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Abstract. The double rami�
ation 
y
le satis�es a basi
 multi-

pli
ative relation DRCa ·DRCb = DRCa ·DRCa+b over the lo
us of


ompa
t-type 
urves, but this relation fails in the Chow ring of the

moduli spa
e of stable 
urves. We restore this relation over the mod-

uli spa
e of stable 
urves by introdu
ing an extension of the double

rami�
ation 
y
le to the small b-Chow ring (the 
olimit of the Chow

rings of all smooth blowups of the moduli spa
e). We use this to give

eviden
e for the 
onje
tured equality between the (twisted) double

rami�
ation 
y
le and a 
y
le Pd,k
g (A) des
ribed by the se
ond author

in [JPPZ17℄.
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1 Introduction

Given integers a1, . . . , an summing to zero, one de�nes the double rami�
ation


y
le DRCa in the moduli spa
e Mg,n of smooth 
urves by pulling ba
k the

unit se
tion of the universal ja
obian along the se
tion indu
ed by the divisor

∑

i ai[xi], where the xi are the tautologi
al se
tions of the universal 
urve.

This 
lass has been extended over the whole of Mg,n by work of Li-Graber-

Vakil [Li01℄, [Li02℄, [GV05℄ (extending work of Hain [Hai13℄ and Grushevsky-

Zakharov [GZ14b℄). An alternative 
onstru
tion of the same 
y
le was re
ently
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given by the �rst author [Hol17℄. Yet another approa
h, using the 
ompa
ti�ed

Ja
obians from [KP17℄, was given by the �rst author together with Kass and

Pagani in [HKP18℄, though we will not use the latter in this paper.

A basi
 multipli
ative relation holds between the double rami�
ation 
y
les

over the lo
us of 
urves of 
ompa
t-type, namely

DRCa ·DRCb = DRCa ·DRCa+b (1)

for all ve
tors a, b of rami�
ation data. In se
tion 8 we show by means of an

example that this relation fails to hold in the Chow ring ofMg,n, and moreover

that this 
annot be 
orre
ted by making a di�erent 
hoi
e of extension of the


y
le.

The aim of this paper is to restore the relation (1) over the whole ofMg,n by

working in the (small) b-Chow ring bCHQ(Mg,n), de�ned as the 
olimit of the

Chow rings of all smooth blowups ofMg,n (see se
tion 4). The transition maps

are given by pullba
k of 
y
les; the relation to Shokurov's notion of b-divisor
([Sho96℄, [Sho03℄) is dis
ussed further in se
tion 4. Using results of [Hol17℄,

we 
onstru
t extensions bDRCa of the double rami�
ation 
y
le in the small

b-Chow ring bCHQ(Mg,n) with two fundamental properties:

Theorem 1.1. The pushforward of bDRCa to the Chow ring of Mg,n 
oin-


ides with the standard extension of the double rami�
ation 
y
le DRCa (as


onstru
ted in [Li01℄, [Li02℄, and [GV05℄, or equivalently in [Hol17℄).

Theorem 1.2. The relation bDRCa · bDRCb = bDRCa · bDRCa+b holds in the

small b-Chow ring bCHQ(Mg,n).

This result holds also for the ω⊗k
-twisted version of the double rami�
ation


y
le, with essentially the same proof.

Note that the pushforward map from small b-Chow ring bCHQ(Mg,n) to the

Chow ring CHQ(Mg,n) is not a ring homomorphism, so these results do not

imply multipli
ativity of the DRC in CHQ(Mg,n).
The relation (1) is extremely natural, and we might spe
ulate that its failure

to hold in the Chow group ofMg,n suggests that this is not the most natural

setting in whi
h to 
onsider the double rami�
ation 
y
le. Perhaps the b-Chow
version of the double rami�
ation 
y
le is the more fundamental obje
t, or at

least a shadow thereof?

Conje
ture 1.4 of [Hol17℄ predi
ts that the 
y
le DRCa in CHQ(Mg,n) 
oin-

ides with a 
y
le 2−gPg,k

g (A) 
onstru
ted by the se
ond named author; more

details are given in se
tion 6. For k = 0 this follows from the main theorem

of [JPPZ17℄, but it is open for higher k. In proposition 6.3 we verify this


onje
ture on the lo
us of 
ompa
t-type 
urves.

In se
tion 7 we show that the multipli
ativity relation eq. (1) holds in the

Chow ring of the lo
us of treelike 
urves � 
urves whose dual graph has 
y
les

of length at most 1. In parti
ular, if the 
onje
tured equality between DRCa

and 2−gPg,k
g (A) holds true, then in turn the 
y
le Pg,k

g (A) must also satisfy this
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multipli
ativity relation on the lo
us of treelike 
urves. In proposition 7.2 we

give a dire
t, 
ombinatorial proof of this multipli
ativity relation for Pg,k
g (A),

providing eviden
e for the 
onje
tural equality between DRCa and 2−gPg,k
g (A).
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Notation and setup

We write →֒ for open immersions and ֌ for 
losed immersions. We work over

a �eld of 
hara
teristi
 zero, so that we 
an assume resolution of singularities.

See se
tion 9 for an approa
h that works in arbitrary 
hara
teristi
.

For us, `
urve' means proper, �at, �nitely presented, with redu
ed 
onne
ted

nodal geometri
 �bres, andMg,n denotes the usual Deligne-Mumford-Knudsen


ompa
ti�
ation of the moduli sta
k of smooth 
urves of genus g with n disjoint

ordered marked se
tions. We write Cg,n/Mg,n for the universal 
urve, xi for
the se
tions, and ω for the relative dualising sheaf. We let Jg,n = Pic0

Cg,n/Mg,n

denote the universal generalized ja
obian (a semiabelian s
heme, the �brewise


onne
ted 
omponent of the identity in PicC/M, parametrizing line bundles of

degree 0 on every irredu
ible 
omponent of the �bres of Cg,n overMg,n).

2 Extending the double ramification cycle

Here we re
all brie�y the 
onstru
tion of the extension of the double ram-

i�
ation 
y
le given in [Hol17℄. Given g, n ≥ 0 with 2g − 2 + n > 0 and

integers a = (a1, . . . , an, k) with

∑

i ai = k(2g − 2), we de�ne a se
tion

σa = [ω⊗k (−
∑

i aixi)] of Jg,n over Mg,n (whi
h does not in general extend

over the whole ofMg,n).

Let f : X → Mg,n be a proper birational morphism from a regular sta
k (a

`regular modi�
ation'). The se
tion σa is then de�ned on some dense open of

X . We write X̊ for the largest open of X on whi
h this rational map 
an be

extended to a morphism, and σX
a : X̊ → J for the extension.

We de�ne the double rami�
ation lo
us DRLX
a ֌ X̊ to be the s
hemati
 pull-

ba
k of the unit se
tion of Jg,n along σX
a , and the double rami�
ation 
y
le

DRCX
a to be the 
y
le-theoreti
 pullba
k, as a 
y
le supported on DRLX

a . Now

the morphism X̊ →Mg,n is rarely proper, but we have:
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Theorem 2.1 ([Hol17℄, theorem 1.1). In the dire
ted system of all regular

modi�
ations of Mg,n, those X su
h that DRLX
a → Mg,n is proper form a


o�nal system.

Now DRCX
a is supported on DRLX

a , so when the morphism DRLX
a →Mg,n is

proper we 
an take the pushforward of DRCX
a to Mg,n. Writing πX∗ DRCX

a

for the resulting 
y
le onMg,n, we have:

Theorem 2.2 ([Hol17℄, theorem 1.2). The net πX∗ DRCX
a is eventually 
on-

stant in the Chow ring CHQ(Mg,n). We denote the limit by DRCa.

In the 
ase k = 0 it is shown in [Hol17℄ that this 
lass DRCa 
oin
ides with

the 
lass 
onstru
ted by Li, Graber, and Vakil.

3 Multiplicativity lemma

Let S be a regular Deligne-Mumford sta
k, and G/S a smooth separated group

s
heme

3

with unit se
tion e. Given σ ∈ G(S) a se
tion, we de�ne

Lσ = σ∗e

as a 
losed substa
k of S, and

Cσ = σ∗[e]

as a 
y
le 
lass supported on Lσ.

Lemma 3.1 (Multipli
ativity lemma). Let π : G → S be as above, and let σ,
τ ∈ G(S) be two se
tions. Then we have

Lσ ×S Lτ = Lσ ×S Lσ+τ (2)

as 
losed substa
ks of S, and

Cσ · Cτ = Cσ · Cσ+τ (3)

as 
y
les supported on Lσ ×S Lτ .

Proof. Note that the set-theoreti
 version of eq. (2) is trivial. We give only the

argument for eq. (3); that for eq. (2) is similar but easier. In the diagram

G G×S G G

S

i m

(σ,τ)
σ+τ

3

By this we mean a smooth separated morphism G → S representable by s
hemes, whi
h

is a group obje
t in the 
ategory of morphisms to S, i.e. whi
h 
omes together with S-

morphisms m : G ×S G → G, i : G → G, e : S → G satisfying the usual 
ompatibility

relations of groups.
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where i = (e ◦ π, id), we have equalities of 
y
les supported on Lσ ∩ Lτ :

σ∗[e] · (σ + τ)∗[e] = (σ, τ)∗i∗[G] · (σ, τ)
∗(m∗[e])

= (σ, τ)∗
(

i∗[G] ·m
∗[e]

)

(proje
tion formula) = (σ, τ)∗i∗

(

[G] · i∗m∗[e]
)

= (σ, τ)∗i∗i
∗m∗[e]

= (σ, τ)∗[(e, e)]

= σ∗[e] · τ∗[e].

A natural appli
ation of this lemma is to the double rami�
ation 
y
le. Here

the base S is given by Mg,n, and G = Jg,n is the ja
obian of the universal


urve. Then for any ve
tor of integers a = (a1, . . . , an, k) with
∑

i ai = k(2g−2)
we have the se
tion σa = [ω⊗k (−

∑

i aixi)] of Jg,n, and the double rami�
ation


y
le onMg,n is given by pulling ba
k the unit se
tion along σa, i.e.

DRCa = Cσa

in the notation of lemma 3.1. We thus obtain from lemma 3.1 the relation

DRCa ·DRCb = DRCa ·DRCa+b (4)

in CH2g
Q (Mg,n), after pushing forward from the interse
tion of the 
orrespond-

ing double rami�
ation lo
i. However, this relation is uninteresting as both

sides vanish for g ≥ 1 (and are equal to 1 for g = 0). Indeed, it was shown by

Hain in [Hai13℄ that the double rami�
ation 
y
les are tautologi
al (for details

see se
tion 6). But the tautologi
al ring ofMg,n vanishes in degree at least g
by [Ion02℄, so the two sides of eq. (4) vanish for g ≥ 1 sin
e they are of degree

2g.
Over the lo
us of 
ompa
t type (or more generally treelike) 
urves, the double

rami�
ation 
y
le 
an be de�ned in the same way, and the same proof shows

that multipli
ativity holds here; more details are given in se
tion 7. Moreover,

on these lo
i the relation is not va
uous, as shown in se
tion 8. However, the

same se
tion shows that this multipli
ativity relation does not extend over the

whole ofMg,n; in the next se
tion, we introdu
e the b-Chow ring, and in the

se
tion after we extend the double rami�
ation 
y
le to the b-Chow ring and

show that multipli
ativity does hold there.

4 The b-Chow ring

The group of b-divisors on a s
heme X was introdu
ed by Shokurov [Sho96℄,

[Sho03℄ as the limit of the divisor groups of all blowups of X , with transition

maps given by proper pushforward. One 
an de�ne a (large) b-Chow group
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in the same way, as the limit over all blowups with transition maps given by

pushforward, but note that it does not have a natural ring stru
ture. The small

b-Chow group is de�ned below as the 
olimit of Chow groups over smooth

blowups, with transition maps given by pullba
k of 
y
les. It is naturally a

subgroup of the large b-Chow group, and importantly it 
arries a natural ring

stru
ture (des
ribed below), so we refer to it as the (small) b-Chow ring.

Let S be an irredu
ible noetherian algebrai
 sta
k. We write Bl(S) for the


ategory whose obje
ts are proper birational morphisms X → S, relatively
representable by algebrai
 spa
es, and with X regular, and where the mor-

phisms are morphisms over S. Taking Chow rings and pullba
ks gives a new


ategory CHQ(Bl(S)), whose obje
ts are the Q-Chow rings of the obje
ts of

Bl(S), and where morphisms are given by pullba
ks (whi
h makes sense be-


ause everything is regular). We de�ne the b-Chow ring of S to be the 
olimit

of this system of rings:

bCHQ(S) = colimCHQ(Bl(S)).

The 
ategory CHQ(Bl(S)) is �ltered ([Sta13, Tag 04AX℄); the only non-trivial

thing to 
he
k is that, for two obje
ts X/S and Y/S in Bl(S), there exists

Z/S ∈ Bl(S) dominating X and Y . Let U ⊆ S be some dense open where

X → S and Y → S are isomorphisms, and let Z ′/S denote the s
hemati


image of U in the �bre produ
t X ×S Y . Then Z ′/S is proper, birational,

relatively representable and dominates X and Y , but need not be regular.

However, by [Tem12℄ it admits a resolution by blowing up; we take Z to be

su
h a resolution. For a �ltered 
olimit we 
an give a mu
h more 
on
rete

des
ription on the level of sets:

bCHQ(S) =




⊔

X∈Bl(S)

CHQ(X)



 / ∼

where for elements x ∈ CHQ(X) and y ∈ CHQ(Y ), we say x ∼ y if and only if

there exists Z ∈ Bl(S) and S-morphisms f : Z → X , g : Z → Y , with

f∗x = g∗y.

To multiply elements x and y, we again �nd a Z ∈ Bl(S) mapping to both X
and Y , and form the interse
tion produ
t after pullba
k to this Z.

5 Multiplicativity of the double ramification cycle in the b-
Chow ring

Given a = (a1, . . . , an, k) with
∑

i ai = k(2g−2), we �rst de�ne the extension of
the 
orresponding double rami�
ation 
y
le to bDRCa in bCHQ(Mg,n). Taking

the standard extension to the Chow ring of Mg,n and pulling ba
k is not the

right approa
h � for example, the multipli
ativity relation will fail. Instead
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we look at the 
onstru
tion in se
tion 2. Re
all that for a modi�
ation X →
Mg,n we write X̊ →֒ X for the largest open to whi
h σa extends. We de�ne

DRLX
a ֌ X̊ by pulling ba
k the unit se
tion s
heme-theoreti
ally, and DRCX

a

as a 
y
le 
lass on DRLX
a by pulling ba
k in Chow.

Let X be regular and su
h that DRLX
a is proper overMg,n. Write i : DRLX

a →

X for the in
lusion, whi
h is a 
losed immersion. Then we de�ne DRCX
a =

i∗ DRCX
a as an element of bCHQ(Mg,n). Re
all from se
tion 2 that the X

with DRLX
a proper overMg,n form a 
o�nal system among all modi�
ations

X , yielding a net of DRCX
a in bCHQ(Mg,n).

Lemma 5.1. The net of DRCX
a in bCHQ(Mg,n) is eventually 
onstant.

Proof. This argument is a simpler version of the proof of [Hol17, theorem 6.3℄.

The limiting value 
an be obtained by taking X a regular 
ompa
ti�
ation of

the sta
kM♦
g,n 
onstru
ted in [lo
.
it.℄.

Definition 5.2. We de�ne bDRCa in bCHQ(Mg,n) as the limit of the above

net.

Theorem 1.1 now follows formally from [Hol17, �6℄, so it remains to prove

theorem 1.2.

Theorem 5.3. Choose a = (a1, . . . , an, k) with
∑

i ai = k(2g−2), and similarly


hoose b = (b1, . . . , bn, k
′). Then in bCHQ(Mg,n) we have

bDRCa · bDRCb = bDRCa · bDRCa+b . (5)

Proof. Choose X →Mg,n so that DRLX
a →Mg,n is proper and so that DRCX

a

equals the limiting value bDRCa in bCHQ(Mg,n). Choose a 
orresponding Y
for b, and let Z be a regular modi�
ation admitting morphisms to X and Y
over Mg,n (this exists sin
e the 
ategory Bl(Mg,n) is �ltered). It su�
es to


he
k eq. (5) in the Chow ring of Z.
Let Z̊a →֒ Z be the largest open where σa extends, and similarly de�ne Z̊b and

Z̊a+b. Writing Z̊ = Z̊a ∩ Z̊b, we see that σa+b is also de�ned on Z̊; it is given
by σa + σb. Hen
e we have

Z̊ = Z̊a ∩ Z̊b ⊆ Z̊a+b,

and a similar argument shows

Z̊a ∩ Z̊a+b ⊆ Z̊b. (6)

Now it is 
lear that

DRLZ
a ∩DRLZ

b ⊆ Z̊a ∩ Z̊b = Z̊,
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and similarly we have

DRLZ
a ∩DRLZ

a+b ⊆ Z̊a ∩ Z̊a+b ⊆ Z̊a ∩ Z̊b = Z̊,

where the middle relation 
omes from eq. (6). The theorem now follows dire
tly

from lemma 3.1 applied to the universal ja
obian Jg,n pulled ba
k to Z.

6 Relation to the cycle Pd,k
g (A)

In this and the next se
tion we 
onsider the 
onne
tion between the 
lasses

DRCa ∈ CHg
Q(Mg,n) and the tautologi
al 
y
le 
lass Pd,k

g (A) introdu
ed by

the se
ond author in [JPPZ17℄. For this we �rst re
all some notation from

[lo
.
it.℄.

Fix an integer k ≥ 0 and an integer ve
tor A = (A1, . . . , An) with
∑n

i=1Ai =
k(2g − 2 + n). Note that there is a natural bije
tion of su
h ve
tors A and

ve
tors a = (a1, . . . , an) with
∑n

i=1 ai = k(2g − 2) by setting

(A1, . . . , An) = (a1 + k, . . . , an + k);

we will use this identi�
ation in what follows.

Fix also a degree d ≥ 0, then given this data, in [JPPZ17, Se
tion 1.1℄ a

tautologi
al 
y
le 
lass

Pd,k
g (A) ∈ CHd

Q(Mg,n)

is de�ned as an expli
it sum in terms of de
orated boundary strata. The main

result of [JPPZ17℄ is that for k = 0, d = g this formula 
omputes the double

rami�
ation 
y
le 
orresponding to the partition A. More pre
isely, they prove

DRg(A) = 2−gPg,0
g (A),

where DRg(A) is the double rami�
ation 
y
le asso
iated to A via the Gromov-

Witten theory of `rubber P1
'.

From [Hol17, 
onje
ture 1.4℄ we re
all

Conjecture 6.1. For all k we have

DRCa = 2−gPg,k
g (A)

as elements of CHg
Q(Mg,n).

Remark 6.2. Conje
ture 6.1 holds when k = 0. Indeed, when k = 0 we know

by [Hol17, theorem 1.3℄ that DRCa = DRg(A), whi
h 
ombined with the main

result of [JPPZ17℄ yields the result.

We now show that 
onje
ture 6.1 holds for all k if we restri
t to the lo
us of


urves of 
ompa
t type.

Proposition 6.3. On the lo
usMct
g,n of 
ompa
t type 
urves we have an equal-

ity

DRCa = 2−gPg,k
g (A) ∈ CHg

Q(M
ct
g,n). (7)
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Proof. The proof runs via the following 
hain of equalities in CHg
Q(M

ct
g,n).

DRCa
a)
= σ∗

a[e]
b)
= σ∗

a

θg

g!
=

1

g!

(

σ∗
aθ
)g c)

=
1

2gg!

(
P 1,k
g (A)

)g d)
= 2−gPg,k

g (A).

To start, equality a) follows from the de�nition of the double rami�
ation


y
le and the fa
t that the universal ja
obian overMct
g,n is an abelian s
heme,

hen
e any se
tions overMg,n are guaranteed to extend (uniquely) overMct
g,n.

Equality b) 
omes by pulling ba
k the obvious relation on the universal abelian

variety, whi
h has already been observed by various authors, see for instan
e

[GZ14a℄.

Now the pullba
k (in 
ohomology) of the theta divisor under σa has been


omputed by Hain in [Hai13℄. In standard notation for the tautologi
al 
lasses

inMct
g,n, Hain's result reads as follows: in H

2(Mct
g,n) we have

σ∗
aθ = −

k2

2
κ1 +

1

2

n∑

j=1

(aj + k)2ψj −
1

2

∑

g′,P

(aP − (2g′ − 1)k)2δPg′ . (8)

Here P runs over subsets of {1, . . . , n}, aP =
∑

i∈P ai, and the last sum should

be interpreted as in
luding ea
h boundary divisor δPg′ = δP
c

g−g′ exa
tly on
e.

Dedu
ing equality 
) in 
ohomology then follows by an elementary veri�
ation

using the de�nition of P1,k
g (A) from [JPPZ17, Se
tion 1.1℄. To lift this to an

equality in Chow, we want to show that the 
y
le 
lass map CH1
Q(M

ct
g,n) →

H2(Mct
g,n) is inje
tive. Now it is 
lassi
al that CH1

Q(Mg,n) ∼= H2(Mg,n). Sin
e

Mct
g,n is the 
omplement of the divisor ∆irr ⊂Mg,n of irredu
ible nodal 
urves,

we have CH1
Q(M

ct
g,n) = CH1

Q(Mg,n)/Q·[∆irr] by the ex
ision exa
t sequen
e for
Chow groups. For the analogous result in 
ohomology, note that the in
lusion of

the open setMct
g,n ⊆Mg,n with 
omplement∆irr indu
es a long exa
t sequen
e

for 
ohomology with 
ompa
t support. For d = dimCMg,n = 3g − 3 + n we

look at the following pie
e of this sequen
e

· · · → H2d−2
c (Mct

g,n)→ H2d−2(Mg,n)→ H2d−2(∆irr)→ · · · ,

where we note that Mg,n and ∆irr are 
ompa
t, so 
ompa
tly supported 
o-

homology agrees with usual 
ohomology. Taking the dual and using Poin
aré

duality, we have an exa
t sequen
e

H2(Mct
g,n)←− H

2(Mg,n)←− H
0(∆irr) = Q · [∆irr],

where we use that ∆irr is 
onne
ted. This implies that we have an inje
tion

H2(Mg,n)/Q · [∆irr] →֒ H2(Mct
g,n), but

H2(Mg,n)/Q · [∆irr] ∼= CH1
Q(Mg,n)/Q · [∆irr] ∼= CH1

Q(M
ct
g,n).

This proves equality 
) in Chow.
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Finally, equality d) follows from the fa
t that onMct
g,n we have an equality of

mixed-degree 
lasses

exp(P1,k
g (A)) =

∑

d≥0

Pd,k
g (A) ∈ CH∗

Q(M
ct
g,n). (9)

This equality is a 
ombinatorial statement; it is a spe
ialization of the more

general lemma 7.3 whi
h we will prove in the next se
tion.

7 Restricting to treelike curves

In this se
tion we fo
us on the lo
us of treelike 
urves � these are stable 
urves

whose graph is a tree with any number of self-loops atta
hed (equivalently, all

non-dis
onne
ting edges are self-loops, or all 
y
les in the graph have length

≤ 1). We write Mtl
g,n for this lo
us; it is open in Mg,n, and 
learly 
ontains

the 
ompa
t-type lo
usMct
g,n.

Over the lo
us of treelike 
urves, the universal ja
obian Jg,n is not proper (and

its tori
 rank 
an be arbitrarily large). However, it is still a Néron model of its

generi
 �bre in the sense of [Hol19℄ � this follows easily from the main theorem

of [lo
.
it.℄, sin
e all 
y
les in the graph have length at most 1. In parti
ular,

this implies that the se
tion σa over Mg,n extends uniquely to Jg,n over the

whole ofMtl
g,n.

In fa
t, Mtl
g,n 
an be uniquely 
hara
terised as the largest open ofMg,n su
h

that every étale-lo
al se
tion of the universal ja
obian overMg,n extends. In-

deed, if C is a non-treelike point then there exists a 
y
le of irredu
ible 
ompo-

nents γ of C of length greater than 1. Choose an étale neighbourhood U of C
in Mg,n, and se
tions p and q in Cg,n(U) passing through distin
t irredu
ible


omponents of γ. Write Ů for the pullba
k of Mg,n to U . Then the formula

[OCg,n
(p − q)] de�nes a se
tion in Jg,n(Ů) whi
h 
annot extend over U . The

qui
k way to see this is to observe that there does not exist a tropi
al rational

fun
tion on the graph Γ of C whose divisor has multidegree equal to that of

[OCg,n
(p−q)]. More expli
itly, we 
an apply lemma 4.3 of [Hol17℄, and see that

there does not exist a weighting on the de
orated graph Γ whi
h is 
ompatible

with the thi
kness (1, . . . , 1) (see [lo
.
it.℄ se
tion 3 for this notation).

Re
all that DRCa is the extension of the double rami�
ation 
y
le to the Chow

ring ofMg,n as 
onstru
ted in se
tion 2.

Lemma 7.1. In CHg
Q(M

tl
g,n) we have the equality

DRCa = σ∗
a[e] (10)

and in CH2g
Q (Mtl

g,n) we have

DRCa ·DRCb = DRCa ·DRCa+b. (11)
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Proof. Sin
e the se
tion σa extends to Jg,n over Mtl
g,n, the blowups used to

extend the se
tion may be assumed to be isomorphisms overMtl
g,n; more pre-


isely, the 
o�nal system in se
tion 5 
an be 
hosen so that all of the birational

morphisms X → Mg,n are isomorphisms over Mtl
g,n. This proves (10), and

(11) then follows from theorem 5.3, or dire
tly from lemma 3.1.

The 
lasses Pg,k
g also satisfy multipli
ativity onMtl

g,n:

Proposition 7.2. Let A, B be ve
tors of n integers with

∑
Ai = ka(2g−2+n)

and

∑
Bi = kb(2g − 2 + n) for some ka, kb ∈ Z. Then the equality

P
g,ka

g (A) · P
g,kb

g (B) = P
g,ka

g (A) · P
g,ka+kb

g (A+B) (12)

holds in CH2g
Q (Mtl

g,n).

The 
onsisten
y of this multipli
ativity with that of lemma 7.1 provides evi-

den
e for 
onje
ture 6.1.

There are two key ingredients in the proof of proposition 7.2. The �rst is the

basi
 
odimension g + 1 relation

Pg+1,k
g (A) = 0 ∈ CHg+1

Q (Mg,n) (13)

proved in [CJ18, Theorem 5.4℄. The se
ond is the following 
ombinatorial

lemma:

Lemma 7.3. Let Pk
g(A)

treelike

denote the mixed-degree 
lass in the Chow ring

of the lo
us of treelike 
urves

Pk
g(A)

treelike :=
∑

d≥0

Pd,k
g (A) ∈ CH∗

Q(M
tl
g,n).

Then there exists a mixed-degree 
lass ∆ ∈ CH∗
Q(M

tl
g,n) (not depending on A

or k) along with a divisor-valued quadrati
 form Q(A) ∈ CH1
Q(M

tl
g,n) su
h that

Pk
g(A)

treelike = exp(Q(A))∆.

Before 
he
king lemma 7.3, we use it to prove proposition 7.2:

Proof of proposition 7.2. Using lemma 7.3 we 
an rewrite the 
odimension g+1
relation eq. (13) for a ve
tor A+ C as

[exp(Q(A+ C))∆]g+1 = 0,

where [X ]d denotes the 
odimension d part of a mixed-degree 
lass X .

This relation is an equality of polynomials in the A and C variables, so it will

still hold if we restri
t to the part of degree 1 in C. This gives

[exp(Q(A))∆]g · (Q(A+ C)−Q(A)−Q(C)) = 0.
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Changing variables with C = A+2B, using the fa
t that Q is a quadrati
 form,

and dividing by 2, we arrive at the relation

[exp(Q(A))∆]g · (Q(A+B)−Q(B)) = 0.

Now, the mixed-degree 
lass exp(Q(A+B))− exp(Q(B)) is 
learly divisible by
the divisor 
lass Q(A+B)−Q(B), so we have the relation

[exp(Q(A))∆]g[(exp(Q(A+B))− exp(Q(B)))∆]g = 0.

Then applying lemma 7.3 again gives the desired multipli
ativity statement.

Proof of lemma 7.3. This lemma is essentially a 
ombinatorial statement about

the de�nition of the 
lasses Pd,k
g (A) in [JPPZ17, Se
tion 1.1℄ along with the

multipli
ation formula for tautologi
al 
lasses given in [GP03, Appendix A,

eq. (11)℄. In the general 
ase, Pd,k
g (A) is a sum over de
orated (by ψ and

κ 
lasses) dual graphs Γ of a 
ombinatorial 
oe�
ient times the tautologi
al


lass 
orresponding to Γ. The 
ombinatorial 
oe�
ient is de�ned by taking the

r-
onstant term of a polynomial in r de�ned by summing over 
ertain balan
ed

`weightings mod r' of the half-edges of Γ.

In our 
ase, we 
an assume that the graph Γ is treelike and the 
ombinatorial


oe�
ients then be
ome signi�
antly simpler: the only weights that are allowed

to vary are those in loops of the graph, and these weights are subje
t only to

the 
ondition that the weights on the two sides of a loop must sum to zero mod

r. The result is that the 
oe�
ient asso
iated to a graph Γ fa
tors as a produ
t

of the 
ontributions from the loops and the 
ontributions from the non-loops.

Moreover, it is easily seen that if Γ is treelike then there is a unique way to

pi
k two disjoint subsets E1, E2 of the set of edges of Γ su
h that Γ be
omes

a tree when E1 is 
ontra
ted and be
omes a single vertex with loops atta
hed

when E2 is 
ontra
ted: we must have that E1 is the set of loops and E2 is the

set of non-loop edges.

These two fa
ts about treelike graphs and their 
ombinatorial 
oe�
ients along

with the graph re�nement formula for multipli
ation in the tautologi
al ring

[GP03, Appendix A℄ have the following 
onsequen
e: the entire (mixed-degree)


lass fa
tors as

Pk
g(A)

treelike = Pk
g(A)

tree · Pk
g(A)

loops,

where the three 
lasses are, respe
tively, the full 
lass on the lo
us of treelike


urves, the sum of those terms with Γ a tree, and the sum of those terms where

Γ has exa
tly one vertex and where there are no κ de
orations on the vertex

and no ψ de
orations on any legs (but possibly on loops).

Moreover, the �nal 
lass above does not a
tually depend on the ve
tor A; we
set

∆ := Pk
g(A)

loops.

Documenta Mathematica 24 (2019) 545–562



Multiplicativity of the Double Ramification Cycle 557

We do not need to know anything more about ∆ for our purposes, but an

expli
it formula 
an easily be obtained:

∆ =

g
∑

l=0

(−1)l

2l · l!
(ξl)∗

l∏

i=1




∑

d≥0

B2d+2

(d+ 1)!
(ψn+2i−1 + ψn+2i)

d



 ,

where ξl : Mg−l,n+2l → Mg,n glues the last l pairs of points together and

B2d+2 are Bernoulli numbers.

For the remaining fa
tor Pk
g(A)

tree

, we 
laim that

Pk
g(A)

tree = exp([Pk
g(A)

tree]1). (14)

Then we 
an take

Q(A) := [Pk
g(A)

tree]1,

whi
h expli
itly is given by the same formula as Hain's formula eq. (8) (multi-

plied by 2 and interpreted as divisors on the lo
us of treelike 
urves) and thus

is a quadrati
 form in A.
It remains to 
he
k eq. (14) using the multipli
ation formula of [GP03, Ap-

pendix A℄. Suppose that for i = 1, . . . , k, δPi
gi are boundary divisor 
lasses for

separating nodes, so ea
h su
h 
lass 
orresponds to a graph with two verti
es


onne
ted by a single edge along with a distribution of the total genus g and

markings between the two verti
es (su
h that one has genus gi and marking

Pi). If we multiply all of these k divisor 
lasses together, the multipli
ation

formula in this 
ase says that the result is a sum over the following data: a

tree Γ along with a distribution of genus and markings between the verti
es of

Γ and a sequen
e of edges e1, . . . , ek in Γ (possibly with repetition) su
h that

1. the division of genus and markings a
ross the two sides of edge ei agree
with the division in δPi

gi ;

2. every edge of Γ appears at least on
e in the sequen
e e1, . . . , ek.

Repeated edges ei give rise to ψ 
lasses along that edge.

Computing the right side of eq. (14) (the exponential of a divisor 
lass) by using

the above pro
edure to multiply divisor 
lasses together then gives pre
isely the

sum over trees appearing in the de�nition of Pk
g(A)

tree

.

8 Failure of multiplicativity in the Chow ring of Mg,n

Sin
e both sides of eq. (12) make sense in the Chow ring ofMg,n, it is natural

to ask whether the multipli
ativity stated in proposition 7.2 might hold not

just on the lo
us of treelike 
urves but on the entire spa
e of stable 
urves. In

this se
tion we present an expli
it example where this desired equality fails and

in fa
t argue that there 
an be no other extension of the 
y
les DRCa from
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Mct
g,n that would make the equality hold. In other words, multipli
ativity is

really a feature of the (small) b-Chow ring and not of the standard Chow ring.

Let g = 1, k = 0 and 
onsider the two partitions a = (2, 4,−6), b = (−3,−1, 4)
of 0. Let DRCa, DRCb, DRCa+b ∈ CH1

Q(M1,3) be the 
orresponding dou-

ble rami�
ation 
y
les. By proposition 6.3 these agree with the 
orresponding

P1
1(A), whi
h 
an be 
omputed as expli
it tautologi
al 
lasses. Using an im-

plementation of the tautologi
al ring by the se
ond author one 
an 
he
k that

the multipli
ativity fails inside the Chow group ofM1,3, i.e.

DRCa ·DRCb 6= DRCa ·DRCa+b ∈ CH2
Q(M1,3). (15)

What is true however is that the di�eren
e of the two sides in eq. (15) is a linear


ombination of the 
lasses of the three irredu
ible 
omponents ofM1,3 \M
tl
1,3.

In other words, eq. (15) be
omes an equality on
e we restri
t to the lo
usMtl
1,3

of treelike 
urves, as proved in proposition 7.2. Moreover, a
tually both sides

of eq. (15) give nontrivial elements of CH2
Q(M

tl
1,3). In parti
ular, this shows

that for the above example the two sides of the multipli
ativity statement in

the (small) b-Chow ring are also nontrivial. This gives an indi
ation that the

multipli
ativity whi
h holds in the b-Chow ring is not the 
onsequen
e of some

trivial vanishing (like both sides of the equality being zero, for instan
e).

Now one �nal hope for multipli
ativity on Mg,n 
ould be that the 
y
les

DRCa, DRCb, DRCa+b are not the right extension of the 
orresponding Abel-

Ja
obi pullba
ks σ∗
a[e], σ

∗
b [e], σ

∗
a+b[e] ∈ CH1

Q(M
ct
1,3) on the lo
us of 
ompa
t type


urves. However, the 
omplementM1,3 \M
ct
g,n is exa
tly given by the bound-

ary divisor ∆irr generi
ally parametrising irredu
ible nodal 
urves. Hen
e any

su
h extensions must have the form

D̃RCa = DRCa + λa ·∆irr,

D̃RCb = DRCb + λb ·∆irr,

D̃RCa+b = DRCa+b + λa+b ·∆irr.

Using that ∆2
irr = 0 we 
ompute

D̃RCa · (D̃RCb − D̃RCa+b)

=DRCa · (DRCb − DRCa+b)
︸ ︷︷ ︸

I1

+(λb − λa+b)DRCa ·∆irr
︸ ︷︷ ︸

I2

+ λa ∆irr · (DRCb −DRCa+b)
︸ ︷︷ ︸

I3

.

However, it 
an be 
he
ked by 
omputer that the three elements I1, I2, I3 ∈
CH2

Q(M1,3) are linearly independent. Therefore there is no way to 
hoose

λa, λb, λa+b to have the D̃RC satisfy multipli
ativity in the Chow ring ofMg,n;

we only have multipli
ativity in the (small) b-Chow ring or on the open lo
us

of treelike 
urves.
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9 Logarithmic version

We work with �ne and saturated log stru
tures in the sense of Fontaine-Illusie,

using Olsson's generalisation to sta
ks [Ols01℄. We put a log stru
ture onMg,n

as in Kato [Kat96℄.

A logarithmic analogue in arbitrary characteristic

Until now we have restri
ted to 
hara
teristi
 zero in order to be able to apply

Hironaka's resolution of singularities, to show that every modi�
ation ofMg,n


an be dominated by a regular one - more pre
isely we use Temkin's fun
torial

resolution [Tem12℄, so that we 
an apply it to sta
ks. This implies that the


ategory Bl(Mg,n) is �ltered, giving us a very expli
it des
ription of the 
olimit

bCHQ(Mg,n).
In positive 
hara
teristi
 the analogue of Hironaka's resolution is not known.

However, it follows from the proof of [Hol17, Lemma 6.1℄ that in our setting we


an restri
t to modi�
ations X → Mg,n whi
h are log blowups (in parti
ular

log étale overMg,n). Sin
e Mg,n is log regular, su
h a modi�
ation is again

log regular, and we 
an use results of Gabber, Illusie and Temkin to show

that a suitable 
ategory of blowups is �ltered. In the remainder of this se
tion

we will explain how to use these ideas to generalise our results to arbitrary


hara
teristi
.

From now on we work over a �eld k of any 
hara
teristi
. First we des
ribe the
translation of se
tion 5 into the logarithmi
 setting. We write Bllog(Mg,n) for
the 
ategory of log blowups X → Mg,n whose underlying sta
ks are regular;

morphisms are taken overMg,n.

Lemma 9.1. The 
ategory Bllog(Mg,n) is �ltered.

Proof. Let X/Mg,n and Y/Mg,n be obje
ts in Bllog(Mg,n), and let Z ′
denote

their �bre produ
t in the 
ategory of �ne and saturated log s
hemes overMg,n;

note that Z ′ → Mg,n is again a log blowup. Now log blowups are log étale,

hen
e Z ′
is log étale over the log regular sta
k Mg,n, and hen
e Z ′

is log

regular. It remains to 
he
k that Z ′
has a log blowups whi
h is regular. Now

[IT14, Theorem 3.4.9℄ gives a resolution algorithm for log regular log s
hemes,

whi
h is in parti
ular fun
torial for stri
t étale morphisms. Sin
eMg,n admits

a stri
t étale 
over by log s
hemes the same is true for Z ′
(by base-
hange),

so we apply fun
torial resolution to ea
h pat
h of su
h a 
over, and glue by

fun
toriality.

We de�ne the logarithmi
 b-Chow ring bCHlog,Q(Mg,n) of Mg,n to be the


olimit over X ∈ Bllog(Mg,n) of the Chow rings CHQ(X), with transition

maps given by pullba
k. By lemma 9.1 this admits a simple presentation as in

se
tion 4.

Fix a = (a1, . . . , an, k) as usual. Given X ∈ Bllog(Mg,n) we de�ne X̊ to be

the largest open to whi
h σa extends, and de�ne DRLX
a and DRCX

a by the
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same formulae as in se
tion 5, by pulling ba
k the unit se
tion in Jg,n either

as a s
heme or as a 
y
le. Again we need to 
he
k that those X with DRLX
a

proper over Mg,n form a 
o�nal system; this does not follow immediately

from theorem 2.1 as it is not 
lear that those X 
an be 
hosen to be log

blowups, but does follow from [Hol17, Lemma 6.1 and Theorem 6.3℄, 
ombined

with resolution of singularities for log regular sta
ks [IT14, Theorem 3.4.9℄.

The same referen
es show again that the net DRCX
a is eventually 
onstant in

bCHQ,log(Mg,n), yielding a well-de�ned 
lass bDRCa,log ∈ bCHQ,log(Mg,n).

Theorem 9.2. Choose a = (a1, . . . , an, k) with
∑

i ai = k(2g−2), and similarly


hoose b = (b1, . . . , bn, k
′). Then in bCHQ,log(Mg,n) we have

bDRCa,log · bDRCb,log = bDRCa,log · bDRCa+b,log . (16)

Proof. By lemma 9.1 we 
an 
hoose Z ∈ Bllog(Mg,n) dominating bothM�
a and

M�
b . The logarithmi
 stru
tures play no further role, and we pro
eed exa
tly

as in the proof of theorem 5.3.

The Chow ring of the valuativisation

Following [Kat89℄, the valuativisation of a log s
heme or sta
k is the limit

of all the log blowups; this does not exist as a s
heme (or sta
k), but does

exist as either a lo
ally ringed spa
e or a pro-s
heme over Mg,n. The loga-

rithmi
 b-Chow ring de�ned above 
an then be viewed as the Chow ring of

the valuativisation, 
.f. [SST18℄. In [lo
.
it.℄ a derived equivalen
e is 
on-

stru
ted between the valuativisation and a 
ertain in�nite root sta
k ofMg,n.

We hope that this derived equivalen
e might shed some light on the relation

between the �rst author's 
onstru
tion in [Hol14℄ of a universal Néron-model-

admitting sta
k, and Chiodo's work [Chi15℄. More generally, it might realise

our bDRC ∈ bCHQ(Mg,n) as a shadow of some more re�ned derived obje
t.
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