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Abstract. We investigate the notion of a complete enough metric space

that, while classically vacuous, in a constructive setting allows for the gen-

eralisation of many theorems to a much wider class of spaces. In doing so,

this notion also brings the known body of constructive results significantly

closer to that of classical mathematics. Most prominently, we generalise the

Kreisel-Lacome-Shoenfield Theorem/Tseytin’s Theorem on the continuity

of functions in recursive mathematics.
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1 Introduction

In Bishop’s constructive mathematics (BISH)1 the completeness of a metric space is

often added to the assumptions of a classical result in order to allow a constructive

proof. This added assumption may be a small price to pay for a fully constructive

proof, but it was noticed by the first author that some of these constructive proofs in

fact needed only a very weak form of completeness. Thus it was that the notion of com-

plete enough was introduced in [6] and it was shown that the important results known

collectively as Ishihara’s tricks are still valid when the assumption of completeness is

weakened to complete enough. In [7] the authors showed that in Bishop’s Lemma—

an important result in constructive analysis, used in the proofs of many other results—

one can also replace the assumption of completeness with the one of complete enough.

The value of the notion of complete enough is in the following two facts:

1Informal mathematics using intuitionistic logic and an appropriate set-theoretic or type-theoretic foun-

dation [1].
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(i) Classically every metric space is complete enough (Proposition 3). Therefore

adding that some space is complete enough to the assumptions of a classical

theorem does not give a classically weaker result, in contrast to adding com-

pleteness.

(ii) There are many metric spaces that are complete enough in BISH that are not

complete. The first example, given in [6], is the space of all permutationsN→N.

A great deal more examples were given in [7] and Proposition 4 extends this.

In this paper we give a more systematic presentation of complete enough spaces and

highlight some more applications, including, most prominently, the Kreisel-Lacome-

Shoenfield Theorem/Tseytin’s Theorem on the continuity of computable functions.

We will work in BISH. However, all our constructions are very tame and we are sure

that they can be formalised in a wide range of formal systems. Many of our proofs

use countable choice, which we assume implicitly, and which, in our opinion, makes

the ideas involved clearer. This can actually be avoided or at least weakened in many

cases and for the benefit of readers interested in working without countable choice we

make some observations in the conclusion.

We will make reference to several classically valid ‘omniscience principles’ including

the following.

LPO: for every binary sequence (an)n>1 we have

∀n ∈ N : an = 0∨∃n ∈N : an = 1 .

WLPO: for every binary sequence (an)n>1 we have

∀n ∈N : an = 0∨¬∀n ∈ N : an = 0 .

LLPO: for every binary sequence (an)n>1 with at most one non-zero term either

∀n ∈ N : a2n = 0∨∀n ∈ N : a2n+1 = 0 .

The next section introduces complete enough spaces and their categorical properties

and the final section gives a number of applications of this notion. The proofs in Sec-

tion 3 are mainly produced by inspection of old proofs—that is, by simply noting that

the sequences constructed in the old proofs are of the form prescribed by the notion

of complete enough. We would like to stress that the main mathematical advance is

therefore not in the proofs of the main theorems, but rather by showing that the class

of complete enough spaces contains many interesting members that are not complete.

2 Complete enough spaces

For a sequence x= (xn)n>1, a point x∞, and an increasing binary sequence λ =(λn)n>1

we define sequences λ ⊛ x and λ ⊚ x by

(λ ⊛ x)n =

{

xm if λn = 1 and λm = 1−λm+1

x∞ if λn = 0
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and

(λ ⊚ x)n =

{

xm if λn = 1 and λm = 1−λm+1

xn if λn = 0 .

A λ -tagged sequence is a sequence (xn)n>1 such that there exists an increasing binary

sequence (λn)n>1 with

λm = λn =⇒ xm = xn .

Notice that these definitions do not make any assumption on the type of the underlying

space. Let X be a metric space; we denote the metric on X by ρX , or by ρ if only one

metric space is under consideration. It is easy to show that if x = (xn)n>1 is a Cauchy

sequence in X , then λ ⊛ x and λ ⊚ x are also both Cauchy.

Proposition 1. The following are equivalent.

1. For every sequence x = (xn)n>1 in X converging to some x∞ ∈ X and every

increasing binary sequence λ = (λn)n>1, λ ⊛ x converges in X.

2. For every sequence x = (xn)n>1 in X converging to some x∞ ∈ X and every

increasing binary sequence λ = (λn)n>1, λ ⊚ x converges in X.

3. Every λ -tagged Cauchy sequence in X converges.

Proof. To prove the equivalence of (1) and (2) it suffices to show that

ρ ((λ ⊛ x)n ,(λ ⊚ x)n) → 0 as n → 0: either λn = 1 and (λ ⊛ x)n = (λ ⊚ x)n or

λn = 0 and

ρ((λ ⊛ x)n,(λ ⊚ x)n) = ρ(x∞,xm) ,

so

ρ((λ ⊛ x)n,(λ ⊚ x)n)6 ρ(x∞,xm)→ 0

as n → 0.

For any sequence (xn)n>1 in X converging to x∞ ∈ X and any increasing binary se-

quence (λn)n>1, we have that λ ⊛ x is a λ -tagged sequence. Hence 3 implies 1. Now

suppose that 1 holds and let (ξn)n>1 be a Cauchy λ -tagged sequence. Setting

xn =

{

ξn λn = 1−λn−1

ξ1 otherwise

we have that ξn = (λ ⊛ x)n for each n. To establish that 1 ⇒ 3 it remains to show that

(ξn)n>1 is convergent in X ; indeed, xn → ξ1. If λn 6= 1−λn−1, then ρ(xn,ξ1) = 0. On

the other hand, if λn = 1−λn, then

ρ(xn,ξ1) = ρ(ξn,ξn−1)→ 0

as n → ∞, since (ξn)n>1 is Cauchy.

Definition 2. A metric space X is complete enough if it satisfies any, and hence all,

of the conditions in Proposition 1.
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Every complete space is complete enough, but the two notions are not equivalent:

under the assumption of classical logic every space is complete enough.

Proposition 3. The limited principle of omniscience (LPO) is equivalent to the

statement that every metric space is complete enough.

Proof. Given an (arbitrary) λ -tagged sequence (xn)n>1, by LPO either λn = 0 for all

n and (xn)n>1 converges to x1, or there exists n such that λn = 1 and (xn)n>1 converges

to xn.

Conversely, let (an)n>1 be a binary sequence; we may assume without loss of gen-

erality that an is increasing. Let X be the space
{

1
n

∣

∣n ∈ N
}

∪ {0}, with the metric

induced by the reals and let xn =
1
n

for each n. If X were complete enough, then a⊛ x

would converge to some z ∈ X . If z ∈ {0}, then z = 0 and an = 0 for all n: for if an = 1,

then a⊛ x would converge to 1
m

where m is the smallest index such that am+1 = 1. If

z ∈
{

1
n

∣

∣n ∈ N
}

, then z = 1
n

for some n. For that n we must have an = 1, since an = 0

implies that z < 1
n
.

The previous proposition shows that there are metric spaces that cannot be shown to be

complete enough in BISH, while in varieties of constructive mathematics where LPO

is false—such as the Russian school of recursive mathematics (RUSS) or Brouwer’s

intuitionism (INT)—there are spaces that are not complete enough. The notion of

being complete enough therefore has a similar status as locatedness [2, page 88]. It

is classically vacuous, but constructively meaningful. The latter assertion, of course,

is only true if we can, constructively, find interesting spaces that are complete enough

but not complete. As it turns out there are many such examples. To name a few basic

ones [7]:

• the open interval (0,1),

• members of Baire space that are permutations, that is
{

f ⊆ N
N
∣

∣ f is bijective
}

,

• the irrational real numbers.

More systematically, in [7] it is shown that every Gδ subset, in particular open subsets,

of a complete enough space is again complete enough. The proof for Proposition 3

above shows that this cannot be improved upon—at least with regards to the Borel

hierarchy—since X in that proof is an Fσ set. Nevertheless, we can improve upon the

result in a different way.

Proposition 4. The class of complete enough sets is closed under arbitrary inter-

sections.2

Proof. Let X =
⋂

i∈I Ai be an intersection of complete enough sets, where I is inhab-

ited, and let (xn)n>1 ∈ X be a Cauchy λ -tagged sequence in X . By assumption the

limit of (xn)n>1, which is unique, is in Ai for every i ∈ I and therefore also in X .

2Assuming the index set of the set family is inhabited.
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In [7] it was also shown that every stable set S, that is every set such that

¬¬x ∈ S =⇒ x ∈ S ,

is complete enough. Notice that stable subsets are exactly the ones that can be written

as a logical complement, because of triple negation simplifying to single negation

intuitionistically, and since

A = X \ (X \A)

for any stable subset A of X .

We next give two concrete examples of spaces that cannot be shown to be complete

enough constructively; these show that the class of complete enough spaces is not

closed under finite unions in BISH.

Proposition 5. If [−1,0]∪ [0,1] is complete enough then LLPO holds and if {0}∪
(0,1] is complete enough then WLPO holds.

Proof. Let (an)n>1 be a binary sequence with at most one term equal to 1. Define an

increasing binary sequence by bn =maxi6n {ai} and consider the sequence xn =
(−1)n

n
,

which converges to 0. If there is an odd n such that an = 1 then b⊛ x converges to

− 1
n
< 0, and if there is an even n such that an = 1 then b⊛x converges to 1

n
> 0. Thus

if the limit z of b⊛ x is in [−1,0]∪ [0,1] we can decide whether z 6 0 or z > 0. In

the first case ∀n ∈N : a2n = 0, and in the second case ∀n ∈N : a2n+1 = 0. Hence, if

[−1,0]∪ [0,1] is complete enough, then LLPO holds.

Similar to the proof of Proposition 3 and the above, if the limit of b⊛ |x| in {0}∪(0,1]
is in {0}, then ∀n : an = 0 and if the limit is in (0,1], then ¬∀n : an = 0.

Proposition 6. 1. If X and Y are complete enough spaces then X ×Y is.

2. If X is complete enough and Y an arbitrary space then X \Y is complete enough.

Proof. 1. Straightforward.

2. Since stable sets are complete enough, X \Y = X ∩¬Y is the intersection of two

complete enough sets and hence is complete enough by Proposition 4.

Remark 7. Even though classically the image of a cover-compact space under a

point-wise continuous map is compact and therefore complete (enough), there is very

little hope that there is any sensible condition on f : X → R and X that ensures that

f (X) is complete enough, constructively.

Proof. Consider the map f : 2N → R defined by

f (α) =
∞

∑
n=0

αn

2n
,

that is the map mapping a binary sequence to the real in the unit interval having that

binary expansion. The map f is uniformly (even Lipschitz) continuous and 2N is

totally bounded and complete.
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Consider the sequence

xn =
1

2
+

(−1)n

2n
,

which converges to 1
2
. It is easy to see that xn ∈ f (2N) and 1

2
∈ f (2N). Shadowing

the argument in Proposition 5 from here on, one can show that if f (2N) is complete

enough, then LLPO holds.

A function f : X → Y between metric spaces X and Y is strongly extensional if

ρX(x,y)> 0 whenever ρY ( f (x), f (y)) > 0.

Proposition 8. Consider a complete enough metric space Y , and a sequence of

functions fn : X → Y converging point-wise to f : X → Y . For an increasing binary

sequence λn define gn = (λ ⊛ ( fk)k>1)n.

There exists a function g : X → Y such that gn converges point-wise to g. Moreover, if

fn → f uniformly, then also gn → g uniformly, and if fn and f are strongly extensional

functions, then so is g.

Proof. Since Y is complete enough, for every x∈X the limit g(x) of (gn(x)))n>1 exists,

and so gn converges to g point-wise.

Moreover, it is easy to prove that for all x ∈ X and any ε > 0 if there is N ∈ N such

that

∀n > N : ρY ( fn(x), f (x)) 6 ε ,

then

∀n > N : ρY (gn(x),g(x))6 ε .

Thus in particular, if fn → f uniformly, then also gn → g uniformly.

To see that g is strongly extensional let x,y ∈ X such that ε = ρY (g(x),g(y)) > 0.

Choose N ∈ N such that ρY (gN(x),g(x)) < ε/3 and ρY (gN(y),g(y)) < ε/3. Now

either λN = 0 or λN = 1. In the first case gN = f , and therefore ρY ( f (x), f (y)) > ε/3.

In the second case there is M 6 N such that gN = fM and we have ρY ( fM(x), fM(y))>
ε/3. Since f and all fn are strongly extensional, in both cases we have ρX(x,y) >
0.

Remark 9. Even if, in the above proposition, the fn and f are uniformly (or even

Lipschitz) continuous we cannot, constructively, ensure that g is sequentially continu-

ous. To see this consider the space X from Proposition 3, and define fn : X → R by

fn(
1
m
) = δn,m, where δn,m is the Kronecker delta. Then fn → 0 and all fn are Lipschitz

continuous. However, consider a binary sequence (an)n>1 with at most one 1. Let xn

be the sequence defined by xn =
an
n

and define (bn)n>1 by setting bn = maxi6n ai.

Obviously xn → 0. Notice that if there is n ∈ N such that an = 1, then xn = 1
n

and

g = fn, which means that g(xn) = 1. Now assume that g(xn)→ g(0) = 0. That means

that there exists N such that g(xn) = 0 for all n > N. But together that means that

an = 0 for all n > N. Thus if g is sequentially continuous, we can prove LPO.
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It is natural to ask whether there is a “closed enough” counterpart to being closed. As

the following definition and proposition suggest, this is not the case.3 A subset A of a

complete enough metric space X is ⊛-closed if whenever x = (xn)n>1 is a sequence in

X converging to x∞ ∈ X and λ = (λn)n>1 is an increasing binary sequence such that

λ1 = 0 and

λn = 0 → xn ∈ A ,

then the limit of λ ⊛ x is also in A.

Proposition 10. A subset A of a complete enough metric space X is ⊛-closed if

and only if it is closed.

Proof. If (xn)n>1 is a sequence in a ⊛-closed subset A of a complete enough space X

converging to x∞ in X , then letting λ be the constant zero sequence we have

x∞ = lim
n→∞

xn = lim
n→∞

(λ ⊚ x)n ∈ A .

Now suppose that A is a closed subset of a complete enough space X and let

x = (xn)n>1 be a sequence in X converging to x∞ ∈ X and λ = (λn)n>1 is an increas-

ing binary sequence such that λn = 0 → xn ∈ A. Then (λ ⊛ x)n is a sequence in A

converging in X , so

lim
n→∞

(λ ⊛ x)n = lim
n→∞

(λ ⊚ x)n ∈ A .

3 Applications

3.1 The Kreisel-Lacome-Shoenfield Theorem

It has long been known that in recursive varieties4 of constructive mathematics all

functions defined on a complete, separable metric space are (point-wise) continuous.

Versions of this result have been proven by various people including Markov, Tseytin5

[17], and Kreisel, Lacome, Schoenfield [8]. A careful analysis by Ishihara [9] breaks

the proof down into neat, axiomatic parts.

Step 1 Weak Markov’s principle (WMP)6 implies that f is strongly extensional.

Step 2 If f : X → Y is a strongly extensional function, (xn)n>1 is a sequence in X

converging to x and α < β then either

3Intuitively this can be explained by the fact that complete enough is weaker than complete because we

have the additional information of a candidate of convergence x∞, whereas in the definition of closedness

that is already the case with the standard notion.
4The same holds in Brouwer’s intuitionism. There, however, it is more of an axiom (“continuos choice”)

rather than a proven feature. Nevertheless, our generalisation is valid there as well.
5Sometimes also spelled C̆eitin, or Tseitin.
6WMP states that every pseudo-positive number is positive:

∀x ∈ R : (∀y ∈ R : ¬(y 6 0) ∨ ¬(y > x)) =⇒ x > 0 . (1)

It has also been called the Weak Limited Principle of Existence (WLPE) in [15] and the Almost Separating

Principle (ASP) in [14]. WMP is a very weak principle, which holds in classical mathematics as well as in

RUSS and in INT.
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(a) eventually ρY ( f (xn), f (x)) < β or

(b) ρY ( f (xn), f (x)) > α infinitely often, in which case LPO holds.

This is, nowadays, known as Ishihara’s second trick. It implies, in particular,

that ¬LPO implies that f is sequentially continuous.

Step 3 BD-N7 implies that every sequentially continuous function on a separable

space is point-wise continuous.

Since WMP, BD-N, and ¬LPO all hold in RUSS this shows that every f : X → Y

defined on a complete, separable space X is point-wise continuous in RUSS.

As already mentioned in the introduction, in [6] it is shown that Ishihara’s tricks only

require a complete enough space rather than a complete space. This means that if Step

1 above can be extended to complete enough spaces, then we have generalised the

Kreisel-Lacome-Shoenfield Theorem.

Proposition 11. WMP is equivalent to the statement that every f : X → Y defined

on a complete enough space X is strongly extensional.

Proof. This can be done by inspecting the proof in [9] and noting that complete

enough is enough.

Theorem 12. If f : X → Y is a function between metric spaces, and X is complete

enough, then

1. WMP+¬LPO imply that f is sequentially continuous.

2. ¬LPO implies that if f is strongly extensional, then it is sequentially continuous.

3. If X is, in addition, separable, then WMP+¬LPO+BD-N imply that f is point-

wise continuous.

In this paper we show that, to some extent, completeness has been used as an unneces-

sary crutch in constructive mathematics: in many proofs of constructive mathematics

when completeness is assumed, only the classically trivial and constructively more

general notion of complete enough is required. The next result, an improvement of

Proposition 3.1.5 in [5], which itself was extracted from Theorem 1 [9], demonstrates

the use of this crutch even more strongly: no completeness assumption is required of

the domain at all.

Proposition 13. If f : X → Y is sequentially continuous, then it is strongly exten-

sional.

Proof. Let f : X → Y be sequentially continuous and let x,y ∈ X with f (x) 6= f (y).
Fix a binary sequence (λn)n>1 such that

λn = 0 =⇒ ρ(x,y)<
1

2n
,

7Details on BD-N can be found in the already cited [10]. More details in [16, 13].
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λn = 1 =⇒ ρ(x,y)>
1

2n+1
;

then λn is increasing. Now define (xn)n>1 by

xn =

{

y if λn = 0

x otherwise.
(2)

It is easy to see that ρX(x,xn)<
1
2n for all n ∈ N, which means that xn → x. Since f is

sequentially continuous there exists N ∈ N such that for all n > N we have

ρY ( f (xn), f (x)) < ρY ( f (y), f (x)) .

Then λN = 1: for if λN = 0, then xN = y which leads to the contradiction

ρY ( f (y), f (x)) = ρY ( f (xN), f (x)) < ρY ( f (y), f (x)) .

Thus ρX(x,y) >
1

2N+1 > 0.

While this paper is mostly concerned with the role of completeness in constructive

mathematics, we are really advocating a careful analysis of proofs to extract their full

significance. The first author’s analysis of the proof of Ishihara’s tricks resulted in the

isolation of the notion of a complete enough space, a notion we hope to have shown

fruitful. Taking this approach with the last, simple, proof, we might point out that that

proof does not require the function f to be sequentially continuous, but merely that

whenever xn → x one has

∀ε > 0 : ∃n ∈ N : ρY ( f (xn), f (x)) < ε . (‡)

It is easy to see that this condition is classically equivalent to sequential continuity:

given a sequence (xn)n>1 converging to a point x such that ( f (xn))n>1 does not con-

verge to f (x), we can find ε > 0 and a subsequence (x′n)n>1 of (xn)n>1 such that

ρY ( f (x′n), f (x)) > ε for all n. Surprisingly we can give a constructive proof of this

equivalence; unsurprisingly we need to further assume the domain is complete enough.

Lemma 14. LPO is equivalent to the statement that if f : X → Y satisfies (‡) at x for

every xn → x, then it is sequentially continuous at x.

Proof. Take a function f : X → Y satisfying (‡) for some x ∈ X , let (xn)n>1 be a

sequence in X converging to x, and fix ε > 0. Since LPO implies that equality on R is

decidable, we can construct a binary sequence (λn)n>1 such that

λn = 1 ⇐⇒ ρY ( f (xn), f (x)) < ε.

Using LPO again, repeatedly, construct another binary sequence (λ ′
n)n>1 such that

λ ′
n = 1 ⇐⇒ ∀m > n : (λm = 1) .

By LPO, once again, either ∀n : λ ′
n = 0 or ∃n : λ ′

n = 1. Suppose the former holds.

We construct an increasing function h : N → N inductively as follows. Since
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λ ′
0 = 0, there exists n such that ρY ( f (xn), f (x)) > ε; let h(0) = n. Now suppose

we have defined h on {0,1, . . .m}. Since λ ′
h(m) = 0 there exists n > m such that

ρY ( f (xn), f (x)) > ε; set h(m+ 1) = n. This completes the construction of h. By con-

struction, ρY ( f (xh(n)), f (x))> ε for all n, so the sequence (xh(n))n>1 shows that f does

not satisfy (‡) at x. This contradiction ensures that ∃N(λ ′
N = 1), and thus that there

exists N such that ρY ( f (xn), f (x)) < ε for all n > N.

Conversely let (an)n>1 be a binary sequence with at most one term equalling 1. Let X

be the space
{

1
n

∣

∣n ∈ N
}

∪{0}, which is unsurprisingly the same space as in the proof

of Proposition 3. Now define a function f : X → 2 by setting f (0) = 0 and f ( 1
n
) = an.

Then f satisfies (‡) at 0: for let xn → 0. If f (x1) = 0 we are done. If f (x1) = 1 then

x1 ∈
{

1
n

∣

∣n ∈ N
}

, so there must be m∈N such that x1 =
1
m

. Furthermore me must have

am = 1. Now choose k > m such that |xk|<
1
m

. Since (an)n>1 contains at most one 1

we must have ak = 0 and therefore f (xk) = 0. Now if f is sequentially continuous at x

then there exists N ∈N such that for all n > N we have
∣

∣ f ( 1
n
)
∣

∣< 1
2
, which means that

f ( 1
n
) = 0. This, in turn, implies that an = 0 for all n > N, and so by checking finitely

many terms we can decide whether ∀n ∈ N : an = 0 or whether ∃n ∈ N : an = 1. Thus

LPO holds.

Proposition 15. Consider f : X → Y , where X is complete enough and Y is ar-

bitrary. Then f is sequentially continuous if and only if (‡) holds for all xn → x in

X.

Proof. The forward direction is trivial. To see that the converse holds let f : X →Y be

a map from a complete enough metric space X into a metric space Y satisfying (‡) for

all xn → x in X ; as mentioned after Proposition 13, such an f is strongly extensional.

In Lemma 2.3 of [6] it is shown that if f : X → Y is a strongly extensional map from

a complete enough metric space X into a metric space Y , xn → x in X , and ε > 0, then

either ρY ( f (xn), f (x)) < ε eventually or LPO holds.

Fixing ε > 0 and applying this result to f , we have that either ρY ( f (xn), f (x)) < ε
eventually or LPO holds. If the second case holds, then by the previous lemma we have

that f is sequentially continuous at x, and therefore ρY ( f (xn), f (x))< ε eventually. So

in both cases ρY ( f (xn), f (x))< ε eventually. Since ε > 0 is arbitrary, f is sequentially

continuous.

The results in this section show that strong extensionality, at least when working con-

structively, should be seen as a very weak form of continuity.

3.2 Functional Analysis

The next result shows that a complete enough subspace of Rn described by a spanning

set has a basis. Unlike many of the results in this section, this seems to be genuinely

new.

Proposition 16. A subspace V = 〈v1, . . . ,vk〉 of Rd is complete enough if and only

if V is finite dimensional; that is, if and only if V ≃ R
d′ for some d′ 6 d.
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Proof. We proceed by an induction on k.

Using countable choice, construct a sequence (µn)n>1 in {0,1, . . . ,k} such that

µm 6= 0 =⇒ ∀n > m : (µn = µm) ,

µn = 0 =⇒ max{‖v1‖, . . . ,‖vk‖} <
1

n2n
,

µn = i =⇒ ‖vi‖ >
1

(n+ 1)2n+1
.

Define (ξn)n>1 by

ξn =

{

0 µn = 0

4k(m+ 1)vi ∃m 6 n(µm = i− µm−1) ,

and (λn)n>1 by λn = sign(µn). Then (λn)n>1,(ξn)n>1 is a λ -tagged sequence and, for

natural numbers m,n with m 6 n,

‖ξn − ξm‖ <
4k(m+ 2)

m2m
→ 0 .

Since V is complete enough (ξn)n>1 converges to some ξ = a1v1 + · · ·+ akvk in V .

Let N = max{a1, . . . ,ak} and suppose that λm = 0 for all m 6 N and λn = 1 for some

n > N. Then

‖ξ‖= ‖
k

∑
i=1

aivi‖

6

k

∑
i=1

|ai|‖vi‖

6 (n− 1)‖vi‖

< k2−(n−1)

= 4k(n+ 1)
1

(n+ 1)2n+1

< 4k(n+ 1)‖vi‖

= ‖ξn‖ = ‖ξ‖ ,

which is absurd. Thus if λm = 0 for all m 6 N, then λm = 0 for all m, so either

∀n : λn = 0 or ∃n : λn = 1. In the first case, ‖vi‖ = 0 for each i, so V = {0} ≃ R
0. In

the second case, let n be such that λn = 1−λn−1 and let i = νn. If d = 1, then V =
〈vi〉 ≃R. Otherwise, by the induction hypothesis, 〈v1, . . . ,vi−1,vi+1, . . . ,vk〉 ⊂R

n/viR

is isomorphic to R
d′ for some d′ 6 d−1, in which case V = 〈v1, . . . ,vk〉 ≃R

d′+1.

A well-known bon-mot in constructive analysis is that Ra is not necessarily complete

[5, see Chapter 3 Exercise 1, and notes on Chapter 3].
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Corollary 17. If Ra = {ra |r ∈ R} is complete enough for a ∈ R, then a = 0∨
|a|> 0.

Proof. By the previous result, Ra = 〈a〉 is isomorphic to either {0} or R. In the first

case we must have a = 0. In the second, given r ∈ R such that ra = 1 we have that

|a|= 1/|r|> 0.

This example shows that an (algebraic) subspace of a finite dimensional Banach space

might not be complete enough.

Ishihara proved the following lemma in [11].

Lemma 18. Let T be a linear mapping of a Banach space X into a normed space Y ,

and let (xn)n>1 be a sequence converging to 0 in X. Then for all a,b with 0 < a < b,

either ‖T xn‖> a for some n or else ‖T xn‖< b for all n.

This is almost a special case of Ishihara’s first trick; however to apply the latter we

need to know that the map is strongly extensional. So the question is:

Is a linear map strongly extensional?

There is actually a proof in [3] that shows that this is the case for linear maps defined on

Banach spaces. It is, unfortunately, in the form of a corollary of a more general result.

So here is a direct proof of the more general result that applies to complete enough

spaces rather than complete ones—a normed space (T, || · ||) is complete enough if T

endowed with the metric ρ(x,y) = ||x− y|| is complete enough.

Lemma 19. If T is a linear mapping of a complete enough normed space X into a

normed space Y , then T is strongly extensional.

Proof. As Ulrich Berger has pointed out, a linear map T : X → Y is strongly exten-

sional if and only if

‖Tx‖Y > 0 =⇒ ‖x‖X > 0

for all x ∈ X .

Assume x ∈ X is such that ‖T x‖> 0. Fix an increasing binary sequence (λn)n>1 such

that

λn = 0 =⇒ ‖x‖<
1

2nn
,

λn = 1 =⇒ ‖x‖>
1

2n(n+ 1)
.

Note that if λn = 0 for all n, then ‖x‖= 0 and so ‖T x‖= 0, contradicting our assump-

tion. Thus ¬∀n : λn = 0.

Define a sequence (ξn)n>1 in X by

ξn =

{

0 if λn = 0

mx if ∃m 6 n : λm = 1−λm−1 .
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If m < n, then

‖ξn − ξm‖6 max{‖kx‖|m < k 6 n,λk−1 = 0}

<
k− 1

2k−1(k− 1)
6

1

2m
.

So (ξn)n>1 is a Cauchy λ -tagged sequence, and thus it converges to some ξ ∈ X .

Using the Archimedean property of R, choose N such that ‖Tξ‖< N‖T x‖. If λN = 0,

then λn = 0 for all n: for if λk = 1 for some k > n, then

N‖Tx‖ > ‖T ξ‖= ‖kT x‖= k‖T x‖> N‖T x‖ .

Since ¬∀n : λn = 0, we must have that λN = 1 and hence ‖x‖> 0.

As before, this result is only a generalisation if there are normed spaces that are con-

structively complete enough and not complete; note that Proposition 16 gives normed

spaces that cannot be shown to be complete enough in BISH. On the upside there

are such spaces, on the downside our examples are more contrived than in the metric

space case. The second example shows that the classic example of a space that is not

complete is, unfortunately, not constructively complete enough.

Example 20. 1. The subspace

W1 = {(xn)n>1 ∈ ℓ2 |{n |xn 6= 0} is not unbounded}

is complete enough, but not complete.

2. If the subspace

W2 = {(xn)n>1 ∈ ℓ2 |xn = 0 eventually}

is complete enough then LPO holds.

Proof. 1. The sequence

x(1) =
1

2
, 0, 0, 0, . . . ,

x(2) =
1

2
,

1

3
, 0, 0, . . . ,

x(3) =
1

2
,

1

3
,

1

4
, 0, . . . ,

...

in W1 converges to 1
2

1
3

1
4
. . ., which is not in W1, so the space is not complete.

W1 is complete enough, however, since it is the complement of

{(xn)n>1 ∈ ℓ2 |{n |xn 6= 0} is unbounded} .
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2. Let (an)n>1 be an increasing binary sequence and consider the sequence of se-

quences x = (x(n))n>1 defined by

x(1) =
1

2
, 0, 0, 0, . . . ,

x(2) = 0,
1

3
, 0, 0, . . . ,

x(3) = 0, 0,
1

4
, 0, . . . ,

...

The sequence x converges to the zero sequence, but if the limit z of (a⊛ x) is in

W2, then there exists N such that zn = 0 for all n > N. This implies that an = 0

for all n > N, which means we only need to check finitely many entries to see

whether ∀n ∈N : an = 0 or ∃n ∈N : an = 1. Thus if W2 is complete enough,

then LPO holds.

4 Conclusion

We have been making heavy use of a sort of low-tech proof mining. Formal proof

mining [12] uses a suite of strong logical tools to extract computational information

from proofs that seem to be non-constructive. Our focus, in contrast, is on construc-

tive proofs and our main tool is the notion of complete enough, which has allowed us

to strengthen standard constructive results and in many cases give constructive results

that are easily seen to imply their classical counterparts, since LPO implies that ev-

ery space is complete enough. Our ‘proof mining’ is then captured by the following

heuristic, which the results of Section 3 seem to validate:

If a classical result can be given a constructive proof by additionally as-

suming the completeness of a metric space, then the constructive proof

needs only that this space is complete enough.

This heuristic also covers the Brouwerian counterexamples such as Proposition 3,

Proposition 5, and Corollary 17.

Ultimately our ‘proof mining’ is just a focus on proofs rather than theorems and at-

tempting to extract general concepts from these proofs, like the notion of a complete

enough space was extracted from the proof of Ishihara’s tricks. This mathematical

introspection plays well with the push to formalise both classical and constructive

mathematics.

Continuing on the matter of proof mining we also see that the use of countable choice

is often overshooting its mark. For example, in Proposition 13 we only need the

principle that for every non-negative real number x which is impossible to be zero we

have a binary sequence λn such that

λn = 0 =⇒ x <
1

2n
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λn = 1 =⇒ x >
1

2n+1
.

This is weaker than countable choice, since it is implied by the principle of weak

countable choice (WCC) as discussed in [4]. Inspecting the proofs of the complete

enough variations of Ishihara’s tricks [6], we see that those and therefore the results

relying on them, however, need the choice principle that for every sequence of real

numbers xn and for a < b there exists a binary sequence λn such that

λn = 0 =⇒ xn < b

λn = 1 =⇒ xn > a .

This principle is also implied by countable choice and in turn implies the one men-

tioned above. Its relation to WCC is unclear.

Altogether this shows that the matter of choice in this context is rather intricate. Of

course, the use of choice principles can be avoided altogether, if we restrict ourselves

to reals given by Cauchy sequences of rational numbers. Another case in which choice

principles can be avoided is if we only make unique choices such as when applying

Proposition 13 to a function f : X →{0,1}.

We hope that these remarks enable readers to decide whether they need to assume

countable choice or some weaker form of choice, depending on the application they

have in mind and their formal system.
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