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Abstract. We show that a smooth projective complex manifold
of dimension greater than two endowed with an elliptic fiber space
structure and with finite fundamental group always contains a ra-
tional curve, provided its canonical bundle is relatively trivial. As
an application of this result, we prove that any Calabi–Yau manifold
that admits a fibration onto a curve whose general fiber is an abelian
variety always contains a rational curve.
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1. Introduction

The first goal of this paper is to prove the following result about the existence
of rational curves on an elliptically fibered projective manifold X with some
restriction on its fundamental group. We always assume that the dimension of
X is greater than two.

Theorem 1.1. Let X be a smooth projective manifold with finite fundamental
group. Suppose there exists a projective variety B and a morphism f : X → B
such that the general fiber has dimension one. Suppose, moreover, that there
exists a line bundle L on B such that KX ≃ f∗L. Then X does contain a
rational curve.
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les savoirs (DS10) 2016, “FOLIAGE”, Project ID: ANR-16-CE40-0008. The second–named
author was partially supported by GNSAGA of INdAM and FIRB 2012 ”Moduli spaces and
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An elliptic fiber space is a projective variety endowed with a fibration of relative
dimension one such that its general fiber is an elliptic curve. The assumption
on the canonical bundle in the statement readily implies, by adjunction, that
the manifold X in the statement is indeed an elliptic fiber space, whenever with
connected fibers.
By a Calabi–Yau manifold we mean a smooth projective manifold X with
trivial canonical bundle KX ≃ OX and finite fundamental group. Calabi–Yau
manifolds are of interest in both algebraic geometry and theoretical physics. In
particular, the problem of determining whether they do contain rational curves
is important in string theory (see for instance [Wit86, DSWW86], where the
physical relevance of rational curves on Calabi–Yau manifolds is discussed).
Moreover, a folklore conjecture in algebraic geometry predicts the existence of
rational curves on every Calabi–Yaumanifold, see for instance [Miy94, Question
1.6], and [MP97, Problem 10.2]. Already in dimension three, the conjecture
is open. There are results for high Picard rank (see [Wil89] and [HBW92]),
in the case of existence of a non-zero, effective, non-ample divisor (see [Pet91]
and [Ogu93]), and in the case of existence of a non-zero, nef, non-ample divisor
(see [DF14]). Almost nothing is known in higher dimension.
Here, we consider the case of an elliptic Calabi–Yau manifold, i.e. a Calabi–
Yau manifold which is also an elliptic fiber space. Quoting Kollár [Kol15],
“F -theory posits that the hidden dimensions constitute a Calabi–Yau 4-fold X
that has an elliptic structure with a section”.
As an immediate corollary of Theorem 1.1, we obtain that on elliptic Calabi–
Yau’s, there is always at least one rational curve. It is a generalization
of [Ogu93, Theorem 3.1, Case ν(X,L) = 2], who treated therein the three
dimensional case.

Corollary 1.2. Let X be an elliptic Calabi–Yau manifold. Then X always
contains a rational curve.

Remark 1.3. Calabi–Yau’s in dimension two are just K3 surfaces, that are
known to contain rational curves thanks to the Bogomolov–Mumford Theorem,
[MM83].

Conjecturally, a Calabi–Yau manifold X is elliptic if and only if there exists
a (1, 1)-class α ∈ H2(X,Q) such that α is nef of numerical dimension ν(α) =
dimX− 1 (this enters in the circle of ideas around the Generalized Abundance
Conjecture for Calabi–Yau manifolds). Recall that the numerical dimension
of a nef class α is the biggest integer m such that self-intersection αm is non
zero in H2m(X,Q). This conjecture is known to hold true, under the further
assumption that αdimX−2 · c2(X) 6= 0, for threefolds by the work of [Wil94,
Ogu93] and in all dimensions by [Kol15, Corollary 11]. We can thus state the
following numerical sufficient criterion for the existence of rational curves on
Calabi–Yau manifolds.

Corollary 1.4. Let X be a Calabi–Yau manifold. Suppose that X possesses
a (1, 1)-class α ∈ H2(X,Q) such that
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• the class α is nef,
• the numerical dimension ν(α) of α is dimX − 1,
• the intersection product αdimX−2 · c2(X) is non zero.

Then X is elliptic and therefore it contains a rational curve.

In order to discuss another corollary, let us recall the following. Suppose that
X is a projective manifold with semi-ample canonical bundle, i.e. some tensor
power of KX is globally generated. Then there exists on X an algebraic fiber
space structure (see Subsection 1.1 for the definition) φ : X → B, called the
semi-ample Iitaka fibration. This algebraic fiber space has the property that
dimB = κ(X) and that there exists an ample line bundle A over B such that

K⊗ℓ
X ≃ φ∗A (see [Laz04, Theorem 2.1.27]). Here, ℓ is the exponent of the

sub-semigroup of natural numbers m such that K⊗m
X is globally generated. In

particular, if every sufficiently large power of KX is free, then m = 1.

Corollary 1.5. Let X be a smooth projective manifold with finite fundamental
group and Kodaira dimension κ(X) = dimX − 1. Suppose that KX is semi-
ample of exponent ℓ = 1. Then X contains a rational curve.

Observe that the hypothesis of semi-ampleness of KX can actually be relaxed
into nefness. This is because the numerical dimension of a nef line bundle is
always greater than or equal to its Kodaira–Iitaka dimension, so that ν(KX) ≥
dimX − 1. Now, if ν(KX) = dimX then KX would be big and thus X of
general type, contradicting κ(X) = dimX − 1. Thus, we necessarily have
ν(X) = κ(X) = dimX − 1, and so KX is semi-ample by [Kaw85, Theorem
1.1]. On the other hand, the hypothesis on the exponent ℓ = 1 of KX cannot
be dropped in our proof (and, in general, it is not automatic).
The second goal of the paper is to prove an application of Theorem 1.1, where
we deal with Calabi–Yau manifolds endowed with a fibration onto a curve whose
fibers are abelian varieties.

Theorem 1.6. Let X be a Calabi–Yau manifold that admits a fibration π : X →
C onto a curve whose general fibers are abelian varieties. Then X does contain
a rational curve.

For explicit examples of fibrations as in Theorem 1.6 we refer to [Ogu93, The-
orem 4.9] and to [GP01].
A nice feature of the proof of the above theorem is that the rational curves we
find are not in some degenerate fiber, but rather tend to be transversal to the
original fibration. This fact has a couple of interesting corollaries.

Corollary 1.7. If X is as in Theorem 1.6, then π : X → C has a rational
multi-section, i.e. there exists a rational irreducible curve R ⊂ X such that
π|R : R → C is finite surjective.

To state the second consequence, recall that the Kobayashi pseudodistance dX
on a complex space X can be defined as the largest pseudodistance δX on X
such that, for any holomorphic map h : ∆ → X from the complex unit disc
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to X , we have δX(h(p), h(q)) ≤ ρ(p, q), where ρ is the Poincaré distance on ∆
(we refer to [Kob98] for more details on this subject). One basic feature of the
Kobayashi pseudodistance is that not only holomorphic maps from the Poincaré
disc to a complex space are distance decreasing, but also general holomorphic
maps from any complex space, namely if f : Y → X is any holomorphic map
between complex spaces then for all p, q ∈ Y we have dY (p, q) ≥ dX(f(p), f(q)).
In particular, since dY ≡ 0 for Y the complex plane, Y a rational curve, or Y
a complex torus, if two points of a complex space can be joined by (a chain
of) such a Y , then these two points have Kobayashi distance zero. Our results,
together with this last observation, imply the following.

Corollary 1.8. If X is as in Theorem 1.6, then the Kobayashi pseudodistance
dX on X vanishes identically.

This proves a (very) particular case of one of the Campana conjectures on
special varieties, see [Cam04, Conjecture 9.2].
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1.1. Notation and conventions. We work over the field of complex num-
bers C. An algebraic fiber space is a surjective proper mapping f : X → Y of
projective varieties such that f∗OX ≃ OY ; in particular it has connected fibers
and if X is normal, so is Y . Given a holomorphic (proper) surjective map
f : X → Y of smooth complex manifolds, we say that y ∈ Y is a regular value
for f if for all x ∈ f−1(y) the differential df(x) : TX,x → TY,y is surjective; the
set of singular values for f , i.e. the complement of the set of regular values for
f , is a proper closed analytic subset of Y .

2. Proof of Theorem 1.1

In this section we shall prove the following result, which will readily imply
Theorem 1.1.

Theorem 2.1. Let X be a smooth projective manifold. Suppose that X is
simply connected and that it is endowed with an elliptic fiber space structure
φ : X → B. Suppose moreover that there exist a line bundle L on B such that
KX ≃ φ∗L. Then X does contain a rational curve.

Let us first show how Theorem 2.1 implies Theorem 1.1.
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Proof of Theorem 1.1. Let f : X → B as in Theorem 1.1. The universal cover
π : X̃ → X of X is smooth and projective. Next, consider the Stein factoriza-
tion of f ◦ π

X̃
φ

//

f◦π

33B′ ν
// B,

so that φ has connected fibers, and B′ is a normal projective variety. Since
KX̃ ≃ π∗KX , we obtain that KX̃ ≃ (f ◦ π)∗L = (ν ◦ φ)∗L = φ∗L′, where L′ is

the line bundle on B′ given by ν∗L. Moreover, φ : X̃ → B′ is an elliptic fiber
space since by construction it is a fiber space whose general fiber has dimension
one and, moreover, has trivial canonical bundle. Indeed, let B0 ⊂ B′ the non-
empty Zariski open set of regular points of B′ which are also regular values
for φ, so that φ0 = φ|φ−1(B0) is a proper holomorphic submersion. Then over

X̃0 = φ−1(B0), the relative tangent bundle sequence

(1) 0 → TX̃0/B0 → TX̃0 → (φ0)∗TB0 → 0

is a short exact sequence of vector bundles. Restricting to one fiber E and tak-
ing the determinant of the dual sequence gives a (non canonical) isomorphism

KE ≃ KX̃0 |E = KX̃ |E ≃ φ∗L|E ≃ OE ,

and thus E is an elliptic curve. Therefore, Theorem 2.1 applies to φ : X̃ → B′

and we deduce that X̃ contains a rational curve R̃ ⊂ X̃. But then R = π(R̃) ⊂
X is a rational curve in X . �

We now start the proof of Theorem 2.1. We first observe that thanks to the
following result of Kawamata, which we state in a slightly simplified version,
we can suppose that every fiber of φ is one dimensional.

Theorem 2.2 (Kawamata [Kaw91, Theorem 2]). Let f : X → Y be a surjective
projective morphism, where X is smooth and −KX is f -nef (that is, it intersects
non negatively the curves which are contracted by f). Then any irreducible
component of Exc(f) = {x ∈ X | dim f−1(f(x)) > dimX−dimY } is uniruled.

Notice that, if the exceptional set Exc(φ) is not empty, then we obtain at once
infinitely many rational curves. Moreover, as it follows from the original proof
of [Kaw91, Theorem 2], the rational ruling curves found are contracted by f
(this latter property will be useful later, during the proof of Corollary 1.7).
Next, we look at the proper subvariety Z ⊂ B consisting of all the singular
points ofB and all the singular values of φ. LetB0 be the complement of Z in B
and letX0 be its preimage φ−1(B0). Thus, the restriction φ0 = φ|X0 : X0 → B0

is a proper surjective submersion.

Lemma 2.3. The subvariety Z has at least one irreducible component of codi-
mension one in B.

Proof. Suppose the contrary. Then by equidimensionality of the fibers, the
complement of X0 in X has codimension at least two. In particular, π1(X

0) ≃
π1(X) = {1}. Since φ0 is a proper holomorphic surjective submersion with
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connected fibers, by Eheresmann’s theorem it is a differentiable fiber bundle and
thus a Serre fibration. In particular, the long exact sequence for the homotopy
groups of the fibration tells us that B0 is simply connected. Now, by [Del68],
in this situation the Leray spectral sequence

Ep,q
2 = Hp(B0, Rqφ0

∗Q) ⇒ Hp+q(X0,Q)

degenerates at E2. Since B0 is simply connected, the locally constant sheaves
Rqφ0

∗Q are indeed constant, isomorphic to Hq(E,Q) where E is (the diffeo-
morphism class of) a fiber, i.e. a one dimensional complex torus. Now,
take p + q = 1 to get that the graded module associated to some filtration
of H1(X0,Q) ≃ {0} has the non zero factor H0(B0,Q2) ≃ Q2. This is a
contradiction. �

Remark 2.4. Using a result of [KL09] it is possible to conclude as well in a
stronger form, as follows. Consider the holomorphic function J : B0 → C

given by the j-invariant of the (elliptic) fibers. Since we suppose that B0 has
at least codimension two complement in B and B is normal, J extends to a
holomorphic function B → C, which must be constant. Thus, all fibers over B0

are isomorphic and by the Grauert–Fischer theorem the family φ0 : X0 → B0 is
locally holomorphically trivial. We are thus in position to apply [KL09, Lemma
17] which gives, since B0 is moreover simply connected, that φ0 : X0 → B0 is
globally holomorphically trivial. In particular X0 ≃ E × B0 and thus X0

cannot be simply connected.

Following [Ogu93], we shall reduce our situation to the surface case by picking
a general curve in B and use Kodaira’s canonical bundle formula to study
singular fibers. So, let n = dimX and fix a very ample line bundle H on
B, positive enough in order to ensure that H⊗(n−2) ⊗ OB(L) is generated by
global sections. Observe that, since φ : X → B is an algebraic fiber space,
then H0(X,φ∗H) ≃ H0(B, φ∗(φ

∗H)) ≃ H0(B,H ⊗ φ∗OX) ≃ H0(B,H). In
particular, general elements in the linear system |H | are also general members
of |φ∗H |. Now, take a curve C ⊂ B which is a general complete intersection of
divisors in |H |, and the surface S ⊂ X cut out by the pull-back of such divisors
to X . By Bertini’s theorem, C is normal, hence smooth, and S is smooth, too.
Let us still call, by abuse of notation, φ : S → C the restriction of φ to S. The
surface S is an elliptic surface, which we can suppose to be relatively minimal
(otherwise we would have found a rational curve on S and hence on X).
Since C is general, and the singular locus Bsing of B is of codimension two, we
can suppose that C∩Bsing = ∅. Next, pick a divisorial irreducible component Z0

of Z, which always exists thanks to the above lemma. Then C must necessarily
intersect Z0, since C · Z0 = Hn−2 · Z0 > 0. This means that φ : S → C must
always have at least one singular fiber. Our goal is now to show that such a
fiber can never be a multiple fiber and that a singular (non multiple) fiber must
necessarily contain an irreducible component which is rational.
Let us start with the following.

Lemma 2.5. The canonical bundle KS of S is globally generated.
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Proof. Let H1, . . . , Hn−2 ∈ |φ∗H | be the smooth divisors in general position
which cut out S. Then by iterating the adjunction formula we find

(2) KS ≃
(

KX ⊗ φ∗H⊗(n−2)
)

|S ≃ φ∗
(

OB(L)⊗H⊗(n−2)
)

|S .

By our choice of H , the canonical bundle KS is the restriction of a pull-back
of a globally generated line bundle, hence it is globally generated too. �

Now, recall the (weaker form of the) canonical bundle formula for rela-
tively minimal elliptic fibrations such that its multiple fibers are Sc1 =
m1F1, . . . , Sck = mkFk, which reads (see [BHPVdV04, Corollary V.12.3]):

(3) KS ≃ φ∗G⊗OS

( k
∑

i=1

(mi − 1)Fi

)

,

where G is some line bundle living over C.

Proposition 2.6. The elliptic surface S does not have any multiple fiber.

Proof. Indeed, on the one hand the restriction to KS to any subscheme of S
is globally generated, since KS is globally generated itself. On the other hand,
the canonical bundle formula (3) together with [BHPVdV04, Lemma III.8.3]
tell us that the restriction OFi

(

(mi−1)Fi

)

of KS to Fi would have no sections,
since OFi

(Fi) is torsion of order mi. �

To conclude the proof, we now have to examine singular but not multiple fibers,
following Kodaira’s table [BHPVdV04, Section V.7]. So, let F be such a fiber.

(i) If F is irreducible, then it is necessarily rational with a node, or rational
with a cusp. In both cases we find a (singular) rational curve on S,
hence on X .

(ii) If F is reducible but not multiple, then it is of the form F =
∑

miFi,
with Fi irreducible and reduced, and gcd{mi} = 1. In this case, each
irreducible component is a smooth rational (−2)-curve.

3. Proof of Theorem 1.6

In this section, after collecting all the essential ingredients, we prove Theorem
1.6, namely, the existence of rational curves on Calabi–Yau manifolds admit-
ting a fibration onto a curve whose general fibers are abelian varieties. Two
standard tools to produce rational curves on a smooth projective variety are
the uniruledness of the exceptional loci (see Kawamata’s Theorem 2.2 above)
and the logarithmic version of the Cone Theorem. We combine them in the
following lemma (vaguely inspired by the key lemma in [Wil89]).

Lemma 3.1. Let X be a Calabi–Yau manifold of dimension n such that
there exists D a non-ample divisor on X satisfying Dn > 0. Assume that
hi(X,mD) = 0 for i > 1 and for m large enough. Then X does contain a
rational curve.
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Proof. We first observe that we may assume D non-nef: otherwise D nef and
Dn > 0 implies that D is big (see for instance [Laz04, Theorem 2.2.16]). Then
D is semiample by the base point free theorem (see for instance [KM98, Theo-
rem 3.3]) and there exists a multiple of D that defines a surjective generically
1-1 morphism g : X → Y . Since D is non-ample, the exceptional locus of g is
non-empty, so we can conclude thanks to Theorem 2.2 that Exc(g) is uniruled.
Now we prove that it is possible to choose m > 0 such that mD is effective.
Indeed, by the Hirzebruch–Riemann–Roch Theorem, we have

χ(OX(mD)) = deg (ch(mD) · td(TX))n.

Since ch(mD) =
∑∞

k=0
mkDk

k! because mD is a line bundle, we obtain for m
sufficiently large

χ(OX(mD)) ∼
mnDn

n!
> 0.

By assumption,

χ(OX(mD)) = h0(OX(mD))− h1(OX(mD)) ≤ h0(OX(mD)).

Then h0(OX(mD)) > 0 and mD is effective. Since mD is not nef and the pair
(X, εmD) is klt for ε sufficiently small, then we can conclude thanks to the
logarithmic version of the Cone Theorem (see for instance [KM98, Theorem
3.7]). �

We are going to apply Lemma 3.1 to Da,b := aH − bF , where H is an ample
divisor on X and F is the generic fiber of a fibration of X onto a curve. The
point is to obtain an asymptotic vanishing of the higher cohomology of D for
some fixed values of a, b. Indeed, we are able to prove a slightly stronger
statement, where we obtain a uniform vanishing for every b.

Lemma 3.2. Let X be a projective manifold that admits a fibration onto a
curve, let H be an ample divisor on X and let F be the generic fiber of the
fibration. Let m0 ∈ N such that

• hi(X,mH) = 0, i > 0,
• hi(F,mH) = 0, i > 0,

for all m ≥ m0. Then hi(X,mH − kF ) = 0, i > 1, for all m ≥ m0 and for all
k ∈ N.
In particular, for any positive integers a, b, the divisor Da,b = aH−bF satisfies
the assumption of Lemma 3.1.

It is always possible to choosem0 satisfying the hypothesis of Lemma 3.2 thanks
to Serre’s vanishing.

Proof. Given the standard exact sequence

0 → OX(mH − kF ) → OX(mH) → OkF (mH) → 0,

it is enough to show that for every i > 1 we have

hi−1(kF,OkF (mH)) = 0.
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Indeed, let D be an effective Cartier divisor on X and let I be the ideal sheaf of
D in X , i.e. I = OX(−D). Then for any k ∈ N, we have O(k+1)D = OX/Ik+1

and OkD = OX/Ik. Let K be defined by the short exact sequence

0 → K → O(k+1)D → OkD → 0.

There is a natural sheaf isomorphism

K = Ik/Ik+1 = Ik ⊗OX
OX/I = OX(−kD)⊗OX

OD = OD(−kD).

Hence we obtain the exact sequence

0 → OD(−kD) → O(k+1)D → OkD → 0

and tensoring by OX(mH) we get

0 → OD(mH − kD) → O(k+1)D(mH) → OkD(mH) → 0.

Now, if we set D = F , since F is a fiber we have

OF (mH − kF ) = OF (mH),

so we can easily conclude by induction on k. �

Remark 3.3. The required weaker vanishing condition of Lemma 3.1 for the di-
visorDa,b also follows from the next theorem, that can be seen as a consequence
of the classical Andreotti–Grauert finiteness theorem.

Theorem 3.4 (see [Dem01, Chapter VII, Theorem 5.1]). Let X be a compact
complex manifold of dimension n, let s be a positive integer and F be a her-
mitian line bundle such that its Chern curvature iΘ(F ) has at least n− s+ 1
positive eigenvalues at every point of X. Then there exists a positive integer l0
such that

Hq(X,F⊗l) = 0, for all l ≥ l0 and q ≥ s.

Indeed, let π : X → C be a fibration onto a curve and let F be its generic fiber.
Then as a divisor F is the pull-back of a point p ∈ C. Call A = OC(p) the
corresponding ample line bundle, so that OX(F ) ≃ π∗A. Put a metric hA on
A whose Chern curvature iΘ(A) is positive. Now take any ample divisor H on
X and take a positively curved metric hH on OX(H). We claim that for any
integers a, b > 0, the line bundle (associated to the divisor) Da,b = aH − bF
has a metric whose Chern curvature has at least n− 1 positive eigenvalues at
every point of X . Indeed, the metric ha,b = h⊗a

H ⊗π∗h⊗−b
A on OX(Da,b) is such

that

Θ
(

OX(Da,b)
)

= aΘ
(

OX(H)
)

− bπ∗Θ(A).

When one evaluates iΘ
(

OX(Da,b)
)

(seen as a hermitian form) on a non zero
tangent vector v on X one gets then

iΘ
(

OX(Da,b)
)

(v) = a iΘ
(

OX(H)
)

(v)− b iΘ(A)(dπ(v)).

So, if dπ(v) = 0, then iΘ
(

OX(Da,b)
)

(v) > 0. It is then enough to observe that
at every point x ∈ X , the kernel of dπ is at least of dimension n− 1.
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Thus, we can apply Theorem 3.4 to deduce that

Hq(X,OX(ℓDa,b)) = 0, for all ℓ ≥ ℓ0 and q ≥ 2.

We also need the following remark.

Remark 3.5. We first observe that c2(X) is non-zero, otherwise X would be
a finite unramified quotient of a torus and thus its fundamental group would
contain a free abelian group of rank 2n, contradicting our assumption of simple
connectedness.
Indeed, by Yau’s celebrated solution [Yau78] of the Calabi conjecture, X admits
a Ricci-flat Kähler metric (unique in each Kähler class), since c1(X) = 0.
Therefore, if c2(X) were zero, then by the equality case in the Kobayashi–Lübke
inequality X would be flat, so by the classical theorem of Bieberbach X would
be covered by a complex torus (see [Kob87, Chapter IV, (4.15) Corollary]).
Next, given the fibration f : X → C, thanks to the relative tangent sequence
on a generic fiber F , we get

0 → TF → TX|F → OF → 0.

Hence we deduce

c2(X) · F = c2(TX|F ) = c2(TF ) = c2(F ).

Since F is an abelian variety, we have c2(X) · F = c2(F ) = 0 as a cycle.

We now give the proof of Theorem 1.6. Let F be the generic fiber of the
fibration and let H be an ample divisor on X . We consider the affine line of
divisors (with rational slope) Nt = H − tF for t ∈ Q. If we let n = dimX and

t0 =
Hn

nHn−1 · F
∈ Q,

then we have (Nt)
n > 0 for each t < t0 and (Nt0)

n = 0. Now there are two
possible cases:

(I) Nt is nef for each t < t0.
(II) There exists a t̄ < t0 such that Nt̄ is non-nef.

Let us focus on case (I) first. Since being nef is a closed condition, Nt0 is
also nef. Next, it is easy to verify that (Nt0)

n−1 · H = (1 − n−1
n )Hn > 0.

Finally, according to Remark 3.5, c2(X) · F = 0, hence we can conclude that
c2(X) · (Nt0)

n−2 = c2(X) ·Hn−2 > 0 thanks to [Miy87, Theorem 1.1], because
H is ample and c2(X) 6= 0, see Remark 3.5. Since we have ν(Nt0) = n− 1 we
can conclude thanks to Corollary 1.4.
Let us consider now case (II). Let a and b positive natural numbers such that
t̄ = b

a . Then we have that aNt̄ = aH− bF = Da,b is as in Lemma 3.2 and since
(aNt̄)

n = an(Nt̄)
n > 0 we can conclude thanks to Lemma 3.1.

Finally, we give a proof of Corollaries 1.7 and 1.8.

Proof of Corollaries 1.7 and 1.8. Let F be the fiber of the abelian fibration,
and let examine the two possible cases that occur during the proof of Theorem
1.6.
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In case (I), we get a a semiample divisor Nt0 which induces an elliptic fiber
space structure onX . Now, following the proof of Theorem 1.1, either this fiber
space is equidimensional or not. If it is equidimensional, then we necessarily
have some singular fiber and the rational curve is found therein. It can be either
a (singular) irreducible rational curve, or it can be a chain of smooth rational
(−2)-curves. The class of such a fiber is given by Nn−1

t0 , where n = dimX , and

F ·Nn−1
t0 =

1

t0
(H −Nt0) ·N

n−1
t0 =

1

t0
H ·Nn−1

t0 −
1

t0
Nn

t0 =
1

t0
H ·Nn−1

t0 > 0.

This means that this fiber is transversal to the abelian fibration, which provides
immediately a rational multi-section if the fiber is irreducible. If it is a chain
of rational curve, it suffices to observe that at least one of its components has
to intersect positively F , since the whole fiber is an effective cycle intersecting
F positively.
Finally, if we are not in the equidimensional case, this means that there is a
uniruled exceptional locus and inside it we find a rational curve, say R, which
is contracted. But then Nt0 · R = 0, so

F ·R =
1

t0
(H −Nt0) · R =

1

t0
H · R > 0,

and therefore R is again transversal to the original fibration.
If, on the other hand, we are in case (II), the existence of a rational curve R on
X is deduced from the logarithmic version of the Cone Theorem, in particular
we have Nt̄ · R < 0. Hence,

F · R =
1

t̄
(H −Nt̄) ·R =

1

t̄
H · R−

1

t̄
Nt̄ ·R > 0,

and thus also in this case we get that R is transverse to the starting abelian
fibration.
Summing up, we have found in all possible cases the desired rational curve
giving a multi-section of the abelian fibration, and this proves Corollary 1.7.
Finally, let p, q ∈ X be two distinct points. If they both lie in a general fiber
of the abelian fibration, which is a complex torus, then dX(p, q) = 0. If they
both lie in a special fiber, their Kobayashi distance is again zero, since any
special fiber is the limit of general fibers and the Kobayashi pseudodistance
dX : X ×X → R is continuous in the Euclidean topology (see [Kob98, (3.1.13)
Proposition]). If p and q lie in different fibers, we use the transversal rational
curve found above to move from one fiber to another keeping zero Kobayashi
distance, and we are done. �
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