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ABSTRACT. The double ramification cycle satisfies a basic multi-
plicative relation DRC, - DRC, = DRC, - DRC,4; over the locus of
compact-type curves, but this relation fails in the Chow ring of the
moduli space of stable curves. We restore this relation over the mod-
uli space of stable curves by introducing an extension of the double
ramification cycle to the small b-Chow ring (the colimit of the Chow
rings of all smooth blowups of the moduli space). We use this to give
evidence for the conjectured equality between the (twisted) double
ramification cycle and a cycle P;”“(A) described by the second author
in | ]
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1 INTRODUCTION

Given integers a1, ..., a, summing to zero, one defines the double ramification
cycle DRC, in the moduli space M, of smooth curves by pulling back the
unit section of the universal jacobian along the section induced by the divisor
>, ai[rs], where the x; are the tautological sections of the universal curve.
This class has been extended over the whole of M, ,, by work of Li-Graber-
Vakil [Li01], [Li02], [ | (extending work of Hain | | and Grushevsky-
Zakharov | ])- An alternative construction of the same cycle was recently
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546 DavibD HOLMES, AARON PIXTON, AND JOHANNES SCHMITT

given by the first author [Hol17]. Yet another approach, using the compactified
Jacobians from [[XP17], was given by the first author together with Kass and
Pagani in [HEKP18], though we will not use the latter in this paper.

A basic multiplicative relation holds between the double ramification cycles
over the locus of curves of compact-type, namely

DRC, - DRC), = DRC, - DRC, (1)

for all vectors g, b of ramification data. In section 8 we show by means of an
example that this relation fails to hold in the Chow ring of M, ,,, and moreover
that this cannot be corrected by making a different choice of extension of the
cycle.

The aim of this paper is to restore the relation (1) over the whole of Hg,n by
working in the (small) b-Chow ring bCHg (M, ), defined as the colimit of the
Chow rings of all smooth blowups of M, ,, (see section 4). The transition maps
are given by pullback of cycles; the relation to Shokurov’s notion of b-divisor
([Sho96], [Sho03]) is discussed further in section 4. Using results of [Holl7],
we construct extensions bDRC, of the double ramification cycle in the small

b-Chow ring bCHg (M, ») with two fundamental properties:

THEOREM 1.1. The pushforward of bDRC, to the Chow ring of M., coin-
cides with the standard extension of the double ramification cycle DRC, (as
constructed in [Li01], [Li02], and [GV05], or equivalently in [Holl7]).

THEOREM 1.2. The relation bDRC, - bDRCy, = bDRC, - bDRC, 1}, holds in the

small b-Chow ring bCHg (M, ,,).

This result holds also for the w®*-twisted version of the double ramification
cycle, with essentially the same proof. o
Note that the pushforward map from small b-Chow ring bCHg (M, ) to the

Chow ring CHg(M, ) is not a ring homomorphism, so these results do not
imply multiplicativity of the DRC in CHg(M, ).

The relation (1) is extremely natural, and we might speculate that its failure
to hold in the Chow group of M, ,, suggests that this is not the most natural
setting in which to consider the double ramification cycle. Perhaps the b-Chow
version of the double ramification cycle is the more fundamental object, or at
least a shadow thereof?

Conjecture 1.4 of [Hol17] predicts that the cycle DRC, in CHg(M,.,) coin-
cides with a cycle 2*9PZ*’°(A) constructed by the second named author; more
details are given in section 6. For k = 0 this follows from the main theorem
of [JPPZ17], but it is open for higher k. In proposition 6.3 we verify this
conjecture on the locus of compact-type curves.

In section 7 we show that the multiplicativity relation eq. (1) holds in the
Chow ring of the locus of treelike curves — curves whose dual graph has cycles
of length at most 1. In particular, if the conjectured equality between DRC,
and 279P%*(A) holds true, then in turn the cycle P9*(A) must also satisfy this
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MULTIPLICATIVITY OF THE DOUBLE RAMIFICATION CYCLE 547

multiplicativity relation on the locus of treelike curves. In proposition 7.2 we
give a direct, combinatorial proof of this multiplicativity relation for PZ*’“(A),

providing evidence for the conjectural equality between DRC, and 2_9Pg’k(A).
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NOTATION AND SETUP

We write — for open immersions and ~— for closed immersions. We work over
a field of characteristic zero, so that we can assume resolution of singularities.
See section 9 for an approach that works in arbitrary characteristic.

For us, ‘curve’ means proper, flat, finitely presented, with reduced connected
nodal geometric fibres, and ﬂgyn denotes the usual Deligne-Mumford-Knudsen
compactification of the moduli stack of smooth curves of genus g with n disjoint
ordered marked sections. We write C,,,/ M, , for the universal curve, z; for

the sections, and w for the relative dualising sheaf. We let 7, ,, = Picg /M
g,n g,n
denote the universal generalized jacobian (a semiabelian scheme, the fibrewise

connected component of the identity in Pic, JAMO parametrizing line bundles of

degree 0 on every irreducible component of the fibres of Cy.,, over My ,,).

2 EXTENDING THE DOUBLE RAMIFICATION CYCLE

Here we recall briefly the construction of the extension of the double ram-
ification cycle given in [ |. Given g,n > 0 with 2¢9 — 24+ n > 0 and
integers a = (ai,...,an, k) with > .a; = k(29 — 2), we define a section
oy = [w¥F (- > aixi)] of Ty, over Mgy, (which does not in general extend
over the whole of M, ,).

Let f: X — M, be a proper birational morphism from a regular stack (a
‘regular modification’). The section o, is then defined on some dense open of

X. We write X for the largest open of X on which this rational map can be
extended to a morphism, and O’é( : X — J for the extension.

We define the double ramification locus DRL;( — X to be the schematic pull-
X

a

back of the unit section of J, , along o2, and the double ramification cycle

DRC; to be the cycle-theoretic pullback, as a cycle supported on DRL;. Now
the morphism X — ﬂgm is rarely proper, but we have:
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548 DavibD HOLMES, AARON PIXTON, AND JOHANNES SCHMITT

THEOREM 2.1 (] |, theorem 1.1). In the directed system of all reqular

modifications of Hg,n, those X such that DRL; — My, is proper form a
cofinal system.

Now DRC; is supported on DRL;(, so when the morphism DRL; — ﬂgyn is
proper we can take the pushforward of DRC; to ﬂg,n. Writing 7y, DRC;
for the resulting cycle on M, ., we have:

THEOREM 2.2 (] |, theorem 1.2). The net WX*DRC;( is eventually con-
stant in the Chow ring CHg(My,,). We denote the limit by DRC,.

In the case k = 0 it is shown in | | that this class DRC, coincides with
the class constructed by Li, Graber, and Vakil.

3  MULTIPLICATIVITY LEMMA

Let S be a regular Deligne-Mumford stack, and G/S a smooth separated group
scheme® with unit section e. Given o € G(S) a section, we define

L, =o0c"¢
as a closed substack of S, and

C, = o[e]
as a cycle class supported on L.

LEMMA 3.1 (Multiplicativity lemma). Let 7: G — S be as above, and let o,
7 € G(S) be two sections. Then we have

Ly x§ Ly = Ly s Lotr 2)
as closed substacks of S, and
Co-Cr=Co-Copr (3)
as cycles supported on L, Xg L.

Proof. Note that the set-theoretic version of eq. (2) is trivial. We give only the
argument for eq. (3); that for eq. (2) is similar but easier. In the diagram

G—5 GxsG "5 G

ol
S

3By this we mean a smooth separated morphism G — S representable by schemes, which
is a group object in the category of morphisms to S, i.e. which comes together with S-
morphisms m : G Xxg G — G, 1 : G — G, e : S — G satisfying the usual compatibility
relations of groups.
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MULTIPLICATIVITY OF THE DOUBLE RAMIFICATION CYCLE 549
where i = (e o 7r,id), we have equalities of cycles supported on L, N L.:

'< ﬂ*(m*[e])

o"le]- (o +7)%[e] = (J,T

(projection formula) =

*
~.
*

40N

O

A natural application of this lemma is to the double ramification cycle. Here
the base S is given by M, ,, and G = Jy,, is the jacobian of the universal
curve. Then for any vector of integers a = (a1,...,an, k) with ), a; = k(29—2)
we have the section o, = [W®* (=Y, a;2;)] of Ty, and the double ramification
cycle on Mg ,, is given by pulling back the unit section along oy, i.e.

DRC, = (s,
in the notation of lemma 3.1. We thus obtain from lemma 3.1 the relation

DRC, - DRC, = DRC, - DRC, (4)

in CH(ég (My,n), after pushing forward from the intersection of the correspond-
ing double ramification loci. However, this relation is uninteresting as both
sides vanish for ¢ > 1 (and are equal to 1 for g = 0). Indeed, it was shown by
Hain in [Hail3] that the double ramification cycles are tautological (for details
see section 6). But the tautological ring of M, ,, vanishes in degree at least g
by [fon02], so the two sides of eq. (4) vanish for g > 1 since they are of degree
2g.

Over the locus of compact type (or more generally ¢reelike) curves, the double
ramification cycle can be defined in the same way, and the same proof shows
that multiplicativity holds here; more details are given in section 7. Moreover,
on these loci the relation is not vacuous, as shown in section 8. However, the
same section shows that this multiplicativity relation does not extend over the
whole of ﬂg,n; in the next section, we introduce the b-Chow ring, and in the
section after we extend the double ramification cycle to the b-Chow ring and
show that multiplicativity does hold there.

4 THE b-CHOW RING

The group of b-divisors on a scheme X was introduced by Shokurov [Sho906],
[Sho03] as the limit of the divisor groups of all blowups of X, with transition
maps given by proper pushforward. One can define a (large) b-Chow group
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in the same way, as the limit over all blowups with transition maps given by
pushforward, but note that it does not have a natural ring structure. The small
b-Chow group is defined below as the colimit of Chow groups over smooth
blowups, with transition maps given by pullback of cycles. It is naturally a
subgroup of the large b-Chow group, and importantly it carries a natural ring
structure (described below), so we refer to it as the (small) b-Chow ring.

Let S be an irreducible noetherian algebraic stack. We write B1(S) for the
category whose objects are proper birational morphisms X — S, relatively
representable by algebraic spaces, and with X regular, and where the mor-
phisms are morphisms over S. Taking Chow rings and pullbacks gives a new
category CHg(Bl(S)), whose objects are the Q-Chow rings of the objects of
BI(S), and where morphisms are given by pullbacks (which makes sense be-
cause everything is regular). We define the b-Chow ring of S to be the colimit
of this system of rings:

bCHg(S) = colim CHg(BL(S5)).

The category CHq(BL(S)) is filtered (| , Tag 04AX]); the only non-trivial
thing to check is that, for two objects X/S and Y/S in BI(S), there exists
Z/S € BI(S) dominating X and Y. Let U C S be some dense open where
X — S and Y — S are isomorphisms, and let Z’/S denote the schematic
image of U in the fibre product X xg Y. Then Z’/S is proper, birational,
relatively representable and dominates X and Y, but need not be regular.
However, by | | it admits a resolution by blowing up; we take Z to be
such a resolution. For a filtered colimit we can give a much more concrete
description on the level of sets:

bCHo(S) = [ || CHo(X) |/~
XeBI(S)

where for elements € CHg(X) and y € CHg(Y), we say x ~ y if and only if
there exists Z € BI(S) and S-morphisms f: Z = X, g: Z =Y, with

[fr=g"y.

To multiply elements x and y, we again find a Z € BI(S) mapping to both X
and Y, and form the intersection product after pullback to this Z.

5 MULTIPLICATIVITY OF THE DOUBLE RAMIFICATION CYCLE IN THE b-
CHOW RING

Given a = (a1, ..., an, k) with ), a; = k(2g—2), we first define the extension of
the corresponding double ramification cycle to bDRC, in bCHg( M, ,,). Taking
the standard extension to the Chow ring of ﬂgyn and pulling back is not the

right approach — for example, the multiplicativity relation will fail. Instead
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we look at the constructlon in section 2. Recall that for a modification X —
M, we write X < X for the largest open to which o, extends. We define

DRLY — X by pulling back the unit section scheme-theoretically, and DRC.X
as a gycle class on DRL; by pulling back in Chow. -
Let X be regular and such that DRL} is proper over M, ,,. Write i: DRLY —
X for the inclusion, which is a closed immersion. Then we define DRCE =
i» DRC, as an element of bCHg(My ). Recall from section 2 that the X
with DRL;( proper over Hg,n form a cofinal system among all modifications
X, yielding a net of DRC; in bCHg(My,,).

LEMMA 5.1. The net of DRC; in bCHg(M,.,,) is eventually constant.

Proof. This argument is a simpler version of the proof of | , theorem 6.3].
The limiting value can be obtained by taking X a regular compactification of
the stack M, constructed in [loc.cit.]. O

DEFINITION 5.2. We define bDRC,, in bCHg(M,,,) as the limit of the above
net.

Theorem 1.1 now follows formally from [ , §6], so it remains to prove
theorem 1.2.

THEOREM 5.3. Choose a = (ay,...,an, k) with ), a; = k(29—2), and similarly
choose b = (b1,...,b,,k"). Then in bCHg(M,.,) we have

bDRC, - bDRC;, = bDRC, - bDRCq 1 - (5)

Proof. Choose X — M, so that DRL; — M, is proper and so that DRC,\

equals the limiting value bDRC,, in bCHg(M, ). Choose a corresponding YV’
for b, and let Z be a regular modification admlttlng morphisms to X and Y
over M, (this exists since the category BI(M, ,) is filtered). It suffices to
check eq. (5) in the Chow ring of Z.

Let Z, < Z be the largest open where o, extends, and similarly define ZDQ and

ZDQJFQ. Writing Z = ZDQ N ZDQ, we see that 044 is also defined on Z; it is given
by o4 + 0p. Hence we have

Z =242 C Zas,

and a similar argument shows

Now it is clear that
DRLZ NDRLY C Z,NZy = Z,
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and similarly we have
DRLZNDRLZ,, C Zy N Zasy C Za N 2y = Z,

where the middle relation comes from eq. (6). The theorem now follows directly
from lemma 3.1 applied to the universal jacobian J; , pulled back to Z. O

6 RELATION TO THE CYCLE Pg’k(A)

In this and the next section we consider the connection between the classes
DRC, € CHé(mg,n) and the tautological cycle class P4*(A) introduced by
the second author in [JPPZ17]. For this we first recall some notation from
[loc.cit.].

Fix an integer k£ > 0 and an integer vector A = (Ay,...,A4,) with > | A; =
k(29 — 2 + n). Note that there is a natural bijection of such vectors A and
vectors a = (ai,...,an) with >°1 | a; = k(2g — 2) by setting

(Al,...,An):(al—i—kz,...,an—i-k);

we will use this identification in what follows.
Fix also a degree d > 0, then given this data, in [JPPZ17, Section 1.1] a
tautological cycle class .

P (A) € CHE(My,n)

is defined as an explicit sum in terms of decorated boundary strata. The main
result of [JPPZ17] is that for k = 0,d = g this formula computes the double
ramification cycle corresponding to the partition A. More precisely, they prove

DRy(4) = 277P§°(4),

where DRy (A) is the double ramification cycle associated to A via the Gromov-
Witten theory of ‘rubber P1’.
From [Hol17, conjecture 1.4] we recall

CONJECTURE 6.1. For all k& we have

DRC, = 279P9"(A)

as elements of CHY) (M ).

Remark 6.2. Conjecture 6.1 holds when &k = 0. Indeed, when k = 0 we know
by [Holl7, theorem 1.3] that DRC, = DRy (A), which combined with the main
result of [JPPZ17] yields the result.

We now show that conjecture 6.1 holds for all k if we restrict to the locus of
curves of compact type.

PROPOSITION 6.3. On the locus ./\/l;tn of compact type curves we have an equal-
ity
DRC, = 279P$"(4) € CH{(MS',). (7)
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Proof. The proof runs via the following chain of equalities in CH(% (./\/l;tn)

. 09 1 c
PRC, 2 ozle] 2oy = — (030)" 2

1 k gd) _ k
sl 2o = (o PyMA)" 22 PgH ().

a 2gg| ( g
To start, equality a) follows from the definition of the double ramification
cycle and the fact that the universal jacobian over MCt is an abelian scheme,
hence any sections over M, ,, are guaranteed to extend (uniquely) over M, .
Equality b) comes by pulling back the obvious relation on the universal abelian
variety, which has already been observed by various authors, see for instance
[GZ14a].

Now the pullback (in cohomology) of the theta divisor under o, has been
computed by Hain in | |. In standard notation for the tautological classes
in M¢',, Hain’s result reads as follows: in H*(M¢',) we have

. k2 1 — 1
0u0 =5+ ] (aj + k)*p; — 3 > (ap — (2¢' —D)k)%6L.  (8)
j=1 g ,P
Here P runs over subsets of {1,...,n}, ap = >, p a;, and the last sum should

be interpreted as including each boundary divisor 5/, = 65_0 o exactly once.
Deducing equality c¢) in cohomology then follows by an elementary verification
using the definition of P}*(A) from | , Section 1.1]. To lift this to an

equality in Chow, we want to show that the cycle class map CH@(M?H) —
H?(M¢',) is injective. Now it is classical thatEH(b (Mgn) = H*(M,,). Since
M_ffn is the complement of the divisor Ay, C M, ,, of irreducible nodal curves,

we have CH@(M? )= CHQ( g.n)/Q-[Air] by the excision exact sequence for
Chow groups. For the analogous result in cohomology, note that the inclusion of
the open set Mgtn C M, , with complement A;;, induces a long exact sequence

for cohomology with compact support. For d = dim¢ M,,, = 3g — 3 + n we
look at the following piece of this sequence

c= H2PTP(ME ) = H2 72 (M) = H* 72 (Ain) = -+

where we note that ﬂgyn and A;;,; are compact, so compactly supported co-
homology agrees with usual cohomology. Taking the dual and using Poincaré
duality, we have an exact sequence

H2(Mf]§n) — H2(ﬂ.‘77n) — HO(AiH) = @ . [Airr]a

where we use that Aj,, is connected. This implies that we have an injection
HQ( gn)/@ [Airy] < HQ(M;t,n)a but

HQ(ngn)/Q : [Airr] CHQ( g, n)/@ [ 1rr] = CH(I@(M;")

This proves equality ¢) in Chow.
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Finally, equality d) follows from the fact that on ./\/l;tn we have an equality of
mixed-degree classes

exp(Py*(A)) = > PH*(A) € CHy(M,,). (9)

d>0

This equality is a combinatorial statement; it is a specialization of the more
general lemma 7.3 which we will prove in the next section. O

7 RESTRICTING TO TREELIKE CURVES

In this section we focus on the locus of treelike curves — these are stable curves
whose graph is a tree with any number of self-loops attached (equivalently, all
non-disconnecting edges are self-loops, or all cycles in the graph have length
< 1). We write M, for this locus; it is open in My, and clearly contains
the compact-type locus M/, .

Over the locus of treelike curves, the universal jacobian 7, ,, is not proper (and
its toric rank can be arbitrarily large). However, it is still a Néron model of its
generic fibre in the sense of [Hol19] — this follows easily from the main theorem
of [loc.cit.], since all cycles in the graph have length at most 1. In particular,
this implies that the section o, over M, ,, extends uniquely to Jg,, over the
whole of Ml .

In fact, Mtg{n can be uniquely characterised as the largest open of ﬂgyn such
that every étale-local section of the universal jacobian over M, ,, extends. In-
deed, if C' is a non-treelike point then there exists a cycle of irreducible compo-
nents v of C of length greater than 1. Choose an étale neighbourhood U of C'
in ﬂgyn, and sections p and ¢ in Cy ,(U) passing through distinct irreducible
components of . Write U for the pullback of Mg, to U. Then the formula
[Oc, .. (p — q)] defines a section in jg,n((j) which cannot extend over U. The
quick way to see this is to observe that there does not exist a tropical rational
function on the graph I' of C' whose divisor has multidegree equal to that of
[Oc, .. (p—q)]. More explicitly, we can apply lemma 4.3 of [[0117], and see that
there does not exist a weighting on the decorated graph I' which is compatible
with the thickness (1,...,1) (see [loc.cit.] section 3 for this notation).

Recall that DRC, is the extension of the double ramification cycle to the Chow
ring of M, ,, as constructed in section 2.

LEMMA 7.1. In CHY (M) we have the equality
DRC, = o, €] (10)

and in CHég (M) we have

DRC, - DRC}, = DRC, - DRC . (11)
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tl
g,n?

Proof. Since the section o, extends to J,., over M the blowups used to
extend the section may be assumed to be isomorphisms over Mtgl,n; more pre-
cisely, the cofinal system in section 5 can be chosen so that all of the birational
morphisms X — Hg,n are isomorphisms over Mtg{n. This proves (10), and

(11) then follows from theorem 5.3, or directly from lemma 3.1. O
The classes Pg’k also satisfy multiplicativity on ./\/lélyn:

PROPOSITION 7.2. Let A, B be vectors of n integers with >, A; = kq(29—2+n)
and > B; = ky(2g — 2+ n) for some kq, ky € Z. Then the equality

Pyt (4) - PYE(B) = Py () - Py (A + B) (12)

holds in CHZ! (M)

The consistency of this multiplicativity with that of lemma 7.1 provides evi-
dence for conjecture 6.1.

There are two key ingredients in the proof of proposition 7.2. The first is the
basic codimension g + 1 relation

PITLR(A) =0 € CHEM (M) (13)
proved in [ , Theorem 5.4]. The second is the following combinatorial

lemma:

LEMMA 7.3. Let Pk(A)ireeihe denote the mized-degree class in the Chow ring
of the locus of treelike curves

Plg(é)hﬂeelike — ZP;”C(A) c CH@(MZ”)
d>0

Then there exists a mized-degree class A € CHy(MY ) (not depending on A
or k) along with a divisor-valued quadratic form Q(A) € CH@(ME{H) such that

PI; (A)treelike —_ eXp(Q(A))A

Before checking lemma 7.3, we use it to prove proposition 7.2:

Proof of proposition 7.2. Using lemma 7.3 we can rewrite the codimension g+1
relation eq. (13) for a vector A+ C as

[exp(Q(A + C))Alg1 =0,

where [X]; denotes the codimension d part of a mixed-degree class X.
This relation is an equality of polynomials in the A and C variables, so it will
still hold if we restrict to the part of degree 1 in C. This gives

lexp(Q(A)A]; - (RA+C) —Q(4) — Q(C)) = 0.
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Changing variables with C' = A+ 2B, using the fact that @ is a quadratic form,
and dividing by 2, we arrive at the relation

[exp(Q(A))A]y - (R(A+ B) — Q(B)) = 0.

Now, the mixed-degree class exp(Q(A+ B)) — exp(Q(B)) is clearly divisible by
the divisor class Q(A + B) — Q(B), so we have the relation

lexp(Q(A))A]g[(exp(Q(A + B)) — exp(Q(B)))A]4 = 0.

Then applying lemma 7.3 again gives the desired multiplicativity statement.
O

Proof of lemma 7.3. This lemma is essentially a combinatorial statement about
the definition of the classes PZ*(A) in [JPPZ17, Section 1.1] along with the
multiplication formula for tautological classes given in [GP03, Appendix A,
eq. (11)]. In the general case, P4*(A) is a sum over decorated (by ¢ and
k classes) dual graphs I' of a combinatorial coefficient times the tautological
class corresponding to I". The combinatorial coefficient is defined by taking the
r-constant term of a polynomial in r defined by summing over certain balanced
‘weightings mod 7’ of the half-edges of T'.

In our case, we can assume that the graph I is treelike and the combinatorial
coefficients then become significantly simpler: the only weights that are allowed
to vary are those in loops of the graph, and these weights are subject only to
the condition that the weights on the two sides of a loop must sum to zero mod
r. The result is that the coefficient associated to a graph I factors as a product
of the contributions from the loops and the contributions from the non-loops.
Moreover, it is easily seen that if I' is treelike then there is a unique way to
pick two disjoint subsets F1, E5 of the set of edges of I" such that T" becomes
a tree when F; is contracted and becomes a single vertex with loops attached
when Fs is contracted: we must have that F; is the set of loops and FE5 is the
set of non-loop edges.

These two facts about treelike graphs and their combinatorial coefficients along
with the graph refinement formula for multiplication in the tautological ring
[GP03, Appendix A] have the following consequence: the entire (mixed-degree)
class factors as

PI; (A)treelike _ PI; (A)tree . P]; (A)loops’

where the three classes are, respectively, the full class on the locus of treelike
curves, the sum of those terms with I' a tree, and the sum of those terms where
I' has exactly one vertex and where there are no x decorations on the vertex
and no v decorations on any legs (but possibly on loops).

Moreover, the final class above does not actually depend on the vector A; we
set,

_ pk 1
A = Pk(A)'oops,
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We do not need to know anything more about A for our purposes, but an
explicit formula can easily be obtained:

l

—1 l B
(2l . ;| (gl)* H Z ﬁ(wn—i—%—l + ’lpn+2i)d s

g
A =
1=0 ’ i=1 \d>0

where & : Hg,lynm — ﬂgyn glues the last [ pairs of points together and
Bsg+2 are Bernoulli numbers.
For the remaining factor P¥(A4)™*¢, we claim that

Pg(A)"* = exp([Pg(4)"*1). (14)

Then we can take
Q(A) := [PE(A)"*)y,

which explicitly is given by the same formula as Hain’s formula eq. (8) (multi-
plied by 2 and interpreted as divisors on the locus of treelike curves) and thus
is a quadratic form in A.

It remains to check eq. (14) using the multiplication formula of [GP03, Ap-
pendix A]. Suppose that for i = 1,...k, 55;’ are boundary divisor classes for
separating nodes, so each such class corresponds to a graph with two vertices
connected by a single edge along with a distribution of the total genus g and
markings between the two vertices (such that one has genus g; and marking
P;). If we multiply all of these k divisor classes together, the multiplication
formula in this case says that the result is a sum over the following data: a
tree I' along with a distribution of genus and markings between the vertices of
I' and a sequence of edges e, ...,e, in I' (possibly with repetition) such that

1. the division of genus and markings across the two sides of edge e; agree
with the division in §7;

2. every edge of I' appears at least once in the sequence ey, ..., €.

Repeated edges e; give rise to ¥ classes along that edge.

Computing the right side of eq. (14) (the exponential of a divisor class) by using
the above procedure to multiply divisor classes together then gives precisely the
sum over trees appearing in the definition of PZ(A)““. O

8 FAILURE OF MULTIPLICATIVITY IN THE CHOW RING OF M, ,

Since both sides of eq. (12) make sense in the Chow ring of M, ,,, it is natural
to ask whether the multiplicativity stated in proposition 7.2 might hold not
just on the locus of treelike curves but on the entire space of stable curves. In
this section we present an explicit example where this desired equality fails and
in fact argue that there can be no other extension of the cycles DRC, from

DOCUMENTA MATHEMATICA 24 (2019) 545-562



558 DavibD HOLMES, AARON PIXTON, AND JOHANNES SCHMITT

Mgtn that would make the equality hold. In other words, multiplicativity is
really a feature of the (small) b-Chow ring and not of the standard Chow ring.
Let g = 1,k = 0 and consider the two partitions @ = (2,4, —6), b= (—3,—1,4)
of 0. Let DRCq, DRCy, DRC,qp, € CH{ (M 3) be the corresponding dou-
ble ramification cycles. By proposition 6.3 these agree with the corresponding
P1(A), which can be computed as explicit tautological classes. Using an im-
plementation of the tautological ring by the second author one can check that
the multiplicativity fails inside the Chow group of M 3, i.e.

DRC, - DRC;, # DRC, - DRCqyp € CHE (M 3). (15)

What is true however is that the difference of the two sides in eq. (15) is a linear
combination of the classes of the three irreducible components of My 5\ Ml ;.
In other words, eq. (15) becomes an equality once we restrict to the locus Mﬁl 3
of treelike curves, as proved in proposition 7.2. Moreover, actually both sides
of eq. (15) give nontrivial elements of CHé(Mﬁl 3). In particular, this shows
that for the above example the two sides of the multiplicativity statement in
the (small) b-Chow ring are also nontrivial. This gives an indication that the
multiplicativity which holds in the b-Chow ring is not the consequence of some
trivial vanishing (like both sides of the equality being zero, for instance).

Now one final hope for multiplicativity on M,, could be that the cycles
DRCq4, DRCy, DRCg44s are not the right extension of the corresponding Abel-
Jacobi pullbacks o [e], o7 [e], o, ,[e] € CHE, (M) on the locus of compact type

curves. However, the complement ng \ ./\/l;tn is exactly given by the bound-
ary divisor Ay, generically parametrising irreducible nodal curves. Hence any
such extensions must have the form

ﬁ—\/}{CQ = Wg+ >\g : A’LTTv
DRC, = DRCy + Ap - A,
DRCgp = DRCyyp + Aar - A
Using that A?. = 0 we compute
SR, - (DR, — D)
—DRC, - (DRC, — DRCq44) +(Ap — A1) DRCy - Aiyy
Il I2
+ )\Q A (DRCQ - DRCQ_;,_Q) .

I3

|

However, it can be checked by computer that the three elements I, Is, I35 €
CHé(ng) are linearly independent. Therefore there is no way to choose
Aa, Ab, Aa+p to have the DRC satisfy multiplicativity in the Chow ring of ﬂg,n;
we only have multiplicativity in the (small) b-Chow ring or on the open locus
of treelike curves.
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9 LOGARITHMIC VERSION

We work with fine and saturated log structures in the sense of Fontaine-Illusie,
using Olsson’s generalisation to stacks [Ols01]. We put a log structure on Mg,
as in Kato [[{at90].

A LOGARITHMIC ANALOGUE IN ARBITRARY CHARACTERISTIC

Until now we have restricted to characteristic zero in order to be able to apply
Hironaka’s resolution of singularities, to show that every modification of M.,
can be dominated by a regular one - more precisely we use Temkin’s functorial
resolution [Tem12], so that we can apply it to stacks. This implies that the

category Bl(M, ,,) is filtered, giving us a very explicit description of the colimit

bCHg(Mg,n).
In positive characteristic the analogue of Hironaka’s resolution is not known.
However, it follows from the proof of [[T0l17, Lemma 6.1] that in our setting we

can restrict to modifications X — Mg,n which are log blowups (in particular
log étale over ﬂgyn). Since Hg,n is log regular, such a modification is again
log regular, and we can use results of Gabber, Illusie and Temkin to show
that a suitable category of blowups is filtered. In the remainder of this section
we will explain how to use these ideas to generalise our results to arbitrary
characteristic.

From now on we work over a field k& of any characteristic. First we describe the
translation of section 5 into the logarithmic setting. We write Bljoq (Hg,n) for
the category of log blowups X — Hg,n whose underlying stacks are regular;
morphisms are taken over M, ,.

LEMMA 9.1. The category Bliog(Mg ) is filtered.

Proof. Let X/M,,, and Y/M,., be objects in Bl;,4(M,,), and let Z’ denote
their fibre product in the category of fine and saturated log schemes over M, ,,;
note that Z’ — M, is again a log blowup. Now log blowups are log étale,
hence Z' is log étale over the log regular stack HM, and hence Z’ is log
regular. It remains to check that Z’ has a log blowups which is regular. Now
[IT14, Theorem 3.4.9] gives a resolution algorithm for log regular log schemes,
which is in particular functorial for strict étale morphisms. Since M, ,, admits
a strict étale cover by log schemes the same is true for Z’' (by base-change),
so we apply functorial resolution to each patch of such a cover, and glue by
functoriality. O

We define the logarithmic b-Chow ring bCH,ug.0(M,,n) of M, , to be the
colimit over X € Bljo,(M,,) of the Chow rings CHg(X), with transition
maps given by pullback. By lemma 9.1 this admits a simple presentation as in
section 4.

Fix a = (a1,...,an,k) as usual. Given X € Bllog(ﬂgm) we define X to be

the largest open to which o, extends, and define DRL; and DRC;( by the
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same formulae as in section 5, by pulling back the unit section in Jj , either
as a scheme or as a cycle. Again we need to check that those X with DRL;(

proper over M, form a cofinal system; this does not follow immediately
from theorem 2.1 as it is not clear that those X can be chosen to be log
blowups, but does follow from [Hol17, Lemma 6.1 and Theorem 6.3], combined
with resolution of singularities for log regular stacks [[T14, Theorem 3.4.9].
The same references show again that the net DRC is eventually constant in

bCHQ,10g(My.n), vielding a well-defined class bDRC, 10 € bCHg, 104 (M 1)

THEOREM 9.2. Choose a = (a1, ..., an, k) with ), a; = k(29—2), and similarly

choose b= (b1,...,bn, k). Then in bCHg 100(Mygn) we have
bDRC,g 10y - bBDRCh10g = BDRC,y 105 - BDRCyg 105 (16)

Proof. By lemma 9.1 we can choose Z € Blj,, (ﬂgyn) dominating both Mz and

/\/l: The logarithmic structures play no further role, and we proceed exactly
as in the proof of theorem 5.3. O

THE CHOW RING OF THE VALUATIVISATION

Following [Kat89], the wvaluativisation of a log scheme or stack is the limit
of all the log blowups; this does not exist as a scheme (or stack), but does
exist as either a locally ringed space or a pro-scheme over M, . The loga-
rithmic b-Chow ring defined above can then be viewed as the Chow ring of
the valuativisation, c.f. [SST18]. In [loc.cit.] a derived equivalence is con-
structed between the valuativisation and a certain infinite root stack of M, ,,.
We hope that this derived equivalence might shed some light on the relation
between the first author’s construction in [Holl14] of a universal Néron-model-
admitting stack, and Chiodo’s work [Chil5]. More generally, it might realise

our bDRC € bCHg(M,,») as a shadow of some more refined derived object.
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