartite condition is indeed a crucial condition as we
shall see in Section 2, in particular Example 2.11.

1.4.1 Étale functoriality

As preparation, we observe that the construction X 7→ X [n] is functorial with
respect to étale maps.

Proposition 1.13. Let X → C be a strict simple degeneration and let
f : X ′ → X be an étale morphism. Orient the dual graphs such that the in-
duced map Γ(X ′

0) → Γ(X0) is orientation preserving. Then there are induced
étale morphisms f [n] : X ′[n] → X [n] for all n, making the following diagram
Cartesian:

X ′[n] X [n]

X ′ X.

f [n]

f
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Proof. Observe that for each component Y ′ ⊂ X ′
0, the image f(Y ′) is dense in

some component Y ⊂ X0. Similarly, if D′ ⊂ X ′
0 is a component of the singular

locus, the image f(D′) is dense in some component D of the singular locus of
X0. This defines the map Γ(X ′

0) → Γ(X0) on vertices and edges, respectively.
Let D ⊂ X0 be a component of the singular locus and let U ⊂ X be a Zariski
open neighbourhood of D, such that U0 = U ∩X0 has two components Y1 and
Y2 with D = Y1 ∩ Y2. Order the two components such that the arrow [D] in
Γ(X0) points from [Y1] to [Y2]. Then U [1] → U ×A1 A2 is the blow-up along
Y1 × V (t2).
Let U ′ = f−1(U). It is a Zariski open subset of X ′, and U ′

0 = U ′ ∩ X ′
0

has the following structure: it has a number (possibly zero) of components Y ′
1,i

mapping to Y1, a number of components Y ′
2,i mapping to Y2, the only non-empty

intersections are of the form Y ′
1,i ∩Y ′

2,i, and all components of Y ′
1,i ∩Y ′

2,i map to
D. We abuse notation and write [Y ′

j,i] for the vertex in Γ(X ′
0) corresponding to

the closure of Y ′
j,i. Since the map on oriented graphs respects the orientation,

all arrows in Γ(X ′
0) point from [Y ′

1,i] to [Y ′
2,i]. Thus U ′[1] ⊂ X ′[1] is obtained by

blowing up all Y ′
1,i ×V (t2) ⊂ U ′ ×A1 A2, and as the Y ′

1,i’s are disjoint, they may
be blown up simultaneously. As f is étale, and hence flat, blow-up commutes
with base change in the sense that the diagram

U ′[1] U [1]

U ′ ×C C[1] U ×C C[1]

is Cartesian. The topmost arrow defines f [1] over U ′[1]. Cover X by Zariski
open neighbourhoods U of this form to define f [1] everywhere. Being a pullback
of the étale map f , the map f [1] is also étale.
In view of the recursive construction, the procedure may be repeated: having
defined the étale morphism f [n − 1] : X ′[n − 1] → X [n − 1], inducing an ori-
entation preserving map on the oriented graphs of the respective fibres over
tn = 0, cover X [n − 1] by Zariski opens U ⊂ X [n − 1] as before and let

U ′ = f [n − 1]−1(U). Let Ũ ⊂ X [n] be the inverse image of U ×A1 A2 by the

resolution X [n] → X [n− 1] ×A1 A2 and let Ũ ′ ⊂ X ′[n] be defined analogously.
The Cartesian diagram

Ũ ′ Ũ

U ′ ×A1 A
2 U ×A1 A

2

defines f [n] over Ũ ′.

Remark 1.14. In the notation of Proposition 1.13, once an orientation on
Γ(X0) has been chosen, there is a unique orientation on Γ(X ′

0) making the
map of graphs Γ(X ′

0) → Γ(X0) orientation preserving.
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Remark 1.15. As is immediate from Proposition 1.13, if the morphism X → C
carries an action by a group H which respects the orientation on Γ(X0), then
X [n] → C[n] inherits an H-action.

1.4.2 Bipartite orientations

Let X → C be a projective simple degeneration. The following notion will be
crucial for our construction.

Definition 1.16. We say that the dual graph Γ(X0) is bipartite if its vertex
set V can be written as a disjoint union V = V + ∪ V −, such that there are
no edges between any pair of vertices in V + or in V −. The choice of such a
decomposition V = V + ∪ V − induces an orientation of Γ(X0) with all arrows
pointing from V − to V +. We shall call orientations of this form bipartite.

Equivalently, an orientation is bipartite when every vertex is either a source
or a sink. As is well known, a graph can be given a bipartite orientation
if and only if it has no cycles of odd length, and when this holds, and the
graph is connected, there are exactly two bipartite orientations, obtained from
one another by reversing all arrows. Although the assumption that Γ(X0) is
bipartite is a restriction, one can always produce this situation after a quadratic
base change:

Remark 1.17. Up to a quadratic extension in the base, we can always assume
that Γ(X0) admits a bipartite orientation. Indeed, let C′ → C be a base
extension obtained by extracting a square root of a local parameter at 0 ∈ C,
and let D ⊂ Y ∩Y ′ be any component of the double locus in X0. Then X×CC

′

acquires a transversal A1-singularity, i.e. a cone over a conic, along D × {0}.
Blowing up this A1-singularity yields a projective simple degenerationX ′ → C′,
where the inverse image ỸD of D in X ′ is a P1-bundle intersecting the strict
transforms of Y and Y ′ in disjoint sections. Now one can orient Γ(X ′

0) by
letting all edges point towards the exceptional components.

In a bipartite orientation there are in particular no directed cycles, so by Propo-
sition 1.10, all X [n] → C[n] are projective.

1.4.3 Embedding in P1-bundles

As a convenient tool for describing line bundles on X [n] we next exhibit an
embedding of X [n] into a product of P1-bundles over X ×A1 An+1. This is a
globalized version of the local equations in Proposition 1.7.
In Proposition 1.10 the desingularization

X [n] → X [n− 1] ×A1 A
2

was shown to be given globally as a sequence of blow-ups: with Y running
through the components of X0 we blow up along the strict transforms of
Y × V (tn+1) ⊂ X ×A1 An+1 using the orientation of Γ(X0) to determine the

Documenta Mathematica 24 (2019) 421–472



Degenerations of Hilbert Schemes 443

blow-up order. Moreover the penultimate blow-up already resolves all singular-
ities, so the very last blow-up, corresponding to sinks in Γ(X0), has a Cartier
divisor as centre and thus has now effect. Thus, in the bipartite situation the
above desingularization is a single blow-up: its centre is the strict transform
of Y(0) × V (tn+1) ⊂ X ×A1 A

n+1 where Y(0) is the disjoint union of all compo-
nents in X0 corresponding to source nodes in Γ(X0). By e.g. a computation in
local coordinates one verifies that this strict transform coincides with the total
transform, so the blow-up centre can be written

p−1
n−1(Y(0)) × V (tn+1) ⊂ X [n− 1] ×A1 ×A

2

where we use coordinates (tn, tn+1) on the last factor A2 and

pn−1 : X [n− 1] → X

is the composition of the resolution X [n− 1] → X ×A1 An with the projection
X ×A1 An → X .
We shall realize the blow-up X [n] → X [n − 1] ×A1 A2 as the strict transform
of X [n − 1] ×A1 A2 under the blow-up of the product X [n − 1] × A2 along
p−1

n−1(Y(0)) ×V (tn+1). Let I ⊂ OX[n−1]×A2 be the ideal sheaf of the latter and
define the rank two vector bundle

E = pr∗
1 OX[n−1](−p

∗
n−1Y(0)) ⊕ pr∗

2 OA2(−V (tn+1))

on X [n − 1] × A2. Let y ∈ H0(X,OX(Y(0))) be a defining equation for Y(0).
The surjection

E

(
p∗

n−1y
tn+1

)

−−−−−−−→ I

induces a closed embedding P(I ) ⊂ P(E ) and the blow-up of X [n − 1] × A2

further embeds into P(I ). Thus the strict transform X [n] of j : X [n− 1] ×A1

A2 →֒ X [n− 1] × A2 inherits a closed embedding into P(j∗E ). Moreover, let

πn : X [n− 1] ×A1 A
2 → (X ×A1 A

n) ×A1 A
2 ∼= X ×A1 A

n+1

be the canonical projection and define the vector bundle

Fn = pr∗
1 OX(−Y(0)) ⊕ pr∗

2 OAn+1(−V (tn+1))

on X×A1 An+1. Then there is a canonical identification j∗E ∼= π∗
nFn and thus

we have arrived at a closed embedding

X [n] ⊂ π∗
nP(Fn)

over X [n− 1] ×A1 A2. We claim that, by iteration, we obtain an embedding

X [n] ⊂
n∏

i=1

Pi (5)
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where the product symbol denotes fibred product over X ×A1 An+1, and Pi

is the P1-bundle over X ×A1 An+1 obtained by pulling back P(Fi) over the
map X ×A1 An+1 → X ×A1 ×Ai+1 that multiplies together the last n + 1 − i
coordinates on An+1. For n = 1 there is nothing to prove, and for n = 2 there
is a commutative diagram

X [2] ⊂ π∗
2P2 X [1] ×A1 A2 ⊂ P1

P2 X ×A1 A
3

π2

where the square is Cartesian. It follows formally from the diagram that there
is an embedding X [2] ⊂ P1 × P2, where the product is over X ×A1 A3. The
general induction step in proving (5) is similar.

1.4.4 The linearization

Consider first the local situation in Proposition 1.7 and let L0 be the ample line
bundle O(P1)n(1, . . . , 1) pulled back to X [n]. We shall write down a particular

linearization of the tensor power L
n+1
0 . First let G[n]′ be a “second copy” of

the group G[n], acting on X [n] via the (n + 1)’st power map G[n]′ → G[n],
sending τ̃ ∈ G[n]′ to τ = τ̃n+1 in G[n]. The induced G[n]′-action on the i’th
factor P1 can be lifted to A2 in many ways; we pick the particular lifting that
acts on (ui, vi) ∈ A2 by

(ui, vi)
τ̃
7→ ((τ̃i)

iui, τ̃
i−(n+1)
i vi), (6)

using the coordinates in Remark 1.8. We remark that our preference for this
choice is not obvious at this point, but it will lead to a well behaved GIT
stable locus in Section 2. The lifted G[n]′-action on (A2)n gives rise to a G[n]′-
linearization of L0. The kernel of G[n]′ → G[n] acts trivially on L

n+1
0 , hence

we have defined a G[n]-linearization on L = L
n+1
0 .

Now we globalize this construction. For the notation in statement (i) in the
following lemma, we refer to Proposition 1.13 and Remark 1.14.

Lemma 1.18. Let X → C be a simple degeneration together with a bipartite ori-
entation of the dual graph Γ(X0). Then there exists a particular G[n]-linearized
ample line bundle L on X [n] such that:

(i) (Compatibility with étale maps:) Let f : X ′ → X be an étale map and
give Γ(X ′

0) the orientation induced by the one on Γ(X0). Then Γ(X ′
0)

is bipartite, and if L ′ denotes the corresponding G[n]-linearized ample
line bundle on X ′[n], then L ′ is isomorphic to the pullback of L along
f [n] : X ′[n] → X [n].

(ii) (Local description:) In the local situation of Proposition 1.7, the line
bundle L is the (n+ 1)’st power of O(P1)n(1, . . . , 1) pulled back to X [n],
with G[n]-linearization given by (6) as above.
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Proof. We use the notation from Section 1.4.3. Consider the following diagram:

X [n] ⊂
∏n

i=1Pi Pi P(Fi)

X ×A1 An+1 X ×A1 Ai+1

pri

The rightmost horizontal arrows are G[n]-equivariant when we let G[n] act on
the objects to the right via the projection

G[n] → G[i], (τ1, . . . , τi, . . . , τn) 7→ (τ1, . . . , τi), (7)

where we use the coordinates in Remark 1.8.
For each i ≤ n, the divisor V (ti+1) ⊂ A

i+1 is invariant under the G[i]-action,
and hence under the G[n]-action via (7). Hence the locally free sheaf

Fi = pr∗
1 OX(−Y(0)) ⊕ pr∗

2 OAn+1(−V (ti+1))

on X×A1An+1 has a canonicalG[n]-linearization (trivial on the first summand).
The induced G[n]-action on

∏
i Pi is compatible with the action on X [n].

Since Fi itself is G[n]-linearized, the G[n]-action on P(Fi) lifts to the geometric
vector bundle V(Fi), and hence comes with a canonical linearization with
underlying line bundle OP(Fi)(1). In the local situation of Proposition 1.7, the
lifted action can be checked to be given in the fibres by

(ui, vi)
τ
7→ (ui, τ

−1
i vi).

Guided by equation (6) we thus pick theG[n]′-action (where againG[n]′ → G[n]
is the (n + 1)’st power map) on V(Fi) given by the canonical action via G[n]
followed by scalar multiplication in the fibres of the vector bundle V(Fi) by
the factor τ̃ i

i . This induces the required G[n]-linearization of O(n + 1) on
P(Fi) for each i. Pull these back to

∏n
i=1 Pi and form their tensor product.

Restrict to X [n] to obtain the required linearized line bundle L . It fulfills (ii)
by construction.
For the compatibility with étale maps f : X ′ → X note that the union Y ′

(0) of

components in X ′
0 being source nodes in Γ(X ′

0) is precisely the inverse image of
the corresponding union Y(0) inX0. Thus the vector bundles Fi overX×A1Ai+1

pull back to the corresponding bundles F ′
i over X ′ ×A1 A

i+1 and so the product∏
i Pi of P1-bundles over X ×A1 An+1 pulls back to the corresponding product∏
i P

′
i over X ′ ×A1 An+1. It is thus enough to check that the embeddings of

X [n]′ and X [n] in their respective product bundles are compatible. We leave
the details to the reader.

1.4.5 Hilbert–Mumford invariants

We first recall the definition of the Hilbert–Mumford invariants. Let G denote
a linearly reductive group over k, which acts on a quasi-projective k-scheme Y .
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Assume moreover that we are given an ample G-linearized invertible sheaf P
on Y . Let λ : Gm → G be a one-parameter subgroup (for short 1-PS) of G and
y ∈ Y a point. If the limit y0 of y as τ ∈ Gm tends to zero exists in Y , then y0

is a Gm-fixed point and we define the value µP(λ, y) to be the negative of the
Gm-weight on the fibre P(y0). Otherwise, we put µP(λ, y) = ∞.
As preparation for the application of GIT in Section 2, we shall compute the
Hilbert–Mumford invariants µL (λs, P ) associated to arbitrary one parameter
subgroups

λs : Gm → G[n], τ 7→ (τs1 , τs2 , . . . , τsn ), (8)

where s = (s1, . . . , sn) is an n-tuple of integers, P is a point in X [n] and we
use τ -coordinates on G[n] as in Remark 1.8. Let

P0 = lim
τ→0

λs(τ) · P ∈ X [n]

provided the limit exists.
We shall write ti(P ) for the i’th coordinate of the image of P ∈ X [n] in A

n+1.

We use the notation YI and ∆D,i
I introduced in Section 1.3, and to avoid writing

out special cases it is convenient to define

∆D,0
I = Y ′

I , ∆D,max I
I = YI

whenever [Y ′]
[D]
−−→ [Y ] is an arrow in Γ(X0). For the same reason we let

s0 = sn+1 = 0.

Proposition 1.19. Let P ∈ X [n] and let P0 be its limit under a 1-PS (8) as
above, provided it exists. Define

I = {i | ti(P ) = 0}

so that P ∈ X [n]I .

(a) The limit P0 exists if and only if si−1 ≤ si for all i 6∈ I. If this is the
case, we have ti(P0) = 0 if and only if i is in

J = I ∪ {i | si−1 < si},

so P0 ∈ X [n]J .

(b) Assume the limit P0 exists and X [n]I is smooth at P , so that P is in

a unique component ∆D,i
I of X [n]I . Let j > i be the successor to i in

I ∪ {n+ 2}. By part (a), we have si ≤ si+1 ≤ · · · ≤ sj−1.

(i) Assume all sk 6= 0 for i ≤ k < j. Then i 6= 0 and i 6= max I. Define
a (i ≤ a ≤ j) by the property sk < 0 if and only if k < a, for all

i ≤ k < j. Then P0 ∈ ∆D,a′

J ∩ ∆D,a
J , where a′ < a is the predecessor

to a in J ∪ {0}, and µL (λs, P ) is the sum over all k = 1, 2, . . . , n of
contributions

−ksk for k < a,

(n+ 1 − k)sk for k ≥ a.
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(ii) Assume at least one sk = 0 for i ≤ k < j. Define a (i ≤ a ≤ j) and
b (i ≤ b ≤ j) by the property sk = 0 if and only if a ≤ k < b, for all

i ≤ k < j. Then P0 ∈ ∆D,a
J , X [n]J is smooth at P0, and µL (λs, P )

is the sum over all k = 1, 2, . . . , n of contributions

−ksk for k < a,

(n+ 1 − k)sk for k ≥ b.

(c) Assume the limit P0 exists and X [n]I is singular at P , so that P ∈ ∆D,i
I ∩

∆D,j
I for a consecutive pair i < j in I∪{0, n+1}. Then P0 ∈ ∆D,i

J ∩∆D,j
J

and µL (λs, P ) is the sum over all k = 1, 2, . . . , n of contributions

−ksk for k < j,

(n+ 1 − k)sk for k ≥ j.

Remark 1.20. In case (b), the contribution to µL (λs, P ) for k in the range
i ≤ k < j may be written

(
n+1

2 − k
)
sk + n+1

2 |sk|

regardless of the values of a and b.

Proof. Since π : X [n] → C[n] is proper, existence of the limit for P is equivalent
to the existence of the limit for Q = π(P ). The G[n]-action on C[n] = C ×A1

An+1 is a pullback from An+1, on which σ ∈ G[n] acts by

(t1, . . . , tn+1) 7→ (σ1t1, . . . , σn+1tn+1).

The 1-PS λs : Gm → G[n] is given in σ-coordinates by σi = τsi−si−1 . If ti
is nonzero, the limit of τsi−si−1ti, as τ approaches zero, exists if and only if
the exponent si − si−1 is nonnegative. More precisely, the limit equals ti if
si = si−1 and it is 0 if si > si−1. This proves (a).
In view of Lemma 1.18, the Gm-weight can be computed in the étale local
coordinates from Section 1.1.5. Let i < j be consecutive elements in I ∪ {0, n+
1}. In the étale local coordinates, as one easily verifies, the component ∆i

I of
X [n]I is given by the vanishing of tk for k ∈ I, together with

(uk : vk) = (1 : 0) for k < i,

(uk : vk) = (0 : 1) for k ≥ j,

and (consequently) ∆i
I ∩ ∆j

I is given by

(uk : vk) = (1 : 0) for k < j,

(uk : vk) = (0 : 1) for k ≥ j.

Clearly G[n] acts trivially on (uk : vk) = (1 : 0) and (uk : vk) = (0 : 1),
so to locate the limit point P0 it remains only to work out the action on
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(uk : vk) for the remaining range i ≤ k < j. The action by the 1-PS is given
by (uk : vk) 7→ (τskuk : vk). In case (b), when P is on a unique component ∆i

I ,
we have (uk : vk) 6= (1 : 0) and (uk : vk) 6= (0 : 1) for k in the range i ≤ k < j.
In case (b.i), we have

si ≤ · · · ≤ sa−1︸ ︷︷ ︸
<0

≤ sa · · · ≤ sj−1︸ ︷︷ ︸
>0

and thus the limit point P0 has coordinates

(uk : vk) = (1 : 0) for k < a

(uk : vk) = (0 : 1) for k ≥ a

which shows P0 ∈ ∆a′

J ∩ ∆a
J as claimed.

In case (b.ii), we have

si ≤ · · · ≤ sa−1︸ ︷︷ ︸
<0

≤ sa ≤ · · · ≤ sb−1︸ ︷︷ ︸
=0

≤ sb · · · ≤ sj−1︸ ︷︷ ︸
>0

and thus the limit point P0 has coordinates

(uk : vk) = (1 : 0) for k < a

(uk : vk) = (0 : 1) for k ≥ b

with the remaining (uk : vk), for a ≤ k < b equal to those of P . Thus P0 ∈ ∆a
J

and it is a smooth point in X [n]J .
In case (c), P has coordinates

(uk : vk) = (1 : 0) for k < j

(uk : vk) = (0 : 1) for k ≥ j

and the Gm-action does not change these, so P0 has the same (uk : vk)-
coordinates: thus P0 ∈ ∆i

J ∩ ∆j
J .

It remains to write down the weights for the induced Gm-action on L (P0).
Consider the 1-PS λn+1

s
: Gm → G[n] obtained by composing λs with the (n+

1)’st power map. By definition of the linearized line bundle L = L
n+1
0 in

Section 1.4, the λs-weight on L (P0) agrees with the λn+1
s

-weight on L0(P0).
Since L0 is the tensor product of the pullbacks of the tautological bundles
OP1 (1) on each factor in (P1)n, the total λn+1

s -weight on L0 is the sum of
contributions of λn+1

s
-weights on each factor P1. On the k’th factor, the λn+1

s
-

linearization is defined by the lifted action, from P1 to A2, for which τ̃ ∈ Gm

acts by
(uk, vk) 7→ ((τ̃ )kskuk, (τ̃ )(k−(n+1))skvk).

The λn+1
s -fixed point P0 necessarily has coordinates (uk : vk) of the form (1 : 0)

or (0 : 1) for all k with sk 6= 0. The λn+1
s

-weight is thus the sum of ksk

over all k for which (uk : vk) = (1 : 0) and (k − (n + 1))sk over all k for
which (uk : vk) = (0 : 1). Reversing the signs gives the claimed expressions for
µL (λs, P ).
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2 GIT-analysis

The G[n]-linearized invertible sheaf L on X [n] constructed in Lemma 1.18
gives rise to a certain ample linearized invertible sheaf Mℓ on H

n :=
Hilbn(X [n]/C[n]) (the integer ℓ ≫ 0 plays only a formal role). In this sec-
tion we apply a relative version of the Hilbert–Mumford criterion to carry out
a detailed analysis of (semi-)stability for points in H

n, with respect to Mℓ.
This leads to our main result in this section, Theorem 2.10, which provides a
detailed combinatorial description of the (semi-)stable locus.

2.1 Relative GIT

We first give a brief summary of how Mumford’s Geometric Invariant Theory
[MFK94] can be carried out in a relative setting. For further details, we refer
to [GHH15].

Let S = SpecA be an affine scheme of finite type over k, and let f : Y → S
be a projective morphism. Let G be an affine linearly reductive group over k.
Assume that G acts on Y and S such that f is equivariant. Let P be an ample
G-linearized invertible sheaf on Y . Then one can define the set of stable points
Y s(P) and the set of semi-stable points Y ss(P) in a similar fashion as in the
absolute case. These sets are open and invariant. For the semi-stable locus,
there exists a universally good quotient

φ : Y ss(P) → Z.

We shall often refer to Z as the GIT quotient of Y by G. Moreover, there is
an open subscheme Z̃ ⊂ Z with Y s(P) = φ−1(Z̃), such that the restriction

Y s(P) → Z̃

is a universally geometric quotient. For the applications in this paper, it is of
particular importance to note that Z is relatively projective over the quotient
S/G = SpecAG.

The main tool we shall use in order to compute the (semi-)stable locus, is a
relative version of the well-known Hilbert–Mumford numerical criterion. This
can be formulated as follows [GHH15, Cor. 1.1] (recall our definition of the
Hilbert–Mumford invariants in 1.4.5).

Proposition 2.1. Let y ∈ Y be a point.

1. The point y is stable if and only if µP(λ, y) > 0 for every nontrivial 1-PS
λ : Gm → G.

2. The point y is semi-stable if and only if µP(λ, y) ≥ 0 for every 1-PS
λ : Gm → G.
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2.2 Notation and setup

Let C = SpecA be a smooth, connected affine k-curve and let X → C be a
projective simple degeneration. We assume that the dual graph Γ := Γ(X0)
allows a bipartite orientation, and we keep fixed one of the two possible such
orientations throughout this section.

Let X [n] → C[n] be the n-th expanded degeneration of X → C (with respect
to the given orientation on Γ). By Proposition 1.10, the model X [n] is again
projective over C[n]. We denote by L the G[n]-linearized line bundle on X [n]
constructed in Lemma 1.18. Finally let λs be a one parameter subgroup of
G[n] as in (8).

2.2.1 The determinant line bundle

The relative Hilbert scheme H
n := Hilbn(X [n]/C[n]) is again projective over

C[n], and it inherits an action by G[n] such that the structural map H
n → C[n]

is equivariant. Let Z
n ⊂ H

n ×C[n] X [n] be the universal family and denote by
p and q the first and second projections, respectively. Then the line bundle

Mℓ := det p∗

(
q∗

L
⊗ℓ|Zn

)

is relatively ample when ℓ ≫ 0 [HL10, Prop. 2.2.5], and it inherits a G[n]-
linearization from L (cf. e.g. the discussion in [HL10, Page 90]). To simplify
notation, we write M instead of M1.

2.2.2 Reduction to smooth subschemes

Let us fix a 1-PS λs and a point [Z] ∈ H
n. Assume that the limit of λs(τ) · Z

as τ goes to zero exists in H
n; we denote this limit by Z0. Then Gm acts on

the fibre of Mℓ at Z0, and we will now investigate this representation in some
detail.

We decompose the limit as

Z0 =
⋃

P

Z0,P ,

with Z0,P a finite subscheme of length nP supported in P . Now OZ0 ⊗ L is
trivial as a line bundle on Z0, but its Gm-action is nontrivial. Writing L (P )
for the fibre of L at P , we have an isomorphism

H0(OZ0 ⊗ L ) =
⊕

P

(
H0(OZ0,P

) ⊗ L (P )
)
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as Gm-representations. Taking determinants, we find

∧nH0(OZ0 ⊗ L ) =
⊗

P

∧nP
(
H0(OZ0,P

) ⊗ L (P )
)

=
⊗

P

∧nP
(
H0(OZ0,P

)
)

⊗ L (P )nP

=
(

∧n H0(OZ0 )
)

⊗
( ⊗

P

L (P )nP

)
.

Definition 2.2. We define the bounded weight µM
b (s, Z), resp. the combina-

torial weight µM
c (s, Z), to be the negative of the Gm-weight on ∧nH0(OZ0 ),

resp. on
⊗

P L (P )nP .

Having made this definition we can, accordingly, write the negative of the Gm-
weight on ∧nH0(OZ0 ⊗ L ) as a sum of µM

b (s, Z) and µM
c (s, Z). Clearly, if we

replace L by L ℓ in these expressions we find, for any s, that

µMℓ
c (s, Z) = ℓ · µM

c (s, Z)

and that

µMℓ

b (s, Z) = µM
b (s, Z),

since the bounded weight only depends on the underlying limit subscheme Z0.

Now if ℓ ≫ 0, we in fact have that

Mℓ(Z0) = ∧nH0(OZ0 ⊗ L
ℓ),

thus we obtain a sum-decomposition of the Hilbert–Mumford invariant attached
to Mℓ, s and Z:

µMℓ(s, Z) = µMℓ

b (s, Z) + µMℓ
c (s, Z). (9)

Since the right hand side is defined for all ℓ ∈ N, we formally use the expression
µMℓ (s, Z) to denote the above sum in all cases.

Note that for every Z and s in the situation above, the value µM
c (s, Z) only

depends on the underlying cycle of Z, and not on its scheme structure. This
fact is why we chose the terminology combinatorial weight. The terminology
bounded weight, however, is explained by the following lemma.

Lemma 2.3. Let [Z] ∈ H
n and let s ∈ Zn be any element such that the limit of

λs(τ) · Z, as τ goes to zero, exists. Then there are integers ai = ai(Z, s) such
that

µM
b (s, Z) =

n∑

i=1

aisi,

where |ai| ≤ 2n2 for every i.
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Proof. Let q ∈ C[n] be the point such that the limit Z0 of Z is contained

in the fibre X [n]q. Then q is a Gm-fixpoint. Let D̃ ⊂ X0 be the singular

locus and denote by ∆̃ ⊂ X [n] the inverse image of D̃×C C[n] under the G[n]-
equivariant map X [n] → X ×C C[n]. This map restricts to an isomorphism

X [n] \ ∆̃ → (X \ D̃) ×C C[n], and it follows that the Gm-action on each Z0,P

is trivial (so the weight is zero) unless Z0,P is supported on ∆̃.

Now we consider the case where P is a point in ∆̃. Because Z0,P is a finite local
scheme, with P a Gm-fixpoint, we can work étale locally and use the coordinates
from Section 1.1.5. More precisely, locally at P , we can find an étale chart
Wj+1 with coordinates t1, . . . , tn+1, ṽj , ũj+1, with relation tj+1 = ṽj ũj+1, and,
depending on the relative dimension of X → C, additional coordinates {zα}α

(subject to no relations). Here we write, for simplicity, ṽj and ũj+1 instead of

vj/uj and uj+1/vj+1, respectively. Since P ∈ ∆̃ we can assume tj+1(P ) = 0,
which implies that ṽj ũj+1 = 0 at P as well.
If ũj+1 6= 0 or ṽj 6= 0 at P , then, by the fact that P is a Gm-fixpoint, a direct
computation using our coordinates shows that Gm acts trivially in an étale
neighbourhood of P in X [n]q, and hence on Z0,P .
If ũj+1 = ṽj = 0 at P , then the coordinate ring of Z0,P is spanned by nP

monomials MP,r in the variables ṽj , ũj+1 and the zα-s, with each monomial
necessarily of degree at most nP . As ũj+1 and ṽj are semi-invariant with
weights sj+1 and −sj, whereas the zα-s are invariant, it follows that the Gm-
weight for each monomial MP,r is of the form −cr,jsj + cr,j+1sj+1, where cr,j,
resp. cr,j+1, denotes the multiplicity of ṽj , resp. ũj+1, in MP,r. In particular,
cr,j and cr,j+1 are bounded by nP .
Now we sum over all the points P in the support of Z0. Since the integers nP

sum up to n as P runs over the points in the support of Z0, we arrive at the
asserted expression for the weight on ∧nH0(OZ0 ).

The following lemma states that, under certain conditions, the combinatorial
weight will dominate the bounded weight, provided that we replace L by a
sufficiently high tensor power.

Lemma 2.4. Let [Z] ∈ H
n and let ℓ ≫ 2n2 be an integer.

1. Assume, for every s ∈ Zn such that the limit of λs(τ) ·Z as τ goes to zero
exists, that there exist integers bi = bi(s, Z) such that

µM
c (s, Z) =

n∑

i=1

bisi,

where bisi > 0 if si 6= 0. Then [Z] ∈ H
n(Mℓ)

s.

2. Let s ∈ Zn be a nonzero tuple such that the limit of λs(τ) ·Z as τ goes to
zero exists. Assume there exist integers bi = bi(s, Z) such that

µM
c (s, Z) =

n∑

i=1

bisi,

Documenta Mathematica 24 (2019) 421–472



Degenerations of Hilbert Schemes 453

where bisi < 0 if si 6= 0. Then [Z] /∈ H
n(Mℓ)

ss.

Proof. In both cases, using the decomposition in Equation (9) and replacing
M by Mℓ, we can write

µMℓ(s, Z) =

n∑

i=1

(ai + ℓ · bi)si.

Assume that si 6= 0. Then, by assumption, we have bi 6= 0 and by Lemma 2.3
we know that |ai| ≤ 2n2. Since ℓ > 2n2, it follows that ai + ℓ · bi 6= 0 as well,
with the same sign as bi.
In case (1), this means that µMℓ (s, Z) > 0 for any nontrivial 1-PS, so Z is a
stable point by Proposition 2.1. In case (2), this means that the 1-PS corre-
sponding to s is destabilizing for Z.

Lemma 2.3 and Lemma 2.4 will be crucial tools when we analyse (semi-)stability
for the G[n]-action on H

n. Equipped with these results, we will prove that, in
order to show that a Hilbert point Z is either stable or unstable (but not strictly
semi-stable), we may treat Z (as well as its limit Z0) just as a 0-cycle and forget
its finer scheme structure, provided we replace L by a sufficiently large tensor
power. What is more, we will also see that there are no strictly semi-stable
points.

2.3 Numerical support and combinatorial weight.

2.3.1 Index notation

To any point [Z] ∈ H
n we can associate the subset

I[Z] = {i | ti(Z) = 0} ⊂ [n+ 1],

where the ti-s denote coordinates on An+1 as usual. As we have explained in
Section 1.3, this subset determines completely the combinatorial structure of
the fibre X [n]q of X [n] in which Z sits as a subscheme. Indeed, by Proposition
1.12, the dual graph of X [n]q can be identified with the oriented graph ΓI[Z]

.
For our purposes, it is useful to represent subsets also in terms of certain tuples
of positive integers. To do this, let us fix an integer 1 ≤ r ≤ n+ 1. Then any
tuple

a = (a0, a1, . . . , ar, ar+1) ∈ Z
r+2 (10)

such that
1 = a0 ≤ a1 < . . . < ai < . . . < ar ≤ ar+1 = n+ 1

determines the subset

Ia := {a1, . . . , ar} ⊂ [n+ 1].

The values a0 and an+1 have been added for computational convenience and
play only a formal role.
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2.3.2 Smooth support

Let [D] : [Y ] → [Y ′] be an arrow in the oriented graph Γ. As we have explained
in Section 1.3, this arrow gets replaced in the expanded graph ΓIa

by a chain

of r arrows. The internal (“white”) nodes in this chain are denoted [∆D,ai

Ia

].
When the set Ia is understood, we shall denote by ∆ai the (disjoint) union of

the components ∆D,ai

Ia

of X [n]Ia
, as [D] runs over the arrows in Γ. In order to

get coherent notation, we also denote by ∆a0 the union of the components YIa
,

where [Y ] runs over vertices in V −, and by ∆ar the union of the components
Y ′

Ia

, where [Y ′] runs over the vertices in V +.
Consider a point [Z] ∈ H

n and assume that

I[Z] = {i | ti(Z) = 0} = Ia.

This means that Z is a subscheme in a general fibre of X [n]Ia
→ C[n]Ia

. To
be precise; by general we mean that no other coordinates tj are zero. As usual,
we decompose Z as a disjoint union ∪PZP , where ZP is supported in P and
has length nP .

Definition 2.5. We say that Z has smooth support if each P ∈ Supp(Z)
belongs to a unique component of X [n]Ia

.

Consequently, when Z has smooth support, there exists for each P ∈ Supp(Z)
a unique integer 0 ≤ i(P ) ≤ r such that P ∈ ∆ai(P ) .

Definition 2.6. If Z has smooth support, we define the numerical support of
Z to be the tuple

v(Z) =
∑

P

nP · ei(P ) ∈ Z
r+1,

where ei(P ) denotes the i(P )-th standard basis vector of Zr+1.

In down to earth terms, the numerical support keeps track of the distribution
of the underlying cycle of Z on the ∆ai -s, for 0 ≤ i ≤ r.

2.3.3 Repackaging the numerical support

In order to work efficiently with the numerical support, we need to introduce
some more notation. First, for fixed integers r and n with 1 ≤ r ≤ n + 1, we
define the set

B = {b = (bi) ∈ Z
r+2 | 1 = b0 ≤ . . . ≤ bi ≤ . . . ≤ br+1 = n+ 1}.

We also define the set

V = {v = (vi) ∈ (Z≥0)r+1 |
r∑

i=0

vi = n}.
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Observe that there is an obvious bijection of sets B → V defined by

b = (b0, . . . , br+1) 7→ vb := (b1 − b0, . . . , br+1 − br).

Hence, if [Z] ∈ H
n is such that I[Z] has cardinality r, then I[Z] = Ia for a

suitable element a ∈ B. If, moreover, Z has smooth support, the numerical
support v(Z) is an element of V . In this situation, we shall prove that Z is
semi-stable if and only if v(Z) equals va.

2.3.4 Combinatorial weights

We will next explain how we can use the expressions given in Proposition 1.19,
for the Gm-weights for points P ∈ X [n], to compute the combinatorial Gm-
weights of a point [Z] ∈ H

n with smooth support.
We fix an integer 1 ≤ r ≤ n+ 1, and a subset Ia ⊂ [n+ 1] of cardinality r. We
denote by ei ∈ Zr+1 the i-th standard basis vector. For each k ∈ [n] and each
s ∈ Zn, we define the value ωk(ei, s) by the following recipe:

ωk(ei, s) =





−k · sk, 1 ≤ k < ai

(n+1
2 − k) · sk + n+1

2 |sk|, ai ≤ k < ai+1

(n+ 1 − k) · sk, ai+1 ≤ k ≤ n

(11)

Note that if P ∈ X [n]Ia
is a point which belongs to a unique ∆ai , then Propo-

sition 1.19 asserts that

µL (λs, P ) =

n∑

k=1

ωk(ei, s),

assuming the limit P0 of P exists.
We next extend the above construction to define a function

ωk(−, s) : V → Z

for each k ∈ [n] and each s ∈ Zn, by setting

ωk(v, s) =

r∑

i=0

vi · ωk(ei, s).

Finally, we put

ω(v, s) =

n∑

k=1

ωk(v, s). (12)

Hence, if [Z] ∈ H
n is a point with smooth support, and if I[Z] = Ia, it is

immediate from Proposition 1.19 that the equality

µMℓ
c (λs, [Z]) = ℓ · ω(v(Z), s)

holds for all ℓ ≥ 1. In other words, the combinatorial weight of Z only depends
on its numerical support v(Z).
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2.3.5 Numerical computations

We keep the notation and assumptions from Paragraph 2.3.4. In particular, we
have fixed an element a = (a0, . . . , ar, ar+1) ∈ B, corresponding to a subset Ia.

Lemma 2.7. Let b = (b0, . . . , br, br+1) be an arbitrary element of B and let
s ∈ Z

n. Then, for each j ∈ {0, . . . , r} and aj ≤ k < aj+1, the following hold:

1. If sk ≥ 0, then

ωk(vb, s) = −|sk| · ((k + 1 − bj+1)(n+ 1) − k) .

2. If sk ≤ 0, then

ωk(vb, s) = |sk| · ((k + 1 − bj)(n+ 1) − k) .

Proof. For any element v = (v0, . . . , vr) of V , a direct computation using Equa-
tion (11) shows that ωk(v, s) equals

j−1∑

i=0

vi · (n+ 1 − k)sk + vj ·

((n+ 1

2
− k

)
sk +

n+ 1

2
|sk|

)
−

r∑

i=j+1

vi · ksk.

Substituting vi = bi+1 − bi for each i ∈ {0, . . . , r} easily yields the expressions
in case (1) and (2).

The following result is a key ingredient in analysing (semi-)stability for points
[Z] with smooth support. In particular, it implies that ωk(va, s) ≥ 0 for all
s ∈ Zn, with equality if and only if sk = 0.

Lemma 2.8. Let b = (b0, b1, . . . , br, br+1) ∈ B and assume, for all j and for all
k with aj ≤ k < aj+1, that the inequalities

1. (k + 1 − bj+1)(n+ 1) − k ≤ 0

2. (k + 1 − bj)(n+ 1) − k ≥ 0

are satisfied. Then b is equal to the fixed element a. Moreover, if this is the
case, all inequalities are strict.

Proof. We first consider the case where b = a. Then the strict inequalities

(k + 1 − aj+1)(n+ 1) − k < 0

and

(k + 1 − aj)(n+ 1) − k > 0

are immediate from the choice of k.
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Now let b be an element in B, and assume that (1) and (2) both hold for all
j and all aj ≤ k < aj+1. We will show that this implies b = a. If we put
k = aj+1 − 1 in (1), we find that

(aj+1 − bj+1)(n+ 1) ≤ aj+1 − 1

which can be rewritten as

aj+1 ≤ bj+1 +
bj+1 − 1

n
.

But observe that either bj+1 = n+ 1 or the inequality

0 ≤
bj+1 − 1

n
< 1

holds. In both cases, we get
aj+1 ≤ bj+1.

If we instead put k = aj, then (2) yields

(aj + 1 − bj)(n+ 1) ≥ aj

which can be rewritten as

aj ≥ bj +
bj − 1

n
− 1.

But either bj = 1, or

−1 <
bj − 1

n
− 1 ≤ 0

holds. In both cases, it is true that

aj ≥ bj .

It follows that b = a.

We shall also need the following lemma, in order to analyse the combinatorial
Gm-weights of points [Z] ∈ H

n which do not have smooth support.

Lemma 2.9. Let P ∈ X [n]Ia
and assume that P ∈ ∆aj for some j ∈ {0, . . . , r}.

If P is not a smooth point of X [n]Ia
, the inequality

µL (λs, P ) ≤

n∑

k=1

ωk(ej , s)

holds for every s ∈ Zn.

Proof. By Proposition 1.19, we can write

µL (λs, P ) =

n∑

k=1

ω̃k(s, P ),

where ω̃k(s, P ) = ωk(ej , s) unless aj ≤ k < aj+1. For k in this range, one
computes that ω̃k(s, P ) = (n+1−k)sk if P ∈ ∆aj−1 ∩∆aj , and that ω̃k(s, P ) =
−ksk if P ∈ ∆aj ∩ ∆aj+1 . In both cases, the inequality ω̃k(s, P ) ≤ ωk(ej , s)
holds, and the assertion follows.
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2.4 The semi-stable locus

We are now ready to present our main result in this section, namely a complete
description of the (semi-)stable locus in H

n with respect to the G[n]-linearized
sheaf Mℓ, for any integer ℓ ≫ 2n2.
Let [Z] ∈ H

n, and assume that the associated subset

I[Z] ⊂ [n+ 1]

has cardinality r. We denote by a ∈ B (where B depends on the values n and
r) the unique element such that I[Z] = Ia.

Theorem 2.10. Let ℓ ≫ 2n2. The (semi-)stable locus in H
n with respect to

Mℓ can be described as follows:

1. If [Z] ∈ H
n has smooth support, then [Z] ∈ H

n(Mℓ)
ss if and only if

v(Z) = va.

In this case, it also holds that [Z] ∈ H
n(Mℓ)

s.

2. If [Z] ∈ H
n does not have smooth support, then [Z] /∈ H

n(Mℓ)
ss.

Proof. We consider first the case where Z has smooth support. If v(Z) = va,
Lemma 2.8 states that µM

c (λs, Z) > 0 for every nontrivial 1-PS λs such that
the limit of Z exists. This implies, by Lemma 2.4, that the same statement
holds for µMℓ (λs, Z). Thus [Z] ∈ H

n(Mℓ)
s by Proposition 2.1.

Assume instead that v(Z) = vb for some element b ∈ B where b 6= a. In
this case we will produce an explicit 1-PS which is destabilizing for the Hilbert
point Z.
Assume first that aj+1 > bj+1, and put κ = aj+1 − 1. Then

(κ+ 1 − bj+1)(n+ 1) − κ = (aj+1 − bj+1)(n+ 1) − (aj+1 − 1) > 0.

For d ≫ 0, we define s = s(d) ∈ Zn as follows. We put si = 0, unless
aj ≤ i < aj+1. We moreover put saj+1−1 = d, and, unless aj+1 −1 = aj , we put
saj

= 0. Then we define, inductively, sk = sk−1 +1 for aj < k < aj+1 −1. Now

we find that the expression
∑aj+1−2

k=aj
ωk(v(Z), s) is bounded, independently of

d. On the other hand,

ωaj+1−1(v(Z), s) = −((aj+1 − bj+1)(n+ 1) − (aj+1 − 1)) · d < 0.

Hence, choosing d sufficiently large yields the desired 1-PS.
Assume instead that bj > aj , and set κ = aj . Then

(κ+ 1 − bj)(n+ 1) − κ = (aj + 1 − bj)(n+ 1) − aj < 0.

For d ≪ 0, we define s = s(d) ∈ Z
n as follows. Put saj

= d ≪ 0. Unless
aj+1 − 1 = aj , we put saj+1−m = −m whenever 1 ≤ m ≤ aj+1 − (aj + 1). Set
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all remaining si = 0. A similar argument as in the previous case shows that
this yields a destabilizing 1-PS for Z.

It remains to consider the case where Z does not have smooth support. As
usual, let Z = ∪PZP be the decomposition of Z into local subschemes of
length nP . We construct two distinct vectors v

′ and v
′′ in V as follows.

If P belongs to a unique component ∆aj , we set v
′
P = v

′′
P = nP · ej. Let jmin

be the smallest index in {0, . . . , r − 1} such that there is at least one point in
the support of Z belonging to the intersection of ∆ajmin and ∆ajmin+1 . For each
such point P , we set v

′
P = nP · ejmin and v

′′
P = nP · ejmin+1. Finally, if P is a

point in the intersection of two components ∆aj and ∆aj+1 where j > jmin, we
set v

′
P = v

′′
P = nP · ej .

We now define v
′ :=

∑
P v

′
P and v

′′ :=
∑

P v
′′
P , where the sum runs over all

points in the support of Z. By Lemma 2.9, both the inequalities ω(v(Z), s) ≤
ω(v′, s) and ω(v(Z), s) ≤ ω(v′′, s) hold. Since v

′ 6= v
′′, at least one of them is

different from va. Hence we can construct a 1-PS such that Z has a limit Z0

in X [n], and which is destabilizing for Z, in the same fashion as above.

2.5 Necessity of bipartite assumption

We conclude this section by exhibiting an example which shows that the bi-
partite condition is in fact crucial. When Γ(X0) has no directed cycles, but
is not necessarily bipartite, the construction of X [n] in Proposition 1.10 by
blowing up (invariant) Weil divisors, immediately leads to (essentially canon-
ical) linearized ample line bundles on X [n]. The ample line bundle we have
constructed in the bipartite case is indeed of this form, but the G[n]-action on
it has been modified. This modified linearization only works in the bipartite
situation. The following example shows that our set-up cannot be extended, at
least not simply through a clever choice of linearization, beyond the bipartite
situation.

Example 2.11. Let X → C be a curve degeneration with dual graph Γ(X0) of
the form

• → • → •

and choose the (non bipartite) orientation shown. Consider the canonical map
π : X [1] → X . We claim: there is no linearization on X [1] such that

(i) the semi-stable locus X [1]ss is contained in the smooth locus X [1]sm over
C[1], and

(ii) the image π(X [1]ss) ⊂ X contains the singular points of X .

Clearly, the latter condition is necessary if we also want to capture cycles
supported on the singular locus of X0. To see this, consider Figure 2, showing
the degenerate fibre X [1]0 with its “old” components Y1, Y2, Y3, and the “new”
components ∆1 and ∆2, together with the canonical map to X0. The group
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Y2 π

Y3

Y3

Y1

∆1

∆2

Y1

Y2

p1

p2

Figure 2: X [1] for a non bipartite orientation

G[1] = Gm acts on ∆i as indicated by the arrow, whereas Yi are pointwise
fixed. For each of the singular points pi in X0, we have

π−1(pi) ∩X [1]sm = ∆◦
i

(where ∆◦
i denotes the interior of ∆i in X [1]0). So for condition (ii) to hold,

the orbits ∆◦
i must be semi-stable. Now the Gm-weight on any linearized line

bundle is constant along the pointwise fixed component Y2, and it cannot be
zero, since then Y2 ∩ ∆i would be semi-stable, violating (i). By the Hilbert–
Mumford criterion, ∆◦

1 is semi-stable only if that weight is nonpositive, and ∆◦
2

is semi-stable only if that weight is nonnegative. This is a contradition.

3 The quotients

In this section, we introduce the stack quotient In
X/C and the GIT quotient

In
X/C of H

n(Mℓ)
s by G[n], where ℓ ≫ 0. We show in Theorem 3.2 that In

X/C

is proper over C, with coarse moduli space In
X/C (which is projective over C).

We moreover demonstrate in Theorem 3.10 that In
X/C is isomorphic, as a DM

stack over C, to the stack IP
X/C introduced by Li and Wu (cf. e.g. [LW11]),

when P is the constant Hilbert polynomial n.

3.1 Stack quotient and GIT quotient

Let X → C denote a projective simple degeneration, where C = SpecA is a
smooth affine curve over k. We assume that Γ(X0) allows a bipartite orien-
tation, and we fix one of the two possible such orientations. For any integer
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n > 0, the expansion
X [n] → C[n]

induces a G[n]-equivariant morphism

H
n = Hilbn(X [n]/C[n]) → C[n].

For any integer ℓ ≫ 0, we defined in 2.2.1 a G[n]-linearized ample line bundle
Mℓ on H

n.
Theorem 2.10 provides, when ℓ ≫ 2n2, an explicit description of the subset

H
n(Mℓ)

s = H
n(Mℓ)

ss ⊂ H
n

of (semi-)stable points. As the (semi-)stable locus is independent of the choice
of ℓ, we will in the sequel denote this set simply by H

n
GIT.

Definition 3.1. We define the following two quotients:

1. The GIT quotient
In

X/C = H
n
GIT/G[n].

2. The stack quotient
In

X/C = [Hn
GIT/G[n]].

Theorem 3.2. The GIT quotient In
X/C is projective over C. The stack In

X/C

is a Deligne-Mumford stack, proper and of finite type over C, having In
X/C as

coarse moduli space.

Proof. Since Mℓ is ample (by our assumption ℓ ≫ 2n2), [GHH15, Prop. 2.6]
asserts that In

X/C is relatively projective over the quotient

C[n]/G[n] = Spec(A[n]G[n]),

where
A[n] = A⊗k[t] k[t1, . . . , tn+1].

It is straightforward to check that A[n]G[n] = A.
All stabilizers for the action of G[n] on H

n
GIT are finite and reduced, hence, by

[Vis89, (7.17)], In
X/C is a Deligne-Mumford stack. It is of finite type over C, as

this holds for H
n
GIT.

By [GHH15, Thm. 2.5], the quotient

H
n
GIT → In

X/C

is universally a geometric quotient. Therefore, [Vis89, (2.11)] asserts that In
X/C

is a coarse moduli space for In
X/C . In particular, this means that there is a

proper morphism
In

X/C → In
X/C .

Since In
X/C → C is projective, this implies that In

X/C is proper over C.

Documenta Mathematica 24 (2019) 421–472



462 M. G. Gulbrandsen, L. H. Halle, K. Hulek

We remark that it follows from Proposition 1.11 that these quotients do not
depend on the choice of bipartite orientation of Γ(X0). It is moreover clear
from the construction that both quotients In

X/C and In
X/C are isomorphic, over

C∗ = C \ {0}, to the family Hilbn(X∗/C∗) → C∗.

Remark 3.3. If a group H acts equivariantly on X → C, and respecting
the orientation on Γ(X0), one can show that there is an induced action on
In

X/C → C. This holds in particular in the situation described in Remark 1.15,

meaning that the Galois group Z/2 of the base extension C′/C acts naturally
on In

X′/C′ → C′.

3.2 Comparison with Li–Wu

We would now like to explain the relation between our construction and the
results of Li and Wu. An important ingredient in their work is the so-called
stack of expanded degenerations X/C. We will only explain the properties of
this stack that are needed for our results in this section, for further details, we
refer to [Li13, Ch. 2].

3.2.1 Standard embeddings

First we recall some useful notation and facts, following [Li13, Ch. 2]. For any
subset I ⊂ [n+ 1], we let I◦ denote its complement in [n+ 1]. If |I| = m+ 1,

ιI : [m+ 1] → I ⊂ [n+ 1]

denotes the unique order-preserving map.
We set

A
n+1
U(I) = {(t) ∈ A

n+1 | ti 6= 0, i ∈ I◦}.

Then there is a canonical isomorphism

τ̃I : Am+1 ×G[n−m] → A
n+1
U(I),

defined by (t′1, . . . , t
′
m+1;σ1, . . . , σn−m) 7→ (t1, . . . , tn+1), where tk = t′l if k =

ιI(l) and tk = σl if k = ιI◦(l). Restricting τ̃I to the identity element of G[n−m]
gives what Li calls the standard embedding

τI : Am+1 → A
n+1.

For each n, let pn : X [n] → X be the canonical G[n]-equivariant morphism. If
|I| = m+ 1, then τI induces an isomorphism

(τ∗
I X [n], τ∗

I pn) ∼= (X [m], pm).

over C[m] [Li13, 2.14 + 2.15]. (We already encountered a special case of this
in the proof of Proposition 1.9.)
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3.2.2 The stack of expanded degenerations

Returning to the stack of expanded degenerations, one can give the following
useful description of the objects of this stack.
Let T be a C-scheme. An object (W, p) of X(T ), also called an expanded degen-
eration of X/C, is a family sitting in a commutative diagram [Li13, Def. 2.21,
Prop. 2.22]

W X

T C

p

where W/T is allowed to have expansions of X0 [Li13, 2.2] as fibres, in addition
to the original fibres of X .
More precisely, an effective family in X(T ) is simply the pullback ξ∗X [m]
through a C-morphism ξ : T → C[m], for some m, with projection induced
by X [m] → X . Two effective families are effectively equivalent if there are
standard embeddings τi : C[mi] → C[m], i ∈ {1, 2}, and a T -valued point
σ : T → G[m], such that

τ1 ◦ ξ1 = (τ2 ◦ ξ2)σ.

In general, an expanded degeneration in X(T ) is a family W → T where T
allows an étale cover ∪Ti → T such that W ×T Ti is effective, and such that
the canonical isomorphism over Ti ×T Tj is induced by an effective equivalence.
Finally, an arrow of two expanded degenerations (W, p) and (W ′, p′) over T is
a T -isomorphism W → W ′ which is locally an effective equivalence.

Remark 3.4. Two objects ξ1 and ξ2 in X(k) are equivalent if they can be
embedded as fibres in the same expanded degeneration X [n], for sufficiently
large n, such that the fibre ξ1 can be ‘translated’ to the fibre ξ2 under the
G[n]-action. In particular, under this equivalence, any object ξ of X(k) can be
represented by a fibre X [m]0, where 0 ∈ C[m] denotes the origin, for a suitable
m.

3.2.3 The Li–Wu stack

Li and Wu have defined a stack IP
X/C parametrizing stable ideal sheaves with

fixed Hilbert polynomial P , which we will explain next. To do this, let JZ

be an ideal sheaf on X [m]0, for some m ≥ 0. Li and Wu call JZ admissible
[Li13, Def. 3.52] if, for every component D of the double locus, the natural
homomorphism

JZ ⊗ OD → OD

is injective. Then JZ is stable if it is admissible and if AutX(JZ), the subgroup
of elements σ ∈ G[m] such that σ∗JZ = JZ , is finite. In this paper, we shall
often call such ideal sheaves Li–Wu stable, in order to separate this notion of
stability from GIT stability.
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Now, for a C-scheme T , IP
X/C(T ) consists of all triples (JZ ,W, p), where (W, p) ∈

X(T ), and JZ is a T -flat family of stable ideal sheaves on W with Hilbert
polynomial P . Moreover, every morphism T ′ → T induces a pullback map
IP
X/C(T ) → IP

X/C(T ′).

We shall refer to IP
X/C as the Li–Wu stack. The following fundamental result

has been proved by Li and Wu (cf. [LW11, Thm. 4.14] and [Li13, Thm. 3.54]).

Theorem 3.5. IP
X/C is a Deligne-Mumford stack, separated, proper and of

finite type over C.

We remark that [Li13, Thm. 3.54] is formulated under the assumption that
X0 = Y ∪ Y ′ with Y , Y ′ and Y ∩ Y ′ smooth and irreducible, whereas [LW11,
Thm. 4.14] is formulated for a general simple degeneration.

3.2.4 Li–Wu stability

For the remainder of this section, we shall only consider the case where P is
constant, in which case Li–Wu stability can be formulated in a simple way. In
the statement, we shall use the following notation. For any m ∈ N, and with
I = [m + 1], we denote by ∆i the (disjoint) union of the components ∆D,i

I of
X [m]0, where D runs over the edges in the oriented graph Γ(X0).

Lemma 3.6. Let Z ⊂ X [m]0 be a subscheme of finite length. Then Z is Li–Wu
stable if and only if the following properties hold:

1. Z is supported on the smooth locus of X [m]0.

2. Z has non-empty intersection with ∆i, for all i ∈ [m].

Proof. A straightforward computation shows that JZ is admissible if and only
if Z is supported on the smooth locus of X [m]0. For (2), note that the i-th
factor of G[m] acts on ∆i by multiplication in the fibres of the ruling. This
means that the automorphism group is finite if and only if Z intersects every
∆i nontrivially.

Note the similarity with the description of GIT stable subschemes given in
Theorem 2.10. We shall next compare the locus H

n
LW of Li–Wu stable points

in Hilbn(X [n]/C[n]) with the GIT stable locus H
n
GIT. By [LW11, Lem. 4.3],

H
n
LW is an open subset, and it is clearly invariant. The same properties hold

for H
n
GIT.

Lemma 3.7. There is a G[n]-equivariant open immersion

H
n
GIT ⊂ H

n
LW

as subschemes in Hilbn(X [n]/C[n]).

Proof. As H
n
GIT and H

n
LW are both open and invariant, we only need to show

that any GIT stable subscheme in a closed fibre of X [n] → C[n] is Li–Wu
stable. This is clear from Lemma 3.6 and Theorem 2.10.
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This inclusion is strict in general; by Theorem 2.10 (1), a Li–Wu stable sub-
scheme Z will fail to be GIT stable if the numerical support v(Z) does not
equal va, where I[Z] = Ia.

3.2.5 The canonical comparison morphism

There is an obvious morphism from our quotient In
X/C to the Li–Wu stack In

X/C.
Indeed, the restriction to H

n
LW of the universal family of the Hilbert scheme

corresponds to a G[n]-equivariant, surjective and smooth morphism

ψ : H
n
LW → In

X/C.

Restriction to the open subscheme Hn
GIT gives

φ : H
n
GIT → In

X/C,

which is again equivariant and smooth. Hence φ factors through the quotient
In

X/C , giving a smooth morphism

f : In
X/C → In

X/C. (13)

3.2.6 A criterion for isomorphism

If Z is an algebraic stack over k, we denote by |Z(k)| the set of equivalence
classes of objects in Z(k).

Lemma 3.8. The following properties hold for f :

1. |f | : |In
X/C(k)| → |In

X/C(k)| is a bijection.

2. For every object ξ in In
X/C(k), f induces an isomorphism

Aut(ξ) → Aut(f(ξ))

of automorphism groups.

Proof. By Remark 3.4, any point ξ′ in |In
X/C(k)| can be represented by a Li–

Wu stable subscheme Z ⊂ X [m]0 of length n, for some m ≤ n. For any
subset I ⊂ [n+ 1] with |I| = m+ 1, we can, using the standard embedding τI ,
viewX [m]0 as the fibre (τ∗

I X [n])0 of X [n], where 0 ∈ C[m]. In the notation of
2.3.2, we then have

I = I[Z] = {i | ti(Z) = 0}.

On the other hand, as an element of V ⊂ Zm+2, the numerical support v(Z)
of Z is independent of the choice of I. Hence, by Theorem 2.10, there is a
unique I for which Z is also GIT-stable, namely the subset Ia determined by
the preimage a of v(Z) in the bijection B → V . Thus, the G[n]-orbit of Z in
H

n
GIT is the unique point ξ ∈ |In

X/C(k)| such that f(ξ) = ξ′, which proves (1).

Clearly, the automorphism groups of ξ and its image f(ξ) coincide as subgroups
of G[m] in the above construction, which shows (2).
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In the proof of Theorem 3.10 below, we shall use the following standard tech-
nical result on stacks, whose proof we omit:

Lemma 3.9. Let X and Y be Deligne-Mumford stacks of finite type over an
algebraically closed field k, and let

f : X → Y

be a representable étale morphism of finite type. Assume

1. |f | : |X(k)| → |Y(k)| is bijective.

2. For every x ∈ X(k), f induces an isomorphism

AutX(x) → AutY(f(x)).

Then f is an isomorphism of stacks.

3.2.7 The stacks are isomorphic

To conclude, we prove that (13) above is an isomorphism.

Theorem 3.10. The morphism f : In
X/C → In

X/C is an isomorphism of Deligne-
Mumford stacks.

Proof. First we observe that f is representable. Indeed, this follows from [AK13,
Lem. 6], because In

X/C has finite inertia (being a separated DM-stack), and be-
cause f yields an isomorphism of automorphism groups for all geometric points.
The second property is due to the fact that the formation of the standard models
X [n] → C[n] commutes with base change to any algebraically closed overfield
of k, together with a similar argument as in Lemma 3.8.
Moreover, f is of finite type and étale. Since we have already established that
f is smooth, it suffices to prove that it is unramified. This can be checked on
geometric points, and is a direct computation.
Since f is representable, it suffices to prove, for any étale atlas Y of In

X/C, that
the pullback fY of f is an isomorphism of schemes. We claim that fY is in fact
a surjective open immersion. Indeed, this follows from Lemma 3.8 together
with Lemma 3.9.

4 Example

In this section we want to discuss one example in detail in order to demonstrate
how our machinery works. We start with a simple degeneration X → C where
the central fibre X0 = Y1 ∪Y2 has two components intersecting along a smooth
irreducible subvariety D = Y1 ∩ Y2. We want to explain the geometry of
the degenerate Hilbert scheme for n points. For most of this discussion the
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dimension of the fibres will be irrelevant, so we will allow it to be arbitrary for
the time being. In this case the dual graph Γ = Γ(X0) is simply

•
γ
−→ • (14)

which is trivially a bipartite graph.
Recall the expanded degenerations X [n] → C[n]. If t : C → A

1 is a local
étale coordinate, then we obtain a map (t1, . . . , tn+1) : C[n] → An+1. Let
I = {a1, . . . , ar} ⊂ [n+ 1] and denote by X [n]I the locus of X [n] which is the
pre-image of the subscheme C[n]I where tai

= 0, ai ∈ I. In Proposition 1.12
we analysed the components of X [n]I and found that they correspond to the
vertices of a graph ΓI which is derived from Γ by replacing each edge γ by new
edges labelled γa1 , . . . , γar

, arranged in increasing order, and inserting white
vertices at the ends of γa1 , . . . , γar−1 . Since in our case Γ only has one edge
γ we can omit this from our notation and simply relabel the edges γaℓ

by aℓ.
The graph ΓI thus becomes

•
a1−→ ◦

a2−→ ◦ · · · ◦
ar−→ •. (15)

The extremal case is given by I = Imax = [n + 1], in which case we arrive at
the graph ΓImax given by

•
1
−→ ◦

2
−→ ◦ · · · ◦

n+1
−−−→ •. (16)

All other graphs ΓI with I ⊂ Imax arise from ΓImax by deleting the arrows
in Imax \ I. By Proposition 1.12 we have a decomposition into irreducible
components

X [n]I = ∆0
I ∪ . . . ∪ ∆aℓ

I ∪ . . . ∪ ∆ar

I

where ∆0
I and ∆ar

I belong to the black vertices of the graph (15) while the
components ∆aℓ

I , ℓ = 1, . . . r − 1 correspond to the white vertices. Note that
since there is only one component D, we have dropped D from the notation and
have thus set ∆D,aℓ

I = ∆aℓ

I . Under the natural projection X [n] → X ×C C[n]
the components ∆0

I and ∆ar

I are mapped birationally onto Y1 ×C C[n]I and
Y2 ×CC[n]I respectively. The components ∆aℓ

I , ℓ = 1, . . . r−1 are contracted to
D ×C C[n]I . The latter are the inserted components which have the structure
of a P

1-bundle, whose fibres are contracted under the map to D ×C C[n]I .
There is another way of labelling the components of X [n]I which is sometimes
helpful in geometric considerations. If I = {a1, . . . , ar}, then we decompose
Imax,0 = {0} ∪ [n + 1] into Imax,0 = I0 ∪ I1 ∪ . . . ∪ Ir where I0 = [0, a1 − 1],
Iℓ = [aℓ, aℓ+1 − 1] for 1 ≤ ℓ ≤ r − 1 and Ir = [ar , n + 1]. The components
∆aℓ

I then correspond to the first entry in each interval Iℓ. We can understand
the above graph (15) as a contraction of the maximal graph ΓImax given in
(16) by identifying all the edges labelled in one of the sets Iℓ in the partition
Imax,0 = I0 ∪ I1 ∪ . . . ∪ Ir . So we can symbolically think of the left hand bold
vertex of (15) as

•
1
= ◦ · · · ◦

a1−1
= ◦

a1−→ ◦ · · ·
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the middle white vertices as

· · ·
aℓ−→ ◦

aℓ+1
= ◦ · · · ◦

aℓ+1−1
= ◦

aℓ+1
−−−→ · · ·

and finally the right hand bold vertex as

· · ·
ar−→ ◦

ar+1
= ◦ · · · ◦

n+1
= •.

This picture also helps us understand the smoothing or, in other words, the
inclusion of the closure of the strata when we move from taℓ

= 0 to taℓ
6= 0.

This corresponds to removing aℓ from the set I or, equivalently, to replacing
Iℓ−1 and Iℓ by their union Iℓ−1 ∪ Iℓ.
Now consider a subscheme Z of length n representing a point in the relative
Hilbert scheme H

n = Hilbn(X [n]/C[n]). Since H
n is the relative Hilbert

scheme, every subscheme Z lies in some fibre H
n
q for a point q ∈ C[n]. Let

I be the the set of indices labelling the coordinates tai
which vanish at q. In

Section 2 we developed a numerical criterion for stability. First of all recall
that stability and semi-stability coincide. Moreover, all stable cycles have sup-
port in the smooth part X [n]◦I of X [n]I , by which we mean that Z does not
intersect the locus where different components of X [n]I meet. We shall denote
the restriction of the smooth locus X [n]◦I to the components ∆aℓ

I by ∆aℓ,◦
I . We

now claim that the numerical criterion of Theorem 2.10 is equivalent to

Z ⊂ X [n]I is stable ⇔ length(Z ∩ ∆aℓ,◦
I ) = |Iℓ ∩ [n]| ∀ ℓ. (17)

Indeed, in the notation of Section 2 we have a = (1, a1, . . . , ar, n+ 1) and thus
va = (a1 − 1, a2 − a1, . . . , ar − ar−1, n + 1 − ar). The stability condition of
Theorem 2.10 for a cycle Z is v(Z) = va where v(Z) is the numerical support
of Z, i.e. the length of the cycle restricted to the smooth part ∆aℓ,◦

I of the
components ∆aℓ

I of X [n]I . The claim now follows since the entries of va are
exactly equal to the cardinality of the sets Iℓ ∩ [n].
Our aim is to understand the geometry of the GIT quotient In

X/C = H
n
GIT/G[n],

in particular the geometry of the special fibre (In
X/C )0. Since the Hilbert

schemes of varieties of dimension greater than 2 are, in general, neither ir-
reducible nor equi-dimensional, we will for the following discussion restrict the
fibre dimension to d ≤ 2. We first observe that the fibre (In

X/C)0 is naturally

stratified. As we have seen, any length r subset I = {a1, . . . , ar} ⊂ [n + 1]
defines a subscheme X [n]I of X [n] and the stable n cycles supported on X [n]I
give rise to a stratum (In

X/C)I of (In
X/C)0, and it is the geometry of these strata

and the inclusion relations of their closures which we want to describe here.
We start with the case where I = {a1} consists of one element. In this case I
defines a partition of Imax,0 = I0 ∪ I1 into two intervals, namely I0 = [0, a1 − 1]
and I1 = [a1, n+ 1]. The graph ΓI then becomes

•
1
= ◦ · · ·

a1−1
= ◦

a1→ ◦
a1+1
= ◦ · · · ◦

n+1
= •
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and we have no inserted components. The general fibre of X [n]I has two
components, which are isomorphic to Y1 and Y2 respectively. Stability condition
(17) then tells us that we must have a1−1 points on Y1 and n+1−a1 points on Y2.
In this case the groupG[n] acts freely on the base C[n]I of the fibrationX [n]I →
C[n]I . Varying a1 from 1 to n + 1 we thus obtain the strata Hilba1−1(Y ◦

1 ) ×
Hilbn+1−a1(Y ◦

2 ) in the quotient, where Y ◦
i denotes open set away from the

intersection D = Y1 ∩ Y2.
Next we consider the other extremal case, namely where I is maximal, i.e.
I = Imax = [n + 1]. In this case Imax,0 is partitioned into n + 2 subsets
[{0}, {1}, . . . , {n+1}] and the associated graph is as in (16). Stability condition
(17) then says that Z must have one point on each of the n inserted components,
and consequently none on the components Y1 or Y2. Recall that the fibres of
every inserted component ∆a

I , a = 1, . . . , n are P1-bundles over D and that the
smooth locus ∆a,◦

I is a Gm fibration, given by removing the 0-section and the
∞-section of the P1-bundle. Since stable cycles lie in the smooth part of X [n]I
it follows that Z = (P1, . . . , Pn) ∈ ∆1,◦

I × . . .× ∆n,◦
I with Pi ∈ ∆i,◦

I . Here the
torus G[n] acts trivially on CI and transitively by multiplication on the product
Gn

m of the fibres of ∆1,◦
I × . . .× ∆n,◦

I over a given point of D, see Section 1.1.5
for details. Hence the stable cycles in X [n]I map to an n-dimensional stratum
Dn in (In

X/C)0.

Now let us consider the general case I = {a1, . . . , ar}. In this case we have
r−1 inserted components ∆aℓ

I , ℓ = 1, . . . , r−1. By the calculations of 1.1.5 the
groupG[n] has a subgroupG[k] which acts trivially on C[n]I and transitively by
multiplication on the fibres of ∆◦

I1
×. . .×∆◦

Ik
, whose product, over each point in

D, is isomorphic to G
k
m. In this case we obtain quotients of products of the form

Hilba1−1(Y ◦
1 )×Hilba2−a1 (∆a1,◦

I )× . . .×Hilbar−ar−1 (∆
ar−1,◦
I )×Hilbn+1−ar (Y ◦

2 )
by the group G[k].
The above description provides a natural stratification of (In

X/C)0 into locally

closed subsets (In
X/C)I indexed by the subsets I ⊂ Imax,0. Moreover, we can

also describe how these strata are related with respect to inclusion, namely

(In
X/C)J ⊂ (In

X/C)
I

⇔ I ⊂ J.

It is natural to encode this information about the strata of (In
X/C)0, together

with the incidence relation of their closures, in a dual complex. In our example
the situation is very simple: the k-simplices are in 1 : 1 correspondence to the
subsets I ⊂ Imax of length k+1 and the simplex corresponding to I is contained
in the simplex corresponding to J if and only if I ⊂ J . Hence the resulting
dual complex is the standard n-simplex. The maximal n-dimensional cell corre-
sponds to the smallest stratum, which is isomorphic to Dn, and the 0-vertices
correspond to the maximal-dimensional strata Hilba−1(Y ◦

1 ) × Hilbn+1−a(Y ◦
2 ),

a = 1, . . . , n+ 1.
It is interesting to ask which dual complexes one obtains for more general de-
generations. Given a degeneration graph Γ for a degeneration of curves or
surfaces, one can indeed define a suitable ∆-complex, see [RS71], and describe
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its combinatorial properties. We are planning to return to this in a future
paper. Similarly, one can ask the same question for higher d-dimensional de-
generations. As long as the degree n ≤ 3, the Hilbert scheme is irreducible
and smooth of dimension dn and one can hope for an interesting combinato-
rial object. For arbitrary dimension d and degree n the situation will become
much more complicated as the Hilbert schemes, even of smooth varieties, are
in general neither irreducible nor even equi-dimensional.
Finally, we want to say a few words about the singularities of the total space
In

X/C and, for the case of simplicity, we will restrict ourselves to degree 2 Hilbert
schemes, and we will thus allow the dimension d of the fibres to be arbitrary
again. Since X [2] is smooth and all semi-stable points are stable, the quotient
is also smooth at orbits where G[2] acts freely. This is an easy consequence
of Luna’s slice theorem, see [Dré04, Proposition 5.8]. In order to understand
the set of stable points with nontrivial stabilizer we look at the various strata
X [2]I . Clearly G[2] acts freely at points of C[2], and hence also at points of
X [2], where all tai

6= 0. The same is true if exactly one tai
= 0, i.e. if |I| = 1.

If |I| = 3, then our above discussion shows that all stable points are of the form
Z = (P1, P2) ∈ ∆1,◦

I × ∆2,◦
I . Moreover, by Section 1.1.5 we know that G[2] acts

transitively and freely by multiplication on each fibre G2
m of ∆1,◦

I × ∆2,◦
I over

a given point of D.
It thus remains to consider the case where |I| = 2. We first consider I = {2, 3}.
Then we have the partition [{0, 1}, {2}, {3}] and one inserted component ∆2

I .
By the stability condition (17) every stable cycle Z must contain a point in
∆2

I . The stabilizer of points in C[2] with t2 = t3 = 0 and t1 6= 0 is the rank
1 subtorus G[1] ⊂ G[2] given by σ1 = 1. However, by Proposition 1.7 this
stabilizer acts on the fibres of ∆2

I by (u2 : v2) 7→ (σ2u2 : v2). Hence G[2] acts
freely on the stable cycles supported on X [n]I . A similar argument applies
to I = {1, 2} and it thus remains to consider I = {1, 3}. In this case we
have one inserted component ∆1

I and by the stability condition every stable
2-cycle Z is supported on it. To study the non-free locus and the action of
the stabilizer we work on the chart W2 from Remark 1.8. where we have the
coordinates (t1, t2, t3, x2, . . . , xd, u1/v1, u2/v2) and the relation t2 = (u2/v2) ·
(v1/u1). Since stable cycles are supported on the smooth locus ∆1,◦

I we have
u1/v1 6= 0 and we can thus eliminate u2/v2 as a coordinate working with
(t1, t2, t3, x2, . . . , xd, u1/v1). Here x2, . . . , xd are coordinates onD and the group
G[2] acts trivially on these coordinates. For simplicity we write U = u1/v1.
Thus the action on our coordinates is given by

(t1, t2, t3, x2, . . . , xd, U) 7→ (σ1t1, σ2t2, (σ1σ2)−1t3, x2, . . . , xd, σ1U).

Since t2 6= 0, any element in a nontrivial stabilizer must necessarily have σ2 =
1. In particular, any nontrivial stabilizer group must lie in the rank 1 torus
G1[2] = 〈σ1〉 ⊂ G[2]. This group acts freely on ∆1,◦

I . Hence the only points
in the relative degree 2 Hilbert schemes which can possibly have nontrivial
stabilizers must be pairs of points {(x2, . . . , xd, U), (x2, . . . , xd, V )} with σ1U =
V and σ1V = U . This implies σ1 = ±1 and U + V = 0. In particular, the
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corresponding point in the degree 2 Hilbert scheme is represented by a reduced
2-cycle and thus, when analysing the action of the stabilizer group, we can work
with the relative second symmetric product rather than the Hilbert scheme.
In order to describe this in coordinates we introduce a second set of fibre
coordinates (y2, . . . , yd, V ). Forming the relative second symmetric product
means factorizing by the involution which interchanges xi and yi as well as
U and V . The invariants under this involution are generated by the linear
invariant forms Ai = xi+yi, i = 2, . . . , d and B = U+V as well as the quadratic
forms Cij = (xi − yi)(xj − yj), 2 ≤ i, j ≤ d, Dj = (xj − yj)(U −V ), j = 2, . . . , d
and E = (U −V )2. The relations among these are generated by CijE = DiDj .
The fixed points lie on U + V = 0, so we can assume that E 6= 0 near the
fixed points. Thus we can eliminate Cij and work with the coordinates given
by Ai, B,Dj , E where i, j = 2, . . . , d. On these coordinates the torus G1[2] acts
as

(t1, t2, t3, Ai, B,Dj , E) 7→ (σ1t1, t2, σ
−1
1 t3, Ai, σ1B, σ1Dj , σ

2
1E).

From this we see immediately that the differential of involution given by {±1} ⊂
G[2] is a diagonal matrix with 3+d−1 = d+2 entries −1 and d+1 entries 1. It
then follows from Luna’s slice theorem [Dré04, Theorem 5.4] that the quotient
In

X/C has a transversal singularity along D of type 1
2 (1, . . . , 1) where we have

d + 2 entries 1. This singularity is the cone over the Veronese embedding of
Pd+1 embedded by the linear system |OPd+1(2)|. We also note that in the case
d = 1 we mistakenly labelled this an A1-singularity in [GHH15, Example 6.2].
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[Dré04] J.-M. Drézet. Luna’s slice theorem and applications. In Algebraic
group actions and quotients, pages 39–89. Hindawi Publ. Corp., Cairo,
2004.

[GHH15] M. G. Gulbrandsen, L. H. Halle, and K. Hulek. A relative Hilbert–
Mumford criterion. Manuscripta Math., 148(3-4):283–301, 2015.

[GHHZ] M. G. Gulbrandsen, L. H. Halle, K. Hulek, and Z. Zhang. The geom-
etry of degenerations of Hilbert schemes of points. arXiv:1802.00622
[math.AG].

[Har77] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York-
Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.

Documenta Mathematica 24 (2019) 421–472



472 M. G. Gulbrandsen, L. H. Halle, K. Hulek

[HL10] D. Huybrechts and M. Lehn. The geometry of moduli spaces of
sheaves. Cambridge Mathematical Library. Cambridge University
Press, Cambridge, second edition, 2010.

[Li01] J. Li. Stable morphisms to singular schemes and relative stable mor-
phisms. J. Differential Geom., 57(3):509–578, 2001.

[Li13] J. Li. Good degenerations of moduli spaces. In Handbook of moduli.
Vol. II, volume 25 of Adv. Lect. Math. (ALM), pages 299–351. Int.
Press, Somerville, MA, 2013.

[LW11] J. Li and B. Wu. Good degeneration of quot-schemes and coherent
systems. Commun. Anal. Geom., 23(4): 841–921, 2015.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory,
volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2)
[Results in Mathematics and Related Areas (2)]. Springer-Verlag,
Berlin, third edition, 1994.

[Nag08] Y. Nagai. On monodromies of a degeneration of irreducible symplec-
tic Kähler manifolds. Math. Z., 258(2):407–426, 2008.

[RS71] C. P. Rourke and B. J. Sanderson. ∆-sets. I. Homotopy theory. Quart.
J. Math. Oxford Ser. (2), 22:321–338, 1971.

[Vis89] A. Vistoli. Intersection theory on algebraic stacks and on their moduli
spaces. Invent. Math., 97(3):613–670, 1989.

[Wu07] B. Wu. A degeneration formula of Donaldson-Thomas invariants.
PhD thesis, Stanford University, 2007. ProQuest LLC, Ann Arbor,
MI.

Martin G. Gulbrandsen
University of Stavanger
Department of Mathematics
and Physics

4036 Stavanger
Norway
martin.gulbrandsen@uis.no

Lars H. Halle
University of Copenhagen
Department of Mathematical Sciences
Universitetsparken 5
2100 Copenhagen
Denmark
larshhal@math.ku.dk

Klaus Hulek
Leibniz Universität Hannover
Institut für Algebraische Geometrie
Welfengarten 1
30060 Hannover
Germany
hulek@math.uni-hannover.de

Documenta Mathematica 24 (2019) 421–472


