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Abstract. Given a Koszul algebra of finite global dimension we
define its higher zigzag algebra as a twisted trivial extension of the
Koszul dual. If our original algebra is the path algebra of a tree-type
quiver, this construction recovers the zigzag algebras of Huerfano-
Khovanov. We study examples of higher zigzag algebras coming from
Iyama’s type A higher representation finite algebras, give their pre-
sentations by quivers and relations, and describe relations between
spherical twists acting on their derived categories. We connect this
to the McKay correspondence in higher dimensions: if G is a finite
abelian subgroup of SLd+1 then these relations occur between spher-
ical twists for G-equivariant sheaves on affine (d+ 1)-space.
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1 Introduction

1.1 Motivation

Braid group actions on derived categories has been a popular and important
topic in modern mathematics [ST01, RZ03, KS02, HK01]. Algebraically, this
can be seen as a 1-dimensional theory in the following sense: the basic ex-
amples of such actions are controlled by certain “zigzag algebras” which can
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be constructed from quivers, i.e., from hereditary algebras, which are alge-
bras of global dimension ≤ 1 [IW80, Ta80]. These much-studied algebras are
finite-dimensional symmetric algebras of finite representation type (loc. cit.).
They are quadratic dual to the finite type preprojective algebras, which can
also be constructed directly from the quivers [GP79, BGL87, BBK02]. Exam-
ples of these algebras first appeared in the modular representation theory of
finite groups, as certain zigzag algebras are Morita equivalent to blocks of finite
groups with cyclic defect (see [Alp86]), but they have since been found in many
areas of mathematics.

There are well-developed tools for studying hereditary algebras, the most im-
portant of which is Auslander-Reiten theory [ARS97]. This theory is useful for
all Artin algebras but works particularly well in the hereditary setting. Iyama
found a way to extend many desirable properties of the Auslander-Reiten the-
ory of hereditary algebras to certain algebras of higher global dimension, now
known as d-hereditary algebras [Iya07, HIO14]. The importance of his theory
is signalled by the fact that one of the key ideas appeared independently in
another of the most important areas of modern mathematics: the categorifi-
cation of cluster algebras [BMRRT, Kel11]. Since its initial development, this
higher Auslander-Reiten theory has gathered much attention and is a very ac-
tive area of research [Iya11, IO11, HI11, Mi14, Jas16, Jor16], including the
study of higher preprojective algebras of d-hereditary algebras [IO13, AIR15].

At this point, a natural question arises: can we combine higher Auslander-
Reiten theory and categorical braid group actions? More precisely: is there
a theory, analogous to the now-classical braid group actions, where hereditary
algebras are replaced by d-hereditary algebras? And is this theory controlled by
derived categories of explicit finite-dimensional algebras? We claim the answer
to both questions is yes, and this paper is the starting point for this theory.

The first task is to construct the algebras, and the first guess for how to do this
is to take quadratic duals of higher preprojective algebras. This strategy does
work, though we find it useful to instead give a direct construction of these
algebras, which we call “higher zigzag algebras”. These generalize the classical
zigzag algebras controlling the usual braid group actions. In fact, we get quite a
pretty theory which is applicable more widely than the d-hereditary situation
and which, perhaps surprisingly, includes exterior algebras as special cases.
Things are even nicer in the higher-dimensional “type A” setting originally
described by Iyama [Iya11], which is our main focus in this article.

Categorical braid group actions are strongly connected to algebraic geometry
and symplectic geometry. In the foundational paper of Seidel and Thomas
[ST01], their triangulated categories of interest were derived categories of co-
herent sheaves, and the construction of the symmetries themselves was moti-
vated by Kontsevich’s homological mirror symmetry conjecture [Kon94]. The
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idea is as follows: by considering the action of symplectic automorphisms of
a compact symplectic manifold, one obtains symmetries of a Fukaya category
associated to that manifold. If the manifold has a mirror partner variety then
one hopes that our Fukaya category is equivalent to the derived category of
coherent sheaves on the mirror variety, thereby giving an action of the sym-
plectic automorphisms on the derived category of coherent sheaves. Given a
Lagrangian sphere in a symplectic manifold, one has a nice symplectic auto-
morphism called a Dehn twist, and so one searches for symmetries of derived
categories having similar properties to these automorphisms constructed from
Lagrangian spheres. These symmetries are called spherical twists. When the
Lagrangian spheres have good intersection properties the Dehn twists satisfy
braid relations [Sei99], so it seems reasonable to look for braid group actions
via spherical twists. Seidel and Thomas found various such actions. The sim-
plest example occurs in derived categories of equivariant coherent sheaves over
complex affine 2-space with the action of a cyclic group.

One might wonder: is a higher-dimensional theory of braid group actions just
an algebraic curiosity, or does it describe something which occurs naturally
in other parts of maths? We show that our generalized braid groups do arise
in algebraic geometry: they appear as symmetries of categories of equivariant
sheaves on higher-dimensional affine spaces. We note that our groups arising
from 2-hereditary algebras also appear in symplectic geometry: these relations
arise in descriptions of Fukaya categories appearing in unpublished work of
Casals, Evans, and Keating [Kea17].

1.2 An example

The name “zigzag algebras” was introduced by Huerfano and Khovanov [HK01].
One can justify the name as follows. Their construction starts from a simple
graph, such as the A3 Dynkin graph. Then one “doubles” this graph to get the
following quiver:

1
α

((
2

β

hh
α

((
3

β

hh

The associated zigzag algebra is the path algebra of this quiver modulo the
relations α2 = β2 = 0 and αβ = βα at the central vertex. These relations
ensure that the algebra is finite-dimensional: in fact, this algebra has a basis
given by the lazy paths at the vertices, the arrows, and one length two path
which starts and ends at each vertex. These length two paths can be seen to
“zig-zag” away from, then back to, the vertex.

In our example, the radical series of the indecomposable projective modules
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are as follows:
1
2
1

2
1 3
2

3
2
3

Consider the projective associated to vertex 2. There are two ways to “travel
down” the radical series:

2
zig
��✁✁✁

2
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These correspond to the following choices of length two paths in the quiver:

1

zig
((
2

zag

hh
((
3hh or 1

((
2hh

zag
((
3

zig

hh

This algebra is symmetric, so its indecomposable projectives are Calabi-Yau
objects, and from their radical series we see that all three have endomorphism
algebra F[x]/(x2). In other words, they are spherical objects [ST01]. So we
have associated symmetries F1, F2, and F3 of the bounded derived category of
modules over the zigzag algebra. As well as satisfying the relations of the braid
group on 4 strands, such as the Reidemeister III relation F1F2F1

∼= F2F1F2, the
positive lift of the longest element of the symmetric group F3F2F3F1F2F3 has
a particularly nice description [RZ03, Gra15] which is connected to the period-
icity of projective resolutions for this algebra [BBK02, Gra12]. Geometrically,
one obtains this algebra as the self-extension algebra of certain equivariant
sheaves on affine 2-space, which gives an algebraic explanation for the exis-
tence of braid relations on the associated geometric derived category [ST01].

The aim of this article is to introduce higher dimensional generalizations of
zigzag algebras. We now describe an illustrative example. Consider the follow-
ing quiver:

4
β

��✸
✸✸
✸

3

α
EE☛☛☛☛

β

��✸
✸✸
✸ 7

γ
oo

β

��✸
✸✸
✸

2

α
EE☛☛☛☛

β

��✸
✸✸
✸ 6

γ
oo

α
EE☛☛☛☛

β

��✸
✸✸
✸ 9

γ
oo

β

��✸
✸✸
✸

1

α
EE☛☛☛☛

5
γ

oo

α
EE☛☛☛☛

8
γ

oo

α
EE☛☛☛☛

0
γ

oo

We quotient its path algebra by the relations α2 = β2 = γ2 = 0 everywhere,
and by the relations αβ = βα, βγ = γβ, and γα = αγ whose source and target
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match the interior arrows. Consider the projective module associated to vertex
6. There are now various ways to travel down its radical series. For example,
the routes

6
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9 and 3 5 9
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correspond to the following length three cycles:
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We could call this algebra a “zigzagzog algebra”. However, this naming con-
vention will be difficult to continue as our dimension increases, so instead we
call it a higher zigzag algebra.

This algebra is also symmetric, and again the indecomposable projectives are
spherical, so we obtain symmetries of the derived category F1, F2, . . ., F9, F0.
We get braid group relations between these functors, such as F1F2F1

∼= F2F1F2,
but we also get other relations such as

F1F2F3F1
∼= F2F3F1F2

∼= F3F1F2F3

which can be seen as coming from a braid group on four strands [Ser93, GM17].
These generators and relations give a group containing classical braid groups
in various different ways which, in general, appears to be new. It also has an
interesting element

F0F8F9F0F5F6F7F8F9F0F1F2F3F4F5F6F7F8F9F0

constructed from subtriangles of our large triangle which, at least in terms of
its action on the derived category, plays a role analogous to that of the positive
lift of the longest element of a symmetric group to an Artin braid group.

Analogously to the classical case, one can consider an action of the finite abelian
groupG = C5×C5 on affine 3-space and look at equivariant sheaves constructed
from the skyscraper sheaf at the fixed point. By taking a suitable self-extension
algebra, one recovers this higher zigzag algebra. Therefore, this group action
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can be carried across to the derived category of G-equivariant coherent sheaves
on affine 3-space. This example can be generalized to abelian subgroups of
the special linear group acting on affine (d+ 1)-space, giving new examples of
relations between symmetries of derived categories from algebraic geometry.

1.3 Summary of results

Zigzag algebras can be defined in two ways: either using generators and rela-
tions, or as trivial extensions of path algebras of quivers modulo their radical
squared. We use the second of these: given a Koszul algebra of finite global
dimension, we define its higher zigzag algebra as a twisted trivial extension of
the Koszul dual of our starting algebra. These twisted trivial extensions were
first studied in connection with higher preprojective algebras [GI19]. Using
such an algebraic definition has the disadvantage that our higher zigzag alge-
bras do not automatically come with a nice presentation as a quotient of the
path algebra of a quiver by an admissible ideal. However, it seems to give an
interesting way to construct new algebras from old algebras, and we are able
to give nice presentations in some important classes of examples.

The twist in our definition, which involves introducing minus signs when multi-
plying certain elements, has disadvantages. The first is that anticommutativity
is usually more difficult to deal with than commutativity. The second is that, in
general, our definition will not match Huerfano and Khovanov’s: in the global
dimension 1 case, our higher zigzag algebras are what they call skew zigzag
algebras. The advantage, as Huerfano and Khovanov explain [HK01, Section
7], is that with these minus signs our algebras are more closely related to the
preprojective algebras and to the McKay correspondence.

When we have a construction which starts with a simple graph we may expect
the Dynkin graphs to play a special role, and they do in the case of zigzag
algebras: the algebras constructed from Dynkin graphs are precisely those of
finite representation type, meaning they have finitely many isoclasses of inde-
composable representations. The most well-studied are the type A examples.

To ask for an algebra to be of finite representation type is quite restrictive.
A weaker condition has emerged in recent years, coming from both higher
Auslander-Reiten theory [Iya07] and the categorification of cluster algebras
[BMRRT]: this condition is the existence of what has come to be known as a
cluster tilting object. These objects satisfy an ext-vanishing condition and are
replacements for the module obtained in the finite type case by taking the direct
sum of one copy of each indecomposable module. Iyama found an inductive
construction of algebras with cluster tilting modules, based on linearly oriented
type A quivers [Iya11]. This construction gives examples of all finite global
dimensions. These algebras are known as type A higher representation finite
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algebras, and we take them as our input to produce a class of higher zigzag
algebras which we call type A higher zigzag algebras. This class includes the
illustrative example given above.

Our type A higher zigzag algebras have already appeared in the literature.
In the global dimension 2 case, they are endomorphism algebras of the “hi-
cas” studied by Miemietz and Turner [MT10]. In the general case, they have
appeared in Guo and Luo’s study of n-cubic pyramid algebras [GL16].

One can see immediately from a presentation due to Iyama that the type A
higher representation finite algebras are quadratic. We use a version of PBW
theory for quivers to check that they are in fact Koszul. Then we study their
higher zigzag algebras. We are able to show that these algebras are symmetric,
and give nice presentations for this class of examples by using known presen-
tations of the type A higher preprojective algebras.

Theorem A (Proposition 3.11 and Theorem 3.1). The higher type A zigzag
algebras are symmetric, and have a presentation as the path algebra of a quiver
modulo zero relations and commutativity relations.

The type A zigzag algebras have received much attention due to the existence of
an action of the braid group on their derived categories. Their indecomposable
projective modules are spherical objects, with the associated simple module
only appearing in the head and the socle, and so for each vertex there exists a
symmetry of the derived category known as a spherical twist. These symmetries
satisfy braid relations [ST01, RZ03, HK01], and the positive lift of the longest
element of the symmetric group acts as a particularly simple symmetry [RZ03].
We will tell a similar story for the type A higher zigzag algebras. One first
defines a group from the quiver of the higher zigzag algebra. This definition is
by generators and relations, and specializes in the global dimension 1 case to
Artin’s presentation of the braid group. In the global dimension 2 case, these
relations have appeared in the study of presentations of braid groups coming
from quiver mutation [GM17]. Next one shows that these relations are satisfied
by the spherical twists on the derived category of our algebras. This is done by
reducing to a check in a symmetric Nakayama algebra, just as the Reidemester
3 relation between spherical twists can be reduced to a check in the symmetric
Nakayama algebra which is the zigzag algebra of type A2.

Theorem B (Theorem 4.24). For all d, s ≥ 1 we have a group Gd
s with

(

d+s−1
d

)

generators which acts on the derived category of the type A higher zigzag algebra
Zd
s . When d = 1 this specializes to the braid group action on the type A zigzag

algebra.

Next, we show that these groups contain elements which play the role of the
positive lifts of the longest element of the symmetric group, in the following
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specific sense: their action on the derived category of the higher zigzag algebra
is just a shift and a twist by an algebra automorphism. The construction of
these elements is modelled on a well-known construction for reflection groups:
they are defined inductively as compositions of Coxeter-like elements. We note
that, unlike the classical case, imposing the relation that our generators square
to the identity does not produce finite groups in general, and we do not know
of a length function with respect to which these elements are longest.

Theorem C (Theorem 4.35). There is an element of Gd
s , defined as a product

of
(

d+s
d+1

)

generators, which acts on the derived category of Zd
s as a shift by s

and a twist by an algebra automorphism.

Finally, we study categories of G-equivariant coherent sheaves on affine (d+1)-
space, where G ∼= Cn1+1 × Cn2+1 × · · · × Cnd+1 is a finite abelian subgroup of
the special linear group. We use the well-known equivalence of the category
of such sheaves with modules over a skew-group algebra, and show that these
skew group algebras are Koszul dual to higher zigzag algebras. This allows us
to prove the following:

Theorem D (Theorem 5.8). If min{n1, n2, . . . , nd} ≥ s + 1 then we have a
group action

Gd
s → AutDb

G(Sym(Cd+1)#G -mod)

where the generators of Gd
s act by spherical twists.

Thus we get an action of Gd
s on the derived category of G-equivariant coherent

sheaves Db
G(C

d+1).

2 Definitions and examples

Zero is a natural number.

We fix an underlying algebraically closed field F and, for a vector space V , we
denote the dual space HomF(V,F) by V

∗.

Modules are by default finitely generated left modules. Given an algebra Λ,
we can construct its opposite algebra Λop and its enveloping algebra Λen =
Λ⊗F Λ

op. By Λ-Λ bimodule, we mean left Λen-module.

If f and g are arrows in a quiver, we denote the composite path
f
→

g
→ by fg.

But our functions act on the left, so the composite function
f
→

g
→ is written gf .
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2.1 Definitions and basic facts

Given any algebra Λ and a Λ-Λ-bimodule M , there is a well-known way to
construct another algebra called a trivial extension of Λ by M , denoted Λ ⋉

M . Its underlying vector space is Λ ⊕M , and its multiplication is given by
(a,m)(b, n) = (ab,mb+an). One also talks about “the” trivial extension algebra
of Λ, which is Triv(Λ) = Λ⋉ Λ∗.

If Λ and Γ are algebras and ϕ : Γ → Λ is an algebra morphism, then from
any left Λ-module M we can construct a left Γ-module Mϕ with the same
underlying vector space as M and left action twisted by ϕ as follows: γ ·m =
ϕ(γ)m. In the same way, we can define twisted right modules and twisted
bimodules. Note that if ϕ is an inner automorphism, so ϕ(a) = uau−1 for
some invertible u ∈ Λ, then the map a 7→ ua is a bimodule isomorphism
Λ

∼
→ Λϕ .

Definition 2.1. For ϕ ∈ Aut(Λ), the twisted trivial extension of Λ by ϕ is
Trivϕ(Λ) = Λ⋉ Λ∗

ϕ .

Recall that an algebra is called Frobenius if the left regular module is isomorphic
to the dual of the right regular module. If an algebra A is Frobenius then there
exists an automorphism α of A, called the Nakayama automorphism, such that
A∗ ∼= Aα as A-A-bimodules. The Nakayama automorphism is well-defined
up to inner automorphisms. If the identity is a Nakayama automorphism,
we say that A is a symmetric algebra. Note that some authors call α−1 the
Nakayama automorphism and use the equivalent isomorphism A∗ ∼= Aα−1 of
A-A-bimodules.

Proposition 2.2. Twisted trivial extensions of finite-dimensional algebras are
Frobenius algebras with Nakayama automorphism α ((a, f)) = (ϕ(a), f ◦ ϕ−1).

Proof. This is a simple generalization of the usual proof that the trivial ex-
tension is symmetric. It is sufficient to construct a nondegenerate associative
bilinear form (−,−) : Trivϕ(Λ) × Trivϕ(Λ) → F satisfying (x, y) = (y, α(x))
(see, for example, [Koc04, Section 2.2] or [SY11, Section IV.3]). Our form is
defined by ((a, f), (b, g)) = f(b)+ g(ϕ(a)). One checks that it is nondegenerate
on (a, 0) and (0, f) separately, then verifies that it is associative and that it is
symmetric under twisting by the given Nakayama automorphism.

Now let Λ =
⊕

i≥0 Λi be a graded F-algebra which is generated in degree 1,
i.e., for all n ≥ 2, the image of the tensor product Λ1 ⊗F · · · ⊗F Λ1 of n copies
of Λ1 under repeated application of the multiplication map is precisely Λn. We
also assume that Λ0 = S is a semisimple F-algebra. Λ is called Koszul if S has
a linear projective resolution, i.e., a projective resolution with graded (degree
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0) maps where the ith resolving projective module is generated in degree i.
Recall that Koszul algebras are quadratic, so they have a quadratic dual Λ!

which has the same semisimple base ring, the dual space of generators, and the
orthogonal space of relations.

For any graded algebra Λ we have an automorphism ζ ∈ Aut(Λ) defined by
ζ(a) = (−1)ia for a ∈ Λi a homogeneous element of Λ. For a graded module
M =

⊕

i∈Z
M , we writeM {1} for the module shifted “upwards”, so (M {i})j =

Mi+j . The following definition was introduced in [GI19, Section 5]:

Definition 2.3. The (d + 1)-trivial extension of a finite-dimensional graded
algebra Λ, denoted Trivd+1(Λ), is the trivial extension of Λ by Λ∗ {−d− 1}ζd .

So, if we forget the grading, the (d+1)-trivial extension of Λ is just the twisted
trivial extension of Λ by ζd.

Explicitly, Trivd+1(Λ) is the graded vector space Λ⊕ Λ∗ {−d− 1} with multi-
plication given by

(a, f)(b, g) = (ab, fb+ (−1)diag)

for a ∈ Λi.

We note that (d + 1)-trivial extensions are similar to (though not the same
as) the graded-symmetric algebras considered by Reyes, Rogalski, and Zhang
[RRZ17].

We are most interested in the case where d is the (finite) global dimension of Λ.
When d is understood, we will sometimes write STriv(Λ) instead of Trivd+1(Λ).
The “S” stands for “super”.

We prepare a useful lemma for use later. Its proof is immediate.

Lemma 2.4. Let Λ be a finite-dimensional k-algebra and let e = e2 ∈ Λ be an
idempotent. Then we have algebra isomorphisms

Triv(eΛe) = eTriv(Λ)e and STriv(eΛe) = e STriv(Λ)e.

Let gldimΛ denote the global dimension of Λ. We now give our main definition.

Definition 2.5. Let Λ be a Koszul algebra with gldimΛ ≤ d < ∞. The
(d+ 1)-zigzag algebra of Λ is Zd+1(Λ) = Trivd+1(Λ

!).

We usually consider the case where gldimΛ = d. In this case, as d is determined
by Λ, we can talk about the higher zigzag algebra, or simply zigzag algebra, of
Λ, and denote this Z(Λ).
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Given any connected simple graph G (so G has no loops or multiple edges)
Huerfano and Khovanov defined the zigzag algebra A(G) of G, and showed
that it was isomorphic to Triv((FQ)!), where Q is a quiver obtained by taking
any orientation of G [HK01, Proposition 9]. In general, A(G) ≇ Z(FQ), so
our definition differs from that of Huerfano and Khovanov: see Example 2.11
below. But the following result shows that the algebras are isomorphic when
G is a tree.

Lemma 2.6. If Λ = kQ/I is a Koszul algebra graded by path length and the
underlying graph of Q is bipartite, then Zd+1(Λ) ∼= Triv(Λ!) as ungraded alge-
bras.

Proof. If d is even then the statement is clear. So suppose d is odd and the
quiver is bipartite with vertex sets X and Y . Let eX =

∑

x∈X ex and eY =
∑

y∈Y ey, and let u = eX − eY , which is a unit because u2 = 1. Then the

automorphism ζd, which twists Λ by adding a (−1) sign to odd degree elements,
is an inner automorphism: ζd(a) = uau. Thus Λ∗

ζd
∼= Λ∗ and so the (d + 1)-

trivial extension is isomorphic to the usual trivial extension.

We say that a graded Frobenius algebra A is of Gorenstein parameter ℓ if
A∗ ∼= A {ℓ} as left A-modules.

Proposition 2.7. Higher zigzag algebras are Frobenius of Gorenstein param-
eter d+ 1 with Nakayama automorphism which squares to the identity.

Proof. As Λ has finite global dimension, Λ! is a finite-dimensional algebra
[BGS96, Section 2.8], so we can apply Proposition 2.2. As ϕ = ζd squares
to the identity, so does the Nakayama automorphism of Z(Λ). The Gorenstein
parameter can be seen using the following graded vector space isomorphisms:

Z(Λ)∗ = (Λ! ⊕ Λ!∗ {−d− 1})∗ ∼= Λ!∗ ⊕ Λ!∗∗ {d+ 1} ∼= Z(Λ) {d+ 1} .

Given a left A-moduleM , we can define a right A-moduleM∨ = HomA(M,A).
This can be extended to the graded setting: ifM =

⊕

i∈Z
Mi, then let (M∨)i =

HomA -grmod(M,A {i}). The following statement is useful when working with
graded symmetric algebras. As its proof is so short, we include it here.

Proposition 2.8. A graded algebra A is symmetric of Gorenstein parameter
ℓ if and only if there is a natural isomorphism of functors

(?)∨ ∼= (?)∗ {−ℓ} : A -grmod
∼
→ grmod-A.
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Proof. If the functors are isomorphic then A∨ ∼= A gives the result. If A∗ ∼=
A {ℓ} then we use graded tensor-hom adjunctions:

M∨ ∼=
⊕

HomA -grmod(M,A∗ {−ℓ} {i})

∼=
⊕

HomF -grmod(A⊗A M,F {i}) {−ℓ} =M∗ {−ℓ} .

One could extend the above result to graded Frobenius algebras by twisting by
the Nakayama automorphism.

Higher zigzag algebras were studied in [GI19] in connection with higher pre-
projective algebras. For a graded algebra Λ of global dimension d < ∞, its
(d + 1)-preprojective algebra Πd+1(Λ) is defined as the tensor algebra of the
graded Λ-Λ-bimodule ExtdΛen(Λ,Λen) {−d} [IO11, GI19]. The construction is
particularly nice for d-hereditary algebras, which are finite-dimensional alge-
bras of global dimension d such that the image of the regular module under
integral powers of the d-shifted Serre functor has homology concentrated in
degrees which are multiples of d [HIO14]. In particular, d-hereditary algebras
have the property that ExtiΛen(Λ,Λen) = 0 for i 6= 0, d.

Theorem 2.9 ([GI19, Theorem 5.2]). Let Λ be a Koszul algebra of global di-
mension d and let Π denote its (d + 1)-preprojective algebra. Then Π is a
quadratic algebra and there is a morphism φ : Π! → Z(Λ) of graded algebras
which is an isomorphism in degrees 0 and 1. Moreover, if ExtiΛen(Λ,Λen) = 0
for 1 ≤ i ≤ d− 1, then φ is surjectuve.

The previous theorem gives some justification for the Koszul condition in Def-
inition 2.5.

2.2 Some examples

For our first example we take Λ = F, so gldimΛ = 0. Then Λ = Λ!, and
Zd+1(F) ∼= F[x]/(x2), with x in degree d+ 1. This is the main example where
it can be useful to consider d 6= gldimΛ.

Next, let Q be a quiver, so Λ = FQ is a hereditary algebra with gldimΛ ≤ 1.
Then Λ is Koszul with respect to its path length grading. Thus we can construct
2-zigzag algebras of quivers.

If the underlying graph G of Q is simple bipartite then we have already seen
by Lemma 2.6 that Z2(Λ) is isomorphic to the zigzag algebra A(G) of G as
defined by Huerfano and Khovanov. In particular, Z2(F) ∼= A(•) = F[x]/(x2),
with x in degree 2.
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In general, suppose Q has vertex set Q0 and arrow set Q1. If α ∈ Q1, we write
s(α) and t(α) for its source and target, respectively. Let Q denote the doubled
quiver of Q, which has arrow set {α, α∗ | α ∈ Q1} where s(α∗) = t(α) and
t(α∗) = s(α). Then, writing xi = e∗i , one easily checks the following result:

Proposition 2.10. Z2(FQ) has basis indexed by Q0 ∪ Q1 ∪ {xi | i ∈ Q0}
where the only nonzero multiplications of positively graded basis vectors are
αα∗ = xs(α) and α∗α = −xt(α).

Therefore, for path algebras of simple quivers, our definition specializes to
certain examples of skew-zigzag algebras [HK01, Section 4.6]; see also [Cou16].

The following is an example where Triv2(FQ) ≇ Triv(FQ). This illustrates the
phenomenon stated in [HK01, Section 4.6] that a cycle in the underlying graph
of the quiver means that the choice of signs is important.

Example 2.11. Let Q be the following quiver of affine Dynkin type Ã2:

2
α2

��❃
❃❃

❃❃
❃❃

❃

1

α1

@@��������
3

α3

oo

Then A = Z2(FQ) and B = Triv((FQ)!) both have basis given by ei, αi, α
∗
i , xi

for i = 1, 2, 3: the difference is that in B we have α∗
iαi = xi+1. If we had a

graded algebra isomorphism A
∼
→ B it would have to permute the idempotents

ei, and their images would determine the images of the arrows up to scalars.
By symmetry, we can assume that ei is sent to ei. Then if αi is sent to
λiαi and α

∗
i is sent to µiα

∗
i , the relation αiα

∗
i = −α∗

i−1αi−1 in A shows that
λiµi = −λi−1µi−1. So λ1µ1 = −λ2µ2 = λ3µ3 = −λ1µ1, and so a graded
algebra isomorphism cannot exist unless charF = 2.

Note that Z2(FQ)! is the classical preprojective algebra of type Ã2, and the
fact that the isomorphism class of this algebra depends on the signs used in
the definition is well-known.

Example 2.12. Next consider the Auslander algebra Λ of the type A3 quiver
with a unique source. We have Λ ∼= FQ/I where Q is the quiver

1

��❂
❂❂

❂❂
❴❴❴❴❴ 4

��❂
❂❂

❂❂

2

��❂
❂❂

❂❂

@@✁✁✁✁✁
❴❴❴❴❴ 5

3

@@✁✁✁✁✁
❴❴❴❴❴ 6

@@✁✁✁✁✁

and the zero and commutativity relations are indicated by dashed lines. Then
Λ has global dimension 2 but is not 2-hereditary: for example, ν32 (Λe4) has

Documenta Mathematica 24 (2019) 749–814



762 Joseph Grant

homology in two adjacent degrees. We do have Ext1Λen(Λ,Λen) = 0, and thus
the algebra morphism φ : Π! → Z3(Λ) is surjective. It is not however injective.

Note that, by Lemma 2.4, Z3(Λ) is isomorphic to the opposite endomorphism
algebra of a projective module for the type A higher zigzag algebra Z2

4 defined
below.

We now consider a different flavour of examples.

Example 2.13. Let Λ = F[y1, . . . , yd] be the polynomial algebra in d gener-
ators. Then Λ is Koszul, and its Koszul dual Λ! is the exterior algebra in d
generators Ed = F〈x1, . . . , xd〉/(xixj + xjxi, x

2
i ), where xi = y∗i .

We claim that Zd+1(Λ) is the exterior algebra in d + 1 generators. We define
an algebra map F〈x1, . . . , xd〉 → Zd(Λ) by xi 7→ (xi, 0) for 1 ≤ i ≤ d and
xd+1 7→ (0, (x1 . . . xd)

∗). It is easy to check that the relations of Ed+1 are
satisfied, so we get a map Ed+1 → Zd+1(Λ). As the generator x1 . . . xd+1 of the
socle of Ed+1 is sent to ±(0, 1∗) 6= 0, the map is injective, so as the dimensions
agree the map is an isomorphism.

We note that, using methods of [GI19], one can check that Πd+1(Λ) ∼=
F[y1, . . . , yd+1]. So we have Zd+1(Λ) ∼= Πd+1(Λ)

!.

2.3 PBW theory for quivers

In his original paper on Koszul algebras [Pri70], Priddy showed that algebras
which admit (some generalization of) a PBW basis are Koszul. A modern
treatment can be found in Chapter 4 of the book of Loday and Vallette [LV12],
and also in Chapter 4 of the book of Polishchuk and Positselski [PP05]. The
treatments of this theory usually assume that that the algebra is connected,
i.e., its degree 0 part is just a field, so are not applicable to algebras constructed
from quivers with more than one vertex. We will show that the theory of PBW
bases makes sense over a semisimple base ring S and, once we have the correct
statements, the proofs immediately carry over to this setting. Roughly, this
means that additional vertices don’t cause additional problems.

Let V = V1 ⊕ V2 ⊕ · · · ⊕ Vn be an S-S-bimodule and let L denote the set of
lists L = (i1, i2, . . . , iℓ) of integers between 1 and n. Then L is a monoid under
concatenation of lists, with identity element the empty list ∅. We write

V(i1,i2,...,iℓ) = Vi1 ⊗S Vi2 ⊗S · · · ⊗S Viℓ .

In particular, V∅ = S. Then our algebra TensS(V ) is graded by the monoid L
and, because

V ℓ =
⊕

L=(i1,i2,...,iℓ)

VL,
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this L-grading refines the tensor grading (which, in this situation, is usually
called the weight grading).

Let < be any total order on L which refines the partial order given by length
of lists and which satisfies the following property:

if L1 < L2 and L3 < L4 then L1L3 < L2L4.

Suppose Λ is a quotient of TensS(V ) by a quadratic ideal, so Λ inherits a
grading from TensS(V ). Define

TensS(V )≤L =
⊕

L′≤L

VL′

and let Λ≤L denote the image of TensS(V )≤L under the canonical surjection
π : TensS(V ) ։ Λ. Define Λ<L similarly. Finally, define

grL Λ = Λ≤L/Λ<L,

a quotient of S-S-bimodules. From here we can define a new S-algebra called
the associated graded algebra. Its underlying S-S-bimodule is

grΛ =
⊕

L∈L

grL Λ.

As an ungraded S-S-bimodule this is isomorphic to Λ, and thus is independent
of the order < on L. The multiplication, which depends strongly on <, is
defined as follows. The product of homogeneous elements x ∈ grLx

Λ and
y ∈ grLy

Λ is defined by taking lifts x′ ∈ Λ≤Lx
and y′ ∈ Λ≤Ly

(that is, π(x′) +
Λ<Lx

= x and π(y′) + Λ<Ly
= y), and then setting

xy = x′y′ + Λ<LxLy
.

This is well-defined and the associated graded algebra is L-graded. As the L-
grading refines the weight grading, the associated graded algebra is also weight
graded.

The following result is key:

Proposition 2.14. If grΛ is Koszul with respect to its weight grading, then Λ
is also Koszul.

Proof. The spectral sequence argument of [Pri70, Section 5], as described in
[LV12, Proposition 4.2.3], works over the semisimple base ring S with no
changes.

Now let Q be a quiver and let Qi denote the paths of length i. Suppose Λ is
a quotient of FQ by a homogeneous ideal I ⊆ FQ≥2. Let B =

⊔

i≥0 Bi be a
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basis of Λ consisting of paths, so B0 = Q0, B1 = Q1, and Bi ⊆ Qi. Let < be a
total order on Q1, which we extend lexicographically to a total order on each
Bi with i > 0, and then to B+ =

⋃

i>0 Bi by refining the degree order.

The following definition is adapted from [Pri70, 5.1].

Definition 2.15. We say that (B, <) is a PBW basis of Λ if:

• whenever p and q are paths in B then either pq is also in B or pq ∈ Λ is
a linear combination of basis elements r with r < pq, and

• for each i ≥ 3 and each path α1α2 . . . αi ∈ Qi, we have α1α2 . . . αi ∈ B
if and only if, for each 1 ≤ j ≤ i − 1, we have α1α2 . . . αj ∈ B and
αj+1αj+2 . . . αi ∈ B.

One can define PBW bases in a different way which matches more closely the
treatments in [LV12] and [PP05]. The difference is our starting point: either
we start with a basis and ask whether it has the desired properties, or we start
with a spanning set with the desired properties and ask whether it is a basis.

Proposition 2.16. Given a total order < on Q1, extended lexicographically to
Q2, define B2 to be the set of paths in Q2 which cannot be written, modulo I,
as a linear combination of lower degree paths. Define Bi to be the set of paths
α1α2 . . . αi ∈ Qi such that each subpath αiαi+1 of length 2 is in B2. Then the
following are equivalent:

(i) B is a basis of Λ;

(ii) B is a PBW basis of Λ;

(iii) B3 is linearly independent in Λ3.

Moreover, every PBW basis of Λ is constructed in this way.

Proof. Note that, by construction, B =
⊔

i≥0 Bi spans Λ and also satisfies the
two conditions of Definition 2.15. It is sufficient to check that B3 is linearly
independent, as in [LV12, Theorem 4.2.8] or [PP05, Theorem 4.2.1]. It is easy
to see that if we start with a PBW basis as in Definition 2.15 then the above
construction recovers B from B2.

Proposition 2.17. If I is generated by paths of length 2, then Λ = FQ/I is
Koszul.

Proof. The proof of [LV12, Theorem 4.3.6] generalizes to semisimple base rings
(though this was known much earlier, e.g., [Frö75]).
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We can now state Priddy’s theorem for quadratic quotients of path algebras of
quivers.

Theorem 2.18. If Λ has a PBW basis, then it is Koszul.

Proof. Suppose that Q1 = {α1, . . . , αn} with αi < αi+1. Let S be the semisim-
ple F-algebra with F-basis Q0 and let Vi = Fαi. Then Λ = TensS(V1 ⊕ · · · ⊕
Vn)/I and the total order on Q1 induces a total order on L, so we can consider
the associated graded algebra grΛ. For α, β ∈ Q1, if αβ /∈ B2 we have αβ = 0
in grΛ, by construction. Thus, by Proposition 2.17, grΛ is Koszul, and so the
result follows by Proposition 2.14.

Example 2.19. Let Q be the quiver

3
γ

��❂
❂❂
❂

2

β @@✁✁✁✁

δ ��❂
❂❂
❂ 5

1

α @@✁✁✁✁
4

ε

@@✁✁✁✁

and let I = (αδ, βγ − δε). Let Λ = FQ/I. One can easily check that Λ is
Koszul. We will give two different orderings on the arrows of Q and will show
that one can be refined to a PBW basis while the other cannot. This can be
seen as a finite dimensional analogue of the example F〈x, y〉/(x2 − xy) given in
the Remark in Section 4.1 of [PP05].

First, we order the arrows of Q alphabetically:

α < β < γ < δ < ε.

Then we must have B2 = {αβ, βγ}. Thus, if we try to extend B2 to a PBW
basis as in Proposition 2.16, we obtain B3 = {αβγ}. But all paths of length 3
are zero in Λ, so B3 is not linearly independent.

Next, we order the arrows of Q as follows:

α < δ < ε < β < γ.

Then B2 = {αβ, δε}. There is no path of length 3 with both length 2 subpaths
in B2, so B3 = ∅ is linearly independent and thus B is a PBW basis.

It is instructive to examine the associated graded algebras with respect to
both gradings. In the first case, the associated graded algebra is isomorphic
to FQ/(αβγ, αδ, δε). This is not quadratic and so is certainly not Koszul. In
the second case, the associated graded algebra is isomorphic to FQ/(αδ, βγ),
which is a quotient of FQ by a quadratic monomial ideal and thus Koszul.
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3 Presentations of type A higher zigzag algebras

In this section we will give a presentation, by quiver and relations, of the main
examples of higher zigzag algebras in this paper: the type A higher zigzag
algebras. To do this we use known presentations of type A higher preprojective
algebras. As we take quadratic duals of algebras with commutativity relations,
we obtain algebras with anticommutativity relations. This is annoying: we
would prefer to replace αβ with βα and not −βα. We show that, in the higher
type A case, we can do this.

The plan is as follows. We first revise Iyama’s type A higher representation
finite algebras and their preprojective algebras. These will be our starting al-
gebras Λ. Next we study the quadratic duals of the higher representation finite
and preprojective algebras, and show that their anticommutativity relations
can be replaced by commutativity relations. We are also able to show that
the type A higher zigzag algebras are symmetric. Finally we show that the
quadratic duals of type A higher preprojective and the type A higher zigzag
algebras have the same dimensions, and so the surjective map between them
must be an isomorphism.

While this paper was being prepared, the author discovered that these algebras
had already been studied by Guo and Luo [GL16]. Thanks to Gabriele Bocca
for pointing out this reference. Guo and Luo define algebras Λ̃ḡ(d), which
correspond to the algebras Zs

d here, using generators and relations, and they
show that they are given by some twisted trivial extension of algebras Λ(d)
which they call n-cubic pyramid algebras. Their algebras Λ(d) correspond to
the algebras (Λd

s)
! here. See also the related papers [ZLZ17] and [Guo16], which

also study twisted trivial extensions, skew group algebras, and McKay quivers.

3.1 Presentations

Type A higher zigzag algebras are defined below as higher zigzag algebras
(Definition 3.5). For each pair of positive integers s and d, there is a type A
higher zigzag algebra, denoted Zd

s . Here we will state the theorem to be proved
in this section, which gives a presentation of these algebras.

Theorem 3.1. The graded algebra Zd
s has a presentation

Zd
s
∼= FQd

s/I
d
s

where Qd
s is a quiver with vertex set Q0 consisting of the following integral

vectors:

y = (y0, y1, . . . , yd) ∈ Nd+1 such that
d

∑

i=0

yi = s− 1.
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If s = 1 then Q0 consists of a single vertex, and we add a single loop x in
degree d+ 1 to obtain our quiver Q. Then Id1 is the ideal (x2) in FQ.

For 1 ≤ i ≤ d, let

εi = (0, . . . , 0,−1, 1, 0, . . . , 0) ∈ Zd+1

and let ε0 = (1, 0, . . . , 0,−1), so (y + εi)i = yi + 1. If s ≥ 2, let the arrow set
Q1 of Qd

s be the following: for all 0 ≤ i ≤ d, whenever y and y+ εi are both in
Q0, we have an arrow fi,y : y → y + εi in degree 1.

If s = 2 then Q consists of d+ 1 vertices arranged in an oriented cycle. Let Id2
be the ideal of paths of length d+ 2.

If s ≥ 3 then Isd is the ideal generated by all paths fi,yfi,y+εi , 0 ≤ i ≤ d, and
by all commutativity relations fi,yfj,y+εi = fj,yfi,y+εj starting at a vertex y
whenever both y + εi and y + εj exist, for all 0 ≤ i, j ≤ d.

Note that the number of vertices of the quiver Qd
s is the binomial coefficient

(

d+s−1
d

)

.

Let ey denote the primitive idempotent at the vertex y. We sometimes write
fi to mean

∑

y∈Q0
fi,y, so eyfi = fi,y.

To save space, we use some shorthands when we draw these quivers: we some-
times write a vertex (y0, y1, . . . , yd) as y0y1 . . . yd and, if the starting vertex y
is understood, we sometimes write fi instead of fi,y. But when writing proofs
we will try to reserve fi for the sum of arrows described above.

Example 3.2. Z2
4 has the following quiver Q2

4:

030
f2

��❃
❃❃

❃❃

120

f1
??�����

f2

��❃
❃❃

❃❃
021

f0oo
f2

��❃
❃❃

❃❃

210

f1
??�����

f2

��❃
❃❃

❃❃
111

f0oo

f1
??�����

f2

��❃
❃❃

❃❃
012

f0oo
f2

��❃
❃❃

❃❃

300

f1
??�����

201
f0oo

f1
??�����

102
f0oo

f1
??�����

003
f0oo

Its ideal I24 of relations is generated by:

• the nine zero relations “f2
i = 0”: for example, we have eyf1f1 = 0 for

y = 300, 210, and 201;

• the nine commutativity relations “fifj = fjfi”: for example, we have
eyf1f2 = eyf2f1 for y = 210, 120, and 111.
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Note that the path e300f1f2 is nonzero in Zd
4 : there are no “zero relations at

the boundary”.

3.2 Type A d-representation finite algebras and preprojective

algebras

A finite-dimensional algebra Λ is called d-representation finite, for d ∈ N,
if its global dimension is at most d and it has a d-cluster tilting module
M [Iya11, IO13]. Given such an algebra, we can construct a new algebra
EndΛ(M)op, known as its higher Auslander algebra. As d-cluster tilting mod-
ules for algebras of global dimension d are unique up to multiplicity of their
indecomposable direct summands [Iya11, Theorem 1.6], higher Auslander al-
gebras are unique up to Morita equivalence. In [Iya11], Iyama constructed
collections of d-representation finite algebras whose higher Auslander algebras
are (d+ 1)-representation finite. We will now outline his construction.

In the simplest case d = 1, a 1-representation finite algebra is just a representa-
tion finite hereditary algebra: a 1-cluster tilting module is given by taking the
direct sum of one copy of each indecomposable module. We know that path
algebras of quivers are hereditary, and by Gabriel’s theorem the path algebra
is representation finite when the underlying unoriented graph of the quiver is
Dynkin. We start with the path algebra of the linearly oriented type As quiver

1 → 2 → 3 → · · · → s

and call this Λ1
s. Then we define its higher analogues recursively:

Λd
s = EndΛd−1

s
(Md−1

s )op

where Md−1
s is a (d− 1)-cluster tilting module for Λd−1

s . The algebras Λd
s are

called the d-representation finite algebras of type A. These are the algebras we
use to define our type A higher zigzag algebras.

Iyama showed how to construct the quiver and relations of a higher Auslander
algebra from the original algebra and its cluster tiltling module, together with
knowledge of the higher Auslander-Reiten theory [Iya11, Section 6]. We will
need the following special case, which is also used in [IO11, Section 5].

Theorem 3.3 (Iyama). Fix s, d ≥ 1 and let QΛ be the quiver with vertices
(d+ 1)-tuples of non-negative integers

x = (x1, x2, . . . , xd+1),

d+1
∑

i=1

xi = s− 1

and arrows of the form

αi,x : (. . . , xi, xi+1, . . .) → (. . . , xi − 1, xi+1 + 1, . . .)
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for 1 ≤ i ≤ d starting at each vertex x where xi ≥ 1. Let

αi =
∑

x s.t. xi≥1

αi,x

be the sum of all arrows in direction i. Then we have an algebra isomorphism

Λd
s
∼= FQΛ/(αiαj − αjαi, 1 ≤ i, j ≤ d).

Using this presentation, we can show that the d-representation finite algebras
of type A are Koszul.

Proposition 3.4. For all d, s ≥ 1, the algebra Λd
s is Koszul.

Proof. By Theorem 2.18, it suffices to show that Λ = Λd
s has a PBW basis.

We order the arrows of QΛ in such a way that exαi+1 < exαi. Following
Proposition 2.16, we obtain the set B2 of all nonzero paths exαiαj with i ≥ j.
This forces B3 to be the set of all paths exαiαjαk with i ≥ j ≥ k such that
exαiαj and ex+fiαjαk are nonzero.

We need to check that B3 is linearly independent. But if exαiαj is nonzero
with i ≥ j then we have xi ≥ 1 and xj ≥ 1, so exαjαi is also nonzero. So the
intersection of the ideal

(αiαj − αjαi, 1 ≤ i, j ≤ d) = (exαiαj − exαjαi, 1 ≤ i < j ≤ d, x ∈ Q0)

from Theorem 3.3 with the span of B3 is zero and thus B3 is linearly indepen-
dent. Therefore the associated spanning set

B = {exα
dn
n . . . αd2

2 α
d1
1 | x ∈ Q0, di ≥ 0}.

is a PBW basis of Λ.

We therefore make the following definition:

Definition 3.5. The type Ad
s higher zigzag algebra is Zd

s = Zd+1(Λ
d
s).

Next we recall the presentation of the (d+1)-preprojective algebra of Λd
s, which

we will denote Πd
s .

Proposition 3.6 ([IO11, Definition 5.1 and Proposition 5.48] and [GI19, The-
orem 5.12]). Fix s, d ≥ 1 and let QΛ be the quiver with vertices d+ 1-tuples of
non-negative integers

x = (x1, x2, . . . , xd+1),
d+1
∑

i=1

xi = s− 1
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and arrows of the form

αi,x : (. . . , xi, xi+1, . . .) → (. . . , xi − 1, xi+1 + 1, . . .)

for 1 ≤ i ≤ d starting at each vertex x where xi ≥ 1 and

αd+1,x : (x1, . . . , xd+1) → (x1 + 1, . . . , xd+1 − 1)

starting at each vertex x where xd+1 ≥ 1. For 1 ≤ i ≤ d+ 1, let

αi =
∑

x s.t. xi≥1

αi,x

be the sum of all arrows in direction i. Then we have an algebra isomorphism

Πd
s
∼= FQΛ/(αiαj − αjαi, 1 ≤ i, j ≤ d+ 1).

Example 3.7. Let d = 2 and s = 3. Then Λ2
3 is the quotient of the path

algebra of the quiver

020
α2

��❃
❃❃

❃❃

110

α1
??�����

α2 ��❃
❃❃

❃❃
011

α2

��❃
❃❃

❃❃

200

α1
??�����

101
α1

??�����
002

by the relations α1,200α2,110 = 0, α1,101α2,011 = 0, and α1,110α2,020 =
α2,110α1,101.

Similarly, Π2
3 is a quotient of the path algebra of the folllowing quiver:

020
α2

��❃
❃❃

❃❃

110

α1
??�����

α2 ��❃
❃❃

❃❃
011

α3oo
α2

��❃
❃❃

❃❃

200

α1
??�����

101
α3

oo
α1

??�����
002

α3

oo

by the relations which set

α1,200α2,110 = α1,101α2,011 = 0

α2,020α3,011 = α2,110α3,101 = 0

α3,002α1,101 = α3,011α1,110 = 0

and impose the commutativity relations

α1,110α2,020 = α2,110α1,101

α2,011α3,002 = α3,011α2,110

α3,101α1,200 = α1,101α3,011.
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The higher zig-zag algebras are defined using the quadratic duals of Λ = Λd
s .

Using the previous results, we can write down a presentation of Λ! by quiver
and relations immediately. The quiver Q∗

Λ has the same vertices as QΛ and
arrows α∗

i,x : (. . . , xi, xi+1, . . .) → (. . . , xi + 1, xi+1 − 1, . . .) at each vertex x
where xi+1 ≥ 1. The relations are as follows: we always have α∗

iα
∗
i = 0, and

we have the relation ex(α
∗
iα

∗
j +α

∗
jα

∗
i ) = 0 starting at a vertex x whenever both

xi+1 ≥ 1 and xj+1 ≥ 1.

For convenience, we will relabel our quiver. We relabel vertices by

y = (y0, y1, . . . , yd) = (xd+1, xd, . . . , x1),

so yi = xd+1−i, and arrows by

βi,y = eyα
∗
d+1−i : (. . . , yi−1, yi, . . .) → (. . . , yi−1 − 1, yi + 1, . . .),

so βi,y : y → y + εi. So, for 1 ≤ i ≤ d, we have an arrow βi,y starting at y
whenever yi−1 ≥ 1. Following our usual convention, we write βi =

∑

y βi,y.

Then we describe the quadratic dual of Λ = Λd
s as follows:

Corollary 3.8. Let Q+ denote the above quiver with vertices y and arrows
βi,y with 1 ≤ i ≤ d. Then

Λ! ∼= FQ+/(βiβi; ey(βiβj + βjβi) for yi−1, yj−1 ≥ 1).

By also considering the arrows β0, y = eyα
∗
d+1, we can also describe the

quadratic dual of Π = Πd
s :

Corollary 3.9. Let Q′ denote the above quiver with vertices y and arrows
βi,y with 0 ≤ i ≤ d. Then

Π! ∼= FQ′/(βiβi; ey(βiβj + βjβi) for yi−1, yj−1 ≥ 1).

3.3 Commutativity and anticommutativity

We want to change the anticommutativity relations in Λ! and Π! to commu-
tativity relations. Fix d, s ≥ 1. The following notation will be useful. Let
y = (y0, y1, . . . , yd) be a vertex of Q and define yk = 0 for k > d. Then we
define:

pari(y) = (−1)z, where z =
∑

j≥0

yi+2j .

Note that we do not reduce indices mod d+1, so this sum is finite. It measures
the parity of the sum of every other co-ordinate from a given starting index.
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The following easily proved technical lemma will be useful. Recall that

εi = (0, . . . , 0,−1, 1, 0, . . . , 0) ∈ Zd+1,

so (y + εi)i = yi + 1.

Lemma 3.10. Let 0 ≤ i ≤ d and 1 ≤ j ≤ d. Then

pari(y + εj) =

{

(−1) pari(y) if i ≤ j;

pari(y) if i > j

and
pari(y + ε0) = (−1)d+i+1 pari(y).

Our first use of the parity maps is as follows:

Proposition 3.11. Zd
s
∼= Triv((Λd

s)
!), and thus Zd

s is a symmetric algebra.

Proof. We partition the vertices y of the quiver Q+ of Λd
s using the sign of

par0(y). If an arrow of Q has source y then its target is y + εj for some
1 ≤ j ≤ d. So this is a bipartite partition because par0(y + εj) = (−1) par0(y)
for all j. So the result follows by Lemma 2.6.

Now we show that Λ! can be defined using commutativity relations.

Proposition 3.12. Let fi,y = pari(y)βi,y ∈ FQ+. Then

Λ! ∼= FQ+/(fifi; ey(fifj − fjfi) for yi−1, yj−1 ≥ 1).

Proof. We define an algebra homomorphism from FQ+ to Λ! by βi,y 7→ fi,y =
pari(y)βi,y. We will check that this map kills the ideal we quotient by in
Corollary 3.8. Without loss of generality, assume i < j. Then

ey(βiβj + βjβi) = βi,yβj,y+εi + βj,yβi,y+εj

7→ pari(y) parj(y + εi)βi,yβj,y+εi + parj(y) pari(y + εj)βj,yβi,y+εj

=pari(y) parj(y)
(

βi,yβj,y+εi − βj,yβi,y+εj

)

= 0

So the map FQ+ → Λ! induces an algebra endomorphism of Λ!, which is clearly
an automorphism.

Finally we show that Π! can be defined using commutativity relations.

Proposition 3.13. Let Q = Qd
s be the quiver with vertices as Q+ and arrows

fi,y = eyfi : y → y + εi when yi−1 ≥ 1, for 0 ≤ i ≤ d. Then

Π! ∼= FQ/(fifi; ey(fifj − fjfi) for yi−1, yj−1 ≥ 1).
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Proof. First we show there exists a function w : Q0 → {−1, 1} such that
w(y + εi) = (−1)d+iw(y) for i > 0. Let n be the integer such that n ≤
(d + 1)/2 < n + 1 and let x = (yd + yd−1, yd−2 + yd−3, . . .) ∈ Zn. Define
w(y) = par0(x). Then

w(y + εi) =

{

w(y) if i ≡ d mod 2;

(−1)w(y) if i ≡ d+ 1 mod 2

and so w(y + εi) = (−1)d+iw(y).

Recall the presentation of Π! in Corollary 3.9. Define an algebra map FQ′ → FQ
by

βi,y 7→

{

w(y)f0,y if i = 0;

pari(y)fi,y if i > 0.

We argue as in Proposition 3.12, so we just need to check that ey(β0βi+βiβ0) 7→
0. We calculate:

ey(β0βi + βiβ0) = β0,yβi,y+ε0 + βi,yβ0,y+εi

7→w(y) pari(y + ε0)f0,yfi,y+ε0 + pari(y)w(y + εi)fi,yf0,y+εi

=w(y) pari(y)
(

(−1)d+i+1f0,yfi,y+ε0 + (−1)d+ifi,yf0,y+εi

)

= 0.

3.4 Dimensions of projective modules

Fix d, s ≥ 1 and let Π = Πd
s . Recall that, by Theorem 2.9, there is a surjective

map φ : Π! → Zd
s of graded algebras which is an isomorphism in degrees 0 and

1. It was suggested in an early draft of [GI19] that this map is an isomorphism
when s ≥ 3. As the algebras Zd

s are finite-dimensional, one way to prove this
would be to show that dimF(Π

d
s)

! = dimF Z
d
s . Both algebras are basic, so the

dimension of the algebra is the sum of the dimensions of the projective modules
at each vertex. Our first aim is to calculate these dimensions.

The first two lemmas are easy.

Lemma 3.14. Suppose that fifj is a nonzero path in either Λ! or Π! starting
at y.

(i) If fjfi is also a nonzero path starting at y then eyfifj = eyfjfi.

(ii) If j 6= i + 1 then fjfi is also a nonzero path starting at y, and therefore
eyfifj = eyfjfi.
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Lemma 3.15. Let y be a vertex in either Λ! or Π! and suppose that both
yi+1 and yj+1 are nonzero, with i < j. Then eyfifi+1 . . . fj−1fj =
eyfjfifi+1 . . . fj−1 in both Λ! and Π!. Also, in Π!, eyfjfj+1 . . . fdf0 . . . fi−1fi =
eyfj+1 . . . fdf0 . . . fi−1fifj.

Example 3.16. Let d = 5, s = 3, and y = (0, 1, 0, 0, 1, 0). Then both of the
following pairs of paths commute in Λ! and Π!:

010010
f2 //

f5

��

001010

f5

��
010001

f2 // 001001

010010
f2 //

f5

��

001010
f3 // 000110

f4 // 000020

f5

��
010001

f2 // 001001
f3 // 000101

f4 // 000011

The next three lemmas are fundamental.

Lemma 3.17. Let fi1fi2 . . . fiℓ be a path in Λ! or Π! starting at the vertex y. If σ
is a permutation in the symmetric group on {1, 2, . . . , ℓ} and fiσ(1)

fiσ(2)
. . . fiσ(ℓ)

is another path starting at y then the two paths are equal.

Proof. We use induction on ℓ. The base case ℓ = 1 is clear. If σ(1) = 1
then this follows immediately from the inductive hypothesis. If not, use the
hypothesis to rewrite fiσ(2)

. . . fiσ(ℓ)
so that it starts with fi1 . As we have paths

starting at y beginning both fi1 and fiσ(1)
, we know that yi1−1 and yiσ(1)−1 are

both nonzero, so fiσ(1)
fi1 = fi1fiσ(1)

. So we can move fi1 to the start of the
expression and finish by using the inductive hypothesis.

Lemma 3.18. In Λ!, any path which contains fi more than once is zero.

Proof. Use induction on the length of the path. From the relations, f2
i = 0.

For the inductive step, consider a path fiγ1γ2 . . . γnfi where γk = fjk with
jk 6= i for all k. Let y be the source of our path, so we know yi−1 ≥ 0. Then
either yj1−1 ≥ 1, in which case fiγ1γ2 . . . γnfi = γ1fiγ2 . . . γnfi by Lemma
3.14, and we are finished by induction, or j1 = i + 1. Similarly, if j2 6= i + 2
then γ1γ2 = γ2γ1 and so fiγ1γ2 = γ2fiγ1 and we are finished by induction.
Therefore we may assume that jk = i+k for all 1 ≤ k ≤ n, and so γnfi = fiγn,
and so the statement is true by induction.

We have a similar result for Π!.

Lemma 3.19. If s ≥ 3 then, in Π!, any path which contains fi more than once
is zero.

Proof. We argue as in Lemma 3.18. The critical case is the path
fifi+1 . . . fdf0f1 . . . fi, which we assume starts at y and therefore finishes at
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y + εi. If yi−1 is the only nonzero entry in y then, as s ≥ 3, we have
(y + εi)i−1 ≥ 1 and (y + εi)i ≥ 1, so fi−1fiey+εi = fifi−1ey+εi . Therefore
fifi+1 . . . fi−2fi−1fi = fifi+1 . . . fi−2fifi−1, so we have a shorter path which
starts and ends with fi. If instead the starting vertex y has a nonzero entry yℓ
with ℓ 6= i− 1 then, by Lemma 3.15, we can move fℓ+1 to the start of the path
and so again reduce to a shorter path which starts and ends with fi.

Corollary 3.20. Any path of length > d in Λ!, or of length > d+1 in Π! with
s ≥ 3, is zero. In particular, every indecomposable projective Λ!-module has
dimension at most 2d and, if s ≥ 3, every indecomposable projective Π!-module
has dimension at most 2d+1.

Proof. For a sequence i = (i1, . . . , iℓ), write fi = fi1fi2 . . . fiℓ . By Lemma 3.18
or Lemma 3.19, the projective is generated as an F-module by paths fi starting
at y where i is a sequence of distinct elements from {1, . . . , d} or {0, 1, . . . , d}.
By Lemma 3.17 we can identify permuations, so this F-module has dimension
at most 2d or 2d+1 in the case of Λ! or Π!, respectively.

So we have an upper bound. Now we want a precise number.

Lemma 3.21. The dimension of the projective modules eyΛ
!, Λ!ey, eyΠ

!, and
Π!ey depends only on whether each co-ordinate yi of y is zero or nonzero.

Proof. For Λ! and for Π! when s ≥ 3, this follows from Lemma 3.18 and Lemma
3.19. When s < 3 all co-ordinates must be 0 or 1, so this is trivially true.

Therefore we introduce the following notation:

y = (0n1 ⋆m1 0n2 ⋆m2 . . . 0nℓ−1 ⋆mℓ−1 0nℓ) := (0, 0, . . . , 0, ⋆, ⋆, . . . , ⋆, 0, . . .)

where y0, y1, . . . , yn1−1 are 0, then there are m1 nonzero values each denoted
by a ⋆, etc. We allow n1 = 0 and/or nℓ = 0, but all mi and, for 2 ≤ i ≤ ℓ− 1,
all ni must be nonzero.

The idea of the next proposition is that sections of paths ending at a vertex y
come in two flavours: those which are parts of n-cubes, for some n ≥ 2, and
those which are parts of lines. We should treat them separately.

Proposition 3.22. The left projective Λ!-module at vertex y = (0n1 ⋆m1 0n2 ⋆m2

. . . 0nℓ−1 ⋆mℓ−1 0nℓ) has dimension

dimF Λ
!ey = 2

∑
i≥1(mi−1) · (n1 + 1) ·

∏

2≤i≤ℓ−1

(ni + 2)
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and the right projective Λ!-module at vertex y = (0n1 ⋆m1 0n2 ⋆m2 . . . 0nℓ−1 ⋆mℓ−1

0nℓ) has dimension

dimF eyΛ
! = 2

∑
i≥1(mi−1) · (nℓ + 1) ·

∏

2≤i≤ℓ−1

(ni + 2).

Before we give the proof it may be useful to give an example.

Example 3.23. Let y be the vertex (0110010) = (0112021101) of the quiver
Q6

2. We have the 2-cube f1f2 = f2f1 and the 3-line f3f4f5. The basis of paths
for Λ!ey is:

ey, f1, f2, f5, f1f2, f1f5, f2f5, f4f5,

f1f2f5, f1f4f5, f2f4f5, f3f4f5, f1f2f4f5, f1f3f4f5, f2f3f4f5, f1f2f3f4f5.

So the dimension of Λ!ey is 16. If one draws the vertices and arrows this looks
like 16 = 22 × (3 + 1), but really it is 16 = (1 + 1)× 21 × (3 + 1). To see this,
consider the vertex y′ = (00110010) = (0212021101) of the quiver Q7

2 obtained
by prepending an extra zero to y. For y′ we have an initial 2-line and so we
would get one more basis vector for each path in Λ!ey which contains f1. Thus
the dimension of Λ!ey′ is 24 = (2 + 1)× 21 × (3 + 1).

Proof of Proposition 3.22. We prove the statement about left modules; the
statement about right modules is similar. We need to count nonzero paths,
up to equivalence, which end at the vertex y.

Recall our convention that fi =
∑

y fi,y. Let m =
∑ℓ−1

i=0 (ni + mi) − 1, so

m = max{i | yi ≥ 1}, and let Z = {1, 2, . . . ,m}. Then every element of Λ!ey
is a linear combination of paths of the form fi1fi2 · · · fikey where k ≥ 0 and
{i1, i2, . . . , ik} ⊆ Z. So some subset of the set of such paths gives a basis of
Λ!ey. So, using Lemmas 3.17 and 3.18 and the relations in Proposition 3.12, we
just need to count subsets {i1, i2, . . . , ik} ⊆ Z such that fσ(i1)fσ(i2) · · · fσ(ik)ey
is nonzero for some permutation σ ∈ Sk.

Let
X = {i ∈ Z | yi 6= 0 and yi−1 6= 0}

and Y = Z\X . We claim that every nonzero path in Λ!ey can be written
qpey where p = fi1fi2 · · · fir and q = fj1fj2 · · · fis with {i1, i2, . . . , ir} ⊆ X and
{j1, j2, . . . , js} ⊆ Y . This follows because, if the path qey starts at the vertex
y′, then yi = y′i for all i ∈ X , so pqey and qpey are both paths in Λ!, so are
equal by Lemma 3.17. So the claim follows by induction. Also, by definition
of X and Y , if qey 6= 0 and pey 6= 0 then qpey 6= 0. So we just need to count
the subsets of X and Y such that there is an associated nonzero path pey and
qey, respectively.
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By definition of X , there are 2
∑

i≥1(mi−1) paths ending at y which consist of
arrows from X .

For each 2 ≤ i ≤ ℓ−1, let h = ni+
∑i−1

j=1(nj+mj). Then we have the n+2 paths
ey, fh, fh−1fh, . . ., fh−ni

. . . fh−1fh which change the vertices in the 0ni part
of y. Also, we have the n+1 paths ey, fn1 , fn1−1fn1 , . . ., f1 . . . fn1−1fn1 which
change the vertices in the 0n1 part of y. So we have (n1+1) ·

∏

2≤i≤ℓ−1(ni+2)
paths ending at y which consist of arrows from Y .

Proposition 3.24. Let s ≥ 3 and y = (0n1 ⋆m1 0n2 ⋆m2 . . . 0nℓ−1 ⋆mℓ−1 0nℓ).
Then the right projective Π!-module at the vertex y has dimension

dimF eyΠ
! = 2

∑
i≥1(mi−1) · (n1 + nℓ + 2) ·

∏

1≤i≤ℓ−1

(ni + 2).

Proof. We argue as in the proof of Proposition 3.22, but the existence of the
arrows f0 means we have a factor of (n1+2) instead of (n1+1). Note that the
case n1 = nℓ = 0 causes no problems because 2 ·2m1−1 ·2mℓ−1−1 = 2m1+mℓ−1−1.

Proposition 3.25. If s ≥ 3, the left projective Π!-module at vertex y and the
left projective Z-module at vertex y have the same dimension as vector spaces
over F.

Proof. First note that

dimF Zey = dimF Λ
!ey + dimF(Λ

!)∗ey = dimF Λ
!ey + dimF eyΛ

!,

so

dimF Zey = 2
∑

i≥1(mi−1) ·
∏

2≤i≤ℓ−1

(ni + 2) ·
(

(n1 + 1) + (nℓ + 1)
)

= 2
∑

i≥1(mi−1) · (n1 + nℓ + 2) ·
∏

2≤i≤ℓ−1

(ni + 2)

= dimF Π
!ey.

As a corollary, we obtain:

Proof of Theorem 3.1. If s = 1 then Λ = F, so clearly Zd
1 = Zd+1(F) ∼=

F[x]/(x2) with x in degree d+ 1.
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If s = 2 then Λd
2 is isomorphic to F ~Ad+1/ rad

2
F ~Ad+1. As ~Ad+1 is bipartite,

STriv(Λ) ∼= Triv(Λ), which is known to be the Nakayama algebra on the quiver
Q with relations given by paths of length d+ 2: see Lemma 4.15.

If s ≥ 3 then, by Proposition 3.4 and Theorem 2.9, there is a surjective algebra
map φ : Π!

։ Zd
s . By Proposition 3.25 it must be an isomorphism. So the

result follows by Corollary 3.9.

Remark 3.26. We finish this section by recording the dimensions of some small
type A higher zigzag algebras.

dimF Z
d
s s = 1 s = 2 s = 3 s = 4 s = 5

d = 1 2 6 10 14 18
d = 2 2 12 30 56 90
d = 3 2 20 70 168 330
d = 4 2 30 140 420 990

Of course these are all even numbers, because dimF Z
d
s = 2dimF Λ

d
s . From

the table, it appears that the dimension of the type A d-representation finite
algebra Λd

s is given by the binomial coefficient
(

2s+d−2
d

)

. We will not need this,
so do not attempt to prove it here.

4 Higher type A group actions on derived categories

The classical type A zigzag algebras Z1
s , i.e., the 2-zigzag algebras Z2(F ~As)

of path algebras of linearly oriented type A quivers, control classical (type A)
braid group actions on derived categories via spherical twists [ST01, RZ03,
HK01, Gra15]. In this section we describe the corresponding theory for the
higher type A zigzag algebras.

4.1 Endomorphism algebras of projectives

The classical type A zigzag algebras have a very nice self-similarity property:
the endomorphism algebra of the direct sum of indecomposable projective mod-
ules associated to adjacent vertices is a smaller type A zigzag algebra. We want
to show that an analogous property holds in the higher setting.

First we consider the d-representation finite algebras Λd
s . We fix d ≥ 1 and

s ≥ 2.

Lemma 4.1. Let Λ = Λd
s and 0 ≤ i ≤ d. Let e =

∑

ex be the sum of the
idempotents associated to all vertices x with xi = 0. Then Λ/ΛeΛ ∼= Λd

s−1.
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Proof. Write Λd
s = FQd

s/I
d
s , H = FQd

s, and J = HeH + Ids . Then HeH and Ids
are both subideals of J , which is an ideal of H . So, by the third isomorphism
theorem, we have

Λ

ΛeΛ
=

(

H

Ids

)

/

(

J

Ids

)

∼=
H

J
∼=

(

H

HeH

)

/

(

J

HeH

)

.

We have an isomorphism ϕ : H/HeH → FQd
s−1 which sends ex +HeH , with

xi ≥ 1, to ex−(0,...,0,1,0,...,0). Then ϕ(J/HeH) = Ids−1, and so Λ/ΛeΛ ∼= Λd
s−1.

The following lemma will be useful.

Lemma 4.2 ([Gra15, Lemma 4.5.1]). Let Λ be a quadratic algebra and let e =
e2 ∈ Λ. Then Λ/Λ(1 − e)Λ is also quadratic. Moreover, if the algebra eΛe is
generated in degree 1 and is quadratic then we have an isomorphism

eΛe ∼=

(

Λ!

Λ!(1− e)Λ!

)!

of graded algebras.

To apply Lemma 4.2, we will use the following result.

Lemma 4.3. Let Λ = TensS(V )/(R) be an algebra with R ∩ S = 0 and let e be
any idempotent. Suppose that eΛ(1− e)Λe = 0. Then

eΛe ∼= TenseSe(eV e)/(R ∩ eV eV e).

In particular, if Λ is generated in degree 1 and quadratic, then so is eΛe.

Proof. Write T = TensS(V ), so Λ = T/TRT . The proof is explained by the
following diagram:

eT (1− e)Te

ww♦ ♦ ♦ ♦ ♦ ♦

��

0

&&▼▼
▼▼

▼▼
▼▼

▼▼

eTRTe //

��✤
✤
✤ eT e //

��

eΛe

K // TenseSe(eV e) //❴❴❴ eΛe

First note that as Λ is a quotient of T , eΛe is a quotient of eT e with kernel
eTRTe. We have a surjective map eT e ։ TenseSe(eV e) of algebras induced
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by V ։ eV e, and the kernel of this map is eT (1−e)Te, so the kernel of eT e։
TenseSe(eV e) factors through eTRTe. So the map eT e։ eΛe factors through
the map eT e ։ TenseSe(eV e). Let K be the kernel of TenseSe(eV e) ։ eΛe.
Then, by the Five Lemma, the map eTRTe → K induced by V ։ eV e is
surjective. So K is the ideal in TenseSe(eV e) generated by (R ∩ eV eV e).

Proposition 4.4. Fix d, s ≥ 1 and let A = Zd
s . Let 1 ≤ n ≤ s and 0 ≤ m ≤ d.

Let P be the direct sum of the indecomposable projective A-modules Aey with
ym ≥ n. Then E = EndA(P )

op ∼= Zd
s−n.

Proof. There is an obvious automorphism of A which acts on vertices by

(y0, y1, . . . , yd) 7→ (yd, y0, . . . , yd−1)

(this will appear again in Section 4.6). Using this, we only need to prove the
statement for m = 0. We can also assume n = 1 and the other cases will follow
by induction.

Let e =
∑

ym≥1 ey, so P = Ae and E = eAe. As the quivers of A and (Λd
s)

!

have the same vertex set, we can also consider e to be an element of (Λd
s)

!. By
Lemma 2.4, we only need to show that e(Λd

s)
!e ∼= (Λd

s−1)
!.

We have (1− e)(Λd
s)

!e = 0 so, by Lemma 4.3, e(Λd
s)

!e is generated in degree 1
and is quadratic. Thus by Lemma 4.2 we have

e(Λd
s)

!e ∼=

(

Λd
s

Λd
s(1 − e)Λd

s

)!

.

As 1− e =
∑

ym=0 ey, Lemma 4.1 tells us that Λd
s/Λ

d
s(1 − e)Λd

s
∼= Λd

s−1, which
finishes the proof.

We can apply the proposition repeatedly with different choices of m. In the
extreme case we get the following:

Corollary 4.5. Let P be an indecomposable projective A-module. Then
EndA(P ) ∼= F[x]/(x2) with x in degree d+ 1.

4.2 Spherical twists, periodic twists, and the lifting theorem

Let A be an algebra. Following Seidel and Thomas [ST01], we say that an
A-module M is n-spherical if

⊕

i≥0 Ext
i
A(M,M) ∼= F[x]/(x2), with x con-

centrated in ExtnA(M,M), and M is a Calabi-Yau object, so the composi-
tion ExtjA(M,N) × Extn−j

A (N,M) → ExtnA(M,M) is nondegenerate for all
0 ≤ j ≤ n.
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If M = P is a projective module then ExtiA(P,−) = 0 for i 6= 0, so we just
require EndA(P ) ∼= F[x]/(x2) and the Calabi-Yau condition. If moreover A
is a symmetric algebra, then we have a functorial isomorphism HomA(P,−) ∼=
HomA(−, P )∗, so the Calabi-Yau condition is automatic. As P is projective, we
can write P = Ae for some idempotent e ∈ A. Suppose e = ei is the idempotent
associated to some vertex i in the quiver of A. Let Xi denote the cone of the
map of A-A bimodules m : Aei ⊗F eiA → A defined by the multiplication
m(aei ⊗ eib) = ab. Then the spherical twist Fi : Db(A) → Db(A) is defined
as Xi ⊗A −. Note that, in this situation, we have an isomorphism of functors
eiA ⊗A − ∼= HomA(Pi,−) and the multiplication map m corresponds to the

evaluation map P ⊗F HomA(P,−)
ev
→ −.

Periodic twists were introduced in [Gra12] as a generalization of the spherical
twists for projective modules over symmetric algebras described above. They
were later used to study actions of longest elements in braid groups, using a
lifting theorem, in [Gra15]. The construction given there is as follows. Suppose
that A is a symmetric algebra and P is a projective A-module with endomor-
phism algebra E = EndA(P )

op. If E is a twisted periodic algebra, i.e., we have

a short exact sequence 0 → Eσ[n− 1] → Y
f
→ E → 0 of E-E-bimodules where

σ ∈ Aut(E) and Y is a bounded complex of projective bimodules, then let X
denote the cone of the composite map

P ⊗E Y ⊗E HomA(P,A)
1⊗f⊗1
→ P ⊗E HomA(P,A)

ev
→ A.

Then the periodic twist is ΨP,f = X ⊗A − : Db(A -mod)
∼
→ Db(A -mod). If

E ∼= F[x]/(x2), then Y = E⊗FE and X is just the cone of P⊗EHomA(P,A)
ev
→

A, so we recover examples of spherical twists.

In fact, this construction gives equivalences in a greater generality than that
stated in [Gra12]. Let A be any finite-dimensional F-algebra and let P be a
projective A-module. We have the Nakayama functor ν : A -add → A∗ -add
which sends projectives to injectives, and HomA(P,−) is naturally dual to
HomA(−, ν(P )). If ν(P ) ∼= P , so P is a Calabi-Yau object, then we can con-
struct periodic twists, which are autoequivalences, just as before. The assump-
tion ν(P ) = P ensures that {P} ∪P⊥ is still a spanning class for Db(A -mod),
so [Gra12, Lemma 3.14] still holds, and the only change necessary is to use the
functor (−)∨ = HomA(−, A) instead of (−)∗ = HomF(−,F) in part (iii) of the
proof of [Gra12, Theorem 3.9].

Example 4.6. Let Q be the quiver

2
β

��❃
❃❃

❃❃
❃❃

❃

1

α

@@��������
3

γ
oo
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and let A = FQ/(αβ, γα). The algebra A is certainly not symmetric: its global
dimension is 3.

Let Pi = Aei. Then ν(P1) ∼= P2 and ν(P2) ∼= P1, but ν(P3) is not projective.
Let P = P1 ⊕P2, so ν(P ) ∼= P . Then E = EndA(P )

op ∼= Π1
2: it is the quotient

of the 2-cycle quiver by all paths of length at least 2. This is twisted periodic
of period 1, with algebra automorphism interchanging the two vertices of the
quiver of E.

Note that EndA(Pi)
op is 1-dimensional for i = 1, 2, 3, so none of the projectives

are spherical. But the periodic twist, which is given by tensoring with the
bimodule complex

Ae1 ⊗F e1A⊕Ae2 ⊗F e2A
(m,m)
→ A

is indeed an autoequivalence. In fact, this autoequivalence is an example of
a spherical functor [Rou04, AL17] over a base category of modules over the
algebra F× F.

Example 4.7. Given any algebra automorphism σ : A
∼
→ A, the twisted regular

left module σA is isomorphic to the untwisted regular module A via the map
a 7→ σ−1(a). Therefore, if σ fixes the vertices of the quiver of A then σA ⊗A

Aei ∼= Aei.

In particular, if A is a higher zigzag algebra then A is Frobenius with Nakayama
automorphism which fixes the vertices. Thus we can construct periodic twists
for any projective module whose endomorphism algebra is twisted periodic.

The following result [Gra15, Theorem 3.3.6] is quite useful for proving relations
hold between periodic twists. We will use it in the special case of spherical
twists.

Theorem 4.8 (Lifting theorem). Let A be an F-algebra. Let P = P1⊕· · ·Pn be
a direct sum of spherical projective A-modules such that ν(P ) ∼= P and let Fi :
Db(A)

∼
→ Db(A) denote the associated spherical twists. Let E = EndA(P )

op

and let F ′
i : Db(E)

∼
→ Db(E) be the spherical twists associated to the corre-

sponding projective E-modules HomA(P, Pi). Then:

(i) if F ′
ir
· · ·F ′

i2
F ′
i1
∼= F ′

js
· · ·F ′

j2
F ′
j1

then Fir · · ·Fi2Fi1
∼= Fjs · · ·Fj2Fj1 ;

(ii) if F ′
ir
· · ·F ′

i2
F ′
i1

∼= Eσ[d] for some σ ∈ Aut(E) and d ∈ Z then
Fir · · ·Fi2Fi1

∼= ΨP , the periodic twist associated to P .

Note that the lifting theorem actually makes sense, and its proof carries though,
without knowing that periodic twists are autoequivalences. All that is used is
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that we have some module M , an endomorphism algebra E = EndA(M)op, a
perfect complex Y of E-E-bimdules, and a short exact sequence F [−1] →֒ Y ։

E which is used to construct the associated endofunctor of Db(A -mod).

We also note that the lifting theorem holds for graded modules over a graded
algebra A: all that is important in [Gra15, Corollary 2.4.1] is that our triangu-
lated category has a DG-enhancement.

4.3 Some higher analogues of braid groups

Let Q be a quiver and let n ≥ 1. We will define a group Gn(Q) using Q.

For each vertex v of Q, Gn(Q) has a generator sv. Suppose we have an oriented
n-cycle

v1 → v2 → · · · → vn−1 → vn → v1

in Q, where all the vertices v1, v2, . . . , vn are distinct. Now let 1 ≤ ℓ ≤ n and let
w1, w2, . . . , wℓ be any ordered subsequence of v1, v2, . . . , vn. Then we impose
the following relation:

sw1sw2 . . . swℓ
sw1 = sw2sw3 . . . swℓ

sw1sw2 .

Note that, as we can start our oriented cycle at any point, we also have the
relation:

sw2sw3 . . . swℓ
sw1sw2 = sw3sw4 . . . swℓ

sw1sw2sw3 .

Next, for any two vertices y and z which are not both vertices of a single
n-cycle, we impose the commutativity relation:

sysz = szsy.

Now let Q = Qd
s be the quiver of Zd

s , as in Theorem 3.1. Q0 denotes its set of
vertices {y = (y0, . . . , yd)}. We write Gd

s = Gd+1(Q
d
s). So, to summarize:

Definition 4.9. Let Q = Qd
s . Then

Gd
s = 〈sy , y ∈ Q0 | sw1sw2 . . . swℓ

sw1 = sw2sw3 . . . swℓ
sw1sw2 , susv = svsw〉

where w1, w2, . . . , wℓ is a cyclic subsequence of a (d+1)-cycle in Q, and u and
v do not belong to a common (d+ 1)-cycle in Q.

Example 4.10 (d = 1). The quiver Q is the usual doubled type A quiver. For
example, if s = 5, the quiver Q1

5 is:

40

f1
))
31

f0

ii

f1
))
22

f0

ii

f1
))
13

f0

ii

f1
))
04

f0

ii
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So our group G1
5 has five generators: s40, s31, s22, s31, and s04. As before, we

have written the vertex (y0, y1) as y0y1. We get a Reidemeister 3 relation for
each neighbouring pair of vertices in Q, and a commutativity relation for each
distant pair of vertices. For example,

s40s31s40 = s31s40s31 and s40s22 = s22s40.

Thus the group G1
5 is the usual Artin braid group of type A5, i.e., the usual

braid group Br6 on 6 strands. This clearly generalizes to s ≥ 1, so G1
s is the

usual braid group on s+ 1 strands, which is sometimes denoted Brs+1.

Example 4.11 (s = 2). The quiver Qd
2 is just an oriented (d+ 1)-cycle

100 . . .00 // 010 . . .00

��

000 . . .01

OO

. .
.oo

and the group Gd
2 is isomorphic to Brd+2: see [Ser93]. Each of the d + 1

generators of Gd
2 corresponds to a crossing of the 1st and kth strands in Brd+2,

for 2 ≤ k ≤ d+ 2.

For example, if d = 2 then the group G2
2 has 3 generators s100, s010, s001 and

relations

s100s010s100 = s010s100s010;

s010s001s010 = s001s010s001;

s001s100s001 = s100s001s100;

s100s010s001s100 = s010s001s100s010 = s001s100s010s001.

Example 4.12 (d = 2). The quiver Q is made of triangles. For example, for
s = 4, the quiver is:

030
f2

��❃
❃❃

❃❃

120

f1
??�����

f2

��❃
❃❃

❃❃
021

f0oo
f2

��❃
❃❃

❃❃

210

f1
??�����

f2

��❃
❃❃

❃❃
111

f0oo

f1
??�����

f2

��❃
❃❃

❃❃
012

f0oo
f2

��❃
❃❃

❃❃

300

f1
??�����

201
f0oo

f1
??�����

102
f0oo

f1
??�����

003
f0oo

So our group G2
4 has ten generators sy indexed by the vertices of Q.

There are two 3-cycles starting at the vertex 210: they are 210 → 120 → 111 →
210, from which we get the relation

s210s120s111s210 = s120s111s210s120,
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and 210 → 201 → 111 → 210, from which we get the relation

s210s201s111s210 = s201s111s210s201.

Choosing the subsequence 210, 120 from the first cycle, we get the relation

s210s120s210 = s120s210s120.

As 300 is only contained in the 3-cycle 300 → 210 → 201 → 300, the generator
s300 commutes with all generators sy with y 6= 201, 300.

In this way, we get a commutativity relation for each pair of vertices not con-
nected by an arrow in either direction, one Reidemeister 3 relation for each
arrow of Q, and two length 4 relations for each oriented 3-cycle in Q.

Remark 4.13. For s = 2 and s = 3, the group G2
s appeared in [GM17]. It

was shown there, using quiver mutation, that these groups are isomorphic to
classical braid groups: G2

2
∼= Br4 and G2

3
∼= Br7. However, for s ≥ 4, the quiver

Q2
s is not mutation equivalent to a type A quiver, so we do not know of any

isomorphism between a classical braid group and G2
s in these cases.

Example 4.14 (d = 3). The quivers Q3
s are more complicated. We give an

example with s = 3. The quiver is:

0200

��❃
❃❃

❃❃
❃

1100

@@������

��❃
❃❃

❃❃
❃ 0110

��❃
❃❃

❃❃
❃

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯

2000

@@������
1010

@@������

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯ 0020

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯ 0101

��❃
❃❃

❃❃
❃

ll❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨

1001

@@������

ll❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨
0011

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙

ll❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨

0002

kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

Our group G3
3 again has ten generators sy indexed by the vertices of Q.

Now we have four different types of relations. Consider the oriented 4-cycle

1100 → 0200 → 0110 → 0101 → 1100.

As this contains the vertices 1100 and 0110, the generators s1100 and s0110
do not commute, even though there is no arrow between them in the quiver.
However, s1100 does commute with s0002, as the only 4-cycle containing 0002
does not contain 1100.
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Next consider the length 2 subsequences of our 4-cycle. These include
1100, 0200 and 1100, 0110, giving relations

s1100s0200s1100 = s0200s1100s0200

and
s1100s0110s1100 = s0110s1100s0110.

Note that the first of these corresponds to an arrow in Q but the second does
not.

The length 3 subsequence 1100, 0200, 0101 of our 4-cycle gives the relation

s1100s0200s0101s1100 = s0200s0101s1100s0200.

Finally, the full length 4 subsequence gives the relation

s1100s0200s0110s0101s1100 = s0200s0110s0101s1100s0200.

4.4 Group actions on type A higher zigzag algebras

We want to show that Gd
s acts on the derived category of Zd

s by spherical twists.
We will do this by considering certain endomorphism algebras of Zd

s . Fix d ≥ 1
and s ≥ 2 and let A = Zd

s .

First we consider certain symmetric Nakayama algebras. For n ≥ 2, let Nn be
the path algebra over F of the cyclic quiver

1
α1 // 2

α2��

n

αn

OO

. .
.

αn−1

oo

modulo the two-sided ideal generated by all paths of length n+ 1. Note that,
for any choice of integers k1, . . . , kn, if we assign the degree ki to the arrow αi

then Nn becomes a graded algebra. If ki = 1 for all i then, by Theorem 3.1,
Nn

∼= Zn−1
2 as graded algebras.

Note that, in the ungraded case, Nn is Morita equivalent to Brauer tree algebras
of a star with n edges and no exceptional vertex.

Let ~An denote the linearly oriented type A quiver with arrows αi : i → i + 1
for 1 ≤ i < n. The following well-known lemma is useful. We include a proof
for completeness.
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Lemma 4.15. We have an algebra isomorphism Nn
∼= Triv(F ~An).

Proof. The identity bimodule for F ~An has 1-dimensional socle generated by
the longest path, so the quiver of Triv(F ~An) is obtained by adding an arrow

αn : n → 1 to ~An which corresponds to the element (α1 . . . αn−1)
∗. Using

the definition of the trivial extension, it is easy to see that the kernel of the
surjective map from the path algebra of this quiver to Triv(F ~An) is precisely
the ideal generated by all paths of length n+ 1.

The following self-similarity property will also be useful.

Lemma 4.16. Let M ⊆ {1, 2, . . . , n} be a subset of the vertices of the quiver of
Nn, and let m be the cardinality of M . Let e =

∑

i∈M ei. Then eNne ∼= Nm.

Proof. By Lemmas 2.4 and 4.15, we need to show that eF ~Ane ∼= F ~Am, which
is clear.

Now, as in Section 4.3, take any oriented d + 1-cycle z1 → z2 → · · · → zd →
zd+1 → z1 in Q. Consider the corresponding idempotent e = ez1 + ez2 + . . .+
ezd+1

in A, and let P = Ae be the corresponding projective.

Lemma 4.17. EndA(P )
op ∼= Nd+1.

Proof. By Lemmas 2.4 and 4.15, we need to show that e(Λd
s)

!e ∼= F ~Ad+1. It

is easy to see that Λd
s/(1 − e) ∼= F ~Ad+1/ rad

2
F ~Ad+1

∼= (F ~Ad+1)
!, so the result

follows by Lemma 4.2.

We will study the derived category of Nn-modules. The following technical
lemma will be useful.

Let A be an algebra,M be an A-module, and let DM denote the chain complex

· · · → 0 →M
id
→M → 0 → · · ·

Lemma 4.18. For any chain complex C and any map f : DM → C of chain
complexes, we have cone(f) ∼= DM [1]⊕C. Similarly, for any map g : C → DM ,
we have cone(g) ∼= DM ⊕ C[1].
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Proof. We have the following morphism cone(f) → DM [1] ⊕ C of chain com-
plexes:

· · · // 0 // M
f2

!!❈
❈❈

❈❈
❈❈

❈
− id //

��

M

��

f3

!!❈
❈❈

❈❈
❈❈

❈
//

f2

		

0 // · · ·

⊕ ⊕ ⊕ ⊕

· · · // C0

��

d0 // C1

��

d1 // C2

��

d2 // C3

��

// · · ·

· · · // 0 // M
− id // M // 0 // · · ·

⊕ ⊕ ⊕ ⊕

· · · // C0
d0 // C1

d1 // C2
d2 // C3

// · · ·

where all the unlabelled maps from a module to itself are identity maps. Its
inverse has the same components, except we negate the map M → C2:

· · · // 0 // M
− id //

��

M //

��
−f2

		

0 // · · ·

⊕ ⊕ ⊕ ⊕

· · · // C0

��

d0 // C1

��

d1 // C2

��

d2 // C3

��

// · · ·

· · · // 0 // M
f2

!!❈
❈❈

❈❈
❈❈

❈
− id // M

f3

!!❈
❈❈

❈❈
❈❈

❈
// 0 // · · ·

⊕ ⊕ ⊕ ⊕

· · · // C0
d0 // C1

d1 // C2
d2 // C3

// · · ·

The second statement is proved similarly.

We now return to studying Nn.

Each indecomposable projective k ~An-module has endomorphism algebra iso-
morphic to F. Thus, by Lemma 4.15, each indecomposable projective Nn-
module has endomorphism algebra isomorphic to F[x]/(x2). So, as Nn is a
symmetric algebra, each indecomposable projective Nn-module is spherical.
Thus we have a spherical twist associated to each vertex of its quiver, given
by tensoring with the complex Xi = cone(Aei ⊗F eiA

ev
→ A) of graded A-A-

bimodules. We will sometimes omit the tensor product overA, writingXi⊗AXj

as XiXj.

We now investigate relations between spherical twists for these algebras. Note
that, by [VZ17], the derived Picard groups for selfinjective Nakayama algebras
are known, but we will give direct proofs of the results we need using bimodule
complexes.
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Lemma 4.19. Let A = Nn. The product X1X2 · · ·Xn is homotopy equivalent,
as a complex of graded bimodules, to the following chain complex, where all
tensor products are over F:

Ae1 ⊗ e1A

m

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆

Ae1 ⊗ e1Ae2 ⊗ e2A

1⊗m
11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

−m⊗1

--❬❬❬❬❬❬❬
❬❬❬❬❬❬❬

❬❬❬❬
⊕

⊕ Ae2 ⊗ e2A

m

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖
❖❖❖

❖

Ae2 ⊗ e2Ae3 ⊗ e3A

1⊗m
11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

⊕

...
... A

Aen−2 ⊗ en−2Aen−1 ⊗ en−1A
−m⊗1

--❩❩❩❩❩❩❩
❩❩❩❩❩❩❩

⊕

⊕ Aen−1 ⊗ en−1A

m

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

Aen−1 ⊗ en−1Aen ⊗ enA

1⊗m 11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

−m⊗1

--❩❩❩❩❩❩❩
❩❩❩❩❩❩❩

❩❩
⊕

Aen ⊗ enA

m

>>⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦⑦

Proof. We argue by induction that X1X2 · · ·Xi has the above form, for 1 ≤
i ≤ n. The base case i = 1 is clear, so suppose that the statement is true for
1 ≤ i ≤ n− 1. Consider X1X2 · · ·Xi ⊗A (Aei+1 ⊗ ei+1A). This has a quotient
complex

· · · → Ae1⊗ e1Ae2⊗ e2Aei+1 ⊗ ei+1A
1⊗m⊗1
→ Ae1⊗ eiAei+1 ⊗ ei+1A→ 0 → · · ·

where the nonzero map is an isomorphism, so by Lemma 4.18 we can remove the
acyclic quotient complex. Repeating this argument, we see thatX1X2 · · ·Xi⊗A

Aei+1 ⊗F ei+1A is homotopy equivalent to

· · · → 0 → Aei ⊗ eiAei+1 ⊗ ei+1A
m⊗1
→ Aei+1 ⊗ ei+1A→ · · ·

Then taking the cone of the map X1X2 · · ·Xi ⊗A (Aei+1 ⊗ ei+1A) →
X1X2 · · ·Xi ⊗A A gives the result.

Remark 4.20. In the case where Nn is graded with all arrows of degree 1,
Lemma 4.19 also follows from Lemma 4.15 together with Proposition 4.28 be-
low.

Proposition 4.21. Let A = Nn. The product X1X2 · · ·XnX1 is homotopy
equivalent, as a complex of graded bimodules, to the following chain complex,
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where all tensor products are over F:

Ae1 ⊗ e1Ae2 ⊗ e2A
1⊗m //

−m⊗1

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲

Ae1 ⊗ e1A

m

""❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋

⊕ ⊕

Ae2 ⊗ e2Ae3 ⊗ e3A
1⊗m // Ae2 ⊗ e2A

m

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘

⊕ ⊕

...

−m⊗1

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲

... A

⊕ ⊕

Aen−1 ⊗ en−1Aen ⊗ enA
1⊗m //

−m⊗1

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲

Aen−1 ⊗ en−1A

m

66❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

⊕ ⊕

Aen ⊗ enAe1 ⊗ e1A
1⊗m //

−m⊗1

DD✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠
Aen ⊗ enA

m

<<①①①①①①①①①①①①①①①①①①①①①①①①①

Proof. Consider the chain complex X1X2 · · ·Xn ⊗A (Ae1 ⊗ e1A). It has a
subcomplex

· · · → 0 → Ae1 ⊗ 〈e1〉 ⊗ e1A
m⊗1
→ Ae1 ⊗ e1A→ · · ·

which we can remove by Lemma 4.18. The resulting complex has a quotient
complex

· · · → Ae1 ⊗ e1Ae2 ⊗ e2Ae1 ⊗ e1A
1⊗m⊗1
→ Ae1 ⊗ 〈x〉 ⊗ e1A→ 0 → · · ·

which we can again remove by Lemma 4.18. Then, removing all quotient
complexes of the form

· · · → Aei ⊗ eiAei+1 ⊗ ei+1Ae1 ⊗ e1A
1⊗m⊗1
→ Aei ⊗ eiAe1 ⊗ e1A→ 0 → · · ·

we are left with just

· · · → 0 → Aen ⊗ enAe1 ⊗ e1A
m⊗1
→ Aen ⊗ enA→ · · · .

Then taking the cone of the map X1X2 · · ·Xn ⊗A (Ae1 ⊗ e1A) →
X1X2 · · ·Xn ⊗A A gives the result.

Remark 4.22. As Nn = TensS(V )/(V n+1) is a truncated algebra, by [BK99,
Section 5], this is a truncated (projective bimodule) resolution [Gra12, Defini-
tion 3.1] of the identity bimodule. Therefore, by the lifting theorem (Theorem
4.8), tensoring with X1X2 · · ·XnX1 is naturally isomorphic to a periodic twist.
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Corollary 4.23. Let A = Nn. We have homotopy equivalences of complexes
of graded A-A-bimodules

X1X2 · · ·XnX1
∼= X2 · · ·XnX1X2

∼= · · · ∼= XnX1X2 · · ·Xn

and thus natural isomorphisms of functors

F1F2 · · ·FnF1
∼= F2 · · ·FnF1F2

∼= · · ·

∼= FnF1F2 · · ·Fn : Db(A -grmod)
∼
→ Db(A -grmod).

Proof. The ungraded statement is easy: we use the algebra automorphism
sending the vertex i to i+1 and sending the arrow αi to αi+1, where everything
is mod n. This interchanges the products of bimodule complexes, but leaves
the bimodule complex in Proposition 4.21 unaffected.

The proof of the graded statement is as follows. If we will write subscripts on
our complexes Xi modulo n, so Xn+1 := X1, then there is an analogous version
of Lemma 4.19 for the complexes Xk+1Xk+2 · · ·Xk+n, for any 0 ≤ k < n. The
proof is exactly the same; the notation is just more cumbersome. For example,
the product X2X3 · · ·X1 is homotopy equivalent to the following complex:

Ae2 ⊗ e2A

m

!!❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇❇
❇❇

❇

Ae2 ⊗ e2Ae3 ⊗ e3A

1⊗m
11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

−m⊗1

--❩❩❩❩❩❩❩
❩❩❩❩❩❩❩

❩❩❩
⊕

⊕ Ae3 ⊗ e3A

m

((PP
PPP

PPP
PPP

PPP
PPP

PP

Ae3 ⊗ e3Ae4 ⊗ e4A

1⊗m
11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

⊕

...
... A

Aen−1 ⊗ en−1Aen ⊗ enA
−m⊗1

--❩❩❩❩❩❩❩
❩❩❩❩❩❩❩

❩
⊕

⊕ Aen ⊗ enA

m

77♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

Aen ⊗ enAe1 ⊗ e1A

1⊗m
11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

−m⊗1

--❩❩❩❩❩❩❩
❩❩❩❩❩❩❩

❩❩❩
⊕

Ae1 ⊗ e1A

m

==⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤⑤

Using this, one imitates the proof of Proposition 4.21 to see that the com-
plex of graded bimodules Xk+1Xk+2 · · ·Xk+nXk+1 is always isomorphic to the
complex in the statement of Proposition 4.21, irrespective of the value of k.

We want to lift our calculations in Nn to Zd
s . We use the lifting theorem

(Theorem 4.8).
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Recall that the derived Picard group DPic(A) of an algebraA is the group of in-
vertible bimodule complexes under the derived tensor product. It is sometimes
denoted TrPic(A) (the triangulated Picard group).

Theorem 4.24. We have a group homomorphism

ψd
s : Gd

s → DPic(Zd
s )

which induces a group action

Gd
s → AutDb(Zd

s -mod)

sending sy to the spherical twist Fy associated to the projective module at the
vertex y.

Proof. Let Q denote the quiver of Zd
s . By Corollary 4.5, each indecomposable

projective Zd
s -module is spherical, so we certainly have an action of the free

group on generators sy, y ∈ Q0 by spherical twists. We need to check that the
two types of relations are satisfied.

First suppose that w0, w1, . . . , wℓ is an ordered subsequence of an oriented
d + 1-cycle z0 → z1 → z2 → · · · → zd → z0 in Q. Let P = Pw0 ⊕ Pw1 ⊕
· · · ⊕ Pwℓ

and E = EndA(P )
op. Then by Lemmas 4.15 and 4.16, E ∼= Nℓ.

By Corollary 4.23, the natural isomorphism of functors corresponding to the
relation sw0sw1 . . . swℓ

sw0 = sw1sw2 . . . swℓ
sw0sw1 holds for E, so by the lifting

theorem it holds for Zd
s .

Next suppose that y and z are vertices which do not belong to a single (d+1)-
cycle in Q. Then all paths from y to z or from z to y in Q involve at least
two arrows of the form fi, for some 0 ≤ i ≤ d. The same is true for the
subquiver of Q which generates (Λd

s)
!, so by Lemma 3.18 eyΛ

!ez = ezΛ
!ey = 0.

Then eyAez = eyΛ
!ez ⊕ ey(Λ

!)∗ez = eyΛ
!ez ⊕ (ezΛ

!ey)
∗ = 0, and similarly

ezAey = 0. So E = EndA(Py ⊕ Pz)
op ∼= F[x]/(x2) × F[x]/(x2). Thus the

relation F ′
yF

′
z
∼= F ′

zF
′
y holds for E and so by the lifting theorem FyFz

∼= FzFy

holds for Zd
s .

Remark 4.25. As the lifting theorem holds in the graded setting, and the re-
sults on Nn used in the above proof hold for any grading on that algebra, the
previous theorem also holds in the graded setting: we have a group homomor-
phism from Gd

s to the derived graded Picard group DZPic(Zd
s ) which induces

a group action Gd
s → AutDb(Zd

s -grmod).

4.5 Acyclic Koszul algebras

Suppose that Λ = TensS(V )/I is quadratic. Let Λ -grmod-Λ denote the cate-
gory of finitely generated graded Λ-Λ-bimodules and let lin(Λ -grproj-Λ) denote
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the category of linear complexes of graded projective Λ-Λ-bimodules: these are
chain complexes where the ith module is generated in degree i and the differ-
entials are homogeneous of degree 0. Note that both of these categories are
abelian.

There is a contravariant functor

QΛ : Λ! -grmod-Λ! → lin(Λ -grproj-Λ)

which sends M =
⊕

i∈Z
Mi ∈ Λ! -grmod-Λ! to the complex

· · · → Q(M)1
d
→ Q(M)0

d
→ Q(M)−1 → · · ·

with Q(M)i = Λ⊗S (Mi)
∗⊗SΛ {−i}, where we considerMi as an S-S-bimodule

concentrated in degree 0. The differential d is constructed using the duals
(Mi)

∗ → (Mi−1)
∗ ⊗S V and (Mi)

∗ → V ⊗S (Mi−1)
∗ of the left and right

actions of Λ! on M , together with the multiplication map for Λ.

Note that QΛ(Λ
!) is the bimodule Koszul complex for Λ, so Λ is Koszul precisely

when QΛ(Λ
!) is a projective bimodule resolution of Λ: see [BK99, Theorem 9.2]

or [BG96, Proposition A.2].

For more discussion on this functor, and its properties, see Section 4.4 and 4.5
of [Gra15].

Definition 4.26. We say that an algebra Λ is acyclic if there exists a complete
set {e1, e2, . . . , er} of primitive orthogonal idempotents of Λ such that:

• i < j implies ejΛei = 0, and

• for all 1 ≤ i ≤ r we have eiΛei = Fei.

Lemma 4.27. If Λ = TensS(V )/(R) is an acyclic quadratic algebra with order-
ing e1 < · · · < er then Λ! is acyclic with ordering er < · · · < e1.

Proof. As Λ is acyclic we have V =
⊕

i<j eiV ej, so V ∗ =
⊕

i<j ejV
∗ei, so

TensS(V
∗) is acyclic, so Λ! is acyclic.

We will need to use the reduced bar resolution. Let Γ = TensS(V )/I be
an algebra with I ⊂ Tens+S (V ), where Tens+S (V ) :=

⊕

i≥1 V
⊗Si. Then we

have an algebra map π : Γ ։ S. The kernel J is the image of Tens+S (V ) in
TensS(V ) ։ Γ, and is called the augmentation ideal. Then the reduced bar
resolution of Γ is the chain complex of projective Γ-Γ bimodules BΓ with ith
component

BiΓ = Γ⊗S J
⊗Si ⊗S Γ
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and differential
∑n

j=0(−1)j1⊗j ⊗S m ⊗S 1n−j−2 (see, for example, Section 4
of [Gi05]: this generalizes to a semisimple base ring without problem). Then
we have a map of chain complexes of Γ-Γ-bimodules BΓ ։ Γ which is a quasi-
isomorphism.

By Theorem 2.9, we have a map φ : Π! → Z(Λ). Taking its quadratic dual
gives a map Z(Λ)! → Π, and composing with the quotient map Π ։ Λ gives a
map of algebras Z(Λ)! → Λ. This map gives any Λ-Λ-bimodule the structure
of an Z(Λ)!-Z(Λ)!-bimodule.

Recall that Xi denotes the cone of the multiplication map of graded A-A bi-
modules Aei ⊗F eiA → A. The following result is a generalization of Lemma
4.7.1 in [Gra15].

Proposition 4.28. If Λ is a weakly acyclic Koszul algebra with ordering e1 <
· · · < er and A = Z(Λ) we have a homotopy equivalence of complexes of graded
A-A-bimodules:

Xr ⊗A · · · ⊗A X2 ⊗A X1
∼= cone(QA(Λ)

m
→ A)

where Λ is inflated to an A-A-bimodule.

Proof. The only property of A = Z(Λ) we will use is the fact that A is a twisted
trivial extension of Λ! by an automorphism which fixes the idempotents ei.

First note that both Xr⊗A · · ·⊗AX2⊗AX1 and cone(QA(Λ)
m
→ A) have degree

0 part A. So it is enough to prove that QA(Λ) is isomorphic to Y := cone(A→
Xr ⊗A · · · ⊗A X2 ⊗A X1)[−1].

Let Yn denote the degree n component of Y . So, after using the identifications
A⊗A − ∼= id and −⊗A A ∼= id, we have

Yn =
⊕

j0>ji>···>jn

Aej0 ⊗F ej0Aej1 ⊗F · · · ⊗F ejn−1Aejn ⊗F ejnA

with differential d : Yn → Yn−1 given by
∑n

i=0(−1)i id⊗i ⊗m⊗ idn−i.

As Λ, and thus Λ!, is acyclic, we have that for j > i,

ejAei = ejΛ
!ei ⊕ (eiΛ

!ej)
∗ = ejΛ

!ei.

Therefore,

Yn =
⊕

j0>ji>···>jn

Aej0 ⊗F ej0Λ
!ej1 ⊗F · · · ⊗F ejn−1Λ

!ejn ⊗F ejnA

and so

Yn = A⊗Λ!





⊕

j0>ji>···>jn

Λ!ej0 ⊗F ej0Λ
!ej1 ⊗F · · · ⊗F ejn−1Λ

!ejn ⊗F ejnΛ
!



⊗Λ! A.
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As Λ! is acyclic we can describe its augmentation ideal as follows:

J =
⊕

i<j

ejΛ
!ei

and so we have

J⊗Sn =
⊕

j0>ji>···>jn

ej0Λ
!ej1Λ

! · · ·Λ!ejn .

Therefore we have isomorphisms Yn ∼= A⊗Λ! BnΛ
!⊗Λ! A, and noticing that the

differentials agree gives us that

Y ∼= A⊗Λ! BΛ! ⊗Λ! A.

By the Koszulity of Λ! we know that QΛ!(Λ) is a projective bimodule resolution
of Λ!, so by the uniqueness of bimodule resolutions up to homotopy equivalence,
we have BΛ! ∼= QΛ!(Λ). Thus

Y ∼= A⊗Λ! QΛ!(Λ)⊗Λ! A.

Finally, the terms of QΛ!(Λ) are of the form Λ!⊗S (Λi)
∗⊗SΛ

! {−i} so the terms
of QA(Λ) are of the form

A⊗S (Λi)
∗ ⊗S A {−i} ∼= A⊗Λ! Λ! ⊗S (Λi)

∗ ⊗S Λ! ⊗Λ! A {−i} .

Thus
Y ∼= A⊗Λ! QΛ!(Λ)⊗Λ! A ∼= QA(Λ)

and we have our result.

4.6 A periodicity result

Almost Koszul duality was introduced by Brenner, Butler, and King [BBK02].
An algebra A = TensS(V )/I is Koszul if S has a linear projective resolution;
A is almost Koszul, or (p, q)-Koszul, if A is concentrated in degrees 0 to p and
there is a linear complex

· · · → 0 → P p → · · · → P 1 → P 0 → 0 → · · ·

of projective modules which resolves S up to an error given by the degree p+ q
part of P p. If A is a (p, q)-Koszul algebra and q ≥ 2 then A is quadratic, and if
we also have p ≥ 2 then A! is (q, p)-Koszul [BBK02, Propositions 3.7 and 3.11].

The theory was introduced in order to study bimodule resolutions of trivial
extensions of path algebras of bipartite ADE Dynkin quivers. These are pre-
cisely the classical zigzag algebras of the corresponding Dynkin graphs. The
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bimodule resolutions were deduced from resolutions for the classical ADE pre-
projective algebras, which are quadratic dual to the trivial extensions. The
preprojective algebra is almost Koszul with respect to its total grading, which
is constructed by summing over the length grading on the path algebra and
the tensor grading on the preprojective algebra.

This theory was extended to the higher setting in [GI19, Section 4]. It was
shown that if Λ is a Koszul d-representation finite algebra then its preprojective
algebra Π is twisted periodic of period d+2 and is almost Koszul with respect
to the total grading: if Π is concentrated in degrees 0 to p, then Π is (p, d +
1)-Koszul. We are interested in preprojective algebras of higher type A d-
representation finite algebras Λd

s, where we have the following:

Theorem 4.29 ([GI19, Proposition 5.13] or [GL16, Theorem 5]). Πd
s is (s −

1, d+ 1)-Koszul.

This generalizes the result that the classical preprojective algebras of simply
laced Dynkin types are (h − 2, 2)-Koszul, where h is the Coxeter number (so,
in type A1

s, h = s+ 1).

The fact that Π is almost Koszul tells us a lot about its minimal bimodule
resolution. Theorem 3.15 of [BBK02] says that if A is a (p, q)-Koszul ring with
p, q ≥ 2 then the first q + 1 terms of the bimodule resolution of A are given
by the classical Koszul complex, which is Q(A!) in the notation of Section 4.5.
Therefore we have a short exact sequence of complexes of A-A-bimodules

0 → Σ[q] →֒ Q(A!) ։ A→ 0

where Σ is just defined to be the kernel of the last term of the Koszul complex.
The theorem also tells us that Σ is generated by its degree p+ q component.

If ϕ is an automorphism of a quadratic algebra TensS(V )/I, we have an auto-
morphism ϕ! of the quadratic dual defined by using the same degree 0 compo-
nent, ϕ!

0 = ϕ0 : S
∼
→ S, and taking the transpose of the degree 1 component:

ϕ!
1 = ϕ∗

1 : V ∗ ∼
→ V ∗. Note that we do not invert ϕ∗

1, so our formulae will
be different to those in [Gra15]. To translate, use the bimodule isomorphisms
Mϕ

∼= Mϕ−1 .

The theory of almost Koszul duality was developed further by Yu, who proved
the following result.

Theorem 4.30 ([Yu12, Theorems 3.3 and 3.4]). If A is a quadratic Frobenius
(p, q)-Koszul algebra with p, q ≥ 2 and A! is also Frobenius then we have an
isomorphism of graded A-A-bimodules

Σ ∼= Aξq+1β!α

Documenta Mathematica 24 (2019) 749–814



Higher Zigzag Algebras 797

where α and β are the Nakayama automorphisms of A and A!, respectively,
and the algebra automorphism ξ acts on odd degree elements by −1.

Higher preprojective algebras of d-representation finite algebras are self-
injective [IO13, Gra], and the type A higher preprojective algebras Πd

s are
also basic, and therefore Frobenius. The Nakayama automorphism ω of Πd

s

was calculated in [HI11, Theorem 3.5]. It acts on vertices by

ω(x1, x2, . . . , xd+1) = (xd+1, x1, . . . , xd)

and sends the arrow from ex to ex′ to the unique arrow from eω(x) to eω(x′).

In our setting, we let A = Zd
s , which (d+1, s− 1)-Koszul and is symmetric by

Proposition 3.11 so α = idA. So A
! = Πd

s , and β = ω.

Definition 4.31. Let τ = τds = (α−1β!ξq+1)−1 = (ω!ξs)−1, so τ is the auto-
morphism which acts on vertices as

τ : (y0, y1, . . . , yd) 7→ (yd, y0, . . . , yd−1)

and sends each arrow from y to y′ to (−1)s times the unique arrow from τ(y)
to τ(y′).

Therefore we have the following periodicity result:

Theorem 4.32. Let A = Zd
s and τ = τds . Then A is twisted periodic: there is

a short exact sequence

Aτ {−d− s} [s− 1] →֒ Q(Πd
s) ։ A

of chain complexes of A-A-bimodules.

Proof. If s ≥ 3 then this follows from the facts above: the grading shift comes
from p + q = s − 1 + d + 1. If s = 1 this is easy, and if s = 2 one can check
directly that Aτ is in the kernel of the leftmost differential of the chain complex
in Proposition 4.19. Then counting dimensions tells us that this inclusion is in
fact an equality.

4.7 Actions of longest elements

Let Q+ denote the quiver of Λ!, as in Section 3.3. Note that Q+ has the same
vertices as the quiver Q of Zd

s . Also note that Q+ is acyclic, i.e., there is a
total ordering of the vertices I of Q+ such that ejΛ

!ei = 0 whenever i < j, and
eiΛ

!ei = Fei for all i ∈ I.

Documenta Mathematica 24 (2019) 749–814



798 Joseph Grant

Fix an ordering as above. Let y1, y2, . . . , yn be a list of all vertices in Q+

ordered from smallest to largest. Then we define

cds = sy1sy2 · · · syn ∈ Gd
s .

Note that the commutativity relations of Gd
s ensure that this element does

not depend on the particular ordering we have chosen. We think of cds as a
Coxeter element of Gd

s : if d = 1 then c1s corresponds to a positive lift to Gs+1

of a particular choice of the Coxeter element of the symmetric group on s+ 1
letters.

For each s ≥ 1, we have injective group homomorphisms

ιℓ : Gd
s →֒ Gd

s+1, sy 7→ sy+(1,0,...,0)

and
ιr : Gd

s →֒ Gd
s+1, sy 7→ sy+(0,...,0,1).

Note that these injections commute: ιℓιr = ιrιℓ : Gd
s →֒ Gd

s+2.

Fix d ≥ 1 and write cs = cds. For any element g ∈ Gd
s , we write gℓ and gr for

the image of g in ιℓ and ιr. Then we define w1 = c1 and

ws = wr
s−1cs.

Note that, as Q+ has
(

d+s−1
d

)

vertices, cds is a product of
(

d+s−1
d

)

generators.

Thus ws is a product of
(

d+s
d+1

)

generators.

We think of ws as a “longest element” of Gd
s: if d = 1 then ws corresponds to a

positive lift to G1
s = Brs+1 of a particular choice of the longest element of the

symmetric group on s+ 1 letters. We remark that in general we do not know
of a length function for which this element is longest, even if we quotient Gd

s

by the relations s2y = 1.

Example 4.33. Let d = 2. Then the Coxeter elements for s ≤ 3 are

c1 = s000; c2 = s100s010s001; c3 = s200s110s020s101s011s002.

The longest element for s = 3 is

w3 = crr1 c
r
2c3 = s002s101s011s002s200s110s020s101s011s002.

For the d = 1 case, the longest element of the braid group acts as a composition
of a shift and a twist by an algebra automorphism induced by the Nakayama
automorphism of the corresponding preprojective algebra [RZ03, Gra15]. We
want to show that, for all d ≥ 1, the group action of Theorem 4.24 sends the
longest element wd

s to the functor −τ [s], where τ is as in Definition 4.31.
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Our proof closely follows Section 4 of [Gra15]

Let Iℓ be the two-sided ideal of Πd
s generated by idempotents ex, where x1 = 0.

Then we have a surjective algebra morphism

πℓ : Πd
s ։ Πd

s/I
ℓ ∼
→ Πd

s−1

where the final map sends the vertex x to x−(1, 0, . . . , 0). Similarly, we have an
ideal Ir generated by idempotents at vertices x with xd+1 = 0, and a surjective
algebra morphism

πr : Πd
s ։ Πd

s/I
r ∼
→ Πd

s−1

where the final map sends the vertex x to x − (0, . . . , 0, 1). Using these maps,
we can turn Πd

s−1-modules into Πd
s-modules.

We will need the following lemma.

Lemma 4.34. There is a short exact sequence of graded Πd
s-Π

d
s-bimodules

0 → (Πd
s−1)πr πℓ {−1} →֒ Πd

s ։ Λd
s → 0.

Proof. Let Π = Πd
s and let I be the two-sided ideal in Π generated by all arrows

αd+1,x. Then we certainly have a short exact sequence of bimodules

0 → I →֒ Πd
s ։ Πd

s/I → 0

so we just need to show that I ∼= (Πd
s−1)πr πℓ {−1} and Πd

s/I
∼= Λ. The second

of these isomorphisms is clear, as we make Λ into a Π-Π-bimodule precisely by
quotienting by arrows αd+1,x.

We first construct a function from the primitive idempotents of Πd
s−1 to I as

follows:

ex 7→ ex+(0,...,0,1)αd+1ex+(1,0,...,0).

As these idempotents generate the bimodule (Πd
s−1)πr πℓ {−1}, we can extend

our function to a map (Πd
s−1)πr πℓ {−1} → I by imposing the bimodule map

formula: this is well-defined because ex and exexex have the same image by
the definition of πℓ and πr. The grading shift is clear.

We now show this map has an inverse. We have I =
∑

xd+1
Παd+1,xΠ, and

by Lemma 3.17 we have I =
∑

xd+1
Παd+1,x. Define a function which sends

αd+1,x to ex−(0,...,0,1) ∈ (Πd
s−1)πr and extend this to a map of left Π-modules.

Then one checks that composing our maps in either order gives the identity
map.

Now we can prove our theorem.
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Theorem 4.35. For A = Zd
s , we have an isomorphism

ψd
s (w

d
s )

∼= Aτs [s] {−d− s}

of graded bimodule complexes.

Proof. We fix d ≥ 1 throughout, and so drop d from our notation. We proceed
by induction on s ≥ 1. Let A = Zd

s .

For our base case s = 1 we have A = k[x]/(x2) with x in degree d + 1, and
w1 = sy where y is the unique vertex of our quiver. Then, by direct calculation,
we have a quasi-isomorphism Xy

∼= Aσ {−d− 1} [1], where σ(x) = −x.

Now we do the inductive step. Let Ws = ψs(ws) and Cs = ψs(cs). We also
extend our superscript ℓ and r notation from above, writingW r

s−1 = ψs(w
r
s−1).

We want to show that Ws
∼= Aτs {−s− d} [s], i.e.,

W r
s−1 ⊗A Cs

∼= Aτs {−d− s} [s].

The inverse ofW r
s−1 in DZPic(A) is (W r

s−1)
∨, so asA is symmetric of Gorenstein

parameter d+ 1 (Propositions 2.7 and 3.11), by Proposition 2.8 the inverse of
W r

s−1 in DZPic(A) is (W r
s−1)

∗ {−d− 1}. So it suffices to prove

Cs
∼= (W r

s−1)
∗
τs
{−2d− s− 1} [s].

By definition of cs and by Proposition 4.28, we have

Cs
∼= cone(QA(Λs)

ev
→ A).

Let P be the direct sum of the indecomposable projective A-modules Aey
with yd ≥ 1: this is the vertices corresponding to the generators of Gd

s un-
der the injection ιr. Then we have E = EndA(P )

op ∼= Zd
s−1 by Propo-

sition 4.4. By our inductive hypothesis, we have an isomorphism Ws−1
∼=

Eτs−1 {−s− d+ 1} [s − 1] in Db(E -grmod-E). So by Theorem 4.32, we have

Ws−1
∼= cone(QE(Πs−1)

ev
→ E). Then, using the lifting theorem (Theorem 4.8),

we have
W r

s−1
∼= cone(P ⊗E QE(Πs−1)⊗E P

∨ ev
→ A)

in Db(A -grmod-A). Therefore, using that P∨ ∼= P ∗ {−d− 1}, and P ∗∗ ∼= P
as A is finite-dimensional,

(W r
s−1)

∗
τs

∼= cone(Aτs {d+ 1}
ev∗

→ P ⊗E QE(Πs−1)
∗ ⊗E P∨

τs)[−1].

By the results in Section 4.6, Πd
s is Frobenius with Nakayama automorphism

ωd
s and Gorenstein parameter s− 1, so

Π∗
s−1

∼= Πs−1ωs−1
{s− 2} .
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Therefore, as E has Gorenstein parameter d+ 1 (Proposition 2.7), we can use
[Gra15, Proposition 4.4.5] to get

QE(Πs−1)
∗ ∼= QE(Π

∗
s−1) {2d+ 2}

∼= QE(Πs−1ωs−1
{s− 2}) {2d+ 2}

∼= QE(Πs−1ωs−1
) {2d+ s} [2− s].

Also, by [Gra15, Proposition 4.5.2],

P ⊗E QE(Πs−1ωs−1
)⊗E P

∨ ∼= QA( (Πs−1ωs−1
)πr πr ).

Next we note that, for x = (x1, . . . , xd+1),

ωs−1 ◦ π
r(x) = ωs−1(x1, . . . , xd, xd+1 − 1) = (xd+1 − 1, x1, . . . , xd) = πℓ ◦ ωs(x)

and, as no coefficients are introduced on arrows, we have ωs−1 ◦ πr = πℓ ◦ ωs

in general.

So

P ⊗E Q(Πs−1ωs−1
)⊗E P

∨ ∼= Q((πrΠs−1πℓ)ωs
) ∼= Q(πrΠs−1πℓ)ωs

! .

Then, as the image of Q is a complex of projective bimodules, and ω!
s agrees

with τ−1
s on the vertices of the quiver,

P ⊗E Q(Πs−1ωs−1
)⊗E P

∨ ∼= τsQ(πrΠs−1πℓ).

So, in summary, we have

(W r
s−1)

∗
τs

∼= cone(Aτs {d+ 1}
m∗

→ Q(πrΠs−1πℓ) {2d+ s} [2− s])[−1]

and so
(Ws−1)

∗
τs
{−2d− s− 1} [s]

is isomorphic to

cone(Aτs {−d− s} [s− 1]
(−1)s−1m∗

−→ Q(πrΠs−1πℓ) {−1} [1]).

Using [Gra15, Proposition 4.4.5(i)], we have

Q( (Πs−1)πr πℓ {−1}) ∼= Q( (Πs−1)πr πℓ) {−1} [1]

so, applying the functor Q to the short exact sequence of Lemma 4.34, we
obtain the short exact sequence

0 → Q(Λs) →֒ Q(Πs) ։ Q( (Πs−1)πr πℓ) {−1} [1] → 0.
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We now construct a diagram with exact columns:

Q(Λs)
m //

��

A

Aτs {−d− s} [s− 1] // Q(Πs)
m //

��

A

Aτs {−d− s} [s− 1] // Q(πrΠs−1πℓ) {−1} [1]

As the degree 0 parts of Λs and Πs are the same, Q(Λs) and Q(Πs) have the
same degree 0 terms, so the top right square commutes. As in [Gra15, Section
4.7], the commutativity of the bottom left square follows from [Gra12, Lemma
4.3]. So we have a short exact sequence

0 → Cs →֒ U ։ (W r
s−1)

∗
τs
{−2d− s− 1} [s+ 1] → 0

where U is acyclic, by Theorem 4.32, so we have our isomorphism Cs
∼=

(W r
s−1)

∗
τs
{−2d− s− 1} [s]. Thus Ws

∼= Aτs {−s− d} [s] in Db(A -grmod-A).

5 Examples with equivariant sheaves and McKay quivers

Perhaps the most well-known occurrence of braid group actions in algebraic ge-
ometry comes from the McKay correspondence for finite subgroups of SL(C2):
this is explained in [ST01, Section 3.2], where the authors describe it as “prob-
ably the simplest example of a braid group action on a category in the present
paper”. Suppose G is a cyclic group of order n+1 which acts on complex affine
2-space A2 via a diagonal embedding in SL(C2). Let V1, . . . , Vn be the nontriv-
ial simple representations of G and let O0 denote the skyscraper sheaf at the
fixed point of A2. Then the objects Ei = O0 ⊗ Vi are coherent G-equivariant
sheaves on A2. They are spherical objects, and the associated spherical twists
satisfy the type An braid relations, so we have an action of the braid group
Brn+1 on the derived category of G-equivariant coherent sheaves Db

G(A
2). One

explanation for the existence of this action is the isomorphism

HomDb
G(A2)(

n
⊕

i=1

Ei,
n

⊕

i=1

Ei) ∼= Z1
n

between the derived endomorphism algebra of these objects and the type A
zigzag algebra.

Our aim in this section is to show that a similar phenomenon occurs in higher
dimensions: relations between spherical twists for the type A higher zigzag
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algebras show up when diagonal subgroups of the special linear group act on
Ad+1. Throughout this section, we work over the field F = C unless we specify
otherwise.

We warn the reader that both Lambda (Λ) and the exterior product (
∧

) will
be used, but hopefully it will be clear from the context which is which.

5.1 Equivariant sheaves, skew group algebras, and spherical ob-

jects

Let G be a finite group which acts on affine n-space Ad+1. We wish to consider
the derived category Db

G(A
d+1) = Db(CohG Ad+1) of G-equivariant coherent

sheaves on Ad+1. Let U be the vector space with basis the co-ordinate functions
on Ad+1. Then the ring of regular functions on Ad+1 is the symmetric algebra
Sym(U) of U : this is a commutative polynomial algebra in n generators. It is
well-known that the category CohG Ad+1 of G-equivariant sheaves on Ad+1 is
equivalent to the category Sym(U)#G -mod of finitely generated modules over
the skew group algebra: see, for example, [ABC09, Section 4.3.6]. Therefore
we have an equivalence of triangulated categories

Db
G(A

d+1) ∼= Db(Sym(U)#G -mod).

We therefore work with the skew group algebra, whose definition we now recall.

Let A be an F-algebra. Suppose G acts on the left of A by automorphisms.
Then the skew group algebra (or smash product) is the vector space A ⊗F FG
with multiplication

(a⊗ g)(b⊗ h) = a(gb)⊗ gh.

If the action of G on U factors through SL(U), then it is known that the algebra
Sym(U)#G is (d+ 1)-Calabi-Yau: see [Far05, Example 24].

Let Cn+1 denote a cyclic group of order n+ 1, and let g be a generator of Cn+1.
Let ωk denote a fixed kth root of unity. Then Cn+1 has simple representations
V0, V1, . . . , Vn, where g acts as ωi

n+1 on Vi. Now let G be a nontrivial finite
abelian group, so there exists a d ≥ 1 such that G ∼= Cn1+1×Cn2+1×· · ·×Cnd+1

is a product of finite cyclic groups of order ni +1. We choose a generator gj of
the cyclic subgroup 1×· · ·×1×Cnj+1×1×· · ·×1 ofG. As C(Gn×Gm) ∼= CGn⊗C

CGm, the group G has simple representations Vi1,i2,...,id = Vi1 ⊗Vi2 ⊗ · · ·⊗Vin
with ik ∈ Z/(nk + 1)Z, so gj acts as ω

ij
nj+1 on Vi1,i2,...,id .

We fix d ≥ 1, positive integers n1, n2, . . . , nd, and the finite abelian group
G = Cn1+1 × Cn2+1 × · · · × Cnd+1. Let U be a C-vector space with basis
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{x1, . . . , xd+1}. We define a faithful action of G on U by

gixj =











ωni+1xi if j = i;

xj if j 6= i and j 6= d+ 1;

ω−1
ni+1xd+1 if j = d+ 1.

By construction, this action factors through SL(U). As a representation,

U ∼= V1,0,...,0 ⊕ V0,1,0,...,0 ⊕ · · · ⊕ V0,...,0,1 ⊕ V−1,...,−1.

Let T be the 1-dimensional Sym(U)-module where U acts as 0. Write B =
Sym(U)#G. Then, if W is any simple G-module, the B-module T ⊗W is also
1-dimensional and thus simple. Following a construction of Auslander [Aus86],
its projective resolution is constructed using the Koszul complex for Sym(V ):

0 → Sym(U)⊗C

d+1
∧

U⊗CW → · · · → Sym(U)⊗CU⊗CW → Sym(U)⊗CW → 0.

The trivial G-module is only a summand of
∧k U for k = 0 and k = d + 1.

Thus the self-extension algebra of T ⊗W is exactly

∞
⊕

i=0

ExtB(T ⊗W,T ⊗W ) = C[x]/(x2)

with x in degree d+1. So, as we know that B is (d+1)-Calabi-Yau, we conclude
that T ⊗W is a (d+ 1)-spherical object [ST01].

We construct the spherical twist associated to T ⊗W in the following way. Let
PW denote the projective resolution of T ⊗W . Then we have an evaluation
map PW ⊗C HomB(PW , B) → B whose cone XW is a bounded chain complex
of B-B-bimodules which are projective on both sides. The spherical twist is
given by tensoring with XW . So for each simple representation W of G, we
have a derived autoequivalence

FW = XW ⊗B − : Db(B -mod)
∼
→ Db(B -mod).

5.2 Graded skew group algebras and McKay quivers

The algebra Sym(U) has a natural grading with U concentrated in degree 1. As
G acts by graded automorphisms, this extends to a grading onB = Sym(U)#G,
with CG in degree 0. We work in the category B -grmod of graded modules. If
M is a graded B-module, then we can of course forget the grading. This gives
a functor B -grmod → B -mod, which extends to a functor Db(B -grmod) →
Db(B -mod).
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With this grading, Sym(U) is a Koszul algebra. Therefore, by a result of
Martinez-Villa [MV01], B = Sym(U)#G is also a Koszul algebra, and its
Koszul dual is isomorphic to A = E(U)#G. Here, E(V ) = Sym(V )! =
⊕

k≥0

∧k U∗ denotes the exterior algebra on U and we use the natural action

of G on E(U), which is given by gf(u) = f(g−1u) for f ∈ U∗ and u ∈ U .

Let G be any finite group with a complete set of simple C-representations
V0, V1, . . . , Vk up to isomorphism. Let U be any finite-dimensional representa-
tion of G. Then the McKay quiver of (G,U) has a vertices {0, 1, . . . , k} and,

if Vi ⊗C U ∼=
⊕k

j=0 V
⊕mj

j , it has mj arrows i→ j. Here, the tensor product of
representations has the diagonal action of G, as usual. Auslander showed that
if U is 2-dimensional then the skew group algebra Sym(U)#G is a quotient of
the path algebra of the McKay quiver of (G, V ) by an admissible ideal [Aus86,
Section 1], though his proof generalizes immediately to any finite-dimensional
representation. This is also written down explicitly in [BSW10, Section 3].

Bocklandt, Schedler, and Wemyss showed that, if G is abelian, then the admis-
sible ideal is generated by commutativity relations for the quiver: if we have
arrows a : 1 → 2, b : 2 → 4, c : 1 → 3, and d : 3 → 4, then ab = cd [BSW10,
Corollary 4.1]. So in the abelian case we do not need to assume the action of
G factors through the special linear group to describe the quiver and relations
of the skew group algebra. We will use this result for two related classes of
representations.

As in the previous section, let G = Cn1+1 × Cn2+1 × · · · × Cnd+1.

First, let

V = V1,0,...,0 ⊕ V0,1,0,...,0 ⊕ · · · ⊕ V0,...,0,1

so V is isomorphic to the subrepresentation of U with basis {x1, . . . , xd}. Then
the McKay quiver QG,V has vertex set {(i1, i2, . . . , id) | 0 ≤ ik ≤ nk}. At each
vertex there are d outgoing arrows of the form

(i1, i2, . . . , id) → (i1+1, i2, . . . , id), . . . , (i1, i2, . . . , id) → (i1, i2, . . . , id+1)

with co-ordinates taken mod ni + 1. The relations are the commutativity
relations.

Example 5.1. Let d = 2 and let n1 = n2 = 2. Then the McKay quiver QG,V
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is:

02 //

((

12 //

((

22kk

((

01 //

``❆❆❆❆❆❆❆❆❆
11 //

``❆❆❆❆❆❆❆❆❆
21kk

``❆❆❆❆❆❆❆❆❆

00 //

``❆❆❆❆❆❆❆❆❆
10 //

``❆❆❆❆❆❆❆❆❆
20kk

``❆❆❆❆❆❆❆❆❆

and Sym(V )#G is isomorphic to the path algebra of this quiver with relations
imposed which ensure that each square is commutative.

Next, let V = V ⊕(
∧d

V )∗. We see that (
∧d

V )∗ ∼= V−1,...,−1, so V is isomorphic
to the representation U from the previous section.

Example 5.2. Again, let d = 2 and let n1 = n2 = 2. Then the McKay quiver
QG,V is:

02 //

((

//

12 //

((

��

22kk

((

��
01 //

``❆❆❆❆❆❆❆❆❆

//

11 //

``❆❆❆❆❆❆❆❆❆

��

21kk

``❆❆❆❆❆❆❆❆❆

��
00 //

``❆❆❆❆❆❆❆❆❆

FF

10 //

``❆❆❆❆❆❆❆❆❆

ee

20kk

``❆❆❆❆❆❆❆❆❆

ee

and Sym(V )#G is isomorphic to the path algebra of this quiver modulo the
commutativity relations. It is easier to see the arrows more clearly on the
following diagram of Q, where the vertices with the same labels should be
identified:

00 10

}}⑤⑤
⑤⑤
⑤⑤

20

}}⑤⑤
⑤⑤
⑤⑤

00

}}⑤⑤
⑤⑤
⑤⑤

02 //

aa❇❇❇❇❇❇
12 //

aa❇❇❇❇❇❇

}}⑤⑤
⑤⑤
⑤⑤

22

aa❇❇❇❇❇❇

}}⑤⑤
⑤⑤
⑤⑤

// 02

}}⑤⑤
⑤⑤
⑤⑤

01 //

aa❇❇❇❇❇❇
11 //

aa❇❇❇❇❇❇

}}⑤⑤
⑤⑤
⑤⑤

21

}}⑤⑤
⑤⑤
⑤⑤

aa❇❇❇❇❇❇
// 01

}}⑤⑤
⑤⑤
⑤⑤

00 //

aa❇❇❇❇❇❇
10 //

aa❇❇❇❇❇❇
20

aa❇❇❇❇❇❇
// 00
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Note that, using Auslander’s resolutions of simple modules,

gldim(Sym(V )#G) = gldimSym(V ) = dimC V = d

and
gldim(Sym(V )#G) = gldimSym(V ) = dimC V = d+ 1.

Remark 5.3. As was noted in [HIO14, Section 5], Sym(V )#G is isomorphic to
the (d+1)-preprojective algebra of a d-representation infinite algebra obtained
by taking a bounding periodic cut of an infinite quiver constructed from a type
A root system. The algebra Sym(V )#G is not finite-dimensional, so cannot
be (d + 1)-representation infinite, but it can be constructed by taking a non-
bounding periodic cut of the infinite quiver. And it plays the same role in
the following sense: one can check, using the result on presentations of higher
preprojective algebras in [GI19, Section 3], that Sym(V )#G is the (d + 1)-
preprojective algebra of Sym(V )#G.

5.3 Zigzag algebras of skew group algebras

We want to show that the skew group algebra Sym(V )#G is Koszul dual to a
higher zigzag algebra. By [MV01] we know that the Koszul dual of the skew
group algebra is E(V )#G, and by Example 2.13 we know that the exterior
algebra is a higher zigzag algebra. So if we can show some commutativity
between taking higher zigzag algebras and taking skew group algebras, we will
be able to show that E(V )#G is a higher zigzag algebra.

Suppose that G acts on the left of a finite-dimensional algebra Λ by automor-
phisms. Then we can define a right action of G on Λ by ag = g−1a, for a ∈ Λ
and g ∈ G. This gives a left action of g on Λ∗, by (gf)(a) = f(ag) = f(g−1a)
for f ∈ Λ∗. So we can extend the action of G to Triv(Λ). If G acts by graded
automorphisms, then we can extend the action to STriv(Λ).

The following result is true over any field F. It was first proved in [Zhe14,
Lemma 2.2], but we include a full proof for the convenience of the reader as
the original is in Chinese.

Proposition 5.4. Let G be a finite group which acts on the left of a finite-
dimensional F-algebra Γ. Then Triv(Γ)#G ∼= Triv(Γ#G). Moreover, if Γ is
graded and G acts by graded automorphisms, then STriv(Γ)#G ∼= STriv(Γ#G).
In particular, if Λ is a Koszul algebra with finite global dimension d then

Zd+1(Λ)#G ∼= Zd+1(Λ#G).

Proof. As G is a finite group, its group algebra is symmetric, with isomorphism
ϕ : FG → (FG)∗ given by ϕ(g) = (g−1)∗ with respect to the natural basis of
group elements.
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We have the following chain of vector space isomorphisms:

Triv(Γ)#G = (Γ⊕ Γ∗)⊗ FG
∼
→ (Γ⊗ FG)⊕ (Γ∗ ⊗ FG)
∼
→ (Γ⊗ FG)⊕ (Γ∗ ⊗ (FG)∗)
∼
→ (Γ⊗ FG)⊕ (FG⊗ Γ)∗

∼
→ (Γ⊗ FG)⊕ (Γ⊗ FG)∗ = Triv(Γ#G)

We have to be careful with the isomorphism between Γ ⊗ FG and FG ⊗ Γ, as
G should act on Γ. Our isomorphism is as follows:

Triv(Γ)#G
∼
→ Triv(Γ#G)

(a, f)⊗ g 7→ (a⊗ g, fg ⊗ ϕ(g))

When checking that our vector space isomorphism respects multiplication, the
most difficult thing is understanding the left and right action of Γ#G on
(Γ#G)∗, which we now describe. Let a, c ∈ Γ, f ∈ Γ∗, and g, h, i ∈ G. Then

((a⊗ g)(f ⊗ ϕ(h))) (c⊗ i) = (f ⊗ ϕ(h)) ((c⊗ i)(a⊗ g))

= (f ⊗ ϕ(h)) (c(ia)⊗ ig)

= f(c(ia))⊗ ϕ(h)(ig)

which is nonzero if and only if ig = h−1, i.e., i = h−1g−1. So

((a⊗ g)(f ⊗ ϕ(h))) (c⊗ i) = f(c(h−1g−1a))⊗ gϕ(h)(i)

=
(

(h−1g−1a)f ⊗ ϕ(gh)
)

(c⊗ i).

Therefore, our left action is given by

(a⊗ g)(f ⊗ ϕ(h)) = (h−1g−1a)f ⊗ ϕ(gh).

Similarly, the right action is given by

(f ⊗ ϕ(h))(a⊗ g) = (fa)g ⊗ ϕ(gh).

Armed with these formulae, the verification that our map respects multiplica-
tion is straightforward.

If Γ and the G-action are graded, the isomorphism STriv(Γ)#G
∼
→ STriv(Γ#G)

is exactly the same: the minus sign appears in the same place in both multi-
plications, and the signs in the right action of Γ#G on (Γ#G)∗ cancel out, so
the verification is no more difficult.

If we let G be abelian and let Λ = Sym(V )#G be the graded symmetric
algebra of V , then the degree 1 part of Zd+1(Λ) is just V . Therefore we have
the following:
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Corollary 5.5. Let V = V ⊕(
∧d

V )∗ denote the representation of the abelian
group G described above. Then the graded skew group algebra Sym(V )#G is
Koszul dual to the higher zigzag algebra Zd+1(Sym(V )#G).

5.4 Examples of group actions

Let Λ = Sym(V )#G, A = Zd+1(Λ), and B = Sym(V )#G. By the discussion in
Section 5.2, we know the quiver of Λ, which is labelled by d-tuples of integers
(i1, i2, . . . , id) with 0 ≤ ik ≤ nk. Note that B has the same vertex set as
Λ and also, as a twisted trivial extension of Λ, so does A. Given a vertex
v = (i1, i2, . . . , id), let ev = ei1,i2,...,id denote the corresponding idempotent in
any of Λ, A, or B.

Recall the notation Λd
s and Zd

s from Section 3.2.

Lemma 5.6. Suppose that min{n1, n2, . . . , nd} ≥ s. Let e =
∑

ev be the sum
over all vertices v = (i1, i2, . . . , id) with 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ s. Then

Λ/Λ(1− e)Λ ∼= Λd
s and eAe ∼= Zd

s

as graded algebras. Here, the idempotent ei1,i2,...,id of Λ is sent to the idempo-
tent ey of Λd

s, where y = (s− 1, 0, . . . , 0) + (i1 − 1)ε1 + . . .+ (id − 1)εd.

Proof. The first result follows from the quivers and relations described in Sec-
tion 5.2 and in Theorem 3.3. For the second result, we argue as in Section 4.1.
By Lemma 2.4, we need to show that eΛ!e ∼= (Λd

s)
!. By taking the quadratic

dual of the presentation for Λ in Section 5.2, we get that eΛ!(1 − e)Λ!e = 0,
so we can apply Lemma 4.3 to get that eΛ!e is generated in degree 1 and
quadratic, then use Lemma 4.2 to finish.

If v = (i1, i2, . . . , id) is any vertex with 1 ≤ i1 ≤ i2 ≤ · · · ≤ id ≤ s then
EndA(Aev)

op ∼= evAev = eveAeev ∼= Z1
d , by Corollary 4.5. So we have spherical

twists at each of these vertices.

Using Lemma 5.6, Theorem 4.24 and Remark 4.25, and Theorem 4.8, we obtain:

Proposition 5.7. If min{n1, n2, . . . , nd} ≥ s then there is an action of the
group Gd

s on Db(A -grmod) by spherical twists.

Now we recall that, as A is finite-dimensional, we have an equivalence

K : Db(A -grmod)
∼
→ Db(B -grmod)

which, up to isomorphism, sends simple A-modules to projective B-modules
and sends injective A-modules to simple B-modules [BGS96, Theorem 2.12.6].
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As A is a Frobenius algebra, its projective modules and injective modules coin-
cide. So the indecomposable projectiveA-module Pi1,i2,...,id is sent to a minimal
projective resolution of a simple B-modules which, after forgetting the grading,
is isomorphic to the module U ⊗C Vi1,i2,...,id of Section 5.1. Thus our spherical
objects match up under the Koszul duality functor.

Theorem 5.8. If min{n1, n2, . . . , nd} ≥ s then we have a group action

Gd
s → AutDb

G(Sym(V )#G -mod)

sending the generators sy of Gd
s to spherical twists at the simple B-modules

T ⊗W , where W is a simple G-module.

Proof. We use the following commutative diagram, where the vertical arrows
are the corresponding spherical twists:

Db(A -grmod)
K //

Fy

��

Db(B -grmod)

FW

��
Db(A -grmod)

K // Db(B -grmod)

so our relations for Db(A -grmod) carry over to Db(B -grmod). Note that K ◦
Fy ◦ K−1 ∼= XW ⊗B −, so this gives us isomorphisms of tensor products of
the complexes XW of graded B-B-bimodules. Applying the forgetful functor,
we get isomorphisms of ungraded complexes of B-B-bimodules, and so the
relations hold in Db(B -mod).

Thus we get an action of Gd
s on Db

G(C
d+1).
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