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1 Introduction

For a split reductive algebraic group G over a number field F , let A(G) denote
the set of cuspidal automorphic representations of G(AF ). Each element of
A(G) factorizes as a restricted tensor product π = ⊗vπv of irreducible repre-
sentations of the local groups G(Fv). If v is a nonarchimedean place of F , then
the unramified irreducible representations of G(Fv) are parametrized (via the
Satake isomorphism) by the semisimple conjugacy classes in the complex dual

group Ĝ = Ĝ(C). When πv is unramified, we let

tπv ∈ T̂ /W
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denote the associated Satake parameter. Here, T̂ = T̂ (C) is a split maximal

torus of Ĝ and W = NG(T )/T is the Weyl group of G.

It is of great interest to understand the distribution of the points tπv , possibly
with weights, as π and/or v vary. If π is fixed and v varies, then according
to the general Sato-Tate conjecture, the points are expected to be equidis-
tributed relative to some naturally defined measure µST with support in the
maximal compact subgroup of T̂ . The support condition reflects the presumed
predominance of representations satisfying the Ramanujan conjecture.

Many people have considered the analogous “vertical” question of fixing v and
varying π in a family, starting with Birch’s 1968 investigation of the problem for
elliptic curves over Z/pZ, [Bi]. A table summarizing the numerous subsequent
vertical equidistribution results for GL(2) families is given in [KR]. Extending
work of Serre and others on the case of classical holomorphic cusp forms, Shin
proved generally that if G admits discrete series over R, then when the tπv are
unweighted, the relevant measure (for many natural families) is the Plancherel
measure at v, [Shin]. Shin and Templier also obtained a quantitative version of
this result with error bounds, [ST]. Applications include: (i) a diagonal hybrid
where the size of the family and the place v both tend to infinity (the relevant
measure being Sato-Tate rather than Plancherel), and (ii) a determination of
the distribution of the low-lying zeroes of certain families of automorphic L-
functions for G. Matz and Templier have recently treated the case of GL(n),
[MT]. We refer to Sarnak, Shin and Templier [SST] for a precise formulation
of various Sato-Tate problems and related topics.

When the Satake parameters at a fixed place v are given the harmonic weights
that arise naturally in the Petersson/Kuznetsov trace formula, it has been
shown for many GL(2) and GL(3) families that they exhibit equidistribution
relative to the Sato-Tate measure itself rather than the Plancherel measure
([Br], [Li], [KL3], [BrM], [BBR], [Z]). In this paper we consider the distribution
of harmonically weighted Satake parameters at a fixed place p for the group
G = GSp(2n). For simplicity we work over Q and assume trivial central
character. We consider cuspidal representations π of level N for which π∞
is a fixed holomorphic discrete series representation of weight k > 2n. We
weight each Satake parameter tπp by the globally defined value

wπ =
∑

ϕ∈Ek(π)

|cσ(ϕ)|2
‖ϕ‖2 , (1.1)

where Ek(π) is a finite orthogonal set of cuspidal Hecke eigenforms giving rise
to π, and cσ(ϕ) denotes a Fourier coefficient, defined in (6.2). Weighted in
this way, we prove that the parameters become equidistributed relative to a
certain probability measure µ as N →∞ (see Theorem 8.3). In contrast to the
GL(2) case, the measure depends on p. Subject to a natural hypothesis on the
growth of the geometric side of the trace formula (which holds at least when
n = 2), in Theorem 8.4 we relate µ to the Sato-Tate measure. In particular, the
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hypothesis implies that µ is supported on the tempered spectrum, and tends
to the Sato-Tate measure as p→∞.

A very similar equidistribution problem has been studied already in the case
n = 2 by Kowalski, Saha, and Tsimerman ([KST2]), who fix the level N = 1
and let the archimedean parameter k → ∞. Using a formula of Sugano, they
were able to form a connection between Satake parameters and Fourier coeffi-
cients, the latter of which they control with the intricate Petersson formula for
GSp(4) due to Kitaoka [Ki]. Their weights involve certain linear combinations
of Fourier coefficients and depend on the choice of a class group character. In a
special case they coincide with the ones given in (1.1) with σ = In. Their meth-
ods have been adapted to treat the case of higher level N →∞ by M.Dickson
[D]. Kim, Wakatsuki and Yamauchi have also investigated the equidistribution
problem for GSp(4), via Arthur’s invariant trace formula [KWY]. In all of these
works, a quantitative equidistribution statement is proven, with application to
the distribution of low-lying zeros of L-functions.

The key technical tools used in [KST2], namely, Kitaoka’s formula and Sugano’s
formula, are not yet available when n > 2. Nevertheless, we can apply two
simple ideas to treat the higher rank case. The first is to use a Hecke operator
as a test function in the relative trace formula to derive a Petersson formula for
GSp(2n) whose spectral side involves two Fourier coefficients (as usual) with
the additional inclusion of a Satake parameter. In this way we can access the
Satake parameters directly without the use of Sugano’s formula. In order to
project onto the holomorphic cusp forms of weight k, we use a certain matrix
coefficient of the weight k holomorphic discrete series πk of GSp(2n,R) as
the archimedean component of our test function. This function is computed
explicitly in the Appendix (Theorem A.9).

The second idea is to take the limit of the kernel function before integrating.
This allows us to avoid computing or estimating all but a few of the orbital
integrals that show up on the geometric side. The result is an asymptotic
Petersson formula with only a finite sum on the geometric side (Theorem 6.3).†

In the simplest case where the Hecke operator is trivial, it is given as follows
(see §7.3, where notation is explained in detail).

Theorem 1.1. Let Bk(N) be an orthogonal basis of the space of degree n Siegel
cusp forms of weight k > 2n with 2|nk, and level group Γ0(N) = {

(
A B
C D

)
∈

Sp2n(Z)|C ≡ O mod N}. For symmetric positive-definite half-integral matri-
ces σ1, σ2,

lim
N→∞

1

ψ(N)

∑

F∈Bk(N)

aσ1(F )aσ2(F )

‖F‖2 = δk(σ1, σ2)cnkσ1 , (1.2)

†After this paper was written, we became aware of [KST1], in which a similar idea is
applied to classical Siegel Poincaré series to obtain an analog of Theorem 1.1 for k → ∞.
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where aσj (F ) are Fourier coefficients, ψ(N) = [Γ0(1) : Γ0(N)],

cnkσ1 =
(detσ1)

k−(n+1)/2

πn(n−1)/4(4π)n(n+1)/2−nk
∏n
j=1 Γ(k− n+j

2 )
,

and

δk(σ1, σ2) =
∑

A∈GLn(Z)/{±In}
tAσ1A=σ2

det(A)k. (1.3)

Remarks:

(1) When k is even, δk(σ1, σ2) = δ0(σ1, σ2) = #{A ∈ GLn(Z)/{±In}| tAσ1A =
σ2}. When k is odd, it may happen that δk(σ1, σ2) = 0 even when δ0(σ1, σ2) > 0
(for example, if σ1, σ2 are diagonal). In such cases, the spectral side also
vanishes, since aσj (F ) = 0 by [Kl, p. 45]. We note that δk(σ1, σ2) does not
always vanish when k is odd.

(2) When n = 2 and k is even, the above result is shown in [CKM], [D]. (In
[CKM, Theorem 1.1, Remark 1.4], it is incorrectly asserted that (1.2) holds
when n = 2 and k is odd, but with δ0(σ1, σ2) in place of δk(σ1, σ2). This is
incompatible with the observations in our first remark.)

(3) cnkσ1 is the constant of proportionality between aσ1(F ) and a suitably
normalized inner product of F with the σ1-Poincaré series of weight k ([M],
[Kl, p. 90], [D, Lemma 6.2]).

(4) Although we have highlighted the above special case, the main focus of
this paper is on local Satake parameters, which are absent in the above theorem.

Petersson/Kuznetsov trace formulas play a fundamental role in the study of
automorphic L-functions. There are well-established methods for GL(2), and
to a lesser extent GL(3), but applications to other groups are rare. For a
recent example, Blomer has used Kitaoka’s formula to compute first and second
moments of spinor L-functions of GSp(4) of full level and large weight, with
power-saving error term, [Bl]. Waibel subsequently treated the case of large
prime level, [W]. This requires a close analysis of the generalized Kloosterman
sums appearing in the off-diagonal terms. It would be of great interest to extend
Kitaoka’s formula from degree 2 to degree n. The machinery we develop here
can form the starting point for such a generalization. Although at present there
is no quantification of the error term for finite N if n > 2 (the n = 2 case is
treated in Appendix B), the asymptotic formula is sufficient for obtaining the
equidistribution result.

A natural question is whether the same method can be used to obtain the
weighted equidistribution of Satake parameters in the case of k→∞. Although
we certainly expect such a result to hold, it does not seem possible to show it
by the above method without a more detailed consideration of the off-diagonal
terms. This is discussed in a remark after the proof of Proposition 6.1.
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We close this introduction with some additional comments comparing our re-
sults and methods to those in [KST2]. If F is a Siegel cusp form of degree n = 2
which is unramified at p, it determines an unramified local representation πp
of GSp(4). Sugano’s formula expresses the value of a Laurent polynomial U l,mp
evaluated at the Satake parameters of πp as a value of the spherical function
in the Bessel model for πp. The latter can in turn be expressed as a certain
linear combination of Fourier coefficients of F , with coefficients involving a
character of a class group. This is the source of the weights in the equidistri-
bution result of [KST2]. This method has the advantage that the U l,mp were
shown by Furusawa and Shalika to be orthonormal with respect to a certain
explicit local measure ηp on the space Xp (defined near (8.1) below) containing
the Satake parameters. The latter fact leads directly to the weighted equidis-
tribution result, since a refinement of Kitaoka’s formula has the main term
δ(l,m) =

〈
U l,mp , U0,0

p

〉
=
∫
Xp
U l,mp dηp. By contrast, the measure µ in our The-

orem 8.3 is not given explicitly, because we have not found an orthonormal class
of functions for which the main term of the trace formula has such a simple
form.

Acknowledgements: We would like to thank the referee, whose detailed
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Kam Lau, Nigel Pitt, Abhishek Saha, and Nicolas Templier for helpful discus-
sions. We are also grateful for financial support from the University of Maine
Office of the Vice President for Research and from the Simons Foundation.
The first author would also like to thank the Department of Mathematics at
the Chinese University of Hong Kong for its hospitality.
This work was partially supported by a grant from the Simons Foundation
(#317659 to the first author).

2 The Satake transform

Here we recall some basic background about the Satake transform. References
include [Gr] and [Sha]. For notation in this section, let G be a split group
defined over Qp, and let T be a (split) maximal torus of G defined over Qp

and contained in a Borel subgroup B = TN with N unipotent. Let X∗(T ) =
Hom(T,GL1) denote the lattice of algebraic characters of T , and X∗(T ) =
Hom(GL1, T ) the cocharacter lattice.

For each prime p, let Kp = G(Zp), which is a maximal compact subgroup of
Gp = G(Qp). Let H(Gp,Kp) be the Hecke algebra of locally constant com-
pactly supported complex-valued bi-Kp-invariant functions on Gp. The Satake
transform of an element f ∈ H(Gp,Kp) is the function on T (Zp)\T (Qp) given
by

Sf(t) = δ(t)1/2
∫

N(Qp)

f(tn)dn. (2.1)
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Here δ(t) =
∣∣detAd(t)|Lie(Np)

∣∣ is the modular function for Bp.
‡ By way of

motivation for (2.1), suppose

πχ = Ind
Gp

Bp
(χδ1/2)

is an unramified representation of Gp, with nonzero Kp-invariant vector φ.
Then for f ∈ H(Gp,Kp), φ is an eigenfunction of the operator πχ(f), with
eigenvalue

ωχ(f) =

∫

T (Qp)

Sf(t)χ(t)dt. (2.2)

The Satake transform is a C-algebra isomorphism

S : H(Gp,Kp) −→ H(T (Qp), T (Zp))
W , (2.3)

where the latter denotes the elements which are fixed by the Weyl group W .
Let T̂ = Hom(X∗(T ),C) be the dual group of T . It satisfies

X∗(T ) ∼= X∗(T̂ ), X∗(T ) ∼= X∗(T̂ ).

Using the algebra isomorphisms

H(T (Qp), T (Zp))
W ∼= C[X∗(T )]

W ∼= C[X∗(T̂ )]W , (2.4)

we may view Sf as a function on any of these three spaces. We explain this
in some more detail. The first isomorphism in (2.4) arises by identifying an
element of T (Qp)/T (Zp) with a tuple of integer powers of p, which is of the
form λ(p) for a unique λ ∈ X∗(T ). Thus if we write

Sf =
∑

t∈T (Qp)/T (Zp)

atCt ∈ H(T (Qp), T (Zp)) (2.5)

where at ∈ C is nonzero for at most finitely many t, and Ct is the characteristic
function of the coset t, we can make the identification

Sf =
∑

λ∈X∗(T )

aλλ ∈ C[X∗(T )],

where aλ = aλ(p) from (2.5). Fix an isomorphism X∗(T ) ∼= X∗(T̂ ) and denote

it by λ 7→ λ̂. Then we may in turn identify Sf with the function

Sf =
∑

λ̂∈X∗(T̂ )

aλ̂λ̂ ∈ C[X∗(T̂ )], (2.6)

where aλ̂ = aλ.

‡Later on we will take G = GSp(2n) and B the Borel subgroup determined by the set
of positive roots chosen in §3.2. Then δ(t)1/2 = p−〈λ,ρ〉 if t = λ(p) for λ ∈ X∗(T ) and ρ is
given by (3.10).
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An unramified character χ of T (Qp) as in (2.2) can be identified with the

Satake parameter tχ ∈ T̂ (C) determined by

χ(λ(p)) = λ̂(tχ) for all λ ∈ X∗(T ) (2.7)

(cf. [Ca, p. 134, Eq. (3)]). With this notation, using (2.5) and (2.6), and
taking meas(T (Zp)) = 1, (2.2) becomes

ωχ(f) =
∑

λ

aλχ(λ(p)) =
∑

λ̂

aλ̂λ̂(tχ) = Sf(tχ). (2.8)

When π = πχ is given, we write tπ = tχ for the Satake parameter of π.

Proposition 2.1. Viewing Sf as a function on T̂ as in (2.6), we have

Sf = Sf∗,

where f∗(g) = f(g−1).

Proof. For t ∈ T̂ , we need to show that Sf(t) = Sf∗(t). As in (2.7), there

exists a unique unramified character χ of T (Qp) such that χ(λ(p)) = λ̂(t) for
all λ ∈ X∗(T ). Recalling that πχ(f)

∗ = πχ(f
∗), by (2.8) we have, for the

spherical unit vector φ ∈ πχ,

Sf(t) = ωχ(f) = 〈πχ(f)φ, φ〉 = 〈φ, πχ(f∗)φ〉 = ωχ(f∗) = Sf∗(t).

3 The symplectic group

3.1 Definition

Henceforth, we will denote by G the algebraic group GSp2n defined as follows.
For any commutative ring R, let M2n(R) be the set of 2n× 2n matrices with
entries in R. Letting O denote the zero-matrix of suitable dimension, and In
denote the n× n identity matrix, define

J =

(
O In
−In O

)
,

Sp2n(R) = {M ∈M2n(R)| tMJM = J},

GSp2n(R) = {M ∈M2n(R)| tMJM = r(M)J and r(M) is a unit in R}.
Thus a matrix M =

(
A B
C D

)
belongs to GSp2n(R) if and only if there exists a

similitude r(M) ∈ R∗ such that

tAC = tCA, tBD = tDB, tAD − tCB = r(M)In. (3.1)
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Taking inverses in tMJM = r(M)J shows that tM =
( tA tC

tB tD

)
∈ GSp2n(R),

and the above relations applied to this matrix give

A tB = B tA, C tD = D tC, A tD −B tC = r(M)In. (3.2)

Note that Sp2n(R) = {M ∈ GSp2n(R)| r(M) = 1}. Define

G = PGSp2n = GSp2n /Z,

where Z is the center (the set of scalar matrices).

Let Sn(R) be the set of n × n symmetric matrices over R. The Siegel upper
half space is the following set of complex symmetric matrices

Hn = {X + iY ∈ Sn(C)|X,Y ∈ Sn(R), Y > 0}, (3.3)

where Y > 0 means that Y is positive definite. It is a complex vector space of

dimension n(n+1)
2 . Letting

GSp2n(R)+ = {M ∈ GSp2n(R)| r(M) > 0},
there is a transitive action of GSp2n(R)+ on Hn given by

M · Z = (AZ+B)(CZ+D)−1 (Z ∈ Hn).
The stabilizer in Sp2n(R) of the element iIn ∈ Hn is the compact subgroup

K∞ =

{(
A B
−B A

)
∈ Sp2n(R)|A+ iB ∈ U(n)

}
, (3.4)

where U(n) is the group of n× n complex unitary matrices X (so X−1 = tX).
Define the Siegel parabolic subgroup

P (R) =

{(
A B
O D

)
∈ GSp2n(R)

}

=

{(
A

r tA−1

)(
I S

I

)
|A ∈ GLn(R), r ∈ R∗, S ∈ Sn(R)

}
(3.5)

(where O denotes the n × n zero matrix), and set P = P/Z. We recall the
decomposition

GSp2n(R) = P (R)K∞.

For a prime p, let
Kp = PGSp2n(Zp).

Haar measure on PGSp2n(Qp) will be normalized so that meas(Kp) = 1. For
an integer N > 0, set

K0(N)p =

{(
A B
C D

)
∈ Kp|C ≡ O mod NZp

}
, (3.6)

K0(N) =
∏

p<∞

K0(N)p.
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3.2 Root Data

We review some standard material to fix notation and terminology that will be
used in the sequel. Let F be an algebraically closed field. In this subsection
we write G for G(F ), and similarly for the other algebraic groups considered.
In G, the diagonal subgroup

T = {t = diag(a1, . . . , an,
r
a1
, . . . , r

an
)| ra1 · · ·an 6= 0} (3.7)

is a split maximal torus. Given χ ∈ X∗(T ), there exist k0, . . . , kn ∈ Z such
that

χ(t) = rk0ak11 · · · aknn (3.8)

for t as in (3.7). By associating χ with the tuple (k0, . . . , kn), we obtain a
natural identification X∗(T ) ∼= Zn+1. Let ej ∈ Zn+1 be the (j+1)-th standard
basis vector (j = 0, . . . , n). The set Φ of roots (for the action of T on Lie(G))
consists of

±(ej − ei) (1 ≤ i < j ≤ n),
±(e0 − ej − ei) (1 ≤ i ≤ j ≤ n). (3.9)

We take the set Φ+ of positive roots to consist of those which have the +
coefficient. The corresponding set of simple roots is

∆ = {ej+1 − ej |j = 1, . . . , n− 1} ∪ {e0 − 2en}.

Let

ρ =
1

2

∑

χ∈Φ+

χ =
1

2




∑

1≤i<j≤n

(ej − ei) +
∑

1≤i≤j≤n

(e0 − ei − ej)


 .

Explicitly,

ρ =
n(n+ 1)

4
e0 − ne1 − (n− 1)e2 − · · · − en. (3.10)

The cocharacter lattice is X∗(T ) = Hom(F ∗, T ). We identify a tuple λ =
(ℓ0, ℓ1, . . . , ℓn) ∈ Zn+1 with the cocharacter

λ(a) = diag(aℓ1 , . . . , aℓn , aℓ0−ℓ1 , . . . , aℓ0−ℓn). (3.11)

In this way, X∗(T ) ∼= Zn+1.

The composition of a character with a cocharacter yields a rational homomor-
phism F ∗ → F ∗, which is necessarily of the form x 7→ xm for m ∈ Z. Thus, we
have a natural pairing X∗(T )×X∗(T )→ Z given by

χ(λ(x)) = x〈χ,λ〉. (3.12)

In terms of the coordinates given above, this works out to

〈(k0, . . . , kn), (ℓ0, . . . , ℓn)〉 = k0ℓ0 + · · ·+ knℓn. (3.13)
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Our main group of interest is G = PGSp2n. Letting T = T/Z be the maximal
torus, we can identify its character lattice X∗(T) with the subset of X∗(T )
consisting of all characters which are trivial on Z. Thus,

X∗(T) ∼= {(k0, k1, . . . , kn) ∈ Zn+1| 2k0 + k1 + · · ·+ kn = 0}. (3.14)

Note that the roots (3.9) belong to this set, so we may identify Φ with the set
of roots in X∗(T). The cocharacter lattice X∗(T) can be viewed as the quotient
of X∗(T ) by the subgroup of cocharacters taking values in Z. In terms of the
coordinates above (3.11), we have

X∗(T) ∼= Zn+1/(2, 1, . . . , 1)Z. (3.15)

The pairing (3.12) makes sense for (χ, λ) ∈ X∗(T) × X∗(T), and the formula
(3.13) is independent of the choice of coset representative for λ.

The Weyl group of G, namely

W = NG(T)/ZG(T) = NG(T )/ZG(T ),

acts on T (and also T) by conjugation. It is isomorphic to Sn⋉ (Z/2Z)n, with
the following generators:

t 7→ diag(aσ(1), . . . , aσ(n),
r

aσ(1)
, . . . , r

aσ(n)
)

for σ in the symmetric group Sn, and, for 1 ≤ i ≤ n,

t 7→ diag(a1, . . . , ai−1,
r
ai
, ai+1, . . . , an,

r
a1
, . . . , r

ai−1
, ai,

r
ai+1

, . . . , r
an

).

Likewise, W acts faithfully on X∗(T) by

wχ(t) = χ(wtw−1).

The corresponding generators are

(k0, k1, . . . , kn) 7→ (k0, kσ−1(1), . . . , kσ−1(n)) (3.16)

and

(k0, k1, . . . , kn) 7→ (k0 + ki, , k1, . . . , ki−1,−ki, ki+1, . . . , kn). (3.17)

Using the pairing (3.12), an action of W on X∗(T) is defined implicitly via

〈wχ,wλ〉 = 〈χ, λ〉 .

In terms of the ℓ-coordinates in (3.11), the action onX∗(T ) of the Weyl element
in (3.16) is given by

(ℓ0, ℓ1, . . . , ℓn) 7→ (ℓ0, ℓσ−1(1), . . . , ℓσ−1(n)),
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and the one corresponding to (3.17) is given by

(ℓ0, ℓ1, . . . , ℓn) 7→ (ℓ0, ℓ1, . . . , ℓi−1, ℓ0 − ℓi, ℓi+1, . . . , ℓn).

Suppose χ, χ′ ∈ X∗(T) correspond respectively to (ki), (k
′
i) ∈ Zn+1 as in (3.14).

Then the pairing

(χ, χ′) =

n∑

k=1

kik
′
i

is W -invariant. (This is easily verified using the relation in (3.14).) For a root
α ∈ Φ, there is a unique coroot α∨ ∈ X∗(T) satisfying

〈χ, α∨〉 = 2(χ, α)

(α, α)

for all χ ∈ X∗(T). We let Φ∨ ⊆ X∗(T) denote the set of coroots. These are
given explicitly as follows. Let fi ∈ X∗(T) denote the dual of ei; in (3.15), it is
the coset attached to the i-th standard basis vector of Zn+1. Then (ej−ei)∨ =
fj − fi for i 6= j, (e0 − ej − ei)∨ = −fj − fi for i 6= j, and (e0 − 2ej)

∨ = −fj.
The above gives a description of the root datum (X∗(T),Φ, X∗(T),Φ

∨)

of G = PGSp2n. The complex dual group Ĝ (with dual root datum
(X∗(T),Φ

∨, X∗(T),Φ)) is Spin(2n+1,C). In particular, for the maximal torus

T̂ of Ĝ, we have

X∗(T̂) ∼= X∗(T), X∗(T̂) ∼= X∗(T). (3.18)

Now define the positive Weyl chamber

C+ = {λ ∈ X∗(T)| 〈χ, λ〉 ≥ 0 for all χ ∈ ∆}. (3.19)

We will frequently identify C+ with its counterpart in X∗(T̂) ∼= X∗(T).

By definition, an element λ ∈ X∗(T) belongs to C+ if and only if

〈ej+1 − ej , λ〉 ≥ 0 for j = 1, . . . , n− 1 and 〈e0 − 2en, λ〉 ≥ 0.

The above holds if and only if, in the notation of (3.15), every coset represen-
tative (ℓ0, ℓ1, . . . , ℓn) for λ satisfies

ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓn ≤ ℓ0/2. (3.20)

In fact, each such λ has a unique representative satisfying

0 = ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓn ≤ ℓ0/2. (3.21)

For notational convenience, we will often identify λ with this coset representa-
tive.
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Proposition 3.1 (Cartan decomposition, [Gr]). The group G(Qp) is the dis-
joint union of the double cosetsKpλ(p)Kp for λ ∈ C+. The analogous statement
(involving λ satisfying (3.20) rather than (3.21)) also holds for G(Qp).

Proposition 3.2. For g ∈ G(Qp) and m ≥ 1, let dm(g) denote the generator
(chosen as a power of p) of the fractional ideal of Qp generated by the set

{detB|B is an m×m submatrix of g}.

Then given λ ∈ X∗(T ) satisfying (3.20), an element g ∈ G(Qp) belongs to the
double coset G(Zp)λ(p)G(Zp) if and only if each of the following holds:

1. r(g) = pℓ0

2. for each m = 1, . . . , n, dm(g) = pℓ1+···+ℓm .

Proof. This result can be extracted from Chapter II of Newman [Ne]. For
convenience, we sketch some of the details. Let g ∈ G(Qp). By the Cartan
decomposition, there exist k1, k2 ∈ G(Zp) such that k1gk2 = λ(p) for a unique
cocharacter λ satisfying (3.20). We need to show that the two conditions given
above are satisfied. The converse will then also follow, since λ(p) is uniquely
determined by its first n diagonal entries and its similitude.

The first condition is immediate. For the second, observe that there exists an
integer a ≥ 0 such that pag ∈ M2n(Zp). The m-th diagonal coordinate of
k1p

agk2 is then pa+ℓm ∈ Zp. Regarding pag as an element of M2n(Zp) and
regarding k1, k2 as elements of GL2n(Zp), by [Ne, Chap. II, Sect. 16, Eq. (13)]
with R = Zp, we have

pa+ℓm =
dm(pag)

dm−1(pag)
=

pamdm(g)

pa(m−1)dm−1(g)
= pa

dm(g)

dm−1(g)

(with d0(g) = 1). Hence

pℓm =
dm(g)

dm−1(g)
.

This is easily seen to be equivalent to condition (2), as needed.

4 Adelic Siegel modular forms

Let A denote the adele ring of Q, and fix a Haar measure dg on G(A). Let
L2 = L2(G(Q)\G(A)) be the space of measurable functions φ : G(A) → C

satisfying

• φ(zγg) = φ(g) for all z ∈ Z(A), γ ∈ G(Q), g ∈ G(A)

•
∫

G(Q)\G(A)

|ϕ(g)|2dg <∞.
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For any parabolic subgroup P of G, P can be written as MN , where M is the
Levi subgroup and N is unipotent. An element ϕ ∈ L2 is cuspidal if for any
parabolic subgroup P =MN of G,

∫

N(Q)\N(A)

ϕ(ng)dn = 0 for a.e. g ∈ G(A).

We let L2
0 ⊆ L2 denote the subspace of cuspidal functions.

The right regular representation of G(A) on L2
0 decomposes discretely as

⊕
π

with possible multiplicity allowed, where π are by definition the cuspidal au-
tomorphic representations of G(A) with trivial central character. Any such
constituent π is a restricted tensor product

π =
⊗

p≤∞

πp

where πp is an irreducible admissible representation of G(Qp).

Fix an integer k > n with nk even (so that (A.24) is trivial). Then as in §A.7,
there is a holomorphic discrete series representation πk of G(R) of weight k. In
the inner product space πk, up to unitary scaling there is a unique holomorphic
unit vector φ0 satisfying

πk(

(
A B
−B A

)
)φ0 = det(A+Bi)kφ0 (

(
A B
−B A

)
∈ K∞). (4.1)

Let Πk(N) denote the set of cuspidal representations π of G(A) with trivial

central character for which π∞ = πk and π
K0(N)
fin 6= 0. For such π, we let

vπ∞ ∈ Vπ∞ denote a lowest weight vector as in (4.1). For any representation
πfin of G(Afin) and any subgroup U < G(Afin), we write πUfin for the space of
U -fixed vectors in the space of πfin. Define

Ak(N) =
⊕

π∈Πk(N)

Cvπ∞ ⊗ πK0(N)
fin . (4.2)

This corresponds to a classical space of holomorphic Siegel cusp forms of weight
k and level N (see §7.3 below).

For π ∈ Πk(N), let Ek(π,N) be an orthogonal basis for the summand indexed
by π in (4.2). Then the set

Ek(N) =
⋃

π∈Πk(N)

Ek(π,N) (4.3)

is an orthogonal basis for Ak(N).
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5 The test function and its kernel

Any function f ∈ L1(G(A)) defines an operator R(f) on L2 by

R(f)φ(x) =

∫

G(A)

f(g)φ(xg)dg.

In this section we will define the bi-K0(N)-invariant test function f to be used
in the trace formula.

5.1 Definition of the test function

We define, for g ∈ G(R),

f∞(g) = dk〈πk(g)φ0, φ0〉,

where φ0 is a unit vector in the space of πk satisfying (4.1), and dk is the
formal degree of πk. The matrix coefficient is independent of the choice of Haar
measure on G(R). It is computed explicitly in Corollary A.10 of the Appendix.
The formal degree dk, which depends on the choice of Haar measure, is given
in (A.21). For our purposes, the particular choice of measure is immaterial.

By Proposition A.6, f∞ ∈ L1(G(R)) precisely when

k > 2n,

so this hypothesis will be in force throughout.

We will take ffin =
∏
p<∞ fp to be a bi-Z(Afin)K0(N)-invariant function on

G(Afin), of the following form.† Fix a finite set S of prime numbers not dividing
N . For p ∈ S, let fp be a bi-ZpKp-invariant function with compact support
modulo Zp, taking the value 1 on its support. Here, Zp = Z(Qp) is the center
of G(Qp). By the Cartan decomposition, fp is the characteristic function of
a set of the form ZpCp, with Cp a finite union of double cosets of the form
Kpλ(p)Kp, where, by (3.21),

λ(p) = diag(pℓ1 , . . . , pℓn , pℓ0−ℓ1 , . . . , pℓ0−ℓn)

with 0 = ℓ1 ≤ · · · ≤ ℓn ≤ ℓ0/2. Without any real loss of generality, we make
the further assumption that the similitude of Cp has constant valuation, i.e.

r(Cp) = prpZ∗
p

for some integer rp ≥ 0. This amounts to requiring that ℓ0 = rp for each of the
λ(p) out of which Cp is built. In particular, Cp = Kp if rp = 0. Having fixed

†Although we have defined Kp and K0(N)p in (3.6) as subsets of G(Qp), in this section
we will blur the distinction between these sets and their preimages in G(Zp). No confusion
should occur since everything is invariant under the center.
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such fp for each p ∈ S, we define the global similitude

r =
∏

p∈S

prp ≥ 1. (5.1)

Now for p /∈ S, define Cp = K0(N)p, and set

ψ(N)p = meas(K0(N)p)
−1 = [Kp : K0(N)p],

ψ(N) =
∏

p

ψ(N)p = [Kfin : K0(N)].

We then define fp : G(Qp) −→ C by

fp(g) =

{
ψ(N)p if g ∈ ZpCp
0 otherwise.

(In fact this holds as well when p ∈ S, since ψ(N)p = 1 in that case.)

Having fixed ffin above, we set

f = f∞ × ffin.

By our assumption that k > 2n, f ∈ L1(G(A)). The following is a useful
observation about the support of ffin.

Proposition 5.1. Suppose x, y ∈ G(Afin) satisfy r(x)−1r(y) ∈ Ẑ∗. Then for
γ ∈ G(Q), ffin(x

−1γy) 6= 0 only if there exists s ∈ Q∗, uniquely determined up
to its sign, such that

r(γ) = ±s2r. (5.2)

Suppose γ ∈ G(Q) satisfies (5.2), and set γ̃ = s−1γ. Then r(γ̃) = ±r, and
ffin(x

−1γy) 6= 0 if and only if

x−1γ̃y ∈
∏

p

Cp =
∏

p∈S

Cp
∏

p|N

K0(N)p
∏

p∤N,p/∈S

Kp ⊆M2n(Ẑ). (5.3)

Proof. If ffin(x
−1γy) 6= 0, then x−1γy = zc for some z ∈ Z(Afin) and c ∈∏

p Cp. Since A∗
fin = Q∗Ẑ∗, we may write z = sa where s ∈ Q∗ and a ∈ Ẑ∗.

We may absorb a into c so that z = s without loss of generality. Taking the
similitude and using r(x)−1r(y) ∈ Ẑ∗, we see that r(γ) = s2ur for some u ∈ Ẑ∗.

Since r(γ), s, r ∈ Q∗, it follows that u ∈ Ẑ∗∩Q∗ = {±1}, as claimed. It is clear
that s is unique up to its sign, and that x−1γ̃y ∈∏p Cp. Conversely, since the

support of ffin is Z(Afin)
∏
p Cp, it is also clear that if x−1γ̃y ∈ ∏p Cp, then

ffin(x
−1γy) 6= 0.
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5.2 Spectral properties of R(f)

Let f be the function defined above. Recall that it is not completely fixed
because it depends on some choice of a finite union Cp of double cosets for each
prime p ∈ S. Here we show that the Hecke operator R(f) has finite rank, and
we compute its effect on adelic Siegel cusp forms.

Proposition 5.2. Let U be a unipotent subgroup of G and let g ∈ G(R). Then
for almost all x ∈ U(R)\G(R),

∫

U(R)

f∞(gux)du = 0.

Proof. Let U ′ be a one-dimensional subgroup of U . There exists E ∈M2n(R)
such that U ′(R) = {I + tE | t ∈ R}. By Corollary A.10, there exist complex
numbers A, B and C 6= 0 depending on u ∈ U(R), g, x ∈ G(R), and k > 2n,
such that

f∞(g(In + tE)ux) =
C

(At+B)k
.

The denominator is nonzero for t ∈ R since the matrix coefficient is finite. If
A 6= 0, then by the fundamental theorem of calculus,

∫

R

f∞(g(In + tE)ux)dt = C
A (At+B)−k+1

∣∣∞
−∞

= 0.

If A = 0, then ∫

R

f∞(g(In + tE)ux)dt =∞.

Hence ∫

U(R)

f∞(gux)du =

∫

U ′(R)\U(R)

∫

U ′(R)

f∞(gu′ux)du′du

is either 0 or divergent. It remains to show that this integral is convergent for
almost all x ∈ U(R)\G(R). But this is immediate from the fact that because
f∞ ∈ L1(G(R)), the integral

∫

G(R)

f∞(gx)dx =

∫

U(R)\G(R)

∫

U(R)

f∞(gux)du dx

is convergent.

Proposition 5.3. For a test function f as defined in §5.1, and the subspace
Ak(N) ⊆ L2

0 given in (4.2), R(f) annihilates Ak(N)⊥ and maps Ak(N) into
itself.

Proof. Complete details for the case of GL(2) are given in [KL1, Propositions
13.11, 13.12], and everything carries over directly to the case under consider-
ation here, using the above proposition in place of [KL1, Corollary 13.10]. So
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we just briefly sketch the ideas. It follows easily from the above proposition
that for any φ ∈ L2, R(f)φ is cuspidal, i.e. R(f) : L2 → L2

0. Furthermore
one checks that f∞ is self-dual, so the adjoint R(f)∗ also has this property.
It then follows that R(f) annihilates (L2

0)
⊥. Next, one may use a general or-

thogonality property of discrete series matrix coefficients, together with the
K0(N)-invariance of ffin, to show that the image of R(f) (and of R(f)∗) lies
in Ak(N).

It remains to compute the effect of R(f) on a nonzero element v ∈ Ak(N).
We may assume without loss of generality that v is a pure tensor in some
cuspidal representation π ∈ Πk(N). Write π = πk ⊗ π′ ⊗⊗p∈S πp, where π

′ is

a representation of
∏′
p/∈SG(Qp). Accordingly, we write f = f∞× f ′×∏p∈S fp

and
v = v∞ ⊗ v′ ⊗

⊗

p∈S

vp,

where v∞ = φ0 as in (4.1). Then (e.g. by [KL1, Prop. 13.17]) we have

R(f)v = πk(f∞)v∞ ⊗ π′(f ′)v′ ⊗
⊗

p∈S

πp(fp)vp.

By the orthogonality relations for discrete series matrix coefficients ([KL1,
Corollary 10.26]),

πk(f∞)v∞ = v∞,

where πk(f∞) is defined using the same Haar measure as that defining dk.
Likewise, because f ′ is the characteristic function of K0(N)′ =

∏
p/∈SK0(N)p

scaled by meas(K0(N)′)−1, and v′ ∈ π′K0(N)′
, we have

π′(f ′)v′ = v′.

For p ∈ S, since fp isKp bi-invariant, πp(fp) preserves the subspace π
Kp
p = Cvp.

Hence vp is an eigenvector. Writing (Sfp)(tπp) for the eigenvalue as in (2.8),
we have

R(f)v =


∏

p∈S

(Sfp)(tπp)


 v (5.4)

for v as above.

5.3 The kernel function

For a test function f as defined in §5.1, the associated kernel function on
G(A) ×G(A) is defined as

K(x, y) = Kf (x, y) =
∑

γ∈G(Q)

f(x−1γy).
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It satisfies

R(f)φ(x) =

∫

G(Q)\G(A)

K(x, y)φ(y)dy (φ ∈ L2).

Proposition 5.4. K(x, y) is continuous in both variables. Furthermore, given
any subsets J1, J2 ⊆ G(A) each having compact image in G(A), for every
γ ∈ G(Q) there exists a real number αγ , independent of N and k, such that for
all g1 ∈ J1 and g2 ∈ J2,

d−1
k ψ(N)−1|f(g−1

1 γg2)| ≤ αγ
and ∑

γ∈G(Q)

αγ <∞.

Proof. For g ∈ G(R), define fk(g) = 〈πk(g)φ0, φ0〉, so that f∞(g) = dkfk(g).
Define the function f̃ = f̃∞f̃fin on G(A), where f̃∞ = dk0fk0 with

k0 = 2n+ 1 ≤ k,

and f̃fin is the characteristic function of
∏
p ZpCp, where Cp = Kp for all p /∈ S.

In other words, f̃ is the test function we have defined earlier in the special case
where k = k0 and N = 1. We claim that

ψ(N)−1d−1
k |f(g)| ≤ d−1

k0
|f̃(g)|. (5.5)

Since supp(ffin) ⊆ supp(f̃fin), it is clear from the definitions that
ψ(N)−1|ffin(g)| ≤ |f̃fin(g)| for all g ∈ G(Afin). For the archimedean part, by
Corollary A.10, when g =

(
A B
C D

)
∈ G(R) we have

[
r(g)n/22n

| det(A+D + i(B − C))|

]k
= |fk(g)| = | 〈πk(g)φ0, φ0〉 |

≤ ‖πk(g)φ0‖‖φ0‖ = 1,

where we have used the fact that φ0 is a unit vector and πk is unitary. It follows
that the expression in the brackets is at most 1, and hence |fk(g)| ≤ |fk0(g)|
for all g ∈ G(R). This proves (5.5).

Hence, it suffices to prove the assertion for f = f̃ (with N = 1). By [Li, Prop.
3.1], it suffices to show that there exist bounded compactly supported functions
ψ1, ψ2 on G(A) such that f̃ = f̃ ∗ψ1 = ψ2 ∗ f̃ , where convolution is defined by

f1 ∗ f2 =

∫

G(A)

f1(α)f2(α
−1g)dα =

∫

G(A)

f1(gα
−1)f2(α)dα.

For the finite part of ψj , we take the characteristic function of Z(Afin)K0(N),
multiplied by the reciprocal of the measure of this set in G(Afin). It remains to
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define the archimedean components of ψ1, ψ2. We claim first that there exists
a measurable compactly supported function ξ on G(R) satisfying

ξ(

(
U V
−V U

)
g) = det(U + iV )k0ξ(g)

for all
(
U V
−V U

)
∈ K∞, or equivalently, since G(R) = K∞P (R),

ξ(

(
U V
−V U

)(
A B
O D

)
) = det(U + iV )k0ξ(

(
A B
O D

)
).

Let P ′ ⊆ P (R) be a set of representatives for (K∞∩P (R))\P (R). Then every
element g ∈ G(R) has a unique decomposition g = kb′ with k ∈ K∞ and
b′ ∈ P ′. We may choose P ′ so that it is a real manifold, and then take ξ to
be any compactly supported function on P ′, extended to G(R) by ξ(kb′) =
det(k)k0ξ(b′). One choice of P ′ is given as follows. Notice that

K∞ ∩ P (R) = {
(
U

U

)
|U tU = I} ∼= O(n),

so using the decomposition (3.5) of P (R), we see that

(K∞ ∩ P (R))\P (R) ∼=
(
O(n)\GLn(R)

)
×R∗ × Sn(R).

Hence we can take P ′ ⊆ P (R) to be the subgroup identifying as

P ′ ∼=
{


a11 ∗ ··· ∗

a22 ··· ∗

. . . ∗
ann


 | ajj > 0

}
×R∗ × Sn(R).

The proof now proceeds exactly as in [Li, Prop. 3.2]: one sees easily that
πk0(ξ)φ0 is a vector of weight k0 as in (4.1), and hence must be a multiple of
φ0. For an appropriate choice of ξ, the multiple is nonzero, and hence without
loss of generality πk0(ξ)φ0 = φ0. From here it is easy to show directly that
ξ ∗ fk0 = fk0 , so we can take ψ1 = ξ×ψfin. Similarly, we can take ψ2 = ψ∗

1 .

5.4 Spectral expression for the kernel

Because the support of the test function is not compact modulo the center,
some care is needed in order to justify the spectral expansion of the kernel
function.

Proposition 5.5. With notation as in §4, the kernel function of the operator
R(f) has the spectral expansion

K(x, y) =
∑

π∈Πk(N)

( ∑

ϕ∈Ek(π,N)

ϕ(x)ϕ(y)

‖ϕ‖2
)∏

p∈S

(Sfp)(tπp). (5.6)
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Proof. As shown in §5.2, the operator R(f) vanishes on Ak(N)⊥ and is diag-
onalizable on Ak(N), the elements of Ek(N) (see (4.3)) being eigenvectors. It
follows easily that

Φ(x, y) =
∑

ϕ∈Ek(N)

R(f)ϕ(x)ϕ(y)

‖ϕ‖2

is a kernel function for R(f). (See e.g. [KL1, p. 228] for details.) It follows that
K(x, y) = Φ(x, y) a.e. On the other hand, Φ is continuous in both variables,
being a sum of finitely many adelic Siegel cusp forms, while by Proposition 5.4,
K(x, y) is also continuous. Hence they are equal everywhere. Using (5.4) we
see that Φ(x, y) is equal to the spectral expression given in (5.6).

6 Asymptotic Fourier trace formula for GSp(2n)

6.1 Additive characters

Let
θ : Q\A −→ C∗

be the nontrivial character whose local components are given by

θp(x) =

{
e2πix if p =∞
e−2πirp(x) if p <∞, (6.1)

where rp(x) ∈ Q is any number with p-power denominator satisfying x ∈
rp(x) + Zp. All characters of the additive group Q\A are of the form θ(qx)
for some q ∈ Q. It follows easily that any character of the additive group
Sn(Q)\Sn(A) has the form S 7→ θ(tr σS) for some σ ∈ Sn(Q). We fix two such
matrices σ1, σ2 ∈ Sn(Q) and define

θj(S) = θ(tr σjS) (j = 1, 2).

Since we are interested in the θj-Fourier coefficients of Siegel cusp forms, we
can in fact assume that the σj belong to the set

R+
n = set of half-integral positive definite symmetric matrices σ ∈ GLn(Q)

(this means 2σ has integer entries and even diagonal entries).

6.2 The setup and the spectral side

Given a continuous function ϕ on G(Q)\G(A), its Whittaker function along

the unipotent subgroup N = {
(
In S
O In

)
|S ∈ Sn(A)} is defined by

Wϕ(g, χ) =

∫

N(Q)\N(A)

ϕ(ng)χ(n)dn
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for g ∈ G(A) and χ a character. Write nS =
(
In S
O In

)
for S ∈ Sn(A). There

exits σ ∈ Sn(Q) such that χ(nS) = θ(tr σS) for all S. Define

cσ(ϕ) =W (1, χ) =

∫

Sn(Q)\Sn(A)

ϕ(nS)θ(tr σS)dS. (6.2)

In §5.1, we defined a test function, henceforth to be denoted fN , from the
following data: a finite set S of primes, a level N coprime to S, a compact set
Cp ⊆ G(Qp) for each p ∈ S, and a weight k > 2n. In this section, we compute
the following limit:

I = lim
N→∞

(N,S)=1

∫∫

(N(Q)\N(A))2

KfN (n1, n2)

ψ(N)
θ1(n1)θ2(n2)dn1dn2, (6.3)

where ψ(N) = meas(K0(N))−1. We will compute I in two ways, using the
spectral and geometric forms of the kernel function. The preliminary form of
the resulting formula is given in Theorem 6.3 below.

Using the spectral form (5.6) of the kernel function along with (6.2), we formally
obtain

I = lim
N→∞

(N,S)=1

1

ψ(N)

∑

π∈Πk(N)

∑

ϕ∈Ek(π,N)

cσ1(ϕ)cσ2(ϕ)

‖ϕ‖2
∏

p∈S

(Sfp)(tπp). (6.4)

The existence of the limit will be demonstrated in Proposition 6.1 below.

6.3 The geometric side

First we show how the limit can be eliminated on the geometric side.

Proposition 6.1. Let f = f1 be the test function we have defined when N = 1.
(Its finite part is the characteristic function of

∏
ZpCp, where Cp = Kp for all

p /∈ S.) Then for I as in (6.3), the limit exists, and

I =

∫∫

(N(Q)\N(A))2

∑

γ∈P(Q)

f(n−1
1 γn2)θ1(n1)θ2(n2)dn1dn2. (6.5)

Proof. Recall that [0, 1)× Ẑ is a fundamental domain in A for Q\A. We may

therefore replaceN(Q)\N(A) ∼= N(Q\A) by the compact set J = N([0, 1]×Ẑ).
Applying Proposition 5.4 with J1 = J2 = J , the integrand in (6.3) is absolutely
bounded by the constant

∑
αγ . Hence by the dominated convergence theorem,

I = lim
N→∞

(N,S)=1

∫∫

J×J

KfN (n1, n2)

ψ(N)
θ1(n1)θ2(n2)dn1dn2
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=

∫∫

J×J

∑

γ∈G(Q)

lim
N→∞

(N,S)=1

fN(n
−1
1 γn2)

ψ(N)
θ1(n1)θ2(n2)dn1dn2.

By Proposition 5.1, we can assume r(γ) = ±r. Furthermore, if

fN,fin(n
−1
1 finγn2fin) 6= 0

for nj fin ∈ N(Ẑ), then

n−1
1 finγn2 fin ∈

∏

p∈S

Cp
∏

p/∈S

K0(N)p.

Therefore

γ =

(
W X
Y Z

)
∈
∏

p∈S

Cp
∏

p/∈S

K0(N)p ⊆M2n(Ẑ).

In particular Y ∈Mn(NZ). Hence for any Y 6= 0, fN,fin(n
−1
1 finγn2 fin) = 0 when

N is sufficiently large. On the other hand, if Y = 0, then for nj ∈ J ,

fN(n
−1
1 γn2)

ψ(N)
= f(n−1

1 γn2) = f∞(n−1
1,∞γn2,∞)ffin(γ)

for f = f1, which is obviously independent of N . In particular,

I =

∫∫

J×J

∑

γ∈P(Q)

f1(n
−1
1 γn2)θ1(n1)θ2(n2)dn1dn2.

As a function of n1 and n2, the summation over P(Q) is N(Q)-invariant
in both variables. So we can replace the region of the double integral by
(N(Q)\N(A))2. This completes the proof.

Remark: As indicated in the Introduction, the same idea cannot directly be
used to understand the case of fixed N and k → ∞. The above argument
hinges on the fact that

lim
N→∞

f(n−1
1 γn2)

ψ(N)
= 0

for n1, n2 ∈ J and γ /∈ P(Q). For the case of varying k with N = 1, the
analogous argument would require

lim
k→∞

f(n−1
1 γn2)

cnkσ
= 0 (6.6)

for the same γ, n1, n2, with cnkσ as in Theorem 1.1. However, this is false. We

have c−1
nkσ =

CBk
∏n
j=1 Γ(k − n+j

2 )

dk
for positive constants B and C depending

only on n, and dk is a polynomial in k. By Stirling’s approximation, the
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product of Gamma factors grows faster than k(n−ε)k for any ε > 0. On the
other hand, as we will show in Corollary A.11, d−1

k |f(n1γn2)| has at most
exponential decay as k → ∞. It follows that the limit appearing in (6.6) is
actually divergent for many choices of γ ∈ G(Q) \ P(Q).

We now examine the sum in (6.5). By Proposition 5.1, we may assume that
r(γ) = ±r. Because f∞(g) = 0 if r(g) < 0, we may in fact take r(γ) = r. By a
variant of (3.5), we may write

γ = η gA,r,

where η ∈ N(Q) and, for A ∈ GLn(Q),

gA,r :=

(
A

r tA−1

)
.

Recalling that γ ∈ P(Q) is only defined up to multiplication by the center,
we observe that for λ ∈ Q∗, λgA,r = gλA,rλ2 . Hence by our insistance that
r(γ) = r, we may only scale by λ = ±1. Therefore

∑

γ∈P(Q)

f(n−1
1 γn2) =

∑

A∈GLn(Q)/{±In}

∑

η∈N(Q)

f(n−1
1 ηgA,rn2).

Taking, as we may, n1, n2 to range through the fundamental domain N([0, 1]×
Ẑ) for N(Q)\N(A), by (5.3) a given summand vanishes unless

ηgA,r ∈ n1 finM2n(Ẑ)n
−1
2 fin ⊆M2n(Ẑ).

This implies that A ∈Mn(Z) and rA
−1 ∈Mn(Z). Hence

I =
∑

A∈{±In}\Mn(Z),

rA−1∈Mn(Z)

∫∫

(Sn(Q)\Sn(A))2

∑

S∈Sn(Q)

f
((

In −S1

O In

)(
In S
O In

)
gA,r

(
In S2

O In

))

×θ(− trσ1S1 + tr σ2S2)dS1dS2.

The double integral becomes

∫

Sn(Q)\Sn(A)

∫

Sn(A)

f
((

In −S1

O In

)
gA,r

(
In S2

O In

))
θ(− tr σ1S1 + tr σ2S2)dS1dS2,

which equals

∫

Sn(Q)\Sn(A)

∫

Sn(A)

f
((

In −(S1−r
−1AS2

tA)
O In

)
gA,r

)
θ(− tr σ1S1 + tr σ2S2)dS1dS2.
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Making the substitution S′
1 = S1 − r−1AS2

tA, the above becomes

∫∫

Sn(A)×(Sn(Q)\Sn(A))

f(

((
In −S′

1

O In

)
gA,r

)

× θ(− tr(σ1S
′
1 + r−1σ1AS2

tA) + tr σ2S2)dS
′
1dS2

=

∫

Sn(A)

f(

((
In −S′

1

O In

)
gA,r

)
θ(− trσ1S

′
1)dS

′
1

×
∫

Sn(Q)\Sn(A)

θ(tr(σ2S2 − r−1σ1AS2
tA))dS2.

The value of the second integral is





meas(Sn(Q)\Sn(A)) = 1 if θ(tr(σ2S2 − r−1σ1AS2
tA)) = 1

for all S2 ∈ Sn(A),

0 otherwise.

Lemma 6.2. We have θ(tr(σ2S − r−1σ1AS
tA)) = 1 for all S ∈ Sn(A) if and

only if
tAσ1A = rσ2.

Proof. By the fact that tr(AB) = tr(BA),

θ(tr(σ2S − r−1σ1AS
tA)) = θ(tr((σ2 − r−1 tAσ1A)S)).

The lemma follows from this.

6.4 Main formula

The result of the above computation is the following asymptotic Petersson
formula for PGSp(2n).

Theorem 6.3. Let S be a finite set of prime numbers, fix sets Cp as in §5.1,
and let r ≥ 1 be the integer defined in (5.1). Let f = f1 be the associated test
function defined there for the case of level N = 1. Then for k > 2n with 2|nk,
and any σ1, σ2 ∈ R+

n ,

lim
N→∞

(N,S)=1

1

ψ(N)

∑

π∈Πk(N)


 ∑

ϕ∈Ek(π,N)

cσ1(ϕ)cσ2(ϕ)

‖ϕ‖2


∏

p∈S

(Sfp)(tπp)

=
∑

A

∫

Sn(A)

f(

(
In S
O In

)(
A O
O r tA−1

)
)θ(tr σ1S)dS. (6.7)
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Here, Πk(N) and Ek(π,N) were defined in §4, Sn(A) is the set of symmetric
n× n matrices over the adeles A, and A runs through the finite set of rank n
matrices in Mn(Z)/{±In} satisfying the following conditions:

1. r tA−1 ∈Mn(Z).

2. tAσ1A = rσ2.

Remarks: (1) In Appendix B, we give a quantitative version of the above for
GSp(4).

(2) Haar measure is normalized as follows. On the geometric side and in the def-

inition of the Fourier coefficients (6.2) we take meas(Sn(Ẑ)) = 1 and Lebesgue
measure on the Euclidean space Sn(R). The Satake transform is defined using
meas(Kp) = 1. The archimedean test function f∞ depends (via dk) on an un-
specified choice of measure on G(R). This choice materializes on the spectral
side in ‖ϕ‖−2. The exact relationship between several natural choices of Haar
measure on Sp2n(R) is computed in [PSS, §A].

Proof. In view of the discussion in the previous two subsections, it just remains
to prove that only finitely many matrices A satisfy the given conditions. For
fixed j, let d ∈ R be the entry in the j-th row and j-th column of rσ2. Suppose
A ∈ Mn(Z) satisfies condition 2, and let v ∈ Zn denote the j-th column of A.
Then tvσ1v = d. We will show that there are only finitely many such v (this
is well-known), from which it follows that the set of A is also finite since j is
arbitrary.

Because σ1 is symmetric, there exists an orthogonal matrix Q such that σ1 =
tQΛQ, where Λ = diag(λ1, . . . , λn) is diagonal. Furthermore the eigenvalues
λj are all positive since σ1 is positive definite. It follows that the linear map
Q : Rn −→ Rn restricts to give an isometry between the sets

X = {v ∈ Rn| tvσ1v = d}
and

Y = {w ∈ Rn| twΛw = d}.
Notice that Y is the ellipsoid

λ1x
2
1 + · · ·+ λnx

2
n = d,

which is compact. Hence X is also compact. Since Zn is discrete, it follows
that there are only finitely many integer lattice points in X , as claimed.

7 Refinement of the geometric side

Fix a matrix A ∈Mn(Z) satisfying the hypotheses of Theorem 6.3. The integral
on the geometric side of (6.7) can be factorized as

IA =
∏

p≤∞

IA,p =
∏

p≤∞

∫

Sn(Qp)

fp(

(
In S
O In

)(
A O
O r tA−1

)
)θp(tr σ1S)dS.

Documenta Mathematica 24 (2019) 677–747



Distribution of Siegel Modular Satake Parameters 703

We will see that for all p /∈ S, IA,p can be computed explicitly, and is indepen-
dent of A when k is even.

7.1 Archimedean integral

When p =∞, by Corollary A.10 in the Appendix,

IA,∞ =

∫

Sn(R)

f∞(

(
In S
O In

)(
A O
O r tA−1

)
)e2πi trσ1SdS

=

∫

Sn(R)

dk2
nkrnk/2e2πi trσ1S

det(A+ r tA−1 + iSr tA−1)k
dS

=
dk2

nk(detA)k

rnk/2

∫

Sn(R)

e2πi trσ1S

det(r−1A tA+ In + iS)k
dS. (7.1)

We apply the following formula of Ingham (also found in a paper of Siegel).
Let

Γn(a) = πn(n−1)/4
n∏

j=1

Γ(a− 1
2 (j − 1)). (7.2)

Then for δ > n−1
2 and symmetric matrices X0,Λ > 0,

∫

Sn(R)

etr iΛY

det(X0 + iY )δ+(n+1)/2
dY

=
1

in(n+1)/22(n−1)n/2

(2πi)n(n+1)/2(detΛ)δ

Γn(δ + (n+ 1)/2)
e− tr ΛX0

=
2nπn(n+1)/2(det Λ)δ

Γn(δ + (n+ 1)/2)
e− tr ΛX0 (7.3)

(cf. [I, (1)], [Si1, Hilfssatz 37, p. 585]; we have used the form given by Herz [H,
(1.2)]). In [H], the measure is dZ =

∏
j≤k dzjk, where Z = X0 + iY = (ηjkzjk)

with ηjk = 1 if j = k, and 1/2 otherwise. Thus

dZ = in(n+1)/22(n−1)n/2dY,

which explains the first factor in the above formula.

We evaluate (7.1) using (7.3) with δ = k − (n + 1)/2 > (n − 1)/2, X0 =
In + r−1A tA, and Λ = 2πσ1. By condition (2) of Theorem 6.3, det(A) =

±rn/2
(

detσ2

detσ1

)1/2
. So (7.1) becomes

dk2
nk

rnk/2
sgn(detA)krnk/2

(
detσ2
detσ1

)k/2

2nπn(n+1)/2 det(2πσ1)
k−(n+1)/2

Γn(k) e2π tr(σ1(In+r−1A tA))
.
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We simplify the above using tr(σ1r
−1A tA) = tr(r−1 tAσ1A) = trσ2 for matrices

A as in Theorem 6.3. The result is the following:

IA,∞ = sgn(detA)k dk

(
detσ2
detσ1

)k/2
(detσ1)

k−(n+1)/2(4π)nk

2n(n−1)/2Γn(k) e2π tr(σ1+σ2)
. (7.4)

Observe that this is independent of A when k is even.

7.2 Nonarchimedean integrals: p /∈ S

In this case, r ∈ Z∗
p, and A ∈ GLn(Zp). It follows that

fp(

(
In S
O In

)(
A O
O r tA−1

)
) 6= 0 ⇐⇒

(
In S
O In

)(
A O
O r tA−1

)
∈ Kp

⇐⇒ S ∈Mn(Zp).

For such S, θp(tr σ1S) = 1, so we find that

IA,p =

∫

Sn(Qp)

fp(

(
In S
O In

)(
A O
O r tA−1

)
)θp(tr σ1S)dS = meas(Sn(Zp)) = 1.

(Recall that we use the N = 1 test function f1 in (6.7), so that fp is the
characteristic function of ZpKp when p /∈ S.)

7.3 Proof of Theorem 1.1

When S = ∅, we now have a completely explicit expression for the right-hand
side of (6.7). Since r = 1, the sum over A is nonzero only if tAσ1A = σ2 for
some A ∈ GLn(Z)/{±In}. In particular, (detA)2 = 1, so detσ1 = detσ2. If
we let IA denote the summand indexed by A in Theorem 6.3, then by the above
discussion,

IA = (detA)k dk (4π)
nk−n(n−1)/4 (detσ1)

k−(n+1)/2

∏n
j=1 Γ(k− j−1

2 )
e−2π tr(σ1+σ2). (7.5)

We wish to express the spectral side in classical terms. With notation as in
(3.3), let Sk(N) be the space of Siegel cusp forms F satisfying

F (γ · Z) = j(γ, Z)kF (Z)

for all Z ∈ Hn and

γ ∈ Γ0(N) = {
(
A B
C D

)
∈ Sp2n(Z)|C ≡ O mod N},

where

j(g,Z) = r(g)−n/2 det(CZ+D) (g =
(
A B
C D

)
∈ G(R)).
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Any F ∈ Sk(N) has a Fourier expansion

F (Z) =
∑

σ∈R+
n

aσ(F )e
2πi trσZ, (Z ∈ Hn). (7.6)

We normalize the Petersson/Maass scalar product on Sk(N) by

〈F,H〉 = 1

ψ(N)

∫

Γ0(N)\Hn

F (Z)H(Z)(detY )k−n−1dX dY (Z = X + iY ),

(7.7)
where ψ(N) = [Kfin : K0(N)] = [Γ0(1) : Γ0(N)].

We need to choose the quotient measure on G(Q)\G(A) compatibly with the
above. For any N ≥ 1, let DN ⊆ Hn be a fundamental domain for Γ0(N)\Hn,
identified with a subset of Sp2n(R) via

Z = X + iY ←→ bZ =

(
Y 1/2 XY −1/2

O Y −1/2

)
.

Then, as in [KL1, Prop. 7.43] for example, we may define a quotient measure
on G(Q)\G(A) by

∫

G(Q)\G(A)

h(g)dg =

∫

DNK∞×K0(N)

h(bZ k∞ × kfin)
dX dY

(detY )n+1
dk∞dkfin,

where the compact groupsK∞ andKfin each have total volume 1. This measure
dg is independent of the choice of N since

meas(DN )meas(K0(N)) = [Γ0(1) : Γ0(N)]meas(D1)ψ(N)−1 = meas(D1).

Taking N = 1, a well-known computation of Siegel ([Si2]) gives

meas(G(Q)\G(A)) = meas(Sp2n(Z)\Hn) = 2

n∏

j=1

[(j − 1)!π−jζ(2j)].

Given F ∈ Sk(N), its adelic counterpart is the function ϕF ∈ L2
0 defined by

ϕF (g) = F (g∞ · iIn)j(g∞, iIn)−k (7.8)

for g = γ(g∞ × k) ∈ G(A) = G(Q)(G(R)+ ×K0(N)). The well-definedness of
ϕF is a consequence of the fact that G(Q)∩ (G(R)+×K0(N)) = Γ0(N). With
measures normalized as above, the map F 7→ ϕF defines a linear isometry from
Sk(N) onto the subspace Ak(N) ⊆ L2

0 defined in (4.2). This may be proven
just as in [Sa]. (The latter paper works with the principal congruence subgroup
of level N , but the Siegel parabolic case is just the same.) The relationship
between the adelic and classical Fourier coefficients is given by the following
(see (6.2)).

Documenta Mathematica 24 (2019) 677–747



706 Andrew Knightly and Charles Li

Proposition 7.1. For F ∈ Sk(N) and σ ∈ Sn(Q),

cϕF (σ) =

{
e−2π trσaF (σ) if σ ∈ R+

n

0 otherwise.
(7.9)

Proof. By strong approximation for the adeles,

Sn(A) = Sn(Q) + Sn(R)× Sn(Ẑ).
Decomposing S = XQ+(X∞×Xfin) ∈ Sn(A) accordingly, by the rightK0(N)-
invariance and left G(Q)-invariance of ϕF we have

ϕF (

(
In S

In

)
) = ϕF (

(
In X∞

In

)
).

Also, it follows that

Sn(Q)\Sn(A) = Sn(Z)\(Sn(R)× Sn(Ẑ)).
If D is any fundamental domain for Sn(Z)\Sn(R), then D× Sn(Ẑ) is a funda-

mental domain for Sn(Z)\(Sn(R)× Sn(Ẑ)) ([KL1, Theorem 7.40]). Therefore
(6.2) becomes

cϕF (σ) =

∫

Sn(Z)\Sn(R)

ϕF (

(
In X∞

In

)
)θ∞(− tr(σX∞))dX∞

×
∫

Sn(Ẑ)

θfin(− tr(σXfin))dXfin.

Write Xfin = (Xij) for Xij ∈ Afin. If we write σ = (bijσij), where bij is equal
to 1 or 1/2 according to whether or not i = j, then tr(σXfin) =

∑
i,j σijXij .

Note that σij ∈ Z for all i, j if and only if σ is half-integral, i.e., σ ∈ Rn. If
this condition does not hold, then the second integral vanishes.

Assuming σ ∈ Rn, using (6.1) and (7.8) we have

cϕF (σ) =

∫

Sn(Z)\Sn(R)

F (X + iIn)e
−2πi tr(σX)dX

= e−2π trσ

∫

Sn(Z)\Sn(R)

F (X + iIn)e
−2πi tr(σ(X+iIn))dX

= e−2π trσaF (σ).

Letting Bk(N) be an orthogonal basis for Sk(N), in the special case S = ∅ and
r = 1, our main formula (6.3) becomes

lim
N→∞

1

ψ(N)

∑

F∈Bk(N)

aσ1(F )aσ2(F )

‖F‖2 (7.10)

=
∑

A∈GLn(Z)/±In
tAσ1A=σ2

(detA)k dk (4π)
nk−n(n−1)/4 (det σ1)

k−(n+1)/2

∏n
j=1 Γ(k− j−1

2 )
.
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For the formal degree, we will take the classical measure on Sp(2n) correspond-
ing to the measure in (7.7). So as shown in [PSS],

dk =
1

2n(4π)n(n+1)/2

∏

1≤i≤j≤n

(2k− (i+ j)).

(See the final remark after Proposition A.7 below.) We can simplify dk
Γn(k)

using

the following.

Lemma 7.2. For any integers n ≥ 1 and k > 2n,

∏
1≤i≤j≤n(2k− (i+ j))
∏n
ℓ=1 Γ(k− ℓ−1

2 )
=

2n(n+1)/2

∏n
j=1 Γ(k − n+j

2 )
.

Proof. When n = 1, by the functional equation for the Gamma function we
have

(2k− 2)

Γ(k)
=

2(k− 1)

Γ(k)
=

2

Γ(k− 1)
,

as needed. Given n ≥ 2, suppose the formula holds for n− 1. Then

∏
1≤i≤j≤n(2k− (i+ j))
∏n
ℓ=1 Γ(k− ℓ−1

2 )
=

∏
1≤i≤j≤n−1(2k− (i+ j))
∏n−1
ℓ=1 Γ(k− ℓ−1

2 )

∏
1≤i≤n(2k− (i+ n))

Γ(k− n−1
2 )

=
2n(n−1)/2

∏n−1
j=1 Γ(k− n−1+j

2 )

∏
1≤i≤n(2k− (i+ n))

Γ(k − n−1
2 )

= 2n(n+1)/2
n∏

i=1

(k− i+n
2 )

Γ(k− i+n
2 + 1)

=
2n(n+1)/2

∏n
i=1 Γ(k− n+i

2 )
.

It now follows that

lim
N→∞

1

ψ(N)

∑

F∈Bk(N)

aσ1(F )aσ2 (F )

‖F‖2

=
(detσ1)

k−(n+1)/2

πn(n−1)/4(4π)n(n+1)/2−nk
∏n
j=1 Γ(k− n+j

2 )
δk(σ1, σ2), (7.11)

for δk(σ1, σ2) given in (1.3). This proves Theorem 1.1.

7.4 Nonarchimedean integrals: p ∈ S

This case is more difficult. Our goal is to compute (or bound) the local integral

IA,p = IA,p(fp) =

∫

Sn(Qp)

fp(

(
In S
O In

)(
A O
O r tA−1

)
)θp(tr σ1S)dS.
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To simplify the computation, we may essentially reduce to the case where
A is diagonal, as follows. By the elementary divisors theorem, there exist
U, V ∈ GLn(Z) and a diagonal matrix

D = diag(d1, . . . , dn)

with positive integer entries satisfying d1|d2| · · · |dn, such that

A = UDV. (7.12)

Proposition 7.3. For A as above,

IA,p =

∫

Sn(Qp)

fp(

(
In S
O In

)(
D O
O rD−1

)
)θp(tr σ

′
1S)dS,

where
σ′
1 = σU = tUσ1U.

Proof. By definition,

IA,p =

∫

Sn(Qp)

fp(

(
In S
O In

)(
A O
O r tA−1

)
)θp(trσ1S)dS

=

∫

Sn(Qp)

fp(

(
UDV rS tU−1D−1 tV −1

O r tU−1D−1 tV −1

)
)θp(tr σ1S)dS.

Because fp is bi-Kp-invariant, we are free to multiply its argument on the left

by

(
U−1

tU

)
∈ Kp and on the right by

(
V −1

tV

)
∈ Kp. This gives

IA,p =

∫

Sn(Qp)

fp(

(
D r(U−1S tU−1)D−1

O rD−1

)
)θp(tr σ1S)dS.

Let S′ = U−1S tU−1. Then dS′ = dS since S 7→ S′ is an isomorphism mapping
S(Ẑ) to S(Ẑ). Hence the above is

=

∫

Sn(Qp)

fp(

(
D rS′D−1

O rD−1

)
)θp(tr σ1US

′ tU)dS′.

Now using trσ1US
tU = tr tUσ1US, we find

IA,p =

∫

Sn(Qp)

fp(

(
D rSD−1

O rD−1

)
)θp(tr σ

′
1S)dS.

For the purpose of computing the above local integral, by the Kp-invariance of
fp, we may assume that each diagonal entry of D is a power of p. Thus, we
take

D = diag(pα1 , . . . , pαn),
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for

0 ≤ α1 ≤ · · · ≤ αn.
For x ∈ Qp, we define ordp(x) = n if x = pnz with z a unit. So rp = ordp(r),
for example.

Proposition 7.4. With the above notation, suppose IA,p 6= 0. Then each
αj ≤ rp. Under the additional assumption that ordp(det σ1) = ordp(detσ2), we
further have

α1 + · · ·+ αn =
nrp
2
.

Proof. As in Theorem 6.3, we are assuming that r tA−1 ∈ Mn(Z). It follows
that likewise rD−1 ∈ Mn(Z), and hence αj ≤ rp for each j. Under the ad-
ditional assumption, taking determinants in the relation tAσ1A = rσ2 gives
p2(α1+···+αn) = pnrp , and the last assertion follows.

In principle, one can now compute the integral by applying Proposition 3.2 and
considering various cases to obtain certain exponential sums. We will discuss
this process in more detail for the special case of GSp(4) in Section 9. It should
be evident from this special case that the general case is very complicated.

We conclude the present section by giving a trivial bound for IA,p.

Proposition 7.5. With notation as above,

|IA,p| ≤
n∏

j=1

pj(rp−αj) = p
n(n+1)

2 rp−(α1+2α2+···+nαn). (7.13)

Proof. By Proposition 5.1,

fp(

(
D rSD−1

O rD−1

)
) 6= 0 ⇐⇒

(
D rSD−1

O rD−1

)
∈ Cp.

Because Cp ⊆M2n(Zp), we see that

|IA,p| ≤ meas{S ∈ Sn(Qp)| prpSD−1 ∈Mn(Zp)}.

Writing S = (sij),

|IA,p| ≤ meas{S ∈ Sn(Qp)| sijprp−αj ∈ Zp for all i, j}
= meas{S ∈ Sn(Qp)| sij ∈ p−(rp−αj)Zp for all 1 ≤ i ≤ j ≤ n}

since sij = sji. Hence,

|IA,p| ≤
n∏

j=1

∏

i≤j

meas(p−(rp−αj)Zp) =

n∏

j=1

∏

i≤j

prp−αj =

n∏

j=1

pj(rp−αj).
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8 Weighted equidistribution of Satake parameters

Let Ĝ = Spin(2n + 1,C) be the complex dual group of G = PGSp2n.
† Since

we are assuming trivial central character, the Satake parameters tπp belong to

the maximal torus T̂ of Ĝ. For our fixed finite set S of primes, let

XS = (T̂/W )|S|.

Let Πk(N) be the set of cuspidal representations of weight k and level N defined
in §4. Each π ∈ Πk(N) determines a point

tπ = (tπp)p∈S ∈ XS. (8.1)

By Shin’s theorem, the points tπ become equidistributed relative to the
Plancherel product measure on XS as N → ∞. Here we investigate their
distribution with certain prescribed harmonic weights.

Proposition 8.1. There exists a compact subset Ω ⊆ XS such that tπ ∈ Ω for
all π ∈ Πk(N).

Proof. [BW, Theorem XI.3.3].

8.1 Preliminary result

For σ1, σ2 ∈ R+
n , define the weight

wπ(σ1, σ2) =
∑

ϕ∈Ek(π,N)

cσ1(ϕ)cσ2 (ϕ)

‖ϕ‖2 .

We will show in this section that the Satake parameters tπ, weighted by
wπ(σ, σ), have a uniform distribution relative to a certain Radon measure in
the limit as N →∞.

The following is essentially a restatement of Theorem 1.1 (see §7.3).

Lemma 8.2. Let cnkσ1 =
(det σ1)

k−(n+1)/2

πn(n−1)/4(4π)n(n+1)/2−nk
∏n
j=1 Γ(k− n+j

2 )
. Then

lim
N→∞

1

ψ(N)

∑

π∈Πk(N)

wπ(σ1, σ2) = δk(σ1, σ2)cnkσ1 ,

where δk(σ1, σ2) is defined in (1.3). In particular, if σ1 = σ2 = σ ∈ R+
n satisfies

δk(σ, σ) > 0 (e.g. if k is even), then setting wπ = wπ(σ, σ) we have

0 < lim
N→∞

1

ψ(N)

∑

π∈Πk(N)

wπ <∞. (8.2)

†For dual groups, we always take the ground field to be C unless specified otherwise.
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Remark: If k is even, then δk(σ, σ) > 0 since A = In satisfies tAσA = σ. Hence
in this case we always have nonvanishing in (8.2). This nonvanishing is crucial
in what follows.

For the compact space Ω in Proposition 8.1, let

VS ⊆ C(Ω) (8.3)

denote the subspace consisting of all restrictions F |Ω of functions F =∏
p∈S Sfp in the image

∏
p∈SC[X∗(T̂)]W of the S-product Satake transform.

(See (2.3) and (2.4).) For fixed k > 2n and σ ∈ R+
n for which δk(σ, σ) > 0, let

wπ = wπ(σ, σ) as above. Then we may define a linear functional L = Lσ,k,S on
VS by

L(F ) = lim
N→∞

(N,S)=1

∑
π∈Πk(N) wπF (tπ)∑

π∈Πk(N) wπ
. (8.4)

By Lemma 8.2 and Theorem 6.3, the limit exists and is finite. Endowing
C(Ω) with the L∞ norm, it contains VS as a dense subalgebra by the Stone-
Weierstrass Theorem [Ru, p. 122]. (The latter algebra evidently separates
points, and it is closed under complex conjugation by Proposition 2.1.) Because
VS is dense in C(Ω), the right-hand side of (8.4) exists for F ∈ C(Ω) (for
details, see e.g. [KL1], pages 358-359). Moreover it is clear from (8.4) that
|L(F )| ≤ ‖F‖∞ for all F ∈ C(Ω), so L is bounded. By the Riesz representation
theorem, there exists a unique Radon measure µ = µσ,k,S on Ω such that

L(F ) =
∫

Ω

F dµ (8.5)

for all F ∈ C(Ω). It is clear from (8.4) that L(1) = 1, so µ is a probability
measure. This proves the following.

Theorem 8.3. Let k > 2n, and let σ be a symmetric positive-definite half-
integral matrix for which δk(σ, σ) > 0. (This is automatic, for example, if k
is even.) Then the Satake parameters (tπ)π∈Πk(N) of (8.1), when weighted by
wπ(σ, σ), become equidistributed in the space Ω of Proposition 8.1 with respect
to the above probability measure µσ,k,S in the limit as N → ∞ along integers
coprime to S.

Of course, one would like to know more about the measure µ, for example
whether it is supported on the tempered spectrum. (Recall that an unramified
representation πp of G(Qp) is tempered if and only if its Satake parameter tπp

lies in a compact subgroup of T̂.) We will pursue this question by relating µ

to the Sato-Tate measure, which is supported in a compact subtorus of T̂. See
Theorem 8.4 below.
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8.2 Relating two measures

Generally, suppose η is a Radon measure on Ω, and {Rλ}λ∈Λ is a set of contin-
uous functions forming an orthonormal basis for L2(Ω, η) which also spans an
L∞-dense subspace of C(Ω). Then the measure µ in (8.5) can be expressed as

dµ(t) =
∑

λ

L(Rλ)Rλ(t)dη(t), (8.6)

provided the sum is uniformly absolutely convergent on Ω. Indeed, for all
α ∈ Λ,
∫

Ω

Rα(t)
∑

λ

L(Rλ)Rλ(t)dη =
∑

λ

L(Rλ) 〈Rα, Rλ〉η = L(Rα) =
∫

Ω

Rαdµ,

and by linearity and density of the span of the Rα, the above holds as well for
all functions in C(Ω).

8.3 The Sato-Tate measure

Fix a maximal compact subgroup Ĥ ⊆ Ĝ with maximal torus

T̂c = Ĥ ∩ T̂ = T̂(C)1.

This is the maximal compact subtorus of T̂. Let dh denote the Haar measure on
Ĥ of total volume 1. Because every conjugacy class in Ĥ contains exactly one
Weyl orbit of T̂c, the measure dh induces a quotient measure µST on the space
T̂c/W . We extend µST to T̂/W by taking it to be zero on the complement of

T̂c/W . This is the Sato-Tate measure. In more detail, for f ∈ C(T̂c/W ), we

may identify f with a class function on Ĥ , and
∫

T̂c/W

f(t)dµST (t) =

∫

Ĥ

f(h)dh. (8.7)

By the Weyl integration formula, the measure is given explicitly by

dµST (t) =
∣∣∣det(Ad(t−1 − I)|Lie(Ĥ)/Lie(T̂c)

)
∣∣∣dt, (8.8)

where dt is the Haar measure giving T̂c volume 1. An alternative expression
for it is given in (8.13) below.

Fix a set Φ+ of positive roots in the root system attached to Ĥ and T̂c. We
shall identify X∗(T̂) and X∗(T̂c). By the theorem of the highest weight, the

irreducible representations πλ of Ĥ are in one-to-one correspondence with the
elements λ ∈ C+, where C+ is the positive Weyl chamber of X∗(T̂c) = X∗(T̂) ∼=
X∗(T) given in (3.19). Let

Fλ = trπλ (8.9)

Documenta Mathematica 24 (2019) 677–747



Distribution of Siegel Modular Satake Parameters 713

denote the trace of πλ. It is a class function on Ĥ, so we may view it as a
function on T̂c/W . By the Peter-Weyl theorem, the set {Fλ|λ ∈ C+} is an

orthonormal basis for the space of L2 class functions on Ĥ (relative to the
measure dh). In particular, by (8.7) we have

∫

T̂(C)/W

Fλ(t)Fµ(t) dµST = δλ,µ (8.10)

(for the Kronecker δ). Here, the domain of Fλ is extended from T̂c to T̂(C) by
viewing Fλ as a sum

Fλ =
∑

µ∈X∗(T̂)

mλ(µ)[µ] ∈ C[X∗(T̂)]W .

The orthogonality (8.10) can also be proved using (8.12) and (8.13) below.

We shall need the fact that the set {Fλ|λ ∈ C+} spans C[X∗(T̂)]W (see [FH,

Theorem 23.24], using the fact that Λ = X∗(T̂) since Ĝ = Spin(2n + 1) is
simply connected). By (2.4), this space coincides with the image of the local
Satake transform.

Given a tuple λ = (λp) ∈
∏
p∈S C+, we let

Fλ =
∏

p∈S

Fλp ∈
∏

p∈S

C[X∗(T̂)]W .

Viewing the Fλ as functions on Ω (by restriction), they span the space VS of
(8.3). This follows from the above discussion.

8.4 Relation between µ and µST

We continue to assume that δk(σ, σ) > 0, so that for Fλ as above, we may
consider L(Fλ) as in (8.4).

Theorem 8.4. Let ρ ∈ X∗(T) = X∗(T̂) be half the sum of the positive roots,
as in (3.10). Suppose that there exits ε > 0 such that for all tuples λ as above,

L(
∏

p∈S

S(cλp ))≪ε

∏

p∈S

p(1−ε)〈ρ,λp〉, (8.11)

where cλp is the characteristic function of Kpλp(p)Kp. Then the measure µ
defined in (8.5) is given by

dµ(t) =
∑

λ

L(Fλ)Fλ(t) dµS(t),

where µS =
∏
p∈S µST is the product measure on XS, and the above sum con-

verges absolutely and uniformly on Ω.
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Remarks: (1) Hypothesis (8.11) would follow from (a) adequate bounds on
the number of matrices A satisfying the conditions of Theorem 6.3, and (b)
adequate bounds for the local geometric integrals IA,p(cλp) for p ∈ S. (See
(9.3).) In Section 9, we will carry this out and prove Hypothesis (8.11) in the
special case n = 2, as an application of Theorem 6.3.

(2) It is not clear to us whether there is a closed form expression for the measure.

Proof. In Section 8.3, we saw that the set {Fλ|λ ∈ C+} is an orthonormal basis
for L2(Ω, µST ). Furthermore, it is dense in VS , which in turn is dense in C(Ω)
as discussed before Theorem 8.3. Hence, by the discussion in §8.2, it suffices
to prove that the given series is uniformly convergent under Hypothesis (8.11).

To ease the notation, we will first assume that S = {p} consists of just one

prime. For any weight λ ∈ X∗(T̂), define

Aλ =
∑

w∈W

(sgnw)w(λ) ∈ C[X∗(T̂)].

For t ∈ T̂c,

|Aλ(t)| ≤
∣∣∣∣∣
∑

w∈W

(sgnw)w(λ)(t)

∣∣∣∣∣ ≤
∑

w∈W

|w(λ)(t)| = |W |.

By the Weyl character formula ([FH, Theorem 24.2]),

Fλ =
Aλ+ρ
Aρ

. (8.12)

It is well-known that

dµST (t) = |Aρ(t)|2dt. (8.13)

(For example, compare (25.6) of [Bu] ((22.7) in the 2nd edition) with Lemma
24.3 of [FH]).

Therefore, for t ∈ T̂c, we need to prove the convergence of

∑

λ∈C+

|L(Fλ)Fλ(t)||Aρ(t)|2 =
∑

λ∈C+

|L(Fλ)Aλ+ρ(t)Aρ(t)| ≤ |W |2
∑

λ∈C+

|L(Fλ)|.

Next, we need to relate Fλ to the functions S(cµ) in order to make use of
Hypothesis (8.11). This is achieved by the following formula of Kato and
Lusztig, which holds in any split reductive p-adic group ([HKP, Theorem 7.8.1];
see also [Gr, (3.12) and Proposition 4.4]):

Fλ = p−〈λ,ρ〉
∑

µ≤λ

Pµ,λ(p)S(cµ).
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Here, µ belongs to C+, and Pµ,λ is the Kazhdan-Lusztig polynomial

Pµ,λ(p) = p〈λ−µ,ρ〉
∑

w∈W

sgn(w)P̂ (w(λ + ρ∨)− (µ+ ρ∨)),

where
P̂ (µ) =

∑

µ=
∑
n(α∨)α∨

p−
∑
n(α∨) ≥ 0

encodes the number of expressions of µ as a linear combination of positive
co-roots with coefficients n(α∨) ≥ 0. We note that Pλ,λ(p) = 1, [Gr, (4.5)].

Therefore, the quantity we need to bound is

∑

λ∈C+

|L(Fλ)| =
∑

λ∈C+

∣∣∣p−〈λ,ρ〉
∑

µ≤λ

Pµ,λ(p)L(S(cµ))
∣∣∣

≤
∑

µ∈C+

p−〈µ,ρ〉|L(S(cµ))|
∑

λ≥µ

∑

w∈W

P̂ (w(λ + ρ∨)− (µ+ ρ∨)). (8.14)

We claim that for w ∈ W ,

∑

λ≥µ

P̂ (w(λ + ρ∨)− (µ+ ρ∨)) ≤ 2d
+

, (8.15)

where d+ is the number of positive co-roots. Indeed, the left-hand side of (8.15)
is ∑

λ≥µ

∑
∑
n(α∨)α∨

p−
∑
n(α∨), (8.16)

where the inner sum is extended over all expressions of the form

w(λ + ρ∨)− (µ+ ρ∨) =
∑

α∨

n(α∨)α∨

with n(α∨) ≥ 0 and α∨ positive co-roots. The above expression is equivalent
to

λ = w−1(
∑

α∨

n(α∨)α∨ + (µ+ ρ∨))− ρ∨. (8.17)

Thus we may exchange the order of summation in (8.16), so the left-hand side
of (8.15) is equal to ∑

∗

∑
n(α∨)α∨

p−
∑
n(α∨),

where the ∗ indicates that we consider only those expressions for which the
right-hand side of (8.17) is ≥ µ. The above is of course bounded by the sum
over all nonnegative linear combinations of positive co-roots

∑
∑
n(α∨)α∨

p−
∑
n(α∨) =

∏

α∨

∞∑

n(α∨)=0

p−n(α
∨) ≤

∏

α∨

2,
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proving the claim (8.15).

Combining (8.14) and (8.15), it follows that
∑

λ∈C+

|L(Fλ)| ≪ |W |
∑

µ∈C+

p−〈µ,ρ〉|L(S(cµ))|.

Using the given bound (8.11), the above is

≪
∑

µ∈C+

p−ε〈µ,ρ〉.

There exists a finite set {µ1, . . . , µℓ} ⊆ C+ such that C+ ⊆ {∑ℓ
i=1 aiµi | 0 ≤

ai ∈ Z}. Writing µ =
∑ℓ

i=1 aiµi, the above is

≤
ℓ∏

i=1

(
∞∑

ai=0

p−ε〈µi,ρ〉ai

)
<∞.

This completes the proof when S = {p}.
The general case is proven in the same way, using

∑

λ

|L(Fλ)| =
∑

λ

∣∣∣∣∣∣

∑

µ≤λ



∏

p∈S

p−〈λp,ρ〉Pµp,λp(p)


L(

∏

p∈S

S(cµp))

∣∣∣∣∣∣

≤
∑

µ

|L(
∏

p∈S

S(cµp))|
∏

p∈S

∑

λp≥µp

p−〈λp,ρ〉|Pµp,λp(p)|

≪
∑

µ

|L(
∏

p∈S

S(cµp))|
∏

p∈S

p−〈µp,ρ〉.

Using Hypothesis 8.11, one shows as before that this is finite.

Corollary 8.5. Write µ = µp for the measure on T̂/W defined in (8.5) when
S = {p}. Then under Hypothesis 8.11,

lim
p→∞

dµp(t) = dµST (t).

Proof. Let 0 ∈ C+ denote the element corresponding to the zero vector in Zn+1.
As in the proof of the previous proposition,

∑

λ∈C+−{0}

|L(Fλ)Fλ(t)||Aρ(t)|2 ≪
∑

µ∈C+−{0}

p−ε〈µ,ρ〉.

Noting that 〈µ, ρ〉 > 0 when µ 6= 0, the right-hand side tends to 0 as p goes to
∞. Thus

lim
p→∞

dµp(t) = lim
p→∞

∑

λ∈C+

L(Fλ)Fλ(t) dµST (t) = L(F0)F0(t)dµST (t) = dµST (t).

The last step follows by (8.4) and the fact that F0 = 1 (cf. (8.12)).
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9 Local computation when n = 2

Here we refine the discussion from Section 7.4 for p ∈ S, with the simplifying
assumptions that n = 2, and

p ∤ 4 detσ1. (9.1)

(Recall that detσ1 ∈ 1
4Z.) The main goal of this section is to prove the following

local bound.

Proposition 9.1. Under the above hypotheses, there exists a constant ε > 0
such that

|IA,p(cλ)| ≪ p(1−ε)〈λ,ρ〉−εrp (9.2)

for all λ ∈ C+, where the implied constant depends only on p and ε.

Before proving the proposition, let us observe how it implies the global Hy-
pothesis (8.11).

Corollary 9.2. Suppose n = 2, σ1 = σ2 = σ, δk(σ, σ) > 0, and p ∤ 4 detσ for
all p ∈ S. Then Hypothesis (8.11) holds.

Proof. In Section 7.2, we saw that IA,p = 1 for primes p /∈ S. From the
definition (8.4) of L, Theorem 6.3, and Lemma 8.2, it follows that

L(
∏

p∈S

S(cλp )) =

∑
A cnkσ

∏
p∈S IA,p(cλp)

δk(σ, σ)cnkσ
=

1

δk(σ, σ)

∑

A

∏

p∈S

IA,p(cλp), (9.3)

where A runs through the rank-2 matrices in M2(Z)/{±1} satisfying r tA−1 ∈
M2(Z) and

tAσA = rσ. In particular, writing

σ =

(
a b/2
b/2 c

)
, A =

(
x y
z w

)
∈M2(Z),

we have ax2 + bxz + cz2 = ra. Hence

4ra2 = (2ax+ bz)2 − (b2 − 4ac)z2 = (2ax+ bz +
√
Dz)(2ax+ bz −

√
Dz),

where D = b2 − 4ac < 0. Thus, in the ring of integers O ⊆ Q[
√
D], the ideal

(2ax + bz +
√
Dz) is a factor of the ideal (4ra2). The number of ideal factors

of (4ra2) is ≪ rε/2. In view of the fact that |O∗| <∞, the number of possible
choices for x, z is ≪ rε/2. Similarly, the number of choices for y, w is ≪ rε/2.
So the number of terms in the sum is ≪ rε =

∏
p∈S p

rpε. It follows from (9.2)
that the above is

≪
∏

p∈S

p(1−ε)〈λp,ρ〉,

as required.
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The proof of Proposition 9.1 is given in Section 9.3. In the intervening sections,
we describe how to compute the local integral IA,p explicitly, with the goal of
producing the upper bound (9.2). In many situations, the trivial bound (7.13)
is adequate, so an explicit computation is not necessary. In the remaining
cases (which, in the notation below, occur when β− 1 ≤ t), we give a complete
treatment of the local integral.

9.1 Preliminaries

Without loss of generality, we consider the case where fp = cλ is the charac-
teristic function of the double coset ZpKpλ(p)Kp, where

λ(p) = diag(1, pt, pτ , pτ−t) (9.4)

for 0 ≤ t ≤ τ/2 as in (3.21). Thus we write τ in place of rp (for the purpose of
eliminating a subscript).

By Proposition 7.4, we need only consider matrices D of the form

D = diag(pα, pβ), 0 ≤ α ≤ β, α+ β = τ.

Write

σU = tUσ1U =

(
a b/2
b/2 c

)
.

Note that σU is half-integral, and detσU = detσ1. So by (9.1), either p ∤ b or
p ∤ ac. We would like to compute the integral

IA,p =

∫

S(Qp)

fp(

(
D pτSD−1

O pτD−1

)
)θp(tr σUS)dS. (9.5)

Writing S =

(
x y
y z

)
, we let

M =

(
D pτSD−1

O pτD−1

)
=




pα 0 pβx pαy
0 pβ pβy pαz
0 0 pβ 0
0 0 0 pα


 .

By Proposition 3.2, M ∈ supp fp if and only if the fractional ideal generated
by all the entries is (1) = Zp and the fractional ideal generated by the deter-
minants of all 2× 2 submatrices is (pt) = ptZp. The determinants of the 2× 2
submatrices of M are shown in the table below:
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rows
cols

1,2 1,3 1,4 2,3 2,4 3,4

1,2 pα+β pα+βy p2αz −p2βx −pα+βy pα+β(xz − y2)
1,3 0 pα+β 0 0 0 −pα+βy
1,4 0 0 p2α 0 0 pα+βx
2,3 0 0 0 p2β 0 −pα+βz
2,4 0 0 0 0 pα+β pα+βy
3,4 0 0 0 0 0 pα+β

Using α ≤ β and α+ β = τ , we see that M ∈ supp fp if and only if

(pα, pβx, pαy, pαz) = (1) (9.6)

and

(p2α, pτx, pτy, p2αz, pτ (xz − y2)) = (pt). (9.7)

Let

x′ = pβx, y′ = pαy, z′ = pαz. (9.8)

Then (9.6) is equivalent to

(pα, x′, y′, z′) = (1) (9.9)

and (9.7) is equivalent to

(p2α, pαx′, pβy′, pαz′, x′z′ − pβ−αy′2) = (pt). (9.10)

If α 6= 0, then (9.6) is equivalent to

(x′, y′, z′) = (1), (9.11)

i.e., x′, y′, z′ ∈ Zp and at least one of them is a unit.

9.2 Evaluation of the integral IA,p

We continue with the notation from above. Given a Borel subset S′ ⊆ S(Qp),
we define

IS′ =

∫

S′

fp(

(
D rSD−1

O rD−1

)
)θp(tr σUS)dS.

Define

S0 = {
(
x y
y z

)
∈ S(Qp)|x, y, z satisfy (9.6) and (9.7)}.

Then IS0 = IA,p is the integral (9.5) we need to compute.

Let E11 =

(
1 0
0 0

)
, E22 =

(
0 0
0 1

)
and E′

12 =

(
0 1
1 0

)
.
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Proposition 9.3. Let S′ be a Borel subset of S0. Suppose p ∤ a (resp. p ∤ b,

p ∤ c). Suppose

(
x y
y z

)
∈ S′ implies that

(
x y
y z

)
± 1

pE11 (

(
x y
y z

)
± 1

pE
′
12,

(
x y
y z

)
± 1

pE22 respectively) belongs to S′. Then IS′ = 0.

Proof. Suppose p ∤ a. The other cases can be handled similarly. By the given

property,

(
x y
y z

)
∈ S′ if and only if

(
x y
y z

)
+ 1

pE11 ∈ S′. Hence

IS′ =

∫

S′

θp(trσUS)dS =

∫

S′

θp(tr σU (S −
1

p
E11))dS = e(

a

p
)IS′ .

The proposition follows.

Proposition 9.4. Suppose

(
x y
y z

)
∈ S0. Then:

(i) If β ≥ 2, τ − 1 ≥ t+ 1 and pt+1|pβ−1z′, then

(
x y
y z

)
± 1

pE11 ∈ S0.

(ii) If α ≥ 2, τ − 2 ≥ t+ 1 and pt+1|pβ−1y′, then

(
x y
y z

)
± 1

pE
′
12 ∈ S0.

(iii) If α ≥ 2, 2α− 1 ≥ t+ 1, pt+1|pα−1x′, then

(
x y
y z

)
± 1

pE22 ∈ S0.

Remarks: 1) If in (9.10), (p2α, pαx′, pβy′, pαz′) = (pt), then the last condition
of (i) (resp. (ii), (iii)) can be replaced by the weaker condition pt|pβ−1z′ (resp.
pt|pβ−1y′, pt|pα−1x′), and the second condition of (ii) can be weakened to
τ − 2 ≥ t.
2) There are some other variants; for example, if (x′, z′) = 1 and α = t, then
in (ii), the conditions can be replaced by α ≥ 1, τ − 2 ≥ t, and pt|pβ−1y′.

Proof. (i) Replace x by x ± 1
p in (9.6) and (9.7). The left-hand side of (9.6)

becomes
(pα, pβx± pβ−1, pαy, pαz).

The left-hand side of (9.7) becomes

(p2α, pτx± pτ−1, pτy, p2αz, pτ (xz − y2)± pβ−1z′).

Under the given hypotheses, pβ−1 ∈ (p), pτ−1 ∈ (pt+1) and pβ−1z′ ∈ (pt+1).

Hence

(
x y
y z

)
± 1

pE11 satisfies (9.6) and (9.7).

(ii) Replace y by y ± 1
p in (9.6) and (9.7). The left-hand side of (9.6) becomes

(pα, pβx, pαy ± pα−1, pαz).

Documenta Mathematica 24 (2019) 677–747



Distribution of Siegel Modular Satake Parameters 721

The left-hand side of (9.7) becomes

(p2α, pτx, pτy ± pτ−1, p2αz, pτ(xz − y2)∓ 2pβ−1y′ − pτ−2).

Under the given hypotheses in this case, pα−1 ∈ (p), pτ−2 ∈ (pt+1) and pβ−1y′ ∈
(pt+1). Hence

(
x y
y z

)
± 1

pE
′
12 satisfies (9.6) and (9.7).

Assertion (iii) and the remarks can be proven similarly.

Corollary 9.5. Suppose p ∤ a, and that

(i) β ≥ 2,

(ii) τ − 1 ≥ t+ 1,

(iii) β − 1 ≥ t+ 1.

Then IA,p = 0.

Proof. Suppose

(
x y
y z

)
∈ S0. Then by (9.9), z′ ∈ Zp, so by the third hypoth-

esis, pt+1|pβ−1z′. By Proposition 9.4,

(
x y
y z

)
± 1
pE11 ∈ S0. The assertion now

follows by Proposition 9.3.

Corollary 9.6. Suppose p ∤ b, and

(i) α ≥ 2,

(ii) τ − 2 ≥ t+ 1,

(iii) β − 1 ≥ t+ 1.

Then IA,p = 0.

Proof. This follows in the same way as the previous corollary, using Proposition
9.4 (ii), and Proposition 9.3.

Proposition 9.7. Suppose condition (iii) of the above corollaries fails to hold,
i.e., β − 1 ≤ t. Then exactly one of the following is true:

1. τ = 2τ ′ + 1 is odd, α = τ ′, β = τ ′ + 1, and t = τ ′,

2. τ = 2τ ′ is even, α = τ ′ − 1, β = τ ′ + 1, and t = τ ′,

3. τ = 2τ ′ is even, and α = β = t = τ ′,

4. τ = 2τ ′ is even, α = β = τ ′, and t = τ ′ − 1.
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Proof. Suppose β ≤ t + 1. Then because we always have t ≤
[
τ
2

]
(where

brackets denote the floor), it follows that β ≤ t + 1 ≤
[
τ
2

]
+ 1. On the other

hand, τ = α+β ≤ 2β, which gives the lower bound in the following inequality:

⌈τ
2

⌉
≤ β ≤

[τ
2

]
+ 1.

(Here, ⌈·⌉ denotes the ceiling.) Using β − 1 ≤ t ≤
[
τ
2

]
, the result follows easily

by considering the possible cases.

Proposition 9.8. Suppose α, β, t, τ satisfy Proposition 9.7 (1), i.e., τ = 2τ ′+
1, α = τ ′, β = τ ′ + 1, and t = τ ′. Then if τ ′ ≥ 2, IA,p = 0.

Proof. Let

(
x y
y z

)
∈ S0. Then (9.10) is satisfied, and since α = τ ′ ≥ 2, (9.11)

is also satisfied. In particular, by (9.10),

x′z′ ≡ py′2 (mod p2). (9.12)

It follows that either x′ or z′ is a unit. Indeed, if p|x′ and p|z′, then y′ is a
unit by (9.11), leading to an obvious contradiction in (9.12). In fact, by (9.12),
p|x′z′ and hence exactly one of x′ or z′ is a unit.

First suppose p ∤ b. Note that (x′, z′) = 1, α = t ≥ 2,

τ − 2 = 2τ ′ − 1 > 2τ ′ − τ ′ = t,

and pt|pβ−1y′. By the second remark after Proposition 9.4,

(
x y
y z

)
± 1

pE
′
12 ∈

S0. By Proposition 9.3, IA,p = IS0 = 0.

Finally, suppose p|b. Then as noted earlier, p ∤ a. Since one of x′ or z′ is a unit,
(pαx′, pαz′) = (pt). Furthermore, pt|pβ−1z′, and as above, τ − 2 ≥ t. By the

first remark after Proposition 9.4,

(
x y
y z

)
± 1

pE11 ∈ S0. By Proposition 9.3,

IA,p = IS0 = 0.

Proposition 9.9. Suppose α, β, t, τ satisfy Proposition 9.7 (2), i.e., τ = 2τ ′

is even, α = τ ′ − 1, β = τ ′ + 1, and t = τ ′. Then if τ ′ ≥ 3, IA,p = 0. In fact,
if p ∤ ac, then IA,p = 0 if τ ′ ≥ 2.

Proof. Let

(
x y
y z

)
∈ S0. Suppose τ ′ ≥ 2. By (9.10), pτ

′ |pτ ′−1x′ and

pτ
′ |pτ ′−1z′, and hence p|x′ and p|z′. Therefore by (9.11), y′ is a unit.

Suppose p ∤ ac. Because p|z′, we have pt+1|pβ−1z′. Hence by Proposition 9.4,( x y
y z

)
± 1

pE11 ∈ S0. By Proposition 9.3, IS0 = 0.

Next suppose p ∤ b and τ ′ ≥ 3. Write x′ = px′′ and z′ = pz′′, with x′′ and z′′ ∈
Zp. By (9.10), p2x′′z′′ ≡ p2y′2 (mod pt), so x′′z′′ ≡ y′2 (mod pτ

′−2). Because
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τ ′ ≥ 3, it follows that x′′ and z′′ are units. Therefore (pαx′) = (pt). Obviously
pt|pβ−1y′. By the first remark after Proposition 9.4,

( x y
y z

)
± 1

pE
′
12 ∈ S0. By

Proposition 9.3, IA,p = IS0 = 0.

Proposition 9.10. Suppose α, β, t, τ satisfy Proposition 9.7 (3), i.e. τ = 2τ ′

and α = β = t = τ ′. Suppose further that τ ′ ≥ 2. Then the integral IA,p is
given explicitly by (9.14) below.

Proof. Suppose

(
x y
y z

)
∈ S0. Then (9.11) implies (ptx′, pty′, ptz′) = (pt).

Hence (9.11) and (9.10) taken together are equivalent to (9.11) and

x′z′ ≡ y′2 (mod pt). (9.13)

If y′ is not a unit, then by (9.13) and (9.11), exactly one of x′ or z′ is a unit.
So there is a partition

S0 = S1 ∪ S2 ∪ S3,

where

S1 = {
(
x y
y z

)
∈ S0 : x′, y′, z′ are units},

S2 = {
(
x y
y z

)
∈ S0 : p|y′, p|z′, and x′ is a unit},

S3 = {
(
x y
y z

)
∈ S0 : p|y′, p|x′, and z′ is a unit}.

We claim that IS2 = IS3 = 0. Let
( x y
y z

)
∈ S2. Then (pαx′) = (pt), pt|pβ−1z′,

and τ−1 ≥ t+1. By the first remark after Proposition 9.4,

(
x y
y z

)
± 1
pE11 ∈ S0.

In fact, this matrix belongs to S2 since pβ(x ± 1
p ) = x′ ± pβ−1 is a unit.

Hence by Proposition 9.3, IS2 = 0 if p ∤ ac. If p|ac, then p ∤ b. In this
case, (pαx′) = (pt), pt|pβ−1y′, and τ − 1 ≥ t + 1. By the first remark after

Proposition 9.4,

(
x y
y z

)
± 1

pE
′
12 ∈ S0. In fact, the matrix belongs to S2 since

pα(y ± 1
p ) = y′ ± pα−1 ∈ pZp. By Proposition 9.3, IS2 = 0. The proof that

IS3 = 0 is similar.

For the integral over S1, note that the validity of (9.11) and (9.13) depends
only on x′, y′, z′ (mod pτ

′

), which also means that S1 = S1+S2(Zp) (where S2

here denotes the symmetric matrices). Hence, writing x, y, z for the congruence
classes of x′, y′, z′ mod pτ

′

,

IA,p = IS1 =

∫

S1

θp(tr(σUS))dS
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=
∑

x,y,z∈(Zp/pτ
′
Zp)∗,

xz≡y2(mod pτ
′
)

∫

z

pτ
′ +Zp

∫

y

pτ
′ +Zp

∫

x

pτ
′ +Zp

θp(ax+ by + cz)dxdydz

=
∑

y∈(Zp/pτ
′
Zp)∗

e(− by
pτ ′ )




∑

x,z∈Zp/pτ
′
Zp

xz≡y2(mod pτ
′
)

e(−ax+ cz

pτ ′ )




=
∑

y∈(Zp/pτ
′
Zp)∗

e(− by
pτ ′ )




∑

x,z∈Zp/pτ
′
Zp

xz≡1(mod pτ
′
)

e(−y(ax+ cz)

pτ ′ )




=
∑

x,z∈Zp/pτ
′
Zp

xz≡1(mod pτ
′
)


 ∑

y∈(Zp/pτ
′
Zp)∗

e(−y(ax+ cz+ b)

pτ ′ )


 . (9.14)

We remark that the computation here is valid for τ ′ ≥ 1. The sum over y can
be evaluated using (9.20) below.

Proposition 9.11. Suppose α, β, t, τ satisfy Proposition 9.7 (4), i.e. τ = 2τ ′

is even, α = β = τ ′, and t = τ ′ − 1. Suppose further that τ ′ ≥ 2. Then the
integral IA,p is given by (9.18) below.

Proof. In this case, (9.11) and (9.10) are equivalent to (9.11) and

(x′z′ − y′2) = (pτ
′−1), (9.15)

i.e.,

x′z′ ≡ y′2 (mod pτ
′−1) (9.16)

but
x′z′ 6≡ y′2 (mod pτ

′

) (9.17)

As in the previous proof, we integrate over S1, S2 and S3. We first show that
IS2 = IS3 = 0. Suppose

( x y
y z

)
∈ S2, so x′ ∈ Z∗

p, p|y′, and p|z′. Then the

conditions of Proposition 9.4(i) are satisfied, so

(
x y
y z

)
± 1

pE11 ∈ S0. Since

pβ(x+ 1
p ) = x′+pβ−1 is a unit, this matrix in fact belongs to S2. By Proposition

9.3, IS2 = 0, assuming p ∤ ac. On the other hand, if p|ac, then p ∤ b. The

hypotheses to Proposition 9.4(ii) are satisfied, so

(
x y
y z

)
± 1

pE
′
12 ∈ S2, and

once again Proposition 9.3 gives IS2 = 0. The proof that IS3 = 0 is similar.

For the integral over S1, just as in the proof of the previous proposition, we
have

IA,p = IS1 =

∫

S1

θp(tr σUS)dS

Documenta Mathematica 24 (2019) 677–747



Distribution of Siegel Modular Satake Parameters 725

=
∑

x,y,z∈(Zp/pτ
′
Zp)∗,

xz≡y2(mod pτ
′−1), xz6≡y2(mod pτ

′
)

∫

z

pτ
′ +Zp

∫

y

pτ
′ +Zp

∫

x

pτ
′ +Zp

θp(ax+ by + cz)dxdydz

=
∑

y∈(Zp/pτ
′
Zp)∗

e(− by
pτ ′ )




∑

x,z∈Zp/pτ
′
Zp

xz≡y2(mod pτ
′−1),xz6≡y2(mod pτ

′
)

e(−ax+ cz

pτ ′ )




=
∑

y∈(Zp/pτ
′
Zp)∗

e(− by
pτ ′ )




∑

x,z∈Zp/pτ
′
Zp

xz≡1(mod pτ
′−1),xz6≡1(mod pτ

′
)

e(−y(ax+ cz)

pτ ′ )




=
∑

x,z∈Zp/pτ
′
Zp

xz≡1(mod pτ
′−1),xz6≡1(mod pτ

′
)




∑

y∈(Zp/pτ
′
Zp)∗

e(−y(ax+ cz+ b)

pτ ′ )


 (9.18)

=

p−1∑

h=1

∑

x,z∈Zp/pτ
′
Zp

xz≡1+hpτ
′−1(mod pτ

′
)




∑

y∈(Zp/pτ
′
Zp)∗

e(−y(ax+ cz+ b)

pτ ′ )


 .

Once again, this computation is valid for τ ′ ≥ 1. We remark that (9.18) can
be rewritten as

∑

x,z∈Zp/pτ
′
Zp

xz≡1(mod pτ
′−1)


 ∑

y∈(Zp/pτ
′
Zp)∗

e(−y(ax+ cz+ b)

pτ ′ )


 − (9.14). (9.19)

Corollary 9.12. Suppose β − 1 ≤ t and τ ≥ 5. Then IA,p ≪p p
3τ/4.

Proof. By Propositions 9.7-9.11, we may assume that τ = 2τ ′ is even, and IA,p
is given by (9.14) or (9.18). Recall the formula for the Ramanujan sum

∑

y∈(Zp/pτ
′
Zp)∗

e(
yℓ

pτ ′ ) =





pτ
′ − pτ ′−1 if pτ

′ |ℓ,
−pτ ′−1 if pτ

′−1‖ℓ,
0 if pτ

′−1 ∤ ℓ

(9.20)

([Hua, Theorem 4.3]). Thus the summation over y in (9.14) is nonzero only if

ax+ cz+ b ≡ 0 (mod pτ
′−1). (9.21)

Since xz ≡ 1 mod pτ
′

, this is equivalent to

ax2 + bx+ c ≡ 0 mod pτ
′−1, (9.22)
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and also to

cz2 + bz+ a ≡ 0 mod pτ
′−1. (9.23)

Suppose p|a and p|c, so that p ∤ b. Then (9.21) has no solution, so the sum-
mation is zero. If p ∤ a (resp. p ∤ c), then the number of x mod pτ

′

satisfying
(9.22) (resp. z mod pτ

′

satisfying (9.23)) is ≪ pp(τ
′−1)/2 ≪p p

τ ′/2 (cf. [KL3,

Lemma 9.6]). Now applying (9.20), we see that (9.14) is O(p3τ
′/2).

Similarly, (9.18) is

≪
p−1∑

h=1

∑

x,z∈Zp/pτ
′
Zp

xz≡1+hpτ
′−1 (mod pτ

′
),

ax+cz+b≡0 (mod pτ
′−1)

pτ
′ ≪ p2p

τ′−1
2 pτ

′ ≪ p3τ
′/2.

9.3 Proof of Proposition 9.1

For p ∈ S, we require a bound for the local integral IA,p given in (9.5).
We continue to use the notation of Section 9.1. Thus, τ = rp, λ(p) =
diag(1, pt, pτ , pτ−t) for 0 ≤ t ≤ τ/2, D = diag(pα, pβ) for 0 ≤ α ≤ β with

α+ β = τ , and σU = tUσ1U =

(
a b/2
b/2 c

)
.

By (3.10)

ρ =
3

2
e0 − 2e1 − e2,

so

〈λ, ρ〉 = 3

2
ℓ0 − 2ℓ1 − ℓ2 =

3

2
τ − t.

To prove Proposition 9.1, we must show that for some ε > 0,

|IA,p(cλ)| ≪ p(1−ε)〈λ,ρ〉−ετ = p(1−ε)(
3
2 τ−t)−ετ . (9.24)

By the trivial bound (7.13),

|IA,p| ≤ p2α+β = pα+τ .

Therefore (9.24) is certainly satisfied when

α+ τ ≤ (1 − ε)(3
2
τ − t)− ετ, (9.25)

or equivalently,

α+ (1− ε)t ≤ 1− 5ε

2
τ.

Note that (1− ε)(32τ − t)− ετ is a decreasing function of ε. Therefore if (9.24)
holds for some particular ε = ε0, then it holds for all smaller positive ε. For
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concreteness, we will verify it for ε0 = 0.01, in which case the above inequality
takes the form

α+ 0.99t ≤ 0.475τ. (9.26)

For any given value of τ , there are only finitely many permissible values for t, α
and β, so the associated integral is bounded by a constant depending only on
τ . Therefore we may assume that

τ ≥ 7. (9.27)

If p ∤ b (resp. p ∤ ac) and the conditions of Corollary 9.5 (resp. Corollary 9.6)
hold, the integral vanishes and the desired bound is trivially satisfied.

Suppose condition (iii) of either Corollary 9.5 or Corollary 9.6 fails. Then by
Corollary 9.12,

IA,p ≪ p3τ/4 < p(1−2ε)τ

when ε < 1/8. If t = τ/2 (as is the case in Proposition 9.10), then

p(1−2ε)τ = p(1−ε)(
3
2 τ−t)−ετ .

If t = τ/2− 1 (as is the case in Proposition 9.11), then

p(1−2ε)τ ≪ p(1−2ε)τ+(1−ε) = p(1−ε)(
3
2 τ−t)−ετ .

Either way, we obtain the desired bound for IA,p when ε < 1/8.

Suppose condition (i) of either Corollary 9.5 or Corollary 9.6 fails. Then (using
α ≤ β in the first case) α ≤ 1. By (9.7), t ≤ 2. Hence by (9.27),

α+ 0.99t < 3 < 3.325 = 0.475× 7 ≤ 0.475τ,

so (9.26) is satisfied in this case, and the desired bound holds.

Suppose condition (ii) of either Corollary 9.5 or Corollary 9.6 fails. Then
τ − 2 ≤ t ≤ τ

2 , which means that τ ≤ 4, contradicting (9.27).

This proves (9.24) and hence Proposition 9.1.

A Discrete series matrix coefficients for GSp(2n)

Here we explicitly compute certain discrete series matrix coefficients for
GSp2n(R) using ideas of Harish Chandra. Our main references for the back-
ground material are [AS] and [Kn].

A.1 Root System

The Lie algebra of Sp2n(R) is

g = {X | JX + tXJ = 0}

=

{(
A B
C D

)
∈M2n(R)|A = − tD, B = tB, C = tC

}
.
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We have
g = k⊕ p,

where

k =

{(
A B
−B A

)
∈M2n(R)|A = − tA,B = tB

}

is the Lie algebra of K,†

p =

{(
A B
B −A

)
∈M2n(R)|A = tA,B = tB

}
.

Let h ⊆ kC denote the real subspace consisting of all matrices of the form




a1
a2

. . .
an

−a1
−a2

. . .
−an



, (A.1)

for aj ∈ iR (i2 = −1). Then h is a compact Cartan subalgebra of gC. For each
j = 1, . . . , n, define a linear form ej on hC by taking the above matrix to iaj .
Let ∆ = ∆(hC, gC) ⊆ h∗C be the set of roots. One finds that

∆ = {±2ej,±(ej + ek), ej − ek| j 6= k}.

The compact roots (i.e. those whose root spaces belong to kC) are

∆K = {ej − ek| j 6= k}.

Let ∆nc = ∆ − ∆K denote the set of noncompact roots. We fix the inner
product in ∆ determined by

〈ei, ej〉 = δij .

We set εj = −ej, and fix the following ordered basis for h∗C:

{ε1 + ε2 + · · ·+ εn, εn − εn−1, εn−1 − εn−2, . . . , ε2 − ε1}.

This determines a good ordering of ∆ (i.e. ∆+
nc > ∆+

K) in which ∆+ = ∆+
nc∪∆+

K

is given by
2εj, 1 ≤ j ≤ n

εj + εk, 1 ≤ j < k ≤ n

}
∆+
nc

εk − εj, 1 ≤ j < k ≤ n
}
∆+
K .

†In this appendix, K denotes the compact subgroup (3.4) which was denoted K∞ else-
where in the paper.
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Then

δG =
1

2

∑

α∈∆+

α = ε1 + 2ε2 + . . .+ nεn. (A.2)

Remark: The positive system (here denoted ∆′+) considered in [AS] is the
one used in Chapter IX of [Kn]. The relationship to the present system is
∆′
K
+ = ∆+

K and ∆′
nc

+ = −∆+
nc. In other words, ∆+ = −wK(∆′+), where wK

is the element of the Weyl group WK taking ∆+
K to −∆+

K . (See Remark (1)
after Theorem 9.20 in [Kn].)

For each root α ∈ ∆, let gα ⊆ gC be the associated root space. Define the
following subalgebras of gC:

p+ =
⊕

α∈∆+
nc

gα =

{(
A −iA
−iA −A

)
|A = tA ∈Mn(C)

}
,

and

p− =
⊕

α∈∆+
nc

g−α =

{(
A iA
iA −A

)
|A = tA ∈Mn(C)

}
.

The corresponding analytic subgroups of Sp2n(C) are

P+ = exp(p+) =

{(
In +A −iA
−iA In −A

)
|A = tA ∈Mn(C)

}

and

P− = exp(p−) =

{(
In +A iA
iA In −A

)
|A = tA ∈Mn(C)

}
.

We also have

KC = exp(kC) =

{(
A B
−B A

)
∈ GL2n(C)| (A+ iB) t(A− iB) = In

}
.

Since A and B are complex, the condition on (A+iB) is equivalent to A+iB ∈
GLn(C), reflecting the fact that U(n,C) ∼= GLn(C).

A.2 Realization in SU(n, n)

Recall that

SU(n, n) =

{
g ∈ SL2n(C)| tg

(
In
−In

)
g =

(
In
−In

)}
.

Define

G′ = {g ∈ SU(n, n)| tgJg = J}.
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One can show that

G′ =

{(
α β

β α

)
∈ SL2n(C)

∣∣∣∣
tαα− tββ = In

tβα = tαβ

}
.

Let τ =

(
In iIn
iIn In

)
. Then the map

g 7→ g′ = τ−1gτ

is an isomorphism from Sp2n(R) into G′. For any object O associated to
Sp2n(R), we let O′ denote the corresponding object for G′. Writing g =(
A B
C D

)
, we have

g′ =
1

2

(
(A+D) + i(B − C) (B + C) + i(A−D)
(B + C)− i(A−D) (A+D)− i(B − C)

)
. (A.3)

Taking g =

(
A B
−B A

)
∈ K, we see that g′ =

(
A+Bi

A−Bi

)
, where

A+Bi is unitary. Thus

K ′ = τ−1Kτ =

{(
α

tα−1

)
|α ∈ U(n)

}
.

Likewise,

K ′
C = τ−1KCτ =

{(
α

tα−1

)
|α ∈ GLn(C)

}

P ′+ = τ−1P+τ =

{(
In O
−2iA In

)
|A = tA ∈Mn(C)

}

and

P ′− = τ−1P−τ =

{(
In 2iA
O In

)
|A = tA ∈Mn(C)

}
.

A.3 Holomorphic discrete series

We recall without proof some properties of the holomorphic discrete series for
the group G = Sp2n(R). This material is due to Harish-Chandra [HC]. We
follow the exposition in Chapter VI of [Kn]. Suppose λ ∈ h∗C is analytically
integral (i.e. λ(H) ∈ 2πiZ whenever exp(H) = 1) and dominant with respect
to K (i.e. 〈λ, α〉 > 0 for all α ∈ ∆+

K). Let (Φλ, V ) denote the irreducible
unitary representation of K with highest weight λ. Let vλ ∈ V be a highest
weight unit vector (unique up to unitary scaling).

Extend Φλ to a holomorphic representation of KC. For g ∈ G, let µ(g) ∈ KC

denote the middle component in the Harish-Chandra decomposition

G ⊆ P+KCP
−
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([Kn, Theorem 6.3]). Define

ψλ(g) =
〈
Φλ(µ(g))

−1vλ, vλ
〉
V
.

Then under the condition

〈λ+ δG, α〉 < 0 for all α ∈ ∆+
nc, (A.4)

ψλ is a nontrivial square-integrable function on G ([Kn, Lemma 6.9]), and its
translates under the left regular representation generate an irreducible square-
integrable representation (πλ, Vλ) of G ([Kn, Theorem 6.6]). Furthermore, by
[Kn, p. 160 (6)],

〈πλ(g)ψλ, ψλ〉L2 = ψλ(g
−1)‖ψλ‖2.

To each v ∈ V we associate the function
〈
Φλ(µ(g))

−1v, vλ
〉
∈ Vλ. This defines

a K-equivariant embedding V → Vλ, and hence Φλ occurs as a K-type in πλ,
with highest weight vector ψλ. In fact, this K-type occurs with multiplicity
one and wλ = ψλ

‖ψλ‖
∈ Vλ is a highest weight unit vector ([Kn, p. 160 (5)]).

Our aim is to compute the matrix coefficient

〈πλ(g)wλ, wλ〉 = ψλ(g
−1) =

〈
Φλ(µ(g

−1)−1)vλ, vλ
〉
V
. (A.5)

We will use the realization of G in SU(n, n) since it facilitates the computation

of µ(g). Let g′ =

(
α β

β α

)
∈ G′. Then the Harish-Chandra decomposition is

given explicitly by

(
α β

β α

)
=

(
In O

βα−1 In

)(
α O
O tα−1

)(
In α−1β
O In

)
. (A.6)

To verify this decomposition, note that the lower right corner on the right-hand
side is tα−1 + βα−1β. By the fact that tαα = In + tββ,

α = tα−1 + tα−1 tββ.

Also tβα = tαβ =⇒ tα−1 = βα−1 tβ
−1

. Substituting this into the second
term above, we see that the lower right-hand corner is equal to α as needed.

Let g =

(
A B
C D

)
∈ Sp2n(R), and let g′ =

(
α β

β α

)
∈ G′ as in (A.3). By

(A.6), we see that µ(g′) =

(
α O
O tα−1

)
. Now g′−1 =

(
tα − tβ

− tβ tα

)
, so

µ(g′−1) =

(
tα O
O α−1

)
. (A.7)
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A.4 Explicit formula for the matrix coefficient

Although it is possible to compute the matrix coefficient of πλ explicitly for
any λ (at least when n = 2), for simplicity, we have chosen here to treat just
the case where dimΦλ = 1. This discussion is valid for any n ≥ 2.

For k ∈ Z, let Φk be the character of K = U(n) defined by

Φk(

(
A B
−B A

)
) = det(A+Bi)k. (A.8)

Its holomorphic extension to Un(C) = GLn(C) is given by the same formula.
The (unique) weight of this character is

λk = −k(ε1 + · · ·+ εn). (A.9)

This weight satisfies condition (A.4) exactly when k > n.

Proposition A.1. The character Φk = detk arises as the minimal K-type of a
holomorphic discrete series representation π+

k of Sp2n(R) if and only if k > n.
If this holds and wk is a unit vector of weight λk, then for any g =

(
A B
C D

)
∈

Sp2n(R) we have

〈
π+
k (g)wk, wk

〉
=

2nk

det(A+D + i(−B + C))k
.

Proof. By (A.5) and (A.7),

〈
π+
k (g)wk, wk

〉
= Φk(µ(g

−1))−1 = det( tα)−k.

By (A.3), if g =
(
A B
C D

)
,

α =
1

2
((A+D) + i(B − C)). (A.10)

The given formula now follows.

Corollary A.2. For g =
(
A B
C D

)
∈ Sp2n(R), define f+

k (g) = 〈πk(g)wk, wk〉.
Then

f+
k (g) =

2nk

det(A+D + i(B − C))k . (A.11)

Corollary A.3. For k > n and g =
(
A B
C D

)
∈ Sp2n(R), |f+

k (g)| equals

2nk

det(2In +A tA+B tB + C tC +D tD + i(A tC − C tA+B tD −D tB))k/2
.

Proof. For α = A+D + i(B − C), | detα|2 = detα det tα = detα tα. Expand
this using the relations given in (3.1) and (3.2). The corollary then follows
immediately.
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With the formula for the matrix coefficient in hand, we can compute its Lp-
norms. The formulas above and the calculations below closely parallel those
for GL2(R) given in [KL1, §14].
Proposition A.4. For any real number ℓ > 0, the function |f+

k |ℓ is integrable
over G = Sp2n(R) if and only if ℓk > 2n. If this condition holds, then with
Haar measure normalized as in the proof below,

∫

G

|f+
k (g)|ℓdg =

2n(n+1)
∏n−1
j=1 j!∏

1≤i≤j≤n(ℓk− (i + j))
.

Proof. The matrix coefficient f+
k is bi-K-invariant, so it is convenient to use

the Cartan decomposition G = KA+K, where

A+ = {a = diag(a1, . . . , an, a
−1
1 , . . . , a−1

n )| 1 < a1 < a2 < · · · < an}.
We may view ∆+ as the set of positive roots relative to the action of the
diagonal subgroup on g, and A+ = exp(a+), where a+ is the positive Weyl
chamber. By a standard integration formula ([vdB, Lemma 4.2]), when dg is
suitably normalized we have

∫

G

|f+
k (g)|ℓdg =

∫

K×A+×K

|f+
k (k1ak2)|ℓ

∏

α∈∆+

(aα − a−α) dk1da dk2,

where the Haar measure of the compact group K is taken to be 1. Note that
(aα − a−α) > 0 by the definition of A+. We now change notation and write
a = diag(a1, . . . , an). Using Corollary A.3, the above is

= 2nℓk
∫

a∈GLn(R) diagonal,
1<a1<···<an

det(2In + a2 + a−2)−ℓk/2
∏

α∈∆+

(aα − a−α)da

= 2nℓk
∫ ∞

1

∫ ∞

a1

· · ·
∫ ∞

an−1

n∏

d=1

(2 + a2d + a−2
d )−ℓk/2(a2d − a−2

d )

×
∏

1≤i<j≤n

(aiaj − a−1
i a−1

j )(aja
−1
i − a−1

j ai)
dan
an
· · · da1

a1
.

To ease notation below, set κ = ℓk. Then letting uj = 2+ a2j + a−2
j , the above

is

= 2nκ−n
∫ ∞

4

∫ ∞

u1

· · ·
∫ ∞

un−1

n∏

d=1

u
−κ/2
d

∏

1≤i<j≤n

(uj − ui) dun · · · du1. (A.12)

This can be evaluated using the Selberg integral, but we have chosen to give
a self-contained treatment since it does not take much more space to do so.
Observe that

∏

i<j

(uj − ui) =
∑

σ∈Sn

sgn(σ)u
σ(1)−1
1 · · ·uσ(n)−1

n .
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Hence (A.12) becomes

2nκ

2n

∑

σ∈Sn

sgn(σ)

∫ ∞

4

∫ ∞

u1

∫ ∞

u2

· · ·
∫ ∞

un−1

u
σ(1)−1−κ/2
1 · · ·uσ(n)−1−κ/2

n dun · · · du1

=
2nκ

2n

∑

σ∈Sn

sgn(σ)(−1)n4σ(1)+σ(2)+···+σ(n)−nκ/2

∏n
j=1

(
σ(n) + σ(n− 1) + · · ·+ σ(n− j + 1)− jκ/2

)

= 2n
2 ∑

σ∈Sn

sgn(σ)(
κ/2− σ(n)

)(
κ− σ(n)− σ(n− 1)

)
· · ·
(
nκ/2− σ(n)− · · · − σ(1)

) ,

provided κ > 2n (otherwise the integral diverges). Replace σ by στ , where
τ(i) = n− i+ 1 for all 1 ≤ i ≤ n. The above is then

= 2n
2 ∑

σ∈Sn

sgn(στ)(
κ/2− σ(1)

)(
κ− σ(1)− σ(2)

)
· · ·
(
nκ/2− σ(1)− · · · − σ(n)

) .

Applying Lemma A.5 below with bi = κ/2− i, the above is

= 2n
2+n

sgn(τ)
∏
i<j(i− j)∏

i≤j(κ− (i + j))
= 2n(n+1)

∏
i<j(j − i)∏

i≤j(κ− (i + j))
,

by the fact that sgn(τ) = (−1)(n2) (both are 1 iff n ≡ 0, 1 mod 4). The
proposition now follows.

Lemma A.5. Let F be a field of characteristic 0, and let b1, . . . , bn be indeter-
minate variables. Then in the field F (b1, . . . , bn) of rational functions,

∑

σ∈Sn

sgn(σ)

bσ(1)(bσ(1) + bσ(2)) · · · (bσ(1) + · · ·+ bσ(n))
= 2n

∏
i<j(bj − bi)∏
i≤j(bi + bj)

. (A.13)

Proof. Let A(b1, . . . , bn) denote the left-hand side of (A.13). Then

A(b1, . . . , bn) =
n∑

ℓ=1

(−1)n−ℓA(b1, . . . , bℓ−1, bℓ+1, . . . , bn)

b1 + · · ·+ bn
. (A.14)

To see this, write A(b1, . . . , bn) as

1

b1 + · · ·+ bn

n∑

ℓ=1

∑

σ∈Sn,
σ(n)=ℓ

sgn(σ)

bσ(1)(bσ(1) + bσ(2)) · · · (bσ(1) + · · ·+ bσ(n−1))
.

Given σ ∈ Sn with σ(n) = ℓ, define σ′ ∈ Sn−1 ⊆ Sn by

σ′(i) =

{
σ(i) if 1 ≤ σ(i) < ℓ

σ(i)− 1 if ℓ+ 1 ≤ σ(i) ≤ n.
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Then σ is the composition of σ′ with n − ℓ transpositions, so sgn(σ) =
(−1)n−ℓ sgn(σ′). Since σ 7→ σ′ defines a bijection between the set of such
σ and Sn−1, (A.14) follows.

We may now prove (A.13) by induction on n. The base case n = 2 is easy to
check by hand. Applying the inductive hypothesis to (A.14),

A(b1, . . . , bn) =
2n−1

b1 + · · ·+ bn

n∑

ℓ=1

(−1)n−ℓ
∏
i<j;i,j 6=ℓ(bj − bi)∏
i≤j;i,j 6=ℓ(bi + bj)

.

Let

B(b1, . . . , bn) =
b1 + · · ·+ bn

2n−1

(
∏

1≤i≤j≤n

(bi + bj)

)
A(b1, . . . , bn) (A.15)

=
n∑

ℓ=1

(−1)n−ℓ
(

∏

i<j;i,j 6=ℓ

(bj − bi)
)(

n∏

i=1

(bi + bℓ)

)
. (A.16)

This is a homogeneous polynomial of degree (n−1)(n−2)
2 + n = n(n−1)

2 + 1.
Because

A(b1, . . . , bn) = sgn(σ)A(bσ(1), . . . , bσ(n))

for all permutations σ ∈ Sn, B inherits this property from (A.15). In particular,

B(b1, . . . , bn) = −B(bσ(1), . . . , bσ(n)) (A.17)

if σ = (i j) is any 2-cycle. It follows that B(b1, . . . , bn) = 0 if bi = bj for any
i 6= j. Hence

∏
i<j(bi − bj) divides B(b1, . . . , bn), and

B(b1, . . . , bn)∏
i<j(bj − bi)

is a homogeneous symmetric polynomial of degree n(n−1)
2 + 1 − n(n−1)

2 = 1.
Hence it has the form c(b1 + · · · + bn) for some constant c. The monomial

bnn
∏n−1
i=2 b

i−1
i appears in (A.16) with coefficient 2 (take ℓ = n), and in (b1 +

· · ·+bn)
∏
i<j(bj−bi) with coefficient 1. Therefore c = 2, and (A.13) follows.

A.5 Integrability

An irreducible unitary representation π of G = Sp2n(R) is said to be integrable
if it has a nonzero matrix coefficient belonging to L1(G), or equivalently, if all
of its K-finite matrix coefficients belong to L1(G). Applying Proposition A.4
with ℓ = 1, we immediately obtain the following.

Proposition A.6. The representation π+
k is integrable if and only if k > 2n.

Documenta Mathematica 24 (2019) 677–747



736 Andrew Knightly and Charles Li

More generally, let πλ be the discrete series representation of G (holomorphic
or not) with Harish-Chandra parameter λ. Then by a theorem due to Trombi,
Varadarajan, Hecht and Schmid, πλ is integrable if and only if

| 〈λ, β〉 | > 1
2

∑

α∈∆+

| 〈α, β〉 | for all β ∈ ∆nc (A.18)

([TV], [HS]; see also Miličić [Mi]). With notation as in (A.2) and (A.9), the
Harish-Chandra parameter of π+

k is

λ = λk + δG = (1 − k)ε1 + (2− k)ε2 + · · ·+ (n− k)εn (A.19)

(see Remark (1) after Theorem 9.20 of [Kn]). Note that for any j, ℓ,

| 〈λk + δG, εj + εℓ〉 | = |(j + ℓ)− 2k| = 2k− (j + ℓ). (A.20)

Using this, one may easily verify that (A.18) holds for λ exactly when k > 2n,
for an alternative proof of Proposition A.6.

A.6 Formal Degree

Recall that the formal degree of π = πλ is the constant dπ > 0 (depending only
on the choice of Haar measure on G = Sp2n(R)) satisfying

∫

G

| 〈πλ(g)v, w〉 |2dg =
‖v‖2‖w‖2

dλ

for all v, w ∈ Vπ. Applying Proposition A.4 with ℓ = 2, we immediately find
the following.

Proposition A.7. The formal degree of π+
k is the following polynomial in k

of degree n+
(
n
2

)
= n(n+1)

2 :

dk = a
∏

1≤i≤j≤n

(2k− (i+ j)), (A.21)

where a is a nonzero constant depending on dg.

Remarks: (1) Harish-Chandra proved that there exists a choice of Haar measure
for which

dλ =
∏

β∈∆+

∣∣∣∣
〈λ+ δG, β〉
〈δG, β〉

∣∣∣∣

for all λ ([HC] §10). If λ is given by (A.19), then by evaluating the above
expression explicitly as in (A.20), we obtain an alternative proof of (A.21).
(2) With measure normalized as in the proof of Proposition A.4, a =

(2n(n+1)
∏n−1
j=1 j!)

−1.
(3) If we adopt the classical normalization of measure, so that

d−1
k =

∫

G

|f+
k (g)|2dg =

∫

Hn

∣∣∣f+
k (
(
In X

In

)(
Y 1/2

Y −1/2

)
)
∣∣∣
2 dXdY

(det Y )n+1
,

then a = 2−n(n+2)π−n(n+1)/2 ([PSS, §A.1]).
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A.7 Extension of π+
k to GSp2n

We can extend π+
k to a representation of GSp2n(R) in the following way. First

induce π+
k to the group of symplectic similitudes with multiplier ±1, namely

Sp±
2n =

〈(
In
−In

)〉
Sp2n .

Let V + be the space of π+
k . Then the new space is

V = {f : Sp±2n(R)→ V +| f(gx) = π+
k (g)f(x) for all g ∈ Sp2n(R)},

and Sp±
2n(R) acts by right translation. Note that any f ∈ V is determined

by f(
(
In

In

)
) and f(

(
In

−In

)
). We identify V + with the subspace of V ±

consisting of functions which vanish on
(
In

−In

)
. Letting V − denote the space

of functions vanishing on the identity element, we have

V = V + ⊕ V −. (A.22)

We make V into a Hilbert space by defining

〈f, h〉 = 〈f(1), h(1)〉V + + 〈f(σ), h(σ)〉V + , (A.23)

where σ =

(
In
−In

)
. Then (A.22) is an orthogonal direct sum.

Denote this representation on V by πk. One easily sees that each subspace in
(A.22) is stable under Sp2n(R), and πk|Sp2n(R) = π+

k ⊕ π−
k , where π

−
k is also

irreducible and square integrable. Let

Z+ = {
(
zIn

zIn

)
| z > 0}.

Then
GSp2n = Z+ × Sp±2n .

Extend πk to a representation of GSp2n(R) by requiring Z+ to act trivially.
This is an irreducible square integrable representation, also denoted πk. For
any z ∈ Z(R) and f ∈ V , we have

πk(z)f(g) = f(sgn(z)g) = π+
k (sgn(z))f(g) = sgn(z)nkf(g)

by (A.8). This shows that the central character of πk is

χπk
(z) = sgn(z)nk. (A.24)

As before, let wk ∈ V + denote a unit vector of weight λk. Define φ0 ∈ V by

φ0(

(
In

In

)
) = wk and φ0(

(
In
−In

)
) = 0.

This is a lowest weight vector, spanning the minimal K-type of πk, which is

the two-dimensional representation IndK
±

K (Φk), where K
± = K ∪K

(
In

−In

)
.
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Proposition A.8. The representation πk is irreducible, unitary, and square-
integrable when k > n. It is integrable exactly when k > 2n, and in this case,
the formal degree of πk coincides with that of π+

k given in (A.21).

Proof. Everything follows more or less immediately from the corresponding
properties of π+

k . Indeed, define the matrix coefficient

fk(g) = 〈πk(g)φ0, φ0〉. (A.25)

Unraveling the definitions, we see that fk(g) = f+
k (g) for g ∈ Sp2n(R), and

fk(g) = 0 if r(g) < 0. Using the fact that πk is Z+-invariant, we have
∫

GSp2n(R)/Z

|fk(g)|ℓdg =

∫

Sp±
2n

|fk(g)|ℓdg =

∫

Sp2n

|fk(g)|ℓdg =

∫

Sp2n

|f+
k (g)|ℓdg.

The assertions now follow from Proposition A.4.

Theorem A.9. For g =

(
A B
C D

)
∈ GSp2n(R),

〈πk(g)φ0, φ0〉 =





r(g)
nk
2 2nk

det(A+D + i(−B + C))k
if r(g) > 0

0 if r(g) < 0.

Proof. Let r = r(g). Suppose r < 0. Then πk(g)φ0(x) 6= 0 ⇐⇒ r(x) < 0, i.e.
πk(g)φ0 ∈ V −, so it is orthogonal to φ0 ∈ V +. Thus 〈πk(g)φ0, φ0〉 = 0 in this
case.

Now suppose r > 0. Let

h = r−1/2g =

(
r−1/2A r−1/2B
r−1/2C r−1/2D

)
.

It is easy to see that r(h) = 1, i.e. that h ∈ Sp2n(R). By definition of πk,
πk(g)φ0 = πk(h)φ0. Therefore by (A.23),

〈πk(g)φ0, φ0〉 = 〈πk(h)φ0, φ0〉 =
〈
π+
k (h)wk, wk

〉
V +

=
2nk

r−nk/2 det(A+D + i(−B + C))k

by Proposition A.1.

The following corollaries are easily proven as in §A.4.
Corollary A.10. For fk(g) = 〈πk(g)φ0, φ0〉, if r(g) > 0, then

fk(g) =
r(g)

nk
2 2nk

det(A+D + i(B − C))k .

If r(g) < 0, then fk(g) = 0.
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Corollary A.11. If g =
(
A B
C D

)
∈ GSp2n(R) with r(g) > 0, then |fk(g)|

equals

r(g)
nk
2 2nk

det(2r(g)In +A tA+B tB + C tC +D tD + i(A tC − C tA+B tD −D tB))k/2
.

In the special case n = 2, we can make the above more explicit and provide a
convenient upper bound for the matrix coefficient.

Proposition A.12. Suppose n = 2, and r(g) > 0. Then

|fk(g)| =
r(g)k 4k

(4r(g)2 + 2r(g)
∑

i,j g
2
ij +

∑8
i=3X

2
i )

k/2
,

where gij are the entries of g, and the Xi are the bilinear forms in these entries
defined in the proof below. Consequently,

|fk(g)| ≤
(8r(g))k/2

(2r(g) +
∑
i,j g

2
ij)

k/2
. (A.26)

Proof. Write g =
(
A B
C D

)
. Let Aij denote the (i, j)-th entry of A, and likewise

for the entries of B,C,D. Then

det
(
2r(g)I2 + A tA+B tB + C tC +D tD + i(A tC − C tA+B tD −D tB)

)

=(2r(g) +A2
11 +A2

12 +B2
11 +B2

12 +B2
11 + C2

12 +D2
11 +D2

12) (A.27)

× (2r(g) +A2
21 +A2

22 +B2
21 +B2

22 + C2
21 + C2

22 +D2
21 +D2

22)−X2
1 −X2

2 ,

where

X1 = A11A21+A12A22+B11B21+B12B22+C11C21+C12C22+D11D21+D12D22,

X2 = A11C21+A12C22+B11D21+B12D22−C11A21−C12A22−D11B21−D12B22.

By Degen’s eight-square identity,

(A2
11+A

2
12 +B2

11 +B2
12 + C2

11 + C2
12 +D2

11 +D2
12)

× (A2
21 +A2

22 +B2
21 +B2

22 + C2
21 + C2

22 +D2
21 +D2

22) =

8∑

i=1

X2
i ,

for X1, X2 as above, and

X3 = A11A22−A12A21+B11D22−B12D21−C11C22+C12C21−D12B21+D11B22,

X4 = A11C22−A12C21+B11B22−B12B21−C12A21+C11A22−D11D22+D12D21,

X5 = A11B21−A12D22−B11A21+B12C22−C11D21−C12B22+D12A22+D11C21,

X6 = A11D21−A12B22−B11C21+B12A22+C11B21+C12D22−D11A21−D12C22,
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X7 = A11D22+A12B21−B11A22−B12C21+C11B22−C12D21+D11C22−D12A21,

X8 = A11B22+A12D21−B11C22−B12A21−C11D22+C12B21−D11A22+C21D12.

Therefore (A.27) equals

4r(g)2 + 2r(g)
∑

i,j

g2ij +

8∑

i=3

X2
i ,

and the proposition follows from Corollary A.11.

B Off-diagonal terms

In this appendix, we give a very rough estimate for the off-diagonal terms in the
relative trace formula to obtain the following quantitative version of Theorem
6.3 for a fixed level N , valid when n = 2.

Theorem B.1. Suppose n = 2, k ≥ 17, S is a finite set of primes, r =
∏
p∈S p

rp

is the similitude attached to the local test functions fp as in (5.1), and N is a
fixed level prime to S. Then with notation as in Theorem 6.3,

1

ψ(N)

∑

π∈Πk(N)

∑

ϕ∈Ek(π,N)

cσ1(ϕ)cσ2(ϕ)

‖ϕ‖2
∏

p∈S

(Sfp)(tπp)

=
∑

A

∫

S2(A)

f1(

(
I2 S
O I2

)(
A O
O r tA−1

)
)θ(tr σ1S)dS +O

(
k21/2(8r)k/2

N k−12

)
,

for an absolute implied constant.

Remarks: (1) The sum over A is dependent on k, but not on N .

(2) With extra work, one can increase the power of N in the error term, and
decrease the lower bound on k.

(3) As noted, this is a very rough estimate, which is meaningful only when k

is fixed. Indeed in the k-aspect, the “error term” is actually larger than the
“main term” when k is large, as the latter contains the factor cnkσ1 of Theorem
1.1 with very rapid decay in k.

Before specializing to the case n = 2, we give the general form of the Fourier
trace formula for a fixed level N and any n. With notation as in §5-6, define

IN =
1

ψ(N)

∫∫

(N(Q)\N(A))2

KfN (n1, n2)θ1(n1)θ2(n2)dn1dn2.

By using the spectral and geometric forms of the kernel, we have

1

ψ(N)

∑

π∈Πk(N)

∑

ϕ∈Ek(π,N)

cσ1(ϕ)cσ2 (ϕ)

‖ϕ‖2
∏

p∈S

(Sfp)(tπp) =M(f) + E(f), (B.1)
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where

M(f) =
∑

A

∫

Sn(A)

f1(

(
In S
O In

)(
A O
O r tA−1

)
)θ(tr σ1S)dS

is the “diagonal” term appearing in Theorem 6.3, and

E(f) =
1

ψ(N)

∫∫

(N(Q)\N(A))2

∑

γ=
(
A B
C D

)
∈G(Q),C 6=O

f(n−1
1 γn2)θ1(n1)θ2(n2)dn1dn2

is the off-diagonal contribution. (One checks readily that the integrand is
indeed invariant under N(Q)×N(Q).)

It is possible to express E(f) as a sum of explicit orbital integrals (cf. [KL2,
§2]), with the orbits determined via the Bruhat decomposition of G(Q). For
our more modest goal of proving Theorem B.1, it suffices to show that

E(f)≪ k21/2(8r)k/2

N k−12
(B.2)

when n = 2.

Lemma B.2. For k ≥ 2, ∆ > 0, and a ∈ R,

∞∑

n=−∞

1

((n+ a)2 +∆2)k/2
≤ k+∆

∆

∫

R

dx

(x2 +∆2)k/2
.

Proof. Let

f(x) =
1

((x+ a)2 +∆2)k/2
.

Then f ′(x) = − k(x+ a)

((x+ a)2 +∆2)k/2+1
, so that

|f ′(x)| ≤ k
((x + a)2 +∆2)1/2

((x + a)2 +∆2)k/2+1
=

k

((x + a)2 +∆2)1/2
f(x) ≤ k

∆
f(x).

By Euler’s summation formula ([MV, p. 495]),

∑

c<n≤d

f(n) =

∫ d

c

f(x)dx − f(d){d}+ f(c){c}+
∫ d

c

{x}f ′(x)dx,

where {x} = x− [x] is the fractional part of x. Hence

∞∑

n=−∞

f(n) ≤
∫

R

f(x)dx +

∫

R

|f ′(x)|dx ≤ (
k

∆
+ 1)

∫

R

f(x)dx

=
k+∆

∆

∫

R

dx

((x + a)2 +∆2)k/2
=

k+∆

∆

∫

R

dx

(x2 +∆2)k/2
.
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Proof of Theorem B.1. As before, for any set R, we let S2(R) denote the 2× 2
symmetric matrices over R. For such a matrix S, let nS =

(
I2 S
O I2

)
. Because

[0, 1)× Ẑ is a fundamental domain for Q\A,

E(f) =
1

ψ(N)

∫∫

S2([0,1)×Ẑ)2

∑

γ=
(
A B
C D

)
∈G(Q),C 6=O

f(n−1
S γnS′)θ(tr σ2S

′−trσ1S) dSdS′.

Assuming n−1
Sfin

γnS′
fin
∈ supp ffin, by Proposition 5.1 we may take

r(n−1
S γnS′) = r(γ) = ±r, (n−1

S γnS′)fin ∈M4(Ẑ), C ∈M2(NZ).

In fact, because f∞ is supported on matrices with positive similitude, we can
take r(γ) = r. By the fact that Sfin, S

′
fin ∈ S2(Ẑ), it also follows that A,B,D ∈

M2(Z).

For a square matrix g with real entries, define

Q(g) =
∑

i,j

g2ij

where gij is the (i, j)-th entry of g. Then since |f(n−1
1 γn2)| ≤

ψ(N)|f∞(n−1
1,∞γn2,∞)|, it follows by (A.26) that

|E(f)| ≤ 1

2
dk(8r)

k/2

∫∫

S2([0,1))2

∑

A,B,D∈M2(Z),

O 6=C∈M2(NZ)

(2r +Q(n−1
S

(
A B
C D

)
nS′))−k/2dSdS′.

(B.3)
(The factor 1/2 accounts for the fact that we quotient by the center of G(Q).)
We first consider the sum over B:

∑

B∈M2(Z)

(
2r +Q(n−1

S

(
A B
C D

)
nS′)

)−k/2

=
∑

B∈M2(Z)

(
2r +Q(

(
A− SC B − SD +AS′ − SCS′

C CS′ +D

)
)

)−k/2

.

By four applications of Lemma B.2, the above is

≪ k
4

∫

M2(R)

(
2r +Q(

(
A− SC Y

C CS′ +D

)
)

)−k/2

dY.

Summing this over A,D, we find in the same way that

∑

A,B,D∈M2(Z)

(
2r +Q(n−1

S

(
A B
C D

)
nS′)

)−k/2
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≪ k12
∫

M2(R)3

(
2r +Q(

(
X Y
C Z

)
)

)−k/2

dXdY dZ.

We now have an expression that is independent of S, S′, so using (A.21), (B.3)
gives

|E(f)| ≪ k15(8r)k/2
∑

O 6=C∈M2(NZ)

∫

M2(R)3

(
2r +Q(

(
X Y
C Z

)
)

)−k/2

dXdY dZ.

Because C 6= O, the above integral is bounded above by
∫

M2(R)3
Q(
(
X Y
C Z

)
)−k/2dXdY dZ

=

∫

M2(R)3
(Q(X) +Q(Y ) +Q(Z) +Q(C))−k/2dXdY dZ.

Replacing X,Y, Z with Q(C)1/2X , Q(C)1/2Y , Q(C)1/2Z respectively, the
above is

=

∫

R12

Q(C)−k/2+6 dX11 · · · dX22dY11 · · · dY22dZ11 · · · dZ22

(1 +X2
11 + · · ·+X2

22 + Y 2
11 + · · ·+ Y 2

22 + Z2
11 + · · ·+ Z2

22)
k/2

,

which converges if k ≥ 13. Indeed, for such k, we find using spherical coordi-
nates that the above is

≪ Q(C)−k/2+6

∫ ∞

0

ρ11

(1 + ρ2)k/2
dρ≪ k

−6(C2
11 + C2

12 + C2
21 + C2

22)
−k/2+6

since the integral over ρ is equal to 1
2B(6, k2 − 6) for the Beta function B(x, y),

and by Stirling’s formula, B(6, k2 − 6) ∼ Γ(6)( k2 − 6)−6 as k→∞.

Finally, we need to sum over all O 6= C ∈ M2(NZ). Write Cij = NC′
ij . We

may assume C11 6= 0. (The other cases can be handled by the exactly the same
method.) Thus

|E(f)| ≪ k9(8r)k/2

N k−12

∑

C′
ij∈Z, C′

11 6=0

((C′
11)

2 + (C′
12)

2 + (C′
21)

2 + (C′
22)

2)−k/2+6.

≪ k12(8r)k/2

N k−12

∑

C′
11 6=0

∫

R3

((C′
11)

2+x2+y2+z2)−k/2+6dx dy dz (by Lemma B.2)

=
k12(8r)k/2

N k−12

∑

c 6=0

c−k+15

∫

R3

(1 + x2 + y2 + z2)−k/2+6dx dy dz

≪ k12(8r)k/2

N k−12

∑

c 6=0

1

ck−15

∫ ∞

0

ρ2

(1 + ρ2)k/2−6
dρ.

This converges as long as k ≥ 17. The integral is equal to 1
2B(32 ,

k−15
2 ) ∼

1
2Γ(

3
2 )(

k−15
2 )−3/2 ≪ k−3/2. Hence for k ≥ 17, the above is ≪ k

21/2(8r)k/2

Nk−12 for an
absolute implied constant. This proves (B.2), and Theorem B.1 follows.
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