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Abstract. We formulate an analogue of the conjecture of Birch and
Swinnerton-Dyer for Abelian schemes with everywhere good reduc-
tion over higher dimensional bases over finite fields of characteristic
p. We prove the prime-to-p part conditionally on the finiteness of the
p-primary part of the Tate-Shafarevich group or the equality of the
analytic and the algebraic rank. If the base is a product of curves,
Abelian varieties and K3 surfaces, we prove the prime-to-p part of the
conjecture for constant or isoconstant Abelian schemes, in particular
the prime-to-p part for (1) relative elliptic curves with good reduction
or (2) Abelian schemes with constant isomorphism type of A [p] or (3)
Abelian schemes with supersingular generic fibre, and the full conjec-
ture for relative elliptic curves with good reduction over curves and
for constant Abelian schemes over arbitrary bases. We also reduce
the conjecture to the case of surfaces as the basis.
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1 Introduction

If K is a global field, i. e. a finite extension of Q or of Fq(t), the conjecture
of Birch and Swinnerton-Dyer for an Abelian variety A/K relates global in-
variants, like the rank of the Mordell-Weil group A(K), the order of the Tate-
Shafarevich group X(A/K) (a group measuring the failure of the Hasse prin-
ciple for principal homogeneous spaces of A/K) and the determinant of the
height pairing A(K)×At(K)→ R with At the dual Abelian variety to the van-
ishing order of the L-function L(A/K, s) (built up from the number of points
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916 Timo Keller

of the reduction of A at the primes of K) at s = 1 and the special L-value at
this point. The aim of this article is to extend this setting from the classical
situation of a curve over a finite field to the case of a higher dimensional basis
over finite fields.

Even for elliptic curves over the rationals, this is a difficult problem. The
function field case is more accessible since the situation is more geometric as
one has a ground field the algebraic closure of which one can pass to, but up to
now, there have been only (mostly conditional) results over curves over finite
fields: For Abelian varieties over global function fields, John Tate [Tat66b]
considered the problem for Jacobians of curves, and the first result is due to
James Milne [Mil68]: He proved the conjecture of Birch and Swinnerton-Dyer
for constant Abelian schemes over global function fields, i. e. Abelian schemes
of the form A = A ×k X with A/k an Abelian variety over a finite field
k and X/k a smooth projective geometrically connected curve. Later, Peter
Schneider [Sch82b] proved a conditional result for Abelian varieties over global
function fields, namely that the prime-to-p part of the conjecture of Birch and
Swinnerton-Dyer (p the characteristic of the ground field) holds iff for one ℓ 6= p,
the ℓ-primary part of the Tate-Shafarevich group is finite. In [Bau92], Werner
Bauer proved an analogue of Schneider’s result for the prime-to-p part of the
conjecture, but only for Abelian varieties with good reduction; finally, Kazuya
Kato and Fabien Trihan [KT03] extended Bauer’s result to the case of bad
reduction. Tate and Shafarevich [TS67] gave examples of elliptic curves over
Fq(t) of arbitrarily large rank and Douglas Ulmer [Ulm02] proved the conjecture
for certain non-isoconstant elliptic curves over Fq(t) with arbitrarily large rank.

In section 2, we proceed by generalising Schneider’s arguments to the case of
a higher dimensional basis X over a finite field k. A key point is to find the
correct definition of the L-function in the higher dimensional setting. Let A /X
be an Abelian scheme. The Kummer sequence for A /X on the small étale site
of X induces a short exact sequence

0→ A (X)⊗Z Zℓ → H1(X,TℓA )→ TℓX(A /X)→ 0

with H1(X,TℓA ) = lim
←−n

H1(X,A [ℓn]). Since X(A /X)[ℓ∞] is cofinitely gen-

erated, TℓX(A /X) = 0 iff X(A /X)[ℓ∞] is finite. This gives us the link
between the algebraic rank rkZ A (X) and H1(X,TℓA ). Using the Hochschild-
Serre spectral sequence Hp(Gk,H

q(X,TℓA )) ⇒ Hp+q(X,TℓA ), one relates
H1(X,TℓA ) to H1(X,TℓA )Gk . Then one uses Lemma 2.5.7 to relate the van-
ishing order of the L-function to the algebraic rank and the special L-value
at s = 1 to orders of cohomology groups and determinants of cohomologi-
cal pairings. The proof is complicated by the fact that one has more non-
vanishing cohomology groups than in the case of a curve as a basis. For ex-
ample, setting d = dimX , if d = 1, Poincaré duality is a pairing between
H1(X,F ) × H1(X,F∨(1)) → Zℓ, whereas for general d > 1, it is a pairing
H1(X,F ) ×H2d−1(X,F∨(d))→ Zℓ.

In section 3 and 4, we study two cohomological pairings given by cup product
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in cohomology:

〈·, ·〉ℓ : H
1(X,TℓA )nt ×H2d−1(X,Tℓ(A

t)(d− 1))nt → H2d(X,Zℓ(d))→ Zℓ

(·, ·)ℓ : H
2(X,TℓA )nt ×H2d−1(X,Tℓ(A

t)(d− 1))nt → H2d+1(X,Zℓ(d)) = Zℓ

If one ℓ-primary component of the Tate-Shafarevich group of A /X is finite,
we relate the pairing 〈·, ·〉ℓ to the Néron-Tate height pairing, and show that
the determinant of the pairing (·, ·)ℓ equals 1. This is done by generalising
Schneider’s arguments comparing 〈·, ·〉ℓ with Bloch’s height pairing from [Blo80].
Again, the higher dimensional case is more involved.
In section 5, we specialise to the case of an isoconstant Abelian scheme, and
deduce in section 6 from a descent theorem of our previous article [Kel16, p. 238,
Theorem 4.29] our analogue of the conjecture of Birch and Swinnerton-Dyer
for relative elliptic curves or Abelian schemes with constant isomorphism type
of A [p] over products of curves and Abelian varieties by showing these are
isoconstant since the moduli scheme Y (N) is affine for N ≥ 3 resp. since the
Ekedahl-Oort stratification is quasi-affine. We also prove the conjecture for
supersingular Abelian schemes.
In section 7, we reduce the conjecture to the case of a surface (and in special
cases also of a curve) as a basis using Poonen’s Bertini theorem for varieties
over finite fields.
Our main results are as follows:
In section 2, we first introduce a suitable L-function L(A /X, s) for Abelian
schemes A over a smooth projective base scheme X over a finite field of char-
acteristic p (see Remark 2.6.6 for a motivation):

L(A /X, t) =
det(1− tFrob−1

q | H1(X,VℓA ))

det(1− tFrob−1
q | H0(X,VℓA ))

We then prove that an analogue of the conjecture of Birch and Swinnerton-
Dyer holds for the prime-to-p part, with two cohomological pairings 〈·, ·〉ℓ and
(·, ·)ℓ in place of the height pairing, provided that for one ℓ 6= p the ℓ-primary
component of the Tate-Shafarevich group X(A /X) := H1

ét(X,A ) is finite or,
equivalently, if the analytic rank equals the algebraic rank.
The Tate-Shafarevich group is studied in a previous article [Kel16, section 4],
especially Theorem 4.4 and 4.5. There, we show:

X(A /X) = ker
(
H1(K,A )→

∏

x∈S

H1(Knr
x ,A )

)
,

where Knr
x = Quot(Osh

X,x), and S is either (a) the set of all points of X , or (b)

the set |X | of all closed points of X , or (c) the set X(1) of all codimension-1
points of X , and A = Pic0C/X for a relative curve C /X with everywhere good
reduction admitting a section, and X is a variety over a finitely generated field.
Here, one can replace Knr

x by Kh
x = Quot(Oh

X,x) if κ(x) is finite, and K
nr
x and

Kh
x by Quot(Ôsh

X,x) and Quot(Ôh
X,x), respectively, if x ∈ X

(1).
More precisely, we get the following first main result:
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918 Timo Keller

Theorem 1 (Theorem 2.7.19). Let X/k be a smooth projective geometrically
connected variety over a finite field k = Fq and A /X an Abelian scheme. Set
X = X ×k k and let ℓ 6= char k be a prime. Let ρ be the vanishing order
of L(A /X, s) at s = 1 and define the special L-value c = L∗(A /X, 1) of
L(A /X, s) at s = 1 by

L(A /X, s) ∼ c · (1− q1−s)ρ ∼ c · (log q)ρ(s− 1)ρ for s→ 1.

Then one has ρ ≥ rkZ A (X), and the following statements are equivalent:
(a) ρ = rkZ A (X)
(b) X(A /X)[ℓ∞] is finite
If these hold, one has for all ℓ 6= char k the equality

|c|−1
ℓ =

|X(A /X)[ℓ∞]| · Rℓ(A /X)

|A (X)[ℓ∞]tors| ·
∣∣H2(X,TℓA )Γ

∣∣

and the prime-to-p part of the Tate-Shafarevich group X(A /X)[non-p] is fi-
nite. Here A (X) = A(K) with A the generic fibre of A /X and K = k(X)
the function field of X, and the regulator Rℓ(A /X) is the determinant of a co-
homological pairing 〈·, ·〉ℓ (2.18) divided by the determinant of a cohomological
pairing (·, ·)ℓ (2.19).

For example, (a) holds if L(A /X, 1) 6= 0 (Remark 2.7.20 (a)), and (b) holds
under mild conditions if A /X is isoconstant (Theorem 5.1.14, Remark 5.1.15
and Theorem 6.3.5).
In section 3 and 4, we construct a higher-dimensional analogue

〈·, ·〉 : A(K)×At(K)→ log q · Z

of the Néron-Tate canonical height pairing with At the dual Abelian variety,
and show the second main result, which identifies the cohomological regulator
Rℓ(A /X) in Theorem 1 with a geometric one:

Theorem 2 (Theorem 3.5.2 and Theorem 4.0.4). Let ℓ be a prime different
from char k. Assume that X(A /X)[ℓ∞] is finite.
(a) The Néron-Tate canonical height pairing 〈·, ·〉 gives the pairing 〈·, ·〉ℓ af-
ter tensoring with Zℓ up to a known factor, the integral hard Lefschetz defect,
see Definition 3.1.11.
(b) The cohomological pairing (·, ·)ℓ has determinant 1.

More precisely, the pairing 〈·, ·〉 depends on the choice of a very ample line
bundle on X , but the comparison isomorphism also, and the two choices cancel
each other; see Remark 3.5.3. For (a), see Theorem 3.5.2, and Theorem 4.0.4 for
(b). In Theorem 5.1.12, we identify the cohomological pairing 〈·, ·〉ℓ with a trace
pairing in the case of A /X a constant Abelian variety, and in Theorem 5.2.3
with another pairing if X is a curve.
We prove our analogue conjecture of Birch and Swinnerton-Dyer for constant
Abelian schemes unconditionally:
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Theorem 3 (Theorem 5.1.27). Let X/k be a smooth projective geometrically
connected variety over a finite field k = Fq and B/k an Abelian variety of
dimension d. Set X = X ×k k and A = B ×k X, and let K = k(X) be the
function field of X. The L-function of A /X is defined in Definition 5.1.20.
Assume
(a) the Néron-Severi group of X is torsion-free and
(b) the dimension of H1

Zar(X,OX) as a vector space over k equals the dimension
g of the Albanese variety of X/k.

Then:
1. The Tate-Shafarevich group X(A /X) is finite.
2. The vanishing order equals the Mordell-Weil rank r: ords=1 L(A /X, s) =
rkA (X) = rkA(K).
3. There is the equality for the leading Taylor coefficient

L∗(A /X, 1) = q(g−1)d(log q)r
|X(A /X)| · R(A /X)

|A (X)tors|
.

Here, R(A /X) is the determinant of the trace pairing

Hom(A,B)×Hom(B,A)→ End(A)
tr
→ Z

with A the Albanese variety of X, or, see Theorem 5.1.12, the determinant of a
cohomological pairing, and, if X is a curve, the determinant of another pairing
or the Néron-Tate canonical height pairing, see Theorem 5.2.3.

Combining the finiteness of X(A /X) for constant A /X [Mil68, p. 98, Theo-
rem 2] and the descent of finiteness of X under ℓ′-alterations [Kel16, p. 238,
Theorem 4.29] we obtain:

Theorem 4 (Theorem 5.1.14 and Theorem 6.3.5). Let X/k be a smooth pro-
jective geometrically connected variety over a finite field k = Fq and A /X
an isoconstant Abelian scheme, i. e. such that there exists a proper, surjective,
generically étale morphism f : X ′ → X such that f∗A := A ×X X ′/X ′ is
constant. Assume that (a) the Néron-Severi group of X ′ is torsion-free and (b)
the dimension of H1

Zar(X
′,OX′) as a vector space over k equals the dimension

of the Albanese variety of X ′/k. Then the prime-to-p part of the conjecture of
Birch and Swinnerton-Dyer holds for A /X.

Note that we do not need f to be of generical degree prime to ℓ since A /X
is ℓ′-isoconstant (isoconstant for a generically étale morphism f : X ′ → X of
generical degree prime to ℓ) for some ℓ, and then we can use (a) =⇒ (b)
from Theorem 2.7.19 to get independence from ℓ. This also extends the known,
classical results for Abelian varieties over one-dimensional global function fields,
where the constant case had be settled by Milne [Mil68, p. 100, Theorem 3].
In Theorem 6.3.1, we prove that relative elliptic curves are isoconstant and
conclude with
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Theorem 5 (Corollary 6.3.6 and Corollary 6.3.7). Let X be a product of smooth
proper curves, Abelian varieties and K3 surfaces over a finite field of charac-
teristic p. Now let A be an Abelian X-scheme belonging to one of the following
three classes:

1. a relative elliptic curve

2. an Abelian scheme such that the isomorphism type of A [p] is constant

3. an Abelian scheme with supersingular generic fibre

Then the prime-to-p part of our analogue of the conjecture of Birch and
Swinnerton-Dyer holds for A /X and, if A /X is a relative elliptic curve,
Br(A )[non-p] is finite. If X is a curve, the full conjecture of Birch and
Swinnerton-Dyer holds for A /X. Furthermore, the Tate conjecture holds in
dimension 1 for A .
Let C/Fq be a smooth proper geometrically connected curve and E /C be a
relative elliptic curve. Then Br(E ) = X(E /C) is finite and of square order,
and the Tate conjecture holds for E .

In the final section 7, we reduce the conjecture to the case of a surface as a
basis:

Theorem 6 (Theorem 7.0.1). If the analogue of the conjecture of Birch-
Swinnerton-Dyer holds for a prime ℓ invertible on the base and for all Abelian
schemes over all smooth projective geometrically integral surfaces, then it holds
over arbitrary dimensional bases.
More precisely, if there is a sequence S →֒ . . . →֒ X of ample smooth projective
geometrically integral hypersurface sections with a surface S and the conjecture
holds for A /S, then it holds for A /X.
If there is a smooth projective ample geometrically integral curve C →֒ S with
rkA (S) = rkA (C), the analogue of the conjecture of Birch and Swinnerton-
Dyer for A /S is equivalent to the conjecture for A /C.

Notation. Let N = {0, 1, 2, . . .} be the set of natural numbers. Canonical
isomorphisms are often denoted by “=”.
We denote Pontrjagin duality by (−)D (see [NSW00, § 1]), duals of R-modules
or ℓ-adic sheaves by (−)∨, and duals of Abelian schemes and Cartier duals by
(−)t.
The ℓ-adic valuation | · |ℓ is taken to be normalised by |ℓ|ℓ = ℓ−1.
If Γ is a group acting on an Abelian group A, we denote by AΓ invariants and
by AΓ coinvariants. By X(i), we denote the set of codimension-i points of a
scheme X , and by |X | the set of closed points. For an Abelian variety A, we
denote its Poincaré bundle by PA.
For an Abelian group A, let Ators be the torsion subgroup of A, and Ant =
A/Ators. Let Adiv be the maximal divisible subgroup of A (in general strictly
contained in the subgroup of divisible elements of A, but see item (iii) below)
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and And = A/Adiv. For an integer n and an object A of an Abelian category,

denote the cokernel of A
n
→ A by A/n and its kernel by A[n], and for a prime

p the p-primary subgroup lim
−→n

A[pn] by A[p∞]. Write A[non-p] for lim
−→p∤n

A[n].

For a prime ℓ, let the ℓ-adic Tate module TℓA be lim
←−n

A[ℓn] and the rationalised

ℓ-adic Tate module VℓA = TℓA⊗Zℓ
Qℓ. The corank of A[p∞] is the Zp-rank of

A[p∞]D = TpA.

Denote the absolute Galois group of a field k by Gk.
Varieties over a field k are schemes of finite type over Spec k. For the class [L ]
of a line bundle in the Picard group of a scheme, we write L . If not stated
otherwise, all cohomology groups are taken with respect to the étale topology.

An ℓ-adic sheaf on a scheme X is a projective system (Fn)n∈Z of étale sheaves
on X such that all Fn are constructible, Fn = 0 for n < 0, ℓn+1Fn = 0 for
n ≥ 0 and Fn+1/ℓ

n+1 ∼
→ Fn (see [FK88, p. 122, Definition 12.6]). For example,

the ℓ-adic Tate module TℓA = (A [ℓn])n∈N is an ℓ-adic sheaf on X for A /X
an Abelian scheme and ℓ invertible on X (see Corollary 2.4.13).

2 The L-function and the cohomological BSD formula

The main theorem Theorem 2.7.19 of this section is a conditional result on our
analogue of the conjecture of Birch and Swinnerton-Dyer over higher dimen-
sional bases over finite fields.

The results in this section are a generalisation of results of Schneider [Sch82a,
p. 134–138] and [Sch82b, p. 496–498].

Let k = Fq be a finite field with q = pn elements and let ℓ 6= p be a prime. For
a variety X/k denote by X its base change to an algebraic closure k = ksep of
k.
Denote by Frobq the arithmetic Frobenius, the inverse of the geometric Frobe-
nius as defined in [KW01, p. 5] and by Γ the absolute Galois group of the finite
base field k.
Let X/k be a smooth projective geometrically connected variety of dimension
d, and let A /X be an Abelian scheme.

2.1 Tate modules of Abelian groups

We often use the following basic properties of the Tate module:

Lemma 2.1.1. Let A be an Abelian group and ℓ a prime.

(i) There is a canonical isomorphism Hom(Qℓ/Zℓ, A) = TℓA.

(ii) If A is finite, TℓA is trivial.

(iii) If A is an ℓ-primary torsion group such that A[ℓ] is finite, then A is
cofinitely generated and the maximal divisible subgroup Adiv of A coincides
with the subgroup of divisible elements of A.
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(iv) If A is an ℓ-primary torsion group and cofinitely generated, TℓA = 0
implies A finite.

(v) The Zℓ-module TℓA is torsion-free.

Proof. The statements (i), (ii) and (v) are well-known.
(iii): Equip A with the discrete topology. Applying Pontrjagin duality to

0 → A[ℓ] → A
ℓ
→ A gives us that AD/ℓ is finite, hence by [NSW00, p. 179,

Proposition 3.9.1] (AD being profinite as a dual of a discrete torsion group),
AD is a finitely generated Zℓ-module, hence A a cofinitely generated Zℓ-module.
For the second statement see [Jos09, p. 30, Lemma 3.3.1].
(iv): Since A is a cofinitely generated ℓ-primary Abelian group, A ∼= B ⊕
(Qℓ/Zℓ)

r with B finite and r ∈ N (by the structure theorem of finitely gener-
ated modules over the principal ideal domain Zp since the Pontrjagin dual of
A is a finitely generated Zℓ-module), so TℓA ∼= TℓB ⊕ Zr

ℓ = Zr
ℓ by (ii), hence

r = 0 since TℓA is finite, so A ∼= B is finite.

Remark 2.1.2. Note that, in contrast, for an ℓ-adic sheaf (Fn)n∈N,
lim
←−n

Hi(X,Fn) need not be torsion-free.

2.2 The yoga of weights

Definition 2.2.1. A Qℓ[Γ]-module is said to be pure of weight n if all
eigenvalues α of the geometric Frobenius automorphism Frob−1

q are algebraic

integers which have absolute value qn/2 under all embeddings ι : Q(α) →֒ C.

For the definition of a smooth sheaf see [KW01, p. 7 f., Definition 1.2] and of a
sheaf pure of weight n, see [KW01, p. 13, Definition 2.1 (3)]. We often use the
yoga of weights (without further mentioning):

Theorem 2.2.2. Let f : X → Y be a smooth proper morphism of schemes of
finite type over Fq and F a smooth sheaf pure of weight n. Then Rif∗F is a
smooth sheaf pure of weight n+ i for any i.

Proof. Apply Poincaré duality to [Del80, p. 138, Théorème 1].

Definition 2.2.3. Let V be a Zℓ[Γ]-module. Its i-th Tate twist V (i) is
defined as V (i) = V ⊗Zℓ

Zℓ(i) where Zℓ(i) = lim
←−n

µ⊗i
ℓn if i ≥ 0 (let µ⊗0

ℓn = Z/ℓn)

and Zℓ(i) = Zℓ(−i)
∨ if i < 0.

Lemma 2.2.4. Let V , W be Qℓ[Γ]-modules pure of weight m and n, respectively.
(a) The tensor product V ⊗Qℓ

W is a Qℓ[Γ]-module pure of weight m+ n.
(b) HomQℓ

(V,W ) is a Qℓ[Γ]-module pure of weight n −m. In particular, V ∨

is pure of weight −m.
(c) The i-th Tate twist V (i) is pure of weight m− 2i.

Proof. This follows from [Del80, p. 154, (1.2.5)].
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Lemma 2.2.5. If V and W are Qℓ[Γ]-modules pure of weights m 6= n, every
Γ-morphism V → W is zero.

Consequently, if V is a Qℓ[Γ]-module pure of weight 6= 0, VΓ = V Γ = 0.

Proof. For the first statement, see [Jan10, p. 4, Fact 2].

The second statement follows from the first one: For V pure of weight m, VΓ
and V Γ are pure of weight 0 since Γ acts as the identity. The inclusion V Γ →֒ V
is a Γ-morphism and if the weight m of V is 6= 0, this morphism is zero and
injective, so V Γ = 0. Analogously, consider the Γ-morphism V ։ VΓ.

2.3 Isogenies of commutative group schemes

Definition 2.3.1. An isogeny of commutative group schemes G,H of finite
type over an arbitrary base scheme S is a group scheme homomorphism f :
G → H such that for all s ∈ S, the induced homomorphism fs : Gs → Hs on
the fibres over s is finite and surjective on identity components.

Remark 2.3.2. See [BLR90, p. 180, Definition 4]. We will usually consider
isogenies between Abelian schemes, for example the finite flat n-multiplication,
which is étale iff n is invertible on the base scheme.

Lemma 2.3.3. Let G,G′ be commutative group schemes over a scheme S which
are smooth and of finite type over S with connected fibres and dimG = dimG′

and let f : G′ → G be a morphism of commutative group schemes over S.

If f is flat (respectively, étale) then ker(f) is a flat (respectively, étale) group
scheme over S, f is quasi-finite, surjective and defines an epimorphism in the
category of flat (respectively, étale) sheaves over S.

Proof. (This is the (corrected) exercise 2.19 in [Mil80, p. 67, II § 2].) Since
ker(f) → S is the base change of f along the unit-section of G, it is flat (re-
spectively, étale). That f is surjective and quasi-finite can be checked fibrewise
for s ∈ S. By the flatness and [BLR90, p. 178, § 7.3 Lemma 1], we have that
fs is finite and flat. So the image of fs is open and closed in Gs. Since Gs is
connected by assumption, fs must be surjective.

Now let T be an S-scheme, g ∈ HomS(T,G) and T
′ the fibre product of G′ and

T along f and g:

T ′ G′

T G

f ′

g′

f
g

Then the base change f ′ of f is again flat (respectively, étale) and surjective,
and so is a covering in the stated topology. Hence, then the base change
g′ ∈ HomS(T

′, G′) of g is a local lift of g in that topology. So the claim
follows.
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Lemma 2.3.4. Let S be a scheme and f : G→ S be a smooth commutative group
scheme over S and n an integer invertible on S. Then the multiplication map
[n] : G → G is étale and the n-torsion subgroup scheme G[n] := ker([n]) → S
is an étale group scheme over S.

If, furthermore, f is of finite type with connected fibres, then [n] is surjective
and induces an epimorphism in the category of étale sheaves over S.

Proof. For the first statement use [BLR90, p. 179, § 7.3 Lemma 2 (b)]. Note
that the assumption“of finite type”is not needed here (see also [SGA3, II 3.9.4]).
The morphism ker([n])→ S is just the base change of [n] along the unit-section.
For the second part apply Lemma 2.3.3.

Corollary 2.3.5 (Kummer sequence). Let A /S be an Abelian scheme and
let ℓ be invertible on S. Then one has for every n ≥ 1 a short exact sequence

0→ A [ℓn]→ A
[ℓn]
→ A → 0

of étale sheaves on S.

Proof. This follows from Lemma 2.3.4 since [ℓn] is étale by [Mil86a, p. 147,
Proposition 20.7] and since Abelian schemes have connected fibres.

2.4 Tate modules of Abelian schemes

Definition 2.4.1. Let k be a field, ℓ 6= chark be a prime and A/k be an Abelian
variety. The ℓ-adic Tate module TℓA is the Zℓ[Gk]-module lim

←−n
A[ℓn](ksep).

Note thatA[ℓn]/k is finite étale since ℓ is invertible in k, and henceA[ℓn](ksep) =
A[ℓn](k).

Proposition 2.4.2. Let K be an arbitrary field, ℓ 6= charK be prime and A/K
an Abelian variety. Let A = A ×K K. Then we have an isomorphism of (ℓ-
adic discrete) GK-modules, equivalently, by [Mil80, p. 53, Theorem II.1.9], of
(ℓ-adic) étale sheaves on SpecK,

Tℓ(A) = H1(A,Zℓ)
∨.

In particular, Tℓ(A) is pure of weight −1.

Proof. Consider the Kummer sequence

1→ µℓn → Gm
ℓn
→ Gm → 1

on A. Taking étale cohomology, one gets an exact sequence of GK-modules

0→ Gm(A)/ℓn → H1(A, µℓn)→ H1(A,Gm)[ℓn]→ 0.
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Since Γ(A,OA) = K is separably closed and ℓ 6= charK, Gm(A) is ℓ-divisible
(one can extract ℓ-th roots), and hence

H1(A, µℓn)
∼
→ H1(A,Gm)[ℓn] = Pic(A)[ℓn] = Pic0(A)[ℓn],

the latter equality since NS(A) is torsion-free by [Mum70, p. 178, Corollary 2].
Taking Tate modules lim

←−n
yields

H1(A,Zℓ(1))
∼
→ Tℓ Pic

0(A), (2.1)

so (the first equality coming from the perfect Weil pairing (2.3))

Hom(TℓA,Zℓ(1)) = Tℓ(A
t) = H1(A,Zℓ(1)),

so
(TℓA)

∨ = Hom(TℓA,Zℓ) = H1(A,Zℓ),

so
TℓA = H1(A,Zℓ)

∨.

Alternatively, π1(A, 0) =
∏

ℓ Tℓ(A) by [Mum70, p. 171], and H1(A,Zℓ) =
Hom(π1(A, 0),Zℓ) by [Kel16, p. 231, Proposition 4.14].

Remark 2.4.3. Note that both Tℓ(−) and H1(−,Zℓ)
∨ are covariant functors.

Proposition 2.4.4. Let S be a locally Noetherian scheme, π : A → S be
a projective Abelian scheme over S. Let ℓ be a prime number invertible on
S. Then we have a canonical isomorphism R1π∗Zℓ(1) = TℓA

t as ℓ-adic étale
sheaves on S. In particular, TℓA has weight −1.

Proof. Applying the functor π∗ on the exact Kummer sequence

1→ µℓn → Gm,A
ℓn
→ Gm,A → 1

of étale sheaves on A , we get an exact sequence

1→ π∗Gm,A /ℓ
n → R1π∗µℓn → R1π∗Gm,A [ℓn]→ 0.

of étale sheaves on S. The first term will vanish by following arguments. Since
π : A → S is proper and its geometric fibres are integral by definition, we get
the isomorphism OS = π∗OA by the Stein factorization (cf. [GW10, p. 348,
Theorem 12.68]). Hence we have Gm,S = π∗Gm,A . But since ℓ is invertible on
S, the map ℓn : Gm,S → Gm,S is an epimorphism and we get

π∗Gm,A /ℓ
n = Gm,S/ℓ

n = 1.

For the last term in the above sequence by [BLR90, p. 203, § 8.1] we get the
canonical isomorphism R1π∗Gm,A = PicA /S since π is smooth and proper.
Note that since A → S is projective and flat with integral fibres, the Picard
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scheme exists by [FGI+05, p. 263, Theorem 9.4.8]. Let NSA /S be defined by
the short exact sequence of étale sheaves:

0→ Pic0A /S → PicA /S → NSA /S → 0.

Here Pic0A /S is the identity component of PicA /S and coincides with the dual

Abelian scheme A t by [BLR90, p. 234, § 8.4 Theorem 5]. This implies that
PicA /S is a smooth commutative group scheme over S. Taking ℓn-torsion,
which is left exact, we get a short exact sequence:

0→ Pic0A /S [ℓ
n]→ PicA /S [ℓ

n]→ NSA /S [ℓ
n].

We now prove that Pic0A /S [ℓ
n] → PicA /S [ℓ

n] is an isomorphism by looking
at the stalks. Since the first two groups are étale over S, by Lemma 2.3.4 it
suffices to look at the sequence over the geometric points s̄ of S by [Mil80, p. 34,
Proposition I.4.4]. But by [Mum70, p. 165, IV § 19 Theorem 3, Corollary 2], the
group NSAs(s̄) is a finitely generated free Abelian group (since we are over a
field) and its torsion part vanishes. So, all together, we have the isomorphisms:

R1π∗µℓn = R1π∗Gm,A [ℓn] = PicA /S [ℓ
n] = Pic0A /S [ℓ

n] = A
t[ℓn].

By taking the projective limit over all n we then get the claim: R1π∗Zℓ(1) =
TℓA

t.
The statement on the weight follows from Lemma 2.2.4 and Theorem 2.2.2:
Zℓ(1) has weight −2 and 1− 2 = −1.

Lemma 2.4.5. Let f : A → B be an isogeny (not necessarily étale) of Abelian
varieties over a field k and ℓ 6= chark. Then f induces an Galois equivariant
isomorphism VℓA

∼
→ VℓB of rational Tate modules.

Proof. There is an exact sequence of ℓ-divisible groups

0→ ker(f)[ℓ∞]→ A[ℓ∞]→ B[ℓ∞]→ 0

with A[ℓ∞] and B[ℓ∞] étale since ℓ is invertible in k and ker(f)[ℓ∞] a finite étale
group scheme. Since for an Abelian groupM , one has TℓM = Hom(Qℓ/Zℓ,M)
by Lemma 2.1.1 (i), applying Hom(Qℓ/Zℓ,−) to the above exact sequence yields
an exact sequence

0→ Tℓ ker(f)→ TℓA→ TℓB → Ext1(Qℓ/Zℓ, ker(f)[ℓ
∞]).

Since ker(f) is a finite group scheme, we have Tℓ ker(f) = 0 by Lemma 2.1.1 (ii).
Since TℓA and TℓB have the same rank as f is an isogeny (or since
Ext1(Qℓ/Zℓ, ker(f)[ℓ

∞]) is finite), tensoring with Qℓ yields the desired isomor-
phism.

Corollary 2.4.6. Let f : A → B be an isogeny (not necessarily étale) of
Abelian schemes over S and ℓ invertible on S. Then f induces an isomorphism
VℓA

∼
→ VℓB of ℓ-adic sheaves.
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Proof. We check the isomorphism VℓA → VℓB on stalks. Let π : A t → S
and π′ : Bt → S be the structure morphisms of the dual Abelian schemes
and πx, π

′
x the base changes of π, π′ by {x} → S. By Proposition 2.4.4, we

have VℓA = R1π∗Qℓ(1) and VℓB = R1π′
∗Qℓ(1). Since π and π′ are proper, by

proper base change [Mil80, p. 224, Corollary VI.2.5], (Zℓ(1) is an inverse limit
of the torsion sheaves µℓn), (VℓA )x = R1π∗Qℓ(1)x = R1πx,∗Qℓ(1) = Vℓ(Ax)
and analogously for B. So one can assume S is the spectrum of a field. Then
the statement is just Lemma 2.4.5.

Lemma 2.4.7. Let π : X → Y be a morphism of schemes and F an ℓ-adic
sheaf on X. Then Riπ∗(F (n)) = (Riπ∗F )(n).

Proof. We have

Riπ∗(F (n)) = Riπ∗(F ⊗ Zℓ(n))

= Riπ∗(F ⊗ π
∗Zℓ(n)) since π∗µℓn = µℓn

= Riπ∗(F )⊗ Zℓ(n)

= (Riπ∗F )(n),

by the projection formula [Mil80, p. 260, Lemma VI.8.8] since Zℓ(n) is flat.

Definition 2.4.8. Let S be an arbitrary base scheme and A /S be an Abelian
scheme. A polarisation of A /S is an S-group scheme homomorphism λ :
A → A t such that for all s ∈ S, the induced homomorphism λs : As → A t

s

on geometric fibres is a polarisation in the classical sense, i. e. it is of the form
a 7→ t∗aL ⊗L −1 for L ∈ Pic(As) ample.

A polarisation is called principal if it is an isomorphism.

Remark 2.4.9. See [Mil86a, p. 126, § 13] for the definition of a polarisation
for Abelian varieties and [MF82, p. 120, Definition 6.3] for the definition of a
polarisation over a general base scheme.

Since a polarisation is fibrewise an isogeny, it is globally an isogeny in the sense
of Definition 2.3.1.

Proposition 2.4.10. Let X be a normal Noetherian integral scheme and A /X
an Abelian scheme. Then there is a polarisation A → A t.

Proof. Since being an isogeny is defined fibrewise, we have to show that there
exists a relatively ample line bundle for A /X since ample line bundles induce
polarisations (see [Mil86a, p. 126, § 13]). This follows from [Ray70, p. 170,
Théorème XI.1.13] and by property (A) in [Ray70, p. 159, Definition XI.1.2]
and by the existence of an ample line bundle on the generic fibre [Mil86a, p. 114,
Corollary 7.2].
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Remark 2.4.11. Note that

Pi(A /X, q−s) = det(1− q−s Frob−1
q | Hi(X,R1π∗Qℓ))

= det(1− q−s Frob−1
q | Hi(X,Vℓ(A

t)(−1))) by 2.4.4

= det(1− q−s Frob−1
q | Hi(X,Vℓ(A

t))(−1)) by 2.4.7

= det(1− q−sq Frob−1
q | Hi(X,VℓA

t))

= det(1− q−sq Frob−1
q | Hi(X,VℓA )) by 2.4.6 and 2.4.10

= Li(A /X, q−s+1),

so the vanishing order of Pi(A /X, q−s) at s = 1 is equal to the vanishing order
of Li(A /X, t) at t = q−1+1 = q0 = 1, and the respective leading coefficients
agree.

The following is a generalisation of [Sch82a, p. 134–138] and [Sch82b, p. 496–
498].

Lemma 2.4.12. Let (Gn)n∈N be a Barsotti-Tate group consisting of finite étale
group schemes. Then it is an ℓ-adic sheaf.

Proof. By [Tat67, p. 161, (2)],

0→ ker[ℓ]→ Gn+1
[ℓ]
→ Gn → 0

is exact. But ker[ℓ] = ℓnGn+1. Furthermore, Gn = 0 for n < 0 and ℓn+1Gn = 0
by [Tat67, p. 161, (ii)]. Finally, the Gn are constructible since they are finite
étale group schemes.

Corollary 2.4.13. For ℓ invertible on X, TℓA = (A [ℓn])n∈N is an ℓ-adic
sheaf.

Proof. This follows from Lemma 2.4.12 since ℓ is invertible on X , so A [ℓn]/X
is finite étale by [Mil86a, p. 147, Proposition 20.7].

Theorem 2.4.14. Let f : A → A ′ be an X-isogeny of Abelian schemes with
dual isogeny f t : A ′t → A t. The Weil pairing

〈·, ·〉f : ker(f)×X ker(f t)→ Gm

is a non-degenerate and biadditive pairing of finite flat X-group schemes, i. e.
it defines a canonical X-isomorphism

ker(f t)
∼
→ (ker(f))t.

Moreover, it is functorial in f .
If X = Spec k, it induces a perfect pairing of torsion-free finitely generated
Zℓ[Γ]-modules

TℓA × Tℓ(A
t)→ Zℓ(1) (2.2)
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and this a canonical isomorphism of Zℓ[Γ]-modules

HomZℓ
(TℓA ,Zℓ) = Tℓ(A

t)(−1). (2.3)

Proof. See [Mum70, p. 186] (for Abelian varieties) and [Oda69, p. 66 f., Theo-
rem 1.1] (for Abelian schemes). Note that it is not assumed that f is étale.

2.5 Étale cohomology of varieties over finite fields

Lemma 2.5.1. Let k be a finite field. Then k-isogenous Abelian varieties have
the same number of k-rational points.

Proof. Let f : A → B be a k-isogeny. Note that the finite field k is perfect.
Take Galois invariants of

0→ (ker f)(k)→ A(k)→ B(k)→ 0

and using Lang-Steinberg [Mum70, p. 205, Theorem 3] in the form H1(k,A) =
0 = H1(k,B) and the Herbrand quotient h((ker f)(k)) = 1 (since (ker f)(k) is
finite) yields |A(k)| = |B(k)|.
(Alternatively, use that A(Fqn) = ker(1 − Frobnq ) and f(1 − Frobnq ) = (1 −
Frobnq )f and deg f 6= 0 is finite, take degrees and cancel deg f .)

Remark 2.5.2. For the much harder converse: By [Tat66a, p. 139, Theo-
rem 1 (c1)⇐⇒ (c4)], two Abelian varieties over a finite field k are k-isogenous
iff they have the same number of k′-rational points for every finite extension
k′ of k. For the question how many k′ suffice, see [TKe17].

Theorem 2.5.3. Let X be a proper scheme over a separably closed or finite
field K and F be a constructible étale sheaf on X. Then Hq(X,F ) is finite
for all q ≥ 0.

Note that [Mil80, p. 224, Corollary VI.2.8] does not hold in general (consider
X = SpecQ with H1(SpecQ, µn) = Q×/n)!

Proof. By the proper base change theorem [Mil80, p. 223, Theorem VI.2.1], the
claim follows for separably closed fields. For a finite fieldK with absolute Galois
group Γ, the claim follows by passing to a separable closure K of K and the
usage of Hochschild-Serre spectral sequence Hp(Γ,Hq(X,F )) ⇒ Hp+q(X,F )
with X := X ×K K, which degenerates by [Wei97, p. 124, Exercise 5.2.1]

because of cd(Γ) = 1 by [NSW00, p. 69, (1.6.13) (ii)] as Γ = Ẑ into short exact
sequences

0→ Hi−1(X,F )Γ → Hi(X,F )→ Hi(X,F )Γ → 0

with the outer groups being finite by the case of a separably closed ground
field.
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Lemma 2.5.4. Let X be a variety over a finite field k with absolute Galois group
Γ. Let (Fn)n∈N, F = lim

←−n
Fn be an ℓ-adic sheaf. For every i, there is a short

exact sequence

0→ Hi−1(X,F )Γ → Hi(X,F )→ Hi(X,F )Γ → 0 (2.4)

with Hi(X,F ) and Hi(X,F ) finitely generated Zℓ-modules.

The following argument is a generalisation of [Mil88, p. 78, Lemma 3.4].

Proof. Since Γ = Ẑ has cohomological dimension 1 by [NSW00, p. 69,
(1.6.13) (ii)], we get from the Hochschild-Serre spectral sequence for X/X
(see [Mil80, p. 106, Remark III.2.21 (b)]) by [Wei97, p. 124, Exercise 5.2.1]
short exact sequences for every n and i

0→ Hi−1(X,Fn)Γ → Hi(X,Fn)→ Hi(X,Fn)
Γ → 0.

Since all involved groups are finite (because the two outer groups are finite
by Theorem 2.5.3 since X/k is proper over k separably closed and Fn is con-
structible by definition of an ℓ-adic sheaf), the system satisfies the Mittag-
Leffler condition, so taking the projective limit yields an exact sequence

0→ lim
←−
n

(Hi−1(X,Fn)Γ)→ Hi(X,F )→ lim
←−
n

(Hi(X,Fn)
Γ)→ 0.

Write M(n) for H
i(X,Fn). Breaking the exact sequence

0→MΓ
(n) →M(n)

Frob−1
−→ M(n) → (M(n))Γ → 0

into two short exact sequences and applying lim
←−n

, one obtains, setting Q(n) =

(Frob−1)M(n), exact sequences

0→ lim
←−
n

MΓ
(n) → lim

←−
n

M(n)
Frob−1
−→ lim

←−
n

Q(n) → lim
←−
n

1MΓ
(n) (2.5)

0→ lim
←−
n

Q(n) → lim
←−
n

M(n) → lim
←−
n

(M(n))Γ → lim
←−
n

1Q(n). (2.6)

Since the M(n), and hence the MΓ
(n) are finite (argument as above), they form

a Mittag-Leffler system, and hence one gets from (2.5) exact sequences

0→ lim
←−
n

MΓ
(n) → lim

←−
n

M(n)
Frob−1
−→ lim

←−
n

Q(n) → 0.

Similarly, the Q(n) ⊆M(n) are finite, and hence

0→ lim
←−
n

Q(n) → lim
←−
n

M(n) → lim
←−
n

(M(n))Γ → 0
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is exact from (2.6). Combining the above two short exact sequences, one gets
the exactness of

0→ lim
←−
n

MΓ
(n) → lim

←−
n

M(n)
Frob−1
−→ lim

←−
n

M(n) → lim
←−
n

(M(n))Γ → 0,

which shows that for all i

lim
←−
n

(Hi(X,Fn)
Γ) = lim

←−
n

MΓ
(n) = ker

(
lim
←−
n

M(n)
Frob−1
−→ lim

←−
n

M(n)

)
= Hi(X,F )Γ

and

lim
←−
n

(Hi(X,Fn)Γ) = lim
←−
n

(M(n))Γ = coker
(
lim
←−
n

M(n)
Frob−1
−→ lim

←−
n

M(n)

)

= Hi(X,F )Γ,

which is what we wanted.

Lemma 2.5.4 implies

H2d(X,TℓA )Γ
∼
→ H2d+1(X,TℓA ) (2.7)

since H2d+1(X,TℓA ) = 0 by [Mil80, p. 221, Theorem VI.1.1] as dimX =
d. Because of Hi(X,TℓA ) = 0 for i > 2d for the same reason, it follows
from Lemma 2.5.4 that Hi(X,TℓA ) = 0 for i > 2d+ 1. Furthermore, one has

Zℓ = (Zℓ)Γ = H2d(X,Zℓ(d))Γ
∼
→ H2d+1(X,Zℓ(d)), (2.8)

the second equality by Poincaré duality [Mil80, p. 276, Theorem VI.11.1 (a)]
and the isomorphism by Lemma 2.5.4 since H2d+1(X,Zℓ(d))

Γ = 0 by [Mil80,
p. 221, Theorem VI.1.1] as dimX = d.

Definition 2.5.5. Let f : A → B be a homomorphism of Abelian groups.
If ker(f) and coker(f) are finite, f is called an isomorphism up to finite
groups, in which case we define

q(f) =
|coker(f)|

|ker(f)|
.

Remark 2.5.6. An isomorphism up to finite groups is called quasi-isomorphism
in [Tat66b, p. 433], but we avoid this term because one may confuse it with a
quasi-isomorphism of complexes.

The following lemma is crucial for relating special values of L-functions and
orders of cohomology groups.

Lemma 2.5.7. Let Frob be a topological generator of Γ and M be a finitely gen-
erated Zℓ-module with continuous Γ-action. Then the following are equivalent:
1. det(1− Frob |M ⊗Zℓ

Qℓ) 6= 0.
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2. H0(Γ,M) =MΓ is finite.

3. H1(Γ,M) is finite.

If one of these holds, we have H1(Γ,M) =MΓ and

| det(1− Frob |M ⊗Zℓ
Qℓ)|ℓ =

∣∣H0(Γ,M)
∣∣

|H1(Γ,M)|
=
|MΓ|

|MΓ|
=
|ker (1 − Frob)|

|coker (1 − Frob)|

= q(1 − Frob)−1.

Proof. See [BN78, p. 42, Lemma (3.2)]. If M is torsion, H1(Γ,M) = MΓ

by [NSW00, p. 69, (1.6.13) Proposition (i)].

Corollary 2.5.8. Let Frob be a topological generator of Γ and M be a finitely
generated Zℓ-module with continuous Γ-action. If M ⊗Zℓ

Qℓ has weight 6= 0,
MΓ and MΓ are finite.

Proof. Since M ⊗Zℓ
Qℓ has weight 6= 0, Frob has all eigenvalues 6= 1 = q0/2,

hence det(1−Frob |M⊗Zℓ
Qℓ) is 6= 0, so the corollary follows from Lemma 2.5.7.

2.6 L-functions of Abelian schemes

Definition 2.6.1. Let π : A → X be an Abelian scheme. Then for ℓ invertible
on X let

L(A /X, s) =
∏

x∈|X|

det
(
1− q−s deg(x) Frob−1

x | (R1π∗Qℓ)x
)−1

as a power series in q−s with coefficients in Qℓ. Here, Frob−1
x is the geometric

Frobenius of the finite field k(x).

Theorem 2.6.2. Let π : A → X be an Abelian scheme of (relative) dimension
d. One has

L(A /X, s) =

2d∏

i=0

det
(
1− q−s Frob−1

q | Hi(X,R1π∗Qℓ)
)(−1)i+1

,

where the Frobenius acts via functoriality on the second factor of X = X ×k k.

Proof. This follows from the Grothendieck-Lefschetz trace formula [KW01, p. 7,
Theorem 1.1].

Corollary 2.6.3. The power series L(A /X, s) is a rational function in q−s

with coefficients in Q independent of ℓ 6= p.

The factors in Theorem 2.6.2 for different i are polynomials with coefficients in
Q independent of ℓ 6= p.
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Proof. The right hand side in Theorem 2.6.2 is a polynomial in q−s with coef-
ficients in Qℓ. These are contained in Q and independent of ℓ: Using Defini-
tion 2.6.1, by Proposition 2.4.4, Proposition 2.4.2 and (R1π∗Qℓ)x = H1(Ax,Qℓ)
by proper base change [Mil80, p. 224, Corollary VI.2.5]

det(1 − tFrob−1
x | H1(Ax,Qℓ)) = det(1− tFrob−1

x | (VℓAx)
∨)

is in Q[t] independent of ℓ 6= p since this is true for the ℓ-adic Tate module
by [Mum70, p. 167, Theorem 4].
By the yoga of weights, the characteristic polynomials in Theorem 2.6.2 for
different i do not cancel since their roots have different absolute values for all
complex embeddings. Since their alternating product is in Q(t) independent of
ℓ 6= p, this holds for all factors individually.

Definition 2.6.4. For an Abelian scheme π : A → X let

Pi(A /X, t) = det
(
1− tFrob−1

q | Hi(X,R1π∗Qℓ)
)
.

for ℓ invertible on X and define the relative L-function of an Abelian
scheme A /X by

L(A /X, s) =
P1(A /X, q−s)

P0(A /X, q−s)
.

For our purposes, it is better to consider the following L-function:

Definition 2.6.5. Let

Li(A /X, t) = det(1 − tFrob−1
q | Hi(X,VℓA ))

for ℓ invertible on X.

Remark 2.6.6. This definition is motivated in Remark 5.1.23 below. It is ex-
plained there why we omit the cohomology in degrees > 1 in contrast to Theo-
rem 2.6.2 coming from the usual Definition 2.6.1.
The Pi(A /X, t) are polynomials with rational coefficients independent of ℓ
by Corollary 2.6.3. Using Proposition 2.4.4, the proof of Corollary 2.6.3 also
shows this for the Li(A /X, t).

2.7 The cohomological formula for the special L-value
L∗(A /X, 1)

Corollary 2.7.1. If i 6= 1, Hi(X,TℓA )Γ and Hi(X,TℓA )Γ are finite, and
one has

|Li(A /X, 1)|ℓ =

∣∣Hi(X,TℓA )Γ
∣∣

∣∣Hi(X,TℓA )Γ
∣∣ .

Proof. This follows from Lemma 2.5.7 2 and Lemma 2.2.5 since Hi(X,VℓA ) has
weight i− 1 by Theorem 2.2.2 and Proposition 2.4.2, which is 6= 0 if i 6= 1.
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After Corollary 2.7.1, one can concentrate on i = 1.

Lemma 2.7.2. Infinite groups in the short exact sequences in (2.4) can only
occur in the following two sequences:

0 H1(X,TℓA )Γ H2(X,TℓA ) H2(X,TℓA )Γ 0

0 H0(X,TℓA )Γ H1(X,TℓA ) H1(X,TℓA )Γ 0

β

α
f

(2.9)
Here, f is induced by the identity on H1(X,TℓA ). The morphisms α and β are
isomorphisms up to finite groups, and α is surjective and β is injective.

Proof. Since TℓA has weight −1 by Proposition 2.4.4, Hi(X,TℓA ) has weight
i − 1 by Theorem 2.2.2. So the conditions of Lemma 2.5.7 are fulfilled for the
Γ-module M = Hi(X,TℓA ) and i 6= 1. Therefore infinite groups in the short
exact sequences in (2.4) can only occur in the two sequences of diagram (2.9).
Since H2(X,TℓA )Γ and H0(X,TℓA )Γ are finite (having weight 2 − 1 6= 0 and
0 − 1 6= 0, so Corollary 2.5.8 applies), α and β are isomorphisms up to finite
groups, and α is surjective and β is injective.

Recall from Definition 2.6.5 that

L1(A /X, t) = det(1− tFrob−1
q | H1(X,VℓA )).

Define L̃1(A /X, t) and the analytic rank ρ by

ρ = ord
t=1

L1(A /X, t) ∈ N, (2.10)

L1(A /X, t) = (t− 1)ρ · L̃1(A /X, t). (2.11)

Note that L̃1(A /X, 1) 6= 0 and L̃1(A /X, t) ∈ Qℓ[t].
The idea is that for infinite cohomology groups H1(X,TℓA ), one should insert
a regulator term q(f) or q((βfα)nt) with (βfα)nt induced by βfα by modding
out torsion.

Lemma 2.7.3. Let ρ be as in (2.10). One always has ρ ≥ rkZℓ
H1(X,TℓA ) with

equality iff f in (2.9) is an isomorphism up to finite groups. In this case,

|L̃1(A /X, 1)|−1
ℓ = q(f) =

| coker f |

| ker f |
and

|L̃1(A /X, 1)|−1
ℓ = q((βfα)nt) ·

∣∣H0(X,TℓA )Γ
∣∣

∣∣H2(X,TℓA )Γ
∣∣ ·

∣∣H2(X,TℓA )tors
∣∣

|H1(X,TℓA )tors|

with L̃1(A /X, t) from (2.11).
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Proof. By writing Frob−1
q in Jordan normal form, one sees that ρ is equal to

dimQℓ

⋃

n≥1

ker(1− Frob−1
q )n ≥ dimQℓ

ker(1− Frob−1
q ) = dimQℓ

H1(X,VℓA )Γ,

i. e.

ρ ≥ dimQℓ
H1(X,VℓA )Γ,

and that equality holds iff the operation of the Frobenius on H1(X,VℓA ) is
semi-simple at 1, i. e.

dimQℓ

⋃

n≥1

ker(1 − Frob−1
q )n = dimQℓ

ker(1− Frob−1
q ),

i. e. the generalised eigenspace at 1 equals the eigenspace, which is equivalent
to fQℓ

in (2.9) being an isomorphism, i. e. f being an isomorphism up to finite
groups.

From (2.9), since H0(X,TℓA )Γ is finite, one sees that

dimQℓ
H1(X,VℓA )Γ = rkZℓ

H1(X,TℓA )Γ = rkZℓ
H1(X,TℓA ).

Hence, the inequality ρ ≥ rkZℓ
H1(X,TℓA ) and the first statement follows.

Assuming f being an isomorphism up to finite groups, one has by Lemma 2.5.7
and arguing as in [Sch82a, p. 136, proof of Lemma 3]

|L̃1(A /X, 1)| =
|[(Frobq −1)H

1(X,TℓA )]Γ|

|[(Frobq −1)H1(X,TℓA )]Γ|

=
|[(Frobq −1)H

1(X,TℓA )]Γ|

|(Frobq −1)H1(X,TℓA ) : (Frobq −1)2H1(X,TℓA )|

=
| ker f |

| coker f |
= q(f)−1.

For the second equation,

q(f) =
q((βf)tors)

q(β)
· q((βf)nt) by [Tat66b, p. 306-19–306-20, Lemma z.1–z.4]

=
1∣∣H2(X,TℓA )Γ

∣∣ ·
∣∣(H2(X,TℓA )Γ)tors

∣∣
∣∣(H1(X,TℓA )Γ)tors

∣∣ · q((βf)nt)

= q((βfα)nt) ·

∣∣H0(X,TℓA )Γ
∣∣

∣∣H2(X,TℓA )Γ
∣∣ ·

∣∣H2(X,TℓA )tors
∣∣

|H1(X,TℓA )tors|
since coker(α) = 0.

Lemma 2.7.4. Let ℓ 6= p be invertible on X. Then there is an exact sequence

0→ A (X)⊗Qℓ/Zℓ → H1(X,A [ℓ∞])→ H1(X,A )[ℓ∞]→ 0.
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Proof. Since ℓ is invertible on X , one has the short exact Kummer sequence of
étale sheaves 0→ A [ℓn]→ A → A → 0, which induces

0→ A (X)/ℓn → H1(X,A [ℓn])→ H1(X,A )[ℓn]→ 0. (2.12)

Passing to the colimit lim
−→n

yields the result.

Remark 2.7.5. This reminds us of the exact sequence

0→ A(K)/n→ Sel(n)(A/K)→X(A/K)[n]→ 0

for an Abelian variety A over a global field K with n invertible in K.

Recall our definition of the Tate-Shafarevich group, X(A /X) = H1
ét(X,A ),

from [Kel16, p. 225, Definition 4.2].

Lemma 2.7.6. Let ℓ be invertible on X. Then the Zℓ-corank of X(A /X)[ℓ∞]
is finite.

Proof. From (2.12), one sees that H1(X,A )[ℓ] is finite as it is a quotient
of H1(X,A [ℓ]) and A [ℓ]/X is constructible, and the cohomology of a con-
structible sheaf on a proper variety over a finite field is finite by Theorem 2.5.3.
Hence X(A /X)[ℓ∞] is cofinitely generated by Lemma 2.1.1 (iii).

For an ℓ-adic sheaf F , denote by F (n) the n-th Tate twist of F , F (n) :=
F ⊗Zℓ

Zℓ(n), see Definition 2.2.3.

Lemma 2.7.7. Let X/k be proper over k separably closed or finite, and let ℓ be
invertible on X. There is a long exact sequence

. . .→ Hi(X,TℓA (n))→ Hi(X,TℓA (n))⊗Zℓ
Qℓ → Hi(X,A [ℓ∞](n))→ . . .

which induces isomorphisms

Hi−1(X,A [ℓ∞](n))nd
∼
→ Hi(X,TℓA (n))tors

and short exact sequences

0→ Hi(X,TℓA (n))nt → Hi(X,TℓA (n))⊗Zℓ
Qℓ → Hi(X,A [ℓ∞](n))div → 0.

Proof. Consider for m,m′ ∈ N invertible on X the short exact sequence of
étale sheaves

0→ A [m](n) →֒ A [mm′](n)
·m
→ A [m′](n)→ 0.

Setting m = ℓµ,m′ = ℓν , the associated long exact sequence is

. . .→ Hi(X,A [ℓµ](n))→ Hi(X,A [ℓµ+ν ](n))→ Hi(X,A [ℓν ](n))→ . . . .

Passing to the projective limit lim
←−µ

and then to the inductive limit lim
−→ν

yields

the desired long exact sequence since all involved cohomology groups are finite

Documenta Mathematica 24 (2019) 915–993



Towards a Higher Dimensional BSD Conjecture 937

by Theorem 2.5.3 since X/k is proper over a separably closed or finite field and
our sheaves are constructible. Here, we use that lim

←−
is exact on finite groups,

see [Wei97, p. 83, Proposition 3.5.7 and Exercise 3.5.2].
For the second statement, consider the exact sequence

Hi−1(X,TℓA (n))⊗Zℓ
Qℓ

f
→ Hi−1(X,A [ℓ∞](n))

d
→Hi(X,TℓA (n))

g
→

Hi(X,TℓA (n))⊗Zℓ
Qℓ.

Since Hi(X,TℓA (n)) is a finitely generated Zℓ-module (since (A [ℓn])n∈N

is an ℓ-adic sheaf) and g is induced by the identity, we have ker g =
Hi(X,TℓA (n))tors; note that Hi(X,TℓA (n)) ∼= Zrk

ℓ ⊕ Hi(X,TℓA (n))tors and
that the codomain of g is isomorphic to Qrk

ℓ . Since Hi−1(X,TℓA (n)) is a
finitely generated Zℓ-module and Hi−1(X,A [ℓ∞](n)) is a cofinitely generated
ℓ-torsion module isomorphic to (Qℓ/Zℓ)

rk⊕Hi(X,TℓA (n))tors, so the divisible
part is (Qℓ/Zℓ)

rk, we have im f = Hi−1(X,A [ℓ∞](n))div. The claim follows
from the exactness of the sequence.
For the third statement, consider the exact sequence

Hi(X,TℓA (n))
g
→ Hi(X,TℓA (n))⊗Zℓ

Qℓ
f
→ Hi(X,A [ℓ∞](n)).

Since Hi(X,TℓA (n)) is a finitely generated Zℓ-module (since (A [ℓn](n))n∈N

is an ℓ-adic sheaf) and g is induced by the identity, we have ker g =
Hi(X,TℓA (n))tors; note that Hi(X,TℓA (n)) ∼= Zrk

ℓ ⊕ Hi(X,TℓA (n))tors and
that the codomain of g is isomorphic to Qrk

ℓ . Since Hi(X,TℓA (n)) is a finitely
generated Zℓ-module and Hi(X,A [ℓ∞](n)) is a cofinitely generated ℓ-torsion
module isomorphic to (Qℓ/Zℓ)

rk ⊕ Hi(X,TℓA (n))tors, so the divisible part is
(Qℓ/Zℓ)

rk, we have im f = Hi(X,A [ℓ∞](n))div. The claim follows from the
exactness of the sequence.

Theorem 2.7.8 (Mordell-Weil(-Lang-Néron)). Let K be a field finitely gener-
ated over its prime field and A/K an Abelian variety. Then the Mordell-Weil
group A(K) is a finitely generated Abelian group.

Proof. See [Con06, p. 42, Theorem 2.1].

Note that A (X) = A(K) by the Néron mapping property:

Theorem 2.7.9 (Néron mapping property). Let S be a regular, Noetherian,
integral, separated scheme with g : {η} →֒ S the inclusion of the generic point.
Let A /S be an Abelian scheme. Then

A
∼
→ g∗g

∗
A

as sheaves on the smooth site Ssm of S.

Proof. See [Kel16, p. 222, Theorem 3.3].
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Lemma 2.7.10. Assume ℓ is invertible on X. Then one has the following iden-
tities for the étale cohomology groups of X:

Hi(X,TℓA ) = 0 for i 6∈ {1, 2, . . . , 2d+ 1} (2.13)

H1(X,TℓA )tors = H0(X,A [ℓ∞])nd = H0(X,A )[ℓ∞] (2.14)

H2(X,TℓA )tors = H1(X,A [ℓ∞])nd (2.15)

H1(X,A [ℓ∞])nd = X(A /X)[ℓ∞] if X(A /X)[ℓ∞] is finite (2.16)

Proof. (2.13): For i > 2d + 1 this follows from (2.4) (using the fact that
Hi(X,TℓA ) = 0 for i > 2d, as noted earlier below (2.7)), and it holds for
i = 0 since H0(X,A [ℓn]) ⊆ A (X)tors is finite (since A (X) is a finitely gener-
ated Abelian group by the Mordell-Weil theorem Theorem 2.7.8 and the Néron
mapping property Theorem 2.7.9) hence its Tate-module is trivial.
(2.14) and (2.15): From Lemma 2.7.7, we get

Hi(X,TℓA )tors = Hi−1(X,A [ℓ∞])nd

The desired equalities follow by plugging in i = 1, 2.
Further, one has H0(X,A [ℓ∞])nd = H0(X,A )[ℓ∞]tors in (2.14) because
H0(X,A [ℓ∞]) is cofinitely generated by the Mordell-Weil theorem and the
Néron mapping property Theorem 2.7.9.
Finally, (2.16) holds since by Lemma 2.7.4, H1(X,A [ℓ∞])nd = H1(X,A )[ℓ∞]
if the latter is finite, and this equals X(A /X)[ℓ∞].

Now we have two pairings given by cup product in cohomology

〈·, ·〉ℓ : H
1(X,TℓA )nt ×H2d−1(X,Tℓ(A

t)(d− 1))nt → H2d(X,Zℓ(d)) (2.17)

pr∗1→ H2d(X,Zℓ(d)) = Zℓ,
(2.18)

and

(·, ·)ℓ : H
2(X,TℓA )nt ×H2d−1(X,Tℓ(A

t)(d − 1))nt → H2d+1(X,Zℓ(d)) = Zℓ.
(2.19)

Lemma 2.7.11. Let A,A′ and B finitely generated free Zℓ-modules. Consider
the commutative diagram

A B Zℓ

A′ B Zℓ,

×

f

〈·,·〉

×
(·,·)

where 〈·, ·〉 is a non-degenerate pairing.
Then f is an isomorphism up to finite groups iff (·, ·) is non-degenerate, and in
this case one has

q(f) =

∣∣∣∣
det〈·, ·〉

det(·, ·)

∣∣∣∣
−1

ℓ

.
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Proof. Since the Zℓ-modules are finitely generated free, the pairings are non-
degenerate iff they are perfect after tensoring with Qℓ. So f is an isomorphism
up to finite groups iff f ⊗Zℓ

Qℓ is an isomorphism iff f∗
Qℓ

: HomQℓ
(A′

Qℓ
,Qℓ)

∼
→

HomQℓ
(AQℓ

,Qℓ) = BQℓ
is an isomorphism iff (·, ·)Qℓ

is perfect (the last equal-
ity coming from the following facts: (a) 〈·, ·〉Qℓ

is perfect, (b) a non-degenerate
pairing of finite dimensional vector spaces is perfect and (c) the non-degeneracy
of a pairing is preserved by localisation).
The statement on q(f) follows by considering the dual diagram

A B∨

A′ B∨.

f

from [Tat66b, p. 433 f., Lemma z.1 and Lemma z.2].

Lemma 2.7.12. Recall the maps α, β, f from diagram (2.9). The pairing
(·, ·)ℓ (2.19) is non-degenerate. The regulator term q((βfα)nt) is defined iff
f is an isomorphism up to finite groups, and then it equals

∣∣∣∣
det〈·, ·〉ℓ
det(·, ·)ℓ

∣∣∣∣
−1

ℓ

where both pairings are non-degenerate. Conversely, if the pairing 〈·, ·〉ℓ (2.18)
is non-degenerate, f is an isomorphism up to finite groups.

Proof. Using H2d+1(X,Zℓ(d)) = Zℓ and H2d(X,Zℓ(d)) = Zℓ by (2.8), there is
a commutative diagram of pairings

H2(X,TℓA )nt H2d−1(X,Tℓ(A
t)(d− 1))nt Zℓ

(H1(X,TℓA )Γ)nt (H2d−1(X,Tℓ(A
t)(d− 1))Γ)nt Zℓ

(H1(X,TℓA )Γ)nt (H2d−1(X,Tℓ(A
t)(d− 1))Γ)nt Zℓ

H1(X,TℓA )nt H2d−1(X,Tℓ(A
t)(d− 1))nt Zℓ,

×

∼=

(·,·)ℓ

βnt

× ∪

fnt

× ∪

αnt ∼=

×

∼=
〈·,·〉ℓ

where the maps αnt, βnt and fnt are induced by the maps α resp. β resp. f in
diagram (2.9). Note that by Lemma 2.7.2, αnt is an isomorphism and βnt is
injective with finite cokernel.
As in [Sch82a, p. 137, (5)], this diagram is commutative with the pairing in
the second line non-degenerate: By Poincaré duality [Mil80, p. 276, Theo-
rem VI.11.1] (using that TℓA is a smooth sheaf since the A [ℓn] are étale), the
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pairing in the second line is non-degenerate, hence the pairing in the first line is
also non-degenerate since β is an isomorphism up to finite groups. The upper
right and the lower right arrows (note that these are the same morphism) are
isomorphisms since their kernel is (H2d−2(X,Tℓ(A

t)(d− 1))nt by Lemma 2.5.4,
which is 0 for weight reasons by Corollary 2.5.8: (2d− 2) + (−1)− 2(d− 1) =
−1 6= 0; the lower left arrow αnt is an isomorphism since α is an isomorphism
up to finite groups since it is surjective by (2.9) with finite kernel again by (2.9)
(the kernel H0(X,TℓA )Γ is finite since H0(X,TℓA ) has weight −1 + 0 6= 0
by Proposition 2.4.4, so the Γ-invariants are finite by Corollary 2.5.8).
Hence if f is an isomorphism up to finite groups, the pairing 〈·, ·〉ℓ is non-
degenerate by Lemma 2.7.11, and then the claimed equality for the regulator
q((βfα)nt) = |coker(βfα)nt| follows since ker(βfα)nt = 0 by Lemma 2.7.11.
Conversely, if 〈·, ·〉ℓ is non-degenerate, f is an isomorphism up to finite groups
by Lemma 2.7.11.

Lemma 2.7.13. Let ℓ be invertible on X. Then one has a short exact sequence

0→ A (X)⊗Z Zℓ
δ
→ H1(X,TℓA )→ lim

←−
n

(H1(X,A )[ℓn])→ 0.

If X(A /X)[ℓ∞] = H1(X,A )[ℓ∞] is finite, δ induces an isomorphism

A (X)⊗Z Zℓ
∼
→ H1(X,TℓA ).

Proof. Since ℓ is invertible on X , the short exact Kummer sequence of étale
sheaves

0→ A [ℓn]→ A
ℓn
→ A → 0

induces a short exact sequence

0→ A (X)/ℓn
δ
→ H1(X,A [ℓn])→ H1(X,A )[ℓn]→ 0

in cohomology, and passing to the limit lim
←−n

gives us the desired short ex-

act sequence since the A (X)/ℓn are finite by the Mordell-Weil theorem Theo-
rem 2.7.8 and the Néron mapping property Theorem 2.7.9, so they satisfy the
Mittag-Leffler condition and lim

←−
1

n
A (X)/ℓn = 0.

The second claim follows from the short exact sequence and since the Tate
module of a finite group is trivial by Lemma 2.1.1 (ii).

Lemma 2.7.14. Consider the following statements:
(1) 〈·, ·〉ℓ is non-degenerate.
(2) The morphism f , where f is as in (2.9), is an isomorphism up to finite
groups.
(3) In the inequality ρ ≥ rkZℓ

H1(X,TℓA ) from Lemma 2.7.3, equality holds:
ρ = rkZℓ

H1(X,TℓA ).

(4) The canonical injection A (X)⊗Z Zℓ
δ
→ H1(X,TℓA ) is surjective.

(5) The ℓ-primary part of the Tate-Shafarevich group X(A /X)[ℓ∞] is finite.
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Then (1) ⇐⇒ (2) ⇐⇒ (3) and (4) ⇐⇒ (5); further (3) ⇐⇒ (4) assuming
ρ = rkZ A (X).

Furthermore, the following are equivalent:

(a) ρ = rkZ A (X) (weak Birch-Swinnerton-Dyer conjecture)

(b) 〈·, ·〉ℓ is non-degenerate and the ℓ-primary part of the Tate-Shafarevich group
X(A /X)[ℓ∞] is finite.

Proof. (1) ⇐⇒ (2): See Lemma 2.7.12.

(2) ⇐⇒ (3): This is Lemma 2.7.3.

(3) ⇐⇒ (4) assuming ρ = rkZ A (X): One has ρ = rkZ A (X) =
rkZℓ

(A (X)⊗ZZℓ) and by Lemma 2.7.13 rkZℓ
(A (X)⊗ZZℓ) ≤ rkZℓ

H1(X,TℓA ),
so this is an equality iff δ in 4. is onto.

(4) ⇐⇒ (5): By Lemma 2.1.1 (iv), lim
←−n

(H1(X,A )[ℓn]) = Tℓ(H
1(X,A )) is triv-

ial iff H1(X,A )[ℓ∞] = X(A /X)[ℓ∞] is finite since X(A /X)[ℓ∞] is a cofinitely
generated Zℓ-module by Lemma 2.7.6.

(a) =⇒ (b): Since δ in (4) is injective, one has rkZ A (X) ≤ rkZℓ
H1(X,TℓA ) ≤

ρ. Therefore, ρ = rkZ A (X) implies equality, and (3) and (4) follow, so (1)–(5)
hold.

(b) =⇒ (a): from (b) follows (5) =⇒ (4) and (1) =⇒ (2) =⇒ (3), so from
(4) one gets A (X) ⊗Z Zℓ

∼
→ H1(X,TℓA ), but by (3), ρ = rkZℓ

H1(X,TℓA ) =
rkZ A (X).

Remark 2.7.15. We have

1− q1−s = 1− exp(−(s− 1) log q) = (log q)(s− 1) +O
(
(s− 1)2

)
for s→ 1

using the Taylor expansion of exp.

Definition 2.7.16. Define c by

L(A /X, s) ∼ c · (1− q1−s)ρ

∼ c · (log q)ρ(s− 1)ρ for s→ 1, (2.20)

see Remark 2.7.15.

Remark 2.7.17. Note that c ∈ Q since L(A /X, s) is a rational function with
Q-coefficients in q−s, and c 6= 0 since ρ is the vanishing order of the L-function
at s = 1 by definition of ρ and the Riemann hypothesis.

Corollary 2.7.18. If ρ = rkZℓ
H1(X,TℓA ), then

|c|−1
ℓ = q((βfα)nt) ·

∣∣H2(X,TℓA )tors
∣∣

|H1(X,TℓA )tors| ·
∣∣H2(X,TℓA )Γ

∣∣ .
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Proof. Using Lemma 2.7.3 for L̃1(A /X, t) and Corollary 2.7.1 for L0(A /X, t),
one gets

|c|−1
ℓ = q((βfα)nt) ·

∣∣H0(X,TℓA )Γ
∣∣

∣∣H2(X,TℓA )Γ
∣∣ ·

∣∣H2(X,TℓA )tors
∣∣

|H1(X,TℓA )tors|
·

∣∣H0(X,TℓA )Γ
∣∣

∣∣H0(X,TℓA )Γ
∣∣

= q((βfα)nt) ·
1∣∣H2(X,TℓA )Γ

∣∣ ·
∣∣H2(X,TℓA )tors

∣∣
|H1(X,TℓA )tors|

·

∣∣H0(X,TℓA )Γ
∣∣

1
.

For 0 = H0(X,TℓA )
∼
→ H0(X,TℓA )Γ use (2.4) with i = 0 and (2.13).

Theorem 2.7.19 (analogue of the conjecture of Birch and Swinnerton-Dyer for
Abelian schemes over higher dimensional bases, cohomological version). Recall
that k is a finite field of characteristic p, X/k is a smooth projective geomet-
rically connected variety and A /X is an Abelian scheme with analytic rank
ρ = ordt=1 L(A /X, t). One has ρ ≥ rkZℓ

H1(X,TℓA ) ≥ rkZ A (X) and the
following are equivalent:
(a) ρ = rkZ A (X) = rkZA(K)
(b) For some ℓ 6= p = chark, 〈·, ·〉ℓ is non-degenerate and X(A /X)[ℓ∞] is
finite.
If these hold, we have for all ℓ 6= p

|c|−1
ℓ =

∣∣∣∣
det〈·, ·〉ℓ
det(·, ·)ℓ

∣∣∣∣
−1

ℓ

·
|X(A /X)[ℓ∞]|

|A (X)[ℓ∞]tors| ·
∣∣H2(X,TℓA )Γ

∣∣ ,

where the special L-value c is defined by (2.20), and the prime-to-p torsion
X(A /X)[non-p] is finite.

Proof. Note that ρ = ordt=1 L1(A /X, t) = ordt=1 L(A /X, t) by Remark 2.6.6,
and that rkZℓ

H1(X,TℓA ) ≥ rkZ A (X) by the injection from Lemma 2.7.14 (4).
The first statement is Lemma 2.7.14 (a) ⇐⇒ (b). Now identify the terms
in Corollary 2.7.18 using Lemma 2.7.10 (cohomology groups) and Lemma 2.7.12
(regulator).
By Theorem 2.7.19 (b) for ℓ =⇒ (a) independent of ℓ =⇒ (b) for ℓ′,
X(A /X)[ℓ′∞] is finite for every ℓ′ 6= p. But since c 6= 0, and by the rela-
tion of |c|−1

ℓ′ and |X(A /X)[ℓ′∞]|, the prime-to-p torsion is finite.

Remark 2.7.20. (a) For example, Theorem 2.7.19 holds unconditionally if
L(A /X, 1) 6= 0 since one then has 0 = ρ ≥ rkZ A (X) ≥ 0. For examples
when X(A /X)[ℓ∞] is finite, see section 5.
(b) The (determinants of the) pairings 〈·, ·〉ℓ and (·, ·)ℓ are identified below: One
has det(·, ·)ℓ = 1 and det〈·, ·〉ℓ is the regulator, see especially Remark 3.5.3.
(c) For the vanishing of H2(X,TℓA )Γ see Remark 5.1.29 below.
(d) Assume X(A /X)[ℓ∞] finite. Then, the pairing (·, ·)ℓ has determinant 1,
see the discussion in subsection 4 below, and is thus non-degenerate. The
pairing 〈·, ·〉ℓ equals the height pairing, see subsection 3 below, and is therefore
non-degenerate by [Con06, p. 98, Theorem 9.15].
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Remark 2.7.21. This remark is about the independence of the analytic rank
ords=1 L(A /X, s) on the model A /X of A/K.
Note that the vanishing order of L(A /X, s) at s = 1, the analytic rank, only de-
pends on L1(A /X, s) since L0(A /X, 1) = det(1 − Frob−1

q | H0(X,VℓA )) 6= 0

by Lemma 2.5.7 “2 =⇒ 1” since H0(X,VℓA ) is pure of weight 0 − 1 6= 0
by Proposition 2.4.4 below, so its invariants H0(X,VℓA )Γ are finite by Corol-
lary 2.5.8. Furthermore, the vanishing order of L1 at s = 1 only depends on the
generic fibre A/K (and not on the model X) assuming the conjecture of Birch
and Swinnerton-Dyer for A /X by an a posteriori argument: If the conjecture
holds, by Theorem 2.7.19, the vanishing order at s = 1 of L(A /X, s) equals
the (algebraic) rank of A(K).
For dimX = 1, there is a canonical model X of K. In contrast, for higher di-
mensionalX , there is no canonical model (one can e. g. blow up smooth centres),
and the special L-value depends on the model. If every birational morphism of
smooth projective k-varieties of dimension d is given by a sequence of monoidal
transformations (e. g. for surfaces, see [Har83, p. 412, Theorem V.5.5] over alge-
braically closed fields), the vanishing order of L1(A /X, 1) = det(1 − Frob−1

q |

H1(X,VℓA )) is independent of the model of X by calculation of the étale co-

homology of blow-ups of torsion sheaves [Sta18, section 0EW3]: If X
′
is the

blow-up of X along a closed point Z with exceptional divisor E ∼= Pc−1

k
, then

there is an exact sequence of proper varieties over k

H0(E, VℓA )→ H1(X,VℓA )→ H1(X
′
, VℓA )⊕H1(Z, VℓA )→ H1(E, VℓA ).

Here, H1(Z, VℓA ) = 0 since cdℓZ = 0, H0(E, VℓA ) is pure of weight 0 − 1 6=
0 and A [ℓn]|E

∼= µ2g
ℓn since πét

1 (Pc−1

k
) = 0 and A [ℓn]/X is finite étale, so

H1(E, VℓA ) = H1(Pc−1

k
,Qℓ(1)) = 0.

3 Comparison of the cohomological pairing 〈·, ·〉ℓ with geometric
height pairings

The objective of this section is to show that the cohomological pairing 〈·, ·〉ℓ
discussed above coincides, up to multiplication by a certain integral hard Lef-
schetz defect (see Definition 3.1.11), with certain other geometric pairings de-
fined in subsection 3.1 below, namely the generalised Bloch and the generalised
Néron-Tate canonical height pairings (see Definition 3.1.5 and Definition 3.1.6,
respectively). The equality of these three pairings (up to the indicated inte-
gral hard Lefschetz defect) is the content of the main Theorem 3.5.2 of this
section, which is essentially equivalent to the commutativity of diagram (3.17)
in Proposition 3.5.1. To establish the commutativity of diagram (3.17), we first
compare (in subsection 3.2) 〈·, ·〉ℓ with a certain Yoneda pairing. The main
results in this subsection are Proposition 3.2.6 and Proposition 3.2.7, which
establish the commutativity of subdiagrams (1) and (2) in diagram (3.17). In
subsection 3.3, the Yoneda pairing is compared with the generalised Bloch pair-
ing and, in subsection 3.4, the generalised Bloch pairing is shown to coincide

Documenta Mathematica 24 (2019) 915–993



944 Timo Keller

with the generalised Néron-Tate canonical height pairing (see Corollary 3.4.4).
The developments in subsection 3.3 and 3.4 yield the commutativity of subdia-
gram (3) in (3.17), thereby establishing the commutativity of the full diagram
and thereby proving Theorem 3.5.2.

3.1 Definition of the geometric pairings

We wish to define a generalised Bloch pairing

〈·, ·〉 : A(K)×At(K)→ R,

see Definition 3.1.5 below. To this end, we need some preparations.
Let X be a k-variety and K = k(X) be the function field of X . Define for
S ⊂ X(1) finite the S-adele ring of X as the restricted product

AK,S =
∏

x∈S

Kx ×
∏

v∈X(1)\S

OX,x

where Kx is the quotient field of the discrete valuation ring OX,x with discrete

valuation vx : K×
x → Z and absolute value | · |ι,x = q− degι {x}·vx(·), and the

adele ring of X as

AK = lim
−→

S⊂X finite

AK,S .

Proposition 3.1.1 (adele valued points). Let X be a k-variety and S ⊂ X(1)

be a finite set of places. Then

lim
−→
S′

XS′(AK,S′) = XS(AK) = X(AK)

and
XS(AK,S) =

∏

v∈S

Xv(Kv)×
∏

v 6∈S

XS,v(OX,v)

as sets with the notation from [Con12, p. 70]. This bijection is used to define
a topology on XS(AK,S).

Proof. See [Con12, p. 70 f., (3.1) and Theorem 3.6].

Lemma 3.1.2. Let (Ri)i∈I be a family of rings with Pic(SpecRi) = 0 for every
i ∈ I. Then Pic(

∏
i∈I SpecRi) = 0. (Note that the infinite fibre product exists

and is affine by [Sta18, Tag 0CNH].)

Proof. Line bundles correspond to Gm-torsors, and a torsor is trivial iff it has
a section. So let L be a line bundle on

∏
i∈I SpecRi. Since line bundles on

affine schemes are affine, L is represented by an affine scheme X . One has

X(
∏

i∈I

SpecRi) =
∏

i∈I

X(Ri),
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by [Con12, p. 72 ff., proof after (3.3)]. Each of the factors has a non-trivial
element by Pic(Ri) = 0. Hence, the product is non-empty by the axiom of
choice.

Corollary 3.1.3. The Picard group of the adele ring AK is trivial.

Proof. By the previous Lemma 3.1.2, Pic(AK,S) = 0 since line bundles on the
local ringsKx and OX,x are trivial, and Pic(AK) = lim

−→S
Pic(AK,S) by the com-

patibility of étale cohomology (Pic(X) = H1(X,Gm)) with limits, see [Mil80,
p. 88 f., Lemma III.1.16].

Let a ∈ A(K) and at = (1 → Gm → X → A → 0) ∈ E xt1X(A ,Gm) =
A t(X) = At(K). By descent theory, X is a smooth commutative X-group
scheme, and by Hilbert’s theorem 90, the sequence

1→ Gm(K)→X (K)→ A (K)→ H1(K,Gm) = 0 (3.1)

and, by Corollary 3.1.3,

1→ Gm(AK)→X (AK)→ A (AK)→ H1(AK ,Gm) = Pic(AK) = 0 (3.2)

are still exact.
Fix a closed immersion ι : X →֒ PN

k with the very ample sheaf OX(1) :=
ι∗OPN

k
(1). There is a natural homomorphism, the logarithmic modulus

map,

l : Gm(AK)→ log q · Z ⊆ R, (ax) 7→
∑

x∈X(1)

log |ax|ι,x =

− log q ·
∑

x∈X(1)

degι {x} · vx(ax). (3.3)

By the product formula (see [Har83, p. 146, Exercise II.6.2 (d)]), l(Gm(K)) =
l(K×) = 0. Scale the image of l such that l is surjective.

Lemma 3.1.4. The homomorphism l : Gm(AK) → log q · Z ⊆ R (3.3) has a
unique extension lat : X (AK) → R, which induces by restriction to X (K) a
homomorphism

lat : A(K)→ R.

Proof. Define G1
m as the kernel of l, and X 1 as

X
1 = {a ∈X (AK) : ∃n ∈ Z≥1, na ∈ X̃

1}

the rational saturation of X̃ 1 with

X̃
1 = G1

m ·
∏

v∈X(1)

X (OX,v) ⊆X (AK).
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Consider the following commutative diagram (at first without the dashed ar-
rows) with exact rows by (3.1) and (3.2) and injective upper vertical morphisms
and exact left column:

1 0

1 G1
m X

1
A (AK) 0

1 Gm(AK) X (AK) A (AK) 0

log q · Z log q · Z

0 0

l lat

(3.4)

For the commutativity of the diagram, it suffices to show that (1) G1
m =

X 1 ∩Gm(AK) ⊆X (AK) and (2) X 1
։ A (AK).

Assertion (1) is true because of the following: One has G1
m ⊆ Gm(AK) ∩X 1

by definition of X 1 and G1
m. For the other inclusion X 1 ∩Gm(AK) ⊆ G1

m,
note that

l
( ∏

v∈X(1)

Gm(OX,v)
)
= 0

since log |av|ι,v = 0 for av ∈ O
×
X,v, hence

G1
m ·

∏

v∈X(1)

Gm(OX,v) ⊆ G1
m,

so
X̃

1 ∩Gm(AK) = G1
m ·

∏

v∈X(1)

Gm(OX,v) ⊆G1
m,

but Gm(AK)/G1
m →֒ R is torsion-free, hence the inclusion X 1 ∩Gm(AK) ⊆

G1
m.

Assertion (2) is true because of the following: By the long exact sequence asso-
ciated to the short exact sequence 1→ Gm →X → A → 0 and Lemma 3.1.2,
there is a surjection

X

( ∏

x∈X(1)

OX,x

)
։ A

( ∏

x∈X(1)

OX,x

)
= A (AK),

the latter equality by Proposition 3.1.1 and the valuative criterion for proper-
ness. But obviously

X

( ∏

x∈X(1)

OX,x

)
⊆X

1. (3.5)
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By the snake lemma, the diagram completed with the dashed arrows is also
exact and there exists the sought-for extension lat : X (AK) → log q · Z of
l : Gm(AK) → log q · Z. The homomorphism lat induces by restriction to
X (K) a homomorphism

lat : A(K)→ R,

since l(Gm(K)) = 0 by the product formula.

Definition 3.1.5. Define the generalised Bloch pairing 〈·, ·〉 : A(K) ×
At(K)→ log q ·Z as follows: Let a ∈ A(K) and at ∈ At(K). Let 〈a, at〉 be the
image of a under the composition of the maps

A(K) = X (K)/Gm(K)→X (AK)/Gm(K)
lat

→ log q · Z

with lat coming from Lemma 3.1.4.

(The first identity comes from (3.1). Note that Gm(K) ⊆ G1
m by the product

formula.)

Now we wish to define the generalised Néron-Tate canonical height
pairing ĥK,ι.
For the definition of a generalised global field see [Con06, p. 83, Definition 8.1].
Let us recall Conrad’s height pairing for generalised global fields
from [Con06, p. 82 ff., section 8]. Let X be a smooth projective geometrically
connected variety over a finite ground field k = Fq and K = k(X) the function
field of X . Choose a closed k-immersion ι : X →֒ PN

k . For x ∈ X(1) let

cx,ι = q− degk,ι {x} ∈ Q ∩ (0, 1).

For the definition of the degree of a closed subscheme of projective space
see [Har83, p. 52]. Then the absolute values

‖ · ‖x,ι = cordx(·)
x,ι

on K, where x ∈ X(1), satisfy the product formula by [Har83, p. 146, Exer-
cise II.6.2 (d)]. Conrad calls the system of these valuations the structure of a
generalised global field on K. This induces a height function

hK,n,ι : P
n
K(K)→ R≥0, hK,n,ι([t0 : . . . : tn]) =

1

[K ′ : K]

∑

v′

n
max
i=0

log ‖ti‖v′,ι

on projective space over K, see [Con06, p. 86 ff.], with the finitely many lifts
v′ of v = x ∈ X(1) to K ′/K finite, where K ⊆ K ′ ⊆ K is a finite subextension
over K that contains the ti and we canonically endow K ′ with a structure of
generalised global field via the algebraic method as in [Con06, p. 86]; this is
independent of the choice of K ′, see [Con06, p. 87 ff.].
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Now, we construct a canonical height pairing

ĥι := ĥK,ι : A (X)×A
t(X)→ R

as follows. If L is a very ample line bundle on a smooth projective geometrically
connected K-variety X , the induced closed immersion

ι : X →֒ P(H0(X,L ))

defines a height function

hK,L ,ι := hK,H0(X,L ),ι ◦ ιL : X(K)→ R,

where hK,H0(X,L ),ι = hK,n,ι if dimK H0(X,L ) = n. By linearity, since one
can write any line bundle on X as a difference of two very ample line bundles
(see [HS00, p. 186, l. 8]), this extends as in [HS00, p. 184, Theorem B.3.2]
(Weil’s height machine) to a homomorphism

Pic(X)→ RX(K)/O(1),

where O(1) := {f : X(K) → R : f is bounded} ⊂ RX(K) is the vector sub-
space of bounded functions.
Our K-variety X will now be an Abelian variety A/K arising as the generic
fibre of an Abelian scheme.

Definition 3.1.6 (generalised Néron-Tate canonical height pairing). Now let
A /X be an Abelian scheme. In this case, one can, by the Tate limit argument,

define a canonical height pairing, taking values in RA(K) (not modulo bounded
functions)

ĥK,L ,ι : A (X) = A(K)→ R

or
ĥK,ι : A (X)×A

t(X) = A(K)×At(K)→ R,

respectively as in [BG06, p. 284 ff.]. One has ĥK,ι(x,L ) = ĥK,L ,ι(x).

Proposition 3.1.7. Let K be a generalised global field, A/K an Abelian variety
and P ∈ Pic(A×K At) the Poincaré bundle. Then

ĥL (x) = ĥP(x,L )

for x ∈ A(K) and L ∈ At(K).

Proof. See [BG06, p. 292, Corollary 9.3.7].

Lemma 3.1.8. Let A /X be a projective Abelian scheme over a locally Noethe-
rian scheme X. Let x ∈ A (X) and L ∈ Pic

0
A /X(X) = A t(X). By the

universal property of the Poincaré bundle [FGI+05, p. 262 f., Exercise 9.4.3],
there is a unique X-morphism h : X → A t such that L = (idA ×h)

∗PA .
Then x∗L = (x, h)∗PA .
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Proof. Note that the map (x, h) : X → A ×X A t factors as

X A ×X X A ×X A
t.x idA ×h

Consequently, x∗L = x∗(idA ×h)
∗PA = (x, h)∗PA .

Now we need to define the integral hard Lefschetz defect.

Theorem 3.1.9 (hard Lefschetz for finite ground fields). Let k be a finite field,
ℓ 6= char k be prime and X/k be a smooth projective variety of pure dimension d.
Let η ∈ H2(X,Zℓ(1)) be the first Chern class of OX(1) ∈ Pic(X) (the image of
OX(1) under the homomorphism Pic(X)→ H2(X,Zℓ(1)) from [Mil80, p. 271,
Proposition VI.10.1]) and A /X be an Abelian scheme. Then the iterated cup
products

(∪η)i : Hd−i(X,VℓA )→ Hd+i(X,VℓA (i))

are isomorphisms.

Proof. This follows from the hard Lefschetz theorem [BBD82, p. 144,
Théorème 5.4.10] for the projective morphism f : X → Spec k since F :=
VℓA [d] is a pure perverse sheaf: The sheaf F is pure of weight −1 by Proposi-
tion 2.4.4. It is perverse: The sheaf VℓA = R1π∗Qℓ(1) with the smooth projec-
tive morphism π : A t → X is smooth by proper and smooth base change [Mil80,
p. 223, Corollary VI.2.2 and p. 230, Corollary VI.4.2]. If F is a smooth sheaf on
a smooth pure d-dimensional variety, then F [d] is perverse by [KW01, p. 149,
Corollary III.5.5].

Corollary 3.1.10 (integral hard Lefschetz for finite ground fields). The inte-
gral hard Lefschetz morphism

(∪η)d−1 : H1(X,Tℓ(A
t))nt → H2d−1(X,Tℓ(A

t)(d− 1))nt

is injective with finite cokernel.

Proof. By the hard Lefschetz theorem Theorem 3.1.9, it follows that the kernel
and the cokernel tensored with Qℓ are trivial, hence torsion, hence finite. Now
note that all groups are taken modulo their torsion subgroup, so the kernel is
trivial.

Definition 3.1.11. We call the order of the cokernel of the integral hard Lef-
schetz morphism from Corollary 3.1.10 the integral hard Lefschetz de-
fect.
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3.2 Comparison of the cohomological pairing with a Yoneda pair-
ing

In the rest of this section, if we deal with Ext-groups or E xt-sheaves, we always
mean them with respect to the fppf topology in order to have the Barsotti-Weil
formula E xt1Xfppf

(A ,Gm)
∼
→ A t ([Mil86a, p. 121, l. –11] or [Oor66, p. III.18–

1, Theorem III.18.1]). Although we are also dealing with étale cohomology,
there is no problem since by [Mil80, p. 116, Remark 3.11 (b)] the étale and fppf
cohomology of sheaves represented by smooth group schemes (we are using A ,
A [ℓn], Gm and µℓn with ℓ invertible on X) agree.
Note that one has a Yoneda Ext-pairing

∨ : Extr(A,B)× Exts(B,C)→ Extr+s(A,C),

in Abelian categories with enough injectives, see [Mil80, p. 167]; we will use
this several times below. This induces pairings

∨ : Hr(X,F ) × ExtsX(F ,G )→ Hr+s(X,G ).

See also [GM03, p. 166 f.].

Lemma 3.2.1. Let A /X be a projective Abelian scheme over a locally Noethe-
rian scheme X. Then the following diagram commutes:

A (X) A
t(X) Pic(X)

H0(X,A ) Ext1X(A ,Gm) H1(X,Gm)

×

×

∼=

∨

∼=

Here, the upper pairing is given by (x,L ) 7→ x∗L = (x,L )∗PA (the equality
by Lemma 3.1.8) for x ∈ A (X) and L ∈ A t(X) = Pic

0
A /X(X) with (x,L ) :

X → A ×X A t, and the lower pairing is the Yoneda pairing.

Proof. The morphism Ext1X(A ,Gm) → A t(X) is an isomorphism by the
Barsotti-Weil formula.
Given x ∈ A (X), i. e. x : X → A , and e : (1 → Gm → G → A → 0) ∈
Ext1X(A ,Gm), (x, e) maps to G×A X under the Yoneda pairing (composition
in the lower row). This is a Gm-torsor on X , namely x∗L if G = L \ 0 (0 the
zero-section), which is the composition in the upper row.

Lemma 3.2.2. Let n be invertible on X. Then one has

H omX(A ,Gm) = 0 and H omX(A , µn) = 0.
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Proof. This holds since Gm and µn are affine over X and A /X is proper and
has geometrically integral fibres using the Stein factorisation.

Corollary 3.2.3. Let ℓ be invertible on X. Then the local-to-global Ext spec-
tral sequence Hp(X, E xtqX(A , µℓn))⇒ Extp+q

X (A , µℓn) gives an injection

H1(X, E xt1X(A , µℓn)) →֒ Ext2X(A , µℓn). (3.6)

Proof. This follows since H omX(A , µℓn) = 0 by Lemma 3.2.2, so Ep,0
2 = 0 for

all p in the Ext spectral sequence.

Lemma 3.2.4. Let ℓ be invertible on X. Then one has

E xt1X(A , µℓn) = E xt1X(A ,Gm)[ℓn] = A
t[ℓn].

Proof. One has a short exact sequence of sheaves

0→ E xt1X(A ,Gm)[ℓn]→ E xt1X(A ,Gm)
ℓn
→ E xt1X(A ,Gm)→ 0 (3.7)

since one can check E xt1X(A ,Gm)/ℓn = A t/ℓn = 0 on stalks by the exactness
of the Kummer sequence.
The short exact Kummer sequence yields by Lemma 3.2.2 a short exact se-
quence

H omX(A ,Gm) = 0→ E xt1X(A , µℓn)→ E xt1X(A ,Gm)

ℓn
→ E xt1X(A ,Gm)→ 0, (3.8)

the 0 at the right hand side by (3.7).
Combining (3.7) and (3.8), one gets the first equation in Lemma 3.2.4. The
second equation follows from the Barsotti-Weil formula.

Lemma 3.2.5. Let ℓ be invertible on X. Then one has an isomorphism

δ : H omX(A [ℓn], µℓn)
∼
→ E xt1X(A , µℓn) = A

t[ℓn].

Proof. Applying the functor H omX(−, µℓn) to the short exact Kummer se-
quence 0→ A [ℓn]→ A → A → 0 gives an exact sequence

0 = H omX(A , µℓn)→H omX(A [ℓn], µℓn)
δ
→ E xt1X(A , µℓn)

ℓn
→ E xt1X(A , µℓn),

the first equality by Lemma 3.2.2. But multiplication by ℓn kills E xt1X(A , µℓn),
so the last arrow is zero. Hence δ is an isomorphism.
The equality E xt1X(A , µℓn) = A t[ℓn] is Lemma 3.2.4.
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The following is commutativity of part (1) of diagram (3.17).

Proposition 3.2.6. Note that under the assumption X(A /X)[ℓ∞] finite, one
has from Lemma 2.7.13 an isomorphism

δ : A (X)⊗Z Zℓ
∼
→ H1(X,TℓA ). (3.9)

induced by the boundary map of the long exact sequence induced by the short
exact Kummer sequence Corollary 2.3.5. Denote the analogous map for A t by
δt : A t(X)⊗Z Zℓ

∼
→ H1(X,TℓA

t).
Then the diagram

H1(X,TℓA )nt ×H1(X,TℓA
t)nt H2(X,Zℓ(1))nt

A (X)nt ⊗Z Zℓ ×A
t(X)nt ⊗Z Zℓ Pic(X)nt ⊗Z Zℓ

∪

(δ,δt) ∼= δ2

commutes.

Proof. The pairing in the lower row identifies with H0(X,A ) ×
Ext1X(A ,Gm)→ H1(X,Gm) by Lemma 3.2.1.
In the rest of the proof, we show that the following diagram commutes:

H1(X,A [ℓn]) H1(X,A t[ℓn]) H2(X,µℓn)

H0(X,A ) H0(X,A t) H1(X,Gm)

× ∪

δ

×

δt δ′ (3.10)

Here, the pairing in the upper line is induced by the Weil pairing, and the
pairing in the lower line is given by Lemma 3.2.1. The morphism δ′ is the
connecting morphism of the Kummer sequence. Since H1(X,A [ℓn]) is killed
by ℓn, δ factors through δℓn , and analogously for δt and δ′.
By Lemma 3.2.1, the pairing A (X)×A t(X)→ Pic(X) identifies with

H0(X,A )× Ext1X(A ,Gm)→ H1(X,Gm).

The diagram

H0(X,A ) Ext1X(A ,Gm) H1(X,Gm)

H0(X,A ) Ext2X(A , µℓn) H2(X,µℓn)

×

δExt δ′

×

commutes, where the horizontal maps are Yoneda Ext-pairings, by the δ-
functoriality [AK70, p. 67, Theorem 1.1], so we are left with proving that the
lower pairing of this diagram and the upper pairing of
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the diagram (3.10) are equal. In order to show this, we prove the commutativity
of

H0(X,A ) Ext2X(A , µℓn) H2(X,µℓn)

H1(X,A [ℓn]) H1(X, E xt1X(A , µℓn)) H2(X,µℓn)

H1(X,A [ℓn]) H1(X,A t[ℓn]) H2(X,µℓn);

δ

×

×

×

(3.11)

note that E xt1X(A , µℓn) = A t[ℓn] by Lemma 3.2.4 and use the injection (3.6).
By adjunction, rewrite the two upper rows of the diagram (3.11) as

Ext2X(A , µℓn) Hom(H0(X,A ),H2(X,µℓn))

H1(X, E xt1X(A , µℓn)) Hom(H1(X,A [ℓn]),H2(X,µℓn))

δ∗

with the injectivity by (3.6). Now, the low term exact sequence as-
sociated to the local-to-global Ext spectral sequence gives an embedding
H1(X,H omX(A [ℓn], µℓn)) →֒ Ext1X(A [ℓn], µℓn). But by Lemma 3.2.5, one
has an isomorphism δ1 : H1(X,H omX(A [ℓn], µℓn))

∼
→ H1(X, E xt1X(A , µℓn)).

Now, the square in the diagram

Ext2X(A , µℓn ) Hom(H0(X,A ),H2(X, µℓn ))

Ext1X(A [ℓn], µℓn ) Hom(H1(X,A [ℓn]),H2(X, µℓn ))

H1(X, E xt1X(A , µℓn ))

δ δ∗

commutes by δ-functoriality [AK70, p. 67, Theorem 1.1] with the injection (3.6).
The lower triangle commutes by definition and the upper left triangle by func-
toriality of the Grothendieck spectral sequence and its low term exact sequence
applied to the special case of the local-to-global Ext spectral sequences

Ep,q
2 = Hp(X, E xtqX(A , µℓn))⇒E

p+q = Extp+q
X (A , µℓn)

′Ep,q
2 = Hp(X, E xtqX(A [ℓn], µℓn))⇒

′Ep+q = Extp+q
X (A [ℓn], µℓn)
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defined on derived categories with edge maps κ1,
′ κ1 and the exact tri-

angle A [ℓn] → A → A
+1
→ A [ℓn][1] inducing H omX(A , µℓn)

∼
→

H omX(A [ℓn][1], µℓn):

E1,1
2 E2

′E1,0
2

′E1

κ1

δ1 ∼=
′κ1

δ

The following is commutativity of part (2) of diagram (3.17).

Proposition 3.2.7. The diagram

H2(X,Zℓ(1))nt H2d(X,Zℓ(d))nt H2d(X,Zℓ(d)) Zℓ

CH1(X)nt ⊗Z Zℓ CHd(X)nt ⊗Z Zℓ CHd(X)nt ⊗Z Zℓ Z⊗Z Zℓ

∪ηd−1 pr∗1 ∼=

δ2 = cl1X
∩OX(1)d−1

cldX
pr∗1

cld
X

deg

commutes.

Proof. Since the category of Zℓ-modules modulo the Serre subcategory of tor-
sion Zℓ-modules is equivalent to the category of Qℓ-modules, see [Sta18, Tag
0B0K], we can prove the statement after tensoring with Qℓ. There is a ring
homomorphism

clX :

d⊕

i=0

CHi(X)→

d⊕

i=0

H2i(X,Qℓ(i)),

see [Mil80, p. 270, Proposition VI.9.5] (intersection product on the Chow ring
and cup product on the cohomology ring) or [Jan88, p. 243, Lemma (6.14)],
and CHd(X)→ H2d(X,Qℓ(d))

∼
→ Qℓ maps the class of a point to 1, see [Mil80,

p. 276, Theorem VI.11.1 (a)].

3.3 Comparison of a Yoneda pairing with the generalised Bloch
pairing

This is a generalisation of [Sch82b] and [Blo80].
Recall that d = dimX . We want to show that the pairing

〈·, ·〉 : A (X)× Ext1Xfppf
(A ,Gm) H1(X,Gm) CHd(X) Z

∨ ∩OX(1)d−1
deg

(3.12)
(note that the Yoneda pairing ∨ identifies with A (X) × A t(X) → Pic(X)
by Lemma 3.2.1) coincides up to a factor − log q with the generalised Bloch
pairing

h : A(K)×At(K)→ log q · Z ⊂ R (3.13)

from Definition 3.1.5:
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Proposition 3.3.1. The diagram

A(K) At(K) R

A(K) Ext1Xfppf
(A ,Gm) Z

× h

×

∼=
〈·,·〉

·(− log q)

commutes.

Note that A (X) = HomXfppf
(Z,A ). The Yoneda pairing ∨ : HomXfppf

(Z,A )×

Ext1Xfppf
(A ,Gm)→ H1(X,Gm) maps (a, at) to the extension a∨at defined by

a ∨ at : 1 Gm Y Z 0

at : 1 Gm X A 0.

a (3.14)

By composition, one gets an extension

la∨at : Y (AK)→X (AK)
lat
→ R

of l : Gm(AK) → R to Y (AK), which induces because of l(Gm(K)) = 0 in
the exact sequence a ∨ at by restriction to Y (K) a homomorphism

la∨at : Z
a
→ A(K)

lat

→ R,

so one obviously has
h(a, at) = lat(a) = la∨at(1). (3.15)

By (3.4) and (3.5)

lat

( ∏

x∈X(1)

X (OX,x)
)
= 0, hence la∨at

( ∏

x∈X(1)

Y (OX,x)
)
= 0,

by the diagram (3.14) defining a ∨ at.

Lemma 3.3.2. Let (1 → Gm → Y → Z → 0) = e ∈ Ext1Xfppf
(Z,Gm) =

H1(X,Gm) = PicX be a torsor representing L ∈ PicX, and let le : Y (AK)→
R be an extension of l which vanishes on

∏
x∈X(1) Y (OX,x). Then one has for

the homomorphism le : Z→ R (since le(Gm(K)) = l(Gm(K)) = 0) defined by
restriction to Y (K):

le(1) = − log q · deg(L ∩OX(1)d−1),

where OX(1)d−1 denotes the (d− 1)-fold self-intersection of OX(1).
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(Note that for every e there is a extension le as in the Lemma using the dia-
gram (3.14) and Lemma 3.1.4.)

Proof. Considering e as a class of a line bundle L on X , write Y (L ) :=
V (L )\{0-section} for the Gm-torsor on X defined by L . Then e is isomorphic
to the extension

1→ Gm →
∐

n∈Z

Y (L ⊗n)→ Z→ 0.

For every x ∈ |X |, choose an open neighbourhood Ux ⊆ X such that 1 ∈ Z has
a preimage sx ∈ Y (Ux) (these exist by exactness of the short exact sequence
e of sheaves; note that Pic(X) = H1

Zar(X,Gm) = H1
fppf(X,Gm) by [Mil80,

p. 124, Proposition III.4.9], so there is indeed such a Zariski neighbourhood,
not just an fppf one). Let further s ∈ Y (K) be a preimage of 1 ∈ Z (note that
0 → Gm(K) → Y (K) → Z(K) → 0 is exact by Hilbert 90). Then one has
s−1
x · s ∈ Gm(K) = K×. Since X is Jacobson, the Ux for x ∈ |X | cover X .
For every x ∈ X(1) choose an x̃ ∈ |X | such that x ∈ Ux̃ and set sx = sx̃ and
Ux = Ux̃. These define a Cartier divisor as (s−1

x · s) · (s
−1
y · s)

−1 = s−1
x · sy 7→

1− 1 = 0 ∈ Z, so one has (s−1
x · s) · (s

−1
y · s)

−1 ∈ Gm(Ux ∩Uy) by the exactness
of 1→ Gm → Y → Z→ 0, and [(Ux, s

−1
x )x] = L since

Γ(Ux,OX((Ux, s
−1
x )) = {f ∈ K : fs−1

x ∈ Γ(Ux,OX)}
!
= Γ(Ux,L ).

One has to compare the line bundle L with the Gm-torsor Y . Now one
calculates

le(1) = le(s) note that le(Gm(K)) = l(Gm(K)) = 0 and s 7→ 1

= le((s
−1
x · s)) since le(

∏
x∈X(1)Y (OX,x)) = 0

= l((s−1
x · s)) since s−1

x · s ∈ Gm(K) and le extends l

= − log q ·
∑

x∈X(1)

degι x · vx(s
−1
x · s) by definition of l,

note that (s−1
x · s)x ∈ Gm(AK).

On the other hand, by the above description of e, since the (Ux, s
−1
x · s) define

a Cartier divisor on X with associate line bundle isomorphic to L , one has for
deg : CHd(X)→ Z

deg(L ∩OX(1)d−1) =
∑

x∈X(1)

degι x · vx(s
−1
x · s)

since degι x = deg({ι(x)} ∩ Hd−1) for a generic hyperplane H →֒ PN
k and

OX(1) = [H ] ∈ CH1(X) = Pic(X).
Combining the formulae gives the claim.
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Applying Lemma 3.3.2 to the above situation a ∈ A(K), at ∈ At(K) gives us

h(a, at) = la∨at(1) by (3.15)

= − log q · deg([a ∨ at] ∩ OX(1)d−1) by Lemma 3.3.2

= − log q · 〈a, at〉 by (3.12).

(Note that ι and OX(1) occur in l and thus in h.) This finishes the proof
of Proposition 3.3.1.

3.4 Comparison of the generalised Bloch pairing with the gener-
alised Néron-Tate height pairing

Let Kv be the (completion) of K = k(X) at v ∈ X(1), which is a local field.
Let ∆ be a divisor on A defined over Kv algebraically equivalent to 0 (this
corresponds to Ext1X(A ,Gm) = A t(Kv) = At(Kv) = Pic0A/k(Kv)). The
divisor ∆ corresponds to an extension

1→ Gm →X∆ → A → 0 (3.16)

in Ext1X(A ,Gm). Let L∆ be the line bundle associated to ∆. Then X∆ =
V (L∆) \ {0} with L∆ = OA (∆) as a Gm-torsor. The extension (3.16) only
depends on the linear equivalence class of ∆.
Restricting to Kv, the extension (3.16) is split as a torsor over A \ |∆| (since a
line bundle associated to a divisor ∆ is trivial on X \∆) by σ∆,v : A \ |∆| →
X∆,Kv with σ∆ canonical up to translation by Gm(Kv) (since the choice of
σ∆,v is the same as the choice of a rational section of L∆). Let Z∆,Kv be
the group of zero cycles A =

∑
ni(pi), pi ∈ A(Kv), on A defined over Kv

such that
∑
ni deg pi = 0 and suppA ⊆ A \ |∆|. We get a homomorphism

σ∆,v : Z∆,Kv →X∆(Kv) (since X∆ is a group scheme).
We now prove a local analogue of Lemma 3.1.4.

Lemma 3.4.1. There is a commutative diagram with exact rows and columns:

1 0

1 O
×
Kv

X∆(OKv ) A(Kv) 0

1 K×
v X∆(Kv) A(Kv) 0

Z Z

0 0

lv ψ∆,v

Documenta Mathematica 24 (2019) 915–993



958 Timo Keller

Proof. The map labelled lv is the valuation map. The short exact sequence in
the middle row is (3.16) evaluated at Kv, and the short exact sequence in the
upper row is (3.16) evaluated at OKv : One is left showing that X 1

∆ ։ A(Kv)
is surjective. But this follows from the long exact sequence associated to the
short exact sequence of sheaves on OKv

1→ Gm →X → A → 0

and Hilbert’s theorem 90: H1(SpecOKv ,Gm) = 0 since OKv is a local ring.
Further, one has A (Kv) = A (OKv ) = A(Kv) by the valuative criterion of
properness and the Néron mapping property.

Now let ψ∆,v : X∆(Kv) → Z be the map defined in the previous lemma. For
A ∈ Z∆,Kv define

〈∆,A〉v := ψ∆,vσ∆,v(A).

Theorem 3.4.2. Let K = k(X). Let a ∈ A(K) and at ∈ At(K). Let ∆ resp.
A be a divisor algebraically equivalent to 0 defined over K resp. a zero cycle of
degree 0 over K on A such that [∆] = at resp. A maps to a. Assume supp∆
and suppA disjoint. Then

〈a, at〉 = log q ·
∑

v∈X(1)

〈∆,A〉v

with 〈a, at〉 defined as in Definition 3.1.5.

Proof. Let
1→ Gm →X∆ → A → 0

be the Gm-torsor represented by a∨, and σ∆,v : Z∆,K → X∆(K) be as in the
local case. One has to show that the map

lat : X∆(AK)→ log q · Z

(of the above definition in Lemma 3.1.4; note that X∆(AK) →֒X (AK)) coin-
cides with the sum of the local maps

ψ∆,v : X∆(Kv)→ Z

multiplied by log q · degι v for v ∈ X(1) defined above.
Consider the commutative diagram

G
1
m X∆(AK)/

∏

v

X∆(OKv ) X∆(AK)/X 1
∆ 0

0 ker(
∑

)
⊕

v∈X(1)

Z log q · Z 0.

∑

v

degι v · v(·)
∑

v

degι v · ψ∆,v lat

log q ·
∑
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One has
∏

v X∆(OKv ) ⊆ X 1
∆ and G1

m ⊆ X∆(AK) by the commutative dia-
gram (3.4.1) in Lemma 3.1.4, so the exactness of the upper row follows. The
exactness of the lower row is clear.

The left square commutes obviously. The right square commutes since
by Lemma 3.1.4 the extension of l to X (AK) is unique and

∑
v degι v · ψ∆,v

is well-defined (since ψ∆,v vanishes on X∆(OKv ) and in the adele ring, almost
all components lie in X∆(OKv )) and restricts to l : Gm(AK) → R since ψ∆,v

restricts to lv by Lemma 3.4.1.

Now let x ∈ X∆(AK)/X 1
∆ with lat(x) = h. Lift it to x̃ ∈

X∆(AK)/
∏

v X∆(OKv ). Then log q ·
∑

v degι v · ψ∆,v(x̃) = h by commu-
tativity of the right square. If one chooses another lift, their difference comes
from d ∈ G1

m, which has height 0, so log q ·
∑

v degι v · ψ∆,v(x̃) only depends
on x.

Proposition 3.4.3. The local pairings 〈∆,A〉v coincide with the local Néron
height pairings 〈∆,A〉Néron,v.

Proof. This follows from Néron’s axiomatic characterisation in [BG06, p. 304 f.,
Theorem 9.5.11], which holds for 〈∆,A〉v by the same argument as in [Blo80,
p. 73 ff., (2.11)–(2.15)].

Corollary 3.4.4. The generalised Bloch pairing coincides with the canonical
Néron-Tate height pairing.

Proof. This is clear since the local Néron-Tate height pairings sum up to the
canonical Néron-Tate height pairing, see [BG06, p. 307, Corollary 9.5.14].

3.5 Conclusion

We are now ready to combine the main results of subsections 3.2, 3.3 and 3.4
into

Proposition 3.5.1. Let ℓ be invertible on X and assume X(A /X)[ℓ∞] is
finite. Then there is a commutative diagram
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H
1
(X

,
T
ℓ
A

) n
t
×

H
2
d
−

1
(X

,
T
ℓ
(A

t
)(
d
−

1
))

n
t

H
2
d
(X

,
Z

ℓ
(d

))
n
t

H
2
d
(X

,
Z

ℓ
(d

))
Z

ℓ

H
1
(X

,
T
ℓ
A

) n
t
×

H
1
(X

,
T
ℓ
(A

t
))

n
t

H
2
(X

,
Z

ℓ
(1

))
n
t

H
2
d
(X

,
Z

ℓ
(d

))
n
t

H
2
d
( X

,
Z

ℓ
(d

))
Z

ℓ

A
(X

) n
t
⊗

Z
Z

ℓ
×

A
t
(X

) n
t
⊗

Z
Z

ℓ
H

1
(X

,
G

m
) n

t
⊗

Z
Z

ℓ
C
H

d
(X

) n
t
⊗

Z
Z

ℓ
Z

ℓ

A
(X

) n
t
⊗

Z
Z

ℓ
×

A
t
(X

) n
t
⊗

Z
Z

ℓ
Z

⊗
Z
Z

ℓ
Z

ℓ
.

(0
)

∪
p
r∗ 1

∼ =

(1
)

id
×
(∪

η
d
−

1
)

∪

(2
)

(∪
η
)d

−
1

p
r∗ 1

∼ =

(3
)

(δ
,δ

t
)
∼ =

∨
∩

O
X
(1

)d
−

1
d
e
g

ĥ
P

(·
,·
)

∼ =

(3.17)
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Here, η ∈ H2(X,Zℓ(1)) is the cycle class associated to OX(1) ∈ Pic(X) =
CH1(X) (X is regular) by Pic(X) → H2(X,Zℓ(1)) (this map comes from the
Kummer sequence, see [Mil80, p. 271, Proposition VI.10.1]), where OX(1) =
ι∗OPN

K
(1) for the closed immersion ι : X →֒ PN

K which defines the structure of

a generalised global field on the function field K = k(X) of X. Further,

∨ :A (X)nt ⊗Z Zℓ ×A
t(X)nt ⊗Z Zℓ =

A (X)nt ⊗Z Zℓ × Ext1X(A ,Gm)nt ⊗Z Zℓ → H1(X,Gm)nt ⊗Z Zℓ

is the Yoneda Ext-pairing (the equality A t(X) = Ext1X(A ,Gm) comes from the
Barsotti-Weil formula). The pairing in the lower row is the generalised Néron-
Tate canonical height pairing divided by − log q. The left vertical isomorphism
(δ, δt) comes from (3.9), and the injection ∪ηd−1 from Corollary 3.1.10.

Proof. Diagram (0) commutes by associativity of the ∪-product. Diagram (1)
commutes by Proposition 3.2.6 and (2) by Proposition 3.2.7. Diagram (3)
commutes by Proposition 3.3.1 and by Corollary 3.4.4.

The above proposition and the definition of the integral hard Lefschetz defect
(Definition 3.1.11) yield the following statement, which is the main theorem of
this section:

Theorem 3.5.2. The cohomological pairing 〈·, ·〉ℓ from Theorem 2.7.19 equals
the generalised Bloch pairing (see Definition 3.1.5) and the canonical Néron-
Tate height pairing (see Definition 3.1.6) up to multiplication by the integral
hard Lefschetz defect (see Definition 3.1.11).

Remark 3.5.3. Note that the cohomological pairing 〈·, ·〉ℓ does not depend on
an embedding ι : X →֒ PN

k , but all other pairings in (3.17) depend on a line
bundle ϑ or cohomology class η ∈ H2(X,Zℓ(1)), which manifests in the integral
hard Lefschetz defect in the commutative square (0). The two choices, in the
integral hard Lefschetz defect in the commutative square (0) and in the other
pairings, cancel.

Here is an example where the integral hard Lefschetz morphism is an isomor-
phism:

Theorem 3.5.4. Let A/k be an Abelian variety of dimension d over an alge-
braically closed field of characteristic 6= ℓ with principal polarisation associated
to L ∈ Pic(A). Denote by ϑ ∈ H2(A,Zℓ(1)) the image of L under the homo-
morphism Pic(A)→ H2(A,Zℓ(1)). Then the integral hard Lefschetz morphism
(∪ϑ)d−1 : H1(A,Zℓ)→ H2d−1(A,Zℓ(d− 1)) is an isomorphism.

Proof. Using that ϑ is a principal polarisation, write ϑ =
∑d

i=1 ei ∧ e
′
i in a

symplectic basis (with respect to the Weil pairing ∧ : TℓA × Tℓ(A
t) → Zℓ(1);

using the principal polarisation A
∼
→ At, the Weil pairing becomes a symplectic

pairing TℓA× TℓA→ Zℓ(1) by [Mil86a, p. 132, Lemma 16.2 (e)]) and use that
the cohomology ring H∗(A,Zℓ) =

∧∗
H1(A,Zℓ) is an exterior algebra.
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By [Mil86a, p. 130], one has H∗(A,Zℓ) = (
∧∗

TℓA)
∨ (here we use that the

ground field is algebraically closed).
Note that, via the identifications of the cohomology ring with the exterior
algebra, proving that (∪ϑ)d−1 is an isomorphism is equivalent to showing that

this morphism sends a basis of
∧1

TℓA to a basis of
∧2d−1

TℓA. A basis of∧1 TℓA is e1, e
′
1, . . . , ed, e

′
d, and a basis of

∧2d−1 TℓA is (a hat denotes the
omission of a term)

e1 ∧ e
′
1 ∧ . . . êi ∧ e

′
i ∧ . . . ∧ ed ∧ e

′
d

and the same for e′i instead of ei. Now,

ϑd−1 =

d∑

i=1

(e1 ∧ e
′
1 ∧ . . . êi ∧ e

′
i ∧ . . . ∧ ed ∧ e

′
d).

Thus,

e′i ∧ ϑ
d−1 = e1 ∧ e

′
1 ∧ . . . êi ∧ e

′
i ∧ . . . ∧ ed ∧ e

′
d

and the same for ei, gives a basis of
∧2d−1 TℓA.

Corollary 3.5.5. Let A = B ×k X be a constant Abelian scheme with
X = A a principally polarised Abelian variety of dimension d over an alge-
braically closed field k. Then the integral hard Lefschetz morphism (∪ϑ)d−1 :
H1(A ,Zℓ)→ H2d−1(A ,Zℓ(d− 1)) is an isomorphism.

Proof. Note that H1(A, TℓA ) = H1(A,Zℓ) × TℓB by Lemma 5.1.1 2 and the
projection formula.

Corollary 3.5.6. Let A = B×kX be a constant Abelian scheme over X with
X = A a principally polarised Abelian variety of dimension d over finite field k.
Then over the maximal ℓ-extension kℓ∞ , the integral hard Lefschetz morphism
(∪ϑ)d−1 : H1(Akℓ∞

,Zℓ)→ H2d−1(Akℓ∞
,Zℓ(d− 1)) is an isomorphism.

Furthermore, for some finite ℓ-extension K/k the integral hard Lefschetz mor-
phism (∪ϑ)d−1 : H1(AK ,Zℓ)→ H2d−1(AK ,Zℓ(d− 1)) is an isomorphism.

Proof. By [Fu11, p. 259, Proposition 5.9.2 (iii)], the integral hard Lefschetz
homomorphism over k is the direct limit over all K/k finite. The transition
morphisms are injective since corK/k ◦ resK/k = [K : k] is injective, and isomor-
phisms for ℓ ∤ [K : k] since then multiplication by [K : k] is an isomorphism,
in particular surjective. It follows that the integral hard Lefschetz morphism
is an isomorphism over the maximal ℓ-extension kℓ∞ of k.
Since the integral hard Lefschetz morphism over kℓ∞ is the filtered direct limit
over the base changes of (∪ϑ)d−1 of the finite ℓ-extensions of k and since
H2d−1(Akℓ∞

,Zℓ(d − 1)) is a finitely generated Zℓ-module, there is a finite ℓ-
extension K/k such that (∪ϑ)d−1 : H1(AK ,Zℓ) →֒ H2d−1(AK ,Zℓ(d − 1)) is
surjective [EGAI, p. 46, (5.2.3))], hence an isomorphism.
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4 The determinant of the pairing (·, ·)ℓ

Lemma 4.0.1. Assume X(A /X)[ℓ∞] is finite. Then one has a commutative
diagram with exact columns

0 0 0

(A t(X) ⊗ Zℓ)nt H1(X, TℓA
t)nt H2d−1(X, Tℓ(A

t)(d − 1))nt

A
t(X) ⊗Qℓ H1(X, VℓA

t) H2d−1(X, Vℓ(A
t)(d − 1))

A
t(X) ⊗Qℓ/Zℓ H1(X,A t[ℓ∞])div H2d−1(X,A t[ℓ∞](d− 1))div

0 0 0

∼= (∪ηTℓ
)d−1

∼= (∪η)d−1

∼=

∼= (∪η)d−1

(4.1)
with the cokernel of H1(X,TℓA

t)nt →֒ H2d−1(X,Tℓ(A
t)(d− 1))nt being finite.

Proof. The upper left arrow is an isomorphism by Lemma 2.7.14. For the
lower left arrow being an isomorphism: By Lemma 2.7.4, one has a short exact
sequence

0→ A (X)⊗Qℓ/Zℓ → H1(X,A [ℓ∞])→ H1(X,A )[ℓ∞]→ 0.

Since A (X) ⊗ Qℓ/Zℓ is divisible, one gets an inclusion A (X) ⊗ Qℓ/Zℓ →֒
H1(X,A [ℓ∞])div. Since X(A /X)[ℓ∞] = H1(X,A )[ℓ∞] is finite, if an element
from H1(X,A [ℓ∞])div is mapped to H1(X,A )[ℓ∞], it has finite order and is
divisible, so it is 0, hence it comes from A (X)⊗Qℓ/Zℓ.
The upper and middle right arrows are induced by the integral hard Lefschetz
theorem Corollary 3.1.10 (injective) and the hard Lefschetz theorem Theo-
rem 3.1.9 (isomorphism), respectively, and the lower one by functoriality of
the coker-functor. So the lower one surjective by the snake lemma.
For the exactness of the columns: Left column: This column arises from ten-
soring

0→ Zℓ → Qℓ → Qℓ/Zℓ → 0

with A t(X)nt ∼= Zrk A
t(X) over Z. (By the theorem of Mordell-Weil The-

orem 2.7.8 and the Néron mapping property Theorem 2.7.9, A (X) is a
finitely generated Abelian group). Middle and right column: This follows
from Lemma 2.7.7.

Lemma 4.0.2. The homomorphisms induced by the commutative diagram (4.1)

Hom(H2d−1(X,Tℓ(A
t)(d− 1))nt,Zℓ)→ Hom((A t(X)⊗ Zℓ)nt,Zℓ) and

Hom(H2d−1(X,A t[ℓ∞](d− 1)),Qℓ/Zℓ)div → Hom(A t(X)⊗Qℓ/Zℓ,Qℓ/Zℓ)

are injective with finite cokernels of the same order (even isomorphic).
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Proof. Write

0 A′ A A′′ 0

0 B′ B B′′ 0

f ∼= g (4.2)

in short for two right columns of the big diagram (4.1): A′ = H1(X,TℓA
t)nt,

A = H1(X,VℓA
t), A′′ = H1(X,A t[ℓ∞])div for the middle column and

B′, B,B′′ for the corresponding groups in the right column.
The snake lemma gives us ker(g)

∼
→ coker(f) since the middle vertical arrow

in (4.2) is an isomorphism.
Applying Hom(−,Zℓ) to the short exact sequence 0→ A′ → B′ → coker(f)→
0 gives

0→ Hom(coker(f),Zℓ)→ Hom(B′,Zℓ)→ Hom(A′,Zℓ)

→ Ext1(coker(f),Zℓ)→ Ext1(B′,Zℓ).

Since coker(f) is finite, the first term vanishes and Ext1(coker(f),Zℓ) ∼=
coker(f), and since B′ is torsion-free and finitely generated, hence projective,
the last term vanishes. So Hom(f,Zℓ) is injective with finite cokernel isomor-
phic to coker(f).
Applying the exact functor Hom(−,Qℓ/Zℓ) (Qℓ/Zℓ is divisible, hence injective)
to the short exact sequence 0→ ker(g)→ A′′ → B′′ → 0 gives

0→ Hom(B′′,Qℓ/Zℓ)→ Hom(A′′,Qℓ/Zℓ)→ Hom(ker(g),Qℓ/Zℓ)→ 0

and Hom(ker(g),Qℓ/Zℓ) ∼= ker(g) since ker(g)
∼
→ coker(f) is a finite ℓ-primary

group. So Hom(g,Qℓ/Zℓ) is injective with finite cokernel isomorphic to ker(g).

Lemma 4.0.3. One has an isomorphism

H2(X,TℓA )nt
∼
→ Hom(H2d−1(X,A t[ℓ∞](d− 1))div,Qℓ/Zℓ) (4.3)

induced by the cup product.

Proof. Poincaré duality for the absolute situation [Mil80, p. 183, Corol-
lary V.2.3] (easily generalised to higher dimensions) gives non-degenerate pair-
ings of finite groups for all n ∈ N

H2(X,A [ℓn])×H2d−1(X,A t[ℓn](d− 1))→ Qℓ/Zℓ.

This is the same as isomorphisms

H2(X,A [ℓn])
∼
→ Hom(H2d−1(X,A t[ℓn](d− 1)),Qℓ/Zℓ),

and passing to the projective limit gives us an isomorphism

H2(X,TℓA )
∼
→ Hom(H2d−1(X,A t[ℓ∞](d− 1)),Qℓ/Zℓ).
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Write M = H2(X,TℓA ) and N = H2d−1(X,A t[ℓ∞](d − 1)), so one has M
∼
→

ND. These are finitely and cofinitely generated, respectively. One has

Mnt = ND/ lim
−→
n

ND[ℓn] = ND/(lim
←−
n

N/ℓn)D = ND/N̂D

since 0→ Ndiv → N
h
→ N̂ is exact with N̂ the ℓ-adic completion of N . As N ∼=

(Qℓ/Zℓ)
r ⊕ T with T finite, one has N̂ ∼= T (since the ℓ-adic completion of the

divisible group Qℓ/Zℓ is trivial) and h surjective. Dualising gives 0 → N̂D →
ND → ND

div → 0, so ND/N̂D = ND
div. Summing up, we get Mnt = ND

div.

Theorem 4.0.4. Assume X(A /X)[ℓ∞] is finite. Then one has det(·, ·)ℓ = 1
for the pairing

(·, ·)ℓ : H
2(X,TℓA )nt ×H2d−1(X,Tℓ(A

t)(d− 1))nt → H2d+1(X,Zℓ(d)) = Zℓ

from (2.19).

Proof. Consider the commutative diagram

Hom(H2d−1(X,Tℓ(A
t)(d− 1))nt,Zℓ) Hom((A t(X)⊗ Zℓ)nt,Zℓ)

H2(X,TℓA )nt

Hom(H2d−1(X,A t[ℓ∞](d− 1))div,Qℓ/Zℓ) Hom(A t(X)⊗Qℓ/Zℓ,Qℓ/Zℓ)

∼=

∼=

(4.4)
with the lower left isomorphism by (4.3). The horizontal maps are injective
with cokernels finite of the same order by Lemma 4.0.2.
The right vertical map is an isomorphism: A homomorphism h : Zℓ → Zℓ

induces a morphism Qℓ → Qℓ by tensoring with Q and hence a mor-
phism between the cokernels Qℓ/Zℓ → Qℓ/Zℓ. This is an isomorphism: By
the Mordell-Weil theorem and the Néron mapping property Theorem 2.7.9,

(A t(X) ⊗ Zℓ)nt ∼= Z
rkA

t(X)
ℓ and A t(X) ⊗ Qℓ/Zℓ

∼= (Qℓ/Zℓ)
rkA

t(X), and
Hom(Qℓ/Zℓ,Qℓ/Zℓ) = (Qℓ/Zℓ)

D = (lim
−→n

1
ℓnZ/Z)

D = lim
←−n

Z/ℓnZ = Zℓ.

It follows from Poincaré duality for the absolute situation [Mil80, p. 183, Corol-
lary V.2.3] that one has a non-degenerate pairing

(·, ·)ℓ : H
2(X,TℓA )nt ×H2d−1(X,Tℓ(A

t)(d − 1))nt
∪
→ H2d+1(X,Zℓ(d)) = Zℓ,

so the upper left vertical arrow in (4.4)

H2(X,TℓA )nt → Hom(H2d−1(X,Tℓ(A
t)(d − 1))nt,Zℓ)

is injective with cokernel of order det(·, ·)ℓ. By comparison of the terms in
the commutative diagram (4.4) and using that the horizontal morphisms are
injective with cokernels of the same order, see Lemma 4.0.2, it follows that
det(·, ·)ℓ = 1.
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5 Proof of the conjecture for constant Abelian schemes

5.1 The case of a basis of arbitrary dimension

Lemma 5.1.1. Let A be an Abelian variety over a finite field k, X/k be a variety
and A = A×k X be a constant Abelian scheme over X.
1. There is an isomorphism A [m]

∼
→ A[m] ×k X of finite flat group schemes

resp. of constructible sheaves (for char k ∤ m) on X.
2. There is an isomorphism TℓA = (TℓA) ×k X of ℓ-adic sheaves on X for
ℓ 6= p.
3. There is an isomorphism of Abelian groups

A (X) = MorX(X,A )
∼
→ Mork(X,A), (f : X → A ) 7→ pr1 ◦f,

and under this isomorphism A (X)tors corresponds to the subset of constant
morphisms

A (X)tors
∼
→ {f : X → A | f(X) = {a}} = Homk(k,A) = A(k).

Proof. 1. Consider the fibre product diagram

A[m] Spec k

A A

0
[m]

and apply −×k X .
2. This follows from 1 by passing to the inverse limit over m = ℓn, n ∈ N.
3. The inverse is given by (f : X → A) 7→ ((f, idX) : X → A×k X = A ).
For the second statement: If f : X → A takes on the constant value a, (f, idX)
has finite order orda in A(k) since k and thus A(k) is finite. Conversely, if
f : X → A has finite order n, the image of pr1 ◦f lies in the discrete set of
n-torsion points (since pr1 : A×k X → A is a morphism of group schemes), so
is constant because X is connected.

Corollary 5.1.2. Assume X has a k-rational point x0. Then there is a com-
mutative diagram with exact rows

0 A(k) A (X) Homk(AlbX/k, A) 0

0 A (X)tors A (X) A (X)nt 0,

∼= ∼=

and

rkZ A (X) = r(fA, fAlbX/k
) = dimQℓ

HomQℓ[Gk](VℓA, Vℓ AlbX/k),
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with fA, fB the characteristic polynomials of the Frobenius on A,B/k and

r(fA, fB) =
∑

P∈Q[T ] irreducible

vP (fA)vP (fB) degP

(see [Tat66a, p. 138]).

Proof. The lower row is trivially exact. By the universal property of the
Albanese variety (use that X has a k-rational point x0), one has {f ∈
Mork(X,A) | f(x0) = 0} = Homk(AlbX/k, A). Thus the upper row is ex-
act. The left hand vertical arrow is an isomorphism because of Lemma 5.1.1 3.
Now the five lemma implies that the right hand vertical arrow is an isomor-
phism since it is a well-defined homomorphism: Precompose f : AlbX/k → A
with the Abel-Jacobi map ϕ : X → AlbX/k associated to x0.
The equality for the rank follows from [Tat66a, p. 139, equation (5) and Theo-
rem 1 (a)].

Example 5.1.3. The rank of the Mordell-Weil group of a constant Abelian va-
riety over a projective space is 0, since there are no non-constant k-morphisms
Pn

k → A, see [Mil86a, p. 107, Corollary 3.9].

Lemma 5.1.4. Let M and N be torsion-free finitely generated Zℓ-modules, resp.
continuous Zℓ[Γ]-modules. Then one has

M ⊗Zℓ
N = HomZℓ-Mod(M

∨, N)

(M ⊗Zℓ
N)Γ = HomZℓ[Γ]-Mod(M

∨, N)

Proof. For the first equality, see [Lan02, p. 628, Corollary XVI.5.5]. Note that
finitely generated torsion-free modules over a principal ideal domain are free.
The second equality follows from HomR(M,N)Γ = HomR[Γ](M,N) for any
commutative ring R with 1, group Γ and R-modulesM,N and the first equality
and using MΓ =MZ for M a discrete Zℓ[Γ]-module since Z ⊂ Γ is dense.

Lemma 5.1.5. Let A = A×k X be a constant Abelian scheme. Then one has
Hi(X,TℓA ) = Hi(X,Zℓ)⊗Zℓ

TℓA as ℓ-adic sheaves on the étale site of k.

Proof. This follows from Lemma 5.1.1 2 and the projection formula.

Theorem 5.1.6. Let X/k be a smooth projective geometrically connected variety
with a k-rational point. Then the reduced Picard variety (Pic0X/k)red is dual to

AlbX/k and Pic0X/k is reduced if and only if dimPic0X/k = dimk H
1
Zar(X,OX).

Proof. By [Moc12, Proposition A.6 (i)] or [FGI+05, p. 289 f., Remark 9.5.25],
(Pic0X/k)red is dual to AlbX/k. By [FGI+05, p. 283, Corollary 9.5.13], the Picard
variety is reduced (and then smooth and an Abelian scheme) iff equality holds
in dimPic0X/k ≤ dimk H

1
Zar(X,OX).
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Remark 5.1.7. The integer α(X) := dimk H
1
Zar(X,OX) − dimPic0X/k ≥ 0 is

called the defect of smoothness.

Example 5.1.8. One has α(X) = 0 iff the Picard scheme ofX/k is smooth (since
a group variety is smooth iff it is reduced) iff the dimension of H1

Zar(X,OX) as a
vector space over k equals the dimension of the Albanese variety of X/k [Mil68,
p. 94, Remarks to Theorem 1]:
This holds true for K3 surfaces since H1

Zar(X,OX) = 0 by [Huy16, p. 1, Defini-
tion 1.1]. In characteristic 0, this is always the case [Mil68, p. 94, Remarks to
Theorem 1]. For examples of non-reduced Picard schemes of smooth projective
surfaces in positive characteristic see [Lie09].

Lemma 5.1.9. Let f : A → B a homomorphism of an Abelian varieties and
eA : TℓA × TℓA

t → Zℓ(1) and eB : TℓB × TℓB
t → Zℓ(1) be the perfect Weil

pairings from Theorem 2.4.14. Then

eB(f(a), b) = eA(a, f
t(b))

for all a ∈ TℓA and b ∈ TℓB
t, i. e. the diagram

TℓA TℓA
t Zℓ(1)

TℓB TℓB
t Zℓ(1)

×

f

eA

×

f t

eB

commutes.

Proof. See [Mum70, p. 186, (I)].

Corollary 5.1.10. Let f : A→ A be an endomorphism of an Abelian variety
A. Then

Tr(f) = TrTℓ(A)(f) = TrTℓ(At)(f
t) = Tr(f t).

Proof. Choosing an isomorphism Zℓ(1) ∼= Zℓ,
1 dualising the diagram

in Lemma 5.1.9 and using that the Weil pairing is perfect by Theorem 2.4.14,
gives us a commutative diagram

TℓA TℓA

(TℓA
t)∨ (TℓA

t)∨.

f

∼= ∼=
(f t)∨

Now use that dualising does not change the trace.
The trace of an endomorphism can be calculated on ℓ-adic Tate modules
by [Mil86a, p. 125, Proposition 12.9].

1a heresy! [Gro69, p. 194, l. −6]
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Lemma 5.1.11. Let X/k be a smooth projective geometrically connected variety
of dimension d with Albanese variety A associated to a base point x0 ∈ X(k)
such that PicX/k is reduced. Consider the following diagram of finitely gener-
ated free Zℓ-modules:

H
1
(X

,
T
ℓ
A

) n
t
×

H
2
d
−

1
(X

,
T
ℓ
(A

t
)(
d
−

1
))

n
t

H
2
d
(X

,
Z

ℓ
(d

))
→

H
2
d
(X

,
Z

ℓ
(d

))
Z

ℓ

H
1
(X

,
T
ℓ
A

)Γ
×

H
2
d
−

1
(X

,
T
ℓ
(A

t
)(
d
−

1
))

Γ
H

2
d
(X

,
Z

ℓ
(d

))
Z

ℓ

(

H
1
( X

,
Z

ℓ
(1

))
⊗

Z
ℓ
(T

ℓ
A
)(
−
1
))

Γ
×

(

H
2
d
−

1
(X

,
Z

ℓ
(d

−
1
))

⊗
Z
ℓ
T
ℓ
(A

t
))

Γ
H

2
d
(X

,
Z

ℓ
(d

))
⊗

Z
ℓ
Z

ℓ
Z

ℓ

(

T
ℓ
P
ic

0 X
/
k
⊗

Z
ℓ
(T

ℓ
A
)(
−
1
))

Γ
×

(

(T
ℓ
P
ic

0 X
/
k
)∨

⊗
Z
ℓ
T
ℓ
(A

t
))

Γ
E
n
d
(T

ℓ
P
ic

0 X
/
k
)
⊗

Z
ℓ
Z

ℓ
Z

ℓ

H
o
m

Z
ℓ
[Γ

]-
M

o
d

(

((
T
ℓ
A
)(
−
1
))

∨
,
T
ℓ
P
ic

0 X
/
k

)

×
H
o
m

Z
ℓ
[Γ

]-
M

o
d

(

T
ℓ
P
ic

0 X
/
k
,
T
ℓ
(A

t
))

H
o
m

Z
ℓ
[Γ

]-
M

o
d

(

((
T
ℓ
A
)(
−
1
))

∨
,
T
ℓ
(A

t
))

Z
ℓ

H
o
m

Z
ℓ
[Γ

]-
M

o
d

(

T
ℓ
A

t
,
T
ℓ
P
ic

0 X
/
k

)

×
H
o
m

Z
ℓ
[Γ

]-
M

o
d

(

T
ℓ
P
ic

0 X
/
k
,
T
ℓ
A

t
)

E
n
d
Z
ℓ
[Γ

]-
M

o
d
(T

ℓ
A

t
)

Z
ℓ

H
o
m

k
(A

t
,
P
ic

0 X
/
k
)
⊗

Z
Z

ℓ
×

H
o
m

k
(P

ic
0 X

/
k
,
A

t
)
⊗

Z
Z

ℓ
E
n
d
k
(A

t
)
⊗

Z
Z

ℓ
Z

ℓ

H
o
m

k
(A

lb
X

/
k
,
A
)
⊗

Z
Z

ℓ
×

H
o
m

k
(A

,
A
lb

X
/
k
)
⊗

Z
Z

ℓ
E
n
d
k
(A

lb
X

/
k
)
⊗

Z
Z

ℓ
Z

ℓ

p
r∗ 1

(1
)

∪
∼ =

(2
)

∪
∼ =

∼ = ∼ =
(3

)

∼ =

∼ =
(4

)

T
r

∼ =
(5

)

(6
)

◦
T
r

∼ =

(7
)

◦

∼ =

T
r

∼ =
(−

)t

◦
T
r

(5.1)
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We claim that the above diagram (5.1) commutes and that the left-hand vertical
arrows are indeed isomorphisms.

Proof. First we will justify that the left-hand vertical arrows in diagram (5.1)
that are claimed to be isomorphisms are indeed so.
For the vertical isomorphisms in the first factor in the left column of (5.1): One
has

H1(X,TℓA )nt = H1(X,TℓA )Γ by (2.9)

=
(

H1(X,Zℓ(1))⊗Zℓ (TℓA)(−1)
)Γ

by Lemma 5.1.5

=
(

TℓPic
0
X/k ⊗Zℓ (TℓA)(−1)

)Γ
by the Kummer sequence

= HomZℓ[Γ]-Mod

(

((TℓA)(−1))∨ , TℓPic
0
X/k

)

by Lemma 5.1.4

= HomZℓ[Γ]-Mod

(

HomZℓ-Mod(Tℓ(A
t),Zℓ)

∨, TℓPic
0
X/k

)

by (2.3)

= HomZℓ[Γ]-Mod

(

Tℓ(A
t), TℓPic

0
X/k

)

= Homk(A
t,Pic

0
X/k)⊗Z Zℓ by the Tate conjecture [Tat66a]

= Homk(AlbX/k, A)⊗Z Zℓ since (−)t is an autoduality.

Note that H1(X,TℓA )Γ is torsion-free since H1(X,TℓA ) is so, and this holds
because of the Künneth formula and since H1(X,Zℓ(1)) = TℓPic0X/k is torsion-

free by Lemma 2.1.1 (v). Therefore, in (2.9), kerα = H0(X,TℓA )Γ is the whole
torsion subgroup of H1(X,TℓA ).
TℓA has weight −1 by Proposition 2.4.4 and Tℓ(A

t)(d − 1) has weight −1 −
2(d− 1) = −2d+ 1 and from (2.4), we have a commutative diagram (5.2) (see
page 971) with exact rows where only the four groups connected by f , α and
β can be infinite by Lemma 2.7.2 and as in (2.9).
The perfect Poincaré duality pairing

H1(X,Zℓ(1))×H2d−1(X,Zℓ(d− 1))→ H2d(X,Zℓ(d))
∼
→ Zℓ (5.3)

identifies H2d−1(X,Zℓ(d− 1)) with (TℓPic0X/k)
∨.

For the vertical isomorphisms in the second factor in the left column of (5.1):
One has

H2d−1(X,Tℓ(A
t)(d− 1))nt = H2d−1(X,Tℓ(A

t)(d− 1))Γ by (2.9)

=
(

H2d−1(X,Zℓ(d− 1)) ⊗Zℓ Tℓ(A
t)
)Γ

by 5.1.5

=
(

(TℓPic
0
X/k)

∨ ⊗Zℓ Tℓ(A
t)
)Γ

by (5.3)

= HomZℓ[Γ]-Mod

(

TℓPic
0
X/k, Tℓ(A

t)
)

by 5.1.4

= Homk(Pic
0
X/k, A

t)⊗Z Zℓ by the Tate conjecture

= Homk(A,AlbX/k)⊗Z Zℓ (−)t is an autoduality.

Now we will prove that the diagram commutes:
(1) commutes since ∪-product commutes with restrictions.
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−

1
))

Γ
H

2
d
(X

,T
ℓ
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t
)(
d
−

1
))

H
2
d
(X

,T
ℓ
(A

t
)(
d
−

1
))

Γ
0

0
H

2
d
−
2
( X

,T
ℓ
(A

t
)(
d
−

1
))

Γ
H

2
d
−
1
(X

,T
ℓ
(A

t
)(
d
−

1
))

H
2
d
−
1
(X

,T
ℓ
(A

t
)(
d
−

1
))

Γ
0
,

β

α
f

(5.2)
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(2) commutes because of the associativity of the ∪-product.
(3) commutes since, in general, one has a commutative diagram of finitely
generated free modules over a ring R

A×B R

C × C∨ R

∼=

〈·,·〉

identifying B with the dual of C ∼= A with a perfect pairing 〈·, ·〉 and the
canonical pairing C×C∨ → R, (c, ϕ) 7→ ϕ(c): Choose a basis (ai) of A and the
dual basis (bi) of B; these are mapped to the bases (ci) and (c′i) of C and C∨.
Then, under the top horizontal map, 〈ai, bj〉 = δij with the Kronecker symbol
δij , and under the bottom horizontal map (ci, c

′
j) = δij .

(4) commutes since, in general, one has using Lemma 5.1.4 a commutative
diagram of finitely generated free modules over a ring R

(M ⊗R N
∨)× (M∨ ⊗R N) EndR(M)⊗R EndR(N) R

HomR(N,M)× HomR(M,N) EndR(N) R.

∼=

TrM ⊗R TrN

◦ TrN

For proving this, choose bases (ai) ofM and (bi) of N and their dual bases (a′i)
ofM∨ and (b′i) of N

∨. The element (ai⊗b
′
j , a

′
k⊗bl) of (M⊗KN

∨)×(M∨⊗KN)
is sent by the upper horizontal arrows to δikδjl, and by the left vertical arrow to
(bm 7→ b′j(bm)ai, an 7→ a′k(an)bl). The latter element is mapped by the lower left
horizontal arrow to bm 7→ a′k(b

′
j(bm)ai)bl and the trace of this endomorphism

is δjlδki. Therefore, the diagram commutes.

(5) commutes because of precomposing with the isomorphism (TℓA (−1))∨
∼
→

Tℓ(A
t) coming from the perfect Weil pairing Theorem 2.4.14.

(6) commutes because of [Lan58, p. 186 f., Theorem 3].
(7) commutes since Pic

0
X/k is dual to AlbX/k by Theorem 5.1.6 since PicX/k

is reduced and because of

Tr(β ◦ α) = Tr((β ◦ α)t) by Corollary 5.1.10

= Tr(αt ◦ βt)

= Tr(βt ◦ αt) by [Lan58, p. 187, Corollary 1].

Theorem 5.1.12 (The cohomological and the trace pairing). Let X/k be a
smooth projective geometrically connected variety of dimension d with Albanese
variety A associated to a base point x0 ∈ X(k) such that PicX/k is reduced.
Denote the constant Abelian scheme B×kX/X by A /X. Then the trace pairing

Homk(A,B) ×Homk(B,A)
◦
→ Endk(A)

Tr
→ Z
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tensored with Zℓ equals the cohomological pairing from (2.18)

〈·, ·〉ℓ : H
1(X,TℓA )nt ×H2d−1(X,Tℓ(A

t)(d− 1))nt → H2d(X,Zℓ(d))

pr∗1→ H2d(X,Zℓ(d)) = Zℓ,

and this equals by Theorem 3.5.2 the Néron-Tate canonical height pairing up to
the integral hard Lefschetz defect (see Definition 3.1.11).

Proof. First note that the Kummer sequence for Gm on X gives us a short
exact sequence

1 = Gm(X)/ℓn → H1(X,µℓn)→ Pic(X)[ℓn]→ 0,

the first equality since Gm(X)/ℓn = k
×
/ℓn = 1 since X/k is proper and ge-

ometrically integral, and passing to the inverse limit over n, an isomorphism
H1(X,Zℓ(1)) = Tℓ Pic(X) = TℓPic0X/k, the latter equality since TℓNS(X) = 0
since the Néron-Severi group is finitely generated by the theorem of the
base [Mil80, p. 215, Theorem V.3.25].
Now use Lemma 5.1.11.

Example 5.1.13. In particular, if the characteristic polynomials of the Frobe-
nius on Pic0X/k and At are coprime, then Homk(A

t,Pic0X/k) = 0 =

Homk(Pic0X/k, A
t) and the discriminants of the parings 〈·, ·〉ℓ and (·, ·)ℓ

from (2.18) and (2.19) are equal to 1.

Theorem 5.1.14. Let k = Fq, q = pn be a finite field and X/k a smooth
projective and geometrically connected variety and assume X = X×kk satisfies
(a) the Néron-Severi group of X is torsion-free and
(b) the dimension of H1

Zar(X,OX) as a vector space over k equals the dimension
of the Albanese variety of X/k.
If B/k is an Abelian variety, then H1(X,B) is finite and its order satisfies the
relation

qgd
∏

ai 6=bj

(
1−

ai
bj

)
=

∣∣H1(X,B)
∣∣ |det〈αi, βj〉| ,

where A/k is the Albanese variety of X/k, g and d are the dimensions of
A and B, respectively, (ai)

2g
i=1 and (bj)

2d
j=1 are the roots of the characteristic

polynomials of the Frobenius of A/k and B/k, (αi)
r
i=1 and (βi)

r
i=1 are bases for

Homk(A,B) and Homk(B,A), and 〈αi, βj〉 is the trace of the endomorphism
βjαi of A.

Proof. See [Mil68, p. 98, Theorem 2].

Remark 5.1.15. Note that Homk(A,B) and Homk(B,A) are free Z-modules
of the same rank r = r(fA, fB) ≤ 4gd by [Tat66a, p. 139, Theorem 1 (a)],
with fA and fB the characteristic polynomials of the Frobenius of A/k and
B/k. (Another argument for them having the same rank is that the category
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of Abelian varieties up to isogeny is semi-simple, decomposing A and B into
simple factors.) Furthermore, H1(X,B) = H1(X,B ×k X) = X(B ×k X/X)
since for U → X , one has B(U) = (B ×k X)(U) by the universal property of
the fibre product.

Example 5.1.16. (a) and (b) in Theorem 5.1.14 are satisfied for X = A an
Abelian variety, a K3 surface or a curve: (a) because of [Mum70, p. 178, Corol-
lary 2] and [Huy16, p. 385ff., Chapter 17], and (b) for curves and Abelian
varieties since At = Pic

0
A/k is an Abelian variety, in particular smooth and

reduced, and by Example 5.1.8 for K3 surfaces. See also Theorem 5.1.6, Re-
mark 5.1.7 and Example 5.1.8.

Lemma 5.1.17. Let k = Fq be a finite field, ℓ invertible in k and A/k be an
Abelian variety of dimension g. Denote the eigenvalues of the Frobenius Frobq
on VℓA by (αi)

2g
i=1. Then αi 7→ q/αi is a bijection.

Proof. The Weil pairing (Theorem 2.4.14) induces a perfect Galois equivariant
pairing

VℓA× VℓA
t → Qℓ(1),

and, choosing a polarisation f : A → At, by Lemma 2.4.5, we also have by
precomposing a perfect Galois equivariant pairing

〈·, ·〉 : VℓA× VℓA→ Qℓ(1).

Now let vi be an eigenvector of Frobq on VℓA with eigenvalue αi. Then there is
exactly one eigenvector vj of Frobq on VℓA such that 〈vi, vj〉 = 1 6= 0 (otherwise,
since the pairing 〈·, ·〉 is perfect, we would have 〈vi, vj〉 = 0 for all eigenvectors
vj , but there is a basis of eigenvectors on the Tate module since the Frobenius
acts semi-simply). Now, since the pairing is Galois equivariant, q = Frobq(1) =
Frobq〈vi, vj〉 = 〈Frobq vi,Frobq vj〉 = 〈αivi, αjvj〉 = αiαj〈vi, vj〉 = αiαj1, and
the statement follows.

Definition 5.1.18. Define the regulator R(A /X) of A /X as | det(〈·, ·〉)|.

By Remark 5.1.15, we get

Corollary 5.1.19. In the situation of Theorem 5.1.14, one has

qgd
∏

ai 6=bj

(
1−

ai
bj

)
= |X(B ×k X/X)|R(A /X).

Definition 5.1.20. Define the L-function of B ×k X/X as the L-function
of the Chow motive

h1(B)⊗ (h0(X)⊕ h1(X)) = h1(B) ⊕ (h1(B)⊗ h1(X)),

namely

L(B ×k X/X, s) =
L(h1(B)⊗ h1(X), s)

L(h1(B), s)
.
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Here, the Künneth projectors are algebraic by [DM91, p. 217, Corollary 3.2].

Theorem 5.1.21. The two L-functions Definition 2.6.5 and Definition 5.1.20
agree for constant Abelian schemes.

Proof. One has VℓB = H1(B,Qℓ)
∨ by Proposition 2.4.2, (VℓB)∨ = (VℓB

t)(−1),
Vℓ(B) ∼= Vℓ(B

t) by Lemma 2.4.5 and the existence of a polarisation [Mil86a],
p. 113, Theorem 7.1, Hi(X,VℓA ) = Hi(X,Qℓ) ⊗ VℓB by Lemma 5.1.5 and
VℓA = (VℓB) ×k X by Lemma 5.1.1 since A /X is constant. Using this, one
gets

L(hi(X)⊗ h1(B), t) = det(1− Frob−1
q t | Hi(X,Qℓ)⊗H1(B,Qℓ))

= det(1− Frob−1
q t | Hi(X,Qℓ)⊗ Vℓ(B

t)(−1))

= det(1− Frob−1
q t | Hi(X,Qℓ)⊗ Vℓ(B)(−1))

= det(1− Frob−1
q t | Hi(X, (VℓB)×k X)(−1))

= det(1− Frob−1
q q−1t | Hi(X,VℓA ))

= Li(A /X, q−1t).

Now conclude using h1(B) = h0(X)⊗ h1(B) since X is connected.

Remark 5.1.22. Note that

ord
t=1

L(A /X, t) = ord
s=1

L(A /X, q−1qs).

Remark 5.1.23. Now let us explain how we came up with this definition of
the L-function. We omit the characteristic polynomials Li(A /X, t) in higher
dimensions i > 1 since otherwise cardinalities of cohomology groups would
turn up in the special L-value which we have no interpretation for (as in the
case i = 0 and the cardinality of the ℓ-torsion of the Mordell-Weil group, or
in the case i = 1 and the cardinality of the ℓ-torsion of the Tate-Shafarevich
group). In the case of a curve C as a basis, our definition is the same as
the classical definition of the L-function up to an L2(t)-factor. This factor
contributes basically only a factor |A t(X)[ℓ∞]tors| in the denominator. In the
classical curve case dimX = 1, the L-function can also be represented as a
product over all closed points x ∈ |X | of Euler factors.

We expand

L(B ×k X/X, s) =
L(h1(B) ⊗ h1(X), s)

L(h1(B), s)

=

∏2d
j=1

∏2g
i=1(1− aibjq

−s)
∏2d

j=1(1− bjq
−s)

.

By Lemma 5.1.17, one has for the numerator

2d∏

j=1

2g∏

i=1

(1− aibjq
−s) =

2d∏

j=1

2g∏

i=1

(
1−

ai
bj
q1−s

)
, (5.4)
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and the denominator has no zeros at s = 1 by the Riemann hypothesis (the
eigenvalues of the Frobenius (bj) on h

1(B) have absolute value q1/2). Therefore

ord
s=1

L(B ×k X/X, s) = r(fA, fB)

is equal to the number r(fA, fB) of pairs (i, j) such that ai = bj , which equals
by [Tat66a, p. 139, Theorem 1 (a)] the rank r of (B ×k X)(X):

r(fA, fB) = rkZ Homk(A,B)

= rkZ Homk(X,B) by the universal property of the Albanese variety

= rkZ HomX(X,B ×k X),

see Corollary 5.1.2.

Lemma 5.1.24. The denominator evaluated at s = 1 equals

2d∏

j=1

(1− bjq
−1) =

|(B ×k X)(X)tors|

qd
.

Proof.

2d∏

j=1

(1− bjq
−1) =

2d∏

j=1

(
1−

1

bj

)
by Lemma 5.1.17

=

2d∏

j=1

bj − 1

bj

=

2d∏

j=1

1− bj
bj

since 2d is even

=
deg(idB −Frobq)

qd
by 5.1.17 and [Lan58, p. 186 f., Thm. 3]

=
|B(Fq)|

qd
since idB −Frobq is separable

=
|(B ×k X)(X)tors|

qd
by Lemma 5.1.1 3.

Remark 5.1.25. Note that, ifX/k is a smooth curve, (B×kX)(X) = B(K) with
K = k(X) the function field of X by the valuative criterion for properness since
X/k is a smooth curve and B/k is proper. For general X , setting A = B×kX
and K = k(X) the function field, (B ×k X)(X) = A (X) = A(K) also holds
true because of the Néron mapping property.

Remark 5.1.26. One has |(B ×k X)(X)tors| = |B(k)| = |Bt(k)| =
|(B ×k X)t(X)tors| by Lemma 5.1.1 3 and Lemma 2.5.1.
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Putting everything together, one has

lim
s→1

L(A /X, s)

(s− 1)r
=

qd(log q)r

|A (X)tors|

∏

ai 6=bj

(
1−

ai
bj

)
by Lemma 5.1.24 and (5.4)

= q(g−1)d(log q)r
|X(A /X)| ·R(A /X)

|A (X)tors|
by Corollary 5.1.19.

Theorem 5.1.27. In the situation of Theorem 5.1.14, one has:
1. The Tate-Shafarevich group X(A /X) is finite.
2. The vanishing order equals the Mordell-Weil rank r: ords=1 L(A /X, s) =
rkZ A (X) = rkZA(K).
3. There is the equality for the leading Taylor coefficient

L∗(A /X, 1) = q(g−1)d(log q)r
|X(A /X)| · R(A /X)

|A (X)tors|
.

Combining Theorem 2.7.19 and Theorem 5.1.27 and using Theorem 5.1.21, one
can identify the remaining two expressions in Theorem 2.7.19:

Corollary 5.1.28. In the situation of Theorem 5.1.14, in Theorem 2.7.19
resp. Lemma 2.7.14, all equalities hold and one has

|det(·, ·)ℓ|
−1
ℓ = 1,

∣∣H2(X,TℓA )Γ
∣∣ = 1.

Remark 5.1.29. For constant Abelian schemes A = A×kX (under the assump-
tion (a) above that NS(X) is torsion-free), one has

∣∣H2(X,TℓA )Γ
∣∣ = 1:2 The

long exact sequence associated to the Kummer sequence yields the exactness
of

0→ H1(X,Gm)/ℓn → H2(X,µℓn)→ H2(X,Gm)[ℓn]→ 0.

Combining with the exactness of

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0

and the divisibility of Pic0(X) (since multiplication by ℓn on an Abelian vari-
ety is an isogeny, hence surjective, by [Mil86a, p. 115, Theorem 8.2]), hence
H1(X,Gm)/ℓn = Pic(X)/ℓn = NS(X)/ℓn, and passage to the inverse limit
lim
←−n

gives us

0→ NS(X)⊗Z Zℓ → H2(X,Zℓ(1))→ TℓH
2(X,Gm)→ 0

since the NS(X)/ℓn are finite by [Mil80, p. 215, Theorem V.3.25], so they sat-
isfy the Mittag-Leffler condition. As NS(X) is torsion-free (by assumption (a)

2this factor turns up in the Birch-Swinnerton-Dyer formula for the special L-value Theo-
rem 2.7.19
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above) and TℓH
2(X,Gm) too (as a Tate module), it follows that H2(X,Zℓ(1))

is torsion-free, so also

H2(X,TℓA )Γ = H2(X, π∗(TℓA))
Γ = H2(X, π∗(TℓA(−1))⊗ Zℓ(1))

Γ

= (H2(X,Zℓ(1))⊗Zℓ
TℓA(−1))

Γ

by Lemma 5.1.1 2 (here we are using that A /X is constant) and the projection
formula for π : X → k (similar to Lemma 2.4.7), so

∣∣H2(X,TℓA )Γ
∣∣ = 1

since this group is finite by Corollary 2.5.8 (having weight 2 − 1 = 1 6= 0
by Theorem 2.2.2 and Proposition 2.4.4) and torsion-free (as a subgroup of a
tensor product of torsion-free finite rank groups).

5.2 The case of a curve as a basis

Let X/k be a smooth projective geometrically connected curve with function
field K = k(X), base point x0 ∈ X(k), Albanese variety A, Abel-Jacobi map
ϕ : X → A with canonical principal polarisation c : A

∼
→ At, and B/k be an

Abelian variety.
Let

〈·, ·〉 : Homk(A,B)× Homk(B,A) → Z, (α, β) 7→ 〈α, β〉 := Tr(β ◦ α : A→ A) ∈ Z

be the trace pairing, the trace being taken as an endomorphism of A as
in [Lan58]. By [Lan58, p. 186 f., Theorem 3], this equals the trace taken as
an endomorphism of the Tate module TℓA or H1(A,Zℓ) (they are dual to each
other by Proposition 2.4.2, so for the trace, it does not matter which one we
are taking).
We now show that our trace pairing is equivalent to the usual Néron-Tate height
pairing on curves and is thus a sensible generalisation to the case of a higher
dimensional base.

Lemma 5.2.1. Let X,Y be Abelian varieties over a field k and f ∈ Homk(X,Y ).
Then

(f × idY t)∗PY
∼= (idX ×f

t)∗PX

in Pic(X ×k Y
t).

Proof. By the universal property of the Poincaré bundle PX applied to (f ×

idPy )
∗PY , there exists a unique map f̂ : Xt → Y t such that

(f × idY t)∗PY
∼= (idX ×f̂)

∗
PX . (5.5)

It remains to show that f̂ = f t.
Let T/k be a variety and L ∈ Pic0(Y ×k T ) arbitrary. By the universal
property of the Poincaré bundle PY , there exists g : T → Y t such that L =
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(idY ×g)
∗PY . We want to show f̂∗ : Y t(T ) → Xt(T ), g 7→ f̂ g equals f t :

Pic0(Y ×k T )→ Pic0(X ×k T ),L 7→ f∗L . But we have

f t(L ) = (f × idT )
∗
L

= (f × idT )
∗(idY ×g)

∗
PY

= (f × g)∗PY

= (idX ×g)
∗(f × idY t)∗PY

= (idX ×g)
∗(idX ×f̂)

∗
PX by (5.5)

= (idX ×f̂g)
∗
PX

= f̂∗(L )

for any L ∈ Pic0(Y ×k T ).

Lemma 5.2.2. Let ϑ− be the class of [−1]∗Θ with the Theta divisor as in [BG06,
p. 272, Remark 8.10.8] and δ1 ∈ Pic(X ×k A) as in [BG06, p. 278, l. −4] the
Poincaré class. Let ϕ be the Abel-Jacobi map and ϕϑ− as in [BG06, p. 252,
Theorem 8.5.1]. Let cA = m∗ϑ− − pr∗1 ϑ

− − pr∗2 ϑ
− ∈ Pic(A ×k A) with m :

A ×k A → A the addition morphism and pri : A ×k A → A the projections.
Then

(ϕ× idA)
∗cA = −δ1 (5.6)

and
(idA×ϕϑ−)∗PA = cA. (5.7)

Proof. See [BG06, p. 279, Propositions 8.10.19 and 8.10.20].

Theorem 5.2.3 (The trace and the height pairing for curves). Let X/k be a
smooth projective geometrically connected curve with Albanese variety A. Then
the trace pairing

Homk(A,B)×Homk(B,A)
◦
→ Endk(A)

Tr
→ Z, (α, β) 7→ 〈α, β〉

equals the following height pairing

(α, β)ht := degX(−(γ(α), γ′(β))∗PB) = degX(−(αϕ, βtcϕ)∗PB),

where ϕ : X → A is the Abel-Jacobi map associated to a rational point of X,
c : A

∼
→ At is the canonical principal polarisation associated to the theta divisor,

and γ(α), γ′(β) are the following compositions

γ(α) : X
ϕ
→ A

α
→ B,

γ′(β) : X
ϕ
→ A

c
→ At βt

→ Bt,

and (α, β)ht is equal to the usual Néron-Tate canonical height pairing up to a
sign.
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Proof. By [Mil68, p. 100], we have

〈α, β〉 = degX((idX , βαϕ)
∗δ1),

where δ1 ∈ Pic(X ×k A) is a divisorial correspondence such that

(idX ×ϕ)
∗δ1 = ∆X − {x0} ×X −X × {x0}

with the diagonal ∆X →֒ X ×k X , see [BG06, p. 279, Proposition 8.10.18].
Note the property Lemma 5.2.2 of the Theta divisor Θ of the Jacobian A of C
on A (which is defined in [BG06, p. 272, Remark 8.10.8]) and let Θ− = [−1]∗Θ
with ϑ and ϑ− denoting the respecting divisor class. The Theta divisor induces
the canonical principal polarisation ϕϑ = c : A

∼
→ At. Therefore

(αϕ × βtcϕ)∗PB = (αϕ× cϕ)∗(idX ×β
t)∗PB

= (αϕ× cϕ)∗(β × idAt)∗PA by Lemma 5.2.1

= (βαϕ × cϕ)∗PA

= (βαϕ × ϕϑϕ)
∗
PA

= (βαϕ × ϕ)∗(idA×ϕϑ)
∗
PA

= (βαϕ × ϕ)∗cA by (5.7)

= (ϕ× βαϕ)∗cA by symmetry of cA

= −(idX ×βαϕ)
∗δ1 by (5.6)

Summing up, one has

(α, β)ht = degX(−(idX , βαϕ)
∗δ1)

= −〈α, β〉.

By [MB85, p. 72, Théorème 5.4], the latter pairing equals the Néron-Tate
canonical height pairing.

6 Proof of the conjecture for special Abelian schemes

We assume in this section that all varieties have a base point. This assumption
is needed for the existence of the Albanese variety in Proposition 6.1.1.

6.1 Picard and Néron-Severi groups of products

Proposition 6.1.1 (Picard scheme of a product). Let X,Y be smooth proper
varieties over a field k with a k-rational point. Then there is an exact sequence
of k-group schemes

0→ PicX/k ×k PicY/k → PicX×kY/k → Homk(AlbX/k,Pic0Y/k),

which is short exact on geometric points.
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Proof. See [use14].

Corollary 6.1.2. Let X,Y be smooth proper varieties over an algebraically
field k with a k-rational point. If Pic0X/k and Pic0Y/k are reduced, so is

Pic0X×kY/k = Pic0X/k ×k Pic0Y/k.

Proof. One has Pic0X×kY/k = Pic0X/k ×k Pic0Y/k from the exact sequence
in Proposition 6.1.1 by taking the connected component of 0 and since the Hom-
scheme is discrete. Now use that the fibre product of reduced varieties over an
algebraically closed field is reduced [GW10, p. 135, Proposition 5.49].

Corollary 6.1.3. Let X,Y be smooth proper varieties over an algebraically
closed field k with a k-rational point. If NS(X) and NS(Y ) are free, so is
NS(X ×k Y ).

Proof. By Proposition 6.1.1 and Corollary 6.1.2, there is a commutative dia-
gram with exact rows

0 Pic0(X) × Pic0(Y ) Pic0(X ×k Y ) 0

0 Pic(X) × Pic(Y ) Pic(X ×k Y ) Homk(Pic0X/k,Pic0Y/k) 0.

∼=

The snake lemma gives us a short exact sequence

0→ NS(X)×NS(Y )→ NS(X ×k Y )→ Homk(Pic
0
X/k,Pic

0
Y/k)→ 0.

Now use that Homk(A,B) for Abelian varieties A,B over a field k is a finitely
generated free Abelian group, see [Mil86a, p. 122, Lemma 12.2].

6.2 Preliminaries on étale fundamental groups

Lemma 6.2.1. Let Xi, i = 1, . . . , n be connected proper varieties over an alge-
braically closed field k. If X̃ is an étale covering of X1 ×k . . .×k Xn, there are
étale coverings X̃i of Xi and an étale covering X̃1 ×k . . .×k X̃n → X̃.

Proof. By [SGA1, p. 203 f., Corollaire X.1.7], the étale fundamental group of
a product of connected proper varieties over an algebraically closed field is
the product of the étale fundamental groups of its factors. Now use that for
an open subgroup H ≤ G of a profinite group G = G1 × . . . × Gn contains
an open subgroup H1 × . . . × Hn of G with Hi ≤ Gi open. (One can take
Hi = Gi ∩H .)

Proposition 6.2.2. Let G/S be finite étale over S connected. Then there is
a connected finite étale covering S′/S of degree dividing deg(G/S)! such that
G×S S

′/S′ is constant.
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Proof. Choose a geometric point s of S. Let X be the πét
1 (S, s)-set corre-

sponding to G/S, and let H ⊆ πét
1 (S, s) be the subgroup corresponding to the

elements that act as the identity on X , the kernel of πét
1 (S, s)→ Aut(X). Let

S′ be the finite étale covering corresponding to the πét
1 (S, s)-set πét

1 (S, s)/H ,
which is connected as πét

1 (S, s) acts transitively on πét
1 (S, s)/H . The scheme

G×SS
′/S′ is constant by [SGA1, p. 113, Corollaire V.6.5] applied to the functor

−×S S
′ : FÉt/S → FÉt/S′ of Galois categories.

Note that |Aut(X)| = |X |! = deg(G/S)!, so deg(S′/S) = [πét
1 (S, s) : H ] |

deg(G/S)!.

6.3 Isoconstant Abelian schemes

Theorem 6.3.1. Let k be a field of characteristic p and S/k be proper, reduced
and connected. Let A /S be a relative elliptic curve or a principally polarised
Abelian scheme with constant isomorphism type of A [p]. Then there is a con-
nected finite étale covering S′/S such that A ×S S

′/S′ is constant.

Proof. If A /S is a relative elliptic curve: Choose N ≥ 3 such that N is
invertible on S. Since E [N ]/S is finite étale, by Proposition 6.2.2 there is
a connected finite étale covering S′/S such that there is an S′-isomorphism
E [N ] ×S S

′ ∼= (Z/N)2. Since the fine (N ≥ 3) moduli space Y (N) of elliptic
curves with full level-N structure is affine by [KM85, p. 117, Corollary 4.7.2]
and S′ is reduced and connected, by the coherence theorem, the morphism
S′ → Y (N) classifying (E ×S S

′, E [N ] ×S S
′) factors over a finite extension

field k′ of k. Hence E ×S S
′ ∼= E univ ×Y (N) Spec(k

′) is constant.
If A /S is a principally polarised Abelian scheme with constant isomorphism
type of A [p]: Use the same argument and use that there is a level-n structure
for some n ≥ 3 not divisible by p after finite étale base extension and that
the Ekedahl-Oort stratification of the moduli space Ag,1,n ⊗ Fp for p ∤ n is
quasi-affine [Oor01, p. 348, Theorem 1.2].

Lemma 6.3.2. Let X be a normal Noetherian integral scheme with function
field K = k(X), A and B Abelian schemes over X and L/K be a separable
field extension. Given a homomorphism fL ∈ HomX(AL,BL), there exists a
finite étale covering X ′/X with function field L′ with L ⊇ L′ ⊇ K and an
extension of fL′ to fX′ ∈ HomX′(AX′ ,BX′).

Proof. Since X is normal Noetherian integral, the Abelian schemes A ,B are
projective over X by [Ray70, p. 161, Théorème XI.1.4]. Since X is Noetherian
and A ,B are also flat over X , by [FGI+05, p. 133, Theorem 5.23], there
exists the Hom-scheme HomX(A ,B) over X , which is an open subscheme
of the Hilbert scheme HilbA ×XB/X , which is separated and locally of finite
presentation over X . Since for a discrete valuation ring R with quotient field
Quot(R), arguing as in [BLR90, p. 15, proof of Proposition 1.2/8], there is
for fQuot(R) : AQuot(R) → BQuot(R) a unique (by separatedness) extension to
fR : AR → BR, the connected components of HomX(A ,B) are proper over
X .
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By the infinitesimal lifting criterion for unramified morphisms,
HomX(A ,B) → X is also unramified: Let (R,m) be a local Artinian
ring with residue field k. Then HomR(AR,BR) →֒ Homk(Ak,Bk) is injective
since Spec(R) consists of a single point: Namely, if f : AR → AR maps to
fk = 0, f = 0 by the rigidity lemma [MF82, p. 115, Theorem 6.1 1)]. Hence
any component of HomX(A ,B) that is dominant over X is finite (by Zariski’s
main theorem, since it is proper and quasi-finite) and étale over X (since X is
integral and normal, hence geometrically unibranch, so dominant, finite and
unramified implies étale by [EGAIV4, p. 157, Théorème 18.10.1]).

For the definition of a supersingular Abelian variety see [Oor74, p. 113, Def-
inition 4.1]. A supersingular Abelian scheme is an Abelian schemes with all
fibres supersingular Abelian varieties, equivalently (for an integral base) if the
generic fibre is supersingular (this follows from Theorem 6.3.3).

Theorem 6.3.3 (supersingular Abelian schemes). Let X be a normal Noethe-
rian integral scheme of characteristic p > 0 and A /X be an Abelian scheme
with supersingular generic fibre. Then there exists a finite étale covering X ′/X,
a supersingular elliptic curve E/Fp and an isogeny (E ×Fp X

′)g → A ×X X ′.

Proof. Let K = k(X) be the function field of X . By [Oor74, p. 113, Theo-
rem 4.2], AK is isogenous to Eg

K
with EK/K any (!) supersingular elliptic

curve (any two supersingular elliptic curves over an algebraically closed field
are isogenous, see [Oor74, p. 113]). Note that for any prime p, there exists
a supersingular elliptic curve over Fp, see [Sil09, p. 148 f., Theorem V.4.1 (c)]
for p > 2 and the text before this theorem for p = 2. By [Mil86a, p. 146,
Corollary 20.4 (b)] applied to the primary field extension K/Ksep, there is a
separable field extension L/K and an isogeny Eg

L → AL. Since E/Fp extends
to E ×Fp X over X , the claim follows from Lemma 6.3.2.

Definition 6.3.4. We call an Abelian scheme A /X ℓ
′-isoconstant if there

is a proper, surjective, generically étale ℓ′-morphism of regular schemes f :
X ′ → X (an ℓ′-alteration) such that A ×X X ′ is constant.

The following theorem about descent of finiteness of the Tate-Shafarevich group
together with Theorem 5.1.14 implies Theorem 4 from the introduction.

Theorem 6.3.5 (invariance of finiteness of X under alterations). Let ℓ be a
prime invertible on X. Let f : X ′ → X be a proper, surjective, generically étale
ℓ′-morphism of regular schemes. If A is an Abelian scheme on X such that the
ℓ∞-torsion of the Tate-Shafarevich group X(A ′/X ′) of A ′ := f∗A = A ×XX

′

is finite, then the ℓ∞-torsion of the Tate-Shafarevich group X(A /X) is finite.

Proof. See [Kel16, p. 238, Theorem 4.29].

Corollary 6.3.6. Let X be a product of smooth proper curves, Abelian vari-
eties and K3 surfaces over a finite field of characteristic p. Now let A be an
Abelian X-scheme belonging to one of the following three classes:
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1. a relative elliptic curve

2. an Abelian scheme such that the isomorphism type of A [p] is constant

3. an Abelian scheme with supersingular generic fibre

Then the prime-to-p part of our analogue of the conjecture of Birch and
Swinnerton-Dyer holds for A /X and, if A /X is a relative elliptic curve,
Br(A )[non-p] is finite. If X is a curve, the full conjecture of Birch and
Swinnerton-Dyer holds for A /X. Furthermore, the Tate conjecture holds in
dimension 1 for A .

Proof. The conditions (a) and (b) from Theorem 5.1.14 are satisfied for S′

in Theorem 6.3.1 by Example 5.1.16 if the base scheme is a curve or an Abelian
variety as a finite étale constant connected covering of a curve or an Abelian
variety is again a curve or an Abelian variety, respectively: For curves, this is
clear, and for Abelian varieties see [Mum70, p. 155, Theorem of Serre-Lang]. So
one has (a) and (b) for a product from Corollary 6.1.2 and Corollary 6.1.3. A
K3 surface X/k has πét

1 (X) = πét
1 (k) by [Huy16, p. 131, proof of Theorem 1.1]

and the homotopy exact sequence 1 → πét
1 (X ×k k

sep) → πét
1 (X) → πét

1 (k) →
1. Therefore, a connected étale covering of X is of the form X ×k K with
K/k a finite separable field extension. Since H1

Zar(X,OX) = 0, also H1(X ×k

K,OX×kK) = 0 by [Liu06, p. 189, Corollary 5.2.27]. Furthermore, Ω2
X×kK

=
OX×kK by [Liu06, p. 271, Proposition 6.1.24 (a)]. Now apply Theorem 6.3.5 to
the étale covering from Lemma 6.2.1 to get (a) and (b) for the covering.
For an Abelian scheme with supersingular generic fibre use the same argument
together with Theorem 6.3.3 and isogeny invariance of the finiteness of the
Tate-Shafarevich group [Kel16, p. 240, Theorem 4.31].
Note that A /X is ℓ′-isoconstant for some ℓ 6= char(k), and then we can use
(a) =⇒ (b) from Theorem 2.7.19 to get independence from ℓ. Using [Bau92,
p. 286, Theorem 4.8], this proves the conjecture of Birch and Swinnerton-Dyer
for elliptic curves with good reduction everywhere over 1-dimensional global
function fields.
The finiteness of the prime-to-p part of the Brauer group of the absolute variety
E over an Abelian variety X follows from the finiteness of Br(X)[non-p] [Zar83]
and [Kel16, p. 237, Theorem 4.27]. For X a curve, see the proof of Corol-
lary 6.3.7. For X a K3 surface, see [SZ15, p. 11405, Theorem 1.3] and [Ito18,
p. 1, Theorem 1.1] and note that the Brauer group of a finite field is trivial.
The Tate conjecture holds in dimension 1 since the Kummer sequence gives an
exact sequence

0→ Pic(E )⊗Z Zℓ → H1(E ,Zℓ(1))→ TℓBr(E )→ 0

and Br(E )[ℓ∞] is finite, so Tℓ Br(E ) = 0 by Lemma 2.1.1 (ii).

The p-part will be covered in a forthcoming article [Kel18]. There, we prove that
the Brauer group of an Abelian variety over a finite field is finite (including the
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p-part), descent of finiteness of the p∞-torsion of the Tate-Shafarevich group
under alterations, and isogeny invariance of finiteness of the p∞-torsion of the
Tate-Shafarevich group.

Corollary 6.3.7. Let C/Fq be a smooth proper geometrically connected curve
and E /C be a relative elliptic curve. Then Br(E ) = X(E /C) is finite and of
square order, and the Tate conjecture holds for E .

Proof. This follows from [Kel16, p. 237, Theorem 4.27] and Corollary 6.3.6, and
since Br(C) = 0 by class field theory, see [Mil86b, p. 137, Remark I.A.15 and
p. 131, Theorem I.A.7] and the Albert-Brauer-Hasse-Noether theorem [NSW00,
p. 437, Theorem 8.1.17].
The statement about the square order follows from [LLR05]. The Tate conjec-
ture in dimensions other than 1 is trivial for a surface.

7 Reduction to the case of a surface or a curve as a basis

Theorem 7.0.1. If the analogue of the conjecture of Birch-Swinnerton-Dyer
holds for a prime ℓ invertible on the base and for all Abelian schemes over all
smooth projective geometrically integral surfaces, then it holds over arbitrary
dimensional bases.
More precisely, if there is a sequence S →֒ . . . →֒ X of ample smooth projective
geometrically integral hypersurface sections with a surface S and the conjecture
holds for A /S, then it holds for A /X.

The basic idea is using ample hypersurface sections, Poincaré duality, the affine
Lefschetz theorem and that the conjecture of Birch and Swinnerton-Dyer de-
pends only on X(A /X) = H1

ét(X,A ) in cohomological degree 1.

Proof. Let Y →֒ X be an ample smooth geometrically connected hypersur-
face section (this exists by Poonen’s Bertini theorem for varieties over finite
fields [Poo05, Proposition 2.7]) with (necessarily) affine complement U →֒ X .
Base changing to k and writing X = X ×k k etc., one has by [Mil80, p. 94,
Remark III.1.30] a long exact sequence

. . .→ Hi
c(U,A [ℓn])→ Hi(X,A [ℓn])→ Hi(Y ,A [ℓn])→ Hi+1

c (U,A [ℓn])→ . . .
(7.1)

(Note that Hi
c(X,F ) = Hi(X,F ) since X/k is proper, and likewise for Y .)

Since A [ℓn]/X is étale, Poincaré duality [Mil80, p. 276, Corollary VI.11.2] gives
us

Hi
c(U,A [ℓn]) = H2d−i(U, (A [ℓn])∨(d)).

(Note that the varieties live over a separably closed field.) By the
affine Lefschetz theorem [Mil80, p. 253, Theorem VI.7.2], one has
H2d−i(U, (A [ℓn])∨(d)) = 0 for 2d − i > d, i. e. for i < d. Analogously,

Documenta Mathematica 24 (2019) 915–993



986 Timo Keller

Hi+1
c (U,A [ℓn]) = 0 for i + 1 < d. Plugging this into (7.1), one gets an

isomorphism
Hi(X,A [ℓn])

∼
→ Hi(Y ,A [ℓn]) (7.2)

for i+1 < d. Inductively, it follows that the cohomology groups of X in dimen-
sion i = 0, 1 are isomorphic to the cohomology groups of a smooth projective
geometrically integral surface (d = 2) S/k.
Since cdℓ(k) = 1, the Hochschild-Serre spectral sequence degenerates on the
E2-page giving exact sequences

0→ Hi−1(X,A [ℓn])Γ → Hi(X,A [ℓn])→ Hi(X,A [ℓn])Γ → 0

and similar for S, which implies isomorphisms Hi(X,A [ℓn])
∼
→ Hi(S,A [ℓn])

for i = 0, 1 by the 5-lemma and (7.2).
It follows that there is a commutative diagram with exact rows

0 A (X)/ℓn H1(X,A [ℓn]) X(A /X)[ℓn] 0

0 A (S)/ℓn H1(S,A [ℓn]) X(A /S)[ℓn] 0.

∼=

Passing to the inverse limit lim
←−n

and using lim
←−

1

n
A (X)/ℓn = 0 (and similar for

S) because the A (X)/ℓn are finite by the (weak) Mordell-Weil theorem Theo-
rem 2.7.8 and the Néron mapping property A (X) = A(K) Theorem 2.7.9, one
has a commutative diagram with exact rows

0 A (X)⊗Z Zℓ H1(X,TℓA ) TℓX(A /X) 0

0 A (S)⊗Z Zℓ H1(S, TℓA ) TℓX(A /S) 0.

∼=

(7.3)
By the snake lemma,

ker
(
TℓX(A /X) ։ TℓX(A /S)

)
= coker

(
A (X)⊗Z Zℓ →֒ A (S)⊗Z Zℓ

)

(7.4)
is a finitely generated free Zℓ-module (since TℓX(A /X) is), so TℓX(A /X)

∼
→

TℓX(A /S) iff rkA (X) = rkA (S).

Proposition 7.0.2. Let X be a smooth projective geometrically integral va-
riety over a finite field of characteristic p. Let Y →֒ X be an ample smooth
projective geometrically integral hypersurface section with dimY ≥ 2 and affine
complement U . Let A /X be an Abelian scheme. Then the restriction morphism
A (X)→ A (Y ) is an isomorphism (away from p).

Proof. By [Mil80, p. 94, Remark III.1.30], there is an exact sequence

0→ H0
c(U,A )→ H0(X,A )→ H0(Y,A )→ H1

c(U,A ).
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The injectivity of A (X)→ A (Y ) follows from (7.3) (or H0
c(U,A ) = 0 since U is

affine). For the surjectivity of A (X)→ A (Y ) away from p, it suffices to show
that H1

c(U,A )[non-p] = 0 (or at least that H1
c(U,A )[non-p] is finite/torsion

since the cokernel is torsion-free away from p by (7.4)). The Kummer exact
sequence 0 → A [ℓn] → A → A → 0 with ℓ invertible on U induces an exact
sequence

H1
c(U,A [ℓn])→ H1

c(U,A )
ℓn
→ H1

c(U,A )→ H2
c(U,A [ℓn]).

Since H1
c(U,A [ℓn]) = 0 = H2

c(U,A [ℓn]) because of dimU > 2 as above by
Poincaré duality and the affine Lefschetz theorem, H1

c(U,A ) is ℓ-divisible and
ℓ-torsion free. The exact sequence [Mil80, p. 94, Remark III.1.30]

A (X)→ A (Y )→ H1
c(U,A )→X(A /X)→X(A /Y )

shows, since the Mordell-Weil groups are finitely generated Abelian groups
by the theorem of Mordell-Weil Theorem 2.7.8 and the Néron mapping
property A (X) = A(K) Theorem 2.7.9 and the ℓ-primary components of
the (torsion) Tate-Shafarevich groups are cofinitely generated Abelian groups
by Lemma 2.7.6, that

H1
c(U,A )[non-p] ∼=

⊕

ℓ 6=p

(Fℓ ⊕ (Qℓ/Zℓ)
nℓ)⊕ Zn

with Fℓ finite Abelian ℓ-groups and n, nℓ ∈ N. It follows from H1
c(U,A )/ℓ = 0

that n = 0 and then from H1
c(U,A )[ℓ] = 0 that H1

c(U,A )[non-p] = 0.

It also follows from Hi(X,A [ℓn])
∼
→ Hi(S,A [ℓn]) for i = 0, 1 and Defini-

tion 2.6.5 that L(A /X, s) = L(A /S, s), so if the conjecture of Birch and
Swinnerton-Dyer holds for A /S, rkA (X) = rkA (S) by Proposition 7.0.2 and
A (X) ⊗Z Zℓ

∼
→ A (S) ⊗Z Zℓ. Hence, the analogue of the conjecture of Birch

and Swinnerton-Dyer for A /X is equivalent to the conjecture for A /S.

Theorem 7.0.3. If there is a smooth projective ample geometrically integral
curve C →֒ S with rkA (S) = rkA (C), the analogue of the conjecture of Birch
and Swinnerton-Dyer for A /S is equivalent to the classical conjecture for A /C.

Proof. For an ample smooth projective geometrically integral curve hypersur-
face section C →֒ S, one has still A (S)[ℓn]

∼
→ A (C)[ℓn] and at least an injection

H1(S,A [ℓn]) →֒ H1(C,A [ℓn]) for all n ≥ 0 and H1(S, TℓA ) →֒ H1(C, TℓA ).
Arguing in the same way as above using the commutative diagram with exact
rows

0 A (S)⊗Z Zℓ H1(S, TℓA ) TℓX(A /S) 0

0 A (C)⊗Z Zℓ H1(C, TℓA ) TℓX(A /C) 0
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and the snake lemma

ker
(
TℓX(A /S)→ TℓX(A /C)

)
→֒ coker

(
A (S)⊗Z Zℓ →֒ A (C)⊗Z Zℓ

)

with TℓX(A /S) and hence the kernel being torsion-free, if the conjecture of
Birch and Swinnerton-Dyer holds for A /C and rkA (S) = rkA (C), the ana-
logue of the conjecture of Birch and Swinnerton-Dyer holds for A /S.

Remark 7.0.4. So the question arises if there is always such a C →֒ S →֒
. . . →֒ X with rkA (S) = rkA (C), see [GS13, Theorem 1.2 (ii)] and Proposi-
tion 1.5 (iii) (over uncountable fields).

One always has the inequality rkA (S) ≤ rkA (C), so the analogue of the
conjecture of Birch and Swinnerton-Dyer for A /X holds if there is such a
C →֒ X with rkA (C) = 0, e. g. C ∼= P1

k and A /C isoconstant, e. g. if A /C is
a relative elliptic curve.
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[MF82] Mumford, David and Fogarty, John: Geometric invariant the-
ory. Ergebnisse der Mathematik und ihrer Grenzgebiete 34. Berlin-
Heidelberg-New York: Springer-Verlag. xii + 220 p., 1982.

[Mil68] Milne, James S.: The Tate-Šafarevič Group of a Constant Abelian
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