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Abstrat. For an ordinary K3 surfae over an algebraially losed

�eld of positive harateristi we show that every automorphism lifts

to harateristi zero. Moreover, we show that the Fourier-Mukai

partners of an ordinary K3 surfae are in one-to-one orrespondene

with the Fourier-Mukai partners of the geometri generi �ber of its

anonial lift. We also prove that the expliit ounting formula for

Fourier-Mukai partners of the K3 surfaes with Piard rank two and

with disriminant equal to minus of a prime number, in terms of the

lass number of the prime, holds over a �eld of positive harateris-

ti as well. We show that the image of the derived autoequivalene

group of a K3 surfae of �nite height in the group of isometries of its

rystalline ohomology has index at least two. Moreover, we provide

a onditional upper bound on the kernel of this natural ohomologial

desent map. Further, we give an extended remark in the appendix

on the possibility of an F-rystal struture on the rystalline oho-

mology of a K3 surfae over an algebraially losed �eld of positive

harateristi and show that the naive F-rystal struture fails in be-

ing ompatible with inner produt.
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1 Introdution

The derived ategory of oherent sheaves on a smooth projetive variety was

�rst studied as a geometrial invariant by Mukai in the early 1980's. In ase

the smooth projetive variety has an ample anonial or anti-anonial bundle,

Bondal-Orlov [12℄ proved that, if two suh varieties have equivalent bounded

derived ategories of oherent sheaves, then they are isomorphi. However, in

general this is not true. The bounded derived ategory of oherent sheaves is

not an isomorphism invariant. Mukai [52℄ showed that for an Abelian variety

over C, its dual has equivalent bounded derived ategory. Moreover, in many

ases it an be shown that the dual of an Abelian variety is not birational to

it, whih implies that derived ategories are not even birational invariants, see

[30, Chapter 9℄. Similarly, Mukai showed in [53℄ that for K3 surfaes over C,
there are non-isomorphi K3 surfaes with equivalent derived ategories. This

led to the natural question of lassifying all derived equivalent varieties.

For K3 surfaes, the ase of interest to us, this was ompleted over C in late

1990's by Mukai and Orlov ([53, Theorem 1.4℄, [59, Theorem 1.5℄) using Hodge

theory along with the Global Torelli Theorem (see [4, VIII Corollary 11.2℄,

[36, Theorem 7.5.3℄). As a onsequene, it was shown that there are only

�nitely many non-isomorphi K3 surfaes with equivalent bounded derived

ategories (see Proposition 2.28) and a ounting formula was also proved by

Hosono et. al in [29℄. On the other hand, for K3 surfaes over a �eld of

positive harateristi, a partial answer to the lassi�ation question was �rst

given by Lieblih-Olsson [45℄ (see Theorem 2.37) in early 2010's. They showed

that there are only �nitely many non-isomorphi K3 surfaes with equivalent

bounded derived ategories. We remark here that due to unavailability of a

positive harateristi version of the global Torelli Theorem for K3 surfaes

of �nite height, it is urrently not feasible to give a omplete ohomologial

desription of derived equivalent K3 surfaes. However, a desription in terms

of moduli spaes was given by Lieblih-Olsson. We also point out here that

the proofs of these results go via lifting to harateristi zero and thus use

the Hodge theoreti desription given by Mukai and Orlov. Furthermore,
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Lieblih-Olsson [46℄ also proved the derived version of the Torelli theorem

using the Crystalline Torelli theorem for supersingular K3 surfaes.

In this artile, we study the above question in more details for the ase of

K3 surfaes over an algebraially losed �eld of positive harateristi. We

show that the number of isomorphism lasses of ordinary K3 surfaes whih are

derived equivalent to a hosen ordinary K3 surfae is the same as the number of

isomorphism lasses of K3 surfaes in harateristi 0 derived equivalent to the

anonial lift of our hosen ordinary K3 (Theorem 4.11). This result should

be seen as an evidene to the long held belief that the number of Fourier-

Mukai partners behaves well with respet to deformation to harateristi zero.

Moreover, we show that the geometri reformulations [29, Question I' and II'℄

of questions of Gauss on the behavior of lass numbers an be extended to

inlude K3 surfaes over algebraially losed �elds of harateristi p (Theorem
4.14). This, we hope, will provide with more ways to answer the questions of

Gauss posed in 1801 [29, Question I and II℄ on the lass number h(p) of the
real quadrati �eld Q(

√
p) for a prime number p ≡ 1 mod 4:

Question I: Are there in�nitely many primes p suh that the lass number

h(p) is 1?
Reall that for imaginary quadrati �elds there are only �nitely many primes

with lass number 1, namely −1, −2, −3, −7, −11, −19, −43, −67, −163
(see [55, Chapter 1 page 37℄).

Question II: Is there a sequene of primes p1, p2, . . . suh that h(pk)→∞?

Using the ounting formula for derived equivalent K3 surfaes, we an refor-

mulate the above questions as:

Question I': Are there in�nitely many isomorphism lasses of K3 surfaes over

an algebraially losed �eld of positive harateristi or over C with Piard rank

2 and disriminant −q for distint primes q, suh that it has no non-isomorphi

K3 surfaes derived equivalent to it?

Question II': Is there a sequene of K3 surfaes over an algebraially losed

�eld of positive harateristi or over C with Piard rank 2 and disriminant

−q for distint primes q suh that the number of K3 surfaes derived equivalent

to it tends to in�nity ?

Meanwhile in 1990's another shool of thought inspired by string theory

in physis led Kontsevih [41℄ to propose the homologial mirror symmetry

onjeture whih states that the bounded derived ategory Db(X) of oherent
sheaves of a projetive variety X is equivalent (as a triangulated ategory) to

the bounded derived ategory DbFuk(X̌, β) of the Fukaya ategory Fuk(X̌, β)
of a mirror X̌ with its sympleti struture β. Moreover, the sympleti

automorphisms of X̌ indue derived autoequivalenes of Db(X). This provided
a natural motivation for the study of the derived autoequivalene group.

For K3 surfaesX overC, the struture of the group of derived autoequivalenes
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was analyzed by Ploog in [63℄, Hosono et al. in [28℄ and Huybrehts, et al. in

[32℄. They showed that the image of Aut(Db(X)) under the homomorphism

Aut(Db(X))→ OHodge(H̃(X,Z)),

where OHodge(H̃(X,Z)) is the group of Hodge isometries of the Mukai lattie

of X , has index 2. However, the kernel of this map has a desription only in

the speial ase when the Piard rank of X is 1, given by [6℄.

In the spirit of the question on the struture of derived autoequivalene group

of K3 surfaes, we show that this group for K3 surfaes over algebraially losed

�elds of positive harateristi displays similar behavior as a K3 surfae over

C. More preisely, let X be a K3 surfae of �nite height over an algebraially

losed �eld k of harateristi p > 3 and let W (k) be the Witt ring with K
its �eld of fration. Then any derived autoequivalene indues naturally an

automorphism of F-isorystals on H∗
crys(X/K).

Theorem 1.1 (f. Theorem 3.18) The image of Auteq(Db(X)) in

Aut(H∗
crys(X/K)) has index at least 2.

This is exatly similar to the behavior of K3 surfaes over C as remarked above.

Moreover, for general K3 surfaes we expet that the kernel of the natural map

Auteq(Db(X))→ Aut(H∗
crys(X/K)) will embed in the kernel of a Piard rank

1 lift of it (see Proposition 3.21). This provides us with a possible approah to

proof of Bridgeland's onjeture ([14, Conjeture 1.2℄) for K3 surfaes over C,
by �rst speializing any K3 surfae over C with good redution to harateristi

p and then embedding bak the kernel in a Piard rank 1 lift to harateristi

zero. This will be undertaken in future work.

As a onsequene of studying derived autoequivalenes, we prove that for

ordinary K3 surfaes every automorphism lifts to harateristi zero, whih

should be seen as adhering to the general philosophy that ordinary K3 surfaes

behave just like omplex K3 surfaes.

Here is a brief outline of the artile. In Setion 2 we reall the notion of height

of a K3 surfae over a �eld of positive harateristi, the results on lifting K3

surfaes from harateristi p to harateristi 0, the moduli spaes of stable

sheaves on a K3 surfae and derived equivalenes on K3 surfaes. We end

this setion by proving that height of a K3 surfae remains invariant under

derived equivalenes (Lemma 2.39). In Setion 3, we address the question on

the group of derived autoequivalenes for K3 surfaes of �nite height. We show

that the image of the derived autoequivalene group of a K3 surfae of �nite

height in the group of isometries of its rystalline ohomology has index at

least two (Theorem 3.18). Moreover, we provide a onditional upper bound

on the kernel of this natural ohomologial desent map (Proposition 3.21). In

Setion 4, we ount the number of Fourier-Mukai partner for an ordinary K3

surfae (Theorem 4.11) along with showing that the automorphism group lifts
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to harateristi 0 (Theorem 4.5). We also prove that the expliit ounting

formula for Fourier-Mukai partners of the K3 surfaes with Piard rank two

and with disriminant equal to minus of a prime number, in terms of the

lass number of the prime, holds over a �eld of positive harateristi as well

(Theorem 4.14). In Appendix A, we de�ne an F-rystal struture and show that

this integral struture is preserved by derived equivalenes but its ompatibility

with intersetion pairing fails.

1.1 Conventions and Notations

For a perfet �eld k of positive harateristi p, W (k) will be its ring of Witt

vetors. For any ohomology theory H∗
...(...), we will denote the dimension of

the ohomology groups Hi
...(. . .) as h

i
...(. . .). We will impliitly assume that the

ardinality ofK := Frac(W (k)) and its algebrai losure K̄ are not bigger than

that of C, this will allow us to hoose an embedding K̄ →֒ C whih we will use

in our arguments to transfer results from harateristi 0 to harateristi p.
See also Remarks 2.35 and 2.29. Moreover at times, we will put the ondition

of harateristi p > 3 as at many plaes we may have denominators in fators

of 2 and 3, like in the de�nition of Chern haraters for K3 surfaes, and these

will beome invertible in W (k) due to our assumption on the harateristi.

2 Preliminaries on K3 Surfaes and Derived Equivalenes

We reall the notion height of a K3 surfae over a �eld of positive harateristi

through its F-rystal, whih gives a sublass of K3 surfaes with �nite height or

in�nite height alled supersingular K3 surfaes. For an introdution to Brauer

group of K3 surfaes and the de�nition of height via the Brauer groups see

[36℄ and [49℄. Both de�nitions turn out to be equivalent (see, for example, [49,

Prop. 6.17℄).

Let k be an algebraially losed �eld of positive harateristi, W (k) its ring
of Witt vetors and FrobW the Frobenius morphism of W (k) indued by the

Frobenius automorphism of k. Note that FrobW is a ring homomorphism and

indues an automorphism of the fration �elds K := Frac(W (k)), denoted as

FrobK . We begin by realling the notion of F-isorystal and F-rystals whih

we will use later to stratify the moduli of K3 surfaes.

Definition 2.1 [F-(iso)rystal℄ An F-rystal (M,φM ) over k is a free W -

module M of �nite rank together with an injetive FrobW -linear map φM :
M →M , that is, φM is additive, injetive and satis�es

φM (r ·m) = FrobW (r) · φM (m) for all r ∈W (k),m ∈M.

An F-isorystal (V, φV ) is a �nite dimensional K-vetor spae V together with

an injetive FrobK -linear map φV : V → V .

A morphism u : (M,φM ) → (N,φN ) of F-rystals (resp. F-isorystals) is a

W (k)-linear (resp. K-linear) map M → N suh that φN ◦ u = u ◦ φM . An
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isogeny of F-rystals is a morphism u : (M,φM )→ (N,φN ) of F-rystals, suh
that the indued map u⊗ IdK : M ⊗W (k) K → N ⊗W (k) K is an isomorphism

of F-isorystals.

Examples:

1. The trivial rystal: (W,FrobW ).

2. This is the ase whih will be of most interest to us:

Let X be a smooth and proper variety over k. For any n, take the free

W (k) module M to be Hn := Hn
crys(X/W (k))/torsion and φM to be the

Frobenius F ∗
. The Poinaré duality indues a perfet pairing

〈−,−〉 : Hn ×H2dim(X)−n → H2dim(X) ∼= W

whih satis�es the following ompatibility with Frobenius

〈F ∗(x), F ∗(y)〉 = pdim(X)FrobW (〈x, y〉),

where x ∈ Hn
and y ∈ H2dim(X)−n

. As FrobW is injetive, we have

that F ∗
is injetive. Thus, (Hn, F ∗) is an F-rystal. We will denote the

F-isorystal Hn
crys(X/W )⊗K by Hn

crys(X/K).

3. The F-isorystal K(1) := (K,FrobK/p). Similarly, one has the F-

isorystal K(n) := (K,FrobK/pn) for all n ∈ Z. Moreover, for any

F-isorystal V and n ∈ Z, we denote by V (n) the F-isorystal V ⊗K(n).

Reall that the ategory of F-rystals over k up to isogeny is semi-simple and

the simple objets are the F-rystals:

Mα = ((Zp[T ])/(T
s − pr))⊗Zp

W (k), (mult. by T )⊗ FrobW ),

for α = r/s ∈ Q≥0 and r, s non-negative oprime integers. This is a theorem

of Dieudonné�Manin [18℄, [50℄. Note that the rank of the F-rystal Mα is s.
We all α the slope of the F-rystal Mα.

Definition 2.2 Let (M,φ) be an F-rystal over k and let

(M,φ) ∼isogeny ⊕α∈Q≥0
Mnα

α

be its deomposition up to isogeny. Then the elements of the set

{α ∈ Q≥0|nα 6= 0}

are alled the slopes of (M,φ). For every slope α of (M,φ), the integer λα :=
nα · rankWMα is alled the multipliity of the slope α.

Remark 2.3 In ase (M,φ) is an F-rystal over a perfet �eld k (rather than

being algebraially losed as assumed above), we de�ne its slope and multipli-

ities to be that of the F-rystal (M,φ) ⊗W (k) W (k̄), where k̄ is an algebrai

losure of k.
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We still keep our assumption of k being an algebraially losed �eld of positive

harateristi.

The above lassi�ation result of Dieudonné-Manin is more general. Any F-

isorystal V with bijetive φV is isomorphi to a diret sum of F-isorystals

(Vα := K[T ]/(T s − pr), (mult. by T )⊗ FrobK),

for α = r/s ∈ Q. The dimension of Vα is s and we all α the slope of Vα.

Definition 2.4 [Height℄ The height of a K3 surfae X over k is the sum of

multipliities of slope stritly less than 1 part of the F-rystal H2
crys(X/W ).

In other words, the dimension of the subspae of slope stritly less than one of

the F-isorystal H2
crys(X/K), whih is dim(H2

crys(X/K)[0,1) := ⊕αi<1V
nαi
αi ).

If for a K3 surfae X the dim(H2
crys(X/K)[0,1)) = 0, then we say that the

height of X is in�nite. Supersingular K3 surfaes (i.e., K3 surfaes with in�nite

height) also have an equivalent desription that their Piard rank is 22 (see [49,

Theorem 4.8℄). We will be disussing more about F-rystals later in Appendix

A. On the other hand, we have ordinary K3 surfaes.

Definition 2.5 [Ordinary K3 surfae℄ A K3 surfae X over a perfet �eld k
of positive harateristi is alled ordinary if the height of X is 1.

They also have equivalent desription via height of Brauer group, see [57,

Lemma 1.3℄.

2.1 Lifting K3 Surfaes

We state the theorem by Deligne about lifting K3 surfaes whih will be used

a lot in the theorems that follow. Let X0 be a K3 surfae over a �eld k of

harateristi p > 0.

Definition 2.6 [Lift of a K3 surfae℄ A lift of a K3 surfaeX0 to harateristi

0 is a smooth projetive sheme X over R, where R is a disrete valuation ring

suh that R/m = k, K := Fra(R) is a �eld of harateristi zero, the generi

�ber of X , denoted XK , is a K3 surfae and the speial �ber is X0.

Theorem 2.7 (Deligne [16℄ Theorem 1.6, orollary 1.7, 1.8) Let X0

be a K3 surfae over a �eld k algebraially losed of harateristi p > 0. Let

L0 be an ample line bundle on X0. Then there exists a �nite extension T
of W (k), the Witt ring of k, suh that there exists a deformation of X0 to

a smooth proper sheme X over T and an extension of L0 to an ample line

bundle L on X.

Consider the situation where we have a lift of a K3 surfae, i.e., let X0 be a

K3 surfae over a �eld of harateristi p > 0 and X a lift over S = Spec(R)
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as de�ned above. The de Rham ohomology of X/S, H∗
DR(X/S) is equipped

with a �ltration indued from the Hodge to de Rham spetral sequene:

Ei,j
1 = Hj(X,Ωi

X/S)⇒ H∗
DR(X/S)

For a onstrution of this spetral sequene, see [21, III-0 11.2℄. We all this

�ltration on H2
DR(X/S) the Hodge �ltration. Using the omparison isomor-

phism between the rystalline ohomology of the speial �ber and the de Rham

ohomology of X [9, 7.26.3℄,

Hi
crys(X0/W (k))⊗R ∼= Hi

DR(X/S),

we get a �ltration on the rystalline ohomology, also alled the Hodge �ltration.

This Hodge �ltration on the rystalline ohomology depends on the hoie of

a lift of X0.

In ase X is an ordinary K3 surfae, it admits a speial lift to harateristi

zero alled ananial lift and it has the following Piard preserving property:

Proposition 2.8 ([57℄, Proposition 1.8) For X an ordinary K3 surfae,

there exists a anonial lift Xcan with the property that any line bundle on X
lifts uniquely to Xcan.

Moreover, in [68, Theorem C℄, Taelman proved a riterion to determine when

a lift of an ordinary K3 surfae is going to a be a ananial lift. We will be

using this riterion.

2.2 Moduli Spae of Sheaves

Next we disuss about the Moduli spae of sheaves on a K3 surfae as these

spaes turn out to play a very important role in the theory of derived equiva-

lenes of K3 surfaes. We introdue the moduli stak of sheaves on a K3 surfae

and show that it's a µr−Gerbe under some numerial onditions. We will try

to keep the exposition here harateristi independent and in ase of harater-

isti restritions we will mention them as neessary. Moreover, in the ase of a

K3 surfae de�ned over a �eld we will not assume the �eld to be algebraially

losed and in general, for a relative K3 surfae, we will work with a spetrum

of a mixed harateristi disrete valuation ring as the base sheme. The main

referenes for this setion are [44, Setion 2.3.3℄ and [45, Setion 3.15℄. We refer

the reader to [24℄, for a omparison between the moduli stak point of view

and that of more lassial moduli funtors. For an introdution to theory of

gerbes we refer the reader to [58℄.

Before proeeding to the de�nition of moduli staks of sheaves that we will

be working with, let us also reall the notion of (Gieseker) semistability for

oherent sheaves (for details see [31, Setion 1.2℄): Let X be a projetive

sheme over a �eld k. The Euler harateristi of a oherent sheaf F is

χ(F) =
∑

(−1)ihi(X,F). If we �x an ample line bundle O(1) on X , then
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the Hilbert polynomial P (F) given by n 7→ χ(F ⊗ O(n)) an be uniquely

written in the form

P (F , n) =
dim(F)
∑

i=0

αi(F)mi/i!,

with integral oe�ients αi(F). We denote by p(F , n) := P (F , n)/αdim(F)(F),
the redued Hilbert polynomial of F .

Definition 2.9 [Semistability℄ A oherent sheaf F of dimension d is semistable

if F has no nontrivial proper subsheaves of stritly smaller dimension and for

any subsheaf E ⊂ F , one has p(E) ≤ p(F). It is alled stable if for any proper

subsheaf the inequality is strit.

Remark 2.10 The ordering on polynomials is the ordering on the oe�ients.

Definition 2.11 [Mukai vetor℄ For a smooth projetive X over k, given a

perfet omplex E ∈ D(X), where D(X) is the derived ategory of oherent

sheaves on X , we de�ne the Mukai vetor of E to be

v(E) := ch(E)
√

tdX ∈ A∗(X)num,Q.

Here, ch(−) denotes the Chern lass map, tdX is the Todd genus and

A∗(X)num,Q is the numerial Chow group of X with rational oe�ients.

For X a K3 surfae over k, the Mukai vetor of a omplex is given by (see [30,

Chapter 10℄):

v(E) = (rank(E), c1(E), rank(E) + c1(E)2/2− c2(E)).

Let X be a projetive sheme over k and h an ample line bundle.

Definition 2.12 [Moduli Stak℄ The moduli stak of semistable sheaves, de-

noted M
ss
h , is de�ned as follows:

M
ss
h :(Sch/k)→ (groupoids)

S 7→ {F|F an S-�at oherent sheaf on X × S with semistable �bers.}

Similarly, the moduli stak of stable sheaves an be de�ned by replaing

semistable above with stable and we denote it by M
s
h.

If we �x a vetor v ∈ A∗(X)num,Q, we get an open and losed substak M
ss
h (v)

lassifying semistable sheaves on X with Mukai vetor v.
The following result has been proved by Lieblih [44℄, for the more general

ase of moduli of twisted sheaves. Restriting to the ase of semistable sheaves

without any twisting a simpler argument is given in [67, Theorem 2.30℄.

Theorem 2.13 The stak M
ss
h is an algebrai stak and the stak M

ss(v) is

an algebrai substak of �nite type over k.
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Remark 2.14 Reall that the Mukai vetor v for a sheaf on a K3 surfae

determines its Hilbert polynomial and its rank as well.

Moreover, the stak M
ss
h (v) ontains an open substak of geometrially stable

points (see Footnote 3) denoted M
s
h(v).

Theorem 2.15 The algebrai stak M
s
h(v) admits a oarse moduli spae.

For a proof see [44, Lemma 2.3.3.3, Prop. 2.3.3.4℄ or [67, Theorem 2.34℄.

Theorem 2.16 (Mukai-Orlov) Let X be a K3 surfae over a �eld k.

1. Let v ∈ A∗(X)num,Q be a primitive element with v2 = 0 (with respet

to the Mukai pairing

1

) and positive degree 0 part

2

. Then M
ss
h (v)is non-

empty.

2. If, in addition, there is a omplex P ∈ D(X) with Mukai vetor v′ suh
that < v, v′ >= 1, then every semistable sheaf with Mukai vetor v is lo-

ally free and geometrially stable

3

, in whih ase M
ss
h (v) is a µr-gerbe for

some r, over a smooth projetive surfae Mh(v) suh that the assoiated

Gm-gerbe is trivial

4

.

Remark 2.17 1. Note that the triviality of the Gm-gerbe is equivalent to

the existene of a universal bundle over X ×Mh(v), also see [45, Remark

3.19℄.

2. See [31, Remark 6.1.9℄ for a proof that under the assumption of the above

Theorem part (2), any semistable sheaf is loally free and geometrially

stable.

Proof: The non-emptiness follows from [36, Chapter 10 Theorem 2.7℄ and

[45, Remark 3.17℄. For the onstrution of the universal bundle, one has to ,in

the end, atually use GIT again. For a proof see [36, Chapter 10 Proposition

3.4℄ and [31, Theorem 4.6.5℄ (this is from where we have the numerial riteria,

in partiular, also see [31, Corollary 4.6.7℄). �

We generalize our moduli stak to the relative setting. Let XS be a �at pro-

jetive sheme over S with an ample line bundle h. (The ase of S = Spec(R)
for R a disrete valuation ring of mixed harateristi, will be of most interest

to us.)

1

The Mukai pairing is just an extension of the intersetion pairing, de�ned as follows:

let (a1, b1, c1) ∈ A∗(X)num,Q and (a2, b2, c2) ∈ A∗(X)num,Q, then the Mukai pairing is

< (a1, b1, c1), (a2, b2, c2) >= b2 · b1 − a1 · c2 − a2 · c1 ∈ A2(X)num,Q .
2

The degree zero part just means the A0(X)num,Q term in the representation of the Mukai

vetor in A∗(X)num,Q .
3

A oherent sheaf F is geometrially stable if for any base �eld extension l/k, the pullbak
F ⊗k l along Xl = X ×k Spec(l) → X is stable.

4

We will denote this moduli spae later as MX(v) to lay emphasis that it is the moduli

spae of stable sheaves over X.
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Definition 2.18 [Relative Moduli Stak℄ The relative moduli stak of semi-

stable sheaves, denoted M
ss
h , is de�ned as follows:

M
ss
h :(Sch/S)→ (groupoids)

T 7→ {F|F T -�at oherent sheaf on X ×S T with semistable �bers}.
The relative moduli stak of stable sheaves an be de�ned similarly and we

denoted it by M
s
h.

The following theorem shows the existene of the �ne moduli spae for the

relative moduli stak, when XR is a relative K3 surfae over a mixed hara-

teristi disrete valuation ring, under some numerial onditions. Reall that

the ondition of �atness is going to be always satis�ed in our relative K3's ase

by de�nition as they are smooth. The relative stak an be provided to be an

algebrai stak using arguments similar to the ones used for proving Theorem

2.13. Moreover, all the results above about the moduli stak hold also for the

relative stak. So, there exists a oarse moduli spae (Compare from footnote

1 in [36, Chapter 10℄ or [31, Theorem 4.3.7℄ , the statement there is atually

weaker as we do not ask for morphism of k-shemes, whih is not going to be

possible for mixed harateristi ase. So, for the mixed harateristi ase one

replaes, in the GIT part of the proof, the quot funtor by its relative funtor,

whih is representable in this ase as well [56, Theorem 5.1℄). Moreover, the

non-emptiness results also remain valid in mixed harateristi setting and we

have:

Theorem 2.19 (Fine relative Moduli Spae) Let XV be a relative K3

surfae over a mixed harateristi disrete valuation ring V with X as a speial

�ber over Spec(k)

1. Let v ∈ A∗(X)num,Q be a primitive element with v2 = 0 (with respet to

the Mukai pairing) and positive degree 0 part. Then, M
ss
h (v), the sub-

moduli stak of M
ss
h with �xed Mukai vetor v, is non-empty.

2. If, in addition, there is a omplex P ∈ D(XV ) with Mukai vetor v′

suh that < v, v′ >= 1, then every semistable sheaf with Mukai vetor v
is loally free and stable, in whih ase M

ss
h (v) is a µr-gerbe for some r,

over a smooth projetive surfae Mh(v) suh that the assoiated Gm-gerbe

is trivial.

Note that in the mixed harateristi setting, for any omplex EV ∈ Db(XV )
we de�ne its Mukai vetor to be just the Mukai vetor of E := EV ⊗V k in

A∗(X)num,Q. This de�nition makes sense as XV → V is �at.

With this we onlude our exposition on moduli staks and spaes of sheaves.

2.3 Derived Equivalenes of K3 Surfaes

We now give a summary of seleted results on derived equivalenes of a K3

surfaes for both positive harateristi and harateristi zero. We begin by
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a general disussion on derived equivalenes and then speialize to di�erent

harateristis. Let X be a K3 surfae over a �eld k and let Db(X) be the

bounded derived ategory of oherent sheaves of X . We refer the reader to [30℄

for a quik introdution to derived ategories and the textbooks [20℄, [39℄ for

details.

Definition 2.20 Two K3 surfaes X and Y over k are said to be derived

equivalent if there exists an exat equivalene Db(X) ≃ Db(Y ) of the derived

ategories as triangulated ategories

5

.

Definition 2.21 [Fourier-Mukai Transform℄ For a perfet omplex P ∈
Db(X×Y ), the Fourier-Mukai transform is a funtor of the derived ategories

whih is de�ned as follows:

ΦP : Db(X)→ Db(Y )

E 7→ RpY ∗((p
∗
XE)⊗L P),

where pX , pY are the projetions from X × Y to the respetive X and Y .

For details on the properties of Fourier-Mukai transform see [30, Chapter 5℄.

Note that not every Fourier-Mukai transform indues an equivalene. The only

general enough riteria available to hek whether the Fourier Mukai transform

indues a derived equivalene is by Bondol-Orlov, see for example, [36, Chapter

16 Lemma 1.4, Proposition 1.6 and Lemma 1.7℄. In ase the Fourier-Mukai

transform is an equivalene, we have the following de�nition:

Definition 2.22 A K3 surfae Y is said to be a Fourier Mukai partner of X if

there exists a Fourier-Mukai transform between Db(X) and Db(Y ) whih is an

equivalene. We denote by FM(X) the set of isomorphism lasses of Fourier

Mukai Partners of X and by |FM(X)| the ardinality of the set, whih is alled

the Fourier Mukai number of X .

We state here the most important result in the theory of Fourier-Mukai trans-

forms and derived equivalenes.

Theorem 2.23 (Orlov, [30℄ Theorem 5.14) Every equivalene of derived

ategories for smooth projetive varieties is given by a Fourier Mukai transform.

More preisely, let X and Y be two smooth projetive varieties and let

F : Db(X)→ Db(Y )

be a fully faithful exat funtor. If F admits right and left adjoint funtors,

then there exists an objet P ∈ Db(X×Y ) unique up to isomorphism suh that

F is isomorphi to ΦP .

5

We don't need to start with Y being a K3 surfae, this an be dedued as a onsequene

by the existene of an equivalene on the level of derived ategories of varieties, see [30,

Chapter 4, 6 and 10℄ and [5, Chapter 2℄ for the properties preserved by derived equivalenes.

However, note that Orlov's Representability Theorem 2.23 is used in some proofs.

Doumenta Mathematia 24 (2019) 1135�1177



Derived Equivalenes in Positive Charateristi 1147

Remark 2.24 This theorem allows us to restrit the olletion of derived

equivalenes to a smaller and more manageable olletion of Fourier-Mukai

transforms, whih will be studied via ohomologial desent.

Any Fourier Mukai transform, ΦP , desends from the level of the derived at-

egories to various ohomologial theories (H∗
...( )), as

Db(X)
E 7→ RpY ∗((Lp

∗
XE) ⊗L P )−−−−−−−−−−−−−−−−→ Db(Y )





y
ch( )

√
tdX





y
ch( )

√
tdY

H∗(X)
α 7→ pY ∗

(

(p∗
Xα) · ch(P )

√

tdX×Y

)

−−−−−−−−−−−−−−−−−−−−−−→ H∗(Y ),

where ch( ) is the total Chern harater and tdX is the Todd genus of X .

This desent provides a way to study the Fourier Mukai partners of X us-

ing ohomologial methods. For details see [30, Setion 5.2℄ and [45, Setion 2℄.

In harateristi 0 (mostly over C, see remark 2.35 below), we will use the sin-

gular ohomology along with p/l-adi/étale ohomology and in harateristi

p > 0, we will use rystalline ohomology or l-adi etale ohomology. In the

mixed harateristi setting, we will be frequently using a di�erent ombina-

tion of ohomologies along with their omparison theorems from p-adi Hodge
theory.

Remark 2.25 The Orlov Representability Theorem 2.23 works only for

smooth projetive varieties, so when we work with relative shemes we will

restrit from the olletion of derived equivalenes and work only with the

subolletion of Fourier-Mukai transforms.

Over the �eld of omplex numbers, Mukai and Orlov provide the full desription

of the set FM(X) as:

Theorem 2.26 (Mukai [53℄, Theorem 1.4 and Theorem 1.5, [59℄) Let

X be a K3 surfae over C. Then the following are equivalent:

1. There exists a Fourier-Mukai transform Φ : Db(X) ∼= Db(Y ) with kernel

P.

2. There exists a Hodge isometry f : H̃∗(X,Z)→ H̃∗(Y,Z), where H̃∗( ,Z)
is the singular ohomology of the orresponding analyti spae and is om-

pared with the de Rham ohomology of the algebrai variety X whih

omes with a Hodge �ltrations and Mukai pairing

6

.

3. There exists a Hodge isometry f : T (X) ≃ T (Y ) between their transen-

dental latties.

6

The Mukai pairing is just an extension of the intersetion pairing, de�ned as fol-

lows: let (a1, b1, c1) ∈ H̃∗(X,Z) and (a2, b2, c2) ∈ H̃∗(X,Z), then the Mukai pairing is

< (a1, b1, c1), (a2, b2, c2) >= b2 · b1 − a1 · c2 − a2 · c1 ∈ H4(X,Z).
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4. Y is a two dimensional �ne ompat moduli spae of stable sheaves on X
with respet to some polarization on X, i.e., Y ∼= MX(v) for some Mukai

vetor v ∈ A∗(X)num,Q (f. De�nition 2.11).

5. There is an isomorphism of Hodge strutures between H2(MX(v),Z) and
v⊥/Zv whih is ompatible with the up produt pairing on H2(MX(v),Z)
and the bilinear form on v⊥/Zv indued by that on the Mukai lattie

H̃∗(X,Z).

The following result is the étale version of the Mukai-Orlov ohomologial ver-

sion of deription of derived equivalenes of K3 surfaes over C.

Proposition 2.27 (p-adi étale ohomology version) If X and Y
are derived equivalent K3 surfaes, then there is an isomorphism between

H2
ét(MX(v),Zp) and v⊥/Zpv, (see footnote

7

), whih is ompatible with the

up produt pairing on H2
ét(MX(v),Zp) and the bilinear form on v⊥/Zpv

indued by that on the Mukai lattie H̃∗(X,Zp), where p is a prime number

and Zp is the ring of p-adi integers.

Proof: This follows from Artin's Comparison Theorem [22, Tome III, Exposé

11, Théorème 4.4℄ between étale and singular ohomology and the theorem

above. �

Proposition 2.28 ([36℄ Proposition 3.10) Let X be a omplex projetive

K3 surfae, then X has only �nitely many Fourier-Mukai partners, i.e.,

|FM(X)| <∞.

Remark 2.29 The above result is also true for any algebraially losed �eld

of harateristi 0. Indeed, if X and Y are two K3 surfaes over a �eld K
algebraially losed and harateristi 0, we have X ∼= Y ⇔ XC

∼= YC. One

way is obvious via base hange and for the other diretion we just need to

show that every isomorphism XC
∼= YC omes from an isomorphism X ∼=

Y . To de�ne an isomorphism only �nitely many equations are needed, so we

an assume that the isomorphism is de�ned over A, a �nitely generated K-

algebra (take A to be the ring K[a1, . . . , an], where ai are the �nitely many

oe�ients of the �nitely many equations de�ning our isomorphism). Thus,

we have have our isomorphism de�ned over an a�ne sheme, XA
∼= YA, where

XA := X ×K Spec(A) (resp. YA := Y ×K Spec(A)). As K is algebraially

losed, any losed point t ∈ Spec(A) has residue �eld K. Now taking a K-

rational point will give us our required isomorphism.

7

We are abusing the notation here: The Mukai vetor is now onsidered as an element of

H∗

ét(X, Zp) and v⊥ is the orthogonal omplement of v in H∗

ét(X,Zp) with respet to Mukai

pairing. Thus, v⊥ is a Zp lattie. Then we mod out this lattie by the Zp module generated

by v.
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This gives us a natural injetion:

FM(X) →֒ FM(XC)

Y 7→ YC.

Hene, we have |FM(X)| ≤ |FM(XC)| <∞.

Let S = NS(X) be the Néron-Severi lattie of X . The following theorem gives

us the omplete ounting formula for Fourier-Mukai partners of a K3 surfae.

Theorem 2.30 (Counting formula [29℄) Let G(S) = {S1 = S, S2, . . . Sm}
be the set of isomorphism lasses of latties with same signature and disrimi-

nant as S. Then

|FM(X)| =
m
∑

j=1

|Aut(Sj)\Aut(S∗
j /Sj)/OHdg(T (X))| <∞.

The relation with the lass number h(p) of Q(
√−p), for a prime p, is:

Theorem 2.31 ([29℄ Theorem 3.3) Let the rank NS(X) = 2 for X, a K3

surfae, then detNS(X) = −p for some prime p, and |FM(X)| = (h(p)+1)/2.

Remark 2.32 The surjetivity of period map [36, Theorem 6.3.1℄ along with

[36, Corollary 14.3.1℄ implies that there exists a K3 with Piard rank 2 and

disriminant −p, for eah prime p (see [29, Remark after Theorem 3.3℄ ).

We now desribe the known results about the derived autoequivalene group

Aut(Db(X)) for a K3 surfae over C. Observe that Theorem 2.26 implies that

we have the following natural map of groups:

Aut(X) →֒ Aut(Db(X))→ OHdg(H̃
∗(X,Z)).

The following theorem gives a desription of the seond map:

Theorem 2.33 ([29℄, [63℄) Let ϕ be a Hodge isometry of the Mukai lattie

H̃∗(X,Z) of a K3 surfae X, i.e. ϕ ∈ OHdg(H̃
∗(X,Z)). Then there exists an

autoequivalene

ΦE : Db(X)→ Db(X) (1)

with ΦH
E = ϕ ◦ (±idH2) : H̃∗(X,Z) → H̃∗(X,Z). In partiular, the index of

image

Aut(Db(X))→ OHdg(H̃
∗(X,Z)) (2)

is at most 2.

On the other hand, it has been shown that

Doumenta Mathematia 24 (2019) 1135�1177



1150 Tanya Kaushal Srivastava

Theorem 2.34 ([32℄) The one-inversion Hodge isometry idH0⊕H4 ⊕ −idH2

on H̃∗(X,Z) is not indued by any derived auto-equivalene. In partiular, the

index of image

Aut(Db(X))→ OHdg(H̃
∗(X,Z)) (3)

is exatly 2.

Remark 2.35 [36, 16.4.2℄ The above results have been shown for K3 surfaes

over C only but the results are valid for K3 surfaes over any algebraially

losed �eld of harateristi 0, in the sense made preise below. The argument

goes as follows: We redue the ase of char(k) = 0 to the ase of C. We begin

by making the observation that every K3 surfae X over a �eld k is de�ned

over a �nitely generated sub�eld k0, i.e., there exists a K3 surfae X0 over k0
suh that X := X0×k0 k. Similarly, if ΦP : Db(X)→ Db(Y ) is a Fourier Mukai

equivalene, then there exists a �nitely generated �eld k0 suh that X,Y and P
are de�ned over k0. Moreover, the k0- linear Fourier-Mukai transform indued

by P0, ΦP0 : Db(X0) → Db(Y0) will again be a derived equivalene (use, for

example, the riteria [30, Proposition 7.1℄ to hek this.).

Now assume that k0 is algebraially losed. Note that any Fourier-Mukai

kernel whih indues an equivalene ΦP0 : Db(X0)
∼−→ Db(X0) is rigid, i.e.

Ext

1(P0, P0) = 0 (see [36, Proposition 16.2.1℄), thus any Fourier-Mukai equiv-

alene

ΦP : Db(X0 ×k0 k)
∼−→ Db(X0 ×k0 k)

desends to k0 (see for example [36, Lemma 17.2.2℄ for the ase of line bundles,

the general ase follows similarly

8

). Hene, for a K3 surfae X0 over the alge-

brai losure k0 of a �nitely generated �eld extension of Q and for any hoie

of an embedding k0 →֒ C, whih always exists, one has

Aut(Db(X0 ×k0 k))
∼= Aut(Db(X0)) ∼= Aut(Db(X0 ×k0 C)).

In this sense, for K3 surfaes over algebraially losed �elds k with char(k) = 0,
the situation is idential to the ase of omplex K3 surfaes.

We an now write down the following exat sequene: For X a projetive

omplex K3 surfae one has

0→ Ker→ Aut(Db(X))→ O

Hdg

(H̃∗(X,Z))/{i} → 0, (4)

8

In the general ase we sketh the proof: Use the moduli stak of simple universally

gluable perfet omplexes over X0 ×X0/k0, denoted sDX0×X0/k0
, as de�ned in [45, Setion

5℄. From the arguments following the de�nition, it is an algebrai stak whih admits a

oarse moduli algebrai spae sDX0×X0/k0
. Note that for any k0 point P0 whih indues

an equivalene, the loal dimension of the oarse moduli spae is zero as the tangent spae

is a subspae of Ext

1(P0, P0) = 0 (see, for example, [43, 3.1.1℄ or proof of [45, Lemma 5.2℄)

and the oarse moduli spae is also smooth. The smoothness follows from the fat that the

deformation of the omplex is unobstruted (see, for example, [1, Tag 03ZB and Tag 02HX℄)

in equi-harateristi ase as one always has a trivial deformation. Indeed, let A be any

Artinian loal k-algebra, then pullbak along the struture morphism Spec(A) → Spec(k)
gives a trivial deformation of X×X and also a trivial deformation of any omplex on X×X.

Thus, we an repeat the argument as in [36, Lemma 17.2.2℄ as now the image of the lassifying

map f : Spec(A) → sDX0×X0/k0
is onstant (In the notation of [36, Lemma 17.2.2℄).
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where H̃∗(X,Z) is the ohomology lattie with Mukai pairing and extended

Hodge struture, and O

Hdg

(−) is the group of Hodge isometries, i is the one

inversion isometry IdH0⊕H4 ⊕−IdH2
.

Remark 2.36 The struture of the kernel of this map has been desribed

only in the speial ase of a projetive omplex K3 surfae with Pi(X) = 1
in [6℄. (For a disussion about the results in non-projetive ase see [33℄.)

However, Bridgeland in [14, Conjeture 1.2℄ has onjetured that this kernel

an be desribed as the fundamental group of an open subset of H1,1 ⊗ C.
Equivalently, the onjeture says that the onneted omponent of the stability

manifold (see [13℄, [14℄ for the de�nitions) assoiated to the olletion of the

stability onditions on Db(X) overing an open subset of H1,1 ⊗ C is simply

onneted. The equivalene of the two formulations follows from a result of

Bridgeland ([14, Theorem 1.1℄), whih states that the kernel ats as the group

of dek transformations of the overing of an open subset of H1,1 ⊗ C by a

onneted omponent of the stability manifold. Bayer and Bridgeland [6℄ have

veri�ed the onjeture in the speial ases of Pi(X) = 1 (see [33℄ for the

non-projetive ase).

Lastly, we state the main results on derived equivalenes of K3 surfaes over an

algebraially losed �eld of positive harateristi known so far. For generaliza-

tions of some results to non-algebraially losed �elds of positive harateristi

see [69℄.

In ase, char(k) = p > 2, Lieblih-Olsson [45℄, proved the following:

Theorem 2.37 ([45℄, Theorem 1.1) Let X be a K3 surfae over an alge-

braially losed �eld k of positive harateristi 6= 2.

1. If Y is a smooth projetive k-sheme with Db(X) ∼= Db(Y ), then Y is a

K3 surfae isomorphi to a �ne moduli spae of stable sheaves.

2. There exists only �nitely many smooth projetive k-shemes Y with

Db(X) ∼= Db(Y ). If X has rank NS(X) ≥ 12, then Db(X) ∼= Db(Y )
implies that X ∼= Y . In partiular, any supersingular K3 surfae is de-

termined up to isomorphism by its derived ategory.

Remark 2.38 One of the open questions is to have a ohomologial riteria for

derived equivalent K3 surfaes over a �eld of positive harateristi like we have

in harateristi 0 where Hodge theory and Torelli Theorems were available.

However, as there is no rystalline Torelli Theorem for non-supersingular K3

surfaes over a �eld of positive harateristi and the naive F-rystal (see Ap-

pendix) fails to be ompatible with inner produt, the desription in terms of

F-rystals is not yet possible. Even though one has rystalline Torelli Theorem

for supersingular K3 surfaes, it is essentially not providing any more informa-

tion as there are no non-trivial Fourier-Mukai partners of a supersingular K3

surfae. However, Lieblih-Olsson proved a derived Torelli Theorem using the

Ogus Crystalline Torelli Theorem [62℄, see [46, Theorem 1.2℄.
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2.4 Height is a Derived Invariant

Let us already show here that height of a K3 surfae is a derived invariant. This

will allow us to stay within a sublass of K3 surfaes while heking derived

equivalenes.

Lemma 2.39 Height of a K3 surfae X over an algebraially losed �eld of

harateristi p > 3 is a derived invariant.

Proof: Reall that the height of a K3 surfae X is given by the dimension of

the subspae H2
crys(X/K)[0,1) of the F-isorystal H

2
crys(X/K). Now note that

the Frobenius ats on the one dimensional isorystals H0
crys(X/K)(−1) and

H4
crys(X/K)(1) (Tate twisted) as multipliation by p (see Appendix below for

this omputation). This implies that the slope of these F-isorystals is exatly

one. Thus, the F-isorystal

H∗
crys(X/K) := H0

crys(X/K)(−1)⊕H2
crys(X/K)⊕H4

crys(X/K)(1)

has the same subspae of slope of dimension stritly less than one as that of

the F-isorystal H2
crys(X/K), i.e., H∗

crys(X/K)[0,1) = H2
crys(X/K)[0,1).

Note that any derived equivalene of X and Y preserves the F-isorystal

H∗
crys(−/K), i.e., if ΦP : Db(X) ≃ Db(Y ) is a derived equivalene of two

K3 surfaes X and Y , then the indued map on the F-isorystals

Φ∗
P : H∗

crys(X/K)→ H∗
crys(Y/K)

is an isometry. Thus, for the height of Y given by dim(H2
crys(Y/K)[0,1)) we

have

dim(H2
crys(Y/K)[0,1)) = dim(H∗

crys(Y/K)[0,1))

= dim(H∗
crys(X/K)[0,1))

= dim(H2
crys(X/K)[0,1)) = height of X

Hene the result. �

Remark 2.40 1. In harateristi 0, there is no notion of height but in this

ase the Brauer group itself is a derived invariant of a K3 surfae, as

Br(X) ∼= Hom(T (X),Q/Z), where T (X) is the transendental lattie.

2. On the other hand, the Piard lattie is not a derived invariant in any

harateristi, though it trivially remains invariant in the ase of K3

surfaes whih do not have non-trivial Fourier-Mukai partners.

3 Derived Autoequivalenes of K3 Surfaes in Positive Chara-

teristi

In this setion, we ompare the deformation of an automorphism as a morphism

and as a derived autoequivalene and show that for K3 surfaes these defor-

mations are in one-to-one orrespondene. Then we disuss Lieblih-Olsson's
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results on lifting derived autoequivalenes. Then we use these lifting results to

prove results on the struture of the group of derived autoequivalenes of a K3

surfae of �nite height over a �eld of positive harateristi.

3.1 Obstrution to Lifting Derived Autoequivalenes

Let X be a projetive variety over an algebraially losed �eld k of positive

harateristi p,W (k) its ring of Witt vetors and σ : X → X an automorphism

of X . Then this automorphism will indue an equivalene of derived ategories

σ∗ : Db(X)
∼=−→ Db(X)

and it is easy to hek that derived equivalene σ∗
is also represented by the

Fourier-Mukai transform ΦOΓ(σ)
, where OΓ(σ) is the pushforward of the stru-

ture sheaf of the graph of σ to X × X and is onsidered as a oherent sheaf

in Db(X ×X). This representation of σ provides us with another way of de-

forming it as a perfet omplex in Db(X ×X), other than just as a morphism.

A priori these two ways of deformations are not equivalent but for K3 surfaes

they turn out to be so and we will exploit this equivalene of deformations later

to prove that every automorphism of ordinary K3 surfaes lift.

We begin by realling the lassial result that for a variety the in�nitesimal

deformation of a losed sub-variety with a vanishing H1(X,OX) as a losed

subsheme is determined by the deformation of its (pushforward of) struture

sheaf as a oherent sheaf on X ×X . We then use this result to show that on

a K3 surfae we an lift an automorphism as a automorphism if and only if we

an lift it as a perfet omplex in the derived ategory.

Remark 3.1 For a K3 surfae this result an also be seen using [45, Proposi-

tion 7.1℄ and the p-adi riterion of lifting automorphisms on K3 surfaes [19,

Remark 6.5℄.

Let X and σ be as above.

Definition 3.2 For any Artin loal W (k)-algebra A with residue �eld k, an
in�nitesimal deformation of X over A is a proper and �at sheme XA over A
suh that the following square is artesian:

X //

��

XA

��

Spec(k) // Spec(A).

In ase X is smooth, we ask XA to be smooth over A as well. In this ase, XA

is automatially �at over A.
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Consider the following two deformation funtors:

Faut :(Artin loal W (k)-algebras with residue �eld k)→ (Sets)

A 7→ {Lifts of automorphism σ to A}, (5)

where by lifting of automorphism σ over A we mean that there exists an in-

�nitesimal deformation XA of X and an automorphism σA : XA → XA whih

redues to σ, i.e., we have the following ommutative diagram:

XA
σA

// XA

X

OO

σ
// X.

OO

This is the deformation funtor of an automorphism as a morphism. Now on-

sider the deformation funtor of an automorphism as a oherent sheaf de�ned

as follows:

Fcoh :(Artin loal W (k)-algebras with residue �eld k)→ (Sets)

A 7→ {Deformations of OΓ(σ) to A}/iso, (6)

where by deformations of OΓ(σ) to A we mean that there exists an in�nitesimal

deformation YA of Y := X × X over A and a oherent sheaf FA, whih is a

deformation of the oherent sheaf OΓ(σ) and OΓ(σ) is onsidered as a oherent

sheaf on X ×X via the losed embedding Γ(σ) →֒ X ×X . Isomorphisms are

de�ned in the obvious way.

Remark 3.3 Note that there are more deformations of X ×X than the ones

of the shape XA ×A X ′
A, where XA and X ′

A are deformations of X over A.
From now we make a hoie of this deformation (YA) to be XA×XA. Also see

Remark [3.14℄ and ompare from Theorem [3.7℄ and Remark [3.15℄ below.

Let X be a smooth projetive sheme over k and for A an Artin loal W (k)-
algebra assume that there exists an in�nitesimal lift of X to XA. Note that

suh a lift may not always exist but for the ase of K3 surfaes of �nite height

it does, see [47, Corollary 4.2℄ and Theorem 2.7. However, for supersingular

K3 surfaes, the lift does not exists over all Artin loal rings but in some ases

it does exist by Theorem 2.7. Observe that there is a natural transformation

η : Faut → Fcoh given by

ηA : Faut(A) −→ Fcoh(A)

(σA : XA → XA) 7→ OΓ(σA)/XA ×XA.
(7)

Theorem 3.4 The natural transformation η : Faut → Fcoh between the defor-

mation funtors is an isomorphism for varieties with H1(X,OX) = 0.
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We provide an algebrai proof by onstruting a deformation-obstrution long

exat sequene onneting the two funtors. The proof follows from the fol-

lowing more general proposition 3.6, substituting X ×X for Y and taking the

embedding i to be the graph of the automorphism σ. To use proposition 3.6

we need the following lemma.

Lemma 3.5 (Cf. [27℄ Lemma 24.8) To give an in�nitesimal deformation of

an automorphism f : X → X over XA it is equivalent to give an in�nitesimal

deformation of the graph Γf as a losed subsheme of X ×X.

Proof: To any deformation fA of f we assoiate its graph ΓfA , whih gives

a losed subsheme of XA × XA. It is an in�nitesimal deformation of Γf .

Conversely, given a deformation Z of Γf over A, the projetion p1 : Z →֒
XA ×A XA → XA gives an isomorphism after tensoring with k. From �atness

(see, for example, EGA IV, Corollary 17.9.5) of Z over A it follows that p1 is

an isomorphism, and so Z is the graph of fA = p2 ◦ p−1
1 . �

The following proposition is ertainly known to the experts but we were unable

to �nd a proof in literature, so we wrote one for reader's onveniene.

Proposition 3.6 (Cf. [27, Ex 19.1℄) Let i : X →֒ Y be a losed embedding

with X integral and projetive sheme of �nite type over k. Then there exists

a long exat sequene

0→ H0(NX)→Ext

1
Y (OX ,OX)→ H1(OX)→

H1(NX)→ Ext

2
Y (OX ,OX)→ . . . ,

(8)

where NX is the normal bundle of X.

Proof: Consider the short exat sequene given by the losed embedding i

0→ I → OY → i∗OX → 0. (9)

Apply the global Hom ontravariant funtor HomY (−, i∗OX) to the above short
exat sequene and we get the following long exat sequene from [26, III

Proposition 6.4℄,

0→ HomY (i∗OX , i∗OX)→ HomY (OY , i∗OX)→ HomY (I, i∗OX)→
Ext

1
Y (i∗OX , i∗OX)→ Ext

1
Y (OY , i∗OX)→ Ext

1
Y (I, i∗OX)→

Ext

2
Y (i∗OX , i∗OX)→ . . . .

Now note that we an make the following identi�ations

1. HomY (i∗OX , i∗OX) ∼= k as X is integral and projetive.

2. HomY (OY , i∗OX) = H0(OX) = k using [26, III Propostion 6.3 (iii),

Lemma 2.10℄ and the fat that X is onneted.
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3. As any injetive endomorphism of a �eld is an automorphism, we an

modify the long exat sequene as follows:

0→ HomY (I, i∗OX)→ Ext

1
Y (i∗OX , i∗OX)→ Ext

1
Y (OY , i∗OX)→ . . . .

4. HomY (I, i∗OX) ∼= HomX(i∗I,OX) using ajuntion formula on page 110

of [26℄. Moreover, using [26, III, Proposition 6.9℄, we have

HomX(i∗I,OX) = HomX(OX ,HomX(i∗I,OX)),

and using the disussion in [1, Tag 01R1℄, we haveHomX(i∗I,OX) = NX .

Thus, putting this together with [26, III Proposition 6.3 (iii) and Lemma

2.10℄, we get

HomY (I, i∗OX) ∼= H0(NX).

5. Note that again using [26, III Proposition 6.3 (iii) and Lemma 2.10℄, we

get

Ext

1
Y (OY , i∗OX) ∼= H1(OX).

6. Note that using the adjuntion for Hom sheaves we have:

i∗NX = i∗HomX(i∗I,OX) ∼= HomY (I, i∗OX).

Thus, H1(NX) := H1(X,NX) = H1(Y, i∗NX) using [26, III Lemma

2.10℄. To ompute H1(Y, i∗NX), we hoose an injetive resolution of

i∗OX as an OY -module 0→ OX → J •
. From [23, Proposition 4.1.3℄, we

know that HomY (I,J i) are �asque sheaves and so we an ompute the

ohomology group using this �asque resolution. Hene,

Hi =
Ker(HomY (I,J i)→ HomY (I,J i+1))

Im(HomY (I,J i−1)→ HomY (I,J i))
= Ext

i
Y (I, i∗OX).

Thus, putting all of the above observations together, we get our required long

exat sequene. �

Proof: [Proof of Theorem 3.4:℄ Note that the obstrution spaes for the

funtors Faut and Fcoh are H1(NX) and Ext

2
Y (OX ,OX) respetively. See, for

example, [27, Theorem 6.2, Theorem 7.3℄ and Lemma 3.5 above. The same

results give us the tangent spaes for the funtors Faut and Fcoh and they

are H0(NX) and Ext

1
Y (OX ,OX). Now using Proposition 3.6 along with our

assumption of vanishing H1(X,OX) one has that the obstrution spae of Faut

is a subspae of the obstrution of Fcoh and this inlusion sends one obstrution

lass to the other one. Therefore, the obstrution to lifting the automorphism as

a morphism vanishes if and only if the obstrution to lifting the automorphism

as a sheaf vanishes. Moreover, the isomorphism of tangent spaes implies that

the number of lifts in both ases is same. �
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This shows that for projetive varieties with vanishing H1(X,OX), one doesn't
have extra deformations of automorphisms as a sheaf. Note that we ould still

ask for deformations as a perfet omplex but sine the perfet omplex we

start with is a oherent sheaf any deformation of it as a perfet omplex will

also have only one non-zero oherent ohomology sheaf. Indeed, this follows

from the fat that deformations annot grow ohomology sheaves ,as if F •
A is

the deformation of OX over A suh that H1(F •
A) 6= 0 (to simplify our argument

we are assuming F •
A is bounded above at level 1, i.e., F i

A = 0 ∀i > 1), then we

an replae this omplex in the derived ategory by a omplex like

. . .→ F−1
A → Ker(F 0

A → F 1
A)

0−→ H1(F •
A)→ 0.

Then reduing to speial �ber gives that H1(F •
A)⊗A k = 0, but this will only

happen ifHi(F •
A) = 0. Moreover, as we are in the derived ategory, we an show

that the deformed perfet omplex is then quasi isomorphi to a oherent sheaf.

Indeed, the quotient map to the non-zero oherent ohomology sheaf provides

the quasi-isomorphism. This shows that there are no extra deformations as a

perfet omplex as well. Hene, an automorphism σ on a projetive variety X
with vanishing H1(X,OX) lifts if and only if the derived equivalene it indues,
ΦOΓ(σ)

: Db(X)→ Db(X), lifts as a Fourier-Mukai transform.

Now we state the two theorems proved by Lieblih-Olsson whih give a riteria

to lifting perfet omplexes.

Theorem 3.7 ([45℄ Theorem 6.3) Let X and Y be two K3 surfaes over an

algebraially losed �eld k, and P ∈ Db(Y ×X) be a perfet omplex induing

an equivalene Φ : Db(Y )→ Db(X) on the derived ategories. Assume that the

indued map on ohomology (see below) satis�es:

1. Φ(1, 0, 0) = (1, 0, 0),

2. the indued isometry κ : Pic(Y )→ Pic(X) sends CY , the ample one of

Y, isomorphially to either CX or −CX , the (−)ample one of X.

Then there exists an isomorphism of in�nitesimal deformation funtors δ :
DefX → DefY suh that

1. δ−1(Def(Y,L)) = Def(X,Φ(L));

2. for eah augmented Artinian W -algebra W → A and eah (XA → A) ∈
DefX(A), there is an objet PA ∈ Db(δ(XA) ×A XA) reduing to P on

Y ×X.

Theorem 3.8 ([45℄, Theorem 7.1) Let k be a perfet �eld of harateristi

p > 0, W be the ring of Witt vetors of k, and K be the �eld of frations of W .

Fix K3 surfaes X and Y over k with lifts XW /W and YW /W . These lifts in-

due orresponding Hodge �ltrations via de Rham ohomology on the rystalline

ohomology of the speial �bers. Denote by F 1
Hdg(X) ⊂ H2(X/K) ⊂ H∗(X/K)
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and F 1
Hdg(Y ) ⊂ H2(Y/K) ⊂ H∗(Y/K) (similarly for F 2

Hdg(−)), where

H∗(X/K) and H∗(Y/K) are the orresponding Mukai F-isorystals. Suppose

that P ∈ Db(X × Y ) is a kernel whose assoiated funtor Φ : Db(X)→ Db(Y )
is fully faithful. If

Φ : H∗(X/K)→ H∗(Y/K)

sends F 1
Hdg(X) to F 1

Hdg(Y ) and F 2
Hdg(X) to F 2

Hdg(Y ), then P lifts to a perfet

omplex PW ∈ Db(XW ×W YW ).

Remark 3.9 Note that however, in�nitesimally the hodge �ltration is not pre-

served. We have the same ounterexamples as in the ase of in�nitesimal in-

tegral variational Hodge onjeture: take a line bundle suh that L⊗p 6= OX ,

then we have the Chern harater of L⊗p
is 0 as p.ch(L) = 0, so it lies in the

orret Hodge level, but it need not lift. For example: see [10, Lemma 3.10℄.

Remark 3.10 Note that the lifted kernel also indues an equivalene. Indeed,

for a K3 surfae fully faithful Fourier-Mukai funtor of derived ategories is an

equivalene (see [30, Proposition 7.6℄) and so we an also lift the Fourier-Mukai

kernel of the inverse equivalene. Then the omposition of the equivalene we

started with and its inverse will give us a lift of the identity as an derived

autoequivalene. But using the fat that the Ext

1
X×X(P, P ) = 0 (see [46,

Lemma 3.7 (ii)℄) for any kernel induing an equivalene, we get that the lift of

the identity is unique and is the identity itself. Thus, the lifted Fourier-Mukai

funtor is an equivalene.

Corollary 3.11 Take P to be OΓ(σ), where σ : X → X is an automorphism

of a K3 surfae X over k. Then the following are equivalent

1. P lifts to an autoequivalene of Db(XW )

2. σ lifts to an automorphism of XW

3. ΦP : H∗(X/K)→ H∗(X/K) preserves the Hodge �ltration.

However, we see that we an still lift it as an isomorphism as follows:

Theorem 3.12 (Weak Lifting of Automorphisms) Let σ : X → X be

an automorphism of a K3 surfae X de�ned over an algebraially losed �eld k
of harateristi p. There exists a smooth projetive model XR/R, where R is a

disrete valuation ring that is a �nite extension of W (k), with XK its generi

�ber suh that there is a PR, a perfet omplex in Db(XR × YR), reduing

to OΓ(σ) on X × X, where YR is another smooth projetive model abstratly

isomorphi to XR (see Remark [3.13℄ below).

Proof: We divide the proof into 3 steps:
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1. Lifting Kernels In�nitesimally: Note that ΦOΓ(σ)
is a strongly �ltered

derived equivalene, i.e.,

Φ∗
OΓ(σ)

= σ∗ : Hi
crys(X/W )

∼−→ Hi
crys(X/W )

is an isomorphism whih preserves the gradation of rystalline ohomol-

ogy. Choose a projetive lift of X to harateristi zero along with a lift

of HX . It always exists as proved by Deligne [16℄, i.e., a projetive lift

(XV , HXV
) of (X,HX) over V a disrete valuation ring, whih is a �nite

extension of W (k), the Witt ring over k. Let Vn := V/mn
for n ≥ 1, m

the maximal ideal of V and let K denote the fration �eld of V . Then,

for eah n, using the lifting riterion above, there exists a polarized lift

(X ′
n, HX′

n
) over Vn and a omplex Pn ∈ DPerf (Xn ×X ′

n) lifting OΓ(σ).

2. Applying the Grothendiek Existene Theorem for perfet omplexes: By

the lassial Grothendiek Existene Ttheorem [26, II.9.6℄, the polarized

formal sheme (lim←−X ′
n, lim←−HX′

n
) is algebraizable. So, there exists a pro-

jetive lift (X ′, HX′) over V that is the formal ompletion of (X ′
n, HX′

n
).

Now using the Grothendiek Existene Theorem for perfet omplexes

(see [43, Proposition 3.6.1℄) the formal limit of (Pn) is algebraizable and
gives a omplex PV ∈ DPerf (XV × X ′

V ). In partiular, PV lifts OΓ(σ)

and using Nakayama's lemma, PV indues an equivalene.

3. Now apply the global Torelli Theorem to show that the two models

are isomorphi: For any �eld extension K ′
over K, the generi �ber

omplex PK′ ∈ Db(XK′ × X ′
K′) indues a Fourier-Mukai equivalene

ΦPK′ : D(XK′) → D(X ′
K′). Using Bertholet-Ogus isomorphisms [10℄,

we see that ΦK′
preserves the gradation on de Rham ohomology of XK′

.

Fix an embedding ofK ′ →֒ C gives us a �ltered Fourier Mukai equivalene

ΦPC
: Db(XK′ × C)→ Db(X ′

K′ × C),

whih in turn indues an Hodge isometry of integral latties:

H2(XK′ × C,Z)
∼−→ H2(X ′

K′ × C,Z),

using Theorem 2.26 and the fat that a �ltered equivalene preserves the

grading. This implies that XK′×C ∼= X ′
K′×C, whih after taking a �nite

extension V ′
of V gives that the generi �ber are isomorphi XK′ ∼= X ′

K′

(we abuse notation to still denote the fration �eld of V ′
by K ′

). And

sine the polarization was lifted along, this gives atually a map of

polarized K3 surfaes denoted by fK′ : (XK′ , HXK′ )
∼−→ (X ′

K′ , HX′
K′
).

Now we an onlude that the the generi �bers are isomorphi as well by

forgetting the polarization. So now we need to show that the models are iso-

morphi, i.e., XV ′ ∼= X ′
V ′ , whih will follow from [54, Theorem 2℄. �
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Remark 3.13 Note that even though the generi �bers are isomorphi whih

indeed implies that the models are abstratly isomorphi (via the Matsusaka-

Mumford Theorem) but not as models of the speial �ber as the isomorphism

will not be the identity on the speial �ber, just for the simple reason that we

started with di�erent polarizations on the speial �bers.

Remark 3.14 This dependene on the hoie of the lift XA of X and the

ability to �nd another lift YA an be seen as a reformulation of the formula

stated in [35, Theorem on Page 2℄.

Remark 3.15 The above results an be rephrased to say that in the moduli

spae of lifts of X × X we annot always deform the automorphism in the

diretion of XA ×XA but an do so always in the diretion of some XA × YA,

where XA and the automorphism determine YA uniquely.

Next, we disuss the struture of the derived autoequivalene group of a K3

surfae of �nite height.

3.2 The Cone Inversion Map

Let X be a K3 surfae over k of �nite height with char(k) = p > 3.

Definition 3.16 The positive one CX ⊂ NS(X)R is the onneted ompo-

nent of the set {α ∈ NS(X)|(α)2 > 0} that ontains one ample lass (or

equivalently, all of them).

Definition 3.17 [Cone Inversion map℄ Let CX be the positive one, the one

inversion map on the ohomology is the map that sends the positive one CX
to −CX .
Expliitly, in harateristi 0, we de�ne the map to be (−idH2) ⊕ idH0⊕H4 :
H̃∗(X,Z)→ H̃∗(X,Z), where H̃∗(X,Z) is the Mukai lattie ([30, Setion 10.1℄).

Note that the one inversion map is a Hodge isometry. In harateristi p > 3,
we de�ne the map to be (−idH2 ) ⊕ idH0⊕H4 : H∗

crys(X/K) → H∗
crys(X/K),

where H∗
crys(X/K) is the Mukai F-isorystal (see appendix A). Note that the

one inversion map preserves the Hodge Filtration on H2
crys(X/K).

(In harateristi 0, the following proposition is proved in [32℄ with the Mukai

F-rystal replaed with Mukai lattie.).

Theorem 3.18 The image of Aut(Db(X)) in Aut(H∗
crys(X/K)) has index at

least 2, where H∗
crys(X/K) is the Mukai F-isorystal.

We prove the above proposition by showing that the one inversion map on

the ohomology does not ome from any derived auto-equivalene. The proof

is done by ontradition, we assume that suh an auto-equivalene exists, then

lift the kernel of the derived auto-equivalene to har 0, and then we use the

results of [32℄, to get a ontradition that this does not happen.

Reall that we have the following diagram of desend to ohomology of a

Fourier-Mukai transform ΦP , for P ∈ Db(X × Y ):
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Db(X)
E 7→ RpY ∗(p

∗
XE) ⊗L P )−−−−−−−−−−−−−−−→ Db(X)





y

ch( )





y

ch( )

CH∗(X) −−−−→ CH∗(X)




y
◦
√
tdX





y
◦
√
tdY

H∗(X)
α 7→ pY ∗

(

(p∗
Xα) · ch(P )

√

tdX×Y

)

−−−−−−−−−−−−−−−−−−−−−−→ H∗(X),

where ch(−) is the Chern harater and td− is the Todd genus.

Proof: [Proof of Theorem 3.18℄ Assume that the one inversion map is in-

dued by a derived auto-equivalene. Then using Orlov's representability Theo-

rem ([59℄, [60℄), we know that this derived auto-equivalene is a Fourier-Mukai

transform and we denote the kernel of the transform by E . Sine E indues

the one inversion map and this map preserves the Hodge �ltration on the

rystalline ohomology, using Theorem 3.8, we know that we an lift the per-

fet omplex E to a perfet omplex EW in Db(XW × XW ), where XW is

the lift of X as in [47, Corollary 4.2℄. Note that the lifted omplex also in-

dues a derived equivalene. Indeed, using Nakayama's lemma we see that the

adjuntion maps ∆∗OXW
→ EW ◦ E∨W and EW ◦ E∨W → ∆∗OYW

are quasi-

isomorphisms. Moreover, sine we have H∗
crys(X/W ) ∼= H∗

DR(XW /W ), we
know that the lifted omplex indues again the one inversion map on the

ohomology. It also follows that for any �eld extension K ′/K, the generi

�ber omplex EK′ ∈ Db(XK′ ×K′ XK′) indues a Fourier Mukai equivalene

Φ : Db(XK′) → Db(XK′). Choosing an embedding K →֒ C (see our onven-

tions [1.1℄) yields a Fourier-Mukai equivalene Db(XK ⊗ C) → Db(XK ⊗ C)
whih indues the one inversion map on H̃∗(X,Z). This is a ontradition as

in harateristi zero this does not happen, see [32℄ for a proof. �

We now make an interesting observation about the kernel of the map:

Corollary 3.19 Let X be a K3 surfae over k, an algebraially losed �eld

of positive harateristi. Then the kernel of the natural map

0→ Ker→ Aut(Db(X))→ Aut(H∗
crys(X/K))

lifts. More preisely, assume that XV be a lift of X over V , a mixed harater-

isti disrete valuation ring with residue �eld k, then every derived autoequiv-

alene in the kernel of the map above lifts as an autoequivalene of the derived

ategory of XV .

Proof: This is lear as any autoequivalene in the kernel indues the iden-

tity automorphism on the ohomology whih is bound to respet every Hodge

�ltration on the F-isorystal and then we use Theorem 3.8. �

This allows us to give at least an upper bound on the kernel as follows: Let

X be a K3 surfae over an algebraially losed �eld of harateristi p > 2.
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Choose a lift of X , denoted as XR, suh that the Piard rank of the geometri

generi �ber is 1. There always exists suh a lift as shown by Esnault-Oguiso

in [19, Theorem 4.1℄.

Let ΦP : Db(X) → Db(X) be a Fourier-Mukai autoequivalene indued by

P ∈ Db(X ×X) that belong to the kernel of the natural map

Aut(Db(X))→ Aut(H∗
crys(X/K)).

We will denote the kernel of this map as KerX . Now using [46, Lemma 3.7 (ii)℄

we see that the set of in�nitesimal deformations of the kernel P is a singleton

set, whih in turn implies that the lift of P to XR × XR (this was just the

orollary 3.19) is unique.

Next, note that the �ber of the lift of P over the geometri generi point of

R, denoted as PK̄ , also belongs to the kernel of the natural map (again base

hanged to C using the embedding K̄ ⊂ C)

Aut(Db(XC))→ OHdg(H̃
∗(XC,Z)),

denoted as KerXC
. Indeed, this follows from the base hange on ohomology

and Berthelot-Ogus's isomorphism [10℄. Let us assume that ΦPC
does not

indues the identity on the singular ohomology of XC and hene, using the

following natural ommutative diagram

H∗(XC,C) //

∼=
��

H∗(XC,C)

∼=
��

H∗
DR(XC) // H∗

DR(XC),

ΦPC
also does not indues the identity on the de Rham ohomology of XC.

As the autoequivalene ΦPC
is just the base hange of ΦPK̄

we see that the

map indued by ΦPK̄
on the de Rham ohomology of XK̄ is not the identity.

Now again ΦPK̄
omes via base hange from ΦPK

so it is not the identity on

de Rham ohomology of XK , now using the Berthelot-Ogus's isomorphism it

does not indue the identity on the rystalline ohomology of X but this is not

possible as it is a lift of an autoequivalene whih indues the identity on the

rystalline ohomology.

This gives us the following map

KerX → KerXC

ΦP 7→ ΦPC

with the kernel onsisting of those autoequivalenes whih lift to the identity

on the geometri generi �ber.

Remark 3.20 We expet that in the ase of a general polarized K3 surfae,

the set of autoequivalenes whih lift to the identity on the geometri generi

�ber will ontain only the identity itself.
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Now, using the Piard rank 1 lift of Esnault-Oguiso, we see that there is a

subgroup of KerX inside KerXC
. And the kernel KerXC

has been desribed in

[6, Theorem 1.4℄. Thus, we have shown that

Proposition 3.21 Let X be a K3 surfae over k, an algebraially losed �eld

of harateristi p > 3, and XR → Spec(R) be a Piard rank one lift of X with

XC the base hange to C of the geometri generi �ber of XR. Here, R is mixed

harateristi disrete valuation ring with residue �eld k. Then KerXC
ontains

a subgroup of KerX . Moreover, in the ase the set of autoequivalenes whih lift

to the identity on the geometri generi �ber ontains only the identity itself,

then KerX ⊂ KerXC
.

4 Counting Fourier-Mukai Partners in Positive Charateristi

In this last setion, we ount the number of Fourier-Mukai partners of an or-

dinary K3 surfae, in terms of the Fourier-Mukai partners of the geometri

generi �ber of its anonial lift. Moreover, we prove that any automorphism

of ordinary K3 surfaes lifts to its anonial lift. We start with omparing

the Fourier-Mukai partners of a K3 surfae over a �eld of positive harater-

isti with that of the geometri generi �ber of its lift to harateristi zero.

Then we restrit to ordinary K3 surfaes and give a few onsequenes to lifting

automorphisms of ordinary K3 surfaes. Moreover, we give a su�ient on-

dition on derived autoequivalenes of an ordinary K3 surfae so that they lift

to the anonial lift. Lastly, we show that the lass number ounting formula

(ompare from Theorem 2.31) also holds for K3 surfaes over a harateristi

p �eld.

Let X (resp. Y ) be a regular proper sheme with Db(X) (resp. Db(Y )) its
bounded derived ategory. Reall that we say that Y is a Fourier-Mukai partner

of X if there exists a perfet omplex P ∈ Db(X × Y ) suh that the following

map is an equivalene of derived ategories:

ΦP : Db(X)
∼=−→ Db(Y )

Q 7→ RpY ∗((p
∗
XQ)⊗L P),

(10)

where pX (resp. pY ) is the projetion from X × Y to X (resp. Y ).

We want to ount the number of Fourier-Mukai partners of a K3 surfae in

positive harateristi. We will do this by lifting the K3 surfae to harateristi

0 and then ounting the Fourier-Mukai partners of the geometri generi �bers.

For this we will show that the speialization map for Fourier-Mukai partners

de�ned below is injetive and surjetive:

{FM partners of XK̄} →{FM partners of X}
MXK̄

(v) 7→MX(v).
(11)

Here, X is a K3 surfae of �nite height over k an algebraially losed �eld of

harateristi p > 3, XK̄ is the geometri generi �ber of XW , whih is a Piard

Doumenta Mathematia 24 (2019) 1135�1177



1164 Tanya Kaushal Srivastava

preserving lift of X , and MX(v) (resp. MXK̄
(v), MXW

(v)) is the (�ne) moduli

spae of stable sheaves with Mukai vetor v on X (resp. XK̄ , XW ). Note that

from now on we will �x one suh lift of X . Suh a lift always exists by [47,

Corollary 4.2℄ for K3 surfaes of �nite height. On the other hand, Theorem

2.37 shows that supersingular K3 surfaes have no nontrivial Fourier-Mukai

partners, so from now we restrit to the ase of K3 surfaes of �nite height.

To show that the map (11) is well de�ned, we need the following lemma:

Lemma 4.1 ((Potentially) Good redution) ([46, Theorem 5.3℄) Let V
be a disrete valuation ring with a fration �eld K, a �eld of harateristi 0,
and residue �eld k of harateristi p suh that there is a K3 surfae XK over

K with good redution, then all the Fourier-Mukai partners of XK̄ have good

redution possibly after a �nite extension of K.

Thus for any Fourier-Mukai partner of XK̄ whih is of the form MXK̄
(v) is a

geometri generi �ber of MXV
(v)/V , where V is a �nite (algebrai) extension

of W (k). Note that the residue �eld of V is still k as k is algebraially losed.

Now using funtoriality of the moduli funtor we note that the speial �ber

of MXV
(v) is MX(v). This is a Fourier-Mukai partner of X (see, for example,

2.37). Thus, the map (11) is well-de�ned.

Proposition 4.2 (Lieblih-Olsson [45℄) The speialization map (11)

above is surjetive.

Proof: From [45, Theorem 3.16℄, note that all Fourier-Mukai partners of X
are of the form MX(v). Moreover, one an always assume v to be of the form

(r, l, s) where l is the Chern lass of a line bundle and r is prime to p (see

[45, Lemma 8.1℄). (Note that we take the Mukai vetor here in the respetive

Chow groups rather than ohomology groups). Then sine we have hosen our

lift XW of X to be Piard preserving, we an also lift the Mukai vetor to

(rW , lW , sW ), again denoted by v, and this gives a FM partner of XW , namely

MXW
(v), and taking the geometri generi �ber of it gives a Fourier-Mukai

partner of XK̄ . �

Remark 4.3 Note that the Pic(XK̄) ∼= Pic(X), i.e., the speialization map is

an isomorphism. This is essentially due to the fat that k is algebraially losed

and every line bundle onX lifts uniquely toXW as Ext1(L,L) = H1(X,OX) =
0 for L ∈ Pic(X), under whih the set of in�nitesimal deformations of the line

bundle L is a torsor.

Remark 4.4 Note that the argument above already implies that the number

of Fourier-Mukai partners of a K3 surfae over an algebraially losed �eld of

harateristi p > 3 is �nite. This argument was given by Lieblih-Olsson in

[45℄.

Doumenta Mathematia 24 (2019) 1135�1177



Derived Equivalenes in Positive Charateristi 1165

Injetivity : We need to show that if MX(v) ∼= X , then MXW
(v) ∼= XW . For

this statement we will restrit to the ase of ordinary K3 surfaes.

Before proving injetivity we prove that the automorphisms of an ordinary K3

surfae lift always to harateristi zero.

Theorem 4.5 Every isomorphism ϕ : X → Y of ordinary K3 surfaes over

an algebraially losed �eld of harateristi p lifts to an isomorphism of the

anonial lift of the ordinary K3's ϕW : Xcan → Ycan. In partiular, every

automorphism of X lifts to an automorphism of Xcan.

Remark 4.6 Note that the above statement is stronger than the tautologial

statement: If X and X ′
are two isomorphi ordinaryK3 surfaes over a perfet

�eld k, then their anonial lifts are isomorphi.

Remark 4.7 This statement should be ompared with the results of Esnault-

Oguiso [19, Theorems 5.1, 6.4 and 7.5℄, who onstruted automorphisms whih

do not lift to harateristi 0.

Proof: [Proof of Theorem 4.5℄ Let ϕ : X → Y be an isomorphism of or-

dinary K3 surfaes. Consider the graph of this isomorphism as a oherent

sheaf (or even as a perfet omplex) on the produt X × Y , then from The-

orem 3.4 the deformation of isomorphism as a morphism and as a sheaf are

equivalent so we use Theorem 3.7 to onstrut a lifting of the isomorphism

for the anonial lift Xcan of X . As isomorphisms preserve the ample one,

the indued Fourier-Mukai transform satis�es the assumptions of Theorem 3.7.

Note that the Lieblih-Olsson lifting of perfet omplexes allows us to be only

able to hoose the lifting of X and then it onstruts a unique lifting Y ′
of

Y to whih the perfet omplex lifts. So, now the only remaining statement

to show is that Y ′
is the anonial lift of Y . This follows from the riteria

of anonial lift [68, Theorem C℄ and the observation that the isomorphism

between ϕK̄ : Xcan,K̄ → Y ′
K̄

indues an isomorphism of Galois module on the

seond p-adi étale ohomology. This isomorphism of Galois modules provides

us with the required deomposition of H2
et(Y

′
K̄
,Zp), whih shows that Y ′

is the

anonial lift of Y . �

Remark 4.8 This gives a �xed point of the δ funtor onstruted by [45℄ (see

Theorem 3.7).

Corollary 4.9 Every isomorphism of ordinary K3 surfaes over an alge-

braially losed �eld of harateristi p preserves the Hodge �ltration indued

by the anonial lift. In partiular, every automorphism of an ordinary K3

surfae over an algebraially losed �eld of harateristi p preserves the Hodge

�ltration indued by the anonial lift.
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Proof: This follows from 4.5 and [19, Remark 6.5℄. �

Theorem 4.10 Let X be an ordinary K3 surfae, then the anonial lift of the

moduli spae of stable sheaves with a �xed Mukai vetor is the moduli spae of

stable sheaves with the same Mukai vetor on the anonial lift:

(MX(v))can ∼= MXcan
(v). (12)

Proof: We use the riteria for anonial lift [68, Theorem C℄ to show that

MXcan
(v) is indeed the anonial lift of MX(v). To use the riteria, we note

that

H2
ét(MXcan

(v)K̄ ,Zp) = v⊥/vZp

⊂ H0
ét(Xcan,K̄ ,Zp)⊕H2

ét(Xcan,K̄ ,Zp)⊕H4
ét(Xcan,K̄ ,Zp),

where the orthogonal omplement is taken with respet to the extended pairing

on the étale Mukai lattie. As Xcan is the anonial lift of X, we have the

following deomposition of

H2
ét(Xcan,K̄ ,Zp) = M0

X ⊕M1
X(−1)⊕M2

X(−2)

as Galois modules. We de�ne the deomposition of H2
ét(MXcan

(v)K̄ ,Zp) =
M0 ⊕M1(−1)⊕M2(−2) as Galois modules, where

M0 = M0
X

M2 = M2
X

M1 = H0
ét(Xcan,K̄ ,Zp)⊕H4

ét(Xcan,K̄ ,Zp)⊕ (v⊥/vZp ∩M1
X).

(13)

The last relation above holds using Proposition 2.27 and the fat that

H0
ét(Xcan,K̄ ,Zp) and H4

ét(Xcan,K̄ ,Zp) are orthogonal to M1
X . �

Now, we �nally prove the injetivity.

Theorem 4.11 If X is an ordinary K3 surfae over an algebraially losed

�eld of har p, then the number of FM partners of X are the same as the number

of Fourier-Mukai partners of the geometri generi �ber of the anonial lift of

X over W .

Proof: From the disussion in the Chapter 4 Setion 4.2, we see that all

that is left to show is the injetivity of the speialization map on the set of

Fourier-Mukai partners. That is, we need to show that if MX(v) is isomorphi

to X , then the lifts of both of them are also isomorphi Xcan
∼= MXcan

(v). This
follows from the de�nition of anonial lifts and Theorem 4.10 that MXcan

(v)
is the anonial lift of MX(v). �

Corollary 4.12 Let X be an ordinary K3 surfae over k, then the derived

autoequivalenes satisfying the assumptions of Theorem 3.7 lift uniquely to a

derived autoequivalene of Xcan.
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Proof: The argument is going to be similar to the one used to show that

every automorphism lifts, but now we will use the proof of Theorem 4.10. Let

P ∈ Db(X ×X) indue a derived autoequivalene on X , then, using Theorem

3.7, there exists an X ′/W suh that we an lift P to a kernel PW ∈ Db(Xcan×
X ′). Now we need to show that X ′

is just Xcan. Note that (PW )K̄ gives

a derived equivalene between Db(Xcan,K̄) ∼= Db(X ′
K̄
), this implies that X ′

is isomorphi to some moduli spae of stable sheaves with Mukai vetor v,
MXcan,K̄

(v). Now by funtoriality of the moduli spaes, we have MXcan,K̄
(v) ∼=

MXcan
(v)K̄ and by Theorem 4.10, we have MXcan

(v)K̄
∼= MX(v)can,K̄ . This

implies that we get the required deomposition of the seond p-adi integral

étale ohomology of X ′
K̄
, whih using [68, Theorem C℄ gives us the result. �

Corollary 4.13 Every autoequivalene of an ordinary K3 surfae that satis-

�es the assumptions of Theorem 3.7 preserves the Hodge �ltration indued by

the anonial lift.

Proof: Follows from the orollary above and Theorem 3.8. �

4.1 The Class Number Formula

Lastly, we give the orresponding lass number formula in harateristi p to

orollary 2.31.

Theorem 4.14 Let X be a K3 surfae of �nite height over an algebraially

�eld of positive harateristi (say q > 3). If the Néron-Severi lattie of X has

rank 2 and determinant −p (p and q an also be same), then the number of

Fourier-Mukai partners of X is (h(p) + 1)/2.

Proof: We lift X to harateristi 0 using the Lieblih-Maulik Piard pre-

serving lift and then base hanging to the geometri generi �ber to get XK̄ .

Choose an embedding of K̄ to C (omplex numbers) and base hange to C, to
get XC. Now, from Proposition 4.2, we get that every Fourier-Mukai partner

of X lifts to a Fourier-Mukai partner of XC. So, we just need to show that if

any Fourier-Mukai partner, say YC, of XC redues mod q to an isomorphi

K3 surfae, say Y , to X , then it is isomorphi to XC. This follows from noting

that if YC beomes isomorphi mod q, then the Piard latties of XC and YC

are isomorphi. The number of Fourier Mukai partners of XC with isomorphi

Piard latties is given by the order of the quotient of the orthogonal group

of disriminant group of NS(XC) by the Hodge isometries of the transen-

dental lattie (f. Theorem 2.30), but in this ase the disriminant group of

NS(XC) = Z/p so the orthogonal group is just ±id and there is always ±id in

the hodge isometries, so we get the quotient to be a group of order 1. Thus the
result. �

Remark 4.15 Note that the Piard lattie Pic(XK) and Pic(XK̄) are indeed
isomorphi as after redution we are over an algebraially losed �eld and the

line bundles lift uniquely as Pic0X is trivial for a K3 surfae.
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A F-rystal on Crystalline Cohomology

In this appendix, we analyze the possibility of having a �naive" F-rystal stru-

ture on the Mukai isorystal of a K3 surfae. We begin by realling a few results

about rystalline ohomology and the ation of Frobenius on it, for details we

refer to [1, Tag 07GI and Tag 07N0℄, [8℄, [10℄, [49, Setion 1.5℄.

Let X be a smooth and proper variety over a perfet �eld k of positive hara-

teristi p. Let W (k) (resp. Wm(k)) be the assoiated ring of (resp. trunated)

Witt vetors with the �eld of fration K. Let us denote by Frobk : k → k;
x 7→ xp

, the Frobenius morphism of k, whih indues a ring homomorphism

FrobW : W (k) → W (k), by funtoriality, and there exists an additive map

V : W (k) → W (k) suh that p = V ◦ FrobW = FrobW ◦ V . Thus, FrobW
is injetive. For any m > 0, we have ohomology groups H∗

crys(X/Wm(k)).
These are �nitely generated Wm(k)-modules. Taking the inverse limit of these

groups gives us the rystalline ohomology:

Hn
crys(X/W (k)) := lim←−Hn

crys(X/Wm(k)).

It has the following properties as a Weil ohomology theory:

1. Hn
crys(X/W (k)) is a ontravariant funtor inX and the groups are �nitely

generated as W (k)-modules. Moreover, Hn
crys(X/W (k)) is 0 if n < 0 or

n > 2dim(X).

2. Poinaré Duality: The up-produt indues a perfet pairing:

Hn
crys(X/W (k))

torsion
× H

2dim(X)−n
crys (X/W (k))

torsion
→ H2dim(X)

crys (X/W (k))

∼= W (k).

(14)

3. Hn
crys(X/W (k)) de�nes an integral struture onHn

crys(X/W (k))⊗W (k)K.

4. If there exists a proper lift of X to W (k), that is, a smooth and proper

sheme XW → Spec(W (k)) suh that its speial �ber is isomorphi to X .

Then we have, for eah n,

Hn
DR(XW /W (k)) ∼= Hn

crys(X/W (k)).

5. Consider the ommutative square given by absolute Frobenius:

X

��

F
// X

��

k
Frobk

// k.

This, by the funtoriality of the rystalline ohomology, gives us a FrobW -

linear endomorphism on Hi(X/W ) of W (k)-modules, denoted by F ∗
.

Moreover, F ∗
is injetive modulo the torsion, i.e.,

F ∗ : Hi(X/W )/torsion→ Hi(X/W )/torsion
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is injetive.

Theorem A.1 (Crystalline Riemann-Roh) Let X and Y be smooth va-

rieties over k, a �eld of harateristi p, and f : X → Y be a proper map.

Then the following diagram ommutes:

K0(X)

ch( ).tdX

��

f∗
// K0(Y )

ch( ).tdY

��

⊕iH
2i
crys(X/K)

f∗
// ⊕iH

2i
crys(Y/K),

i.e., ch(f∗α).tdY = f∗(ch(α).tdX ) ∈ ⊕iH
i
crys(Y/K) for all α ∈ K0(X), where

K0(X) is the Grothendiek group of oherent sheaves on X.

Remark A.2 The map f∗ does not preserve the ohomologial grading but

does preserve the homologial grading, i.e., if the dimensions of X and Y are

n and m respetively, then we have the following ommutative square:

K0(X)

ch( ).tdX

��

f∗
// K0(Y )

ch( ).tdY

��

⊕iH
2i
crys(X/K)

f∗
// ⊕iH

2i+(n−m)
crys (Y/K),

and here the grading is respeted. If X and Y are K3 surfaes, then n = m = 2
and we do not have to worry about this remark, as then the usual ohomologial

grading is preserved.

Next we state a few main results about the ompatibility of the Frobenius

ation with the various relations :

Proposition A.3 (Crystalline Künneth Formula) Let X,Y be proper

and smooth varieties over k. Then there is a anonial isomorphism in D(W ),
the derived ategory of W modules, given as follows:

RΓ(X/W )⊗L
W RΓ(Y/W ) ∼= RΓ(X ×k Y/W ),

yielding exat sequenes

0→ ⊕p+q=n(H
p(X/W )⊗Hq(Y/W ))→ Hn(X × Y/W )→

→ ⊕p+q=n+1Tor
W
1 (Hp(X/W ), Hq(Y/W ))→ 0.

For a proof see [8, Chapitre 5, Théorème 4.2.1℄ C and [37, Setion 3.3℄.

Remark A.4 Note that in the ase of K3 surfaes the torsion is zero, so we

have the following isomorphism:

⊕p+q=n(H
p(X/W )⊗Hq(Y/W ))

∼−→ Hn(X × Y/W ).
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The ation of Frobenius gives the following map:

F ∗Hn(X × Y/W )

∼=
��

�

�

// Hn(X × Y/W )

∼=
��

⊕(F ∗Hp(X/W )⊗ F ∗Hq(Y/W )) �
�

// ⊕(Hp(X/W )⊗Hq(Y/W )),

where the diret sum is over all p+ q = n.

Proposition A.5 The Künneth formula is ompatible with the Frobenius a-

tion in the following way:

Let γ ∈ Hn(X × Y/W ) be written (uniquely) as γ =
∑

αp ⊗ βq, then

F ∗γ = F ∗αp ⊗ F ∗βq,

where αp ∈ Hp(X/W ) and βq ∈ Hq(Y/W ).

Let pX(resp. pY ) denote the projetion X × Y → X (resp. X × Y → Y ).

Proposition A.6 The Frobenius has the following ompatibility with the pro-

jetion morphism:

p∗X(F ∗(α)) = F ∗(p∗Xα).

Similarly, for the other projetion pY .

Let the denote the up-produt as follows:

Hi(X/W )×Hj(X/W )→ Hi+j(X/W )

given by

(α, β) 7→ α ∪ β.

Proposition A.7 The Frobenius ation is ompatible with the up-produt in

the following way:

F ∗(α ∪ β) = F ∗(α) ∪ F ∗(β).

Moreover, the Poinaré duality indues a perfet pairing as in relation [14℄

< −,− >:
Hn

torsion
× H2dim(X)−n

torsion
→ H2dim(X) ∼= W (k)

whih satis�es the following ompatibility with Frobenius:

< F ∗(x), F ∗(y) >= pdim(X)FrobW (< x, y >), (15)

where n ∈ [0, 2dim(X)].
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Now we de�ne an F-rystal (see De�nition 2.1) struture on the Mukai F-

isorystal of rystalline ohomology for a K3 surfae.

LetX be a K3 surfae over an algebraially losed �eld k of harateristi p > 3.
Let ch = chcris : K(X) → H2∗(X/K) be the rystalline Chern harater and

chi
the 2i− th omponent of ch. Reduing to the ase of a line bundle via the

splitting priniple, we see that the Frobenius ϕX ats in the following manner

on the Chern harater of a line bundle E:

ϕX(chi(E)) = pichi(E). (16)

We normalize the Frobenius ation on the F-isorystal H∗(X/K) using the

Tate twist to get the Mukai F-isorystal ⊕iH
i(X/K)(i− 1).

We make the following observation, whih shows that how the Frobenius ation

works on H4
crys(X/W ), i.e., we will ompute ϕX([1]). Note that for a perfet

�eld k of harateristi p, Serre [65, Theorem 8 on page 43℄ showed that the

Witt ring W(k) has p as its uniformizer. Now for H4
crys(X/K)(1) the ation

of Frobenius is given by ϕX/p. But note that ch2(E) = 1/2(c21(E) − 2c2(E)),
for E ∈ K(X), where ci(E) are the Chern lasses of E, and as the intersetion

paring is even for a K3 surfae, this is integral, i.e., ch2(E) ∈ H4(X/W ). This
along with the fat that rankW (H4(X/W )) = 1 implies that ch2(E) = upn[1],
where u ∈ W×, p is the harateristi of k and [1] is the generator of H4(X/W )
as a W−module. Hene, we have

ϕX(ch2(E)) = ϕX(upn[1]) = σ(upn)ϕX([1]) (via semi-linearity)

= σ(u)pnϕX([1]) (as σ is a ring map)

= p2 · ch2(E) = p2upn[1].

On the other hand, from the equation 16 above, we have ϕX(ch2(E)) =
p2upn[1]. This gives us that

ϕX([1]) = u(σ(u))−1p2[1],

where u(σ(u))−1 ∈ W×
as σ is a ring map. Therefore, we have the Frobenius

ation on H4(X/W )⊗K(1) given by ϕ′
X([1]) = u(σ(u))−1p[1]. Thus, it indeed

has a F-rystal induing this F-isorystal given by (H4(X/W ), ϕ′
X). We remark

that we are impliitly using the fat that A⊗K K ∼= A, for any K-module A.
Note that the Mukai vetor of a sheaf P in Db(X) for a K3 surfae X is by

de�nition the lass

v(P ) = ch(P )
√

td(X) = (v0(P ), v1(P ), v2(P )) ∈ H∗
crys(X/W ).

Indeed, we have c1(X) = 0 and 2 = χ(X,OX) = td2,X , whih gives us that the

Todd genus tdX = (1, 0, 2) and thus

√
tdX = (1, 0, 1). This then implies that

v(P ) = (rk(P ), c1(P ), rk(P ) + c21(P )/2− c2(P )).
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Note that the intersetion pairing on H2
crys(X/W ) is even, whih gives us the

above onlusion as ci(P ) ∈ H2i
crys(X/W ) (see [11℄).

Lemma A.8 The Mukai vetor of any objet P ∈ Db(X × Y ) is a F-rystal

ohomology lass.

Proof: (f. [53℄) Note that from the de�nition of the F-rystal struture we

just need to show that ch(P ) ∈ H∗
crys(X × Y/W ) as the square root of the

Todd genus for a K3 surfae is omputed as follows:

√

tdX×Y = p∗1
√

tdXp∗2
√

tdY = p∗1(1, 0, 1).p
∗
2(1, 0, 1).

We write the exponential hern harater as follows:

ch(P ) = (rk(P ), c1(P ), 1/2(c21(P )− 2c2(P )), ch3(P ), ch4(P ))

where

ch3(P ) = 1/6(c31(P )− 3c1c2 + 3c3(P ))

and

ch4(P ) = 1/24(c41 − 4c21c2 + 4c1c3 + 2c22 − 4c4).

Note that if char(k) 6= 2, 3, then 2, 3 are invertible in W (k), so ch(P ) ∈
H∗

crys(X × Y/W ) as again we know ci(P ) ∈ H2i
crys(X × Y/W ) . �

Remark A.9 Thus, it makes sense to talk about the desent of a Fourier-

Mukai transform to the F-rystal level but note that the new Frobenius stru-

ture on H4(X/W )(1) fails to be ompatible with the intersetion pairing as

de�ned in Theorem A.7. This auses the failure of existene of an F-rystal

struture on the Mukai-isorystal and also the failure to have a ohomologial

riteria of derived equivalenes of K3 surfaes with rystalline ohomology.
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