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Abstract. We study properties of the mean curvature one-form and
its holomorphic and antiholomorphic cousins on a transverse Kähler
foliation. If the mean curvature of the foliation is automorphic, then
there are some restrictions on basic cohomology similar to that on
Kähler manifolds, such as the requirement that the odd basic Betti
numbers must be even. However, the full Hodge diamond structure
does not apply to basic Dolbeault cohomology unless the foliation is
taut.
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1 Introduction

Let F be a foliation on a closed, smooth manifold M . A Riemannian foliation
is a foliation such that the normal bundle Q = TM/TF is endowed with a
holonomy-invariant metric gQ. This metric can always be extended to a metric
g on M that is called bundle-like, characterized by the property that the leaves
of F are locally equidistant. The basic forms of (M,F) are locally forms on
the leaf space; that is, they are forms φ satisfying Xyφ = Xydφ = 0 for any
vector X tangent to the leaves, where Xy denotes the interior product with
X . The set of basic forms yields a differential complex and is used to define
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basic de Rham cohomology groups H∗
B(F). For Riemannian foliations, these

groups have finite rank, and their ranks are topological invariants ([13]). The
basic Laplacian ∆B is a version of the Laplace operator that preserves the
basic forms. Many researchers have studied basic forms and the basic Lapla-
cian on Riemannian foliations. It is well-known ([2], [12], [27], [34]) that on a
closed oriented manifold M with a transversely oriented Riemannian foliation
F , Hr

B(F) ∼= Hr
B(F) = ker∆r

B.
The basic component κB of the mean curvature one-form of the foliation is
always closed, and its cohomology class ξ = [κB] ∈ H1

B (F) is invariant of the

choice of bundle-like metric; this was proved by in [2], and ξ is called the Álvarez
class. Poincaré duality holds for the basic cohomology of a Riemannian foliation
(M,F , gQ) if and only if the Álvarez class is trivial, if and only if (M,F) is
taut, meaning that there exists a metric for which the leaves of the foliation
are (immersed) minimal submanifolds.
In this paper, we consider foliations that admit a transverse, holonomy-
invariant complex structure, and in particular we consider holonomy-invariant
Hermitian metrics on Q that may or may not be Kähler. The question is
whether the standard Kähler manifold structures on Dolbeault cohomology
such as the Hard Lefschetz Theorem, the ddc-Lemma, and formality apply to
the basic cohomology of transverse Kähler foliations. The basic Dolbeault co-
homologies Hr,s

B (F) and Hr,s

∂B∂B

(F) can be defined as usual using only the

transverse holomorphic structure. The Hodge diamond structure does some-
times occur for basic Dolbeault cohomology for Kähler foliations, but it turns
out that two properties of the mean curvature are crucial:

1. Does the class η =
[

∂Bκ
0,1
B

]

∈ H1,1

∂B∂B

(F) vanish? This class automat-

ically vanishes if the Álvarez class ξ vanishes, but it is possible for the
ξ 6= 0 while η = 0 (see Example 9.2). The class is nontrivial if and only
if the ∂B∂B-Lemma fails to hold when applied directly to ∂Bκ

0,1
B . The

class η is an invariant of the transverse complex structure (Theorem 4.3).

2. Is the mean curvatureH = κ#B automorphic (that is, does its flow preserve
the transverse complex structure)?

The condition (2) is equivalent to (κ0,1B )# = H1,0 being a transverse holomor-
phic vector field — that locally it has the form

H1,0 =
∑

j

H1,0
j (z)∂zj

in the transverse holomorphic coordinates, with eachH1,0
j (z) being a transverse

holomorphic function. Condition (1) is similar; only in that case each H1,0
j (z)

is required to be a transverse antiholomorphic function.

This paper is organized as follows. In Section 2, we review the known properties
of the mean curvature and basic Laplacian for Riemannian foliations. In Section
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3, we investigate transverse Hermitian structures on foliations with bundle-like
metrics. In Proposition 3.2 and Theorem 3.3, we show that the holomorphic
and antiholomorphic basic components κ1,0B and κ0,1B of mean curvature are ∂B-

closed, ∂B-closed and represent basic Dolbeault cohomology classes in H1,0
∂B

(F)

and H0,1

∂B

(F), respectively, that are invariant under the choices of bundle-like

metric and transverse metric that is compatible with a given transverse holo-
morphic structure. In fact, in Proposition 3.6, we show that the metrics can
be chosen so that κ, κ1,0, and κ0,1 are basic forms. When the foliation is
transversally Kähler, the metrics can be chosen so that κ, κ1,0, and κ0,1 are
simultaneously basic, ∆B-harmonic, �B-harmonic, and �B-harmonic, respec-
tively (see Proposition 3.10; the �B and �B are the ∂B and ∂B Laplacians,
respectively).
In Section 4, we show that for transverse Hermitian foliations, the form ∂Bκ

0,1
B

is ∂B∂B-closed and generates a class η =
[

∂Bκ
0,1
B

]

∈ H1,1

∂B∂B

(F) that is in-

variant of the choices of bundle-like metric and compatible transverse metric
(Theorem 4.3). If the foliation is not taut and is transversally Hermitian,
Proposition 4.8 implies that if ∂Bκ

0,1
B = 0, then [κB] and [JκB] are linearly

independent cohomology classes in H1
B (F), so that dimH1

B (F) ≥ 2 in this
case. In Proposition 4.10, we derive formulas for �B and �B that are valid for
all transverse Hermitian foliations; for example,

�B = ∆Q

∂̄
+ ∂̄B ◦H0,1

y+H0,1
y ◦ ∂̄B,

where H0,1 =
(

κ1,0B

)#

and where ∆Q

∂̄
is the Dolbeault Laplacian on the local

quotients of foliation charts. In Corollary 4.10, we show for example that
if the foliation is transversely Kähler, then ∂Bκ

0,1
B = 0 if and only if �B =

∆Q

∂̄
+∇H0,1 .

In Section 5, we investigate the properties of the operator L, exterior product
with the transverse Kähler form. As a result, we show in Lemma 5.9 that for
transverse Kähler foliations,

∆B = �B +�B +Re
(

∂BH
0,1

y+H0,1
y ∂B

)

.

As a consequence (Corollary 5.10),

dim
(

Hj
B (F) ∩ Ωr,s

B (F)
)

≤ dimHr,s
B (F)

for all transverse Kähler foliations. Then it turns out that the Hard Lefschetz
Theorem for basic cohomology holds if and only if the class η = 0 (Theorem
5.11 and Corollary 5.12). Further, for transverse Kähler foliations, η = 0 if and
only if ξ = 0, which is false in general, and this condition in turn implies that
the metric can be chosen so that κ = κB = 0.

In Section 6, we investigate the condition that the mean curvature κB is au-
tomorphic, meaning its flow preserves the transverse holomorphic structure.
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The basic Laplacian satisfies ∆B = �B + �B if and only if it preserves the
(r, s)-type of form if and only if the mean curvature is automorphic (Theorem
6.5 and Corollary 6.6).
In Section 7, we show that the ddc-Lemma of Kähler manifolds works only
for taut Kähler foliations (Lemma 7.3). In Section 8, Theorem 8.1 shows on
transverse Kähler foliations that if the mean curvature is automorphic, then
symmetry of a version of the Hodge diamond follows, and then we also have

dimHj
B (F) =

∑

r+s=j; r,s≥0

dimHr,s
∆B

(F) .

However, the full power of the Hodge diamond with restrictions to basic Dol-
beault cohomology follows from the Hard Lefschetz theorem, which applies only
if the foliation is taut.
In Section 9, we provide examples of nontaut Kähler foliations and calculate
their cohomologies. Also in this section, we show that for a nontaut foliation,
it is possible for one transverse Hermitian structure to be Kähler with η 6= 0
and mean curvature not automorphic and for another transverse Hermitian
structure to be nonKähler with η = 0 and mean curvature automorphic. These
examples manifest another interesting property of nontaut transverse Kähler
foliations; the Kähler form ω always yields a transverse volume form ωn that
is exact, and the Kähler form itself may be exact.
Foliations that admit a transverse Kähler structure have been studied by many
researchers, but primarily in the case when the foliation is taut (κ = 0 for some
metric). For example, Sasaki manifolds are not Kähler but admit transverse
Kähler structures on the characteristic foliation, which is homologically ori-
ented. Since the mean curvature vanishes, many Kähler manifold facts apply
to the basic Dolbeault cohomology (see [5, Section 2], [4, Proposition 7.2.3],
[39]). The authors in [6] prove the hard Lefschetz theorem for compact Sasaki
manifolds, which again is a simple case of the results of this paper with κ = 0.
The cosymplectic manifold case is treated in [8]. A. El Kacimi proved in [11,
Section 3.4] that the standard facts about Kähler manifolds and their coho-
mology carry over to basic cohomology in the homologically orientable (taut)
case. Also, L. A. Cordero and R. A. Wolak [9] studied basic cohomology on
taut transverse Kähler foliations by using the differential operator ∆T , which
is different from ∆B (F is minimal if and only if ∆T = ∆B). We note other
recent work on transverse Kähler foliations in [22], [20], [16], [28], [24].

2 Properties of the mean curvature for Riemannian foliations

Let (M, gQ,F) be a (p + q)-dimensional Riemannian foliation of codimension
q with compact leaf closures. Here, gQ is a holonomy invariant metric on
the normal bundle Q = TM/TF , meaning that LXgQ = 0 for all X ∈ TF ,
where LX denotes the Lie derivative with respect to X . Next, let gM be a
bundle-like metric on M adapted to gQ. This means that if TF⊥ is the gM -
orthogonal complement to TF in TM and σ : Q → TF⊥ is the canonical
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bundle isomorphism, then gQ = σ∗ (gM |TF⊥). We do not assume that M is
compact, but we assume it is complete with finite volume.
In this section, we review some known results for this Riemannian foliation
setting. Let ∇ be the transverse Levi-Civita connection on the normal bundle
Q, which is torsion-free and metric with respect to gQ [37]. Let RQ and RicQ

be the curvature tensor and the transversal Ricci operator of F with respect
to ∇, respectively. The mean curvature vector τ of F is given by

τ =

p
∑

i=1

π(∇M
fi fi), (1)

where {fi}i=1,··· ,p is a local orthonormal basis of TF and π : TM → Q is
natural projection. Then the mean curvature form κ is defined by

κ(X) = gQ(τ, π(X)) (2)

for any tangent vectorX ∈ Γ(TM). An r-form φ is basic if and only if Xyφ = 0
and LXφ = 0 for any X ∈ Γ (TF), where Xy denotes the interior product. Let
Ωr

B(F) be the space of all basic r -forms. The foliation F is said to be minimal
if κ = 0. We note that Rummler’s formula (from [35]) for the mean curvature
is

dχF = −κ ∧ χF + ϕ0 with χF ∧ ∗ϕ0 = 0, (3)

where χF := f ♭
1 ∧ ... ∧ f

♭
p is the characteristic form, the leafwise volume form,

and ∗ is the Hodge star operator associated to gM ; we assumed M is oriented
to make the property of ϕ0 easier to state.
The exterior derivative d maps Ωr

B(F) to Ωr+1
B (F), and the resulting cohomol-

ogy groups are called the basic cohomology groups: for r ≥ 0,

Hr
B (F) =

ker
(

d|Ωr
B
(F)

)

Im
(

d|Ωr−1

B
(F)

) .

These groups are smooth invariants of the foliation and do not depend on
the bundle-like metric and also do not even depend on the smooth foliation
structure (see [13]).
The metric gM induces a natural metric on Λ∗T ∗M and L2 metric on L2Ω∗ (M).
Let L2Ω∗

B(F) denote the closure of Ω∗
B,0(F), the space of compactly supported

basic forms, in L2Ω∗ (M).

Proposition 2.1. (Proved in [34] for the closed manifold case) Let (M, gQ,F)
be a Riemannian foliation with compact leaf closures and bundle-like metric.
The orthogonal projection P : L2Ω∗ (M) → L2Ω∗

B (F) maps smooth forms to
smooth basic forms. For all α ∈ L2Ω∗ (M), P (α) (x) is computed by an integral
over the leaf closure containing x and only depends on the values of α on that
leaf closure.
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Proof. The proof in [34] applies in this slightly more general case, where it is
not assumed that M is compact.

Now we recall the transversal star operator ∗̄ : Ωr
B(F) → Ωq−r

B (F) given by

∗̄φ = (−1)p(q−r) ∗ (φ ∧ χF ),

where ∗ is the Hodge star operator associated to gM ; this is actually well-
defined as long as (M,F) is transversely oriented. Trivially, ∗̄2φ = (−1)r(q−r)φ
for any φ ∈ Ωr

B(F). Let ν be the transversal volume form; that is, ∗ν = χF
as long as M is oriented. Then the pointwise inner product 〈·, ·〉 on ΛrQ∗ is
defined by 〈φ, ψ〉ν = φ ∧ ∗̄ψ. The global inner product on L2Ωr

B(F) is

≪ φ, ψ ≫=

∫

M

〈φ, ψ〉µM =

∫

M

φ ∧ ∗̄ψ ∧ χF ,

where µM = ν ∧ χF is the volume form with respect to gM .
In what follows, let κB = Pκ. Also, let

dB = d|Ω∗

B
(F), dT = dB − ǫ(κB), (4)

where ǫ(α)ψ = α ∧ ψ for any α ∈ Ω1
B(F). The interior product vy of v ∈ Q ∼=

TF⊥ on differential forms satisfies

vy = ǫ
(

v♭
)∗
,

where ∗ denotes the pointwise adjoint.

Proposition 2.2. (In [2], [34] for the compact case; [24, Prop. 2.1]) Let
(M, gQ,F) be a Riemannian foliation with compact leaf closures and bundle-
like metric. The formal adjoint operators δB and δT of dB and dT with respect
to ≪ ·, · ≫ on basic forms are given by

δBφ = (−1)q(r+1)+1∗̄dT ∗̄φ =
(

δT + κ♯By
)

φ, δTφ = (−1)q(r+1)+1∗̄dB ∗̄φ,

on basic r-forms φ.

Lemma 2.3. The transversal divergence satisfies

δT = −

q
∑

a=1

(Eay)∇Ea
,

where the sum is over a local orthonormal frame {Ea} of Q.

Proof. It follows from the fact that δT is locally the pullback of the ordinary
divergence on the local quotients of foliation charts.
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Proposition 2.4. (Proved in [2] for the closed manifold case) Let (M, gQ,F)
be a Riemannian foliation with compact leaf closures and bundle-like metric.
The form dκB = 0, and κB determines a class in H1

B (F) that is independent
of the choice of gM or of gQ.

Proof. The proof in [2] is primarily a calculation confined to a neighborhood
of a leaf closure, so that it applies in this slightly more general case. For the
sake of exposition, we show the proof that κB is closed: We have

δB = δT + κ♯By

where δT is the divergence on the local quotient manifolds in the foliation
charts. In particular, δT only depends on gQ. Thus,

δ2T = 0,

and also
d2B = 0.

Taking adjoints with respect to basic forms, from the three equations above we
have

dT = δ∗T = dB − ǫ (κB)

d2T = 0, (δB)
2 = 0.

Then

dT (1) = (dB − ǫ(κB)) (1)

= −κB

and

dBκB = (dT + ǫ(κB))κB

= dTκB

= dT (−dT 1) = 0.

Proposition 2.5. ([10])Let (M, gQ,F) be a Riemannian foliation on a closed
manifold. Then there exists a bundle-like metric compatible with gQ such that
κ is a basic form; that is, κ = κB.

Proposition 2.6. ([29] and [30]) Let (M, gQ,F) be a Riemannian foliation
on a closed manifold. Then there exists a bundle-like metric compatible with
gQ such that κ is basic harmonic; that is, κ = κB and δBκ = 0.

Corollary 2.7. Let (M, gQ,F) be a Riemannian foliation on a closed man-
ifold, and let α be any element of the class [κB] ∈ H1

B (F) . Then there exists
a bundle-like metric compatible with gQ such that κ = α. The representative
α corresponding to a bundle-like metric such that α = κ is basic harmonic is
uniquely determined. For that metric, κ is the element of [κB] of minimum
L2-norm.
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Proof. Given any bundle-like metric with basic mean curvature κ as in Propo-
sition 2.5, any element of [κ] = [κB] is of the form κ+df for some basic function
f . If p = dimF , multiplying the leafwise metric by e−(2/p)f yields a new char-
acteristic form χ′

F = e−fχF so that the new mean curvature form from (3)
satisfies

−κ′ ∧ χ′
F + ϕ′

0 = d (χ′
F)

= −df ∧ χ′
F + e−fdχF

= − (κ+ df) ∧ χ′
F + ϕ′

0.

The second part comes from the proof in [29], where the volume form ν ∧ χ′
F

is uniquely determined (up to rescaling, which does not change κ). The third
part comes from the fact that if δBκ = dκ = 0,

≪ κ+ df, κ+ df ≫ = ≪ κ, κ≫ +2 ≪ df, κ≫ + ≪ df, df ≫

= ≪ κ, κ≫ +2 ≪ f, δBκ≫ + ≪ df, df ≫

= ≪ κ, κ≫ + ≪ df, df ≫ .

The basic Laplacian ∆B is the operator on basic forms defined as

∆B = δBdB + dBδB.

We define the operator ∆T on basic forms as the corresponding Laplacian on
the local quotient manifolds. Specifically,

∆T = δTdB + dBδT .

The operator ∆T is not essentially self-adjoint on the space of basic forms, but
the operator ∆B is.

Lemma 2.8. The basic Laplacian is the restriction of the operator

∆B = ∆T + Lκ#

B

.

Proof. From Proposition 2.2,

∆B =
(

δT + κ#By
)

dB + dB

(

δT + κ#By
)

= ∆T +
(

κ#By
)

dB + dB

(

κ#By
)

.

The result follows from Cartan’s formula for the Lie derivative.
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3 Properties of the mean curvature for transverse Hermitian

foliations

We now suppose that (M,F) is a foliation of codimension 2n and is endowed
with a holonomy-invariant transverse complex structure J : Q → Q and a
holonomy-invariant Hermitian metric on the complexified normal bundle; we
call such a foliation a transverse Hermitian foliation. So in particular the
foliation is Riemannian. When it is convenient, we will also refer to the bundle
map J ′ : TM → TM defined by J ′(v) = J(π(v)) and abuse notation by
denoting J = J ′. In what follows, we use notation similar to [24].
For QC = Q⊗ C, we let

Q1,0 = {Z ∈ QC |JZ = iZ}, Q0,1 = {Z ∈ QC |JZ = −iZ}.

Elements of Q1,0 and Q0,1 are called complex normal vector fields of type (1, 0)
and (0, 1), respectively. We have QC = Q1,0 ⊕Q0,1 and

Q1,0 = {X − iJX | X ∈ Q}, Q0,1 = {X + iJX | X ∈ Q}.

Let Q∗
C be the real dual of QC ; at each x ∈ M , (Q∗

C)x is set of C-linear maps
from QC

x to C. Letting ΛCQ
∗ denote ΛQ∗

C , we decompose Λ1
CQ

∗ = Q1,0⊕Q0,1,
where the sub-bundles Q1,0 and Q0,1 are given by

Q1,0 = {ξ ∈ Λ1
CQ

∗| ξ(Z) = 0, ∀Z ∈ Q0,1},

Q0,1 = {ξ ∈ Λ1
CQ

∗| ξ(Z) = 0, ∀Z ∈ Q1,0}.

Also
Q1,0 = {θ + iJθ| θ ∈ Q∗}, Q0,1 = {θ − iJθ| θ ∈ Q∗},

where (Jθ)(X) := −θ(JX) for anyX ∈ Q and is extended linearly. Let Ωr,s
B (F)

be the set of the basic forms of type (r, s), the smooth sections of Λr,s
C Q∗, which

is the subspace of ΛCQ
∗ spanned by ξ ∧ η, where ξ ∈ ΛrQ1,0 and η ∈ ΛsQ0,1.

We choose {Ea, JEa}a=1,··· ,n so that it is a local orthonormal basic frame; we
call it a J-basic frame) of Q. Let {θa, Jθa}a=1,··· ,n be the local dual frame of
Q∗. We set Va = 1√

2
(Ea − iJEa) and ω

a = 1√
2
(θa + iJθa), so that

ωa(Vb) = ω̄a(V̄b) = δab, ω
a(V̄b) = ω̄a(Vb) = 0.

The frame {Va} is a local orthonormal basic frame field of Q1,0, a normal frame
field of type (1, 0), and {ωa} is the corresponding dual coframe field.
The following 2-form ω is nondegenerate. Letting θn+a = Jθa for a = 1, ..., n,

ω = −
1

2

2n
∑

a=1

θa ∧ Jθa

= −
1

2

(

n
∑

a=1

θa ∧ Jθa +

n
∑

a=1

Jθa ∧ J2θa

)

= −
n
∑

a=1

θa ∧ Jθa.
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In the event that ω is closed, this is the Kähler form, and the foliation is
transversely Kähler.
We define ∂B|Ωr,s

B
(F) = Πr+1,s dB|Ωr,s

B
(F), where Πr,s : Ωr+s

B (F) → Ωr,s
B (F)

is the projection, and similarly ∂B
∣

∣

Ωr,s

B
(F)

= Πr,s+1 dB|Ωr,s

B
(F). Similarly, we

define ∂T and ∂̄T , using dT from (4). We now write κB = κ1,0B + κ0,1B , with

κ1,0B =
1

2
(κB + iJκB) ∈ Ω1,0

B (F), κ0,1B = κ1,0B ∈ Ω0,1
B (F).

Let H = κ#B be the basic mean curvature vector field, and let

H1,0 : =
(

κ1,0B

)∗
=
(

κ1,0B

)#

=
1

2
(κ#B − iJκ#B) ∈ Γ

(

Q1,0
)

, (5)

H0,1 : = H1,0 ∈ Γ
(

Q1,0
)

. (6)

In what follows, we extend the definitions of exterior product and interior
product linearly to complex vectors and differential forms. Observe that V y is
by definition the adjoint of ǫ

(

V ♭
)

on real vector fields, but on complex vector
fields the following holds. If v, w are real tangent vectors,

(v + iw)y = (vy) + i (wy) =
(

ǫ
(

v♭
)

− iǫ
(

w♭
))∗

=
(

ǫ
(

v♭ − iw♭
))∗

,

so that for complex vectors V ,

(V y)
∗
= ǫ

(

V
♭
)

,
(

ǫ
(

V ♭
))∗

= V y.

Now, let 〈·, ·〉 be a Hermitian inner product on Λr,s
C (F) induced by the trans-

verse Hermitian structure, and let ∗̄ : Λr,s
C (F) → Λn−s,n−r

C (F) be the star
operator defined by

φ ∧ ∗̄ψ̄ = 〈φ, ψ〉ν,

where ν is the transverse volume form. Then for any ψ ∈ Λr,s
C (F),

∗̄ψ = ∗̄ψ̄, ∗̄2ψ = (−1)r+sψ.

Then for complex vectors V it follows that

∗̄ǫ
(

V ♭
)

∗̄ = V y, ∗̄ (V y) ∗̄ = −ǫ
(

V
♭
)

.

Now, by applying the projections to Π∗,∗ to (4), we have

∂T = ∂B − ǫ(κ1,0B ), ∂̄T = ∂̄B − ǫ(κ0,1B ).

Then, since (M,F , J) is transversely holomorphic,

dB = ∂B + ∂̄B, dT = ∂T + ∂̄T .

Taking L2 adjoints with respect to basic forms of the formulas above, we have

δB = ∂∗B + ∂̄∗B, δT = ∂∗T + ∂̄∗T .
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Proposition 3.1. [24, Prop. 3.6] Let (M, gQ,F) be a transverse Hermitian
foliation with compact leaf closures and bundle-like metric. The formal adjoint
operators ∂∗B and ∂∗T of ∂B and ∂T with respect to ≪ ·, · ≫ on basic forms are
given by

∂∗Bφ = −∗̄∂T ∗̄φ =
(

∂∗T +H1,0
y
)

φ, ∂∗Tφ = −∗̄∂B ∗̄φ,

on basic r-forms φ.

Again, we note that ∂∗T is the holomorphic divergence on the local quotient
manifolds in the foliation charts, and it only depends on the transverse metric
and holomorphic structure.

Thus,

∂∗2T = 0.

Also, since ∂B is the same as the holomorphic differential on the local quotient
manifold in the foliation charts,

∂2B = 0.

Taking adjoints with respect to basic forms, from the three equations above we
have

∂T := (∂∗T )
∗ = ∂B − ǫ

(

κ1,0B

)

∂2T = 0, (∂∗B)
2
= 0.

Then

∂T (1) =
(

∂B − ǫ(κ1,0B )
)

(1) = −κ1,0B (7)

and

∂Bκ
1,0
B =

(

∂T + ǫ(κ1,0B )
)

κ1,0B = ∂Tκ
1,0
B = ∂T (−∂T 1) = 0.

It also follows that

∂Tκ
1,0
B = 0.

Similarly,

∂̄Bκ
0,1
B = ∂̄Tκ

0,1
B = 0.

Since dκB = 0, we have

0 =
(

∂B + ∂̄B
)

(

κ1,0B + κ0,1B

)

= ∂Bκ
0,1
B + ∂̄Bκ

1,0
B .

So

Re
(

∂Bκ
0,1
B

)

= 0.

We summarize these results in the following Proposition.
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Proposition 3.2. Let (M,F , J, gQ) be a foliation with a holonomy-invariant
transverse complex structure and transverse Hermitian metric. Given a bundle-
like metric for (M,F) compatible with the Hermitian metric, let κB =
κ1,0B + κ0,1B be the basic component of the mean curvature one-form, with

κ1,0B = 1
2 (κB + iJκB) ∈ Ω1,0

B , κ0,1B = κ1,0B . Then

∂Bκ
1,0
B = ∂̄Bκ

0,1
B = 0; Re

(

∂Bκ
0,1
B

)

= 0;

∂Tκ
1,0
B = ∂̄Tκ

0,1
B = 0

We do not expect that ∂Bκ
0,1
B = −∂̄Bκ

1,0
B ∈ Ω1,1

B (F) would be in general zero
for any metric. Consider Example 9.1. In the next section we will examine this
form more closely.

Theorem 3.3. Let (M,F , J, gQ) be a foliation with compact leaf closures with
a holonomy-invariant transverse complex structure and transverse Hermitian
metric. Given a bundle-like metric for (M,F) compatible with the Hermitian
metric, let κB = κ1,0B + κ0,1B be the basic component of the mean curvature

one-form, with κ1,0B ∈ Ω1,0
B , κ0,1B = κ1,0B . Then the cohomology classes of κ1,0B

and κ0,1B in H1,0
∂B

(F) and H0,1

∂̄B
(F), respectively, are invariant with respect to

the choice of bundle-like metric and transverse metric compatible with the holo-
morphic structure.

Proof. By [2] (Proposition 2.4), any change of compatible bundle-like metric
and transverse metric changes κB to κ′B = κB + df for some basic function f .

Then
(

κ1,0B

)′
= 1

2 (κB + iJκB)+
1
2 (df + iJdf). Using local coordinates, one can

show that on real-valued basic functions ∂B = Π1,0d where Π1,0 : Ω1
B (F) →

Ω1,0
B (F) is the projection α 7→ 1

2 (α+ iJα), we have
(

κ1,0B

)′
= κ1,0B + ∂Bf .

Thus
[

κ1,0B

]

∈ H1,0
∂B

(F) is independent of the choice of the metric choices. The

analogous proof for κ0,1B is similar.

Remark 3.4. As in Corollary 2.7, we can may multiply the metric along the

leaves by a conformal factor to yield any possible element
(

κ1,0B

)′
∈
[

κ1,0B

]

.

Remark 3.5. Because κ1,0B = 1
2 (κB + iJκB) and κB = κ1,0B + κ1,0B , M is taut

(i.e. κB is dB-exact) if and only if
[

κ1,0B

]

is trivial.

Proposition 3.6. Let (M,F , J, gQ) be a foliation with compact leaf closures
with a holonomy-invariant transverse complex structure and transverse Her-
mitian metric. Then there exists a bundle-like metric compatible with the
transverse Hermitian metric, such that κ1,0 and κ0,1 are basic forms; that is,
κ1,0 = κ1,0B and κ0,1 = κ0,1B .
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Proof. By [10] (Proposition 2.5), there exists a bundle-like metric that does not
change the transverse structure such that κ = κB. Now apply the projections
Π1,0 and Π0,1.

Let
�B = ∂∗B∂B + ∂B∂

∗
B, �B = ∂̄∗B ∂̄B + ∂̄B ∂̄

∗
B

On a closed manifoldM , it is clear that a basic form α satisfies �Bα = 0 if and
only if ∂Bα = 0 and ∂∗Bα = 0. Also, if α ∈ Ωr,0

B (F), automatically ∂̄∗Bα = 0,
so that ∂∗Bα = 0 implies that δBα =

(

∂∗B + ∂̄∗B
)

α = 0, where δB is the adjoint
of d restricted to basic complex-valued forms.

Lemma 3.7. Let (M,F , J, gQ) be a transverse Kähler foliation on a closed
manifold. Then for any complex-valued basic function f ,

δT dBf = 2∂∗T∂Bf = 2∂̄∗T ∂̄Bf.

In particular, the operator ∂∗T ∂B is a real operator on functions.

Proof. Since δT , ∂
∗
T and ∂̄∗T correspond to the divergences d∗, ∂∗, ∂̄∗ on the

local quotient manifold, this Lemma follows directly from the local fact that
∆d = 2∆∂ = 2∆∂̄ on Kähler manifolds.

With our string of successes of projecting using Πr,s, one would hope that
an analogue of Proposition 2.6 can be found just as easily. However, as the
following remark shows, we are not so lucky.

Remark 3.8. Let (M,F , J, gQ) be a foliation on a closed manifold with a
holonomy-invariant transverse complex structure and transverse Hermitian
metric. By Proposition 2.6, choose gM to be a bundle-like metric on M com-
patible with the transverse Hermitian structure and chosen so that the mean
curvature κ is basic harmonic — that is, so that κ = κB, δBκ = 0. Then
observe that

0 = δBκ

=
(

∂∗B + ∂̄∗B
) (

κ1,0 + κ0,1
)

= ∂∗Bκ
1,0 + ∂∗Bκ

1,0 = 2Re
(

∂∗Bκ
1,0
)

.

Hence, Proposition 2.6 gives us no control over the imaginary part of ∂∗Bκ
1,0.

On the other hand, suppose we are able to find a bundle-like metric gM such
that

∂∗Bκ
1,0 = 0.

Then by the calculation above, 0 = δBκ, so in fact κ is basic harmonic. How-
ever, by Corollary 2.7, the leafwise volume form χF is determined up to a
constant scale factor, so the form κ is uniquely determined.

From the discussion in the remark above we at least have the following.
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Proposition 3.9. Let (M,F , J, gQ) be a foliation on a closed manifold with
a holonomy-invariant transverse complex structure and transverse Hermitian
metric. Suppose that there exists a bundle-like metric compatible with the trans-
verse structure such that ∂∗Bκ

1,0 = 0. Then the mean curvature κ is basic
harmonic, and κ is the unique element of [κ] ∈ H1

B (F) with this property.

If (M,F , J, gQ) is transversely Kähler, then the situation of the previous propo-
sition always occurs.

Proposition 3.10. Let (M,F , J, gQ) be a transverse Kähler foliation on a
closed manifold. Then there exists a bundle-like metric compatible with the
Kähler structure such that κ is basic harmonic; that is, κ = κB and δBκ = 0.
For that same metric,

∂∗Bκ
1,0 = δBκ

1,0 = 0,

so that also

�Bκ
1,0 = 0, ∂̄∗Bκ

0,1 = δBκ
0,1 = 0, �Bκ

0,1 = 0.

Proof. Let the bundle-like metric be chosen as in Proposition 2.6, so that κ =
κB and δBκ = 0. Since the foliation is transversely Kähler, ∂∗T∂B on functions
is a real operator, as is its adjoint ∂∗B∂T , by Lemma 3.7. But then

∂∗B∂T (1) = −∂∗Bκ
1,0
B

is a real-valued function, so that

∂∗Bκ
1,0
B =

1

2

(

∂∗Bκ
1,0
B + ∂∗Bκ

1,0
B

)

=
1

2

(

∂∗Bκ
1,0
B + ∂̄∗Bκ

0,1
B

)

=
1

2

(

δBκ
1,0
B + δBκ

0,1
B

)

=
1

2
δBκB = 0.

Remark 3.11. After examining the proof in [29] (Proposition 2.6), it does
not appear that Proposition 3.10 is true in the more general transverse Hermi-
tian foliation case. Finding such a metric is tantamount to finding a smooth,
positive basic function ψ such that

∂∗B∂Tψ = 0.

From the original proof, there is a ψ that is unique up to a multiplicative con-
stant such that

Re (∂∗B∂Tψ) = 0.

However, it seems unlikely that the imaginary part would also vanish for this
ψ.
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For future use, we recall the Hodge theorem for basic Dolbeault cohomology.

Theorem 3.12. (Proved in [11, Théorème 3.3.3] for general tranversely Her-
mitian foliations on a compact manifold, stated in general in [24, Theorem
3.21]) Let (M,F , J, gQ) be a transverse Kähler foliation on a compact Rieman-
nian manifold with bundle-like metric gM . Then

Ωr,s
B (F) ∼= Hr,s

B ⊕ Im∂̄B ⊕ Im∂̄∗B,

where Hr,s
B = Ker�B is finite dimensional. Moreover, Hr,s

B
∼= Hr,s

B .

4 Another class in basic Dolbeault cohomology

Let (M,F , J, gQ) be a foliation with compact leaf closures with a holonomy-
invariant transverse complex structure and transverse Hermitian metric. By
Theorem 3.3, the cohomology classes of κ1,0B and κ0,1B in H1,0

∂B
(F) and H0,1

∂̄B
(F),

respectively, are invariant with respect to the choice of compatible bundle-like
metric. Observe that we may obtain an additional invariant basic Dolbeault
cohomology class from the transverse holomorphic structure. Note that for any

transversely holomorphic foliation, ∂B ∂̄B = −∂̄B∂B, and
(

∂B ∂̄B
)2

= 0, so that

Ω0,0 (F)
∂B ∂̄B→ Ω1,1 (F)

∂B ∂̄B→ Ω2,2 (F)
∂B ∂̄B→ ...

∂B ∂̄B→ Ωn,n (F)

forms a differential complex, and so that the cohomology Hj,j

∂B ∂̄B
(F) is well-

defined.
Also, observe that, with ∗ denoting the adjoint with respect to basic forms,

∆∂B ∂̄B
:=
(

∂B ∂̄B
)∗
∂B ∂̄B + ∂B ∂̄B

(

∂B ∂̄B
)∗
.

Also, for ϕ ∈ Ωj,j
B (F), ∆∂B ∂̄B

ϕ = 0 if and only if

∂B ∂̄Bϕ = 0 and ∂∗B ∂̄
∗
Bϕ = 0.

We get the resulting Hodge theorem, since ∆∂B ∂̄B
is strongly elliptic on basic

forms on a Riemannian foliation.

Proposition 4.1. Let (M,F , J, gQ) be a transverse Hermitian foliation on a
compact Riemannian manifold with bundle-like metric gM . Then

Ωr,r
B (F) ∼= Hr,r

∂B ∂̄B
⊕ Im∂B ∂̄B ⊕ Im∂∗B ∂̄

∗
B,

where Hr,r

∂B ∂̄B
= ker

(

∆∂B ∂̄B

∣

∣

Ωr,r(F)

)

∼= Hr,r

∂B ∂̄B
(F) is finite dimensional.

Remark 4.2. The ∆∂B ∂̄B
-harmonic form representatives in the classes in

Hr,r

∂B ∂̄B
(F) are precisely those with minimum L2-norm. The usual proof works:

if α is one such ∆∂B ∂̄B
-harmonic (r, r)-form and β ∈ Ωr−1,r−1

B (F), then

≪ α+ ∂B ∂̄Bβ, α+ ∂B ∂̄Bβ ≫

= ≪ α, α ≫ +2Re ≪ ∂B ∂̄Bβ, α ≫ + ≪ ∂B ∂̄Bβ, ∂B ∂̄Bβ ≫

= ≪ α, α ≫ +2Re ≪ β,
(

∂B ∂̄B
)∗
α ≫ + ≪ ∂B ∂̄Bβ, ∂B ∂̄Bβ ≫

= ≪ α, α ≫ + ≪ ∂B ∂̄Bβ, ∂B ∂̄Bβ ≫≥≪ α, α ≫ .
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Theorem 4.3. Let (M,F , J, gQ) be a foliation with compact leaf closures with
a holonomy-invariant transverse complex structure and transverse Hermitian
metric. For a given compatible bundle-like metric, let κ1,0B and κ0,1B be the
corresponding basic components of the mean curvature 1-form κ. Then the form
∂Bκ

0,1
B is ∂B ∂̄B-closed, and its cohomology class in H1,1

∂B ∂̄B
(F) is invariant of

the choice of transverse metric and bundle-like metric. A similar result is true

for
[

∂̄Bκ
1,0
B

]

= −
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄B
(F).

Proof. Since 0 = d2B =
(

∂B + ∂̄B
)2
, ∂̄B

(

∂Bκ
0,1
B

)

= −∂B

(

∂̄Bκ
0,1
B

)

= 0, so

∂Bκ
0,1
B is ∂̄B-closed and thus ∂B ∂̄B-closed. By 3.3, any other choice of compat-

ible transverse metric and bundle-like metric yields
(

κ0,1B

)′
= κ0,1B + ∂̄Bf for

some complex-valued function f . Then

∂B

(

κ0,1B

)′
= ∂Bκ

0,1
B + ∂B ∂̄Bf

= ∂Bκ
0,1
B + ∂̄B∂B (−f) .

Applying conjugation, we get a similar result for ∂̄Bκ
1,0
B .

Remark 4.4. The reader may wonder why the class of ∂Bκ
0,1
B in H1,1

∂̄B
(F)

is not considered, as the same proof shows that this class is an invariant of
the choice of transverse metric and bundle-like metric. However, this class is
always zero, because ∂Bκ

0,1
B = −∂̄Bκ

1,0
B is always ∂-exact. However, ∂Bκ

0,1
B is

not always ∂B ∂̄B-exact. See Example 9.2 for a nontaut Riemannian foliation
with two different transverse holomorphic structures, and in one case ∂Bκ

0,1
B is

not ∂B ∂̄B-exact and in the other case ∂Bκ
0,1
B is ∂B ∂̄B-exact, and in both cases

κB is not dB-exact.

Remark 4.5. By Proposition 3.2, ∂Bκ
0,1
B and ∂̄Bκ

1,0
B are pure imaginary forms.

Remark 4.6. If (M,F) as above is a taut foliation, i.e. κB is d-exact, then

the class
[

∂Bκ
0,1
B

]

is trivial because κ0,1B is ∂̄B-exact. However, the converse is

false; see Example 9.2.

Remark 4.7. It is clear from the proof of Theorem 4.3 that we may modify the
metric along the leaves of the foliation so that any purely imaginary element

of the class
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄B
(F) may be realized, since by multiplying the

leafwise metric by a conformal factor results in an arbitrary real-valued f such

that ∂B

(

κ0,1B

)′
= ∂Bκ

0,1
B +∂B∂̄Bf . That is, if for some complex-valued function

h, ∂B

(

κ0,1B

)′
= ∂Bκ

0,1
B + ∂B ∂̄Bh, then since ∂B

(

κ0,1B

)′
and ∂Bκ

0,1
B are pure

imaginary, we have

∂B ∂̄Bh = −∂B ∂̄Bh = −∂̄B∂Bh = ∂B ∂̄Bh = ∂B ∂̄B (Re (h)) ,

so that h may always be taken to be real.
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Proposition 4.8. Let (M,F , J, gQ) be a nontaut foliation with basic harmonic
mean curvature κB on a compact manifold with a holonomy-invariant trans-
verse complex structure and transverse Hermitian metric. Then ∂Bκ

0,1
B = 0

if and only if d (JκB) = 0. If ∂Bκ
0,1
B = 0, then [κB] and [JκB] provide two

linearly independent basic cohomology classes, so that dimH1
b (F) ≥ 2.

Proof. The condition ∂Bκ
0,1
B = 0 is equivalent to

0 = dκ0,1B =
1

2
(dκB − idJκB) ,

which is equivalent to d (JκB) = 0. Next, suppose that JκB 6= κB are in the
same cohomology class, so that JκB −κB = df for some nonzero exact 1-form.
Observe that ≪ κB, JκB ≫ is necessarily zero since J is an isometry, and also
≪ κB, df ≫= 0 since κB is basic harmonic. But then κB is orthogonal to
itself because κB = JκB − df , which is possible only if κB = 0. The conclusion
follows.

We will see that the differential form ∂Bκ
0,1
B has particular significance for

Kähler foliations.

Lemma 4.9. Let (M,F , J, gQ) be a foliation with compact leaf closures, a
holonomy-invariant transverse complex structure and transverse Hermitian
metric. Let V ∈ ΓB

(

Q1,0
)

, so that V ♭ ∈ Ω0,1
B (F). Then the following are

equivalent.

1. ∂BV
♭ = 0.

2. ∂B ◦V y+V y◦∂B = ∇V as an operator on locally defined basic differential
forms.

3. ∇ZV = 0 for all Z ∈ Γ
(

Q1,0
)

.

4. Conjugates of the above statements.

Proof. We assume that at the point we are evaluating the operators, the local
bases {Va} and {ωa} are chosen so that all covariant derivatives vanish (we can
do that because these are locally basic sections of Q and Q∗). Statement (1)
is equivalent to

∑

ωa ∧ ∇Va
V ♭ = 0.

Since ∇Va
V ♭ is type (0, 1), this is equivalent to ∇Va

V ♭ = 0 for all a, which is
equivalent to ∇ZV

♭ = 0 for all Z ∈ Q1,0, i.e. statement (3). Next, assume (3):
Then ∇Va

V = 0 (1 ≤ a ≤ n). Then for any φ ∈ Ωr,s
B (F),

∂B (V yφ) =
∑

a

ωa ∧ (∇Va
V )yφ+

∑

a

ωa ∧ V y∇Va
φ

= −V y ∂̄Bφ+∇V φ,
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since ωa∧ (V y) + V y (ωa∧) = 〈V, Va〉. Next, consider (2). If V satisfies (2),
then V =

∑

fbVb for some basic functions fb. Then for all b,

∂BV yωb + V y ∂Bω
b = ∂Bfb −

∑

a

fbω
a ∧ (Vby)∇Va

ωb + fb∇Vb
ωb = ∂Bfb

=
∑

a

(Vafb)ω
a = 0,

So at the point in question, (2) implies that Vafb = 0 for all a, b at that point.
On the other hand, (3) is equivalent to

∇Va
V =

∑

(Vafb)Vb +
∑

fb∇Va
Vb

=
∑

(Vafb)Vb = 0

for all a if and only if Vafb for all a, b as well.

Proposition 4.10. Let (M,F , J, gQ) be a foliation with compact leaf closures
with a holonomy-invariant transverse complex structure and transverse Hermi-
tian metric. Then

�B = ∆Q
∂ + ∂B ◦H1,0

y+H1,0
y ◦ ∂B,

where ∆Q
∂ = ∂∗T∂B + ∂B∂

∗
T is the ∂-Laplacian on differential forms on the local

quotients of foliation charts. Similarly,

�B = ∆Q

∂̄
+ ∂̄B ◦H0,1

y+H0,1
y ◦ ∂̄B

Proof. From Proposition 3.1,

�B =
(

∂∗T +H1,0
y
)

∂B + ∂B
(

∂∗T +H1,0
y
)

.

Corollary 4.11. Let (M,F , J, gQ) be a foliation with compact leaf closures
with a holonomy-invariant transverse complex structure, transverse Hermitian
metric, and compatible bundle-like metric. Then the following are equivalent:

1. �B = ∆Q
∂ +∇H1,0 as operators on locally defined basic differential forms.

2. �B = ∆Q

∂̄
+∇H0,1 as operators on locally defined basic differential forms.

3. ∂Bκ
0,1
B = 0.

Proof. Apply Lemma 4.9 to V = H1,0, V ♭ = κ0,1B and Proposition 4.10.

Remark 4.12. The condition ∂Bκ
0,1
B = 0 is equivalent to the condition that if

we write
H1,0 =

∑

j

H1,0
j (z)∂zj

in local transverse coordinates, then the functions H1,0
j (z) are antiholomorphic.
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Theorem 4.13. Let (M,F , J, gQ) be a transverse Kähler foliation with com-

patible bundle-like metric. If the class
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄B
(F) is trivial, there

exists a bundle-like metric such that as operators on basic differential forms,

�B = �B − i∇JH .

Proof. If (M,F , J, gQ) is a transverse Kähler foliation with compatible bundle-

like metric so that ∆Q

∂̄
= ∆Q

∂ , the class
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄B
(F) is trivial if and

only if there exists a compatible bundle-like metric such that ∂Bκ
0,1
B = 0. By

Corollary 4.11, ∂Bκ
0,1
B = 0 implies that on basic forms,

�B = ∆Q
∂ +∇H1,0

= ∆Q

∂̄
+∇H1,0

= ∆Q

∂̄
+∇H0,1 +∇H1,0−H0,1

= �B +∇−iJH .

Corollary 4.14. Let (M,F , J, gQ) be a transverse Kähler foliation with com-

patible bundle-like metric. Suppose that the ∂Bκ
0,1
B = 0. Then

ker
(

�B

∣

∣

Ωr,s

B

)

∩ ker
(

�B|Ωr,s

B

)

= ker
(

�B

∣

∣

Ωr,s

B

)

∩ ker
(

∇JH |Ωr,s

B

)

= ker
(

�B|Ωr,s

B

)

∩ ker
(

∇JH |Ωr,s

B

)

.

Proof. This follows directly from Theorem 4.13.

Note that the hypothesis on ∂Bκ
0,1
B is needed, as Example 9.1 shows.

5 Lefschetz decompositions

We begin with some notation. Let (M,F , J, gQ) be a transverse Kähler foliation
with compatible bundle-like metric, with associated Kähler form ω. Let L :
Ωr

B(F) → Ωr+2
B (F) and Λ : Ωr

B(F) → Ωr−2
B (F) be given by

L(φ) = ω ∧ φ, Λ(φ) = ωyφ,

respectively, where (β1 ∧ β2)y = β♯
2yβ

♯
1y for any basic 1-forms βi(i = 1, 2). It

follows that 〈Lφ, ψ〉 = 〈φ,Λψ〉 and Λ = (−1)j ∗̄L∗̄ on basic j-forms. ForX ∈ Q,
from [19] we have

[L,Xy] = ǫ(JXb), [Λ, ǫ(Xb)] = −(JX)y, (8)

[L, ǫ(Xb)] = [Λ, Xy] = 0.
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The formulas above extend is exactly the same way to complex vectors X . We
extend the complex structure J to Ωr

B(F) by the formula

Jφ =

2n
∑

a=1

Jθa ∧ Eayφ.

This formula is consistent with (Jθ)(X) = −θ(JX) for one-forms θ, and for

instance (Jv)♭ = Jv♭ for vectors v. The operator J : Ωr,s
B (F) → Ωr,s

B (F)
is skew-Hermitian: 〈Jφ, ψ〉 + 〈φ, Jψ〉 = 0, and Jφ = i (s− r)φ for any φ ∈
Ωr,s

B (F). This is not the same as the operator C induced from the pullback J∗

used often in Kähler geometry.
We quote some known results as follows.

Proposition 5.1. [19, Proposition 3.3] If (M,F , J, gQ) is a transverse Kähler
foliation on a compact Riemannian manifold with bundle-like metric gM ,

[L, J ] = [Λ, J ] = [L, dB] = [Λ, δB] = 0.

Corollary 5.2. [19, Proposition 3.4]With the same hypothesis,

[L, ∂B] = [L, ∂̄B] = [Λ, ∂∗B] = [Λ, ∂̄∗B] = 0, (9)

[L, ∂∗B] = −i∂̄T , [L, ∂̄∗B] = i∂T , [Λ, ∂B] = −i∂̄∗T , [Λ, ∂̄B] = i∂∗T . (10)

Remark 5.3. All equations above in Proposition 5.1 and Corollary 5.2 continue
to hold if we exchange the operators (·)B and (·)T . These results were shown
in [11, Lemma 3.4.4] in the minimal foliation case, when (·)B = (·)T .

Proposition 5.4. If (M,F , J, gQ) is a transverse Kähler foliation on a com-
pact Riemannian manifold with bundle-like metric gM , we have

[

�B, L
]

= i ǫ
(

∂̄Bκ
1,0
B

)

as operators on basic forms. Similarly,

[�B, L] = i ǫ
(

∂̄Bκ
1,0
B

)

.

Proof. By the corollary above, we have

�BL = ∂̄∗B ∂̄BL+ ∂̄B ∂̄
∗
BL

= ∂̄∗BL∂̄B + ∂̄BL∂̄
∗
B − i∂̄B ∂̄T

= L∂̄∗B ∂̄B + L∂̄B ∂̄
∗
B − i∂̄B∂T − i∂T ∂̄B

= L�B − i
(

∂̄B∂B + ∂B ∂̄B − ∂̄Bǫ
(

κ1,0B

)

− ǫ
(

κ1,0B

)

∂̄B

)

= L�B + iǫ
(

∂̄Bκ
1,0
B

)

.

The second part follows from noticing that ∂̄Bκ
1,0
B is pure imaginary and from

taking conjugates.
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Lemma 5.5. We have the following identities.

1. [Λ, L] =
∑

(n− r)Pr as an operator on basic forms, where Pr :
Ω∗

B (F) → Ωr
B (F) is the projection.

2. [
∑

(n− r)Pr,Λ] = 2Λ.

3. [
∑

(n− r)Pr, L] = −2L.

Proof. If α ∈ Ωr
B (F),

[Λ, L]α =

n
∑

a,b=1

JEbyEbyθ
a ∧ Jθa ∧ α− θa ∧ Jθa ∧ JEbyEbyα·

It is easy to see that for a simple r form α = θi1 ∧ ... ∧ θir1 ∧ Jθj1 ∧ ...∧ Jθjr2 ,
the term ωyω∧ will contribute τ1, the number of a such that Eayα = 0 and
JEayα = 0, and the second term ω ∧ ωy will contribute −τ2, the number of
b such that JEbyEbyα 6= 0. All other contributions cancel between the two
terms. Then by counting we see that n = r1 + r2 + τ1 − τ2 = r + (τ1 − τ2).
Equation (1) follows.
On the other hand, since Λα ∈ Ωr−2

B (F) for α ∈ Ωr
B (F), we have by (1)

[[Λ, L] ,Λ]α = [Λ, L] Λα− Λ [Λ, L]α

= (n− r + 2)Λα− (n− r) Λα = 2Λα,

proving (2). Taking adjoints, we obtain (3).

Letting X =

(

0 1
0 0

)

, Y =

(

0 0
1 0

)

, A =

(

1 0
0 −1

)

be the generators

of sl2 (C), we note that the relations are

[X,Y ] = A, [A,X ] = 2X, [A, Y ] = −2Y.

Lemma 5.6. The maps X 7→ L, Y 7→ Λ, A 7→
∑

(n− r)Pr induces an sl2 (C)
representation on the fibers of Ω∗

B (F).

Proof. The relations are easily checked using the Lemma above.

In what follows, we call an element ξ ∈ Λ∗Q∗ primitive if

Λξ = 0.

Corollary 5.7. Each fiber of the bundle Λ∗Q∗ decompose into irreducible
representations of sl2 (C), Λ∗Q∗ =

⊕

0≤k≤n Vk, where each Vk of dimension
k + 1 has the form

Vk = Cα+ CLα+ ...+ CLkα,

where α ∈ (kerΛ) ∩ Λn−kQ∗ is primitive, Lrα ∈ (Q∗)
n−k+2r

for 0 ≤ r ≤ k.
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Proof. Direct application of the sl2 (C) representation theory.

By the Kähler conditions that ∇J = 0 and dω = 0, the tensor field Λ is parallel
and has constant rank on Ωr

B (F). Hence its kernel kerΛ ⊆ Ωr
B (F) is a parallel

subbundle of Ωr
B (F). We let

Ωr
B,P (F) = ΓB (kerΛ ∩ ΛrQ∗) ⊆ Ωr

B (F) .

denote the space of primitive basic forms.

Proposition 5.8. Let (M,F , J, gQ) be a transverse Kähler foliation of codi-
mension 2n on a compact Riemannian manifold with bundle-like metric gM .
We have the following.

1. Ωr
B,P (F) = 0 if r > n.

2. If α ∈ Ωr
B,P (F), then Ljα 6= 0 for 0 ≤ j ≤ n − r and Lkα = 0 for

k > n− r.

3. The map Lk : Ωr
B (F) → Ωr+2k

B (F) is injective for 0 ≤ k ≤ n− r.

4. The map Lk : Ωr
B (F) → Ωr+2k

B (F) is surjective for k = n− r.

5. Ωr
B (F) =

⊕

k≥0 L
kΩr−2k

B,P (F).

Proof. We apply the Lemma and Corollary above to get (1) and (2) imme-
diately. Statement (3) follows from (2). For (4), note that pointwise the
transverse Hodge star ∗ is an isomorphism from Ωr

B (F) → Ω2n−r
B (F), so the

bundles have the same rank. Thus Ln−r is a vector bundle isomorphism from
Ωr

B (F) → Ω2n−r
B (F), so for all β ∈ Ω2n−r

B (F), (Ln−r)
−1
β ∈ Ωr

B (F) gets
mapped to β, so Lk is surjective for k = n− r.
Statement (5) follows from the fact that every sl2 (C) representation is a direct
sum of irreducible representations.

Lemma 5.9. Let (M,F , J, gQ) be a transverse Kähler foliation with compact
leaf closures and a compatible bundle-like metric. Then

∆B = �B +�B + ∂BH
0,1

y+H0,1
y ∂B + ∂̄BH

1,0
y+H1,0

y ∂̄B.

Proof. Since d2B = d2T = 0, ∂2B = ∂̄2B = ∂B ∂̄B + ∂̄B∂B = 0 and ∂2T = ∂̄2T =
∂T ∂̄T + ∂̄T ∂T = 0. By direct calculation, we have

∆B = �B +�B + (∂̄B∂
∗
B + ∂∗B ∂̄B) + (∂B ∂̄

∗
B + ∂̄∗B∂B)

= �B +�B + (∂̄B
(

∂∗T +H1,0
y
)

+
(

∂∗T +H1,0
y
)

∂̄B)

+(∂B
(

∂̄∗T +H0,1
y
)

+
(

∂̄∗T +H0,1
y
)

∂B)

= �B +�B + ∂̄∗T∂B + ∂B ∂̄
∗
T + ∂∗T ∂̄B + ∂̄B∂

∗
T

+∂̄BH
1,0

y +H1,0
y∂̄B + ∂BH

0,1
y+H0,1

y∂B
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Observe that the term ∂̄∗T ∂B + ∂B ∂̄
∗
T is just the term ∂̄∗∂ + ∂∂̄∗ on the local

quotient manifolds of the foliation charts, and also ∂∗T ∂̄B + ∂̄B∂
∗
T is ∂∗∂̄+ ∂̄∂∗.

The sum of these two terms is the same as ∆ − � − � on the foliation chart
quotients, which is zero since (M,F , J, gQ) is transversely Kähler.

Let Hj
B (F) = ker

(

∆j
B

)

:= ker
(

∆B|Ωj

B
(F)

)

.

Corollary 5.10. Let (M,F , J, gQ) be a transverse Kähler foliation of codi-
mension 2n on a compact manifold. Then for 0 ≤ j ≤ 2n, r, s ≥ 0 such that
r + s = j,

dim
(

Hj
B (F) ∩ Ωr,s

B (F)
)

≤ dimHr,s
B (F) .

Proof. From the Lemma above, for any (r, s)-form φ, we have ∆Bφ ∩ Ωr,s
B =

(

�Bφ+�Bφ
)

, so

≪ ∆Bφ, φ≫=≪ �Bφ, φ≫ + ≪ �Bφ, φ≫ .

Since ∆B , �B, �B are nonnegative operators, if φ ∈ Hj
B (F) ∩ Ωr,s

B (F), then
�Bφ = 0. The result follows from the Hodge theorem.

Theorem 5.11. (Hard Lefschetz Theorem. Proved in [11, Théoréme
3.4.6] for the case of minimal transverse Kähler foliations) Let (M,F , J, gQ) be
a transverse Kähler foliation of codimension 2n on a compact Riemannian man-

ifold with bundle-like metric gM . Suppose that the class
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄B
(F)

is trivial. Then the Hard Lefschetz Theorem holds for basic Dolbeault cohomol-
ogy. That is, the map

Lk : Hr
B (F) → Hr+2k

B (F)

is injective for 0 ≤ k ≤ n− r and surjective for k ≥ n− r, k ≥ 0. Furthermore,

Hr
B (F) =

⊕

k≥0

LkHr−2k
B,P (F) , (11)

Hr,s
B (F) =

⊕

k≥0

LkHr−k,s−k
B,P (F) . (12)

Proof. If
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄B
(F) is trivial, we first modify the leafwise metric

as in Remark 4.7 without changing the transverse Kähler structure, so that
∂Bκ

0,1
B = 0. By Proposition 5.4, in the new metric,

[

L,�B +�B

]

= 0, so that
by Lemma 5.9, we have

[L,∆B] =
[

L, ∂BH
0,1

y
]

+
[

L,H0,1
y ∂B

]

+
[

L, ∂̄BH
1,0

y
]

+
[

L,H1,0
y ∂̄B

]

= ∂B
[

L,H0,1
y
]

+
[

L,H0,1
y
]

∂B + ∂̄B
[

L,H1,0
y
]

+
[

L,H1,0
y
]

∂̄B

= −i
{

∂Bǫ
(

κ1,0B

)

+ ǫ
(

κ1,0B

)

∂B

}

+ i
{

∂Bǫ
(

κ0,1B

)

+ ǫ
(

κ0,1B

)

∂B

}

,

= −iǫ
(

∂Bκ
1,0
B

)

+ iǫ
(

∂Bκ
0,1
B

)

= 0,
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using (9), (8), and the fact that

(

JH0,1
)♭

= −iκ1,0B ,
(

JH1,0
)♭

= iκ0,1B ,

which follows from (5). The first statement, (11), and (12) follow from this
calculation, the fact that

[

L,�B

]

= [L,�B] = 0, and Proposition 5.8.

Corollary 5.12. Let (M,F , J, gQ) be a transverse Kähler foliation of codi-
mension 2n on a compact Riemannian manifold with bundle-like metric gM .
Then the following are equivalent:

1. The class [κB] ∈ H1
B (F) is trivial; that is, (M,F) is taut.

2. The class
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄B
(F) is trivial.

3. The Hard Lefschetz Theorem holds for basic Dolbeault cohomology.

Proof. (1) clearly implies (2), and (2) implies (3) by Theorem 5.11. Suppose
that (3) holds. Then Ln : H0

B (F) → H2n
B (F) is an isomorphism. If (M,F) is

not taut, H0
B (F) is nonzero and H2n

B (F) = {0}, a contradiction. Thus, (M,F)
must be taut, so (1) holds.

Remark 5.13. On nonKähler transverse Hermitian foliations, it is quite pos-

sible for (M,F) to be nontaut and for
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄B
(F) to be trivial, even

zero. See the Examples section.

Remark 5.14. The corollary implies that tautness for transverse Kähler fo-

liations is characterized by the weaker condition that
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄B
(F)

is trivial. Also, it tell us that if the class is nontrivial for a nontaut trans-
verse Hermitian foliation, that foliation does not admit a transverse Kähler
structure. Thus, the Hard Lefschetz Theorem in [11] cannot be generalized to
nontaut transverse Kähler foliations.

Remark 5.15. Since ∂Bκ
0,1
B is ∂B-exact and ∂B-closed and d-closed, the class

[

∂Bκ
0,1
B

]

measures the failure of the classical ∂∂-lemma (or ddc-Lemma) to

hold in the case of transverse Kähler foliations, specificially applied to the mean
curvature form. Thus, in general we do not expect the basic cohomology to be
formal or to satisfy the typical properties of that of ordinary Kähler manifolds.
In Section 7, we find sufficient conditions for the transverse ddc-Lemma to
hold.

6 Case of automorphic mean curvature

The set of foliate vector fields is

V (F) = {Y ∈ Γ (TM) : [X,Y ] ∈ Γ (TF) for all X ∈ Γ (TF)} ,

Documenta Mathematica 24 (2019) 995–1031



Mean Curvature of Kähler Foliations 1019

and it consists of the set of vector fields whose flows preserve F . For any
X ∈ V (F), π (X) is a basic section of Q, meaning that ∇vπ (X) = 0 for every v
in TF . We say that a vector field Y ∈ V (F) is transversely automorphic

if LY J = 0, so that [Y, Jπ (X)] = Jπ [Y,X ] for allX ∈ V (F). Such vector fields
are infinitesimal automorphisms of the foliation that preserve the transverse
complex structure. Sometimes we also refer to the image π (Y ) ∈ Γ (Q) as
being transversely automorphic, because the property only depends on the
properties of π (Y ).
For a complex basic normal vector field Z ∈ ΓBQ

1,0, we say Z is transversely
holomorphic if ∇V̄ Z = 0 for V̄ ∈ Q0,1. This is equivalent to Z being a basic
vector field that can be expressed as a holomorphic vector field in the transverse
variables of the local foliation charts. The following results have been previously
proved.

Lemma 6.1. [24, Proposition 3.3]Let (M,F , J, gQ) be a transverse Kähler fo-
liation with compatible bundle-like metric. The field X ∈ V (F) is transversely
automorphic if and only if ∇JY π (X) = J∇Y π (X) for all Y ∈ V (F).

Lemma 6.2. [24, Proposition 3.3]Let (M,F , J, gQ) be a transverse Kähler folia-
tion with compatible bundle-like metric. The field X ∈ V (F) is transversely au-
tomorphic if and only if the complex normal vector field Z = π(X)− iJπ(X) ∈
ΓBQ

1,0 is transversely holomorphic. A complex basic normal vector field
W ∈ ΓBQ

1,0 is transversely holomorphic if and only if the field W +W ∈ ΓBQ
is transversely automorphic.

As in the last section, we use local orthonormal basic frames {Va} for Q1,0 and
{ωa} for

(

Q1,0
)∗

= Q1,0.

Proposition 6.3. [24, Lemma 3.15]Let (M,F , J, gQ) be a transverse Hermi-
tian foliation. Let Z ∈ ΓBQ

1,0. Then the following are equivalent.

1. Z is transversely holomorphic.

2. Z satisfies ∂̄BZy+ Zy ∂̄B = 0.

Remark 6.4. It is interesting to determine the relationship between the con-
dition above and the condition ∂̄BZ

♭ = 0. Note that if Z ∈ ΓBQ
1,0, Z♭ ∈

Ω0,1
B (F), and if ∂̄BZ

♭ = 0, then making the usual choices of frame (with co-
variant derivatives vanishing at the point in question) we have

0 =
∑

a,b

ω̄a ∧ ∇V̄a

(

〈Z, Vb〉 ω̄
b
)

=
∑

a,b

(

V̄a 〈Z, Vb〉
)

ω̄a ∧ ω̄b

=
∑

a,b

〈

∇V̄a
Z, Vb

〉

ω̄a ∧ ω̄b,
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so that ∂̄BZ
♭ = 0 is equivalent to

〈

∇V̄a
Z, Vb

〉

=
〈

∇V̄b
Z, Va

〉

for all a, b. So it

is definitely the case that if Z is transversely holomorphic, then ∂̄BZ
♭ = 0, but

the converse is false in general. (In the Examples section, we will see cases
where H1,0 is not transversely holomorphic but where (as always) ∂Bκ

0,1 =

∂B
(

H1,0
)♭

= 0.)

We would now like to apply these results about automorphic vector fields to
the mean curvature.

Theorem 6.5. Let (M,F , J, gQ) be a transverse Kähler foliation with compact
leaf closures and a compatible bundle-like metric. Then the mean curvature of
(M,F) is automorphic if and only if

∆B = �B +�B.

Proof. Suppose the mean curvature is automorphic. Then by Lemma 6.2 and
Proposition 6.3,

∂̄BH
1,0

y+H1,0
y ∂̄B = 0,

and also by conjugating, ∂BH
0,1

y +H0,1
y ∂B = 0. By the formula in Lemma

5.9, ∆B = �B +�B.
Conversely, suppose that ∂̄BH

1,0
y+H1,0

y ∂̄B + ∂BH
0,1

y+H0,1
y ∂B = 0. Ap-

plying this operator to ωb, we obtain as in the proof of Proposition 6.3 that
∑

a

(∇V̄a
H1,0

yωb)ω̄a + 0 = 0,

so that ∇V̄a
H1,0 = 0 for all a. Thus, H1,0 is transversely holomorphic, making

the mean curvature automorphic.

Another consequence of Lemma 5.9 and Proposition 6.3 is the following.

Corollary 6.6. Let (M,F , J, gQ) be a transverse Kähler foliation with com-
pact leaf closures and a compatible bundle-like metric. Then the mean curvature
of (M,F) is automorphic if and only if ∆B preserves the (r, s) type of a form.

Corollary 6.7. Let (M,F , J, gQ) be a transverse Kähler foliation of codimen-
sion 2n on a compact manifold such that the mean curvature is automorphic.
Then for 0 ≤ j ≤ 2n,

dim
(

Hj
B (F)

)

≤
∑

r+s=j; r,s≥0

dimHr,s
B (F) .

Proof. From the theorem and corollary above, under these conditions, for any
differential j-form φ,

≪ ∆Bφ, φ≫=≪ �Bφ, φ≫ + ≪ �Bφ, φ≫ .

Since ∆B, �B, �B are nonnegative operators, if φ ∈ Hj
B (F), then �Bφ = 0

as well, so each (r, s) component of φ is �B-harmonic. The result follows from
the Hodge theorem.
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7 The ddc Lemma

We would like to use the power of the ddc Lemma from Kähler geometry to
use in our setting. In the foliation setting, we will need some assumptions. Let
(M,F , J, gQ) be a transverse Kähler foliation of codimension 2n on a compact
manifold. First we extend the almost complex structure J by pullback to the
operator

C : Ω∗
B (F) → Ω∗

B (F) .

Note that

C =
∑

0≤a,b≤n

ia−bPa,b,

where Pa,b : Ω∗
B (F) → Ωa,b

B (F) is the projection. Then C∗ = C−1 =
∑

0≤a,b≤n i
b−aPa,b.

For 0 ≤ k ≤ 2n, let dc : Ω
k
B (F) → Ωk+1

B (F) be defined by

dc = i
(

∂̄B − ∂B
)

= C∗dC = C−1dC.

Note that dc is a real operator, and its adjoint with respect to basic forms is

d∗c = C∗δBC = C−1δBC.

Note that

ddc|Ω∗

B
(F) = 2i∂B∂̄B = −2i∂̄B∂B = −dcd|Ω∗

B
(F) .

Let

∆dc
= dcd

∗
c + d∗cdc = C−1∆BC.

Lemma 7.1. Let (M,F , J, gQ) be a transverse Kähler foliation with compact
leaf closures and a compatible bundle-like metric, such that the mean curvature
of (M,F) is automorphic. Then

∆B = C−1∆BC = ∆dc
.

Proof. By Corollary 6.6, ∆B preserves the type of differential form, so that C
is just multiplication by a scalar on forms of type (r, s). The result follows.

Lemma 7.2. Let (M,F , J, gQ) be a transverse Kähler foliation with compact
leaf closures and a compatible bundle-like metric, such that the mean curvature
of (M,F) is automorphic. Then ∂Bκ

0,1 = 0 if and only if

δBdc + dcδB = ∇JH ,

and this is true if and only if M is taut and

δBdc + dcδB = 0.
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Proof. We have

δBdc + dcδB = i
(

∂∗T + ∂̄∗T +H1,0
y+H0,1

y
) (

∂̄B − ∂B
)

+i
(

∂̄B − ∂B
) (

∂∗T + ∂̄∗T +H1,0
y+H0,1

y
)

= i
(

∂∗T + ∂̄∗T
) (

∂̄B − ∂B
)

+ i
(

∂̄B − ∂B
) (

∂∗T + ∂̄∗T
)

+i
(

H1,0
y+H0,1

y
) (

∂̄B − ∂B
)

+i
(

∂̄B − ∂B
) (

H1,0
y+H0,1

y
)

= i
(

�T −�T + ∂∗T ∂̄B + ∂̄B∂
∗
T − ∂̄∗T∂B − ∂B ∂̄

∗
T

)

+i(H1,0
y∂̄B + ∂̄BH

1,0
y+H0,1

y∂̄B + ∂̄BH
0,1

y

−H1,0
y∂B − ∂BH

1,0
y−H0,1

y∂B − ∂BH
0,1

y).

By Corollary 5.2, −i∂̄∗T = [Λ, ∂B], so −i
(

∂̄∗T∂B + ∂B ∂̄
∗
T

)

= ∂BΛ∂B − ∂BΛ∂B =
0, and similarly ∂∗T ∂̄B + ∂̄B∂

∗
T = 0. Since the foliation is transversely Kähler,

�T −�T = 0. By Lemma 6.2 and Proposition 6.3,

∂̄BH
1,0

y+H1,0
y ∂̄B = 0,

∂BH
0,1

y+H0,1
y ∂B = 0,

so that

δBdc + dcδB = H0,1
y∂̄B + ∂̄BH

0,1
y−H1,0

y∂B − ∂BH
1,0

y

= 2iIm
(

H1,0
y∂B + ∂BH

1,0
y
)

= ∇JH ,

by Lemma 4.9 and Proposition 3.2, since ∂B
(

H1,0
)♭

= ∂Bκ
0,1 = 0. The rest

follows by Corollary 5.12.

Because of this Lemma, we do not expect the ddc Lemma from Kähler geometry
to hold in our setting, except in the special case when the mean curvature is
zero, since δBdc + dcδB = 0 is needed strongly. For this case, we prove the ddc
Lemma in the usual way.

Lemma 7.3. (ddc Lemma) Let (M,F , J, gQ) be a taut, transverse Kähler folia-
tion on a compact manifold, with a compatible bundle-like metric. Suppose that
α ∈ Ωk

B (F) is dc-exact and d-closed. Then there exists a form β ∈ Ωk−2
B (F)

with α = ddcβ.

Proof. If α = dcγ, we write γ = dτ+η+δBξ by the Hodge decomposition, with
η basic harmonic. By hypothesis, η is ∂B and ∂B-closed and thus dc-closed as
well, so

dcγ = dc (dτ + η + δBξ)

= dcdτ + dcδBξ

= ddc (−τ) + dcδBξ.

Documenta Mathematica 24 (2019) 995–1031



Mean Curvature of Kähler Foliations 1023

By the Lemma above,

0 = ddcγ = ddcδBξ

= −dδBdcξ,

so
0 = 〈dδBdcξ, dcξ〉 = ‖δBdcξ‖

2
= ‖dcδBξ‖

2
,

so the equation above is

α = dcγ = ddc (−τ) .

From this it follows that the basic cohomology is formal, as in the case of
ordinary cohomology of Kähler manifolds.

8 The Hodge diamond

On a transverse Kähler foliation with compact leaf closures and compatible
bundle-like metric, by Corollary 6.6 the basic Laplacian ∆B preserves the (r, s)
type of form if and only if the mean curvature is automorphic. For the purposes
of what follows, we will consider the case when the basic mean curvature is
automorphic, and we consider the ∆B-harmonic forms of type (r, s). Let

Hr,s
∆B

(F) = {α ∈ Ωr,s
B (F) : ∆Bα = 0} .

Theorem 8.1. (Hodge Diamond Theorem) Let (M,F , J, gQ) be a trans-
verse Kähler foliation of codimension 2n on a compact manifold. If there exists
a compatible bundle-like metric such that the mean curvature of (M,F) is au-
tomorphic, then the spaces Hr,s

∆B
(F) and basic cohomology groups have the

following structure:

1. (Hodge symmetry) For all r, s such that 0 ≤ r ≤ s ≤ n, Hr,s
∆B

(F) ∼=
Hs,r

∆B
(F).

2. For all j such that 0 ≤ j ≤ 2n, dimHj
B (F) =

∑

r+s=j; r,s≥0

dimHr,s
∆B

(F).

3. dimHr
B (F) is even if r is odd, and dimH1

B (F) = 2 dimH1,0
∆B

(F) is a
topological invariant.

4. If in addition the class
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄b
(F) is trivial, then the Álvarez

class [κB] ∈ H1
B (F) is trivial, the spaces Hr,s

∆B

∼= Hr,s
B (F) have the fol-

lowing structure:

(a) The map Lk : Hr
B (F) → Hr+2k

B (F) is injective for 0 ≤ k ≤ n − r
and surjective for k ≥ n− r, k ≥ 0.
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(b) We have Hr
B (F) =

⊕

k≥0 L
kHr−2k

B,P (F), Hp,q
B (F) =

⊕

k≥0 L
kHp−k,q−k

B,P (F) .

(c) (Kodaira-Serre duality) For all r, s such that 0 ≤ r ≤ s ≤ n,
Hr,s

B (F) ∼= Hn−r,n−s
B (F).

(d) All of the Hr,s
∆B

(F) in (1),(2),(3) above may be replaced with
Hr,s

B (F).

5. If the class
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄b
(F) is nontrivial, then (4a), (4b), (4c) are

false.

Proof. By Theorem 6.5, ∆B is a real operator, so that (1) holds by conju-
gation. By Corollary 6.6, ∆B-harmonic forms correspond exactly to sums of
∆B-harmonic forms of type (r, s), so that (2) follows, and (1) and (2) imply (3).
By the proof of the Hard Lefschetz theorem Theorem 5.11, [L,∆B] = 0 when
∂Bκ

0,1
B = 0, so we choose the leafwise metric so that this equation holds, and

this change does not alter the dimensions of the harmonic forms (and certainly
not the basic cohomology groups). Then (4a) and (4b) follow as in the Hard
Lefschetz theorem. Corollary 5.12 implies [κB] ∈ H1

B (F) is trivial, so we mod-
ify the bundle-like metric (without changing the cohomology groups) so that
κB = κ = 0, and then Theorem 4.13 and Lemma 5.9 imply in addition that
∆B = 2�B = 2�B. Then (4c) and (4d) follow. Statement (5) is a consequence
of Corollary 5.12.

Remark 8.2. Items (4a) through (4d) of the theorem above were essentially
already known, because the minimal foliation case was shown in [11].

Remark 8.3. The theorem above gives topological obstructions to the existence
of transverse Kähler foliations with automorphic mean curvature, and further

obstructions if we require that
[

∂Bκ
0,1
B

]

∈ H1,1

∂B ∂̄b
(F) is trivial.

9 Examples

Example 9.1. Note that in contrast to the situation of a Kähler form on an
ordinary manifold, it is possible that ω is a trivial class in basic cohomology.
This always happens when we consider nontaut codimension 2 foliations. We
consider the Carrière example from [7]. Let A be a matrix in SL2(Z) of trace
strictly greater than 2. We denote respectively by v1 and v2 unit eigenvectors
associated with the eigenvalues λ and 1

λ of A with λ > 1 irrational. Let the
hyperbolic torus T3

A be the quotient of T2×R by the equivalence relation which
identifies (m, t) to (A(m), t + 1). The flow generated by the vector field V2 is
a Riemannian foliation with bundle-like metric (letting (x, s, t) denote local
coordinates in the v2 direction, v1 direction, and R direction, respectively)

g = λ−2tdx2 + λ2tds2 + dt2.
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Note that the mean curvature of the flow is κ = κB = log (λ) dt, since
χF = λ−tdx is the characteristic form and dχF = − log (λ) λ−tdt ∧ dx =
−κ∧χF . Then an orthonormal frame field for this manifold is {X = λt∂x, S =
λ−t∂s, T = ∂t} corresponding to the orthonormal coframe {X∗ = χF =
λ−tdx, S∗ = λtds, T ∗ = dt}. Then, letting J be defined by J(S) = T, J(T ) =
−S, the Nijenhuis tensor

NJ(S, T ) = [S, T ] + J ([JS, T ] + [S, JT ])− [JS, JT ]

clearly vanishes, so that J is integrable. (This is also easy to see with other
means.)
The corresponding transverse Kähler form is seen to be ω = T ∗ ∧ S∗ = λtdt ∧
ds = d( 1

log λS
∗), an exact form in basic cohomology. From the above,

κ = κB = log (λ) dt = log (λ)T ∗

S∗ = λtds, Z∗ =
1

2
(S∗ + iT ∗) =

1

2

(

λtds+ idt
)

,

so

κB = −i (logλ)Z∗ + i (logλ) Z̄∗

= −i (logλ)
1

2

(

λtds+ idt
)

+ i (logλ) Z̄∗.

Then

κ1,0B = −i log (λ)Z∗ = −
i

2
(logλ)

(

λtds+ idt
)

∂̄Bκ
1,0
B = dκ1,0B =

i

2
(logλ)

2
λtds ∧ dt

=
i

2
(logλ)

2
S∗ ∧ T ∗

= (logλ)
2
Z̄∗ ∧ Z∗.

It is impossible to change the metric so that this is zero. The reason is that
from [2] the mean curvature κ′B for any other compatible bundle-like metric
would satisfy κ′B = κB + df for some real basic function f , which would imply

that (κ1,0B )′ = κ1,0B + ∂Bf , and ∂Bf = Z(f)Z∗. Since f is a periodic function
of t alone, this is ∂Bf = −i(∂tf)Z

∗. Then in that case

∂̄B(κ
1,0
B )′ = d(κ1,0B − i(∂tf)Z

∗)

= d

(

−
i

2
(logλ+ 2∂tf)

(

λtds+ idt
)

)

=

(

i

2
(log λ)2 + i∂2t f + i(logλ)∂tf)

)

λtds ∧ dt

=
(

(logλ)2 + 2∂2t f + 2(logλ)∂tf
)

Z̄∗ ∧ Z∗
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Since the term in parentheses is never zero for any periodic function f , we
conclude that ∂̄κ1,0B is a nonzero multiple of Z̄∗∧Z∗ for any compatible bundle-
like metric. This is not surprising, because this being zero would imply (M,F)
is taut by Corollary 5.12.
For later use, we compute that basic Dolbeault cohomology in this example.
One can easily verify that

H0,0
B = ker ∂

0,0

B = span{1}

H1,0
B = ker ∂

1,0

B = {0}

H0,1
B =

ker ∂
0,1

B

im∂
0,0

B

= span{S∗ − iT ∗}

H1,1
B =

Ω1,1
B

im∂
1,0

B

= {0},

where the last equality is true because one can show that every element of Ω1,1
B

is ∂B-exact. Now we compute H∗,∗
∂B∂B

(F): because ∂B∂Bf = − 1
4∆Bf dz ∧ dz

integrates to zero, we have

H0,0

∂B∂B

(F) ∼= C; H1,1

∂B∂B

(F) = span{Z̄∗ ∧ Z∗} ∼= C,

and as expected,
[

∂Bκ
0,1
B

]

is nonzero and thus a generator.

Then observe that the ordinary basic cohomology Betti numbers for this folia-
tion are h0B = h1B = 1, h2B = 0, we see that the basic Dolbeault Betti numbers
satisfy

h0,0B = h0,1B = 1, h1,0B = h1,1B = 0.

So even though it is true that

hjB =
∑

r+s=j

hr,sB ,

and the foliation is transversely Kähler, we also have (with n = 1)

hr,sB 6= hs,rB , hr,sB 6= hn−r,n−s
B .

Theorem 8.1 tells us that the mean curvature is not automorphic. We can also
verify this directly:

H1,0 =
i logλ

2
Z,

(

∂BH
1,0

y+H1,0
y∂B

)

κ1,0B = ∂B

(

(logλ)
2

2

)

+H1,0
y (logλ)

2
Z̄∗ ∧ Z∗

= −
i

2
(logλ)

3
Z̄∗ 6= 0.
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Another way to see this is to choose local transverse holomorphic coordinates.
The reader may check that if we choose

x0 = − (logλ) s; y0 = λ−t

and let z0 = x0 + iy0, then

∂x0
= −

1

logλ
∂s, ∂y0

= −
λt

logλ
∂t; dx0 = − (log λ) ds, dy0 = − (logλ) λ−tdt;

J (∂x0
) = ∂y0

, J (∂y0
) = −∂x0

; dz0 = − (logλ)
(

ds+ iλ−tdt
)

,

and so

κ1,0B =
i

2y0
dz0,

which is clearly not a holomorphic one-form.
The exactness of the basic Kähler form causes the Kodaira-Serre argument,
the Lefschetz theorem, the Hodge diamond ideas to fail. Thus, for a nontaut,
transverse Kähler foliation, it is not necessarily true that the odd basic Betti
numbers are even, and the basic Dolbeault numbers do not have the same
kinds of symmetries as Dolbeault cohomology on Kähler manifolds. Also, this
example shows that the even degree basic cohomology groups are not always
nonzero, as is the case for ordinary cohomology for symplectic manifolds (and
thus all Kähler manifolds).

Example 9.2. We now consider the product foliation on the product manifold
M = T 3

A×T 3
A. We will put two different transverse Hermitian structures onM ,

and the cohomological properties of the two transverse structures are different.
In both cases we have fixed the product metric.

1. First, we consider the product of the two transverse holomorphic struc-
tures on each copy of T 3

A separately. A simple calculation shows that the
foliation is transversely Kähler, nontaut. The mean curvature is not au-

tomorphic, and the class
[

∂Bκ
0,1
B

]

onM is nontrivial. The Betti numbers
are

h0B = 1, h1B = 2, h2B = 1,

h0,0B = 1, h0,1B = 2, h0,2B = 1,

h0,0
∂B∂B

= 1, h1,1
∂B∂B

= 2, h1,1
∂B∂B

= 1,

with all the other Betti numbers zero.

2. Next, instead we use the following transverse complex structure. Using
the same notation as in Example 9.1 but using subscripts 1 and 2 to refer
to the different copies of T 3

A in the product, we define

J ′ (U1) = U2; J
′ (U2) = −U1,
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where U denotes one of the unit normal vector fields S or T . We then
have that the form ω is

ω = λ−t1−t2dx2 ∧ dx1 + λt1+t2ds2 ∧ ds1 + dt2 ∧ dt1,

which is clearly not closed, so the new transverse Hermitian structure is
not Kähler. The foliation is the same as before, so it is again not taut.
The mean curvature is

κB = (logλ) (dt1 + dt2) ,

κ1,0B =
1

2
(κB + iJ ′κB) =

1

2
(logλ) (1− i) (dt1 + idt2) .

This vector field is clearly holomorphic, and we also have

∂Bκ
1,0
B = dκ1,0B = 0,

so that with this new holomorphic structure, the ∂B∂B-class
[

∂Bκ
0,1
B

]

is

trivial (even though the foliation is not taut). The Betti numbers now
satisfy

h0B = 1, h1B = 2, h2B = 1,

h0,0B = 1, h0,1B = 1 = h1,0B , h1,1B = 2, h2,0B = h0,2B = 1,

h0,0
∂B∂B

= 1, h1,1
∂B∂B

= 1,

with all other Betti numbers zero.

This set of examples shows that it is possible for the class
[

∂Bκ
0,1
B

]

to be trivial

for some transverse holomorphic structures and to be nontrivial in others. But
if this is the case, by Corollary 5.12 it must be nontrivial when the structure
is transversely Kähler.
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