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ABSTRACT. We study genus 2 Hilbert-Siegel varieties, i.e. Shimura
varieties Sg corresponding to the group GSp,  over a totally real field
F, along with the relative Chow motives *V of abelian type over Sk
obtained from irreducible representations Vy of GSp, p. We analyse
the weight filtration on the degeneration of such motives at the bound-
ary of the Baily-Borel compactification and we find a criterion on the
highest weight A, potentially generalisable to other families of Shimura
varieties, which characterizes the absence of the middle weights 0 and
1 in the corresponding degeneration. Thanks to Wildeshaus’ theory,
the absence of these weights allows us to construct Hecke-equivariant
Chow motives over Q, whose realizations equal interior (or intersec-
tion) cohomology of Sk with V)-coefficients. We give applications
to the construction of homological motives associated to automorphic
representations.
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INTRODUCTION

BACKGROUND: MOTIVES FOR AUTOMORPHIC REPRESENTATIONS.

Let Sk be a Shimura variety associated to a reductive Q-group G and to a neat
open compact subgroup K of G(A). The variety Sk is then smooth and quasi-
projective, and defined over its reflez field E (a number field). Every algebraic
representation V of G defines a local system p(V) on Sk (C), whose interior
cohomology H,i.e. the image of cohomology with compact supports into ordi-
nary cohomology, contains very rich analytical and arithmetic information: in
particular, the K-invariants of cohomological cuspidal automorphic representa-
tions of G(A) appear exactly inside the spaces of the form H; (Sk(C), u(V)).
On the other hand, for every prime ¢, V also defines an f-adic sheaf py(V)
on Sk, whose étale cohomology spaces are equipped with a Galois action and
the action of Hecke operators. The study of the interaction of these different
structures plays a pivotal role in the Langlands program.

Hence, following the general philosophy explained for example in [Cloz90], it
is desirable to construct a Chow motive whose realizations equal interior coho-
mology - a subspace of the cohomology which is of pure weight, in the Galois
or Hodge-theoretic sense. Moreover, one would like this construction to be
functorial, in order to further decompose such a motive according to the Hecke
action (maybe switching to homological motives). The first successful exam-
ple of such a construction was given by Scholl ([Sch90]), who defined motives
realizing to the Galois representations associated by Deligne to weight k > 2
modular cusp forms ([Del69]).

The results of this paper imply that analogous motives exist for most coeffi-
cient systems in the case of genus 2 Hilbert-Siegel varieties, which are Shimura
varieties Sk associated to (a subgroup of) the group G = Resp|oGSp, r over a

DOCUMENTA MATHEMATICA 24 (2019) 1033-1098



ON THE MOTIVE OF GENUS 2 HILBERT-SIEGEL VARIETIES 1035

totally real field F' of degree d over Q. More precisely, let Ir be the set of real
embeddings of F', and let V) be an irreducible representation of G of highest
weight \: such a weight is in particular specified by a couple of vectors of non-
negative integers (k1,0 )ocrp, (k2,0)oecrp such that k1, > ko, > 0 for every
o (i.e., the weight is dominant). It is called regular at o if k1, > ko > 0,
and regular if it is regular at o for every o. Denote moreover by CHM (Q) the
category of Chow motives over Q. Then, the main consequence of our results
is the following:

THEOREM 1. (Corollaries 3.1.0.2 and 3.1.0.5.(2) and Rmk. 3.1.0.6.(2)) If X is
regular, there exists an object s, ji\V of C HM (Q) whose Hodge-theoretical, resp.
(-adic realization, equals HP?(Sk (C), u(Vy)), resp. H?4(Sk xqQ, pe(Vy)), and
such that every element' of the Hecke algebra $(K,G(Ay)) acts naturally on
1t.

Actually, we show that a functorial Chow motive realizing to interior coho-
mology exists under a less restrictive hypothesis on the weight A\. To see how
this is achieved, let us sketch the actual contents of this work, and explain the
interest of the particular family of Shimura varieties which we consider.

THE ROLE OF THE BOUNDARY MOTIVE.

Let us first come back to the general case of a Shimura variety Sk over F, and
denote by j : Sk — S} the open immersion into the Baily-Borel compactifica-
tion (a projective variety, still defined over E) and by i : 955 < Sj the closed
immersion of the boundary 955 := S5 \Sk. The latter is itself stratified by
(quotients by the action of a finite group of) Shimura varieties, still defined
over F.

Assume Sk to be of PEL type (loosely speaking, a moduli space of abelian vari-
eties equipped with polarizations, endomorphisms and level structure). Then,
according to [Anc15], every irreducible representation Vy of G of highest weight
A gives rise, in a functorial way, to an object *V of the category CHM (Sk)
of Chow motives over Sk, whose (-adic realization is p¢(Vy). In this context,
the theory developed by Wildeshaus (especially the works [Wil09], [Will7],
[Wil19a]) implies that there exists a cohomological condition on the degen-
eration at the boundary i*j.pe(Vy) of the f-adic sheaves u(Vy), which, once
satisfied, allows for the construction of a Chow motive with the properties
stated in Theorem 1: the condition consists in the absence of weights 0 and
1 in the latter complex of ¢-adic sheaves, where the weights are those defined
by the Galois action. More precisely, this hypothesis allows to construct a
functorial Chow motive which realizes to intersection cohomology with values
in p¢(Vy) (hence the name intersection motive) and to identify the latter with
interior cohomology (cfr. Cor. 3.1.0.5). Moreover, the criterion contained in
[Wil19a] (recorded here as Theorem 1.6) implies that, in order to detect this

IWe adopt this phrasing in order to stress that this is not known to be an algebra action,
see Footnote 6.
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weight avoidance, it suffices to analyse the weights of the perverse cohomology
objects of such complexes, stratum by stratum on the boundary: this is what
we actually do in this paper. Notice that the complex i*j, e(Vy) is actually the
¢-adic realization of the (relative) boundary motive i*j}V, an object of the cat-
egory DMy (0S}) of constructible Beilinson motives over 9S5., defined over
general bases in [CD12], along with its six functors formalism. If § denotes the
structural morphism of Sk, the intersection motive should be then thought as
the “lowest weight-graded object” of the motive 5}V € DMj .(F), in the sense
of the weight structure introduced by Bondarko ([Bon10]).

The analysis of the weight filtration brings into consideration contributions
coming from different variants of group cohomology: abstract cohomology of
arithmetic and finitely generated free abelian groups, and cohomology of al-
gebraic groups. In previous work ([Wil12] for Hilbert-Blumenthal varieties,
[Will5] for Picard surfaces, [Cloil7] for Picard varieties of arbitrary dimension
and [Wil19b] for Siegel threefolds), these facts have been employed in order
to show that regularity of the coefficient systems implies the avoidance of the
weights 0 and 1 at the boundary. Two natural questions then arise. First: does
this hold for other families of Shimura varieties? Second, since, in the first and
third case above, it can be seen that there exist non-regular representations,
which nonetheless satisfy the weight avoidance, one is lead to ask: does there
exist a general condition on the highest weights of irreducible representations of
G, which is equivalent to the absence of the weights 0 and 1 in the degeneration
at the boundary? In this paper we answer both questions in the case of genus
2 Hilbert-Siegel varieties.

Before explaining what the response is, let us just discuss the role of this
special case. In the first three of the examples studied before, the strata of the
boundary of the Baily-Borel compactification are simply of dimension 0, while
one-dimensional strata appear in the boundary of Siegel threefolds: this makes
the analysis sensibly more difficult and forces one to use the relative formalism
of Beilinson motives. Genus 2 Hilbert-Siegel varieties represent then a natural
following step: the boundary still presents only two types of strata, but the
higher-dimensional ones can be of arbitrary dimension - equal, in fact, to the
degree of the field F' over Q. More importantly, for the first time with respect
to the preceding cases, the phenomena, which are caused by the three types
of cohomology listed before, make their appearance all together (especially
because of the arithmetic of the field F', a point which we will comment on
later in more detail).

Let us now define the corank of a weight A = ((k1,0)o, (k2,0)s) as 0if kg » is not
the same integer for every o, as 1 if k; ,, is constant but there exists a o such that
k1,6 # koo, and as 2 if there exists an integer x such that ki , = ko, = & for
every o. Moreover, let us call the weight completely irreqular if, for every o, it
is not regular at o. Then, for genus 2 Hilbert-Siegel varieties, as a consequence
of our main technical result (Thm. 2.2), we are able to exhibit the sought-for
characterization of the absence of weights, by showing that it is precisely the
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notion of corank which allows for its formulation:

THEOREM 2. (Cfr. Cor. 2.1.0.2) The weights 0 and 1 appear in the complex
i*Jupe(V) if and only if \ is completely irreqular of corank > 1.

Notice that, in particular, we are saying that either both weights 0 and 1 ap-
pear, or none of them appears. By the theory cited above, and explained in
more detail in Subsection 1.5 and Section 3, Theorem 2 implies the validity
of Theorem 1, and more generally of the following fact: a Chow motive which
realizes to interior cohomology, equipped with a Hecke action, exists as soon
as the weight A is either not completely irregular or of corank 0.

The characterization given by Theorem 2 subsumes the previously treated cases
of Hilbert-Blumenthal varieties and Siegel threefolds, and lends itself to further
generalization. In order to conclude this introduction, let us put this result into
perspective, by explaining why we think of the corank as an important invariant
for the study of the cohomology of Shimura varieties.

CORANK AND WEIGHT FILTRATION IN THE COHOMOLOGY OF SHIMURA VARI-
ETIES.

For a general (smooth) Shimura variety Sk, it is a very important problem
to describe the weight filtration (say, in the Hodge-theoretical sense) on the
spaces H"(Sk(C), u(V)). Suppose the variation of Hodge structure p(V) to
be pure of weight w. Consider moreover the long exact sequence associated to
the complementary, closed-open immersions ¢ and j given by any (topological)
compactification S of Sk (C) and by its boundary dS. By Hodge theory, one
then sees that, for each n, interior cohomology is contained in the weight n+ w
subspace of H"(Sk(C), u(V)) (the pure part, of lowest possible weight), while
the rest of the weight filtration is determined by a subspace of the boundary
cohomology OH™(Sk (C), u(V)) := H™(9S,i*j.uu(V)). The latter is precisely
the hypercohomology of (the Hodge-theoretical analogues of) the complexes
studied in this paper.

In this context, one approach to understanding the cohomology of i*j.u(V)
consists in taking a closed cover of 95 and in studying the associated spectral
sequence, abutting to OH*(Sk(C),u(V)). For S equal to the analytification
of a smooth toroidal compactification?, the study of this spectral sequence (of
mixed Hodge structures) is the subject of [HZ94], [HZ01]. In these works, the
authors remark (in a slightly different language) that the interaction between
the two filtrations of i*j,.(V), the one coming from the closed cover of the
boundary and the weight filtration, is far from being understood. The same is
then true for the two corresponding filtrations on the spaces H"(Sk (C), u(V)).
On the other hand, after [Nal3], these same spaces are endowed with a third in-
teresting filtration, whose graded objects are equipped with semisimple mixed

2But also, in the - a priori - purely topological case, equal to the Borel-Serre compacti-
fication of Sk . The fact that this non-algebraic compactification still gives rise to spectral
sequences of Hodge structures represents one of the most important discoveries in [HZ94].
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Hodge structures: in loc. cit., the author uses the work of Franke ([Fra98]) to
show in particular that this filtration has an automorphic origin. Once again,
the precise relationship with the weight filtration remains mysterious.

In order to read our main result in the light of the above considerations, let
us come back to the situation of a genus 2 Hilbert-Siegel variety Skx. One
knows (cfr. paragraphs 1.3.1-1.3.2) that the boundary 0575 of its Baily-Borel
compactification admits a stratification of the form

1
oSk =] ] Sis

=0 geC;

where the C;’s are some finite subsets of G(Af) and the open, resp. closed
subschemes S 4, resp. Sp,4 of 0S5 are (quotients by the action of a finite
group of) Shimura varieties of dimension d, resp. 0, for d the degree of F over
Q.

For an irreducible representation V) of G determined by a dominant weight
A, let us recall without definition, just for the needs of this introduction, the
associated automorphic (coherent) sheaf w(\) over a fixed toroidal compactifi-
cation Sk s, of Sk. By pushforward along the projection 7 : Sk 5 — S}, this
sheaf gives rise to a coherent sheaf on S}, whose space M g of global sections
over S} is called the space of A\-automorphic forms of level K (non-standard
terminology). Then, pose the following:

DEFINITION. (cfr. [BR16, Def. 1.5.3]) Let f € M x be a non-zero automor-
phic form. Let ¢ be the maximal integer in {—1, 0,1} such that @gecqﬂsq .= 0
(with C_; = @ by convention). The corank of f is then defined as cor(f) :=
1—gq.

Notice that this notion gives a measure, in some sense, of the degree of cusp-
idality of f: for example, cor(f) =0 <= f is cuspidal, and we could define
completely non-cuspidal forms those f’s for which cor(f) = 2. The notation
would have been more natural if we had ordered the strata by decreasing di-
mension, but we have preferred to remain coherent with the notation in the
rest of the paper.

Recall then the following theorem from [BR16] (where the role of A, resp. My g,
is played by k, resp. My(#, R)), in which the notion of corank of A as defined
before arises in an essential way:

THEOREM. ([BR16, Thm. 1.5.6]) If f € My i is non-zero, then cor(\) >
cor(f).

This implies for example that, in order to have non-zero non-cuspidal forms,
it is necessary for A to be of corank > 1; moreover, in order to have non-zero
completely non-cuspidal forms, it is necessary for A to be of corank 2, and in
particular completely irreqular.
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Observe now that, reasoning along the lines of Corollary 3.1.0.1.(1), we can
immediately deduce the following® from Theorem 2:

THEOREM 3. Let V) be an irreducible representation and let w be the weight
of the pure variation of Hodge structure u(Vy). Then, there can exist a n such
that weight n + w + 1 appears in H"(Sk(C), u(Vy)) only if X is completely
irreqular and of corank > 1.

Even if the proofs of Theorem 2 and of the theorem from [BR16] are completely
independent, the analogy between the two is striking. In fact, thanks to the
notion of corank, we see that weight 1 can appear in the complex computing
Vy-valued cohomology of Sk only if A is completely irregular and satisfies the
necessary conditions for the presence of a non-zero non-cuspidal form on Sk.
Here we have in mind a non-zero non-cuspidal form as giving a class in the
quotient of H™(Sk(C), u(Vy)) of weight strictly bigger than n + w, for some
n. Since the corank of an automorphic form is in turn defined in terms of
its behaviour along the different types of strata in 0S5}, Theorem 3 pushes
us to think of our result as a (very little!) hint towards the understanding
of the links between the weight filtration, the “simplicial” filtration coming
from the stratification of the boundary and the “automorphic” filtration in the
cohomology of Shimura varieties. One could ask if investigating the relationship
with the filtration by holomorphic rank considered in [HZ01, Sec. 4.4-4.5] could
be a good starting point for studying such questions.

Notice that, in order to prove the presence of the weights 0 and 1, we need
exactly the existence of a non-zero automorphic form of a certain type. How-
ever, such a form is a cuspidal Hilbert modular form over a “virtual” Hilbert-
Blumenthal variety, which does not appear in 95} (cfr. Prop. 2.2.3.2 and
Rmk. 2.5.1.6).

As a last remark, let us stress the fact that the non-triviality of the totally real
extension F' gives rise to an action of some subgroups of units of the integers
of F, which coincides with the action of the local Hecke operator from [LR91]
(which, by the way, plays a crucial role for the results of [Nal3] cited before)
and puts essential restrictions on the possible weights (cfr. Rmks. 2.2.2.4
and 2.3.2.3). This manifestation of the interaction between different group
cohomologies, alluded to before, is the main phenomenon which leads us to the
notion of corank for A.

3The results stated so far concern a priori the weights of the complexes of ¢-adic sheaves
obtained from the ¢-adic realization of i* 5}V, but they actually give information on the weight
filtration in the sense of Bondarko ([Bonl0]) on the boundary motive itself. This doesn’t
imply directly anything on the Hodge side, because the Hodge realization functor on Beilinson
motives over singular bases (as S*) has not been constructed yet. However, thanks to the
complete formal analogy between the results of [Pin92] (¢-adic context) and [BW04] (Hodge-
theoretic context), and between the formalisms of six functors in the respective derived
categories, our computations are also valid in the case of mixed Hodge modules; it is in fact
the Hodge theoretic picture which guides these computations (cfr. Rmk. 1.4.2.1.(1)).
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ORGANISATION OF THE PAPER

In the preliminary Section 1 we first introduce the Shimura datum (G, X) un-
derlying the Hilbert-Siegel varieties Sk . Second, we recall the structure of the
Baily-Borel compactification S} and we introduce the canonical construction
functors, which produce a variation of Hodge structure pg (V) or an f-adic
sheaf 11,(V) over Sk from a representation V' of G, along with the relative
Chow motives *V over Sk associated to irreducible representations Vy. Third,
we recall the criterion which we will crucially make use of, i.e. Thm. 1.6: it
reduces the weight avoidance for the Beilinson motive i*j}V to an equivalent
condition on the weights of the ¢-adic perverse cohomology sheaves of each of
its restrictions to a stratum of the boundary. Finally, we recall some useful
tools to study the weights of the latter sheaves: (a) a theorem of Pink, which
gives a formula for the ¢-adic classical cohomology sheaves of the restriction of
the degeneration to each stratum, in terms of cohomology of unipotent alge-
braic groups and of arithmetic groups; (b) a theorem of Kostant, which allows
one to express the cohomology of unipotent, groups in terms of representations
of subgroups, which are attached to the Shimura data underlying the strata
of the boundary; (¢) some general lemmas which are useful for studying the
cohomology of free abelian subgroups of arithmetic groups.

In Section 2, the heart of the paper, we begin by stating the main result (the
description of the limit weights of i*j}V in terms of the corank of A\, Thm. 2.2)
and by showing its main consequence (the characterization of the absence of
weights 0 and 1, Cor. 2.1.0.2, our Theorem 2 here). The rest of the section is
occupied by the proof of Thm. 2.2, which is divided in the following steps:

e we begin by studying separately the classical cohomology sheaves of the
degeneration along the 0-dimensional strata (Subsection 2.2) and along
the strata of dimension d = [F : Q] Subsection 2.3), via Pink’s theorem;

e in each of the two above cases, we decompose the cohomology of unipo-
tent groups into a sum of irreducible representations carrying pure Hodges
structures (paragraphs 2.2.1, 2.3.1); this is done thanks to Kostant’s the-
orem and to a detailed study of the representation theory of GSp,. Thus,
we get a list of the possible weights appearing;

e in each case, we use the cohomology of arithmetic groups to give restric-
tions on the non-triviality of the occurring spaces, and hence to give nec-
essary conditions for certain weights to appear (paragraphs 2.2.2, 2.3.2).
The main technical ideas here consist in exploiting, often by spectral se-
quence arguments, the aforementioned action of suitable subgroups of
units of F' on the fibers of the degeneration (Lemmas 2.2.2.3, 2.2.2.6 -
where the action is exploited in two “orthogonal” ways, Lemma 2.3.2.2)
and some vanishing theorems on the cohomology of locally symmetric
spaces (Lemma 2.2.2.7);

e some additional work is needed (as an existence statement for suitable
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non-zero Hilbert cusp modular forms, Prop. 2.2.3.2) to show that the
above conditions are also sufficient for some weights to appear;

e finally, we have to relate the weights of the classical cohomology sheaves
to those of the perverse cohomology sheaves appearing in Thm. 1.6. For
this, we are led to study the double degeneration along the cusps of the d-
dimensional strata, along the same lines as before (Subsection 2.4), and to
use the properties of the intermediate extension of f-adic perverse sheaves
(Subsection 2.5, where we complete the proof of the main theorem, i.e.
we find the description of the relation between A\ and the weights of the
motive i*j} V).

In Section 3 we give the applications of our result: the construction of a Hecke-
equivariant Chow motive which realizes to interior cohomology of Sk with
coefficients which are not completely irreqular of corank > 1. In the case of reg-
ular coefficients, we describe the consequences of the above for the construction
of motives associated to automorphic representations, obtaining in particular
(homological) motives corresponding to the representations studied in [F1i05]
(cfr. Rmk. 3.2.0.4).

NOTATIONS

The symbols A, resp. Ay will denote the ring of adéles, resp. finite adéles.
Throughout the whole paper, F' will be a fixed totally real field of degree d
over Q, I its set of real embeddings (thus, of cardinality d), and L a fixed
Galois closure of F' in C. An empty entry in a ring-valued matrix will mean
that the corresponding coefficient is zero.

We will use the symbol 7y(X) for the set of connected components of a topo-
logical space X.

If C is a category, then GrzC will denote its category of graded objects. If A is
an abelian category, D®(A) will denote its bounded derived category.
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1 THE SHIMURA DATUM, THE BAILY-BOREL COMPACTIFICATION AND THE
CANONICAL CONSTRUCTION

In this preliminary section we introduce the basic objects of interest: the
Shimura datum (G, X) which defines the genus 2 Hilbert-Siegel varieties Sk,
their Baily-Borel compactifications S}, and the relative Chow motives *V over
Sk associated to irreducible representations V) of G.

1.1 THE GROUP FOR THE SHIMURA DATUM
1.1.1 THE GROUP OF SYMPLECTIC SIMILITUDES AND THE GROUP G.

Define, for every positive integer n, the 2n x 2n matrix

Ty = (In I") € GLon(Q).

The group GSp,,, of symplectic similitudes of dimension 2n is the algebraic
group over Q defined, for every Q-algebra R, by posing

GSpy, (R) := {g € GLan(R)|'9Jng = v(9)Jn,v(g) € Gm(R)} .

It is a reductive group, whose center Z is isomorphic to G,, and whose derived
subgroup is isomorphic to Sp,,,, the usual symplectic group over Q of dimension
2n. The morphism v : GSp,,, — G, is called the multiplier (or similitude
factor).
For the rest of this paper, fix n = 2. Recall that we have fixed a totally real
field F' of degree d over Q along with a Galois closure L, and that we denote
by Ir the set of real embeddings of F. Define then the Q-algebraic group G
by posing
G = RespioGSpy r-

For every subfield k of C containing L, one has, for every k-algebra R, an
isomorphism

FegR> [[ R for=(o(f) 1) (1.1)

oc€lp
which induces a canonical isomorphism

G =~ H (GSpy 1)os

o€lp

Consider now the canonical adjunction morphism G,, — RespgGm, r, in-
duced by the fact that Weil restriction is right adjoint to base change, and
the morphism G — Res F|QGm,F, induced by functoriality by the multiplier
v : GSpy,, = Gp.
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DEFINITION 1.1. The reductive Q-group G is defined by

G =Gy, xReSF‘@Gm,F G, (1.2)

where the fibred product has been taken with respect to the preceding mor-
phisms.

Remark 1.1.1.1. (1) The isomorphism (1.1) induces, for every subfield k of C
containing L, an isomorphism

G ~ Gy X IT Gm,k)osI1v H (GSP4,k)cr- (1.3)

€lF oc€lp

(2) The center of G is such that Z(G) ~ G, ) TR a— RespioGm, F-
Its neutral component is then isogenous to G,,.

1.1.2 THE STRUCTURE OF PARABOLIC SUBGROUPS OF G.

The group GSp, r(F) acts on F®* through the natural action induced by its
inclusion into GLy p(F).

The standard F-basis {e1, ea, €3, €4} gives then a symplectic basis for the non-
degenerated, F-bilinear alternated form defined by J» € GSpy ('), which we
will also denote J>. Fix as a maximal torus of GSp, p the standard diagonal

torus T defined on F-points by
T(F) := {diag(on, as, a7 'v, 05 'v) | a1, a9, v € G (F)}, (1.4)

along with the standard Borel B containing it, defined on F-points as the
subgroup of matrices in GSp, (F) of the form

* *
*

*
*

* % ¥k %

ES

One knows that the parabolic subgroups of GSp, r(F') correspond bijectively
to subgroups of the form Stab(V), for V' a sub-F-vector space of F®* which is
totally isotropic for the form J;. The case V' = {0} corresponds to the whole
group GSp, p(F), while V' = (e1) gives the Klingen parabolic

a k% %
Ou(F) = { a ; Y | lad — be = af € Gpn.p(F)} N GSpy p(F)
c x d

and V = (e1, e2) gives the Siegel parabolic
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Qo(F) = {( oA AN ) o € G (F), A € GLo p(F),' M = M}.

Every other parabolic subgroup is conjugated to one of the above.
One also knows that a maximal torus, resp. a Borel, of G are given by
Resp)(T), resp. Resp|g(B), which we will still denote by 7', B in the fol-

lowing; note that 7' is not split over Q. A maximal torus and a Borel con-
taining it in G are then respectively defined by T := G, X ReS (Con. T and

B := Gm XReSF‘QGm,F B

In the same way, the standard maximal parabolics of G corresponding to the
choice (T, B) are exactly given, up to conjugation, by ResF‘QQO, ResF‘QQl,
which we will still denote by Qo, Q1. Then, Qo := G,, XReS 1 gGon, Qo, Q1 :=
G X ReS g r Ql are the standard maximal parabolics of G with respect to
(T, B), still called the Siegel and the Klingen one.

1.1.3 THE LEVI COMPONENTS OF PARABOLIC SUBGROUPS.

Let Wy and W7 be the unipotent radicals of the groups @y and @ defined
above. The quotients @;/W; will be canonically identified with subgroups of
the Q;’s, thanks to the Levi decomposition of the latter.

Fix now a subfield k of C which contains L. One has the following explicit
description of the diagonal embedding of Qo/Wys(Q) into Qo/Wo(k):

Q@ =((( W Drens la € Q7 A€ GTa(F)

— Qo/Wo(k) = {(( ads (A1)t >)ae[F o € K, Ay € GLy(k) for every o}

o

and of the diagonal embedding of (Q1/W1)(Q) into (Q1/W1)(k):

o(t) - (ad — be)
Q1/Wh(@) = {( L P

a,b,c,d € F such that ad — bc € Q*} —

to - (aody — bsCo)

Uy bs
t_l )UGIF |

= Q1/Wi(k) = {(

Co do
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te €k*Voelp,
a5, b5, Coydy € k such that aydy — bycy = asds —bscs € KXV 0,6 € Ip}.
Thus, there is an isomorphism

Qo/WO >~ Gm X ReSF\QGLQ,Fy (].5)

given on k-points by

(Qo/Wo)(k) = G (k) x (] (GLa(k))o)

o€lp

( A, oy ))O_QF > (@ (As)oere)s

g

and an isomorphism

Ql/Wl ~ (ReSF‘QGLgF XResF‘QGm,F,det Gm) X ResF‘QGWF (1.6)

given on k-points by

(Qu/W)(k) = ((]] (GL2)o) x [T (Gi)o Gmot) (B) X I Gu(k)s

oclp 7&lF o€lr

to . (aada - ba'co')

Co de

1.1.4 CHARACTERS AND DOMINANT WEIGHTS.

Consider our fixed Galois closure L of F. Using the isomorphism (1.3) (for
k = L) and Eq. (1.4), we get the following description for the points of the
maximal torus T, of Gp:

Tr(L) = {(diag(a1,q, 02,0, 07 oV, 05 oV))oels | 01,020 € L*, v € Q*}

This description naturally identifies 77, with a subtorus of rank 2d + 1 of the
rank-3d torus [] T, where each T, is a copy of the diagonal maximal torus

o€l
of GSpy 1.
The elements A of the group X*(77) of characters (or “weights”) of T, (a sub-

group of @ X*(T,)) are then parametrized by the (2d + 1)-tuples of integers
o€lp
of the form

((k1,0:k2.0)octyc) such that Y (ko + k20) = ¢ (mod 2) (1.7)

o€l
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where the character A((k1,0, k2.0 )oerp,c) corresponding to ((k1,0, k2,0 )ocipC)
is defined by sending

(diag(alaa’ Q2,05 ai}jy’ a;,(lj'y))O'GIF

to
3 = X (k1,04k2,0)]

2
H a]fj&" . H ozgi’;’ 7 o&lr (1.8)
o€l oelr
The dominant weights are the characters such that k; , > ko > 0 Vo. A

weight is called regular at o if k1 » > ko > 0 and regular if it is regular at o
for every o.

1.1.5 RoOOT SYSTEM AND WEYL GROUP.

Take the couple (T, B) fixed at the end of 1.1.2 and apply base change to
our fixed Galois closure L of F. By choosing the resulting couple (77, Br) as

maximal torus and Borel, we identify the set of roots v of G with || ¢,
o€lp
where each v, is a copy of the set of roots of GSp, ; corresponding to the

diagonal torus and the standard Borel. For every fixed 6 € Ip, ts contains
two simple roots p1s and pa s, which, through the inclusion of ts; into v, can
respectively be written p1 s = p1,6 (k1,05 k2,0 )ocip, ), With

[ 1 ifo=¢ - -1 ifo=¢ _0
Lo =Y 0 otherwise * %7 0 otherwise > ¢~

and p2.5 = p2,5((k1,0,k2,0)oerp, ¢), With

2 fo=2¢

k1,0 =0 Vo, koo = { 0 otherwise

, c=0.

The Weyl group T of G, is in turn isomorphic to the product [] Y., where,
o€l
for every fixed 6 € I, T5 is a copy of the Weyl group of GSp, . The latter

is a finite group of order 8 acting on X*(7};), generated by two elements s;
and s, whose images s,, , and s,, , through the inclusion Ts into T are
characterized as follows by their action on the elements of X*(TL): if A =
)\((kl,g, 1{3270)0611,,0), then Sp1,a')‘ = )\((hl,g, hg,g)ge]F,C), with

heo koo ifo=¢ by ki, ifo=¢
Lo = k1, otherwise ’ 20 = k2, otherwise
and s,, ,.A = A(h1,0,h2,0)sels, €), With

—koyy fo=6

ho =k Vo €Ip, hyo= { ko otherwise
N

These descriptions mean that s,, , corresponds to the reflection associated to
p1,6 and that s,, , corresponds to the reflection associated to pa 5.
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1.1.6 IRREDUCIBLE REPRESENTATIONS.

Irreducible representations of a split reductive group over a field of character-
istic 0 are parametrized by its dominant weights. By the description of the
dominant weights of G given in (1.7), we see that isomorphism classes of
irreducible L-representations of G, are in bijection with the set

A:i={M(k10,k2.0)0cip:C)) | k1.0 k20,¢ € Z and ky o > ko, for every o,

Z (k1,0 +k20) =c mod 2)}.

o€lp

1.2 HILBERT-SIEGEL VARIETIES

In this subsection, let G denote the group defined in 1.1. We are going to define
a pure Shimura datum (G, X) in the sense of [Pin90, Def. 2.1].

DEFINITION 1.2. The complex analytic space Hy is the subspace of M;(C)
formed by complex 2 x 2 matrices which are symmetric and whose imaginary
part is definite (positive or negative).

Recall that G(R) = {(As)oerr, € [l,er, GSpy(R) such that v(A,) =
v(As), ¥ 0,6 € Ir} and that |Ir| = d. Then, G(R) acts on HJ by analytical
isomorphisms. Let Jo be the element of GSp,(R) introduced in 1.1.2.

PROPOSITION 1.2.0.1. Let h : S — Gg be the morphism defined on real points
by
S(R) = G(R)
T+ iy = ((1‘[2 + yJ2)a)geIF

The G(R)-conjugacy class X of h has a canonical structure of complex analytic
space (of dimension 3d), such that there exists a G(R)-equivariant isomorphism
X ~H4 as complex manifolds. Moreover, (G, X) is a pure Shimura datum.

Fix now a compact open subgroup K of G(As) which is moreover neat ([Pin90,
Section 0.6]). Then, the double quotient G(Q)\X x G(Af)/K has the structure
of a smooth complex analytic variety, which is the analytification of a canonical
smooth quasi-projective variety S(G, X )k (the Shimura variety corresponding
to the datum (G, X) and to the subgroup K), defined over a number field
E(G, X), the reflex field of (G, X) (independent of K). In our case, the reflex
field is just Q, Sk := S(G, X )k is of dimension 3d and it is called the genus 2
Hilbert-Siegel variety (of level K, associated to F).

Remark 1.2.0.2. The datum (G, X) is a PEL datum. In particular, according to
[Del71, 4.12], Sk admits an interpretation as moduli space of abelian varieties
of dimension 2d with additional structures, among which real multiplication
by a sub-algebra O of F' of rank 2d over Z, which depends on K. Thus, there
exists a universal family p : Ax — Sk of abelian varieties over Sk .
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1.3 THE BAILY-BOREL COMPACTIFICATION

Let Sk be a Shimura variety corresponding to a general pure Shimura datum
(G, %) and to a neat compact open subgroup K C G(Ay). Recall that Sk has a
canonical compactification S}, called Baily-Borel compactification, a projective
variety, in general singular, defined over the reflex field E(G, X) ([Pin90, Main
Theorem 12.3, (a), (b)]), in which Sk embeds as an open dense sub-scheme.
In the case of Hilbert-Siegel varieties, S% is then defined over Q.

1.3.1 STRUCTURE OF THE STRATIFICATION OF S} .

The variety S} admits a stratification by locally closed strata, amongst which
Sk is the only open stratum. The other ones form a stratification of the
boundary 053 = S} \Sk. If (Qm)mes is any ordering of any (finite) set
of representatives of the conjugacy classes of admissible parabolic subgroups
([Pin90, Def. 4.5]) in G, one sees from [Pin92, Section 3.6-3.7] that, for every
m € ®, there exist suitable finite subsets C,,, of G(A;) such that the set of
strata of 057}, is given by

{Sm.glm e ®,g€Cn}. (1.9)

Here, the locally closed subscheme S, , of 0S5} is the image of a canonical
morphism

ig : Swm(Km,g) = Sﬁm(Km’g)(gm,me) — S;} (1.10)

where the compact open subgroup 7, (K. 4) and the pure Shimura datum
(Gm,$Hm) defining the Shimura variety Sy, (x,,,) are given as follows: there
exists a canonical normal subgroup P, of Q,, ([Pin90, 4.7]) whose unipotent
radical W,,, coincides with the unipotent radical of @, (cfr. [Pin90, proof of
Lemma 4.8]), and we denote K,  := Pp(Af)Ng-K-g7 1, M 0 Py — Py /Wiy,
the natural projection, (G, 9., ) the pure Shimura datum obtained by quotient-
ing by W,,, any of the rational boundary components ([Pin90, 4.11]) associated
to Pp,. In particular, G, is a reductive subgroup of the Levi component of Q.
In the rest of the paper, we will rather use the stratification of 957 indexed
by m € ®, each of whose strata Z,, corresponds to the m-th conjugacy class of
admissible parabolics of G and coincides with the disjoint union of those sub-
schemes S, 4 with g € C,,. The latter will be called strata of 0S5 contributing
to Z,.

Remark 1.3.1.1. Suppose that the pure Shimura datum (G, X) satisfies condi-
tion (+) from [BWO04, page 7]. Then, it follows from [Will7, Lemma 8.2] that
the stratum S, 4 equals the quotient of S; (k. ,) by the action of a suitable
finite group and is smooth over E(G,X). Thanks to Remark 1.1.1.1.(2), the
condition is in particular satisfied by the Shimura datum (G, X) of 1.2.0.1.
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1.3.2 EXPLICIT DESCRIPTION OF STRATA IN THE BOUNDARY OF GENUS 2
HILBERT-SIEGEL VARIETIES.

Let us now describe in detail the (pure) Shimura data underlying the strata of
0S5 in the case of the Hilbert-Siegel datum (G, X) of Proposition 1.2.0.1.
Each admissible parabolic subgroup @ of G is conjugated to exactly one of the
subgroups Qo (Siegel parabolic) or @; (Klingen parabolic) defined in 1.1.2.
Denote respectively by Py and P; the canonical normal subgroups of Qg and
@1 considered in 1.3.1. Denote also by Gy, resp. G; their quotients by the
respective unipotent radicals, and by (Go, $0), resp. (G1,$1) the associated
Shimura data. An immediate generalisation to RespigGSpy  (and then to G)
of [Pin90, 4.25] (which treats the case of GSp,) gives us the following:

e The group Gy is identified with the factor G,, inside Qo/Wo =~ G, x
Resp|gGLa, r (remember (1.5)). Moreover, let k be the morphism S — Gor
which induces on real points, via the above identification,

zs (< 22 I . ))GQF (1.11)

and let £y be the set of isomorphisms between Z and Z(1). Consider the
unique transitive action of 7y(G,,(R)) on £ and denote by hg the constant
map 9o — {k} C Hom(S,Gor)). Then, the Shimura datum corresponding
to Gy is given by (Go, o). Thus, Gy contributes with 0-dimensional strata
to 055

e The group G is identified with the factor RespoGL2 X RS p(gCom i Gm
inside
Ql/Wl ~ (ReSF‘QGLgF XReSF‘QGm,F Gm) X ResF|QGm,F

(remember (1.6)). Denoting by $; the G1(R)-conjugacy class of the mor-
phism
hl : S(R) — Gl (R)
22 4 o2
oY Peers (1.12)

—y T

x+iy— (

the Shimura datum corresponding to G is then given by (G1,$1). Thus,
G1 contributes with d-dimensional strata to 0Sj. The description of the
Shimura datum shows that these strata are in particular isomorphic to (quo-
tients by the action of a finite group of) Hilbert-Blumenthal varieties.

DOCUMENTA MATHEMATICA 24 (2019) 1033-1098



1050 MATTIA CAVICCHI

By the description in (1.9), each stratum of 95} corresponds to a Shimura
datum of one of the above two types. In particular, it is either of dimension 0
(and it will be then called a Siegel stratum) or of dimension d (and it will be
then called a Klingen stratum).

1.4 THE CANONICAL CONSTRUCTION FUNCTOR AND ITS MOTIVIC VERSION
1.4.1 CONVENTIONS FOR HODGE STRUCTURES.

Let w : G,,, g — S be the cocharacter which induces the inclusion R* < C* on
real points. A representation (p, V) of S induces a (semisimple) mixed Hodge
structure on the real vector space V'; coherently with the convention of [Pin90]
1.3, we will say that the subspace of V' where p o w acts as multiplication by
t=* is the subquotient of V' of weight k.

Moreover, if (G, X) is a Shimura datum, defined by A : X — Hom(S, Gr), then
every representation p : G — GL(V) gives rise, for every = € X, to a Hodge
structure on V, by applying the above observation to p o h(z) o w.

1.4.2 THE CANONICAL CONSTRUCTION FUNCTOR.

Let (G, X) be a Shimura datum satisfying condition (+) from [BWO04, page 7],
K aneat compact open subgroup of G(Ay¢), and Sk the corresponding Shimura
variety. Denote by Rep(Gr) the Tannakian category of algebraic representa-
tions of G in finite dimensional R-vector spaces. If R is a subfield of R, we write
MVarg(Sk(C)) for the category of graded-polarizable admissible variations of
mized R-Hodge structure over Sk (C). Then, we have at our disposal ([Wil97,
Part II, Chap. 2]) the (exact tensor) Hodge canonical construction functor

uiy - Rep(Gr) — MVarg(Sk (C)). (1.13)

Moreover, let R be finite over Q, let ¢ be a fixed prime and fix a prime [ of
R above £. Write Ety r(Sk) for the Rj-linear version of the category of lisse
L-adic sheaves over Si. We have then ([Wil97, Part II, Chap. 4]) the (exact
tensor) ¢-adic canonical construction functor

u : Rep(Gr) — Bty r(Sk). (1.14)

Remark 1.4.2.1. (1) If (G, X) is a Shimura datum of abelian type, and Sk any
of the corresponding Shimura varieties, then the functor uf takes values in the
full subcategory Et%R(S k) of Ety r(Sk) formed by the mized lisse sheaves with
weight filtration, in the sense of [Wil97, Part I, Definition before Theorem 2.8].
Moreover, if V € Rep(Gr), then the weights of (V) in the sense of the latter
definition are identical to the weights of (V) as a variation of mixed Hodge
structure. These facts follow from [Pin92, Proposition (5.6.2)]. The hypothesis
is in particular satisfied by PEL type Shimura data, and so by the data (G, X),
(Go, $90) and (G1, H1) defined in Subsections 1.2 and 1.3.
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(2) If G is the group defined in 1.1 and V), is an irreducible representation of G
of highest weight A = A((k1,0, k2,0 )ocrr, ), then u&(Vy), resp. pl(Vy), is a
variation of Hodge structure, resp. an ¢-adic sheaf, pure of weight w(}\) := —c
(cfr. the convention fixed in 1.4.1, which is extended to variations of Hodge
structure in the obvious way).

Remark 1.4.2.2. (1) Let Varr(Sk(C)) denote the category of pure polarizable
variations of R-Hodge structure. In the following, we will abusively denote by
the same symbol pf the obvious factorization of the latter functor through
the category GrzVarr(Sk(C)). Analogously, if (G,X) is a Shimura datum
of abelian type, Rmk. 1.4.2.1.(1) will give us an obvious factorisation of the
functor pff through the category GrzEt,(Sk), still abusively denoted by pi.

e exac unctor extenas to a triangulate unctor, denote y e
2) Th t functor uf extends to a triangulated functor, denoted by th
same symbol,

p : D'(Rep(Gr)) — D2(Sk)r, (1.15)

where D2(Sk)g is the Rj-linear version of the “derived” bounded category of
£-adic constructible sheaves over Sk ([Eke90, Section 6]).

1.4.3 THE MOTIVIC VERSION OF THE CANONICAL CONSTRUCTION.

Let us adopt again the notation of the beginning of 1.3, applied to the
Hilbert-Siegel Shimura datum (G, X) of 1.2.0.1. Recall, for a base scheme
X (say, for our purposes, a separated, finite type Q-scheme), the triangu-
lated R-linear category DMg (X)r of constructible Beilinson motives over
X ([CD12]) and the ¢-adic realization functor R, on it, with values in the
category D%(X)g of (1.15) ([CD16, Sec. 7.2]). In our case, we will con-
sider a base § € {Sk, Sy, 055} U {strata of 9S}-}. Then, composition with
the collection of cohomology functors, resp. perverse cohomology functors,
R* : D%8)r — GrzEt, g(S), resp. H* : DY(S)p — GrzPerv(Et), r(S)
(where Perv(Et), ,(S) is the Rj-linear version of the category of (-adic per-
verse sheaves over S), gives rise to the f-adic cohomological realization, resp.
perverse cohomological realization functors.

Consider in particular the case S = Sk. The R-linear, tensor pseudo-abelian
category of Chow motives over Sk ([CHOO0]), denoted by CHM (Sk)r, faith-
fully embeds into DMy (Sk)r (more on this in paragraph 1.5.1). If S = Sk,
the restriction of R* o Ry to CHM (Sk)r (still denoted by R,) equals the
usual ¢-adic cohomological realization on this category; over CHM (Sk ), there
also exists the Hodge cohomological realization, with values in the category
GrzVarr(Sk(C)) of Rmk. 1.4.2.2. (1), denoted by Ry (one constructs such
realizations on relative Chow motives as in [DM91, 1.8]).

Recall now the universal family p : Ay — Sk from Remark 1.2.0.2. The
following result, valid for every PEL-type Shimura variety, is crucial:

THEOREM 1.3. ([Anc15, Thm. 8.6], stated as in [Will9a, Thm. 5.1])
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Let R be a subfield of R. There exists a R-linear tensor functor
[L : Rep(GR) — OHM(SK)R (116)
with the following properties:

1. The composition of fi with the Hodge cohomological realization is isomor-
phic to u& (with the convention of Rmk. 1.4.2.2. (1)).

2. for every prime £, the composition of i with the £-adic cohomological
realization is isomorphic to pl (with the convention of Rmk. 1.4.2.2.

(1)
3. i commutes with Tate twists.

4. IfV is the standard G g-representation on R®*, then ji sends V to the dual
of the Chow motive pi1 4, over Sk (the first Chow-Kiinneth component
of the Chow motive p,1 4, over Sk, cfr. [DM91, Thm. 3.1]).

Remark 1.4.3.1. For every positive integer n, let p, : A% — Sk be the n-
fold fibred product of Ax with itself over Si. Observe that the direct sum
V@ VYV of the standard representation V with its dual generates the Tannakian
category Rep(GRr), by taking tensor products and direct summands. Hence,
Theorem 1.3 implies that every object in the essential image of [i is isomorphic
to a finite direct sum @ M;, where each M; is a direct factor of a Tate twist

K3
of a Chow motive of the form pniﬁ*]lAn;, for suitable n;’s.

Let now V) be a irreducible L-representation of G, of highest weight A, where
the latter is as in 1.1.6.

DEFINITION 1.4. The Chow motive *V over Sk is defined by
AV = (V).

Remark 1.4.3.2. (1) Since pf(Vy) and pff(Vy) are pure of weight w()) (cfr.
1.4.2.1.(2)), the Hodge, resp. f-adic cohomological realizations of *V are zero
in degree # w()), and identical to uf$(Vy), resp. pX(Vy), in degree w(\).

(2) Since Sk is a variety of dimension 3d, (1) can be reformulated by saying
that the perverse Hodge, resp. f-adic cohomological realizations are zero in
perverse degree # w(\)+3d, and identical to u% (V3), resp. £ (Vy), in perverse
degree w(\) + 3d.

(3) Let Dy s, denote the ¢-adic local duality endofunctor over Si. Then
Re,s,c (M) = pi (Va)[-w(N)] (1.17)

and Dy s, (Re 5 (MV)) =~ Ry.s,c V) (w(N) +3d))[2w(N) + 6d], as can be seen by
imitating the first part of [Wil19b, proof of Thm. 1.6].
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1.5 A CRITERION FOR THE EXISTENCE OF THE INTERSECTION MOTIVE

Let *V be one of the Chow motives over the Hilbert-Siegel variety Sy intro-
duced in 1.4.3, and let § : Sx — Spec@Q be the structural morphism. Having
in mind the problem of defining motives associated to cuspidal automorphic
representations, we want to construct the lowest weight-graded object of §, *V
as a canonical Chow motive over Spec Q. The first aim of this subsection is to
recall a criterion (Theorem 1.6) which allows one to perform this construction,
formulated in the language of weight structures. The second aim is to gather
some tools (paragraphs 1.5.2-1.5.4) which we will use in order to characterize
the validity of this criterion in the case of genus 2 Hilbert-Siegel varieties. This
characterization (Corollary 2.1.0.2) will then be a consequence of our main
result, Theorem 2.2.

1.5.1 WEIGHT STRUCTURES AND A CRITERION FOR THE WEIGHT AVOID-
ANCE

Fix a subfield R of R and a scheme X of finite type over Q. According to
[Héb11], the category DMy (X )r (see 1.4.3) is equipped with a canonical
weight structure, the motivic weight structure, whose heart (the subcategory of
weight 0 objects) is denoted by CHM (X )g and called the (R-linear version
of the) category of Chow motives over X. If X = Sk as in paragraph 1.4.3,
then, after [Fanl6], this category is equivalent to the homonymous category
introduced in that paragraph.

DEFINITION 1.5. (cfr. [Wil09, Defs. 1.6-1.10]) Let M € DMg (X )r and let
a, B be integers. We say that M avoids weights o, ..., if a < 8 and there
exists an exact triangle in DMy .(X)gr

Mgafl — M — M25+1 — Mgafl[l]

such that M<,— is of weight at most o —1 and M>g4 of weight at least 541.
Such a triangle is called a weight filtration of M avoiding weights «, ..., 5.

Let now V) be the irreducible representation of G of highest weight

A= /\((k1,<77 kQ,U)UEIF ) C))’

(defined in (1.1.6)), Sk the genus 2 Hilbert-Siegel variety of level K correspond-
ing to (G, X) and *V € CHM (Sk) the Chow motive over Sg introduced in
Definition 1.4. Let moreover j : Sx — S}, resp. ¢ : 0S% — S denote the
open, resp. closed immersion in the Baily-Borel compactification S}, of Sk
(as in Subsection 1.3). The theory of [Wil19a] tells us that we will be able to
construct the desired Chow motive described at the beginning of this subsec-
tion (the intersection motive) whenever the Beilinson motive i}V over 057
avoids weights 0 and 1.

For a discussion of the definition of the intersection motive when the weights 0
and 1 are avoided, of its properties, and of the applications to the construction
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of motives associated to automorphic representations, we refer to Section 3.
Here we recall instead a criterion which allows one to prove the avoidance of
such weights, by looking at the structure of 9S5%. By 1.3.1, S} admits a
natural stratification 0S5 = Zp U Z1, indexed by ® := {0,1}. We denote by
i0 : Zo — 0S5% the immersion of the disjoint union of strata corresponding to
the conjugacy class of the parabolic Qg (i.e. of the closed, O-dimensional Siegel
strata), and by i1 : Z; — 0S5 the immersion of the disjoint union of strata
corresponding to the conjugacy class of the parabolic @ (i.e. of the open,
d-dimensional Klingen strata). Given this, one can prove the weight avoidance
by reduction to a stratum-by-stratum study of the weights (over 9S%) of the
(-adic realization of i*52V. Consider in fact the intermediate extension functor
Jix from the category Perv(Et), ; (Sk) to the category Perv(Et), ; (Sj) (cfr.
1.4.3). Then, [Will19a] gives us the sought-for criterion:

THEOREM 1.6. Let 8 > 1 be an integer and fiz a prime number . For any
stratum Z of 0S5}, denote by H"™ the n-th perverse cohomology functor on
DY(2)r and write j1.(Re(*V)) for

(i1 (Re (V) [w(N) + 3d))) [—w(X) — 3d).
The following assertions are then equivalent:
(1) the motive i*j}V avoids weights —3 +1,—B+2,...,B;

(2) for everyn € Z, H"i%i* i (Re(MV)) and H"i5i* 51.(Re(MV)) are of weights
<n-p.

Proof. Reasoning exactly as in the proof of [Wil19b, Thm. 2.2], we see that the
motive i*j}V € DMy .(0S} )1, is of abelian type, and that the stratification ®
is adapted to i*j2V ([Will9b, Def. 2.1]). Then, it suffices to use the fact that
the f-adic realization of the motive *V is concentrated in only one perverse
degree (Remark 1.4.3.2.(2)) together with its auto-duality (up to a twist and a
shift) (Remark 1.4.3.2.(3)) in order to apply [Will9a, Corollary (4.6)(b)]. O

1.5.2 PINK’S THEOREM.

With notation as in the previous paragraph, Thorem 1.6 leads us to analyze
the weights of the perverse sheaves

H i1 (Re(MV)),

for m € {0,1}. This will be done by studying first some strongly related
classical sheaves, which we describe now in the general setting. Hence, let
Jj : Sk = S} be the open immersion of a Shimura variety Sk, associated to
a datum (G, X) and to a neat compact open subgroup K C G(Ay), into its
Baily-Borel compactification. Recall the finite stratification (Z,,)mea of 0S5
introduced in 1.3.1 and for m € ®, denote by i,, : Z,,, — 0S5} the correspond-
ing locally closed immersion. In the case of the Hilbert-Siegel Shimura datum
of 1.2.0.1, this gives back the notation used to state Thm. 1.6.
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In the following, with the notation of 1.3.1, denote by Z a fixed stratum S, 4 of
0S5, contributing to Z,,, and denote by 7, (K,,) the associated compact open
subgroup m, (K. g) of G (Ayr) (ie., drop the subscript g), so that Z is the
quotient of a Shimura variety S  (k,.)- Associated to Z, there is a non-trivial
arithmetic subgroup Ty, of Q,,/W;,(Q), as defined in [BW04, Sec. 2]) (where
it is denoted by H¢).

Notation 1.5.2.1. Since Q.,,/W,, is reductive, there exists a complement M,, of
Gm inside @y, /W, i.e. a normal subgroup M,, of Q.,,/W,, which is connected
and reductive and such that Q.,,/W,, ~ G, - M,,, with G, N M,, finite.

Remark 1.5.2.2. Since K is neat, '), is torsion-free. Moreover, it is such that
I NG (Q) = {1} (cfr. [BWO04, Sec. 2]). We will then see Ty, as a subgroup
of the complement M, (Q) introduced above.

Denote now by uf, /Lz—m(Km) the extensions of the ¢-adic canonical construction

functors introduced in Remark 1.4.2.2.(2), and by R"™ the n-th classical, i.e.
non-perverse, cohomology functor on the category D%(Z,,)r (see 1.4.3), for
any stratum Z,, of 0S}. Our first main tool for the analysis of the weights is
the following theorem of Pink:

THEOREM 1.7. ([Pin92, Thms. (4.2.1)-(5.8.1)], stated in the shape of [BW04,
Thms. 2.6-2.9])

Let R be a subfield of R, V' € D*(Repy(G)), m € ® and Z a stratum of S},
contributing to Z,,.

(1) There exists a canonical isomorphism in D%(Z)r
i i Gery (V)] ; = @ R it (V)] 41,

(2) For every m, there exists a canonical and functorial isomorphism in
Et&R(Z)

R Gl (V)| , = @ i (HP (U, HY (Wi 5, V)
ptg=n

(8) Suppose that the datum (G, Hi) is of abelian type. Then, denoting by W
both the weight filtration in the sense of Remark 1.4.2.1.(1) and the one induced
on G, r-representations as explained in 1.4.1, the sheaf R”i;‘ni*j*uf(V')}Z 8
the direct sum of its weight-graded objects (in particular, it is a semisimple
object) and there exist canonical and functorial isomorphisms in Et; r(Z)

Gy Rris, il (V)| , = @ pym ) (HP(Fm,Gr}‘CWHq(Wm,R,V))).

ptg=n
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In order to explain the above statements, some remarks are in order:

Remark 1.5.2.3. (1) Reasoning as in [BWO04], before Definition 2.2, we see that

the functor u}rm(K’”), a priori with values in Et, r(Sr,, (k,.)), gives rise to a

functor with values in Et, g(Z), still denoted by the same symbol.

(2) (@m/Wm)r (seen as a subgroup of Q. r via the Levi decomposition)
acts on HY(Wp, g, V') via its action on W, and on V', and so it acts on
H?(T),, HI(Wy,,r, V). Hence, the latter space is seen as a representation of
Gm.r via the inclusion G, g C (Qm /W) R-

(3) The statement of point (3) contains in particular the fact that

GrXVHp(Fmv Hq(Wm,Ra V)) = Hp(rﬂ’w GerHq(Wm,Rv V))

1.5.3 KOSTANT’S THEOREM.

The second ingredient for the analysis of the weights is a theorem of
Kostant which allows one to make explicit the (Q,/Wy,)r-representations
HY(W,, r, V') appearing in Theorem 1.7.

Fix a split reductive group G over a field of characteristic zero, with root system
t and Weyl group T. Denote by vt the set of positive roots and fix moreover a
parabolic subgroup @) with its unipotent radical W. Let 1o be the Lie algebra
of W and vy the set of roots appearing inside w (necessarily positive). For
every w € YT, we define:

tH(w) ={acrtjwlad T} (1.18)
l(w) = [ (w)], (1.19)
T = {we Y|tH(w) Cewl. (1.20)

We can now state Kostant’s theorem:

THEOREM 1.8. ([Vog81, Thm. 3.2.3])
Let V be an irreducible G-representation of highest weight A\, and let p be the
half-sum of the positive roots of G. Then, as (Q/W)-representations,

HW V)~ @B Usiorp—n
weT|I(w)=q
where U, denotes an irreducible (Q/W)-representation of highest weight (1.

In order to spell out the consequences of this theorem in the cases of interest
to us, consider our fixed Galois closure L of the totally real field F' and the
group G underlying the Hilbert-Siegel Shimura datum of 1.2.0.1. We will apply
Kostant’s theorem by choosing G = G and by setting Q/W equal to, for

DOCUMENTA MATHEMATICA 24 (2019) 1033-1098



ON THE MOTIVE OF GENUS 2 HILBERT-SIEGEL VARIETIES 1057

i = 0,1, the Levi components (Q;/W;)r, of the standard parabolics Q; ., defined
as in 1.1.3. We have seen in 1.1.5 that the root system of G is given by

v= |] t, and that every component t, contains two simple roots p1 s, p2,0;
o€l
the other positive roots in such a component are then given by pi » + p2,» and

2pl,a' + p2,<7-

LEMMA 1.5.3.1. (1) Let T be the Weyl group of Gr (cfr. 1.1.5) and denote
by Y., for m € {0,1}, the sets defined in (1.20), corresponding to the choices
G =G and Q = Q.. Then, in both cases, for every o € Ip, there exist sets
T, = {wh}izo,...3 C Yo such that l(wl) = i for every i € {0,...,3} and that
ST T
o€lp

(2) For m = 0,1, one has 0 < l(w) < 3d for every w € Y. . Moreover, for
every integer ¢ € {0,...,3d}, there exists a bijection between the set {w €
Y., | l(w) = q} and the set of g-admissible decompositions of I'r

3
Py = {decompositions Ir = |_| Ii |ZZ|I}| =q}. (1.21)
j 3 i=0

Proof. (1) In the case of (Qo/Woy)r, by fixing a component t, of the root
system of G, (cfr. 1.1.5), one easily sees that the positive roots which are
contained in such a component and which appear in the Lie algebra of Wy 1,
are given by {p1., + p2,0,2p1,0 + P2,0+ P2,0}-

Coherently with the notation of 1.1.5, denote by s, the reflection, belonging to
the Weyl group T, whose axis is orthogonal to the root p. By direct inspection

of the action of the component Y, on t,, we find that Yo = [[ g ,, where
o€lp
3 are given by

.....

the elements of the sets T( , = {w} }i=o

0 _ -
w, = id,

1 _
wa - SP2,57
2 _
We = Spy,o+p2,65p2,0

3
Wo = Sp1,0+p2,0
These are the sets defined in the statement (for m = 0).

In the case of (Q1/W1)r, fix again a component t, of the root system of Gp:
the positive roots contained in this component which appear inside the Lie
algebra of W1 1, are given this time by {p1.0, 01,6 + p2,05 201,60 + P2,0}-

/

| »» Where the

With notations as in the previous case, we find that Y) = [[ T
o€l

elements of the sets T/ , = {w’ }io,...3 C T are given by
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0 _ -
w, = id,

1 _
wa - Spl,a7
2 _
Wy = Sp1 6+p2,65p1,0

3 _
Wo = 52p1 5+p2,0°

Again, these are the sets appearing in the statement (for m=1).

(2) The preceding point implies that every w = (wy)oer, € T}, determines a
decomposition

where 1% := {0 € Ip|w, = w}. Hence, since I((wo)oern) = . (wy), we get
o€lp
the desired bounds on {(w). The bijection in the statement follows immediately.

O

Notation 1.5.3.2. For a integer ¢ € {0,...,3d}, a g-admissible decomposition
U of I will be denoted by ¥ = (I%, I+, I%, I3.). If only one of the four subsets,
say 1%, is non-empty, we will denote ¥ by the symbol I% itself.

Fix now a irreducible Gp-representation V) of highest weight A\ =
AM(k1,0,k2,0)octp,c) (as defined in 1.1.6) and, for m = 0,1, apply Theo-
rem 1.8 to identify the cohomology spaces HY(Wy, 1, Vy) as (Qm/Wpn)L-
representations: employing the notation fixed in (1.21), we get isomorphisms

HY (W, Va) >~ @ Vg™, (1.22)
TeP,

where each V"' is an irreducible (Q,, /W, ) -representation. With the nota-
tions of Lemma 1.5.3.1.(1), the explicit computation of w.(A+p)—p for w € Y/,
(as in [Lem15, Sec. 4.3]) gives us the highest weight of such irreducible repre-
sentations, as stated in the following lemma:

LEMMA 1.5.3.3. (1) Adopting Notation 1.5.3.2, the highest weight of the ir-
reducible (Qo/Wo)r-representation Vy? in (1.22) is given by the restriction
(along the inclusion (Qo/Wo)r, C Qo,. C G1) of the character

)‘((771,0377270)0'6[1:’0), (123)
where
kl,a’ ZfO' € I% k2ﬁa' ZfO' € I%
k1,0 ifoelf ~koy—2 ifoelr
M,e = _ . 2 5 N2,0 = _ _ : 2
koo —1 ifocelp ki,—3 ifoelg
—kao =3 ifo €} k1o —3 ifoecl}
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(2) Adopting Notation 1.5.3.2, the highest weight of the irreducible (Q1/W1)L-
representation Vq}’q is the restriction (along the inclusion (Q1/Wh)r C Q1,1 C
G1) of the character

)\((6170362,0)0611:’0) (124)
where
kl,cr Zf o e I% k:27a‘ Zf o e I%
o ) k-1 ifoelp ) kot 1 ifoelp
Loy —kyo—3 ifoeld P T ) kio+1 ifoell
—k1o—4 ifoel} ke, ifoel}

1.5.4 COHOMOLOGY OF GROUPS OF UNITS

We finish this section by recalling, for the convenience of the reader, some
standard arguments that will be useful in the analysis of the cohomology of
arithmetic groups appearing in Theorem 1.7.

LEMMA 1.5.4.1. Let T be a free abelian group of finite rank r, acting on a finite-
dimensional vector space V' over a field L by L-linear automorphisms. Suppose
that T acts through a character A. Then, there exists an integer s such that the
cohomology space H*(T', V') is non-trivial if and only if the action of T on 'V is
trivial.

In this case, H*(T', V') is non-trivial if and only if 0 < s < r, and for such
integers s we have (non-canonically)

H(, V)~ V().

Proof. We proceed by induction on the rank r, denoting by VT the space of
invariants of the I'-action on V and by Vr the space of coinvariants.

e If r =1, we have I' ~ Z and it is then well-known that

VP ifs=0
HT, V)=V ifs=1
{0} otherwise

Now, choose a generator v of I'. Then, the space V! is non-trivial if and only if
there exists a non-zero element v € V' such that A(nv) - v = v for every n € Z,
which is equivalent to asking that A(y) = 1, i.e. that " act through the trivial
character. Analogously, the space VT is non-trivial if and only if I' acts trivially.
Thus, H*(T, V)~V if s = 0,1, and is trivial otherwise.
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e Suppose the assertion to be true for free abelian groups of rank r. If T' ~
Z™t!, then choose a basis of I' as a Z-module and use it to define an exact

sequence
0-2"-TI'—>7Z—-0 (1.25)

By the case » = 1, the Lyndon-Hochschild-Serre spectral sequence associated
to this exact sequence, i.e.

Ey = H™(Z,H"(Z",V)) = H™"(T,V) (1.26)

has only two non-trivial columns (for n = 0,1). Hence, for each s > 1, we have
an exact sequence

0— HZ,H(Z",V)) = H*(T,V) = H'(Z, H*"Y(Z",V)) = 0
and moreover
H(T,V) ~ HYZ, H°(Z",V)).

By the induction hypothesis, H*(T', V') can be non-trivial only if 0 < s < r+1.
Moreover, if the action of I' is non-trivial, the subgroup isomorphic to Z"
appearing in (1.25) can be chosen as acting non-trivially on V', and in this
case, by induction, H*(T",V) is trivial for every s. If, on the contrary, I acts
trivially, then the induced action of Z on the spaces H™(Z", V) is again trivial,
so that, by the case r = 1, we have

H(T,V)~ HZ,H(Z",V)) ~ H*(Z", V)~V
and for every s € {1,...,r + 1},
H*(T',V) =~ (non-canonically) H°(Z, H*(Z",V)) @ H (Z, H*"Y(Z",V)) ~
(by the case r = 1)
~ HYZ",V)® H* Y Z",V) ~
(by the induction hypothesis, and setting V(i) = {0} by convention)

: )

~ V( ) @V(sil) ~ V( s

O

The preceding lemma leads to the problem of determining the triviality of the
action of some free abelian groups, which in our case will arise as subgroups of
units of totally real fields. This is the object of the following lemma:

LEMMA 1.5.4.2. Let O be the ring of integers of F and fix (0,...,0) #
(n1,...,nq) € Z%. Then,

H loi(t)|" =1 for every t € O
i=1,....d

if and only if (n1,...,ng) €Z-(1,...,1).
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Proof. Choose a basis {1, ...,7v4—1} of O as Z-module. Writet = [ ~",
0,..,d—1

choose a d-tuple of integers (nq,...,nq) # (0,...,0), and define

logloy(v1)l ... logloa(m1)]
A= : :
loglo1(va-1)| ... logloa(va-1)|
Then, we have
[T leiw=1v¢
i=1,...,d

— Z a; Z ni10g|0i(7j)| =0

j=1,...,d—1 i=1,...,d

V (a1,...,a4-1) #(0,...,0) € 2471

a1 ni
= : Al s =0V (ar,. .. a0-1) #(0,...,0) € 2071
ad—1 ng
(where (-, -) is the standard scalar product in R9~1) <= (ny,...,nq) € ker A.
But by Dirichlet’s unit theorem, ker A =R - (1,...,1). O

Remark 1.5.4.3. (1) By choosing adapted bases, Lemma, 1.5.4.2 generalises im-
mediately to the case where OF is replaced by a finite-index subgroup of 0%,
and furthermore to the case where it is replaced by an arithmetic subgroup of
Fx.

(2) Consider the norm morphism N : Oj — {£1}. As the image of a neat
subgroup by a morphism is again neat, the elements of a neat subgroup of
Oy are of norm 1. Thus, if the neat subgroup I 7 is a finite-index subgroup
of O, we have that [[ |o(t)|" =1V teTyz <= [ o) =
i=1,...,d i=1,...,d
1VteTyyz and, by (1), Lemma 1.5.4.2 tells us that the action of I'g z

on a vector space by multiplication by  [] o;(¢)™ is trivial if and only if
i=1,...,d

(n1,...,nq) € Z-(1,...,1). This equivalence continues to hold in the general

case where I'y 7 is a (neat) arithmetic subgroup of F*, again via (1).

2 THE DEGENERATION OF THE CANONICAL CONSTRUCTION AT THE BOUND-
ARY

In this section we prove our main result (Thm. 2.2), i.e. the description of the
interval of weight avoidance of the motive i*j}V € DMy .(0S5) L in terms of
the corank of .
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2.1 STATEMENT OF THE MAIN RESULT

Recall the notations used and introduced in 1.4.3. In order to state our central
theorem, we need some more notions about A, especially the notion of corank
(see the introduction for a motivation in the context of automorphic forms):

DEFINITION 2.1. (cfr. [BR16, Def. 1.9]) Let A = A((k1,0, k2,0 )oerp,c)) (cfr.
1.1.6) be a weight of G.

(1) k1 := (k1,0)oerr Or ko := (ko,o)oerr is called parallel if k; , is constant
on Ir, equal to a positive integer  (and we write k; = k). For each x € Z,
the weight A is called k-Kostant parallel if there exists a decomposition Ip =
I% | | I+ such that
kio=r Voel%

koo =k+1 Voelk
The weight A is called Kostant parallel if there exists a « such that A is &-
Kostant parallel.

(2) We define the corank cor(X) of A by

0 if k5 is not parallel
cor(A\) =<1 if ko is parallel and ky # ko
2 if ko is parallel and k1 = ko

(3) Ais completely irregular if (k1 5, k2 ) is irregular for every o € Ip.

Assume ) to be dominant. We make some observations that may help enlight-
ening the above definitions and their mutual relationships:

e If cor(\) = 2, then A is completely irregular.

e If cor(\) > 1, then X is xk-Kostant parallel with respect to the decomposition
I = I}, with ks = k + 1; this decomposition and this « are then the only ones
such that both I} # @ and ) is Kostant-parallel with respect to them.

e If cor(A\) =1 and X is completely irregular, then necessarily k2 = 0.

e If cor(\) = 0, then there are at most a x and a decomposition Ir = I%| | I+
with respect to which \ is k-Kostant parallel.

Remark 2.1.0.1. The terminology Kostant parallel comes from the more specific
terminology that will be introduced in Definitions 2.3 and 2.5 (see also Remark
2.3.3.1) and expresses the fact that some linear combinations of the coordinates
of the character A are required to take a constant (parallel) value over certain
subsets of Ir. As the computations leading to those definitions will make
clear, this terminology is motivated by the fact that such linear combinations
and subsets arise from Lemma 1.5.3.3, which is an application of Kostant’s
theorem, Thm. 1.8.
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We can now state our main result, in the language of weight structures intro-
duced in 1.5.1:

THEOREM 2.2. Let V) be the irreducible representation of G, of highest weight
A= )\((kl,o'a kQ,U)UEIF B C))a

Sk the genus 2 Hilbert-Siegel variety of level K corresponding to (G, X) and
AV € CHM (Sk) the Chow motive over Sy introduced in Definition 1.4. Let
moreover j : Sk — Si., resp. i : 05}, — S} denote the open, resp. closed
immersion in the Baily-Borel compactification S}, of Sk. Then:

1. If X\ is not Kostant parallel, then the boundary motive i*;j2V is zero.

2. Suppose that cor(\) = 0 and that X\ is k-Kostant parallel. Denote dy :=
|IL|. Theni*j}V avoids weights —dy —dk+1,...,d1 +dk and the weights
—dy — dk, di +drk + 1 do appear in i*j}V.

3. Suppose that cor(\) = 1, with ks = K2, and that ki is not parallel. Then
i*j;\V avoids weights —dro+1, ..., dko and the weights —dko, dra+1 do
appear in i*j V.

4. Suppose that cor(\) > 1, with ky = kg, and that ki = k1. Denote
Kk = min{ki — Ka, ko }. Then i*j}V avoids weights —drk +1,...,dr. The
weights —dks, dry + 1 do appear in i*j)V, and if k1, kg have the same
parity, then the weights —d (k1 — k2), d(k1 — k2) + 1 do appear in i*j} ).

The proof of theorem 2.2 will be completed at the end of paragraph 2.5.2,
by invoking Theorem 1.6 and after having employed all the tools recalled in
Subsection 1.5. Admitting this theorem for the moment, we can prove its most
important corollary for the applications to the intersection motive (see Section
3), i.e. the following characterization of the absence of the weights 0 and 1:

COROLLARY 2.1.0.2. The weights 0 and 1 appear in the boundary motive i*j}V
if and only if \ is completely irreqular of corank > 1.

Proof. Suppose A to be rx-Kostant parallel with respect to (I%, /L) (otherwise,
by point (1) of the above theorem, there is nothing to do).

If cor(A) = 0, then, by point (2) of the above theorem, the weights 0 and 1
appear if and only if d; = 0 = k. But d; = 0 means that I+ = @, i.e. IS = Ip,
and by definition of Kostant-parallelism this implies k; = k. Now, necessarily
k > 0, because otherwise ko = 0 (remember that ki , > ko, for every o € Ir)
and cor(\) = 2, a contradiction.

If cor(\) = 1, with k2 = kg, then, by point (3) and (4) of the above theorem,
the weights 0 and 1 appear if and only if ko = 0; observe in fact that, even if
ki1 = k1, we have k1 — ko > 0 (otherwise cor(\) = 2, a contradiction). But if
ko = 0, A is completely irregular.

4Cfr. Footnote 5 for this supplementary hypothesis.
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If cor(\) = 2, then k1 = k = ko; this means that A is completely irregular, and
implies that, in point (4) of the above theorem, the parity condition is trivially
satisfied and that x; — k2 = 0, so that the weights 0 and 1 appear.

To conclude, we only have to observe that if cor(\) > 1 and A is completely
irregular, either ko = 0 or ky = K = ko (cfr. the observations after Def.
2.1). O

The rest of this section is devoted to the proof of Thm. 2.2, following the
outline given in the introduction.

2.2 THE DEGENERATION ALONG THE SIEGEL STRATA

With notation as in the statement of Thm. 2.2, fix a irreducible G-
representation Vy of highest weight A = A((k1,0,k2,0)oecrr,¢): We want to em-
ploy Theorem 1.7 to study the degeneration of pfX (V) along the Siegel strata,
whose underlying Shimura datum is (G, $¢), where Gy ~ G,,, as explained in
1.3.2.

2.2.1 WEIGHTS IN THE COHOMOLOGY OF THE UNIPOTENT RADICAL.

We start by identifying the possible weights appearing in the degeneration along
the Siegel strata, i.e. in the (Qo/Wy)-representations

Hq(WO,L,V)\) ~ @ V\g’q, (2.1)
vePy
for ¢ € {0,...,3d} (cfr. (1.22)). Recall from (1.5) that we have
(Qo/Wo)r ~ G 1, X H (GL2,1)o
o€lp

Let us then compute the weight of the pure Hodge structure carried by each
irreducible summand V¢

LEMMA 2.2.1.1. For every q € {0,...,3d} and for every q-admissible decompo-
sition U as in Notation 1.5.3.2, the action of the G, -factor inside (Qo/Wo)L

induces on V\S’q a pure Hodge structure of weight

w(A) — [Z (k1,0 + ko) + Z (k1,0 — koo — 2)+

oell oell
=Y (k1o — koo +4) = Y (k1o + k2o +6)).
oel? oel?

Proof. By the discussion in 1.1.3, the L-points of the G,,, r-factor are identified
with the subgroup

(8, Yeere lae 2y
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of Qo/Wo(L). With the notation of Lemma 1.5.3.3.(1) for the highest weight
of the representation Vy'?, and recalling (1.8), we see that G,, (L) acts on
Vo'? via the character

%.[CJ,- > (m,e+n2,0)]
ar o 7€lr ; (2.2)

By the convention fixed in 1.4.1 and the definition in (1.11) of the Shimura
datum (Go, $o), the expression for n; , and 72, given in Lemma 1.5.3.3.(1)
yields the formula in the statement. O

Notice for later use that if V is the standard 2-dimensional L-representation
of GLg 1, the above computations imply that the representation obtained by

restriction to the factor [[ (GLg1)os of (Qo/Wy)L is isomorphic to
o€l

( ® Symkl,a—kz,ov X detkz,a) ® ( ® Symkl’“+k2*°+2v ® det_kl"_2)®

O'GI?, O'GI},
®( ® SYmkl’”+k2’°+2V X detikl’aig) X ( ® Symkl,a*kzav ® det7k1,a*3)
oelf oel?

(2.3)

2.2.2 COHOMOLOGY OF THE ARITHMETIC SUBGROUP.

Consider now the arithmetic group I'g of Rmk. 1.5.2.2: according to Theorem
1.7, and remembering (2.17), we need to identify the cohomology spaces

HP (Lo, H' (W, VA)) ~ @ H(To, Vy'?) (2.4)
VePp,

and  their  weight-graded  objects  Gry H?(To, HY(Wo.1, V3)) o~
Duep, H? (Lo, Gry' VYY) (cfr. Remark 1.5.2.3(3)). As the cohomological
dimension of Wy 1, is 3d, these spaces can be non-zero only for ¢ € {0, ...,3d}.
We are now going to put further restrictions on the non-triviality of such
spaces.

Construction 2.2.2.1. Ty is identified with a neat (hence, torsion-free) arith-
metic subgroup of

Resp|gGLz, r(Q) = GLa(F)

(Remark 1.5.2.2). Let 7 be the projection GLo(F) — GLo(F)/Z(GL2(F))
and define T'y z := T'o N Z(GL2(F)) and I’y := 7(T) (non trivial, torsion-free
arithmetic subgroups of Z(GLqo(F')) ~ F*, resp. PGLy(F)). Then, I'g can be
written as an extension

1=Toz =Ty TH—1, (2.5)
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and applying the Lyndon-Hochschild-Serre spectral sequence to this extension
Ey = H"(T), H*(To,2, Vg 9)) = H™ (T, Vg'?) (2.6)

we see that every subspace HP (T, V‘E’q) is (non-canonically) isomorphic to a
direct sum

P v (2.7)

r+s=p
where every U™* is a subquotient of H"(I'y, H*(Toz,Vg?)). Thus, if
H*(Tg.z, V) is zero for every s, then HP(Lg, Vg'?) is.
Lemma 1.5.4.1 gives necessary conditions for the non-triviality of the cohomol-

ogy of a free abelian group acting on a vector space. The following lemma tells
us when these conditions are verified in a specific case:

LEMMA 2.2.2.2. Let Iy z be the group defined in Construction 2.2.2.1. Then,
its action on on Vq(,)’q is trivial if and only if there exists an integer k such that

k1o + koo =k Vo € 1%
kl,g—kQ,U—QZK VO‘EI};
—(kl,g - kg,g + 4) =k Voe€e 1}27
—(k1,0 + k2o +6)=r Voelz

(remembering Notation 1.5.3.2).

(2.8)

Proof. By Dirichlet’s unit theorem, we have that Respig Gm,r(Z) ~ O ~
Z%=1 x 7Z/27. On the other hand, the torsion-free group I'y 7 is commensurable
to Of. The group I'g z is then isomorphic to Z¢~1. By choosing generators
Y1, .- ,Yd—1, and remembering the discussion in 1.1.3, it is then identified with
the subgroup

o(t)

o(t ) _
{( € o (1)1 Joerp [t="4" - 7g3" P, pa1 € L}
o(t)!
— Qo/Wo(L)
Recalling the expression for the highest weight of the representation V£’q given

in Lemma 1.5.3.3.(1), we see that an element ¢t = 4" ... 45" € T 7 acts on

Vo'? via multiplication by

H g(t)m,a-i-né,a = H O-(t)k‘l,o-l‘k‘z,a . H g(t)klwa_kZ,a—Q .

o€lp o€l o€ell
. H O.(t)—(kl,a—kz,a+4) . H O—(t)_(kl,a+k2,a+6).
oel? o€}

The condition in the statement then follows by applying Lemma 1.5.4.2, via
Remark 1.5.4.3. O
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DEFINITION 2.3. If A satisfies the above condition with respect to a g-admissible
decomposition ¥ and to k € Z, we say that X\ is (k,0)-Kostant parallel with
respect to W.

DEFINITION 2.4. A g-admissible decomposition W is said to be (), 0)-admissible
if there exists k € Z such that A is (k, 0)-Kostant parallel with respect to .
The set of g-admissible decompositions which are moreover (), 0)-admissible

will be denoted by PN,
With these definitions in hand, we can prove:

LEmMMA 2.2.2.3. For every s ¢ {0,...,d — 1}, the cohomology space
HS(F(),Z,V\S’Q) is trivial. For every s € {0,...,d — 1}, it is non-trivial if and
only if X is (k,0)-Kostant parallel with respect to U and one of the following
two conditions holds:

1. Ip = I3 U1} In this case, q € {0,...,d} and Grj’UV(A)_dKV\E’q #{0};

2. Ip = 1% U I3, In this case, q € {2d,...,3d} and Gry(A)fdﬁVq?’q #{0}.

Proof. We make first a preliminary observation: suppose that A satisfies (2.8)
for a certain g-admissible decomposition U. We see then that if I% LI I}. is non
empty, then x > —2, and that if IZ U I3, is non-empty, then x < —4. This
follows from the formulae in (2.8) and from the fact that, since A is dominant,
k1,6 > ko > 0 for every o € If.

Now, Lemma 1.5.4.1 says that for each s € {0,...,d — 1}, HS(I‘O,Z,V\S"]) is
non-trivial if and only if the action of I'g » is trivial, i.e. if and only if condition
(2.8) is satisfied. But in this case, the previous observation says that only one
of the subsets I% L I+, I% U I3 can be non-empty. Then, in both situations,
the assertion on ¢ comes from the definition of g-admissible decomposition (Eq.
(1.21)), while the assertion on the weight appearing in Vq(f’q comes by comparing
the computation of Lemma 2.2.1.1 with the formulae in (2.8). O

Remark 2.2.2.4. The above lemma, which is an essential step towards Theorem
2.2, implicitly makes use of the “coincidences” in the computations in Lemma
2.2.1.1 and in (2.8), i.e. of the fact that the linear combinations of coordinates
of characters that appear in the two cases are the same. This can be rephrased
as follows. With M, as in Notation 1.5.2.1, let ¢ : Gy, — Z(My) 1 be the com-
position of the adjunction embedding G, 1, — G%L and of the isomorphism
GZLL ~ Z(My)r, deduced from the isomorphism (Qo/Wo)r, ~ Go,, x Mo, 1, ~

Gm, x I (GL2,)s. Let moreover w : G, g — S, resp. k: S — Gor be the
oc€lp
cocharacter defined in 1.4.1, resp. the morphism defining the Shimura datum

corresponding to Gg. Then, for every A, Lemma 2.2.1.1 and (2.8) show that
we have

)\|G0,R okow= A|Z(MU)'R{ 0 IR. (2.9)
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In other words, the “Hodge weight”, determined by the restriction of A to the
center of the Go-component of Qo/Wy, equals the (a priori different) character
obtained by restriction to the center of the My-component.

This is indeed a general phenomenon, as we explain now. Denote by A the
maximal Q-split torus in the center of (Qo/Wy) N G, which is a subgroup of
Z(My) isomorphic to G,,. If ¢4 is the isomorphism A ~ G,, obtained in the
same way as ¢, then Al , ot = Al otar. Hence, we see that (2.9) is
a consequence of [LR91, Prop. 6.4]: the proof in loc. cit. is valid for general
Shimura data and is based on the description of the action of A (through \)
via local Hecke operators.

Observe now that, by the considerations in Costruction 2.2.2.1, the necessary
conditions for non-triviality of the cohomology of Iy, 7 give necessary conditions
for non-triviality of the cohomology of the bigger group I'g. Applying this, and
employing Definition 2.4, the isomorphism from Theorem 1.7.(2) for a stratum
Z of 057} contributing to Zy now becomes

7Lk ek o (K ,
R (), = @ w” ™ @ HP (Lo, Vg?)). (2.10)
ptg=n \I/EPLY"’)

We are interested in the weight-graded objects

Gy R igi*jopnf ()|, = @ "™ @ H(To,Gr{'vy?).  (2.11)
p+g=n \I/EPLY"’)

We are going to find a second set of necessary conditions for these objects to
be non-trivial, through a dévissage which is “orthogonal” to the one described
in Remark 2.2.2.1.

Construction 2.2.2.5. The groups I'g 45 := I'o N SLy(F), resp. det I'y are non-
trivial subgroups of SLy(F), resp. F*, which are again arithmetic and torsion-
free. In particular, det ['y ~ Z9~! (as in the proof of Lemma 2.2.2.2). Moreover,
Iy can be written as an extension

1 =T — Do =5 det Ty — 1,
so that the Lyndon-Hochschild-Serre spectral sequence applied to this extension
Ey = H"(det To, H*(Tg 55, Vg?)) = H™ (Do, V'9)

tells us that each space H?(T'g, V) is (non-canonically) isomorphic to a direct
sum
@ v
r+s=p

where each N™° is a subquotient of H"(det I‘O,HS(FQSS,V\S"Z)). If
H"(det I‘O,HS(F07SS,V£’Q)) is zero for every r or HS(I‘O,SS,V‘S’Q) is zero
for every s, then H?(Ty, V‘S’q) is zero, t0o0.
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For every integer ¢ € {0, ..., 3d}, we know by (2.3) that det I'y acts on V\E’q, and

a fortiori on its subspace H%(T ss, V\B’q), via multiplication by the character
x defined by

te J] ok I] o@®)*2o72 I oo I o)<~ (2.12)

= oell cel? oel?

and the following lemma will allow us to identify the cohomology spaces cor-
responding to this action:

LEMMA 2.2.2.6. Let A = A\(k1, k2, ¢) be (k,0)-Kostant parallel with respect to a
q-admissible decomposition ¥ of I (notation asin 1.5.3.2). Fiz s € {0,...,3d}
and suppose that H*(Tg s, V\S’q) is non-zero. For every r € {0,...,d — 1},

H'(det To, H*(Toss, Vy?)) # {0} <= H°(det Do, H*(To,ss, Vig'?)) # {0}
<= one of the following conditions is satisfied:
1. Ir = I and ko is parallel. In this case, ¢ = 0;
2. Ir = I} and ko is parallel. In this case, ¢ = d;
8. Ip = 1% U1} and such that ki is parallel. In this case, g € {2d,...,3d}.

Proof. The point is to reduce oneself to the case where the action of det I'y
on the spaces HS(F07SS,V§’Q), for s > 0, remains semisimple. Now, if [®] €
H*(To s, V‘g’q) is the class of a s-cocycle

(o HomL[Fo,ss] (L[FO,SS]S+1, V\g#])’

then, for ¢ € det I'g, the element ¢.[®] € H*(Tg s, V\S’q) equals the class of the
morphism
t.® € Hompr, j(L[Co,ss)* ", Vg'?)

that to every (to, ..., t,) associates x(t)®(t~ (o, ..., ts)t) (where t is any lifting
of t in Ty, and x is as in (2.12)).
Consider now the subgroup of I'y defined in the proof of Lemma 2.2.2.2, which
is free abelian, generated by {7v1,...,7va—1}. The elements {(v1)?,..., (ya-1)?}
generate a free abelian subgroup I' of det Ty, of rank d — 1, each of whose
elements has a central lifting in T'g. Then, for every s, [ still acts via
the character x on HS(FOVSS,V\S’Q). We can now apply Lemma 1.5.4.1 and
Remark 1.5.4.3 to T’ and conclude that if H®(Tg s, Vy'?) is non-zero, then
H™ (T, H*(To 5, V) = HOT, HA(To,0, V) (") # {0} if and only if (re-
membering the definition of x) there exists an integer 6 such that
k:27a‘ =0 Vo € I%

7]4321072:9 VO’GI};

—k1,0—3:9 VO‘GI%

—k1,0—3:9 VO‘GI%

DOCUMENTA MATHEMATICA 24 (2019) 1033-1098



1070 MATTIA CAVICCHI

Now recall that k; , > k2, > 0: the above condition is then equivalent to
the one in the statement. Remember that precisely under this condition, the
character y is trivial.

In order to finish the proof, put F := det I‘O/f‘: it is a finite group, that we
can assume non trivial, of a certain order f (otherwise, there is nothing else
to do). Let {¢1...,¢s} be a system of representatives of F inside det 'y and

f
denote by e the endomorphism of multiplication by % > x(¢:). By considering
i=1

the Lyndon-Hochschild-Serre spectral sequence associated to this quotient and
by applying [Wei94, Prop. 6.1.10], we see that

HT (det To, H*(Tg.us, VO9)) ~ HO (J-‘, HT(f,HS(FOVSS,V\g’q))) ~

~e-H (T, H*(Does, Vi)

Now, if e is not the zero endomorphism, then e - HT(f‘,HS(I‘O,SS,V\I(f’q)) ~
H" (T, H*(Tg 55, Vg'?)), and the lemma is demonstrated. But in the case we are
working in, x is trivial, and e is just the identity morphism. O

The third and last set of necessary conditions for non-triviality of the cohomol-
ogy of T'yg comes from general results on the cohomology of locally symmetric
spaces.

LEMMA 2.2.2.7. The following statements hold.

(1) The cohomology space HP (T, Vq(,)’q) is trivial for every p < 0 and all p >
3d — 2.

(2) If the irreducible representation V\S’q is non-trivial as a SLg,L—
representation, then HP(Tg, V\I(,)’q) = {0} for every 0 <p < d.

Proof. 1. Recall from Notation 1.5.2.1 the group My ~ RespigGL2 r, and
denote by K. a maximal compact subgroup of My(R) (isomorphic to
[T O2(R)), by A the group S(R)Y (for S the maximal Q-split torus in-

o€l

side Z(My)) and by H the complex upper half plane. Then, the symmetric
space associated to My is defined by D := My(R)/KooAn, =~ H? x RIL
and every Vo? (as a My p-representation) defines a local system Vo? on
Xr, := D/Ty such that HP(Ty,Vg'?) ~ HP(Xp,,V3?) for every p. Let now
R(-), resp. ro(-) denote the radical, resp. the Q-rank of a Q-algebraic group.
The statement then follows from [BS73, Thm. 11.4.4], taking into account that

dim(D) — rg(Mo/R(Mj)) = 3d — 2.

2. Recall the group I'y 45 defined in Construction 2.2.2.5, define the (complex
analytic, connected) Hilbert-Blumenthal variety Xr, ,, as [o.ss\H? and abu-

sively also denote by V?I,’q the local system on Xp, ., induced by the restriction
of the representation Vq?’q to Mg ~ (Resp|gSLe,r)r =~ SLng. Then, for every
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p, we have H?(Do s, Vy?) ~ H?(Xr, .., V§?). The statement now follows from
the fact that HP(XFUVSS,V?I,"Z) = {0} for every 0 < p < d if V9,? is non-trivial
([M-SSYZ15, Thm. 1.1(i)]) and by employing the considerations at the end of
Construction 2.2.2.5.

(]

2.2.3 COMPUTATION OF WEIGHTS ALONG THE SIEGEL STRATA.

We can finally describe the weights appearing in the degeneration of the canon-
ical construction along the Siegel strata, in the cohomological degrees which
we will need in the sequel:

PRrROPOSITION 2.2.3.1. Let V) be the irreducible L-representation of G of high-
est weight A = M(k1,0,k2.0)0,¢) and Z a stratum of 0S5, which contributes to
Zy. Adopt Notation 1.5.3.2 and the notation of Definition 2.1.

1. Let n <0 orn > 6d — 2. Then the cohomology sheaf R”igi*j*uf(VAﬂZ is
zero.

2. Let 0 < n < d. Then the cohomology sheaf R"i(”ji*j*uf(VA)‘Z can be non-
zero only if ki = kg = k. In this case,

R jopt (Va)] = g0 (H" (Lo, Vi)
is pure of weight w(\) — 2dkg. If n =0, then it is non-zero.

3. Letne€ {d,...,2d —1}. Then the cohomology sheaf R"igi*j*uf(VA)‘Z can
be non-zero only if k1 = k1 and ks = ka. In this case,

R jupif (VA)Z = i) (H™ (Do, Vi) (2.13)

is pure of weight w(\) — d(k1 + k2). If kK1 # k2 and n = d, then it is non-zero.

4. Letn € {2d,...,3d—1}. Then the cohomology sheaf R"igi*j*,uf(V,\)‘Z can
be non-zero only if k1 = k1 and ky = ka. In this case, it is isomorphic to

g O H™ (To, Vi®)) @ ) (" (Lo, V),
where the first factor is isomorphic to
G () — (s o) B8 ettt (V)]
and the second one to
Gy () 420 d(ss —ro) R E51 Gttt (VA)]

If n = 2d, then the second factor is non-zero.
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Proof. We begin by proving the necessary conditions for the non-vanishing of
the cohomology sheaves.

1. Clear from Remark 2.2.2.7.(1) and from the fact that the representations
Vo'? are trivial for ¢ > 3d.

2. The isomorphisms (2.10) and Lemma 2.2.2.6 (taking into account the con-
siderations at the end of Construction 2.2.2.5) imply that, in order to have
non-zero cohomology objects in degree 0 < n < d, ke has to be parallel and
that ¢ can only take the value 0. On the other hand, adding the Kostant-
parallelism conditions imposed by Lemma 2.2.2.3, we obtain that k; has to be
parallel, too. Moreover, by hypothesis, we are in the case p € {0,...,d — 1},
but in this interval, by Lemma 2.2.2.7.(2), VIO%’O can have non-trivial cohomol-

ogy objects only if it is the trivial SLgy r-representation. Now, looking at the
description in (2.3), we see that this is the case if and only if k; and ks are
equal.

3. The isomorphisms (2.10) and Lemma 2.2.2.6 (taking into account the con-
siderations at the end of Construction 2.2.2.5) imply that, in order to have
non-zero cohomology objects in degree d < n < 2d, k2 has to be parallel and
that ¢ can only take the values 0 or d. Again, the Kostant-parallelism condi-
tions imposed by Lemma 2.2.2.3 imply that k; has to be parallel, too. Now
if ¢ = d, then p € {0,...,d — 1}, and in this interval, by Lemma 2.2.2.7.(2),
Vjcjlp’d can have non-trivial cohomology objects only if it is the trivial SLg, -
representation; but the description in (2.3) shows that this is never the case.
The only remaining possibility is then ¢ =0 and p € {d,...,2d — 1}.

4. Arguing as above, we see that k; and ks have to be parallel, and that ¢
can only take values in {0,d,2d,...,3d}. The cases ¢ = 0 and ¢ = d give
the two summands in the statement. If 2d < ¢ < 3d — 1, then the fact that
p€{0,...,d—1} and Lemma 2.2.2.7.(2) imply that the spaces H?(Ty, Vq(f’q) can
give non-trivial contributions to the cohomology objects if and only if V£ ?is the
trivial SLS, ;-representation. However, this is never the case, by the description
in (2.3) (remember that in this case, ¥ is of the form (2, @, I # &, 13)).

Finally, in all cases, the statements about weight-graded objects follow from Re-
mark 2.2.2.3 and from the isomorphisms (2.11), while the non-triviality state-
ments are consequences of the following proposition. O

PROPOSITION 2.2.3.2. Let A\, Vy and Z be as in Proposition 2.2.3.1. If ki = k1
and ks = Ko, then:

1. if k1 = Ka, then the lisse (-adic sheaf u}r”(KU)(HO(FO, Vi) on Z is non-
F
zero;

2. if K1 # Ka, then the lisse L-adic sheaf MQO(KU)(Hd(FO, Vﬁ;o)) on Z is non-
F
zero;
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3. the lisse (-adic sheaf u}r”(KU)(Hd(FO, Vlol’d)) on Z is non-zero. If moreover
F

k1 and ko have the same parity’ , it is locally of dimension > h, where h :=
ITo,ss\P'(F)| is the (strictly positive) number of cusps of the (complex
analytic, connected) Hilbert-Blumenthal variety Xr, ., introduced in the
proof of Lemma 2.2.2.7.(2).

Proof. If k1 = kg, then the spectral sequence considered in Construction 2.2.2.5
shows that the space H°(Tg,V) is isomorphic to H°(det T'g, H'(T'¢gss,V)),
which, by the proof of Lemma 2.2.2.6, is in turn isomorphic to H?(Tg ss, V).
Moreover, the description in (2.3) tells us that here, V' is the trivial SLS, -
representation, and thus, it is a 1-dimensional L-vector space. This shows
point (1).

Assume then to be in one of the two following cases: either k1 # k2 and V is the
irreducible SLgﬂ -representation VIO%’O (which in this case is non-trivial), or V :=
Vl(ilv’d (which by the description in (2.3) is then isomorphic to a§ Sym"1tr2t2y,

F

where V is the standard 2-dimensional L-representation of SLg 1., so that Vjcjlp’d

is never trivial).
In both cases, the same Remark 2.2.2.5 and Remark 2.2.2.7 show that the space
H%(T, V) is isomorphic to H°(det 'y, H*(T'g 55, V')), which by the hypothesis
on k1 and k3 and by the proof of Lemma 2.2.2.6 is in turn isomorphic to
H%Tgs,V). Now, for every integer & > 0, [M-SSYZ15, Thm. 1.1(iv)] shows
that dim H4To ., ® Sym"V) = h 4 §(T.ss, %), where §(I'g ss, &) is a non-
o€l
negative integer which depends on I'g s and on . This is enough to show (2)
and the first half of (3).
To finish the proof of (3), suppose that x; and k2 have the same parity and
put K1 + ko =: 2k. We will show that, in this case, § := 6(To,ss, 26 + 2) > 0.
Actually, [M-SSYZ15, Thm. 1.1 (iv)] shows that, more precisely, 6 = h, + &',
where ¢’ is a certain positive integer and hy, is the dimension of the space of
cusp forms of (parallel) weight 2k +4 with respect to the group I'g ss. Thus, in
order to conclude, it is enough to show that this dimension is strictly positive.
Let Xr,,, be the complex analytic Hilbert-Blumenthal variety associated to
I'y,ss- According to [Fre90, Chap. II, Thm. 3.5], we have

hi, = vol(Xr,,.)(2k + 3)* + Leusp, (2.14)

where Lc,sp is a (not necessarily positive) integer which does not depend on «
(recall that Ty s is neat). Now, if d is odd, then the discussion in [Fre90, page
111] implies that L¢ysp = 0, so that we obtain hy, > 0, as desired.

If instead d is even, let us consider a smooth toroidal compactification Xr, ,, of
Xry..,- Then, by applying the Hirzebruch-Riemann-Roch theorem to certain

5This restriction on parity is necessary in order to apply the results from [Fre90], which
in turn depend on the formulae for the dimension of certain spaces of cusp forms proved in
[Shi63]. By [Shi63, Note 11, pag. 63], it is possible that these formulae could admit a suitable
generalisation, such that the hypothesis on parity could be removed.
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locally free (automorphic) coherent sheaves on Xpo’ss, the authors show in
[M-SSYZ15, Prop. 7.10] that

hi, = X(XFoﬁss’OXro,ss) + € (2.15)

for a certain integer ¢. Now, [Fre90, Chap. II, Thm. 4.8], implies that, if d
is even, x(Xr,..,Ox ) > 0 (this quantity is in particular equal to 1 plus

To,ss
the dimension of the space of cusp forms of weight 2 with respect to I'g s5) and
that

X(XFU,SS’ OXFU,SS) = VO](XFO,SS) + Leusp (2.16)

(let us stress the fact that L.,sp is the same integer of equation (2.14)).
By replacing the expression for x(Xr,,,,Ox, ) into equation (2.15), the
equality between the two expressions (2.14) and (2.15) for hy, tells us that
€ = vol(Xr,..)(2k + 3)* — vol(Xr,,,) > 0. The equation (2.15) then implies
that hy, > 0 in this case too. (]

To,ss

2.3 THE DEGENERATION ALONG THE KLINGEN STRATA

Let A, V) be as in Subsection 2.2 and let us now study, by using Theorem 1.7,
the degeneration of pf€(V)) along the Klingen strata. The group G in their
underlying Shimura datum is isomorphic to Resp|gGLa, F XRes pgCom. - det Gm

(cfr. 1.3.2).

2.3.1 WEIGHTS IN THE COHOMOLOGY OF THE UNIPOTENT RADICAL.

As before, let us start by identifying the possible weights appearing in the
degeneration along the Siegel strata, i.e. in the (Q1/W7)-representations

Wi, Va) ~ @ Ve, (2.17)
veP,

for ¢ € {0,...,3d} (cfr. (1.22)). Recall from (1.6) that

(Q1/W) ~ (([] (GL2.L)o) X 11 ©mr)o Gmr) x [ (G

o€lp oclp o€lr

We are now going to compute the weight of the pure Hodge structure carried
by each irreducible summand Vq}’q.

LEMMA 2.3.1.1. For every q € {0,...,3d} and for every q-admissible decom-
position ¥ as in Notation 1.5.8.2, the action of the factor isomorphic to

( H (GL2,2)0) X [T (Gum.L)e.[Tdet Gm.L

I
o€l 7elr
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inside (Q1/Wh) 1, induces on Vq}’q a pure Hodge structure of weight

w\) =Y ket > (koo —1) = > (koo +3)— > (k1o +4)] (2.18)

UGI?, UGI}, UGI% GGIIS,

Proof. By the discussion in 1.1.3, the L-points of the factor of (Q1/W1)r that
we are considering are identified with the subgroup

p
{( T Yocrp | p € L, 7, € L™ for every o € I}
P
of Q1/Wi(L). By the convention fixed in 1.4.1 and the definition in (1.12) of
the Shimura datum (G1, 1), the expression given in Lemma 1.5.3.3.(2) for the

highest weight of the representation V\I}’q yields the formula in the statement
(recalling (1.8)). O

2.3.2 COHOMOLOGY OF THE ARITHMETIC SUBGROUP.

Consider now the arithmetic group I'y of Rmk. 1.5.2.2, which is identified
with a torsion-free arithmetic subgroup of Resp|gGy,, r(Q) = F* (cfr. Remark
1.5.2.2). We need to identify the cohomology spaces

HP(Ty, HY Wy 1, VA)) ~ € HP(T1, Vy?).
TeP,

Reasoning as in the proof of Lemma 2.2.2.2, we obtain:

LEMMA 2.3.2.1. The group Ty is isomorphic to Z%~', and for every q €
{0,...,3d}, its action on V\I%’q is trivial if and only if there exists an integer k

such that
kl,a’ =K Vo € I%

k27071:I€ VO’GI%
—(k2,s +3) =K Vo€ I}
—(k1,0+4)=K Voelz

(2.19)

(remembering Notation 1.5.3.2).
Hence, we are led to pose the following:

DEFINITION 2.5. We say that A is (s, 1)-Kostant parallel with respect to a
g-admissible decomposition ¥ if A satisfies condition (2.19) with respect to
K € Z.

DEFINITION 2.6. A g-admissible decomposition ¥ is said to be (A, 1)-admissible
if there exists k € Z such that A is (k, 1)-Kostant parallel with respect to .
The set of g-admissible decompositions which are moreover (A, 1)-admissible

will be denoted by 7315“).
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Then, the proof of the following lemma is completely analoguous to the proof
of Lemma 2.2.2.3:

LEMMA 2.3.2.2. For every s ¢ {0,...,d—1}, the cohomology space H*(T'1, V\;’q)
is trivial. For every s € {0,...,d— 1}, it is non-trivial if and only if X is (k,1)-
Kostant parallel with respect to ¥ and one of the following two conditions holds:

1. Ip = I% U1} In this case, q € {0,...,d} and Grj’uv(k)_dqu%’q #{0};

2. Ir = I3 U I} In this case, q € {2d,...,3d} and Grj’uv(k)_dié’q #{0}.
Remark 2.3.2.3. An essential ingredient for the proof of the above lemma is
again the same phenomenon of Rmk. 2.2.2.4.

Remembering Definition 2.6, the isomorphism in 1.7.(2) for a stratum Z’ of
0S% contributing to Z; becomes now

2= @ e @ HL V) (2.20)

ptg=n vepM Y

R uf (V)

and we want to study the weight-graded objects

o @ e @ HrL G V). (221)

ptg=n vepMY

Gl Rt ol (V3)

2.3.3 COMPUTATION OF WEIGHTS ALONG THE KLINGEN STRATA.

In order to describe the weights appearing in the degeneration of the canonical
construction along the Klingen strata (in the cohomological degrees which will
be needed in the sequel), we just need a last preliminary remark:

Remark 2.3.3.1. 1. Suppose the dominant weight A = A\((k1,0, k2.0 )oerp,c) of
Gy, to be (k,1)-Kostant parallel with respect to a decomposition ¥ of the
form (I%,I},@,2). Then, by the definition of Kostant-parallelism and the
hypothesis on A, we see that such x and ¥ are necessarily unique, except if
ki = k1 and ks = k2. In this last case, there exist exactly two pairs (k, (I, I}))
such that X is k-Kostant-parallel with respect to (I%,1}), i.e. (k1,I%) and
(KQ — 1, I%v)

2. The condition on A of being (k,1)-Kostant parallel with respect to a de-
composition ¥ of the form (I%, I}, &, @) coincides with the condition of being
k-Kostant parallel introduced in Definition 2.1; hence, we will adopt this ter-
minology in the following. Moreover, by the preceding point, whenever we
suppose A to be x-Kostant parallel with respect to a decomposition such that
1% +# @, resp. I+ # @, then I%, resp. I}, is uniquely determined by .

Then, keeping in mind the above Remark, by employing Lemma 2.3.2.2 and
reasoning along the same lines of the proof of Prop. 2.2.3.1, we deduce the
following:
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PROPOSITION 2.3.3.2. Let V) be the irreducible L-representation of G of high-
est weight A = AN(k1,0,k2,0)0,¢) and Z' be a stratum of 0S5, contributing to
.

1. Letn <0 orn > 4d—1. Then, R"i}i*j.uy (Va)| ,, is zero.
2. Letn € {0,...,d — 1}. Then the (-adic sheaf R™i{i*j.puf* (VA)|,, on Z' is
non-zero if and only if the following hold:
e )\ is k-Kostant parallel and 1% +# &;
e posing di = |I+| € {0,...,d — 1}, we have n > d;.
In this case,
R il (V)] o= i 0 (0 (T, V™))
and it is pure of weight w(\) — dk.
3. Letn € {d,...,2d — 1}. Then the {-adic sheaf R"ii*j.p; (V3)|,, on Z' is
non-zero if and only if the following hold:
e )\ is k-Kostant parallel and I +# &;
e posing di == |IL| € {1,...,d}, we have n < d —1+d;.
In this case,
R G (Va)| g o= ) (0 (T, V™)
and, denoting ko := Kk + 1, it is pure of weight w(\) + d — dkas.
4. Letn € {2d,...,3d — 1}. Then the (-adic sheaf R"i{i*j.pi (V3)|,, on Z'

is non-zero if and only if \ is (k,1)-Kostant parallel with respect to a ¥ such
that Ir = I% U I3 and I% is non-empty. In this case, posing d3 = |I3| €
{0,...,d—1},

T 2k 2k, 1 (K1 n— _ 1
R™i71 ]*U?(VA) g =2 My ( )(H 2d dz(Fl,V‘I} 2d+d3))

and, denoting ks = —k — 3, it is pure of weight w(\) 4+ 3d + dks.

2.4 THE DOUBLE DEGENERATION ALONG THE CUSPS OF THE KLINGEN
STRATA

Keep the notation of Thm. 2.2. In order to study the weights of the motive
i*j2V, the study of the degeneration of the canonical construction to each
stratum of 05% will not be enough: in Lemma 2.5.1.3, we will also need to
consider a double degeneration, the one of mixed sheaves on the Klingen strata,
already obtained by degeneration, along the boundary of the closure in 057 of
the Klingen strata themselves.
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By paragraph 1.3.2, every stratum Z’ of 057 contributing to Z; (as defined
in 1.5.2) is (a smooth quotient by the action of a finite group of) a Hilbert-
Blumenthal variety Sy, (k,) of dimension d. Remember from the same para-
graph 1.3.2 that the Shimura datum underlying S (k,) corresponds to the
algebraic group G1 =~ Resp|oGLa, r XRes oG det Gy, whose L-points are
identified, up to conjugation, with

o ba
G1(L) = {( “ Joclr |0, be, Cordy € L p € L,

Co dos
such that p = a,d, — byc, for every o € Ip} =

={(As)ocrr € [ GLa.L(L) such that det(A,) = det(As) V 0,6 € Ir}.

o€l

The boundary 05;1( K1) of the Baily-Borel compactification S’;l (K1) of Sx (k1)
is 0-dimensional: it is in fact a finite disjoint union of strata (called cusps),
obtained as Shimura varieties coming from the group G,,. Fix such a stratum
7" corresponding up to conjugation, in the formalism of 1.3.1, to the standard
Borel subgroup of G (denoted by Q2 for the sake of coherence with the nota-
tions in the sequel): it is a representative of the unique G1(Q)-conjugacy class
of standard maximal parabolics of G;. Its unipotent radical will be denoted by
Ws. The Levi component of Q5 is a torus 77 isomorphic to

Gm X ResF|QGm1F (222)

via the isomorphism defined on L-points by

Ty(L) ~ Gm(L) x [ Gm(L)s

o€l

1 )UEIF = (ﬁ’ (U’U)UEIF)'

Then, the Shimura datum (G2, $)2) underlying Z” is such that the L-points of
the group Gy ~ G, are identified with

- I
Gy ={(( ", Veere 1€ L) S TiE)
and $)7 is defined exactly as ) in (1.11) (cfr. [Pin90, Example 12.21]).
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2.4.1 'THE DEGENERATION OF THE CANONICAL CONSTRUCTION ALONG THE
CUSPS OF HILBERT-BLUMENTHAL VARIETIES.

Let j’ be the open immersion of S, (x,) in S;I(Kl) and adopt the notations of
paragraph 1.5.2, by replacing j with j' and K with m; (K7). The stratification
d of 05;1( K1) is then formed by only one element, called Z>. Denote by is :
Zy = ST (K1) the closed immersion complementary to j'. Let us consider a
stratum Z” contributing to Z, and let us spell out, thanks to Theorem 1.8,
the conclusions of Theorem 1.7, applied this time to ;Lgl(Kl)(UX), where U, is
a irreducible L-representation of G 1.

Such a representation is determined by its highest weight x = x((ho)oers, 9),
where h, € Z,h, > 0Vo € Ip, g € Z (we will write H for the vector (hy)sery)-
This character is defined on the points of the maximal torus 77 , of G, by

B
7 Joere =+ T] ule -5

1 o€lp
o

The vector H is called parallel if there exists an integer h such that h, = h for
every o € Ir. In that case, we will write H= h.

Remark 2.4.1.1. Notice that, with these conventions, the restriction to 7%,z of
the character A((k1,6,k2,0)0,c) defined in 1.8 is given by

X(k2o)or g [+ (ko + kao)]). (2.23)

Using the notations fixed in the beginning of this subsection, we have an iden-
tification
(Q2/W2)r, =T 1,

so that, by Theorem 1.8, the cohomology spaces H1(W5 ,, U, ) are identified

with representations of the group 71,1, ~ Gy X [[ Gum,z- Let us determine
o€lp
the weight of the pure Hodge structure carried by each irreducible factor of

these representations.

LemMA 2.4.1.2. Let x = XxX((ho)ocir,g) as above.  Then, the spaces
HY(Ws,1,,Uy) are non-trivial if and only if ¢ € {0,...,d}. For each q €
{0,...,d}, letting I run over the subsets of Ir of cardinality q, they are di-
rect sums of pure Hodge structures of weight

2942 (ho +1). (2.24)

Proof. We begin by making explicit the data which are needed in order to
apply Theorem 1.8. By choosing (T3 1,Q2.1) as a maximal torus and a Borel

of G1,1, we can identify the set of roots v of Gy, with || t,, where each ¢,
o€l
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is a copy of the set of roots of GLg 1, corresponding to the obvious choice of
maximal torus and Borel. For each fixed & € Ip, ts contains only one simple
root ps, which, through the inclusion of vz inside t, acquires the expression

P& = p&((ha)aefpag)v where

2 ifo=¢
h"_{ 0 otherwise rg=1

The Weyl group Y of G; 1, is in turn isomorphic to the product [[ Y., where,
o€l
for each fixed 6 € I, Y5 is a copy of the Weyl group of GLs 1. The latter is

a finite group of order 2, the image of whose only non-trivial element through
the inclusion of T4 in T is given by the element of 75 which acts on X*(71,1)
in the following way: if x = x((ho)oerr,9), then 75.x = x((Us)ocry, f), where

—h, ifo=¢ B
lo = { hy otherwise ’ f=9-hs
By employing the notations of 1.5.3, it is now clear that, with respect to the
only parabolic of Gy 1, (up to conjugation), i.e. Qs2.r, we have Y/ = T, and
that, if w = (ws)eerr € Y =~ [] Yo, we have £(w) = t{o € Irp|ws, = 75 }.
o€l
The explicit computation of w.(x + p) — p (for w € T’) and Theorem 1.8 now

give the isomorphisms

H' Wy, Uy~ P UL (2.25)
ICIF sst. |I|l=q
where the U}’s are 1-dimensional L-vector spaces on which G,,, 1, X [[ G 1

o€lp
acts via the character

X/((ZG')O'EIF ) g/)
defined by

hy ifodl ,
l":{ —hy — 2 ifoi[ g =9-) (ho+1).
oel
To obtain the statement, it is now sufficient to remember that the Hodge struc-
ture on each U} is induced by the action of the real points of the factor G,, of
Ty, corresponding to the Shimura datum (Ga, $2) defined in 2.4, and to employ
the convention fixed in 1.4.1. O

Consider now the group I'; of Rmk. 1.5.2.2, which is a torsion-free arithmetic
subgroup of RespigGm(Q), i.e. of F* (cfr. the isomorphism (2.22)). By the
same argument as in the proof of Lemma 2.2.2.2, it is isomorphic to Z4~1. We
need to study the cohomology spaces

HP(Ty, HY(Wa.1,,Uy)) =~ P HUD).
ICIF ss. |I|l=q
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By choosing generators ws,...,wg—_1, 2 is identified with the subgroup
1
o(t _
{( () 1 )O'GIF |t:wf1'--wsd_llﬂplv"'vpdflEZ}
ot
— Tl,L(L)
and an element ¢t € Ty acts on U} by multiplication by [] o(w)’ -
ol

[T o(w)~""~2. By reasoning as in the proof of Lemma 2.2.2.3, and employing
oel
Lemma 2.4.1.2, we get:

LEMMA 2.4.1.3. The cohomology space H?(I's,U}) is non-zero if and only if
h = h and one of the following conditions is satisfied:

1. I = @. In this case, ¢ = 0 and the Hodge structure on U? = HO(W&L, Uy)
is pure of weight —2g;

2. I =1Ip. In this case, ¢ = d and the Hodge structure on U$ = HY(Ws,1,,U,)
is pure of weight —2g + 2d + 2dh.

The isomorphism of Theorem 1.7.(2) for a stratum Z” contributing to 957
now becomes

R (ia)" i " (U)

= @ @ “22(K2)(Hp(r2,U}1)). (2.26)

pHg=nIClp s. ¢ |I|=¢q

The computation of the weights of these cohomology objects is then a direct
consequence of 2.4.1.3:

PROPOSITION 2.4.1.4. Let U, be the irreducible representation of G1 1, of high-
est weight x = x(h,g) and Z" a stratum contributing to 8S;1(K1). Then:

1. Let n <0 orn>2d—1. Then R”(ig)*j,’ku;l(Kl)(UX)‘Z” is zero.

2. Letn € {0,...,d —1}. Then R"(iy)*j.uf* % (U,)

is non-zero if and
Z ’
only if b is parallel. In this case, it is isomorphic to MQZ(KZ)(H”(FQ, U?)), and
pure of weight —2g.
3. Letn € {d,...,2d —1}. Then R"(iy)*j.us" " (U,)

only if h = h. In this case, it is isomorphic to u?Z(KZ)(H"’d(FQ,UId)), and
pure of weight —2g + 2d + 2dh.

Remark 2.4.1.5. The results of Proposition 2.4.1.4 had already been obtained
in [Wil12, Thm. 3.5], by slightly different considerations, when the representa-
tions U,, are such that g = 0.

is non-zero if and
Z//
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2.4.2 'THE DOUBLE DEGENERATION.

Let A = A((k1,6, k2,6)0,¢), VA and Sk be as in Subsection 2.3, and let Z’ and
Sx.(k,) be as in paragraph 2.4.1.

By (2.20) and Theorem (1.7).(1)-(2), we have the following isomorphism in the
derived category:

i*{i*j*uf(VA)lz,’—V@l D " wra)| [~m], (2.27)
m  Lp+g=m
where

vre= @y HP(I, V). (2.28)

Tepth

In this latter direct sum, every factor is, by restriction, a certain power of an
irreducible representation of Gz, whose dominant weight is the one prescribed
by Remark (2.4.1.1) applied to the character A\((e1,4,€2,6)0ers,c) defined in
(1.24).

Recall that the functor /L;l(Kl) used in the isomorphism (2.27), with values
in Ety r(Z'), is deduced from the canonical construction functor, which takes

values in Ety r(Sx, (k,)) (Remark 1.5.2.3.(1)). In order to study the degener-

ation of u}rl(Kl)(vaq) along the points in the closure of Z’ in 9575, we will

rather consider the sheaves on S; (), denoted by the same symbol, which

are obtained by interpreting this time le(Kl) as the canonical construction

functor.

Let us now apply Theorem 1.7.(2) to uzl(Kl)(vaq)[fm] and to Sr, (k,), by
posing p+¢q = m and by adopting the notations of 2.4.1, for a stratum 0S5y, (k, ),
in order to study the weights of the objects

R (i) Ly (V)|
We will only need this for m € {2d,...,3d — 1}.

ProprosiTION 2.4.2.1. Fiz two positive integers p and q such that p + q €
{2d,...,3d—1} and let VP be the L-representation of G1 1 defined in (2.28),

deduced from the irreducible L-representation Vy of G of highest weight \ =
M(k1,0,k2,0)octr,c). Let Z" be a stratum contributing to 0Sy, (k). Then:

(i) if m' € {0,...,d — 1}, the {-adic sheaf R™ (ig)*j;ugl(Kl)(Vp’q) ,on Z"
is non-zero if and only if k1 = k1 and ko = ka. In this case, it is pure of weight
w(A) 4+ 2d — d(k1 — K2);

(ii) if m' € {d,...,2d—1}, the (-adic sheaf R™ (ip)*jLug* " (V)| on 2"
is non-zero if and only if k1 = k1 and ko = ka. In this case, it is pure of weight
w(A) 4+ 6d + d(k1 + K2);
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(iii) if m' ¢ {0,...,2d — 1}, then the (-adic sheaf R™ (ig)*jfkuzl(Kl)(Vp’q) o
on Z" is zero.

Proof. Lemma 2.3.2.2 implies that in order to have non-trivial cohomology
objects, we must have p € {0,...,d — 1}; hence, by hypothesis, we have ¢ €
{d+1,...,3d — 1}, and the same lemma then implies that V¢ is non-zero if
and only if there exists a g-admissible decomposition ¥ = (I% # &,13) of I
and an integer ¢; such that

k2ﬁa' = U1 Vo € I%
k:17a‘:[/171 VO’GI%

In this case, if Pé(’\’d) is the set of such decompositions, we have VP? =
@Tepé(k,d) Hp(Fl,V\;’q); the highest weight of the action of G on

HP (T, V\;’q) is then the restriction to 77 1, of the character A((€1,¢, €2,0)oerp;C)
defined in (1.24), where

€l,0 =

)

—kao—3 ifoelp [ kie+1 ifoel?
—k1o—4 ifoeld  PTT kyy ifoeld

By Remark 2.4.1.1, this restriction, as a character of the maximal torus 77 1,
of G1,1, has the form x((e2,0)0, 3 - [c+ Y (€10 + €2,06)]).

o€lp
Now, by Proposition 2.4.1.4, R™ (ig)*j;ugl(Kl) (VP49)|  isnon-zero if and only
Z//
if m" €{0,...,2d — 1} and ey, is constant on Ip, say equal to an integer ¢s.

This means that

k:17a‘:[/271 VO’GI}%
kg,g = l2 Vo € I%

that the sheaves we are interested in are non-zero if and only if I = I and
k1 =13 —1, ky = ¢1. Denoting k1 := 12 — 1 and k2 := ¢, we get the constants
in the statement.

In order to conclude, it is now enough to apply again Proposition 2.4.1.4, by
observing that if m’ € {0,...,d — 1} then the highest weight of the action of
Gi,, on HP(T'q, V\;’q) is the character

Thus, the fact that ki, > ko, for every o € Ir and that I% # & imply

(uo)oerr, B) > ] ugrtt. gale-2dtdim=r)] (2.29)
o€lp
(and analogously for the case m’ € {d,...,2d — 1}). O

2.5 WEIGHT AVOIDANCE

In this section, we employ the notations of 2.1 and 1.5.2. Our aim is to use the
results of the preceding paragraphs in order to prove Theorem 2.2, thanks to
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the criterion given by Theorem 1.6. Thus, we have to relate, for m € {0,1},
the weights of the objects H"i%i*j1.(R¢(*V)) to the weights of the objects
R"i* i*j.(Re(MV)), which are now known.

In the following, the symbols 'rz> " will denote the truncation functors with
respect, to the perverse t-structure on Z.

2.5.1 WEIGHT AVOIDANCE ON THE SIEGEL STRATA.

Let us begin by studying the weight avoidance on the Siegel strata, by employ-
ing Propositions 2.2.3.1 and 2.4.2.1.

Remark 2.5.1.1. Reasoning as in [Wil19b, Rmk. 2.7 (a)-(b)-(c)-(d)], we have
exact sequences

H iginr, " VT RAY)) = HO (57 1 Re(MV)) —

— H"(iyi* j.Re(MV)) (2.30)
for n < w(\) + 3d — 1, whereas H"(i§i*jiRe(*V)) is zero for
n > w(A) + 3d; one also sees, again reasoning as in (loc. cit.), that
Hn(iai17*TZ21w(>\)+3diTi*j*Rg(/\V)) is zero for n < w(\) + 2d, so that
H™ (151 51 Re(MV)) = H™ (350 5. Re(MV)) for n < w(N) + 2d.

Thus, if n < w(\)+2d— 1, the weights of the perverse sheaf H" (i5i* ji. Re(*V))
are the same as the weights of H"(i§i*j.R¢(*V)), which have already been
computed, while there is nothing to do for n > w(A) + 3d. It remains to study
the interval [w(\) 4+ 2d, w(\) + 3d — 1].

Remark 2.5.1.2. Each stratum Z’ of 05}, contributing to Z; is the quotient of
a Hilbert-Blumenthal variety Sk 2 by the action of a finite group; let Sk ,/
be its Baily-Borel compactification. If Z; is the closure of Z; in 95} and

AR L] Sk.zrs (2.31)

Z' stratum of OSj
contributing to Z1

then there exists a surjective, finite morphism
q:727 = 7, (2.32)

whose restriction to each Sk, 7/ is the quotient morphism from Sk, 7/ to Z’ (cfr.
[Pin90, Main Thm. 12.3 (c), Sec. 7.6]).

Thanks to the above Remark, we can now compute the weights of
" (g7 R (V)
in the degrees we are interested in.
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Lemva 2513, If n € [w\) + 2d,w()) + 3d — 1], then
H™(igi1 *'rZ>w(’\)+3d 1% Re(MV)) is non-zero if and only if ki = k1 and

ky = ka. In this case, it is pure of weight w(\) + 2d — d(k1 — K2).

Proof. Recall that R,(*V) = p (V3 )[—w(N\)]. Then, for each stratum Z’ con-
tributing to Z;, we have, by Theorem 1.7.(1),

iRV, ~ @Rzlu*ue (Va)[—w(X) — k]|,

Moreover, by Theorem 1.7.(2), the objects R'~*(Niti*j, ul (Vy) are all lisse:
since Z is of dimension d, perverse truncation above degree w(\) + 3d equals
classical truncation above degree w(\) + 2d. Thus, by fixing a stratum Z
contributing to Z, we obtain

" (ZO’L >.<7_Z>w()\)-i-3d *Z*] Ré( V))\z ~

~ @ Higin (@D RMi7i%jeps (Va)[—w(N) = K]},) (2.33)

k>2d
|z

where the direct sum runs over all strata Z’ contributing to Z; and containing
Z in their closure. Fix now such a stratum: as in (2.27) and (2.28), we get

@ Rklll J*He (V) [=w(A) — k]lzf =

k>2d
~ DD W) e - K
k>2d p+q=k

and as a consequence, by taking into account the fact that Z is of dimension 0,

Higin (@D Rb7i%jept VW) [—wN) = K]),,)) | =~

k>2d
|z

~ @D D B iy (P (2.34)

Z
k>2d p+q=k

Now, let us adopt the notations of Remark 2.5.1.2, and extend the notations
of 2.4.1 in the following way: j’ will denote the open immersion of the union of
the Sk, z/’s in the union of the S} ,.’s, while iy will denote the complementary
closed immersion of the union of the dS}% /s in the union of the Sk ,/’s. By
restriction to Z’, we get, by proper base change, the relation

igi1, x My Fr) o q« Z*]/,u;rl( l)ﬂ (2.35)
where on the left, resp. right hand side, we have interpreted the functor MWI(KI)

as a functor w1th values in Ety p(Z’), resp. in Etg r(Sr, (x,))- Denote now by
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0z the stratum of Sk z such that ¢(0z/) = Z (such a stratum is unique, be-
cause two rational boundary components (cfr. 1.3.1) are conjugated by G1(Q)
if and only if they are conjugated by G(Q), by [Pin90, Rmk. at page 91, (iii)]).
Since the morphism ¢ is finite, we deduce that, for every k&, p, g,

n—w(N) —k -« .+ w1 (K
~ g, (RPN =k i KD (ypay oy,
Z 621

(2.36)
Now, the functor ¢, preserves weights, because the morphism ¢ is fi-
nite. Thus, the isomorphisms (2.33)-(2.36) allow us to deduce the

weights of Hn(iai17*TZ21w(>\)+3diTi*j*Rg(/\V)) from the weights of the sheaf

Rr—w() kg, mD) (7p.q) But since n € [w()\) + 2d, w(\) + 3d — 1]
and k > 2d, then, by Proposition 2.4.2.1, the objects which appear as

summands in the right hand side of (2.34) are non-zero only for indices
n—w(A)—k € {0,...d—1}. We can then conclude by Proposition 2.4.2.1.(1). O

R =kiggy K0 (e

We now dispose of all the necessary information in order to determine an in-
terval of weight avoidance on the Siegel strata:

PROPOSITION 2.5.1.4. The perverse cohomology sheaf H™(i%i* jiRe(*V)) can
be non-zero only if ki = k1, ko = kg and n € {w(N),...,w(\) +3d —1}. In
this case, H"(i5i* 1. Re(MV)) is of weight < n — d(k1 — k2) for each n € Z.

If k1 and ko have the same parity, then the weight-graded object of weight
w(A) + 2d — d(k1 — K2) of the perverse sheaf HM+24(i5i* 51, Ro(MV)) is non-
zero.

Proof. If n < w(\) + 2d, then H"(i5i*jiRe(MV)) ~ H"(i§i*j.Re(*V)), by
Remark 2.5.1.1. Now, Zj is of dimension 0; hence,

H"(i5i" . Re(*V)) = R (i5i" j.Re(*V)) = R Nigi*jop (V). (2.37)

Thus, the perverse sheaf H"(i5i*ji.Re(*V)) is zero for every n < w(\). If ky
and ks are not parallel, then Proposition 2.2.3.1 tells us that H"(i§i* ji. Re(*V))
is zero for every w(A) < n < w(\) + 2d. If instead k1 = ki1, k2 = Ko,
then the same proposition tells us that for every w(A) < n < w(A) + 2d,
H(i5i* jiRe(MV)) is of weight < w()\) — d(ky + Kk2) < n —d(k1 — K2).

Let now n > w(A) +2d. If n > w(A\) + 3d, Remark 2.5.1.1 implies that
H"(i5i* 1. Re(MV)) is zero. Assume then n € {w()\)+2d,...,w(\)+3d—1}. In
this case, by reasoning as in (2.37) and by applying again Proposition 2.2.3.1,
along with Lemma 2.5.1.3, we also see, by the exact sequence (2.30), that
if ki and ko are not parallel, then H"(i%i*ji.Re(*V)) is zero for every n €
{w(X) +2d,...,w(\) + 3d — 1}. If instead k; = k1, k2 = kg, then we see in
same way that the weights that can appear in H"(i5i*ji.Re(*V)) are of the
form w(\) — d(k1 + k2) or w(A) +2d — d(k1 — k2). In any case, we get weights
<n—d(k1 — Ka).
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To see that if k1 and ko have the same parity, then weight w(\)+2d—d(k1 —k2)
does appear in the perverse sheaf Hw(*)+24 (i5i* 51+ Re(*V)), notice that the long
exact sequence (2.30) gives a short exact sequence

0 Hw()‘)+2d(’iai*j[*Ré(/\V)) < Hw(A)+2d(i6’i*j*Rg()\V)) %

S HONTH i T R (V)

so that HYMN+2d(5i%5 Re(*V)) is identified with the kernel of the arrow
ad. Proposmon 2.2.3.2 shows that if k1 and ko have the same parity, then
HwN+2d (%5 Ry(MV)) contains a direct factor, which is pure of weight

w(A)+2d—d(k1 — k2) and locally of dimension > h, where h := |T¢ ss\P}(F)] is
the (strictly positive) number of cusps of the Hilbert-Blumenthal variety X, _. .
In order to conclude, it is then enough to show that locally, the kernel of ad has
non-trivial intersection with this sub-object. The isomorphisms (2.33)-(2.36)
in the proof of Lemma 2.5.1.3 show that, if we let the index Z’ run over all
strata Z’ contributing to Z; and containing Z in their closure, and if the finite
morphism ¢ : Z; — Z is the one of Remark 2.5.1.2, then, above a stratum Z
of 057 contributing to Zy, the arrow ad has the form

RQdZO'L J g (V)‘)|Z — Qx @(ROZ*]; m1 (K1) (vaq)

A

» (2.38)

Moreover, we know that, for each fixed Z’, we have RO, 5K (vra)

Dy
‘LLZFZ(KZ)(HO(F27 UY)), where H%(T'2, U?) is a 1-dimensional L-vector space (cfr.
the proof of Lemma 2.4.1.2).

We are then reduced to show that, locally, the dimension of the target of ad
is strictly smaller than the dimension of the source (remember that by Lemma
2.5.1.3, the target is pure of weight w(\) 4+ 2d — d(k1 — K2)). But this is true,
thanks to the following proposition. O

PROPOSITION 2.5.1.5. Let Z, q and h be as in the proof of Proposition 2.5.1.4.
Then, above Z C Zy, the number of points in the geometrical fibers of q|6zf :
0Zy — Zy is < h.

Proof. The part of the proof of [Wil19b, Prop. 2.9] at pages 27-28 can be trans-
lated word by word in this context: the statement can be proven on C-points,
and by using the adelic description of the morphism obtained from ¢ by analyti-
fication, one identifies the fibre ¢~!(z) above z € Z(C) with By(F)\GL2(F) /Ty,
where By is the standard Borel subgroup of GLs. Now, this set is exactly the
set, of cusps of I'y, whose cardinality is < the cardinality of the set of cusps of
1—‘O,ss- O

Remark 2.5.1.6. By the preceding proof, the number of d-dimensional strata
in S} which contain a fixed cusp is related to the number of cusps in the
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Baily-Borel compactification of a (complex analytic, connected) virtual Hilbert-
Blumenthal variety, which does not appear in 0S%, i.e. X, . Cfr. [Will9b,
Rmk. 2.10 (c)] for an analogous remark.

2.5.2 WEIGHT AVOIDANCE ON THE KLINGEN STRATA AND PROOF OF THE
MAIN THEOREM.

Let us now study the weight avoidance on the Klingen strata, by means of
Proposition 2.3.3.2.
Remark 2.5.2.1. By reasoning as in [Wil19b, Rmk. 2.7 (a)-(b)-(c)], we see that

G G (Re(V)) & sV 5 Ry (CY), (2.39)

Thanks to the latter remark, and remembering Remark 2.3.3.1, we are ready
to determine the interval of weight avoidance on the Klingen strata.

PROPOSITION 2.5.2.2. The perverse cohomology sheaf H"(i1i* ji.Re(*V)) can
be non-zero only if \ is k-Kostant parallel and if n € {w(\) +d,...,w(\) +
3d—1}.

In this case, let ko ;== k+ 1. Then:

1. if I # @, denote dy := |I5| € {0,...,d — 1}. Then, the perverse sheaf
H"™(i1i* 51 Re(MV)) is of weight < n—dy—dk for everyn € {w(\)+d,. .., w(\)+
2d—1}, and the perverse sheaf H N +a+di (3% ) Ry (MV)) is non-zero and pure
of weight w(\) + d — dk.

Otherwise, H™(i3i*51.Re(*V)) is zero for every n € {w(A\) +d,...,w(\)+2d —
1};

2. if IL # @, then the perverse sheaf H"(i{i* jiRe(*V)) is of weight < n —
dky for every n € {w(\) + 2d,...,w(\) + 3d — 1}, and the perverse sheaf
HYNH2d (2% 5| Ry (MV)) is non-zero and pure of weight w(\) + 2d — dks.
Otherwise, H™(i%i* j1Re(*V)) is zero for every n € {w(\)+2d, ..., w(\)+3d—
1}.

Proof. By Remark 2.5.2.1,
H (i7" juRe(MV)) = H"i1i* 1. Re (V)
for every n < w(\) + 3d — 1, and H"(i}i*ji. Re(*V)) is zero for every n >
w(A) 4+ 3d. Moreover,
H 17 (Re(MV)) = (R 70 e (V) d].

Then, by applying Proposition 2.3.3.2, we see the following facts.

If n < w(\) +d, then H"(i}i* ji. Re(*V)) is zero.

Ifn € {w\)+d,...,w(\)+2d—1}, then H"(i3i*51.Re(*V)) is non-zero if and
only if X is x-Kostant parallel and I% # @, and if n > w(\) + d + dy, where
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di = |IL| € {0,...,d — 1}. In this case, it is pure of weight w()\) + d — dk, in
particular of weight < n — d; — dk.

If n € {w(\) +2d,...,w(\) + 3d — 1}, then H"(i%i*51.R¢(*V)) is non-zero if
and only if ) is x-Kostant parallel and I} # &, and if n < w()\) +2d +d; — 1,
where dy = |I5| € {1,...,d}. In this case, it is pure of weight w(\) + 2d — dka,
in particular of weight < n — dxs. O

COROLLARY 2.5.2.3. Suppose X to be k-Kostant parallel and fix n € {w(\) +
dy...,w(\) +3d —1}. Let di and ks be as in the previous proposition, and
recall the notation cor(\) from Def. 2.1. Then:

1. if cor(A) = 0, then H"(i%i* ji Re(*V)) is of weights < n — dy — dk, and the
weight n — d; — dx does appear when n = w(\) +d + dy;

2. if cor(\) > 1, then H"(i1i*jiRe(*V)) is of weights < n — dra, and the
weight n — dke does appear when n = w(\) + 2d.

Proof. Everything follows from the previous proposition, by observing that:

1. if cor(\) = 0, then I% # &, and either I} = @ (in which case only the
weights in the first point of the previous proposition can contribute) or I # &

(in which case, by definition of Kostant parallelism, n — dko = n — d — dk <
n—d; —dk);

2. if cor(A\) > 1, then either k; is not parallel (in which case, since A is dom-
inant, A can’t be Kostant parallel with I% # &, and only the weights in the
second point of the previous proposition can contribute) or k1 = 1 (in which
case kK1 > Ko and the first point of the previous proposition gives weights
<n-—dr <n-—dks).

O
We now have all the necessary ingredients for the proof of Theorem 2.2.

Proof. (of Theorem (2.2))

We only have to apply the criterion 1.6.(2) and use Proposition 2.5.1.4 and
Corollary 2.5.2.3. O

3 THE INTERSECTION MOTIVE OF GENUS TWO HILBERT-SIEGEL VARIETIES

In this section we study the properties of the intersection motive of genus 2
Hilbert-Siegel varieties (with coefficients in suitable irreducible representations
V), whose existence follows from Thm. 2.2 and Wildeshaus’ theory, and the
implications for the construction of motives associated to automorphic repre-
sentations.
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3.1 PROPERTIES OF THE INTERSECTION MOTIVE

Adopt the notation of 2.1 and assume from now on that A is either not com-
pletely irregular or of corank 0. Then, the weight avoidance proved in Corollary
2.1.0.2 allows us to apply the general theory developed in [Wil19a]. In fact,
absence of the weights 0 and 1 for i*j}) implies that ) belongs to a full
subcategory of CHM (Sk), on which an intermediate extension functor ji. to-
wards the category CHM (S5 ) is defined. Denoting by s : S} — Spec Q the
structural morphism, we can then define, by applying [Wil19a, Def. 3.7], the
intersection motive of Sk with respect to Sy, with coefficients in AV as the
object s.jV of the category CHM (Q)r. In the following, this object will be
simply called intersection motive.

Let us spell out its main properties. For doing so, if A satisfies in addition the
hypotheses of point (1) or (2) or (3), resp. (4), of Theorem 2.2, put 8 := dk,
resp. [ := min{dk1,d(k1 — Kk2)} (with notations as in the Theorem). The
general theory then implies the following:

COROLLARY 3.1.0.1. Let s and B be as above, and let S be the structural mor-
phism of Sk .

(1) The motive 5V € DMy, .(Q)r, avoids weights —3,—B+1,...,—1, and the
motive 52V € DMy .(Q), avoids weights 1,2, ..., 3. More precisely, the eract
triangles

$4ixi* JAV[=1] = 5V = 5.0V — s.ini* AV

and
su iV = 52V = i V(] = s, V(1]

are weight filtrations of 5}V, resp. of §}V, which avoid weights —f3,—f +
1,...,—1, resp. 1,2,...,0.

(2) The intersection motive s.j{\V is functorial with respect to 5V and to 5}V.
In garticular, every endomorphism of §(\V or 3}V induces an endomorphism of
S Jiy V-

(3) If 5V — N — 3}V is a factorisation of 5V — 3}V through a Chow motive
N € CHM(Q)y, then the intersection motive s,j\V is canonically identified
with a direct factor of N, with a canonical direct complement.

Proof. We only have to apply [Will9a, Thm. 3.4], resp. [Wil19a, Thm. 3.5],
resp. [Wil19a, Thm. 3.6], in order to obtain the point (1), resp. (2), resp. (3)
(thanks to Theorem 2.2). O

Fix now an integer N such that, as in Remark 1.4.3.1, *V is a direct factor
of a Tate twist of py .1 4x, where py : AY — Sk denotes the N-fold fibred
product of the universal abelian variety Ay with itself over Sk. The property
stated in Corollary 3.1.0.1.(2) has important consequences for the Hecke algebra
H(K,G(Ay)) associated to the open compact subgroup K, as defined in [Will7,
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pp. 591-592], along with the action of each of its elements on S«DPN L g - By

loc. cit., each element of $(K,G(Ay)) also acts® on §V. Then, corollary
3.1.0.1.(2) gives us immediately the following consequence:

COROLLARY 3.1.0.2. Each element of $H(K,G(Ay)) acts naturally on the in-
tersection motive s*j!A*V.

It is also useful to explicitly formulate the property stated in Corollary
3.1.0.1.(3) in a specific context:

COROLLARY 3.1.0.3. Let f{% be a smooth compactification of AY. Then, the
intersection motive s, j{\V is canonically identified with a direct factor of a Tate
twist of a, ]l/lﬁ (where a is the structural morphism of fi% towards Spec Q),
with a canonical direct complement.

This corollary has important consequences for the realizations of s.j V.

COROLLARY 3.1.0.4. Let O be the order of F prescribed by the PEL datum
corresponding to Sk (cfr. Remark 1.2.0.2), D the discriminant of O as defined
in [Lan13, Def. 1.1.1.6], and N the level of K. Let p be a prime which does
not divide D - N. Then:

(1) the p-adic realization of s.j\V is crystalline, and if ¢ is a prime different
from p, the (-adic realization of s.j}\V is unramified at p;

(2) consider on the one hand the action of Frobenius ¢ on the ¢-filtered mod-
ule associated to the (crystalline) p-adic realization of s.j\V, and on the other
hand the action of a geometrical Frobenius at p on the {-adic realization of
s*j!A*V (unramified at p). Then, the characteristic polynomials of the two ac-
tions coincide.

Proof. 1. By [Wil09, Thm. 4.14], and with the notations of the preceding
corollary, the existence of a smooth compactification of AY with good
reduction properties is enough to get the conclusion. Now, we have at
our disposal the very general results of [Lan12] on the existence of smooth
projective integral models of smooth compactifications of PEL-type Kuga-
Sato families: namely, Thm. 2.15 of loc. cit. (by taking into account
Definition 1.6 of loc. cit. and [Lanl3, Prop. 1.4.4.3]) implies that there
exists a smooth compactification of AY with good reduction at every
prime p which does not divide D - N. Thus, we can invoke [Wil09, Thm.
4.14] to conclude.

2. We argue exactly as in [Wil19b, Cor. 1.13], in order to use [KM74, Thm.
2.2] and conclude.
O

6From the results in the literature, it does not appear clear, though expected, that there
is an algebra action of H(K,G(Af)) on the motives 32V. We will come back to this point in
future work. However, (K, G(Ay)) acts as an algebra after realization, and hence acts as
an algebra on the homological motive underlying the intersection motive: this is what will
matter for us.
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In order to end this list of properties of s,j{\V, we recall that the reason for
the name of the intersection motive is the behaviour of its realizations (recall
that we are supposing that A is either not completely irregular or of corank 0):

COROLLARY 3.1.0.5. (1) For every n € Z, the natural maps
H"(85(C), juupet (VA)) = H"(Sk (C), iy (VA))
(between cohomology spaces of Hodge modules) and
H"((S5) %@ Qjispg” (Va)) = H"((Sk) %o Q. pig' (V2))

(between cohomology spaces of L-adic perverse sheaves) are injective, and dually,
the natural maps

H (Sk(C), o5y (VA)) = HE (S5 (C), sty (VA))

and
H((Sk) xq Q, puy* (Va)) = HZ((Sk) %@ Q. jrepy (V)

are surjective. Consequently, the natural maps from intersection cohomology of
Sk towards interior cohomology (with coefficients in uly(Vy), resp. pl(Vy))
are isomorphisms.

(2) The Hodge realization, resp. l-adic realization of the intersec-
tion motive s.j)V € CHM(Q)L is_identified with interior cohomology
H{(Sk(C), R (*V)), resp. H((Sk)xoQ, Re(*V)).

Proof. Theorem 2.2 tells us that the motive i*j}V avoids weights —f3, ..., 3+1.
Then, it is enough to apply [Wil19a, Rmk. 3.13 (c)] to the complexes i*j, R(*V),
where R is the Hodge or ¢-adic realization functor on CHM (Sk)r, .

Point (2) follows from (1) and from the fact that realizations of the intersection
motive are identified with intersection cohomology ([Will9a], before Proposi-
tion 3.8; cfr. [Will7, Thm. 7.2] for details). O

Remark 3.1.0.6. (1) The vanishing theorems for cohomology of locally sym-
metric spaces with coefficients in regular representations of the underlying al-
gebraic group (([LS04, Cor. 5.6] or [Sap05, Thm. 5]) imply that, if A is regular,
the spaces H"(Sk (C), u(Vy)), and so (by comparison) H"(Sk xq@Q, uf (Vi)
are zero for n < 3d = dimSk. Dually, we get H(Sk(C),uE(Vy)) = 0 and
H(Sk xq Q,uf(Vy)) =0 for n > 3d. As a consequence, if ) is regular, then
the interior cohomology spaces H{* (S (C), u& (V1)) and H*(Sk xoQ, & (Vi)
are zero in degrees different from n = 3d.

(2) Corollary 3.1.0.5.(2) and the preceding point imply that, if A is regular,
the Hodge realization of the intersection motive s.j}V € CHM(Q)y, is given
by HP(Sk(C), u(Va))[—(w(\) + 3d)], and that its f-adic realization is given
by H(Sk x@ @, ug (Va))[=(w(A) + 3d)].
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3.2 HOMOLOGICAL MOTIVES FOR AUTOMORPHIC REPRESENTATIONS

Keep the notations of the preceding subsection and assume moreover that A
is regular. In this last part, following [Wil19b, Sec. 3], we would like to ex-
ploit the action of the elements of the algebra $(K, G(As)) on the intersection
motive s.jiV € CHM(Q)y (cfr. Corollary 3.1.0.2) to cut out certain ho-
mological sub-motives thereof. Recall that the algebra (K, G(Ay) acts on
HP(Sic(C), 1§(V2) and on HF(Sy xq @, u (V3)):

THEOREM 3.1. ([Hard, Sect. 8.1.7, page 253])
For every extension E of L, the $H(K,G(Ay)) ®r FE-module
HP(Sk(C), £ (Vy)) ® E is semisimple.

COROLLARY 3.2.0.1. Let R($) := R(®H(K,G(Ay))) be the image of
H(K,G(Ay)) in the endomorphism algebra of HP(Sk (C), u(Vy)). Then, for
every extension E of L, the algebra R($) ®r E is semisimple.

In particular, isomorphism classes of simple right R($) ® 1, F-modules are in
bijection with isomorphism classes of minimal right ideals. Now, by fixing
E, and one of these minimal right ideals Y, of R($) ®r F, there exists an
idempotent e, € R($)) ® E which generates Yz, .

DEFINITION 3.2. (1) The Hodge structure W (ms) associated to Yz, is defined
by
W (ms) := Homp(g)e, 2 (Yr, HP(Sk (C), ufy (Va)) ® B).

(2) Let E be a finite extension. For every prime number ¢, and for every prime
I of E above ¢, the Galois module W (7y)e associated to Yy, is defined by

W (ms)e = Homp(s)e, m (Yay» HP (Sk X0 Q, 17 (Va) © Ey).
The proof of the following is immediate (see for example [Wil19b, Prop. 3.4]):

PROPOSITION 3.2.0.2. There are canonical isomorphisms of Hodge structures,
resp. of Galois modules

W () = HP(Sk (C), uy (Va) ® E) - exy,

resp. ~
W(mg)e = H(Sk xq Q, 1 (VA) ® E) - ex,.

Since we do not know if e, lifts to an idempotent element of (K, G(Af))® F,
we are forced to consider its action on the homological (or Grothendieck) motive
which underlies the intersection motive s.j\V € CHM(Q)r. Denote then by
s.ji V' this homological motive, and define, thanks to Corollary 3.1.0.2:

DEFINITION 3.3. The (homological) motive corresponding to Yy, is defined by
Wi(ry) i= 5.5V - ex, -
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We finish by making explicit the properties of the latter motive which follow
from the preceding constructions:

THEOREM 3.4. The realizations of the motive W(wy) are concentrated in co-
homological degree w(\) + 3d, where in particular the Hodge realization equals
W (ns), and the £-adic realizations equal W (my)e, for every prime L.

Proof. Follows from the construction of W(ry) and Remark 3.1.0.6.(2) (re-
member that we are supposing A to be regular). O

COROLLARY 3.2.0.3. Let p be a prime number which does not divide the integer
D - N from Corollary 3.1.0.4, and ¢ a prime different from p. Then:

(1) the p-adic realization of W(ny) is crystalline, and the £-adic realization of
W(ry) is unramified at p;

(2) consider on the one hand the action of the Frobenius ¢ on the ¢-filtered
module associated to the p-adic (crystalline) realization of W(ny), and on the
other hand the action of a geometrical Frobenius at p on the £-adic realization
of W(m¢) (unramified at p). Then, the characteristic polynomials of the two
actions coincide.

Proof. (1) Follows from Corollary 3.1.0.4.(1), by taking into account the fact
that W(my) is a direct factor of s.j\)’.

(2) We can argue as in Corollary 3.1.0.4.(2) to apply [KM74, Thm. 2.2] and
conclude.
o

Remark 3.2.0.4. (1) Suppose that \ is a regular weight of G whose restriction
to the center is trivial and that the image of K along the natural projection
GSp, — PGSp, is still a compact open subgroup of PGSp,(Ayf). Then, the ¢-
adic realizations W (¢ ), of the motive W(ms) coincide with the Galois modules
H(mmy) associated to suitable automorphic representations of G in [F1i05, Part
2, Chap. 1.2, Thm. 2] (notice that in general, under the regularity assumption,
cuspidal cohomology equals interior cohomology, as can be seen for example
from [Harr91, 3.2.4], and that in our case, by Cor. 3.1.0.5.(1), regularity implies
in turn equality of interior and intersection cohomology). The existence of the
motive W(r¢) then adds to the description in [Fli05] the information about
the behaviour at p of the Galois module W (ns),, which has been obtained in
Corollary 3.2.0.3.

(2) Keep the assumptions of the preceding point and let [ be a place of E above
the prime ¢. The Galois modules W (), are then of dimension 4¢ or 1 - 4¢
over F; ([Fli05, Part 2, Chap. 1.2, Thm. 2.(1),(4)]). One can expect that, in
the case of a (Hilbert-Siegel) eigenform f, the motives W(ms) over Q can be
written as tensor products over E of rank-4 motives over F', whose L-function
has the correct relation with the L-function of f. However, there are no known
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methods for constructing motives with such properties. It is the same problem
which arises for motives corresponding to Hilbert modular forms, when cut
out inside Kuga-Sato varieties over Hilbert modular varieties, cfr. for example
[Harr91, 5.2].
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