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Abstract. Let Λ (isomorphic to Zp[[T ]]) denote the usual Iwasawa
algebra and G denote the Galois group of a finite Galois extension
L/K of totally real fields. When the non-primitive Iwasawa mod-
ule over the cyclotomic Zp-extension has a free resolution of length
one over the group ring Λ[G], we prove that the validity of the non-
commutative Iwasawa main conjecture allows us to find a representa-
tive for the non-primitive p-adic L-function (which is an element of
a K1-group) in a maximal Λ-order. This integrality result involves a
study of the Dieudonné determinant. Using a cohomolgoical criterion
of Greenberg, we also deduce the precise conditions under which the
non-primitive Iwasawa module has a free resolution of length one. As
one application of the last result, we consider an elliptic curve over Q
with a cyclic isogeny of degree p2. We relate the characteristic ideal
in the ring Λ of the Pontryagin dual of its non-primitive Selmer group
to two characteristic ideals, viewed as elements of group rings over Λ,
associated to two non-primitive classical Iwasawa modules.
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1 Introduction

Over the years, the Iwasawa main conjecture has been formulated in various
setups and various guises. The underlying principle in each formulation has
been to relate objects on the algebraic side to the objects on the analytic side.
On the algebraic side of Iwasawa theory, one studies modules over Iwasawa
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algebras. An Iwasawa algebra is a completed group ring Zp[[G]], for some p-
adic Lie group G. On the analytic side, one studies p-adic L-functions. The
p-adic L-functions are believed to satisfy certain integrality properties. For
example, consider the case when the group G is isomorphic to Zp × ∆, for
some finite abelian group ∆. Under suitable conditions, the p-adic L-function
is known to be a measure (not just a pseudo-measure). Our results in this
paper are motivated by similar integrality properties of p-adic L-functions, in
the non-commutative setting, as predicted by the non-commutative Iwasawa
main conjectures.
Throughout this paper, fix p to be an odd prime. Let us first introduce all the
notations that will be required to describe our results precisely. Let L/K be
a finite Galois extension of totally real fields. Let χ : Gal(Q/K) → F×

p →֒ Z×
p

be a finite character that is either totally even or totally odd. For the sake of
simplicity, we have chosen to work with a finite character χ taking values in
Z×
p . One could also consider a finite character taking values in an unramified

extension of Qp. Our results would hold analogously.

We let Kχ denote the number field Q
ker(χ)

. We let Lχ denote the compositum
of L and Kχ. We let the fields K∞, Kχ,∞, L∞ and Lχ,∞ denote the cyclotomic
Zp-extensions of K, Kχ, L and Lχ respectievly. Let G := Gal(L/K), ∆ :=
Gal(Kχ/K) and Γ := Gal(K∞/K). Throughout this paper, we will impose the
following condition:

K∞ ∩ Lχ = K. (1)

Condition (1) imposed above allows us to view χ naturally as a character of
the groups Gal(Kχ/K), Gal(Lχ/L), Gal(Kχ,∞/K∞) and Gal(Lχ,∞/L∞) (and
throughout this paper, we shall take this point of view). We have the following
field diagrams and natural isomorphisms in mind:

K

L Kχ

Lχ

G ∆

∆ G

K∞

L∞ Kχ,∞

Lχ,∞

G ∆

∆ G

We will consider the non-primitive classical Iwasawa module X (defined in the
next paragraph). Let Λ denote the completed group ring Zp[[Γ]]. Let Λ[G]
denote the group ring over Λ. In what follows, we will assume that all the
Λ[G]-modules are left Λ[G]-modules with a left G-action. It turns out that X
is a finitely generated torsion module over Λ[G]. See [22, Proposition 1]. We
refer the reader to this work of Greenberg to see how the Iwasawa module X

relates to Galois groups appearing in classical Iwasawa theory.

Let D(χ) equal
Qp(χ)
Zp(χ)

, that is,
Qp

Zp
with an action of Gal(Q/K) via the character

χ. Let us define the (non-primitive) Selmer group SelΣ0

D(χ)(L∞). The definition
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of the Selmer group depends on the parity of χ. Let Σ denote a finite set of
primes in K containing the primes above p, ∞, a finite prime number ν0 not
lying above p, and all the primes ramified in the extensions L/K and Kχ/K.
For any algebraic extension F of K, we let Σp(F ) denote the set of all primes
above p in F . We let Σ0 equal the set Σ \ Σp(K). We let KΣ denote the
maximal extension of K that is unramified outside Σ.

If the character χ is totally even, the Selmer group is defined as follows:

SelΣ0

D(χ)(L∞) = H1 (Gal(KΣ/L∞),D(χ)) .

If the character χ is totally odd, the Selmer group is defined as follows:

SelΣ0

D(χ)(L∞) =

ker



H1 (Gal(KΣ/L∞),D(χ))
φ
Σ0
D(χ),odd−−−−−−→

∏

ω∈Σp(L∞),

H1 (Iω,D(χ))
Γω



 .

Here, Iω denotes the inertia subgroup inside the decomposition group Gω cor-
responding to the prime ω. We let Γω denote the quotient group Gω

Iω
. The map

φΣ0

D(χ),odd denotes the (natural) restriction map. Let X denote the Pontryagin

dual of SelΣ0

D(χ)(L∞). We will sometimes write XD(χ)(L∞) when we want to

emphasize the field L and the character χ.

Remark 1.1. We work with non-primitive Selmer groups since one can use
Greenberg’s results to show that the global-to-local map φΣ0

D(χ),odd is surjective.

We include the auxillary prime ν0 not lying above p to ensure that we are
working with Selmer groups that are genuinely non-primitive. When χ equals
the Teichmüller character ω, the global-to-local map defining the primitive
Selmer group is not surjective. See [20, Proposition 5.3.3] and the illustration
that follows.

1.1 Integrality property for the non-primitive p-adic L-function

The main conjecture (Conjecture 3.2) allows us to deduce certain integrality
properties for the non-primitive p-adic L-function ξ from the non-primitive
Iwasawa module X. Let QΛ denote the fraction field of Λ. On the algebraic
side, one considers an element in the relative K0-group K0 (Λ[G], QΛ[G]). On
the analytic side, we have a non-primitive p-adic L-function ξ in K1 (QΛ[G]).
The interpolation properties of the p-adic L-function ξ are recalled in Section
3.1. Under the connecting homomorphism ∂ : K1 (QΛ[G]) → K0 (Λ[G], QΛ[G])
in K-theory, the non-commutative Iwasawa main conjecture relates the non-
primitive p-adic L-function ξ to the element on the algebraic side in the rel-
ative K0-group. Works of Ritter-Weiss ([48]) and Kakde ([30]) independently
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show that the non-commutative Iwasawa main conjecture holds when χ is to-
tally even, assuming Iwasawa’s µ = 0 conjecture holds. Progress towards the
Iwasawa main conjecture, without assuming the validity of Iwasawa’s µ = 0
conjecture, has been made in recent work of Johnston-Nickel [29].
The Artin-Wedderburn theorem gives us the following isomorphism:

QΛ[G] ∼=
∏

i

Mmi
(DΛ,i), (2)

where the DΛ,i’s are division algebras, finite-dimensional over QΛ. One obtains
the following sequence of isomorphisms:

K1 (QΛ[G]) ∼=
∏

i

K1 (Mmi
(DΛ,i))

det∼=
∏

i

(
Mmi

(DΛ,i)
∗)ab ∼= (QΛ[G]∗)

ab
. (3)

Here, (QΛ[G]∗)
ab

denotes the maximal abelian quotient of the multiplicative
group of units in the ring QΛ[G]. The det in equation (3) refers to the
Dieudonné determinant. Its definition is recalled in Section 2. One has a nat-
ural surjection QΛ[G]∗ ։ K1 (QΛ[G]∗) of groups. One can ask the following
question:

Question 1.2. When χ is non-trivial, does ξ belong to the image of the fol-
lowing natural map of multiplicative monoids?

Λ[G] ∩QΛ[G]∗ → K1 (QΛ[G]) .

A similar question, pertaining to the integrality properties of p-adic L-
functions, was raised in the five author paper [5]. See Conjecture 4.8 in [5]. In
that paper, the authors considered p-adic L-functions associated to ordinary
elliptic curves. Note that the formulation of Question 1.2 is stronger than Con-
jecture 4.8 in [5] as the authors of [5] state their conjecture assuming that the
group G has no element of order p. One can also consider this question as a
(non-commutative, non-primitive) refinement of the p-adic Artin conjecture of
Greenberg [15].

Remark 1.3. In the setup of our theorems, the p-adic L-function (if it exists,
as is conjectured) turns out to be unique. To see this, it suffices to show
that the reduced Whitehead group SK1 (QΛ[G]) equals zero. This, in turn,
reduces to showing that SK1 (DΛ,i) equals zero for each of the division algebras
DΛ,i appearing in equation (2). In Section 2.1, we show that each of these
division algebrasDΛ,i are of the formD⊗Qp

QΛ, whereD is a finite dimensional
division algebra over Qp. A result of Nakayama-Matsushima [35] shows that
for finite dimensional division algebras D over Qp, we have SK1(D) = 0. This
result of Nakayama-Matsushima combined with the fact that QΛ is a purely
transcendental extension of Qp along with Platanov’s Stability Theorem ([41,
Page 315]) is then sufficient to show that SK1 (DΛ,i) equals zero for each the
division algebras DΛ,i appearing in equation (2).
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On Free Resolutions of Iwasawa Modules 613

Let MΛ[G] denote the maximal Λ-order inside QΛ[G] containing Λ[G] as defined
in equation (27). Inside QΛ[G], we have the inclusions

Λ[G] ⊂ MΛ[G] ⊂
1

|G|Λ[G].

We prove the following partial result towards Question 1.2.

Theorem 1. Suppose χ is non-trivial and Conjecture 3.2 holds. Suppose also
that the Λ[G]-module X has a free resolution of length one. Then, the non-
primitive p-adic L-function ξ belongs to the image of the following natural map
of multiplicative monoids:

MΛ[G] ∩QΛ[G]∗ → K1 (QΛ[G]) .

Suppose χ is non-trivial and Conjecture 3.2 holds. When p does not divide
the order of G, the Λ[G]-module X has a free resolution of length one (see
Remark 4.3) and the maximal Λ-order MΛ[G] coincides with Λ[G]. One has
an affirmative answer to Question 1.2. When p divides the order of G, the
maximal Λ-order MΛ[G] containing Λ[G] does not coincide with Λ[G]. When G
is abelian, Question 1.2 has an affirmative answer. In the commutative case,
the question amounts to asking whether the non-primitive p-adic L-function
is a measure (and not just a pseudo-measure). It is already known that the
non-primitive (abelian) p-adic L-function is a measure, due to works of Barsky
[2], Cassou-Noguès [4] and Deligne-Ribet [8]. These results in the commutative
case served as an additional source of motivation for us to pursue this question
in the non-commutative setting.

Remark 1.4. A variant of Conjecture 3.2 involving the maximal order
MZ(QΛ[G]) of the center Z(QΛ[G]) of QΛ[G] is known. See work of Johnston-
Nickel [29, Theorem 4.9] or Ritter-Weiss [47, Theorem 16 and Remark (H)]
for the exact statement. In light of those results, it may be helpful to remark
that the conclusion of Theorem 1 would follow without requiring the validity
of Conjecture 3.2 if the reduced norm Nrd : M×

Λ[G] → M×
Z(QΛ[G]) is surjective.

Since p is odd, the extension QΛ[G]⊗Qp
Qp(µp) is a product of matrix rings over

commutative fields. See [40, Theorem 1.10(ii)]. One way to bypass requiring
the validity of Conjecture 3.2 in Theorem 1 then is to simply work with the
pair

(
Λ[G]⊗Zp

Zp[µp], QΛ[G]⊗Qp
Qp(µp)

)
instead of the pair (Λ[G], QΛ[G]).

1.2 Free resolutions of length one over Λ[G]

One can ask when the Λ[G]-module X has a free resolution of length one. Over
the integral group ring Λ[G], the situation is much easier to handle when the
order of G is co-prime to p. See Remark 4.3. When p does not divide |G|, the
global dimension of the ring Λ[G] equals two; in this case the Λ[G]-module X

has a free resolution of length one. The situation is more complicated when
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there exists an element of order p in G since the ring Λ[G] would then have
infinite global dimension; in this case it is possible for Λ[G]-modules to have no
non-trivial pseudo-null submodules and yet have infinite projective dimension
over Λ[G]. The purpose of Theorems 2 and 3 is to precisely circumvent these
difficulties.

Theorem 2. Suppose χ is totally even. Suppose p divides |G|. The Λ[G]-
module X has a free resolution of length one if and only if χ is non-trivial.

Theorem 3. Suppose χ is totally odd. Suppose p divides |G|. The Λ[G]-module
X has a free resolution of length one if and only if one of the two following
conditions holds for every prime ω ∈ Σp(L∞):

(I) H0 (Gω,D(χ)) = 0

(II) ω is tamely ramified in the extension L∞/K∞.

In the first author’s thesis [37] in 2004, Theorems 2 and 3 were proved in the
case when G is a cyclic p-group using a formula of Kida ([31]) and assuming the
validity of Iwasawa’s µ = 0 conjecture. The results in this paper are a natural
generalization of the results of [37], though the methods in this paper are signif-
icantly different. We use a cohomological criterion developed by Greenberg in
[21]. This allows us to prove our results, without having to assume the validity
of Iwasawa’s µ = 0 conjecture. See Proposition 3.1.1 in [21] for similar results
concerning the Pontryagin duals of Selmer groups associated to elliptic curves.
Much of our motivation towards this paper stems from this work of Greenberg.
Nickel has shown that when the character χ is odd and when all the primes
ω in Σp(L∞) are almost tame, then the Λ[G]-module X has a free resolution
of length one. The condition that a prime ω in Σp(L∞) is almost tame is
related to Condition II in Theorem 3 and the image of complex conjugation
in the decomposition group corresponding to ω. See Proposition 4.1 in [39]
and Proposition 7 in [38]. Theorem 2 can also be deduced from the machinery
of Selmer complexes appearing in the work of Fukaya and Kato [12], as we
indicate in Section 3. For Theorem 2, one can also use results from the work
of Ritter and Weiss [46, 47]. See also Chapter 5 of Witte’s habilitation thesis
[53].

Remark 1.5. In light of results of Nickel [38, 39] and Ritter-Weiss [46, 47], The-
orems 2 and 3 are not essentially new. However, one of our main objectives in
this paper is to initiate an approach towards studying integrality properties of
p-adic L-functions (as in Question 1.2) in general situations using Greenberg’s
cohomological criterion ([21, Proposition 2.4.1]) and the Dieudonné determi-
nant. Greenberg’s cohomological criterion is valid over general 1-dimensional
p-adic Lie groups. Our approach via the theory of Dieudonné determinant may
be of independent interest from the perspective of non-commutative algebra.
In the non-commutative setting, the study of the Dieudonné determinant seems
a rather subtle question to us. See Examples 2.1, 2.3, 2.6 and 2.7 in Section 2.
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On Free Resolutions of Iwasawa Modules 615

These examples suggest establishing, that the non-primitive Iwasawa module
has a free resolution of length 1, alone may not be sufficient to provide an
affirmative answer towards Question 1.2 (whenever it does have an affirmative
answer).

1.3 Elliptic curves with a cyclic p2 isogeny

We will now consider applications of Theorems 2 and 3 to a setting involving
an elliptic curve defined over Q with a cyclic p2 isogeny. Our main theorem
(Theorem 4) in this setting is a generalization of a result that appears implicitly
in the work of Greenberg and Vatsal [24]. For a generalization of this work of
Greenberg and Vatsal in another direction, see work of Hirano [26].

Let E be an elliptic curve defined over Q with good ordinary or split multi-
plicative reduction at p. Let Φ : E → E′ be a cyclic isogeny over Q of degree
p2. Let Φ̃ : E′ → E be the dual isogeny. We shall suppose that the Galois
action on the kernel of the isogeny Φ is even. We will first state the theorem
in this setting before explaining the notations.

Theorem 4. Suppose the even character χφ is ramified at p. Suppose the
condition (Non-DG) holds. We have the following equality of ideals in Λ

(p2) :

σp2

(

CharΛ

(

SelΣ0

E[p∞](Q∞)∨
))

= σφ

(

(det (Aφ))

)

σφ̃

((

det
(

Aφ̃

)))

. (4)

The non-primitive Selmer group SelΣ0

E[p∞](Q∞) associated to E is defined in

the work of Greenberg and Vatsal [24]. The characteristic ideal of the Λ-

module SelΣ0

E[p∞](Q∞)∨ is denoted by CharΛ

(

SelΣ0

E[p∞](Q∞)∨
)

. We will need

to consider the natural map σp2 : Λ → Λ
(p2) . Here, Gφ andGφ̃ are abelian Galois

groups, of order dividing p, of Galois extensions Lφ/Q and Lφ̃/Q respectively.
These fields are “cut out”, in a certain sense, by the cyclic isogenies Φ and
Φ̃. We will need to impose the condition that Lφ ∩ Q∞ = Q, similar to the
condition given in (1). This condition is labeled (Non-DG). See Section 5 for
the precise definitions of the various objects along with the description of the
ring homomorphisms σφ : Λ[Gφ] → Λ

(p2) and σφ̃ : Λ[Gφ̃] → Λ
(p2) given in (54).

The Galois action on ker(Φ)[p] is given the character χφ. In this setup, as we
shall see in Section 5, Theorems 2 and 3 will allow us to consider two non-
primitive Iwasawa modules that have free resolutions of length one over Λ[Gφ]
and Λ[Gφ̃] respectively. These free resolutions of length one will naturally lead
us to consider two square matrices Aφ and Aφ̃ in group rings Λ[Gφ] and Λ[Gφ̃]
respectively. See equation (55).

Remark 1.6. For the purposes of indentation in this manuscript, a short exact
sequence 0 → A → B → C → 0 is also denoted by A →֒ B ։ C.
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2 Dieudonné determinant

To answer Question 1.2, that deals with the integrality properties of non-
primitive p-adic L-functions, we will need to develop some preliminaries on the
Dieudonné determinant. We shall follow some of the terminology introduced
in Lam’s book on non-commutative rings [32]. In our discussions, the rings
will always be associative rings with a unity. The units of a ring T , denoted
by T ∗, will consist of elements that have both a left and a right inverse. We
will say that a ring T is Noetherian if it is both left and right Noetherian.
We will say that a Noetherian ring T is a local ring if it has a unique maxi-
mal left ideal mT (this ideal mT turns out to be the unique maximal right ideal).

We will say that a Noetherian ring T is a semi-local ring if the quotient ring
T

Jac(T ) is semisimple. Here, Jac(T ) is the Jacobson radical of T (which is a

two-sided ideal in T ). Let T be a semi-local ring. We recall three properties
associated to it:

1. The matrix ring Mn(T ) is a semi-local ring with Jacobson radical equal
to Mn (Jac(T )). See 20.4 in Lam’s book [32].

2. A semi-local ring is Dedekind-finite. That is, whenever an element u
is right-invertible, then u is left-invertible (or equivalently, whenever an
element u is left-invertible, then u is right-invertible). See Proposition
20.8 in Lams’ book [32].

3. A matrix A in Mn(T ) is invertible if and only if it becomes invertible in

Mn

(
T

Jac(T )

)

. See Theorem 1.11 in Oliver’s book [40]. In particular, an

element u in T is invertible if and only if its image in the quotient ring
T

Jac(T ) is invertible.

For each integer n ≥ 1, one can consider the inclusions GLn(T ) →֒ GLn+1(T )

via the map g →
(

g 0
0 1

)

. Let GL∞ (T ) equal
⋃

n≥0

GLn (T ). The group

K1(T ) is defined below:

K1 (T ) :=
GL∞(T )

[GL∞(T ),GL∞(T )]
.

Here, [GL∞(T ),GL∞(T )] is the commutator subgroup of GL∞(T ). We will
need to consider a subgroup W (T ), of the multiplicative group T ∗, generated
by elements of the form (1 + rs)(1 + sr)−1, whenever 1 + rs is a unit in the
ring T . Here, r, s are elements of the ring T . The group W (T ) contains
the commutator subgroup [T ∗, T ∗]. One has a natural “determinant” map,
often called the Dieudonné or Whitehead determinant. See Example 1.3.7 and
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Exercise 1.2, both in Chapter III of Weibel’s K-book [52] for more details. The
Dieudonné determinant is the unique group homomorphism:

det : K1(T ) →
T ∗

W (T )
,

characterized by the following properties:

1. If A is an elementary n × n matrix, then det(A) = 1. We say that an
n × n matrix A = (aij) is elementary if there exists distinct indices r, s

(r 6= s) and an element λ in T such that aij =







1, if i = j,
λ, if i = r, j = s,
0 otherwise.

2. If diag(t) =








t 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1








and g belong to GLn(T ), then

det
(
diag(t)g

)
= t det(g).

In fact, Vaserstein [49] has shown that the Dieudonné determinant is an isomor-
phism. One can use these properties of the Dieudonné determinant to deduce
the following additional properties:

3. If A is a permutation matrix, then det(A) is a unit in T (since
det(A)2 = 1). We say that the matrix A = (aij) is a permutation
matrix if there exists distinct indices r, s (r 6= s) such that aij =






1, if i = j 6= r, i = j 6= s
1 if i = r, j = s,
1 if i = s, j = r,
0 otherwise.

4. If A is a triangular matrix in GLn(T ), then det(A) =
∏

i aii in K1(T ),
where aii’s are the entries on the main diagonal of A.

We will consider the following property for the semi-local ring T :

(WP) T
Jac(T ) is a product of matrix rings, none of which is M2(F2) and at most

one of these factors is F2.

Note that if 2 is invertible in T , then the property (WP) holds. Vaserstein [49]
has shown that for a semi-local ring, if property (WP) holds, then we have the
following natural isomorphism of abelian groups

T ∗

W (T )
∼= (T ∗)ab.
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Here, (T ∗)ab denotes the abelianization of the unit group T ∗. To provide an

illustration, consider a 2×2 matrix

[
a b
c d

]

in GL2(T ). Also, assume that the

element a is invertible in T . Then, using properties of determinants described
above, one can show that

det

([
a b
c d

])

= det

([
1 0

ca−1 1

] [
a 0
0 d− ca−1b

] [
1 a−1b
0 1

])

= [ad− aca−1b] ∈ (T ∗)
ab

. (5)

Example 2.1. Let H be the quaternion division algebra over the real numbers
R. Note that H is a 4-dimensional vector space over R generated by 1, i, j and
k satisfying the usual properties:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Consider the following example of an invertible 2× 2 matrix in GL2(H):

[
a b
c d

]

=

[
i j
j i

]

,

[
i j
j i

] [
i j
j i

]

=

[
−2 0
0 −2

]

,

ad− aca−1b = −2, ad− bc = da− bc = ad− cb = da− cb = 0.

The example above shows that det(A), in general, is not uniformly represented
by ad− bc or da− bc or ad− cb or da− cb. Nevertheless, one may still ask the
following question:

Question 2.2. Let T be a semi-local ring satisfying (WP). Let R →֒ T be a
subring. Suppose the n×n matrix A belongs to Mn(R)∩GLn(T ). Does det(A)
lie in the image of the natural map

i : R ∩ T ∗ → (T ∗)ab,

of multiplicative monoids?

When T is commutative, Question 2.2 has an affirmative answer. However,
considering the level of generality at which it is phrased, Question 2.2 has a
negative answer. Consider the following example described in Problem 3 in
Section 7.10 of Cohn’s book [6].

Example 2.3. Let k be a field such that Char(k) 6= 2. Let R = k < x, y, z, t >
be the free (non-commutative) algebra in 4 indeterminates. Let UR denote
its universal skewfield of fractions. See Section 7.2 in [6] for the definition
of universal skewfield of fractions and the properties that this skewfield UR

satisfies. See Corollary 2.5.5 and Corollary 7.5.14 in [6], as to why this ring
R has a universal skewfield of fractions. For our purposes, we will simply
keep in mind that UR is not obtained via the Ore localization of R at the

multiplicatively closed set R \ {0}. Let A be the 2 × 2 matrix

(
x y
z t

)
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in M2(R) ∩ GL2(UR). In this case, det(A) =
[
x
(
t− zx−1y

) ]
inside (U∗

R)
ab
.

However, this element of (U∗
R)

ab
has no representative in R.

For our purposes, we would like to refine Question 2.2 so that the refined ques-
tion may have an affirmative answer. We will follow some of the terminology
given in the book of Goodearl and Warfield [13]. Let S be a multiplicatively
closed set in a ring R. The set S is called a left-reversible left-Ore set if it
satisfies the following two conditions:

1. (left cancellation) If ns = ms, for some n,m in R and some s in S, then
there exists s′ in S such that s′n = s′m.

2. (left Ore condition) For every r ∈ R and s ∈ S, there exists r′ ∈ R, s′ ∈ S
so that s′r = r′s.

One can similarly define a right-reversible right-Ore set. A multiplicatively
closed set S will be called an Ore set if it is both a left-reversible left-Ore set
and a right-reversible right-Ore set. If S is an Ore set in a ring R, it will
be possible to consider the localization RS . The set S is also often called a
denominator set and the ring RS is often called the Ore localization of R at S.
See Chapter 9 in the book of Goodearl and Warfield [13], especially Theorem
9.7 and Proposition 9.8 there. We ask the following variant of Question 2.2.

Question 2.4. Let S be an Ore set in a semi-local ring R, so that the local-
ization RS is also a semi-local ring. Suppose RS satisfies (WP). Let A be a
matrix that belongs to Mn(R) ∩GLn(RS). When does det(A) lie in the image
of the natural map

i : R ∩R∗
S → (R∗

S)
ab.

of multiplicative monoids?

To introduce one piece of terminology, we will follow the notations of Question
2.4. We will say that Question 2.4 has a positive answer for the pair (R,RS) if
the following statement is true:

∀n ≥ 0, ∀A ∈ Mn(R) ∩GLn(RS) =⇒ det(A) ∈ i (R ∩R∗
S) ⊂ (R∗

S)
ab.

Otherwise, we will say that Question 2.4 has a negative answer for (R,RS).

To introduce another piece of terminology, we will say that a matrix A in
Mn(T ) admits a diagonal reduction via elementary operations, if there exists
matrices U and V in GLn(T ), and a diagonal matrix B in Mn(T ), so that

1. A = UBV ,

2. The matrices U and V are obtained as products of matrices of the fol-
lowing kinds:

Documenta Mathematica 24 (2019) 609–662



620 Alexandra Nichifor and Bharathwaj Palvannan

• elementary matrices,

• permutation matrices,

• scalar matrices in GLn(T ).

We recall the definition of a principal ideal domain in the non-commutative
setting given in Jacobson’s book [28]. A (not necessarily commutative) domain
is said to be a principal left ideal domain if every left ideal is principal. A do-
main is said to be a principal right ideal domain if every right ideal is principal.
A domain is said to be a principal ideal domain if it is both a principal left
ideal domain and a principal right ideal domain.

Proposition 2.5 (Theorem 16, Chapter 3 in [28]). Let T be a principal ideal
domain. Every matrix A in Mn(T ) admits a diagonal reduction via elementary
operations.

Let O be a complete discrete valuation ring, whose fraction field is denoted
by K. Let D be a division algebra whose center contains K and such that
the index [D : K] is finite. Let OD be the maximal O-order inside D. In this
case, OD is a (non-commutative) principal ideal domain. See Theorem 13.2
in Reiner’s book on Maximal orders [43] where it is established that OD is
a principal ideal domain. Every n × n matrix with entries in OD admits a
diagonal reduction via elementary operations. See also Theorem 17.7 in [43]
for this fact. In this case, Question 2.4 has a positive answer for the pair
(OD, D).

Unfortunately, we will not be able to classify the tuples (R,RS) for which
Question 2.4 has a positive answer. Nevertheless, we will provide one exam-
ple (Example 2.6) when Question 2.4 has a positive answer and one example
(Example 2.7) when Question 2.4 has a negative answer.

Example 2.6. Let p be an odd prime. In this example, we shall show that
Question 2.4 has a positive answer for the pair (Zp[D2p],Qp[D2p]). Let D2p be
the dihedral group of order 2p which has the following presentation

D2p = {x, y|x2 = yp = 1, xyx−1 = y−1}.
Note that since p is odd, the ring Zp[D2p] satisfies (WP).
Let L = Qp(ζp). Let F = Qp(ζp+ ζ−1

p ). Here, we let ζp denote a primitive p-th
root of unity. The Galois group Gal(L/F ) is of order two. Let α denote the
non-trivial element in Gal(L/F ). Let OL and OF denote the ring of integers
in L and F respectively. Let pL and pF denote the unique prime lying above p
in OL and OF respectively. We have the following equality:

pL = (1− ζp) as ideals in OL, pF = (2− ζp − ζ−1
p ) as ideals in OF .

Since the field extensions L/Qp and F/Qp are totally ramified, we have the
following natural isomorphisms of residue fields:

Z

pZ

∼=→֒ OF

pF

∼=→֒ OL

pL
. (6)
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Note that the Artin-Wedderburn theorem gives us an isomorphism of Qp-
algebras:

Qp[D2p] ∼= Qp[C2]× L < τ > . (7)

Here, C2 is a cyclic group of order 2 with generator e. The central simple F -
algebra L < τ > is given by L⊕L ·τ , where we have τ2 = 1 and τa = α(a)τ , for
all a ∈ L. The center of L < τ > equals F . Note that since (τ−1)(τ+1) = 0, the
simple algebra L < τ > cannot be a division algebra. Also, dimF L < τ >= 4.
By a simple dimension counting argument and the Artin-Wedderburn theorem,
one can see that we have the isomorphism L < τ >∼= M2(F ) of F -algebras.
However, it will be convenient to view L < τ > naturally inside L < τ > ⊗FL
since this allows us to consider the isomorphism L < τ > ⊗FL ∼= M2(L). One
can obtain such an isomorphism by considering the following assignments:

ζp →
[

ζp 0
0 ζ−1

p

]

, τ →
[

0 1
1 0

]

. (8)

The isomorphism in (7) is chosen to agree with the following two projection
maps:

σ1 : Qp[D2p] → Qp[C2], σ2 : Qp[D2p] → L < τ > .

σ1(x) = e, σ1(y) = 1 σ2(x) = τ, σ2(y) = ζp.

Let n denote a positive integer. Let us label det, det1 and det2 for the
Dieudonné determinants involving the invertible matrices in GLn(Qp[D2p]),
GLn(Qp[C2]) and GLn(L < τ >) respectively. Note that the reduced norm
Nrd : L < τ >∗→ F ∗ is given by the formula Nrd(c + dτ) = cα(c) − dα(d).

The reduced norm gives us an isomorphism Nrd : (L < τ >∗)ab
∼=−→ F ∗. See

Theorem 2.3 in Oliver’s book [40]. We have the following diagram relating
these Dieudonné determinants:

GLn(Qp[D2p])

det

**❯❯
❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

❯

∼=
// GLn(Qp[C2])×GLn(L < τ >)

(det1,det2)

��

Qp[C2]
∗ × (L < τ >∗)ab

Nrd
∼=

// Qp[C2]
∗ × F ∗

We will follow the description of the integral group ring Zp[D2p], i.e. its image
under the isomorphism (7), given in Section 8 of the work of Reiner and Ullom
[44]. Let OL<τ> denote the subring OL⊕OL ·τ of the central simple F -algebra
L < τ >. This is a maximal Zp-order inside L < τ >. Under the isomorphism
(7), we have

Zp[D2p] ∼=
{
(a+ be, c+ dτ) ∈ Zp[C2]×OL<τ> such that

a ≡ c (mod pL), b ≡ d (mod pL)
}
.
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The ring Zp[D2p] is a semi-local ring whose Jacobson radical is given below:

Jac(Zp[D2p]) = ker (Zp[D2p] → Fp[C2]) .

Letm denote the ideal (p, y−1, x−1) and letm′ denote the ideal (p, y−1, x+1) in
Zp[D2p]. The ideals m and m′ are both left-maximal and right-maximal ideals.
An element u in Zp[D2p], that does not belong to both m and m′, must be a
unit in the ring Zp[D2p]. See Theorem 1.11 in Oliver’s book [40].
The description of the Jacboson radical of Zp[C2] is given below:

Jac(Zp[C2]) = {a+ be ∈ Zp[C2], such that a ∈ pZp, b ∈ pZp}.

We would like to record three observations.

1. Suppose we are given an element a+ be ∈ Jac(Zp[C2]), where a, b ∈ pZp.
Suppose also that we are given an element ̟ in the maximal ideal pF
of the ring OF . It will be possible to write ̟ as (2 − ζp − ζ−1

p )nv for
some positive integer n and some unit v of the ring OF . It is easy to
see that Nrd(1− ζp) = 2− ζp − ζ−1

p . Also, the restriction of the reduced

norm Nrd : O×
L<τ> ։ O×

F is surjective on the units. See Theorem 2.3 in
Oliver’s book [40]. This lets us find a unit u in the ring OL<τ> such that
Nrd(u) = v. Our observations allow us to make the following deduction:

ǫ =

(

a+ be, (1 − ζp)
nu

)

∈ Zp[D2p], Nrd
(
(1− ζp)

nu
)
= ̟. (9)

2. Suppose now we are given an element a + be ∈ Zp[C2] such that (i)
both a and b belong to Z×

p and such that (ii) a − b ≡ 0 (mod p) or
a + b ≡ 0 (mod p). Suppose also that we are given an element ̟ in
the maximal ideal pF of the ring OF . The restriction of the reduced
norm map Nrd : 1 + pL ։ 1 + pF is surjective. See Chapter 1, Section
8, Proposition 2 of Fröhlich’s article on local fields [11] as to why the
reduced norm map is surjective on the group of principal units for tamely
ramified extensions. So, it will be possible to find an element u1 ∈ 1+ pL
such that Nrd(u1) = 1 + ̟

a2 . Set

z =

{
au1 + aτ, if a− b ≡ 0 (mod p)
au1 − aτ, if a+ b ≡ 0 (mod p)

It is then straightforward to check that

ǫ =

(

a+ be, z

)

∈ Zp[D2p], Nrd (z) = ̟. (10)

3. Suppose we have two elements a and a′ in the ring Zp[D2p] such that

a /∈ m, a ∈ m′,

a′ ∈ m, a′ /∈ m′.
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Then, a + a′ /∈ m and a + a′ /∈ m′. In particular, a + a′ is a unit in the
ring Zp[D2p].

Let A ∈ Mn(Zp[D2p]) ∩ GLn(Zp[D2p]). We shall show that we can find a
representative for det(A) in Mn(Zp[D2p]).

First, we will consider the case when A belongs to Mn(mZp[D2p]) or
Mn(m

′Zp[D2p]). Without loss of generality, we shall assume that A belongs
to Mn(m

′Zp[D2p]). The argument proceeds similarly when A belongs to
Mn(mZp[D2p]). Note that the ring Qp[C2] is commutative. The matrix σ1(A)
is an n× n matrix with entries in Zp[C2]. Let us write det1(σ1(A)) as a+ be.
Since we have assumed that A belongs to Mn(m

′Zp[D2p]), every entry in the
matrix σ1(A) must belong to ideal (p, e + 1). So, p must divide a − b. As a
result, one sees that in this first case, we have

(1) a+ be ∈ Jac(Zp[C2]), or (2) a, b ∈ Z×
p such that a− b ≡ 0 mod p.

The matrix σ2(A) is an n × n matrix with entries in OL<τ>. One can check
that the (i, j)-th entry of σ2(A) can be written as aij(τ +1)+ bijp+ cij(ζp−1),
for some elements aij , bij and cij in OL<τ>. We will use the assignments given
in (8) to fix an embedding i : L < τ >→֒ M2(L). It will be possible to view
the matrix i(σ2(A)) as a matrix in M2n(OL). Note that ζp − 1 and p belong to
the ideal pLOL. The assignment given in (8) sends τ + 1 to the 2 × 2 matrix
[

1 1
1 1

]

. We have the following equality of 2n× 2n matrices modulo pLOL:

i(σ2(A)) ≡






i(a11(τ + 1)) · · · i(a1n(τ + 1))
...

. . .
...

i(an1(τ + 1)) · · · i(ann(τ + 1))






≡






i(a11) · · · i(a1n)
...

. . .
...

i(an1) · · · i(ann)



















1 1 0 0 · · · 0 0
1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
0 0 1 1 · · · 0 0

. . .

0 0 0 0 · · · 1 1
0 0 0 0 · · · 1 1














.

It is then easy to see that

det(i(σ2(A))) ≡ 0 (mod pL). (11)

The det in (11) involves the determinant, over the commutative field L, of the
2n × 2n matrix i(σ2(A)). This lets us conclude that Nrd(σ2(A)) belongs to
pFOF (since OF ∩ pL = pF ). If we let ̟ denote Nrd(σ2(A)), we have

Nrd(σ2(A)) = ̟ ∈ pFOF .
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In this first case, our earlier observations in equation (9) and equation (10)
allow us to find an element ǫ in Zp[D2p] such that det([ǫ]) = det(A).

In the second case, we shall suppose that there exists entries ai,j and ai′,j′ of
the matrix A such that ai,j /∈ m and ai′,j′ /∈ m′. It is then straightforward (but
slightly tedious) to see that one can perform a sequence of elementary row and
column operations on the matrix A to find a new matrix, one of whose entries
lies in neither m nor m′. Such an entry must be a unit in the ring Zp[D2p].
Since the elementary row and column operations do not change the Dieudonné
determinant, this new matrix would have the same Dieudonné determinant as
the matrix A. So without loss of generality, in this second case, we can suppose
that there exists an entry u, in the n× n matrix A, which is a unit in the ring
Zp[D2p]. One can perform elementary row and column operations (similar to
the ones used to obtain the formula in (5)) and use permutation matrices to
obtain an n× n matrix Bn so that

Bn :=

[
u 0
0 Bn−1

]

, such that Bn−1 ∈ Mn−1 (Zp[D2p]) ∩GLn−1(Zp[D2p]) ,

det(A) = det(Bn).

We have det(A) equals u det(Bn−1) as elements of (Qp[D2p]
∗)

ab
. One can now

use mathematical induction to conclude that Question 2.4 has a positive answer
for the pair (Zp[D2p],Qp[D2p]).

Example 2.7. Let H8 denote the group of quaternions. This group has 8
elements given by the following presentation:

H8 = {x, y|x4 = 1, x2 = y2, yxy−1 = x−1}
Note that Z2[H8] is a (non-commutative) local ring and that the quotient

Z2[H8]
Jac(Z2[H8])

is isomorphic to F2. The ring Z2[H8] satisfies (WP). Question 2.4

has a negative answer for the pair (Z2[H8],Q2[H8]). In fact, we will give an
example of a matrix A in M2(Z2[H8]) ∩ GL2(Q2[H8]), such that under the

Dieudonné determinant det : GL2(Q2[H8]) → (Q2[H8]
∗)ab, the determinant

det(A) does not lie in the image of the map Z2[H8] ∩Q2[H8]
∗ → (Q2[H8]

∗)
ab
.

Note that the Artin-Wedderburn theorem gives us an isomorphism of Q2-
algebras:

Q2[H8] ∼= Q2[C2 ⊕ C2]×D. (12)

Here, D is the division algebra of rational quaternions given by

D = Q2 ⊕Q2i⊕Q2j ⊕Q2ij.

We will write the Klein-four group C2 ⊕ C2 as {e, f |e2 = f2 = 1, ef = fe}, so
that

Q2[C2 ⊕ C2] = Q2 ⊕Q2e⊕Q2f ⊕Q2ef.
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The isomorphism in (12) is chosen to agree with the following two projection
maps:

σ1 : Q2[H8] → Q2[C2 ⊕ C2], σ2 : Q2[H8] → D.

σ1(x) = e, σ1(y) = f σ2(x) = i, σ2(y) = j.

Let us label det, det1 and det2 for the Dieudonné determinants involving the
invertible matrices in GL2(Q2[H8]), GL2(Q2[C2⊕C2]) and GL2(D) respectively.
Note that the reduced norm Nrd : D∗ → Q∗

2 is given by the formula Nrd(b1 +
b2i+ b3j+ b4ij) = b21+ b22+ b23+ b24. The reduced norm gives us an isomorphism
Nrd : (D∗)ab → Q∗

2. See Theorem 2.3 in Oliver’s book [40]. We have the
following diagram relating these Dieudonné determinants:

GL2(Q2[H8])

det

**❚❚
❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

❚

∼=
// GL2(Q2[C2 ⊕ C2])×GL2(D)

(det1,det2)

��

Q2[C2 ⊕ C2]
∗ × (D∗)ab

Nrd
∼=

// Q2[C2 ⊕ C2]
∗ ×Q∗

2

We will follow the description of the integral group ring given in Section 7b of
the work of Reiner and Ullom [45]. Let ZD := Z2 ⊕ Z2i ⊕ Z2j ⊕ Z2ij. Reiner
and Ullom identify Z2[H8] with the following subring of Q2[C2⊕C2]×D under
the isomorphism given in (12) :

Z2[H8] ∼=
{(

a1 + a2e+ a3f + a4ef, b1 + b2i+ b3j + b4ij

)

∈ Z2[C2 ⊕ C2]× ZD,

such that (a1, a2, a3, a4) ≡ (b1, b2, b3, b4) ∈ F2[C2 ⊕ C2]

}

.

(13)

Note that Z2[H8] is a local ring, with a unique maximal left ideal given below:

Jac(Z2[H8]) =
{

a0 + a1x+ a2x
2 + a3x

3 + a4y + a5xy + a6x
2y + a7x

3y ∈ Z2[H8]

such that a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 ∈ 2Z2

}

.

Suppose we have a matrix in M2(Z2[H8] ∩ GL2(Q2[H8]). If one of the non-
zero elements in this matrix belongs to the center of Q2[H8] or is a unit
in Z2[H8], one can use a formula analogous to the one in (5), to show that
the Dieudonné determinant of this matrix does have a representative in Z2[H8].
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Let A denote the 2×2 matrix

[
9 + x+ 2y 1 + y
1 + xy 9 + x

]

. Note that every element

of this matrix belongs to the maximal ideal of Z2[H8]. Note also that both
1 + y and 1 + xy do not belong to the centralizer of 9 + x + 2y or to the
centralizer of 9 + x. The field Q2(

√
−1) is a splitting field for D. That is,

we have an isomorphism D ⊗Q2 Q2(
√
−1) ∼= M2(Q2(

√
−1)) obtained by the

following assignments:

x →
[ √

−1 0
0 −

√
−1

]

, y →
[

0 1
−1 0

]

, xy →
[

0
√
−1√

−1 0

]

.

A direct computation then gives us the following equalities:

det1(σ1(A)) = 81 + 17e+ 17f + ef ∈ Q2[C2 ⊕ C2]
∗,

Nrd (det2(σ2(A))) = det







9 +
√
−1 2 1 1

−2 9−
√
−1 −1 1

1
√
−1 9 +

√
−1 0√

−1 1 0 9−
√
−1







= 8× 857 ∈ Q∗
2.

Recall that if

a ≡ 1 mod 2Z2 =⇒ a2 ≡ 1 mod 8Z2.

Let us use this observation along with the isomorphism in (13). Suppose that
the element

(81 + 17e+ 17f + ef, b1 + b2i+ b3j + b4ij) ∈ Z2[C2 ⊕ C2]× ZD

belongs to the subring Z2[H8]. Then, Nrd(b1 + b2i+ b3j + b4ij) ≡ 4 mod 8Z2

(in particular, the reduced norm is not divisible by 8). This shows us the
Dieudonné determinant det(A), for the 2 × 2 matrix A given in this example
does not have any representative in the integral group Z2[H8].

2.1 A maximal Λ-order

The Artin-Wedderburn theorem gives us the following isomorphism of Qp-
algebras:

Qp[G] ∼=
∏

i

Mmi
(Di). (14)

Here, Di is a finite-dimensional division algebra over Qp. Let ODi
denote the

unique maximal Zp-order inside Di. Note that any Zp-order in Qp[G] can be
embedded in a maximal order and any two maximal orders in Mn(Di) are
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isomorphic via an inner automorphism of Mn(Di). This allows us to choose
the isomorphism in (14) so that the following diagram commutes:

Zp[G] //

��

Qp[G]

∼=

��∏

i Mmi
(ODi

) //
∏

iMmi
(Di).

(15)

The horizontal maps are the natural injections. The vertical map on the left is
also injective. This induces the commutative diagram given below:

Λ[G] //

��

QΛ[G]

∼=

��∏

i Mmi

(
ODi

⊗Zp
Λ
)

//
∏

iMmi
(Di ⊗Qp

QΛ).

(16)

Here, QΛ denotes the fraction field of Λ. Once again, the horizontal maps are
injective. The vertical map on the left is also injective.

For the rest of Section 3, we let D denote a divison ring containing Qp inside
its center and such that [D : Qp] is finite. We let F denote the center of D,
whose ring of integers is denoted by OF . Let L denote (unfortunately, in other
sections, the letter L has been used in another context. In this section, and
only in this section, we use the letter L to denote the maximal subfield of the
division algebra D) a maximal subfield of D containing F . Let OL denote the
ring of integers in L. The fields F and L are finite extensions of Qp. We let OD

denote the unique maximal Zp-order inside D. We recall some of the properties
of OD from Reiner’s book on maximal orders [43]:

1. OD is the integral closure of Zp in D. See Theorem 12.8 in Reiner’s book
[43].

2. There exists a discrete valuation w on D, extending the p-adic valuation
on Zp. The ring OD is the valuation ring, with respect to w, inside D.
See Chapter 12 in Reiner’s book [43]. We let πD denote a uniformizer in
OD, for this valuation.

We will also use the following notations:

FΛ := F ⊗Qp
QΛ, OFΛ := OF ⊗Zp

Λ, LΛ := L⊗Qp
QΛ, OLΛ := OL ⊗Zp

Λ

DΛ := D ⊗F FΛ
︸ ︷︷ ︸
∼=D⊗QpQΛ

, ODΛ := OD ⊗Zp
Λ

We have the following equalities of vector space dimensions (see Theorem 7.15
in Reiner’s book [43]):
√

dimFΛ DΛ =
√

dimF D = dimF L = dimFΛ LΛ = dimLD = dimLΛ DΛ.
(17)
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The number, that is equal to all the quantities appearing in (17), is called the
index of the division algebra D in the Brauer group Br(F ). As we will shall
show in Lemma 2.10, DΛ is a division algebra with center FΛ. The number
appearing in (17), is also the index of the division algebra DΛ in the Brauer
group Br(FΛ).

One can obtain a non-canonical isomorphism Λ ∼= Zp[[x]] of topological rings,
by sending a topological generator γ0 of the topological group Γ to the element
x+1 in Zp[[x]]. Since OD has finite rank as a Zp-module, we have the following
lemma:

Lemma 2.8. The isomorphism Λ ∼= Zp[[x]] of topological rings, obtained by
sending a topological generator γ0 of Γ to x+ 1 Λ ∼= Zp[[x]], lets us obtain the
following isomorphisms:

Λ ∼= Zp[[x]], OFΛ
∼= OF [[x]], OLΛ

∼= OL[[x]], ODΛ
∼= OD[[x]].

Lemma 2.9. ODΛ is a local ring with global dimension equal to two.

Proof. Let gldim denote global dimension. The power series ring OD[[x]] in one
variable x over the valuation ring OD is local. By Theorem 2.3 and Proposition
2.7 in [1], the global dimension gldim (OD) equals one. Note that by Theorem
7.5.3 in [34], we have

gldim (OD[[x]]) = gldim (OD) + 1 = 2.

Lemma 2.10. DΛ is a divison ring with center FΛ, satisfying property (WP).
LΛ is a maximal commutative subfield, inside DΛ, containing FΛ.

Proof. Note that QΛ is a purely transcendental extension of Qp, while F is
a finite (algebraic) extension of Qp. As a result, FΛ is a field. Since D is a
finite-dimensional central simple F -algebra, DΛ is a finite-dimensional central
simple FΛ-algebra (Corollary 7.8 in Reiner’s book [43]). A finite-dimensional
central simple algebra over the field FΛ is isomorphic to a matrix ring over a
division algebra. To prove the lemma, it suffices to show that DΛ is a (not
necessarily commutative) domain.

For this, observe that DΛ is the localization of OD ⊗OF
OF [[x]] at the multi-

plicatively closed set OF [[x]] \ {0}. The set OF [[x]] \ {0} is central in DΛ and
has no zero-divisors. Now, to prove the lemma, we are reduced to showing
that OD ⊗OF

OF [[x]] is a (not necessarily commutative) domain. This follows
simply because OD ⊗OF

OF [[x]], as observed in Lemma 2.8, is isomorphic to
the power series ring OD[[x]] in one variable x over the domain OD, and is
hence a (not necessarily commutative) domain.

2 is invertible in the division algebra DΛ. As a result, property (WP) holds.
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An argument, similar to the one above, shows that LΛ is a field. Note that LΛ

splits DΛ since

DΛ ⊗FΛ LΛ
∼= (D ⊗F FΛ)⊗FΛ (FΛ ⊗F L) ∼= (D ⊗F L)⊗F FΛ

∼= Md(L)⊗F FΛ
∼= Md(LΛ).

Here, we let d equal dimFΛ LΛ. The relationship between various vector space
dimensions given in (17), along with Corollary 28.10 in Reiner’s book [43], lets
us conclude that LΛ is a maximal commutative subfield, inside DΛ, containing
FΛ.

Proposition 2.11. For every integer m, the matrix ring Mm (ODΛ) is a max-
imal Λ-order inside Mm (DΛ). Furthermore, every maximal Λ-order inside
Mm (DΛ) is isomorphic to Mm(ODΛ) by an inner automorphism via a unit in
Mm (DΛ).

Proof. The proposition follows from Ramras’s work on maximal orders over
regular local rings of dimension two. See Theorem 5.4 in [42]. To verify the
hypotheses of Ramras’s theorem, we need to show that for each integer m, the
matrix ring Mm (ODΛ) is a semi-local ring with global dimension equal to two.
Note that since ODΛ is a local ring, the matrix ring Mm (ODΛ) is semi-local
(see 20.4 in Lam’s book [32]). Furthermore, the global dimension is a Morita
invariant (see the Proposition in 3.5.10 in [34]). Note that by Theorem 1.12
in Ramras’s work [42], for a semi-local ring that is finitely generated over a
commutative Noetherian ring, the left and right global dimensions coincide.
By Lemma 2.9, the global dimension of the matrix ring Mm (ODΛ) is equal to
two, for each integer n. The proposition follows.

Remark 2.12. In our situation, we are considering maximal orders over the
ring Λ, which is a complete regular local ring of dimension two. One can man-
ufacture (non-commutative) examples when ODΛ is not the unique maximal
Λ-order inside the division algebra DΛ. Contrast this with the fact that OD is
the unique maximal Zp-order inside the division algebra D.

2.2 Reduced Norms

Let us first recall the definition of reduced norms in a general setting. Let D be
a division algebra, finite dimensional over its center F . Let L denote a maximal
subfield of D containing F . Let d equal the vector space dimension dimF L.
The field L is a splitting field for D. That is, we have D ⊗F L ∼= Md(L).
Consider the inclusion induced by the above isomorphism:

i : D →֒ D ⊗F L ∼= Md(L) (18)

We have a group homomorphism Nrd : K1(D) → F× called the reduced norm
map. To recall the definition of the reduced norm, let A denote a matrix in
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GLn(D). One can view the matrix i(A) as an element of Mdn(L). The reduced
norm Nrd(A) is defined as the determinant, over the commutative field L, of
the dn×dn matrix i(A). One can show that this is an element of F×. One can
also show that the definition of the reduced norm is independent of the choice
of the splitting field and the choice of the isomorphism D ⊗F L ∼= Md(L). See
the description in Section 1.2.4 in Chapter III of Weibel’s K-book [52] for more
details. If we let f(t) denote the characteristic polynomial of the endomor-

phism Ldn A−→ Ldn, of L vector-spaces, induced by the matrix i(A), then one
sees that Nrd(A) is also equal to the constant term of the polynomial f(t).
By abuse of notation, we will let Nrd also denote the following composition of

maps D× → K1(D)
Nrd−−→ F×.

Concerning the properties of the restriction of the reduced norm of the division
algebra to the subring OD, see Chapter 14 in Reiner’s book [43]. What we will
need is the fact that Nrd(πD) is a uniformizer in OF . Let us denote Nrd(πD)
by πF .

Now, we return to our setting. We have a natural inclusion of rings R →֒ T ,
where R = Mm(ODΛ) and T = Mm(DΛ). The set GLm(DΛ) ∩ Mm(ODΛ),
denoted by S (say) is an Ore set inside R. We have a natural isomorphism
RS

∼= T . Morita equivalence lets us obtain the natural isomorphism

(R∗
S)

ab
det−1

∼= K1 (Mm(DΛ)) ∼=
Morita

K1(DΛ)
det∼= (D∗

Λ)
ab

.

Proposition 2.13. det(A) belongs to the image of the natural map

R ∩R∗
S → (R∗

S)
ab.

of multiplicative monoids, where

R = Mm(ODΛ), RS = Mm(DΛ), A ∈ Mn(R) ∩GLn(RS), (R∗
S)

ab ∼= (D∗
Λ)

ab.

Proof. We proceed in several steps.

Step 1: The reduced norm of A is integral

We will show that Nrd(A) belongs to OFΛ . Let d denote dimFΛ LΛ. We will
fix an inclusion i : DΛ →֒ Md(LΛ) as in (18). Let f(t) denote the characteristic
polynomial (this is the reduced characteristic polynomial associated to the cen-

tral simple algebra Mmn(DΛ) over FΛ) of the endomorphism Ldmn
Λ

i(A)−−−→ Ldmn
Λ ,

induced by the matrix i(A). Note that f(t) is an element of the polynomial
ring FΛ[t]. See Theorem 9.3 in Reiner’s book [43]. Note that DΛ is a vector
space of dimension d2 over FΛ. Let g(t) denote the characteristic polynomial

of the endomorphism F d2mn
Λ

αA−−→ F d2mn
Λ , induced by the matrix A. Since the

entries of the matrix A lie in ODΛ , we have the following commutative diagram
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of OFΛ-modules:

(ODΛ)
mn

∼=
��

αA
// (ODΛ)

mn

∼=
��

Od2mn
FΛ

αA
// Od2mn

FΛ

(19)

The endomorphism F d2mn
Λ

A−→ F d2mn
Λ is induced by the OFΛ -module endomor-

phism given in (either row of) the commutative diagram in (19). Thus, the
polynomial g(t) must belong to OFΛ [t]. By Theorem 9.5 in Reiner’s book [43],
f(t) divides g(t), in FΛ[t]. Note that the domain OFΛ [t] is integrally closed.
Note also that both f(t) and g(t) are monic polynomials. Since the coefficients
of g(t) are in OFΛ , so must the coefficients of f(t). See Proposition 4.11 in
Eisenbud’s book [9]. Hence, Nrd(A) must lie in OFΛ .

Step 2: A non-commutative Weierstrass preparation theorem over OD[x]]
For the rest of the proof, we shall fix an isomorphism

ODΛ
∼= OD[[x]]. (20)

To each element f =
∑∞

n=0 an(f)x
n in OD[[x]], we can define a quantity called

the reduced order of f , denoted ord(f), as follows:

ord(f) = min
{
n | an ∈ O×

D

}
.

We set ord(f) to be ∞, if the set
{
n | an ∈ O×

D

}
is empty. Every non-zero

element f in OD[[x]] can be written as πµ
Df0, where f0 is some power series in

OD[[x]] such that ord(f0) < ∞.
Just as in the commutative case, we have a Weierstrass preparation theorem
over OD[[x]] too. Firstly, let f1 and f2 be two elements in OD[[x]] such that
ord(f2) < ∞. Then, there exists elements a, b, r, s in OD[[x]] such that

f1 = af2 + r, f1 = f2b+ s,

and such that both r and s are polynomials whose degrees are less than ord(f2).
Secondly, every element f in OD[[x]] can be written as

f = π
µf

D UfJf , where Uf ∈ OD[[x]]×,

Jf is a monic polynomial under the isomorphism in (20),

and

f = HfVfπ
µf

D , where Vf ∈ OD[[x]]×,

Hf is a monic polynomial under the isomorphism in (20).
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These facts follow from the work of Venjakob [51]. See Theorem 3.1 and
Corollary 3.2 in [51].

Step 3: ODΛ

[
1
p

]

is a non-commutative PID

Theorem 14.3 in Reiner’s book [43] tells us that u0π
d
D = πF , for some u0 ∈ O×

D.
As a result, there exists a positive integer d′ so that

u1π
d′

D = p, where u1 ∈ O×
D. (21)

Since p is invertible in ODΛ

[
1
p

]

, so is πD. This observation along with the

Weierstrass preparation theorem allows us to conclude that ODΛ

[
1
p

]

is a non-

commutative PID. To see this: for each non-zero left (right) ideal I in ODΛ

[
1
p

]

,

choose a monic polynomial f in I with least reduced order. A standard ap-
plication of the Weierstrass preparation theorem, just as in the commutative
case, will show us that this element f is a generator for the left (right) ideal I.
We would like to make two further useful observations:

1. If J is a monic polynomial of degree r, then Nrd(J) is a monic polynomial
of degree rd.

2. Every unit in the ring ODΛ

[
1
p

]

is of the form πr
Dβ, for some integer r

and some β in O×
DΛ

.

Step 4: Diagonal reduction over ODΛ

[
1
p

]

:

Proposition 2.5 tells us that the matrix A admits a diagonal reduction via

elementary operations in Mmn

(

ODΛ

[
1
p

])

. So, there exists a diagonal ma-

trix B in Mmn

(

ODΛ

[
1
p

])

and invertible matrices U and V (obtained as

products of elementary matrices, permutation matrices and scalar matrices

in GLmn

(

ODΛ

[
1
p

])

) so that A = UBV . This allows us to obtain following

equality in K1(DΛ):

det(U) = πrU
D βU , det(V ) = πrV

D βV ,

where rU and rV are integers while βU and βV are elements of O×
DΛ

. Since B
is a diagonal matrix, by multiplying all the elements in the main diagonal of
B, we obtain the following equality in K1(DΛ):

det(B) = πrB
D βBJB,

where rB is an integer, βB is an element of O×
DΛ

and JB is a monic polynomial
in ODΛ (under the isomorphism ODΛ

∼= OD[[x]] given in (20)). Set

JA := JB ∈ OD[x], rA := rU + rB + rV ∈ Z, βA := βUβBβV ∈ O×
DΛ

.
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Step 5: Completing the proof:
Set

C :=








βAJAπ
rA
D 0 . . . 0

0 1 . . . 0
...

. . .

0 0 . . . 1







∈ Mm

(

ODΛ

[
1

p

])

.

Since K1(DΛ) is an abelian group, we have the following equality in K1(DΛ):

det(A) = det(U) det(B) det(V )

= πrU
D βU · πrB

D βBJB · πrV
D βV

= βUβBβV · JB · πrU+rB+rV
D

= βAJAπ
rA
D = det(C).

Now, to complete the proof of the proposition, we will show that rA is non-
negative. This would tell us that C is a matrix in Mm (ODΛ) and that C is a
representative for det(A) in Mm (ODΛ).
Computing reduced norms, we obtain the following equality in FΛ:

Nrd(A) = Nrd(det(A)) = Nrd(βAJAπ
rA
D )

=⇒ Nrd(A) = Nrd(βA) · Nrd(JA) · πdrA
F .

We have shown that Nrd(A) is an element of OFΛ . So, NrdβA ·Nrd(JA) · πdrA
F

must belong to the unique factorization domain OFΛ as well. Since βA is a
unit in the ring ODΛ , the element Nrd(βA) is a unit in OFΛ . This follows
from Theorem 10.1 in Reiner’s book [43] and the fact the reduced norm is a
group homomorphism. The irreducible πF cannot divide the monic polynomial
Nrd(JA). As a result, drA must be non-negative and hence, so must the integer
rA. This completes the proof of the proposition.

3 The non-commutative Iwasawa main conjecture and Proof of

Theorem 1

We will readily borrow the terminologies used in Weibel’s K-book [52], the
work of Fukaya-Kato [12] and Section 2 of Kakde’s work [30] to describe vari-
ous objects appearing in the non-commutative Iwasawa main conjecture. The
“canonical” Ore sets S and S∗, that come into play, are given below:

S =

{

s ∈ Λ[G], such that
Λ[G]

Λ[G]s
is a finitely generated Zp-module

}

,

S∗ =
⋃

n≥0

pnS, S∗ = Λ \ {0}.
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In this article, we will only consider the localization Λ[G]S∗ . The set S∗ is a
multiplicatively closed set, consisting of non-zero divisors in Λ[G]. Since the
group G is finite, we have the isomorphisms

Λ[G]S∗
∼= Λ[G]S∗

∼= QΛ[G].

It will be advantageous to work with S∗ since all the elements of S∗ are central.
To formulate the main conjecture, we will have to consider the connecting
homomorphism (obtained from the localization sequence in K-theory):

∂ : K1 (QΛ[G]) → K0 (Λ[G], QΛ[G]) .

3.1 Interpolation properties of the p-adic L-functions

To describe the interpolation properties of p-adic L-functions, we will follow
the illustrations provided in the works of Johnston-Nickel [29, Section 4.3] and
Ritter-Weiss [47, Section 4].
Let Z(QΛ[G]) denote the center of QΛ[G]. Corresponding to eachWeddernburn
component Mmi

(Di) of Qp[G] appearing in equation (14), we let Fi denote the
center Z(Di) and ni denote dimFi

(Di). Note that Fi is a finite extension of
Qp. Let OFi

denote the ring of integers of Fi. Note also that every simple (left)
module of Mmi

(Di) is isomorphic to the simple module Dmi

i with the natural
(left) action of the matrix ring Mmi

(Di). As a result, each Weddernburn com-
ponent Mmi

(Di) corresponds uniquely to an irreducible (totally even) Artin
representation ρi : Gal(L/K) → GLnimi

(Fi), given as follows:

ρi : Gal(L/K)
︸ ︷︷ ︸

G

→֒ Qp[G]× ։ GLmi
(Di) ∼= Aut (Dmi

i ) ∼= GLmini
(Fi).

To describe the local Euler factors at primes ν ∈ Σ0, we will follow the illus-
tration provided in work of Greenberg-Vatsal [24, Proposition 2.4]. Suppose F
denotes a finite extension of Qp. Suppose ρ : G → GLn(F ) denotes an Artin
representation. Let V and V ∗ := HomF (V, F (1)) denote the F [G]-modules
corresponding to ρ and its Tate dual ρ∗ respectively. For each ν in Σ0, we

consider Pν,ρ(x) := det
(

1− xρ∗ |V ∗

Iν
(Frob−1

ν )
)

in F [x]. Here, V ∗
Iν

denotes the

maximal quotient of V ∗ on which the inertia group Iν acts trivially. Here, Iν
denotes the inertia subgroup inside Gal(Kν/Kν) and Frobν is the Frobenius

element in Gal(Kν/Kν)
Iν

. Let Γν denote a decomposition group corresponding to
ν inside Γ. We can naturally view γν , the Frobenius automorphism at ν of Γν ,
as an element of Γ via the inclusion Γν ⊂ Γ. We will let fν,ρ denote Pν,ρ(γν),
viewed as an element of Frac(OF [[Γ]]).
Suppose first that the character χ is totally even. For each i, note that χρi
then is a totally even Artin representation of K of “type S”. Greenberg [15,
Section 2] has constructed a primitive p-adic L-function Lp,χρi

as an element
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of Frac (OFi
[[Γ]]). In this case, we let

ΦΣ0
χ :=

(

Lp,χρi

∏

ν∈Σ0

fν,χρi

)

i

in Z(QΛ[G]).

Suppose now that the character χ is totally odd. For each i, note that χ−1ωρ−1
i

then is a totally even Artin representation of K of “type S”. Let ι : Zp[[Γ]] →
Zp[[Γ]] denote the Zp-linear ring homomorphism induced by sending γ → γ−1 <
γ >, for each γ in Γ. Here, we obtain the element < γ > via the canonical

injection <>: Γ →֒ Gal(Qcyc/Q)
∼=−→ 1 + pZp. In this case, we let

ΦΣ0
χ :=

(

ι
(

Lp,χ−1ωρ−1
i

) ∏

ν∈Σ0

fν,χρi

)

i

in Z(QΛ[G]).

Conjecture 3.1 (Interpolation property for the p-adic L-function).
There exists a unique element ξ in K1 (QΛ[G]) such that Nrd(ξ) = ΦΣ0

χ in
Z(QΛ[G]).

Remark 3.1. The fact that the primitive p-adic L-function for a totally odd
Artin representation ρ is related to the primitive p-adic L-function for the
corresponding totally even Artin representation ρ−1ω is also mirrored on the
algebraic side. In the commutative setting, this is the “reflection principle”.
See works of Greenberg [14, Section 2] and [16, Theorem 2]. The analog of
the reflection principle in the non-commutative setting is discussed, from both
the algebraic and analytic perspective, in the work of Fukaya-Kato [12, Section
4.4].

3.2 The non commutative Iwasawa main conjecture

On the algebraic side of Iwasawa theory, one works with the relative K0-group
K0 (Λ[G], QΛ[G]). One can give two different descriptions of this relative K0-
group. The first description involves the exact category H1,S∗ . The category
H1,S∗ is a subcategory of the category of finitely generated left Λ[G]-modules.
The objects of H1,S∗ are Λ[G]-modules that are S∗-torsion and that have pro-
jective dimension less than or equal to one. To define the relative K0-group
K0 (Λ[G], QΛ[G]), we refer the reader to Definition 2.10 and Exercise 7.11 in
Chapter II of Weibel’s K-book [52]. We will need to consider tuples (P1, α, P2),
where

• P1 and P2 are projective Λ[G]-modules, and

• the map α : QΛ[G] ⊗Λ[G] P1 → QΛ[G] ⊗Λ[G] P2 is an isomorphism of
QΛ[G]-modules.

The relative K0-group K0 (Λ[G], QΛ[G]) is defined to be the quotient of the
free abelian group generated by such tuples (P1, α, P2) subject to the following
two relations:
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(i) [(P1, α1, Q1)] + [(P3, α2, Q3)] = [(P2, α2 ◦α1, Q2)], whenever we have two
exact sequences of projective Λ[G]-modules

0 → P1 → P2 → P3 → 0, 0 → Q1 → Q2 → Q3 → 0,

along with an induced commutative diagram ofQΛ[G]-modules with exact
rows:

QΛ[G]⊗Λ[G] P1

α1∼=

��

�

�

// QΛ[G]⊗Λ[G] P2
// //

α2∼=

��

QΛ[G]⊗Λ[G] P3

α3∼=

��

QΛ[G]⊗Λ[G] Q1
�

�

// QΛ[G]⊗Λ[G] Q2
// // QΛ[G]⊗Λ[G] Q3

(ii) [(P1, α21, P2)] + [(P2, α32, P3)] = [(P1, α32 ◦ α21, P3)].

One can give a second description of this relative K0-group involving the Wald-
hausen category Ch

♭
S∗

(
P(Λ[G])

)
. This is the category of bounded chain com-

plexes of finitely generated projective Λ[G]-modules whose cohomologies are
S∗-torsion. In [12], Fukaya and Kato use the second description of this rel-
ative K0-group to formulate the non-commutative Iwasawa main conjecture.
Fukaya and Kato construct an element of this category Ch

♭
S∗

(
P(Λ[G])

)
, whose

cohomology is closely related to X. Fukaya and Kato label this chain complex
SC
(
U, T, T 0

)
. We will follow their notations to describe this chain complex.

If χ is totally even, we have

U = Σ0, T = Zp(χ
−1χp), T 0 = 0,

and the cohomology of the chain complex SC
(
U, T, T 0

)
is given below:

Hi

(

SC
(
U, T, T 0

)
)

=







Zp, if i = 3 and χ is trivial,
X, if i = 2,
0, otherwise.

(22)

Here, χp : GΣ → Z×
p denotes the p-adic cyclotomic character given by the

action of GΣ on the p-power roots of unity µp∞ .
If χ is totally odd, we have

U = Σ0, T = Zp(χ
−1χp), T 0 = Zp(χ

−1χp).

As for the cohomology of the chain complex when χ is totally odd, we have

Hi

(

SC
(
U, T, T 0

)
)

= 0, if i 6= 2. We also have the following exact sequence:

0 →
⊕

ω∈Σp(L∞)

H1

(

Γω, H
0

(

Iω,
Qp(χ)

Zp(χ)

))∨

→ X → H2

(

SC
(
U, T, T 0

)
)

→

→
⊕

ω∈Σp(L∞)

H0

(

Gω ,
Qp(χ)

Zp(χ)

)∨

→ 0. (23)
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Remark 3.2. A word of caution about the terminology in [12]: the module
labeled X (T, T 0) in Fukaya and Kato’s work [12] is the Pontryagin dual of the
“strict” Selmer group.

Remark 3.3. There is a nice illustration on how to compute the cohomology
of the chain complex SC

(
U, T, T 0

)
in Examples 4.5.1 and 4.5.2 of Fukaya and

Kato’s work [12]. We have mainly followed those illustrations. See Section 2.3
in Kakde’s work for the description of the cohomology of the chain complex
SC(U, T, T 0) when the character χ is totally even.
When χ is totally odd, we will need to use the description of SC(U, T, T 0)
given in equation (4.1) in Section 4.1.2 of Fukaya and Kato’s work [12]. The
illustration given in the proof of Proposition 4.2.35 in [12] is helpful for this

computation. The fact that H1

(

SC
(
U, T, T 0

)
)

= 0 crucially relies on the

observation that the global-local map defining the non-primitive “strict” Selmer
group is surjective.

For the definition of K0

(

Ch
♭
S∗

(
P(Λ[G])

))

, we refer the reader to Definition

9.1.2 in Chapter II of Weibel’s K-book [52]. For our purposes, we will simply

keep in mind thatK0

(

Ch
♭
S∗

(
P(Λ[G])

))

is a certain quotient of the free abelian

group generated by the objects of Ch
♭
S∗

(
P(Λ[G])

)
. Using the second descrip-

tion of the relative K0-group involving Ch
♭
S∗

(
P(Λ[G])

)
allows us to consider

the element
[
SC
(
U, T, T 0

)]
.

We will follow the formulation of the non-commutative Iwasawa main conjec-
ture given in work of Johnston-Nickel [29, Conjecture 4.4]. See also work of
Fukaya-Kato [12] and Ritter-Weiss [47].

Conjecture 3.2. Conjecture 3.1 holds. Furthermore, we have the following
equality in K0 (Λ[G], QΛ[G]):

∂(ξ)
?
=
[
SC
(
U, T, T 0

)]
. (24)

Let HS∗ denote the exact subcategory of the category of Λ[G]-modules, whose
objects are finitely generated Λ[G]-modules that are S∗-torsion and that have
finite projective dimension. It turns out that we have the following natural
isomorphisms:

K0(Λ[G], QΛ[G]) ∼= K0 (H1,S∗)
∼= K0 (HS∗) ,

∼= K0

(

Ch
♭
S∗

(
P(Λ[G])

))

.

The second isomorphism follows from [52, Corollary 7.7.3 to the Resolution
Theorem 7.6 in Chapter II]. The third isomorphism follows [52, Exercise 9.13
in Chapter II].
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From the perspective of homological algebra, one difficulty with using the first
description of the relative K0-group is that the Iwasawa algbera Λ[G] may
have infinite global dimension. As a result, one really does need to use this
workaround to work with an element in the relative K0-group. Suppose, as
when Theorems 2 and 3 indicate, for the rest of this section that the Λ[G]-
module X has a free resolution of length one. That is, we have the following
short exact sequence of Λ[G]-modules:

0 → Λ[G]n
AX−−→ Λ[G]n → X → 0. (25)

We have the following equality in the K0(Λ[G], QΛ[G]):

[
SC
(
U, T, T 0

)]
= [(Λ[G], AX,Λ[G])] . (26)

When χ is totally even and non-trivial, this equality follows from equation (22).
Let us now see why equality holds in equation (26) when the character χ
is totally odd. Note that HS∗ is closed under kernels of surjections inside
the abelian category of finitely generated (left) Λ[G]-modules. By Theorem
9.2.2 in Chapter II of Weibel’s K-book [52], we have the natural isomorphism

K0 (HS∗) ∼= K0

(

Ch
♭ (HS∗)

)

. Here, Ch
♭ (HS∗) is the category of bounded

chain complexes in HS∗ . By the same theorem, the equality in equation (26)
would follow if one can show that the Euler characteristic of the chain com-

plex X → H2

(

SC
(
U, T, T 0

)
)

, obtained from equation (23), equals zero in

K0

(

Ch
♭ (HS∗)

)

.

Theorem 3 tells us that X has a free resolution of length one under one of the
following conditions:

(I) H0 (Gω,D(χ)) = 0.

(II) ω is tamely ramified in the extension L∞/K∞.

One can compare the modules on either side of the exact sequence (23) using the
observations in Section 4.2.1. If condition I holds for the prime ω in Σp(L∞),
then

H1

(

Γω, H
0

(

Iω ,
Qp(χ)

Zp(χ)

))∨

∼= H0

(

Gω,
Qp(χ)

Zp(χ)

)∨

= 0.

If condition I does not hold and condition II holds for the prime ω in Σp(L∞),
then

H1

(

Γω, H
0

(

Iω ,
Qp(χ)

Zp(χ)

))∨

∼= H0

(

Gω,
Qp(χ)

Zp(χ)

)∨

∼= Zp.

The equality in equation (26) follows from these observations and equation
(23).
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3.3 Proof of Theorem 1

We let

MΛ[G] :=
∏

Mmi

(
ODi

⊗Zp
Λ
)
. (27)

Proposition 10.5 in Reiner’s book [43] and Proposition 2.11 tell us that MΛ[G]

is a maximal Λ-order containing Λ[G] inside QΛ[G].

Theorem 1. Suppose χ is non-trivial and Conjecture 3.2 holds. Suppose also
that the Λ[G]-module X has a free resolution of length one. Then, the non-
primitive p-adic L-function ξ belongs to the image of the following natural map
of multiplicative monoids:

MΛ[G] ∩QΛ[G]∗ → K1 (QΛ[G]) .

Proof. Consider the following resolution of the Λ[G]-module X:

0 → Λ[G]n
AX−−→ Λ[G]n → X → 0. (28)

Here, AX is a matrix in Mn(Λ[G]) ∩GLn(QΛ[G]). Note that, since Conjecture
3.2 is assumed to hold, we have the following equality in K0 (Λ[G], QΛ[G]):

∂(ξ) = ∂ (AX) = (Λ[G]n, AX,Λ[G]n) . (29)

The localization exact sequence in K-theory gives us the following exact se-
quence

K1(Λ[G]) → K1(QΛ[G])
∂−→ K0 (Λ[G], QΛ[G]) .

Since the ring Λ[G] is also a semi-local ring, the Dieudonné determinant also
provides us an isomorphism K1(Λ[G]) ∼= (Λ[G]∗)ab. We have

det(ξ) = det (AX) det(B) ∈ (QΛ[G]∗)ab,

where B in a matrix in GL∞(Λ[G]). The isomorphism K1(Λ[G]) ∼= (Λ[G]∗)ab

allows us to find a representative for det(B) in Λ[G]. To prove the theorem, it
now suffices to show that det (AX) belongs to the image of the natural map of
multiplicative monoids:

MΛ[G] ∩QΛ[G]∗ → K1 (QΛ[G])

The Artin-Weddernburn theorem and equation (16) gives us the following iso-
morphism:

QΛ[G] ∼=
∏

i

Mmi
(Di ⊗Λ QΛ) (30)
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Let σi denote the projection onto the i-th factor. The description of the maxi-
mal order, given in (27), now allows us to work with each factor in the product
decomposition of (30). It now suffices to show that det (σi (AX)) belongs to the
image of the natural map of multiplicative monoids:

Mmi

(
ODi

⊗Zp
Λ
)⋂

GLmi
(Di ⊗Λ QΛ) →K1 (Mmi

(Di ⊗Λ QΛ))
︸ ︷︷ ︸

∼=(Di⊗ΛQΛ)ab

.

This last statement, and hence the theorem, follows from Proposition 2.13.

4 Cohomological criterion

In this section, we recall the cohomological criterion developed by Ralph Green-
berg in the AMS memoir [21] on Iwasawa theory, projective modules and mod-
ular representations.
A theorem of Iwasawa [27] (see also Proposition 1 in Greenberg’s work on p-adic
Artin L-functions [22]) asserts that X is a torsion module over Λ[G]. When χ
is totally even, Proposition 6.10 (along with the validity of the Weak Leopoldt
conjecture) in Greenberg’s work on the structure of Galois cohomology groups
[19] asserts that X has no non-zero finite Λ-submodules. See Theorem 10.3.25 in
the book by Neukirch, Schmidt and Winberg [36] as to why the weak Leopoldt
conjecture is valid in this setting. When χ is totally odd, the discussion in
Section 4.4 of Greenberg’s recent work on the structure of Selmer groups [23]
asserts that X has no non-zero finite Λ-submodules. These results allow us to
apply the cohomological criterion developed by Greenberg (Proposition 2.4.1
in [21]).

Proposition 4.1 (Proposition 2.4.1 in [21]). The Λ[G]-module X has a free
resolution of length one if and only if there exists a positive integer m such that

Hm
(

P, SelΣ0

D(χ)(L∞)
)

= 0, Hm+1
(

P, SelΣ0

D(χ)(L∞)
)

= 0 (31)

for every subgroup P of PG. Here, PG is some p-Sylow subgroup of G.

Remark 4.2. Though Proposition 2.4.1 in [21] requires us to verify the vanish-
ing criterion (given in (31)) for all subgroups of G, it suffices to restrict ourselves
to subgroups of a p-sylow subgroup PG. This is because every element of the
discrete module SelΣ0

D(χ)(L∞) is killed by a power of p. Furthermore, Proposi-

tion 2.4.1 in [21] establishes that X has a free resolution of length one if and
only if for every subgroup P of PG

Hi
(

P, SelΣ0

D(χ)(L∞)
)

= 0, ∀ i ≥ 1. (32)

Theorem 4.2.3 in Hida’s book [25] allows us to deduce that the validity of (31)
implies the validity of equation (32).

Remark 4.3. When p does not divide |G|, the cohomology groups appearing
in (31) vanish. As the cohomological criterion in Proposition 4.1 illustrates, in
this case, the Λ[G]-module X has a free resolution of length one.
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4.1 Global cohomology groups and Proof of Theorem 2

In this section, we want to prove the following theorem stated in the introduc-
tion.

Theorem 2. Suppose χ is totally even. Suppose p divides |G|. The Λ[G]-
module X has a free resolution of length one if and only if χ is non-trivial.

Before proving the theorem, let us introduce some notations. Let PG denote
a p-Sylow subgroup of G. Let P be a subgroup of PG. By Galois theory, we
can identify P with a Galois group Gal(L∞/F∞), for some field F∞ such that
K∞ ⊂ LPG

∞ ⊂ F∞ ⊂ L∞. We have

P ∼= Gal(L∞/F∞).

Lemma 4.4. The differential maps in the Hochschild-Serre spectral sequence

Hi

(

Gal(L∞/F∞), Hj
(
Gal(KΣ/L∞),D(χ)

)
)

=⇒ Hi+j (Gal(KΣ/F∞),D(χ)) ,

yield the following isomorphism, for each i ≥ 1:

Hi

(

Gal(L∞/F∞), H1
(
Gal(KΣ/L∞),D(χ)

)
)

∼= Hi+2

(

Gal(L∞/F∞), H0
(
Gal(KΣ/L∞),D(χ)

)
)

.

Proof. The p-cohomological dimensions of Gal(KΣ/L∞) and Gal(KΣ/F∞) are
less than or equal to 2. The validity of the Weak Leopoldt conjecture (Theo-
rem 10.3.25 in the book by Neukirch, Schmidt and Winberg [36]) allows us to
conclude that

H2
(
Gal(KΣ/L∞),D(χ)

)
= 0, H2

(
Gal(KΣ/F∞),D(χ)

)
= 0.

These observations combine to give us the following equalities:

Hi

(

Gal(L∞/F∞), Hj
(
Gal(KΣ/L∞),D(χ)

)
)

= 0, ∀j ≥ 2.

Hj
(
Gal(KΣ/F∞),D(χ)

)
= 0, ∀j ≥ 2.

This completes the proof of the lemma.

Suppose that the character χ is totally odd. In this case, we have
H0
(
Gal(KΣ/L∞),D(χ)

)
= 0. This observation uses the fact that L∞ is a

totally real field. As an immediate consequence of Lemma 4.4, we obtain the
following result.
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Lemma 4.5. Suppose that the character χ is totally odd. We have the following
equality:

Hi

(

Gal(L∞/F∞), H1
(
Gal(KΣ/L∞),D(χ)

)
)

= 0. (33)

We will use the following simple observation frequently in this paper.

Observation 4.6. The finite character χ : GΣ → Z×
p is non-trivial if and only

if the residual character χ : GΣ
χ−→ Z×

p → F×
p associated to it is non-trivial.

We now proceed to the proof of Theorem 2.

Proof of Theorem 2. We are working under the assumption that the
character χ is totally even. In this case, note that SelΣ0

D(χ)(L∞) =

H1
(
Gal(KΣ/L∞),D(χ)

)
. If the character χ is non-trivial, we have

H0
(
Gal(KΣ/L∞),D(χ)

)
= 0. In this case when χ is even and non-trivial, by

Lemma 4.4, for each i ≥ 1 and every subgroup P of PG, we have

Hi

(

P, H1
(
Gal(KΣ/L∞),D(χ)

)
)

= Hi

(

Gal(L∞/F∞), H1
(
Gal(KΣ/L∞),D(χ)

)
)

= 0. (34)

So by Proposition 4.1, when χ is even and non-trivial, the Λ[G]-module X has
a free resolution of length one.

Finally, let us suppose that the character χ is trivial, so that D(χ) =
Qp

Zp
. In

this case, we will choose P (which is isomorphic to Gal(L∞/F∞)) so that P is
a cyclic group of order p. This is possible due to our assumption that p divides
the Galois group G (and due to Cauchy’s theorem). Now, we have the following
sequence of isomorphisms for each i ≥ 1 (the second isomorphism uses the fact
that we have chosen Gal(L∞/F∞) to be cyclic):

H2i−1

(

Gal(L∞/F∞), H1 (Gal(KΣ/L∞),D(χ))

)

∼= H2i+1

(

Gal(L∞/F∞), H0

(

Gal(KΣ/L∞),
Qp

Zp

))

∼= H1

(

Gal(L∞/F∞), H0

(

Gal(KΣ/L∞),
Qp

Zp

))

∼= Hom

(

Gal(L∞/F∞),
Qp

Zp

)

∼= Z

pZ
.

The isomorphisms given in the equation above and Proposition 4.1 let us con-
clude that if the character χ is even and trivial, the Λ[G]-module X does not
have a free resolution of length one. This completes the proof of Theorem 2.

Documenta Mathematica 24 (2019) 609–662



On Free Resolutions of Iwasawa Modules 643

4.2 Local cohomology groups and Proof of Theorem 3

The whole of Section 4.2 will be devoted to the proof of Theorem 3, which we
state below.

Theorem 3. Suppose χ is totally odd. Suppose p divides |G|. The Λ[G]-module
X has a free resolution of length one if and only if one of the two following
conditions holds for every prime ω ∈ Σp(L∞):

(I) H0 (Gω,D(χ)) = 0

(II) ω is tamely ramified in the extension L∞/K∞.

Let PG denote a p-Sylow subgroup of G. Let P denote a subgroup of PG. By
Galois theory, we can identify P with Gal(L∞/F∞), for some field F∞ such
that K∞ ⊂ LPG

∞ ⊂ F∞ ⊂ L∞. We have

P ∼= Gal(L∞/F∞).

Fix a prime ν in Σp(F∞). Suppose ω1, . . . , ωn denote all the primes in L∞ lying
above the prime ν in F . Let ω(ν) equal ω1. Let Pω(ν) denote the decomposition
group inside P , corresponding to the prime ω(ν) lying above ν. We have the
following isomorphism:

∏

ωi|ν

H1 (Iωi
,D(χ))

Γωi ∼= IndP
Pω(ν)

(

H1
(
Iω(ν),D(χ)

)Γω(ν)

)

Shapiro’s lemma then lets us deduce the following isomorphism:

Hi



P,
∏

ωi|ν

H1 (Iωi
,D(χ))Γωi



 ∼= Hi
(

Pω(ν), H
1
(
Iω(ν),D(χ)

)Γω(ν)

)

. (35)

Corollary 3.2.3 in Greenberg’s work [20], along with the observation

that H1
(
Iω(ν),D(χ)

)Γω(ν) is a quotient of the local cohomology group

H1
(
Gω(ν),D(χ)

)
and the fact that Σ contains primes above a finite prime

number ν not lying above p, let us conclude that the map φΣ0

D(χ),odd is surjec-

tive. The fact that the map φΣ0

D(χ),odd is surjective crucially relies on the fact

that it is a global-to-local map defining the non-primitive Selmer group. We
have the short exact sequence

SelΣ0

D(χ)(L∞) →֒ H1 (Gal(KΣ/L∞),D(χ))
φ
Σ0
D(χ),odd−−−−−−→→

∏

η∈Σp(L∞),

H1 (Iη,D(χ))
Γη

of Λ[G]-modules. Let us apply the long exact sequence in Galois cohomology,
for the group P . Lemma (4.5) let us obtain the following isomorphism, for each
i ≥ 1:

∏

η∈Σp(L∞)

Hi
(
P,H1(Iη,D(χ))Γη

) ∼= Hi+1
(

P, SelΣ0

D(χ) (L∞)
)

(36)
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The product in equation (36) is indexed by the primes lying above p in L∞.
Equation (35) allows us to rewrite the isomorphism in (36) as follows (where
the product is now indexed by the primes lying above p in F∞), for each i ≥ 1:

∏

ν∈Σp(F∞)

Hi
(

Pω(ν), H
1
(
Iω(ν),D(χ)

)Γω(ν)

)

∼= Hi+1
(

P, SelΣ0

D(χ) (L∞)
)

. (37)

Let Gω(ν) (and Gν respectively) denote the decomposition group lying inside
Gal(KΣ/L∞) (and Gal(KΣ/F∞) respectively) corresponding to the prime ω(ν)
(and ν respectively). Let Iω(ν) (and Iν respectively) denote the inertia subgroup
inside Gω(ν) (and Gν respectively). Let Γω(ν) (and Γν respectively) denote the

quotient
Gω(ν)

Iω(ν)
(and Gν

Iν
respectively). We have the following natural maps:

Gω(ν) →֒ Gν , Pω(ν)
∼= Gν

Gω(ν)
. (38)

The p-cohomological dimensions of both the groups Gν and Gω(ν) equal one
(see the discussion on Page 25 of [18]). As a result,

Hj
(
Gω(ν),D(χ)

)
= 0, Hj (Gν ,D(χ)) = 0, ∀j ≥ 2.

An argument (similar to the one used to establish Lemma 4.4) involving the
spectral sequence

Hi
(
Pω(ν), H

j
(
Gω(ν),D(χ)

))
=⇒ Hi+j (Gν ,D(χ))

then allows us obtain the following natural isomorphism for all i ≥ 1 (via the
differential maps):

Hi
(
Pω(ν), H

1
(
Gω(ν),D(χ)

)) ∼= Hi+2
(
Pω(ν), H

0
(
Gω(ν),D(χ)

))
. (39)

We will now complete the proof of Theorem 3 by considering the following
cases:

• (Condition I) When H0
(
Gω(ν),D(χ)

)
= 0.

• (Condition II) When ω(ν) is tamely ramified in the extension L∞/K∞.

• There exists a prime ω ∈ Σp(L∞) that doesn’t satisfy both conditions
I and II.

These cases are considered in Sections 4.2.1, 4.2.2 and 4.2.3. The headings in
each of these sections highlight the assumption which we will be working with.

4.2.1 When H0
(
Gω(ν),D(χ)

)
= 0
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Consider the following inflation-restriction short exact sequence that is Pω(ν)-
equivariant:

H1

(

Γω(ν), H
0
(
Iω(ν),D(χ)

)
)

→֒ H1
(
Gω(ν),D(χ)

)
։ H1

(
Iω(ν),D(χ)

)Γω(ν) .

We first claim that H1

(

Γω(ν), H
0
(
Iω(ν),D(χ)

)
)

equals zero. It suffices to

prove the claim when H0
(
Iω(ν),D(χ)

)
6= 0. The reasoning for this is similar

to the one given in Observation 4.6. If H0
(
Iω(ν),D(χ)

)
6= 0, then

H0
(
Iω(ν),D(χ)

) ∼= D(χ) =
Qp(χ)

Zp(χ)
.

The group Γω(ν) is topologically generated by Frobenius (denoted by Frobω(ν)).
We have the following exact sequence:

0 → H1

(

Γω(ν), H
0
(
Iω(ν),D(χ)

)
)∨

→

→ H0
(
Iω(ν),D(χ)

)∨

︸ ︷︷ ︸

Zp(χ−1)

Frobω(ν)−1−−−−−−−→ H0
(
Iω(ν),D(χ)

)∨

︸ ︷︷ ︸

Zp(χ−1)

→ H0
(
Gω(ν),D(χ)

)∨

︸ ︷︷ ︸
=0

→ 0.

A surjective endomorphism of a finitely generated free Zp-module must be an

isomorphism. We can now conclude that H1

(

Γω(ν), H
0
(
Iω(ν),D(χ)

)
)

= 0.

So, we have the following isomorphism that is Pω(ν)-equivariant:

H1
(
Gω(ν),D(χ)

) ∼= H1
(
Iω(ν),D(χ)

)Γω(ν) . (40)

This lets us obtain the following isomorphism for all i ≥ 0:

Hi

(

Pω(ν), H1
(
Gω(ν),D(χ)

)
)

∼= Hi
(

Pω(ν), H1
(
Iω(ν),D(χ)

)Γω(ν)

)

. (41)

Equation (39) lets us conclude that for all i ≥ 1,

Hi
(
Pω(ν), H

1
(
Gω(ν),D(χ)

)) ∼= Hi+2
(
Pω(ν), H

0
(
Gω(ν),D(χ)

))
= 0. (42)

Combining (41), (42), we obtain the following equality for all i ≥ 1:

Hi
(

Pω(ν), H1
(
Iω(ν),D(χ)

)Γω(ν)

)

∼= Hi
(
Pω(ν), H

1
(
Gω(ν),D(χ)

))

∼= Hi+2
(
Pω(ν), H

0
(
Gω(ν),D(χ)

))
= 0.

(43)
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4.2.2 When ω(ν) is tamely ramified in the extension L∞/K∞

We would like to start with the following observation. The Galois group
Gal(L∞/F∞) is a p-group. If ω(ν) is tamely ramified in the extension L∞/K∞,
then prime ω(ν) in L∞ (lying over the prime ν in F∞) must remain unramified
in the extension L∞/F∞. Therefore, in addition to the maps in (38), we have
the natural isomorphisms:

Iω(ν)

∼=→֒ Iν , Γν
∼= Γω

Pω
.

Note that the p-cohomological dimensions of the groups Γω(ν) and Γν equal

one (these groups are isomorphic to Ẑ). For any Γν-module M, an argument
involving the spectral sequence (which is similar to the one used to establish
Lemma 4.4),

Hi

(

Pω(ν), H
j
(
Γω(ν),M

)
)

=⇒ Hi+j (Γν ,M)

allows us obtain the following natural isomorphism (via the differential maps):

Hi

(

Pω(ν), H
1
(
Γω(ν),M

)
)

∼= Hi+2

(

Pω(ν), H
0
(
Γω(ν),M

)
)

, ∀ i ≥ 1.

(44)

Furthermore, the p-cohomological dimension of the inertia group Iω(ν) (in ad-
dition to the decomposition group Gω(ν) and the quotient group Γω(ν)) also
equals one. See the discussion on Page 25 of [18]. Analysing the spectral
sequence

Hi

(

Γω(ν), H
j
(
Iω(ν),D(χ)

)
)

=⇒ Hi+j
(
Gω(ν),D(χ)

)

now lets us deduce that

H1

(

Γω(ν), H
1
(
Iω(ν),D(χ)

)
)

= 0. (45)

To deduce equation (45), we do not use the condition that ω(ν) is tamely
ramified in the extension L∞/K∞.
Let M equal H1

(
Iω(ν),D(χ)

)
. Combining (44) and (45), we obtain the follow-

ing isomorphisms for all i ≥ 3:

Hi
(

Pω(ν), H
1
(
Iω(ν),D(χ)

)Γω(ν)

)

∼= Hi−2
(
Pω(ν), H

1
(
Γω(ν), H1

(
Iω(ν),D(χ)

)))
= 0. (46)

The arguments in Sections 4.2.1 and 4.2.2 have the following implications to-
wards Theorem 3. Suppose every prime ω in Σp(L∞) satisfies one of the fol-
lowing conditions:
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(I) H0 (Gω,D(χ)) = 0

(II) ω is tamely ramified in the extension L∞/K∞.

Combining (37), (43) and (46), we obtain the following equality for all i ≥ 4:

Hi
(

P, SelΣ0

D(χ) (L∞)
)

∼=
∏

ν∈Σp(F∞)

Hi−1
(

Pω(ν), H
1
(
Iω(ν),D(χ)

)Γω(ν)

)

= 0.

(47)

As a result, Proposition 4.1 now lets us conclude that the Λ[G]-module X has
a free resolution of length one if every prime ω ∈ Σp(L∞) satisfies Condition I
or II.

4.2.3 There exists a prime ω ∈ Σp(L∞) that doesn’t satisfy both

conditions I and II

For the rest of this section, we will work under the assumption given in the
heading of this subsection. Under this assumption, we will establish that the
Λ[G]-module X does not have a free resolution of length one.
Since the prime ω doesn’t satisfy Condition I, we have H0 (Gω ,D(χ)) 6= 0.
As we argued earlier (see Observation 4.6), this leads us to assert that the
restriction of the character χ to Gω is trivial and that

H0 (Iω ,D(χ)) ∼= H0 (Gω ,D(χ)) ∼= Qp

Zp
. (48)

Furthermore, since the prime ω doesn’t satisfy Condition II, the prime ω is
wildly ramified in the extension L∞/K∞. As a result, p divides the order of
the inertia subgroup inside Gal(L∞/K∞), corresponding to the prime ω. We
choose P to be a cyclic subgroup of order p inside this inertia subgroup (this
is possible due to Cauchy’s theorem). As we did in the earlier sections, we will
identify P with Gal(L∞/F∞), for some field F∞ satisfying K∞ ⊂ F∞ ⊂ L∞.
We let ν denote the prime in F∞ lying below ω. To be consistent with our
notations in the earlier sections, we let ω(ν) denote the prime ω. We have the
following natural maps:

Pω(ν)
=→֒ P ∼= Z

pZ

Since the prime ω(ν) is totally ramified in the extension L∞/F∞, we have a
natural inclusion of inertia groups Iω(ν) →֒ Iν . We also have the following
natural isomorphisms:

Pω(ν)
∼= Iν

Iω(ν)
, Γω(ν)

∼= Γν . (49)
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The short exact sequences

0 → Iν
Iω(ν)
︸ ︷︷ ︸
∼=Pω(ν)

→ Gν

Iω(ν)
→ Gν

Iν
︸︷︷︸
∼=Γν

→ 0, 0 → Gω(ν)

Iω(ν)
︸ ︷︷ ︸
∼=Γω(ν)

→ Gν

Iω(ν)
→ Gν

Gω(ν)
︸ ︷︷ ︸
∼=Pω(ν)

→ 0,

allow us to view both Pω(ν) and Γω(ν) as normal subgroups of Gν

Iω(ν)
. As a result,

Gν

Iω(ν)

∼= Pω(ν) × Γω(ν).

Equation (45) tells us that H1

(

Γω(ν), H
1
(
Iω(ν),D(χ)

)
)

= 0. So, the following

exact sequence

H0
(
Γω(ν), H

1
(
Iω(ν),D(χ)

))
→֒ H1

(
Iω(ν),D(χ)

) Frobω(ν)−1−−−−−−−→→ H1
(
Iω(ν),D(χ)

)

is Pω(ν) × Γω(ν)-equivariant. Consider the following long exact sequence in
group cohomology (for the group Pω(ν)):

→ Hi
(

Pω(ν), H
1
(
Iω(ν),D(χ)

)Γω(ν)

)

→

→ Hi
(
Pω(ν), H

1
(
Iω(ν),D(χ)

)) Frobω(ν)−1−−−−−−−→ Hi
(
Pω(ν), H

1
(
Iω(ν),D(χ)

))
→

(50)

For each i ≥ 1, we have the following commutative diagram:

Hi
(
Pω(ν), H

1
(
Iω(ν),D(χ)

))

∼=

��

Frobω(ν)−1
// Hi

(
Pω(ν), H

1
(
Iω(ν),D(χ)

))

∼=

��

Hi+2
(
Pω(ν), H

0
(
Iω(ν),D(χ)

)) Frobω(ν)−1
// Hi+2

(
Pω(ν), H

0
(
Iω(ν),D(χ)

))

(51)

Equation (48) tells us that H0
(
Iω(ν),D(χ)

) ∼= Qp

Zp
. Note that the group Γω(ν),

which is topologically generated by Frobω(ν), acts trivially on both Pω(ν) and
Qp

Zp
. As a result, for each i ≥ 1, the horizontal maps in the commutative diagram

(51) (given by Frobω(ν) − 1) are the zero maps. Since Pω(ν) is a cyclic group of
order p, for all i ≥ 1,

H2i−1

(

Pω(ν),
Qp

Zp

)

∼= Hom

(

Pω(ν),
Qp

Zp

)

∼= Z

pZ
, H2i

(

Pω(ν),
Qp

Zp

)

= 0.

Combining these observations pertaining to the long exact sequence (50) and
the commutative diagram (51) with the fact that Pω(ν) is a cyclic group leads
us to conclude that

Hi
(

Pω(ν), H
1
(
Iω(ν),D(χ)

)Γω(ν)

)

∼= Z

pZ
, ∀ i ≥ 1.
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Equation (37) now let us deduce that for all i ≥ 2, we have the following
surjection:

Hi
(

P, SelΣ0

D(χ) (L∞)
)

։

Z

pZ
.

As a result, Proposition 4.1 lets us make the following deduction: the Λ[G]-
module X does not have a free resolution of length one if there exists a prime
ω ∈ Σp(L∞) that does not satisfiy both Condition I and II.
Our observations in Sections 4.2.1, 4.2.2 and 4.2.3 now complete the proof of
Theorem 3.

5 Elliptic curve with a cyclic p2 isogeny and proof of Theorem 4

5.1 Setup of Theorem 4

Let E be an elliptic curve defined over Q with good ordinary or split multi-
plicative reduction at p. Let Φ : E → E′ be a cyclic isogeny, defined over
Q, of degree p2. Let Φ̃ : E′ → E denote the dual isogeny (which is also a
cyclic isogeny over Q of degree p2). Let us enlarge the set Σ to contain all the
primes of bad reduction for E. The non-primitive Selmer group SelΣ0

E[p∞](Q∞)

associated to E (introduced in the work of Greenberg and Vatsal [24]) is given
below:

SelΣ0

E[p∞](Q∞) = ker

(

H1 (Gal(QΣ/Q∞), E[p∞]) → H1(Iη ,A)
Gη/Iη

)

.

Here, Gη and Iη denote the decomposition and inertia subgroup for the unique
prime η in Q∞ lying above p. If E has good reduction at p then we let A equal
the Gal(Qp/Qp)-module E[p∞], the p-power torsion points on the reduced

elliptic curve E. If E has split multiplicative reduction at p, then A is defined
to be Qp/Zp with the trivial action of Gal(Qp/Qp).

Both ker(Φ) and ker(Φ̃) are cyclic groups of order p2. Without loss of generality,
we shall henceforth assume that the action of Gal(QΣ/Q) on ker(Φ) is even
(otherwise we could simply consider the curve E′ and the dual isogeny). We
have the following natural characters:

φ : Gal(QΣ/Q) → Aut (ker(Φ)) ∼=
(
Z/p2Z

)×
,

φ̃ : Gal(QΣ/Q) → Aut
(

ker
(

Φ̃
))

∼=
(
Z/p2Z

)×

χφ : Gal(QΣ/Q) → Aut (ker(Φ)[p]) ∼= (Z/pZ)
×
,

χφ̃ : Gal(QΣ/Q) → Aut
(

ker
(

Φ̃
)

[p]
)

∼= (Z/pZ)
×
,

The Weil pairing gives us the following equality of characters:

φφ̃ = χp (mod p2), χφχφ̃ = χp (mod p). (52)
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Here χp : Gal(QΣ/Q) → Z×
p denotes the p-adic cyclotomic character. Consider

the following fields and the associated Galois groups:

Qφ := Q
ker(φ)

, Qφ̃ := Q
ker(φ̃)

, Qχφ
:= Q

ker(χφ)
, Qχφ̃

:= Q
ker(χφ̃).

∆χφ
:= Gal(Qχφ

/Q), ∆χφ̃
:= Gal(Qχφ̃

/Q).

Let Gφ and Gφ̃ denote the p-Sylow subgroups of Gal(Qφ/Q) and Gal(Qφ̃/Q)
respectively. Note that the groups Gφ and Gφ̃ are of order dividing p. Also
note that the groups ∆χφ

and ∆χφ̃
are of order dividing p− 1. One can view

Gφ and Gφ̃ as quotients of Gal(Qφ/Q) and Gal(Qφ̃/Q), respectively, as well.
We can consider the following field diagrams:

Q

Lφ Qχφ

Qφ

Gφ ∆χφ

∆χφ Gφ

Q

Lφ̃ Qχφ̃

Qφ̃

Gφ̃ ∆χφ̃

∆χφ̃
Gφ̃

Gφ
∼= Gal(Lφ/Q).

Gφ̃
∼= Gal(Lφ̃/Q).

We will need to impose the following condition (similar to (1)):

(Non-DG) Lφ ∩Q∞ = Q.

As we shall see in Corollary 5.2, the condition given in (1) is automatically
satisfied for Lφ̃. That is, Lφ̃ ∩ Q∞ = Q. To verify (Non-DG) in practice,
one can use, for example, Velu’s formula ([50]) to explicitly find a generating
polynomial for the field extension Lφ over Q.

For our application, we shall consider the Selmer groups SelΣ0

D(χφ)
(Lφ,∞) and

SelΣ0

D(χφ̃)
(Lφ̃,∞) whose Pontryagin duals are finitely generated torsion modules

over the completed group rings Λ[Gφ] and Λ[Gφ̃] respectively. The Pontryagin
dual of these Selmer groups are non-primitive Iwasawa modules; they can be
denoted by XD(χφ)(Lφ,∞) and XD(χφ̃)

(Lφ̃,∞), following the notations of the

introduction. For this section, we will use the notation involving the Selmer
group (instead of using the notations involving X).

The restriction of the group homomorphisms

φ |Gφ
: Gφ →

(
Z/p2Z

)×
, φ̃ |Gφ̃

: Gφ̃ →
(
Z/p2Z

)×
(53)

allow us to consider the following ring homomorphisms:

σφ : Λ[Gφ] →
(

Z

p2Z

)

[[Γ]] ∼= Λ

(p2)
, σφ̃ : Λ[Gφ̃] →

(
Z

p2Z

)

[[Γ]] ∼= Λ

(p2)
.

(54)

As stated above, we shall work with the following assumption:
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The even character χφ is ramified at p.

Keep in mind that the elliptic curve E has either good ordinary reduction or
split multiplicative reduction at p. As a result, the semi-simplification of the
Fp[Ip]-representation E[p] is a sum of two distinct characters; one of which co-
incides with the Teichmüller character (which is ramified at p) and one of which
is trivial. Here, E[p] denotes the p-power torsion points on the elliptic curve
E and Ip denotes the inertia subgroup of Gal(Qp/Qp). So, our assumption on
the even character is valid if and only if we place the following assumption on
the odd character:

The odd character χφ̃ is unramified at p.

Lemma 5.1. The action of Gal(Qp/Qp) on ker (Φ) is totally ramified. The

action of Gal(Qp/Qp) on ker
(

Φ̃
)

is unramified. In fact, we have the following

isomorphism of Z
p2Z

[Gal(Qp/Qp)]-modules:

A[p2] ∼= ker
(

Φ̃
)

.

Proof. Observe that the semi-simplification of the Z
p2Z

[Gal(Qp/Qp)]-module

E[p2] is the direct sum

ker(Φ)⊕ ker
(

Φ̃
)

.

Our assumptions tell us that the action of Gal(Qp/Qp) on ker
(

Φ̃
)

[p] is un-

ramified and the action of Gal(Qp/Qp) on ker(Φ)[p] is ramified. The natural

surjection E[p2] ։ A[p2] of free Z
p2Z

-modules, that is Gal(Qp/Qp)-equivariant,

tells us that A[p2] is one of the components appearing in the semi-simplification
of E[p2] over Z

p2Z
[Gal(Qp/Qp)]. Since the action of Gal(Qp/Qp) on A[p] is un-

ramified, we must have the following isomorphism of Z
p2Z

[Gal(Qp/Qp)]-modules:

A[p2] ∼= ker(Φ̃),

The fact that the action of Gal(Qp/Qp) on ker (Φ) is totally ramified now
follows from equality of characters obtained in (52) using the Weil pairing.

As an immediate corollary to Lemma 5.1 (in particular, since the action of

Gal(Qp/Qp) on ker
(

Φ̃
)

is unramified), we have the following corollary:

Corollary 5.2. Lφ̃ ∩Q∞ = Q.

The hypotheses of Theorems 3 and 2 are satisfied for the Λ[Gφ]-module

SelΣ0

D(χφ)
(Lφ,∞)∨ and the Λ[Gφ̃]-module SelΣ0

D(χφ̃)
(Lφ̃,∞)∨. They let us deduce
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that we have the following short exact sequences of Λ[Gφ]-modules and Λ[Gφ̃]-
modules respectively:

0 → Λ[Gφ]
n Aφ−−→ Λ[Gφ]

n → SelΣ0

D(χφ)
(Lφ,∞)∨ → 0, Aφ ∈ Mn (Λ[Gφ]) .

0 → Λ[Gφ̃]
m

Aφ̃−−→ Λ[Gφ̃]
m → SelΣ0

D(χφ̃)
(Lφ̃,∞)∨ → 0, Aφ̃ ∈ Mm

(

Λ[Gφ̃]
)

.

(55)

One can naturally view Λ as a subring of Λ[Gφ] and Λ[Gφ̃]. Since the groups
Gφ and Gφ̃ are finite, the ring extensions Λ →֒ Λ[Gφ̃] and Λ →֒ Λ[Gφ̃] are
integral. One has the following natural maps:

Λ →֒ Λ[Gφ]
σφ−−→ Λ

(p2)
, Λ →֒ Λ[Gφ̃]

σφ̃−−→ Λ

(p2)
. (56)

The rings Zp[Gφ] and Zp[Gφ̃] are local rings, each of which has a unique maxi-

mal ideal containing p. The ring Λ
(p2) has a unique minimal prime ideal (which

corresponds to the prime ideal (p) in the ring Λ and the prime ideal lying above
(p) in Λ[Gφ] and Λ[Gφ̃] respectively). Since the fields Lφ and Lφ̃ are abelian
overQ, a theorem of Ferrero andWashington ([10]) asserts that the µ-invariants
of the Λ-modules SelΣ0

D(χφ)
(Lφ,∞)∨ and SelΣ0

D(χφ̃)
(Lφ̃,∞)∨ equal zero. As a re-

sult, det (Aφ) and det
(

Aφ̃

)

do not belong to the prime ideal lying above (p)

in the rings Λ[Gφ] and Λ[Gφ̃] respectively. Note that every zero-divisor in the

ring Λ
(p2) is also nilpotent. So, the elements det (σφ (Aφ)) and det

(

σφ̃

(

Aφ̃

))

in the ring Λ
(p2) are non-zero divisors. By applying Proposition 6 in Chapter

III, §8 of [3], one can conclude that tensoring the short exact sequences in (55)
with Λ

(p2) , via the maps σφ and σφ̃ respectively, will give us the following short
exact sequences:

0 →
(

Λ

(p2)

)n
σφ(Aφ)−−−−−→

(
Λ

(p2)

)n

→ SelΣ0

D(χφ)
(Lφ,∞)∨ ⊗Λ[Gφ]

Λ

(p2)
→ 0.

0 →
(

Λ

(p2)

)m
σφ̃(Aφ̃)−−−−−→

(
Λ

(p2)

)m

→ SelΣ0

D(χφ̃)
(Lφ̃,∞)∨ ⊗Λ[Gφ̃]

Λ

(p2)
→ 0. (57)

In a rather ad-hoc manner, we define the following Selmer groups (which, as
one observes, turn out to be Λ

(p2) -modules):

SelΣ0

ker(Φ)(Q∞) := H1 (Gal(QΣ/Q∞), ker(Φ)) ,

SelΣ0

ker(Φ̃)
(Q∞) := ker

(

H1
(

Gal(QΣ/Q∞), ker(Φ̃)
)

→ H1(Iη, ker(Φ̃))

)

.

Here, η denotes the unique prime in Q∞ lying above p and Iη denotes the
corresponding inertia subgroup. We now state a “control theorem”.
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Proposition 5.3. We have the following isomorphism of Λ
(p2) -modules:

SelΣ0

ker(Φ)(Q∞)∨ ∼= SelΣ0

D(χφ)
(Lφ,∞)

∨ ⊗Λ[Gφ]
Λ

(p2)
, (58)

SelΣ0

ker(Φ̃)
(Q∞)∨ ∼= SelΣ0

D(χφ̃)

(

Lφ̃,∞

)∨

⊗Λ[Gφ̃]
Λ

(p2)
. (59)

Proof. We will show that equation (59) holds. The validity of equation (58)
follows similarly. Let us choose a generator, say gφ̃, of the cyclic group Gφ̃.
Let ϑ equal the element gφ̃ − σφ̃(gφ̃) in the ring Λ[Gφ̃]. One can easily show

that ϑ generates the ideal ker
(

σφ̃

)

. To prove (59), one needs to establish the

following isomorphism:

SelΣ0

ker(Φ̃)
(Q∞)

?∼= SelΣ0

D(χφ̃)
(Lφ̃,∞)[ϑ].

Consider the tautological character κ : Gal(QΣ/Q∞) ։ Gal(Lφ̃,∞/Q∞) ∼=
Gφ̃ →֒ GL1

(

Zp[Gφ̃]
)

. We obtain the following short exact sequence of Zp[Gφ̃]-

modules that is Gal(QΣ/Q∞)-equivariant:

0 → Zp[Gφ̃]
(

κ−1χ−1

φ̃

)
ϑ−→ Zp[Gφ̃]

(

κ−1χ−1

φ̃

)

→ Z

p2Z

(

φ̃−1
)

→ 0. (60)

Here, Zp[Gφ̃]
(

κ−1χ−1

φ̃

)

denotes a free Zp[Gφ̃]-module of rank 1 on which

Gal(QΣ/Q∞) acts via the character κ−1χ−1

φ̃
. Note that the group Gφ̃ is iso-

morphic to the quotient Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞) . Let us keep in mind the following iso-

morphisms that are Gal(QΣ/Q∞)-invariant:

Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

)

∼=
Qp[Gφ̃]

(

κχφ̃

)

Zp[Gφ̃]
(

κχφ̃

)

∼= Qp

Zp
⊗Zp

Zp[Gφ̃]
(

κχφ̃

)

∼= HomZp

(

Zp,
Qp

Zp

)

⊗Zp
Zp[Gφ̃]

(

κχφ̃

)

∼= HomZp[Gφ̃]

(

Zp[Gφ̃],
Qp[Gφ̃]

Zp[Gφ̃]

)
(

κχφ̃

)

∼= HomZp

(

Zp[Gφ̃]
(

κ−1χ−1

φ̃

)

,
Qp

Zp

)

.

The fourth isomorphism follows from Theorem 7.11 in Matsumura’s book [33].

The last isomorphism follows since Ind
Gφ̃

{1} is right adjoint to Res
Gφ̃

{1}.
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Considering the Pontryagin duals of all the modules appearing in the exact
sequence (60), we obtain the following exact sequence of discrete modules that
is Gal(QΣ/Q∞)-equivariant:

ker
(

Φ̃
)

→֒ Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

)

ϑ−→→ Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

)

. (61)

Let GΣ,∞ denote Gal(QΣ/Q∞). Shapiro’s Lemma along with the observations
that χφ̃ is odd and Lφ̃,∞ is a totally real field, tells us that

H0

(

GΣ,∞, Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

))

∼= H0

(

Gal(QΣ/Lφ̃,∞),
Qp(χφ̃)

Zp(χφ̃)

)

= 0.

H1

(

GΣ,∞, Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

))

∼= H1

(

Gal(QΣ/Lφ̃,∞),
Qp(χφ̃)

Zp(χφ̃)

)

.

(62)

Let η be the unique prime in Q∞ lying above p. Observe that since the ex-
tension Lφ̃,∞/Q∞ is abelian of order p, there either exists exactly one prime
or p distinct primes in the field Lφ̃,∞ lying above η. The extension must be
unramified by Lemma 5.1. Using Shapiro’s lemma, we obtain the following
isomorphism:

H1

(

Iη, Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(

Qp(χφ̃)

Zp(χφ̃)

))

∼=







⊕

ωi|η

H1
(

Iωi
,
Qp(χφ̃)

Zp(χφ̃)

)

,

if η splits completely.

⊕

p copies

H1
(

Iω ,
Qp(χφ̃)

Zp(χφ̃)

)

,

if ω | η remains inert.

(63)

The discussions in section 4.2 (in particular, see Observation 4.6) also tell us

that H0
(

Iω,
Qp(χφ̃)

Zp(χφ̃)

)

is either 0 or isomorphic to
Qp

Zp
as a group, for each ω | η.

In either case, it is a divisible group. As a result, using Shapiro’s lemma, one

can conclude that H0

(

Iη, Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

))

is also a divisible group.

Since the kernel of the map

H0

(

Iη, Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

))

ϑ−→ H0

(

Iη, Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

))

being a subgroup of ker
(

Φ̃
)

, is finite, the map must also be surjective. Consider

the long exact sequence in group cohomology obtained from the short exact
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sequence (61), for both groups Gal(QΣ/Q∞) and Iη. Combining our various
observations lets us obtain the following commutative diagram:

H1
(

Gal(QΣ/Q∞), ker
(

Φ̃
)) ∼=

//

��

H1
(

Gal(QΣ/Lφ̃,∞),
Qp(χφ̃)

Zp(χφ̃)

)

[ϑ]

��

H1
(

Iη, ker
(

Φ̃
)) ∼=

// H1

(

Iη, Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

))

[ϑ]

Considering the kernels of the vertical maps and the description of

H1

(

Iη, Ind
Gal(QΣ/Q∞)
Gal(QΣ/Lφ̃,∞)

(
Qp(χφ̃)

Zp(χφ̃)

))

given in (63), we obtain the desired

isomorphism

SelΣ0

ker(Φ̃)
(Q∞) ∼= SelΣ0

D(χφ̃)
(Lφ̃,∞)[ϑ].

The proposition follows.

We will now recall some results of Greenberg-Vatsal [24] concerning
SelΣ0

E[p∞](Q∞). Note that a finitely generated module over a 2-dimensional

regular local ring has no non-trivial pseudo-null submodules if and only if its
projective dimension is less than or equal to 1. The following proposition is
proved in [24]:

Proposition 5.4 (Proposition 2.5 in [24]). The Λ-module SelΣ0

E[p∞](Q∞)∨ has

no non-zero pseudo-null submodules. As a result,

proj dimΛ

(

SelΣ0

E[p∞](Q∞)∨
)

≤ 1.

Note that over a commutative local ring, every finitely generated projective
module is free. We can consider a free resolution of SelΣ0

E[p∞](Q∞)∨ as a Λ-

module:

0 → Λr AE−−→ Λr → SelΣ0

E[p∞](Q∞) → 0. (64)

Here, AE is an r × r matrix with entries in Λ. Note that the characteristic

ideal CharΛ

(

SelΣ0

E[p∞](Q∞)∨
)

equals the ideal generated by det(AE) in Λ. By

Proposition 5.10 in Greenberg’s work [17], the µ-invariant of the Λ-module
SelΣ0

E[p∞](Q∞)∨ is zero. So, the prime number p, viewed as an irreducible in the

regular local ring Λ, does not divide det(AE). We have the following natural
ring homomorphism:

σp2 : Λ → Λ

(p2)
.
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By applying Proposition 6 in Chapter III, §8 of [3] as we did earlier, one can
conclude that tensoring the short exact sequence (64) with Λ

(p2) gives us the

following short exact sequence:

0 →
(

Λ

(p2)

)r
σp2 (AE)
−−−−−→

(
Λ

(p2)

)r

→ SelΣ0

E[p∞](Q∞)∨ ⊗Λ
Λ

(p2)
→ 0. (65)

Once again, in a rather ad-hoc manner, we define a Selmer group SelΣ0

E[p2](Q∞)

for the Galois module E[p2] over Q∞. It turns out to be a module over the
ring Λ

(p2) .

SelΣ0

E[p2](Q∞) := ker

(

H1
(
Gal(QΣ/Q∞), E[p2]

)
→ H1(Iη ,A[p

2])Gη/Iη

)

.

Note that if E has good ordinary reduction at p, then A[p2] is isomorphic to
E[p2], the p2-torsion points on the reduced elliptic curve E . If E has split
multiplicative reduction at p, then A[p2] is isomorphic to Z

p2Z
with the trivial

action of Gal(QΣ/Q). The following “control theorem” is essentially proved in
the work of Greenberg and Vatsal [24], relating the Λ

(p2) -module SelΣ0

E[p2](Q∞)∨

with the Λ
(p2) -module SelΣ0

E[p∞](Q∞)∨ ⊗Λ
Λ

(p2) :

Proposition 5.5 (Proposition 2.8 in [24]). We have the following isomorphism
of Λ

(p2) -modules:

SelΣ0

E[p2](Q∞)∨ ∼= SelΣ0

E[p∞](Q∞)∨ ⊗Λ
Λ

(p2)
. (66)

5.2 Proof of Theorem 4

We would like to prove the following theorem stated in the introduction:

Theorem 4. Suppose the even character χφ is ramified at p. Suppose the
condition (Non-DG) holds. We have the following equality of ideals in Λ

(p2) :

σp2

(

CharΛ

(

SelΣ0

E[p∞](Q∞)∨
))

= σφ

(

(det (Aφ))

)

σφ̃

((

det
(

Aφ̃

)))

. (4)

Proof. Recall, from the introduction, that we have the following short exact
sequence of modules over Z

p2Z
that is Gal(QΣ/Q∞)-equivariant:

0 → ker(Φ) → E[p2] → ker
(

Φ̃
)

→ 0.

Let GΣ,∞ denote Gal(QΣ/Q∞). Consider the long exact sequence in group
cohomology, for both Gal(QΣ/Q∞) and Iη (here once again, η is the unique
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prime above p in Q∞). We have the following commutative diagram whose
rows are exact:

H1 (GΣ,∞, ker(Φ))
�

�

// H1
(
GΣ,∞, E[p2]

)

��

// // H1
(

GΣ,∞, ker
(

Φ̃
))

��

H1
(
Iη,A[p

2]
) ∼=

// H1
(

Iη, ker
(

Φ̃
))

To see why the top row is exact, it suffices to show that (i)

H0
(

Gal(QΣ/Q∞), ker
(

Φ̃
))

= 0 and (ii) H2 (Gal(QΣ/Q∞), ker(Φ)) = 0.

The first assertion follows from our assumption that the character φ̃ is odd.
For the second assertion, notice that one obtains an exact sequence,

H2 (GΣ,∞, ker(Φ)[p]) → H2 (GΣ,∞, ker(Φ)) → H2 (GΣ,∞, ker(Φ)[p]) ,

as part of the long exact sequence in group cohomology (for the group
Gal(QΣ/Q∞)) using the short exact sequence 0 → ker(Φ)[p] → ker(Φ) →
ker(Φ)[p] → 0; the existence of this short exact sequence uses the fact that
ker(Φ) is cyclic. The arguments given on Page 30 in the work of Greenberg
and Vatsal [24] establish that H2 (Gal(QΣ/Q∞), ker(Φ)[p]) equals zero. This
forces H2 (Gal(QΣ/Q∞), ker(Φ)) to equal zero too.

As for the bottom row in the commutative diagram above, it turns out that, by

Lemma 5.1, A[p2] ∼= ker
(

Φ̃
)

, as modules for the group ring Z
p2Z

[Gal(Qp/Qp)]

(and hence for the action of inertia subgroup Iη of Gal(Qp/Qp,∞) too).

Considering the Snake Lemma for the commutative diagram given earlier,
we obtain the short exact sequence 0 → SelΣ0

ker(Φ)(Q∞) → SelΣ0

E[p2](Q∞) →
SelΣ0

ker(Φ̃)
→ 0. Taking Pontryagin duals, we obtain the following short exact

sequence of Λ
(p2) -modules:

0 → SelΣ0

ker(Φ̃)
(Q∞)∨ → SelΣ0

E[p2](Q∞)∨ → SelΣ0

ker(ker(Φ))(Q∞)∨ → 0. (67)

By (57) and (65), all the Λ
(p2) -modules, appearing in (67), have projective di-

mensions less than or equal to one. Using Lemma 3 in [7], we have the following
equality of (first) Fitting ideals in Λ

(p2) :

Fitt
(

SelΣ0

E[p2](Q∞)∨
)

= Fitt
(

SelΣ0

ker(Φ)(Q∞)∨
)

Fitt
(

SelΣ0

ker(Φ̃)
(Q∞)∨

)

. (68)

Using (57) and (65), we have the following equality of (first) Fitting ideals in
Λ

(p2) :
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Fitt
(

SelΣ0

E[p2](Q∞)∨
)

= σp2

(

CharΛ

(

SelΣ0

E[p∞](Q∞)∨
))

,

Fitt
(

SelΣ0

ker(Φ)(Q∞)∨
)

= σφ

(

(det (Aφ))

)

,

Fitt
(

SelΣ0

ker(Φ̃)
(Q∞)∨

)

= σφ̃

((

det
(

Aφ̃

)))

. (69)

Combining (68) and (69), we obtain the following equality of ideals in Λ
(p2) :

σp2

(

CharΛ

(

SelΣ0

E[p∞](Q∞)∨
))

= σφ

(

(det (Aφ))

)

σφ̃

((

det
(

Aφ̃

)))

. (70)

This completes the proof of Theorem 4.
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