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1 INTRODUCTION

The derived category of coherent sheaves on a smooth projective variety was
first studied as a geometrical invariant by Mukai in the early 1980’s. In case
the smooth projective variety has an ample canonical or anti-canonical bundle,
Bondal-Orlov [12] proved that, if two such varieties have equivalent bounded
derived categories of coherent sheaves, then they are isomorphic. However, in
general this is not true. The bounded derived category of coherent sheaves is
not an isomorphism invariant. Mukai [52] showed that for an Abelian variety
over C, its dual has equivalent bounded derived category. Moreover, in many
cases it can be shown that the dual of an Abelian variety is not birational to
it, which implies that derived categories are not even birational invariants, see
[30, Chapter 9]. Similarly, Mukai showed in [53] that for K3 surfaces over C,
there are non-isomorphic K3 surfaces with equivalent derived categories. This
led to the natural question of classifying all derived equivalent varieties.

For K3 surfaces, the case of interest to us, this was completed over C in late
1990’s by Mukai and Orlov ([53, Theorem 1.4], [59, Theorem 1.5]) using Hodge
theory along with the Global Torelli Theorem (see [4, VIII Corollary 11.2],
[36, Theorem 7.5.3]). As a consequence, it was shown that there are only
finitely many non-isomorphic K3 surfaces with equivalent bounded derived
categories (see Proposition 2.28) and a counting formula was also proved by
Hosono et. al in [29]. On the other hand, for K3 surfaces over a field of
positive characteristic, a partial answer to the classification question was first
given by Lieblich-Olsson [45] (see Theorem 2.37) in early 2010’s. They showed
that there are only finitely many non-isomorphic K3 surfaces with equivalent
bounded derived categories. We remark here that due to unavailability of a
positive characteristic version of the global Torelli Theorem for K3 surfaces
of finite height, it is currently not feasible to give a complete cohomological
description of derived equivalent K3 surfaces. However, a description in terms
of moduli spaces was given by Lieblich-Olsson. We also point out here that
the proofs of these results go via lifting to characteristic zero and thus use
the Hodge theoretic description given by Mukai and Orlov. Furthermore,
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Lieblich-Olsson [16] also proved the derived version of the Torelli theorem
using the Crystalline Torelli theorem for supersingular K3 surfaces.

In this article, we study the above question in more details for the case of
K3 surfaces over an algebraically closed field of positive characteristic. We
show that the number of isomorphism classes of ordinary K3 surfaces which are
derived equivalent to a chosen ordinary K3 surface is the same as the number of
isomorphism classes of K3 surfaces in characteristic 0 derived equivalent to the
canonical lift of our chosen ordinary K3 (Theorem 4.11). This result should
be seen as an evidence to the long held belief that the number of Fourier-
Mukai partners behaves well with respect to deformation to characteristic zero.
Moreover, we show that the geometric reformulations [29, Question I” and I’
of questions of Gauss on the behavior of class numbers can be extended to
include K3 surfaces over algebraically closed fields of characteristic p (Theorem
4.14). This, we hope, will provide with more ways to answer the questions of
Gauss posed in 1801 [29, Question I and IT] on the class number h(p) of the
real quadratic field Q(,/p) for a prime number p =1 mod 4:

QUESTION I: Are there infinitely many primes p such that the class number
h(p) is 17

Recall that for imaginary quadratic fields there are only finitely many primes
with class number 1, namely —1, —2, —3, -7, —11, —19, —43, —67, —163
(see [55, Chapter 1 page 37]).

QUESTION II: Ts there a sequence of primes py, po, ... such that h(pg) — co?

Using the counting formula for derived equivalent K3 surfaces, we can refor-
mulate the above questions as:

QUESTION I’: Are there infinitely many isomorphism classes of K3 surfaces over
an algebraically closed field of positive characteristic or over C with Picard rank
2 and discriminant —¢ for distinct primes ¢, such that it has no non-isomorphic
K3 surfaces derived equivalent to it?

QUESTION IT’: Is there a sequence of K3 surfaces over an algebraically closed
field of positive characteristic or over C with Picard rank 2 and discriminant
—q for distinct primes ¢ such that the number of K3 surfaces derived equivalent
to it tends to infinity ?

Meanwhile in 1990’s another school of thought inspired by string theory
in physics led Kontsevich [41] to propose the homological mirror symmetry
conjecture which states that the bounded derived category D®(X) of coherent
sheaves of a projective variety X is equivalent (as a triangulated category) to
the bounded derived category D®Fuk(X, 3) of the Fukaya category Fuk(X, ()
of a mirror X with its symplectic structure 3. Moreover, the symplectic
automorphisms of X induce derived autoequivalences of DP(X). This provided
a natural motivation for the study of the derived autoequivalence group.

For K3 surfaces X over C, the structure of the group of derived autoequivalences
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was analyzed by Ploog in [63], Hosono et al. in [28] and Huybrechts, et al. in
[32]. They showed that the image of Aut(D’(X)) under the homomorphism

Aut(D*(X)) = Omoage(H(X, 7)),

where Opodge(H(X,Z)) is the group of Hodge isometries of the Mukai lattice
of X, has index 2. However, the kernel of this map has a description only in
the special case when the Picard rank of X is 1, given by [0].

In the spirit of the question on the structure of derived autoequivalence group
of K3 surfaces, we show that this group for K3 surfaces over algebraically closed
fields of positive characteristic displays similar behavior as a K3 surface over
C. More precisely, let X be a K3 surface of finite height over an algebraically
closed field k of characteristic p > 3 and let W (k) be the Witt ring with K
its field of fraction. Then any derived autoequivalence induces naturally an
automorphism of F-isocrystals on H},. . (X/K).

crys

THEOREM 1.1 (cF. THEOREM 3.18) The image of Auteq(D°(X)) in
Aut(HZ,,(X/K)) has index at least 2.

crys

This is exactly similar to the behavior of K3 surfaces over C as remarked above.
Moreover, for general K3 surfaces we expect that the kernel of the natural map
Auteq(D*(X)) — Aut(H},,(X/K)) will embed in the kernel of a Picard rank
1 lift of it (see Proposition 3.21). This provides us with a possible approach to
proof of Bridgeland’s conjecture ([14, Conjecture 1.2]) for K3 surfaces over C,
by first specializing any K3 surface over C with good reduction to characteristic
p and then embedding back the kernel in a Picard rank 1 lift to characteristic
zero. This will be undertaken in future work.

As a consequence of studying derived autoequivalences, we prove that for
ordinary K3 surfaces every automorphism lifts to characteristic zero, which
should be seen as adhering to the general philosophy that ordinary K3 surfaces
behave just like complex K3 surfaces.

Here is a brief outline of the article. In Section 2 we recall the notion of height
of a K3 surface over a field of positive characteristic, the results on lifting K3
surfaces from characteristic p to characteristic 0, the moduli spaces of stable
sheaves on a K3 surface and derived equivalences on K3 surfaces. We end
this section by proving that height of a K3 surface remains invariant under
derived equivalences (Lemma 2.39). In Section 3, we address the question on
the group of derived autoequivalences for K3 surfaces of finite height. We show
that the image of the derived autoequivalence group of a K3 surface of finite
height in the group of isometries of its crystalline cohomology has index at
least two (Theorem 3.18). Moreover, we provide a conditional upper bound
on the kernel of this natural cohomological descent map (Proposition 3.21). In
Section 4, we count the number of Fourier-Mukai partner for an ordinary K3
surface (Theorem 4.11) along with showing that the automorphism group lifts
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to characteristic 0 (Theorem 4.5). We also prove that the explicit counting
formula for Fourier-Mukai partners of the K3 surfaces with Picard rank two
and with discriminant equal to minus of a prime number, in terms of the
class number of the prime, holds over a field of positive characteristic as well
(Theorem 4.14). In Appendix A, we define an F-crystal structure and show that
this integral structure is preserved by derived equivalences but its compatibility
with intersection pairing fails.

1.1 CONVENTIONS AND NOTATIONS

For a perfect field k of positive characteristic p, W (k) will be its ring of Witt
vectors. For any cohomology theory H* (...), we will denote the dimension of
the cohomology groups H' (...) as h' (...). We will implicitly assume that the
cardinality of K := Frac(W (k)) and its algebraic closure K are not bigger than
that of C, this will allow us to choose an embedding K < C which we will use
in our arguments to transfer results from characteristic 0 to characteristic p.
See also Remarks 2.35 and 2.29. Moreover at times, we will put the condition
of characteristic p > 3 as at many places we may have denominators in factors
of 2 and 3, like in the definition of Chern characters for K3 surfaces, and these
will become invertible in W (k) due to our assumption on the characteristic.

2 PRELIMINARIES ON K3 SURFACES AND DERIVED EQUIVALENCES

We recall the notion height of a K3 surface over a field of positive characteristic
through its F-crystal, which gives a subclass of K3 surfaces with finite height or
infinite height called supersingular K3 surfaces. For an introduction to Brauer
group of K3 surfaces and the definition of height via the Brauer groups see
[36] and [19]. Both definitions turn out to be equivalent (see, for example, [19,
Prop. 6.17]).

Let k be an algebraically closed field of positive characteristic, W (k) its ring
of Witt vectors and Froby, the Frobenius morphism of W (k) induced by the
Frobenius automorphism of k. Note that Froby is a ring homomorphism and
induces an automorphism of the fraction fields K := Frac(W(k)), denoted as
Frobg. We begin by recalling the notion of F-isocrystal and F-crystals which
we will use later to stratify the moduli of K3 surfaces.

DEFINITION 2.1 [F-(iso)crystal] An F-crystal (M, ¢ar) over k is a free W-
module M of finite rank together with an injective Frobyy-linear map ¢ :
M — M, that is, ¢, is additive, injective and satisfies

on(r-m) = Froby (r) - ¢ar(m) for all r € W(k),m € M.

An F-isocrystal (V, ¢y ) is a finite dimensional K-vector space V' together with
an injective Frobg-linear map ¢y : V — V.

A morphism u : (M, o) — (N,on) of F-crystals (resp. F-isocrystals) is a
W (k)-linear (resp. K-linear) map M — N such that ¢y ou = uo ¢p. An
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isogeny of F-crystals is a morphism w : (M, ¢pr) — (N, ¢n) of F-crystals, such
that the induced map v ® Idx : M Q) K — N Q) K is an isomorphism
of F-isocrystals.

EXAMPLES:
1. The trivial crystal: (W, Froby ).

2. This is the case which will be of most interest to us:
Let X be a smooth and proper variety over k. For any n, take the free
W (k) module M to be H" := H. (X/W(k))/torsion and ¢as to be the

crys
Frobenius F*. The Poincaré duality induces a perfect pairing

<7, 7> S H™ x HQdim(X)fn N H2dim(X) ~ W
which satisfies the following compatibility with Frobenius
(F*(2), F*(y)) = p™ ) Frobw ((z,y)),

where z € H" and y € H?¥m(X)=n_ As Froby, is injective, we have
that F* is injective. Thus, (H™, F*) is an F-crystal. We will denote the
F-isocrystal H7., ((X/W)® K by H[,., (X/K).

3. The F-isocrystal K (1) := (K,Frobx/p). Similarly, one has the F-
isocrystal K(n) := (K, Frobg /p™) for all n € Z. Moreover, for any
F-isocrystal V and n € Z, we denote by V(n) the F-isocrystal V & K(n).

Recall that the category of F-crystals over k up to isogeny is semi-simple and
the simple objects are the F-crystals:

My = ((Zp[10)/(T° = p")) ®z, W (k), (mult. by T') ® Frobw),

for « = r/s € Q> and r, s non-negative coprime integers. This is a theorem
of Dieudonné-Manin [18], [50]. Note that the rank of the F-crystal M, is s.
We call a the sSLOPE of the F-crystal M,.

DEFINITION 2.2 Let (M, ¢) be an F-crystal over k and let
(M, §) ~*9M oeqy, My
be its decomposition up to isogeny. Then the elements of the set
{a € Q>¢|na # 0}

are called the slopes of (M, ). For every slope a of (M, ¢), the integer A, :=
Ne - ranky M, is called the multiplicity of the slope .

REMARK 2.3 In case (M, ¢) is an F-crystal over a perfect field & (rather than
being algebraically closed as assumed above), we define its slope and multiplic-
ities to be that of the F-crystal (M, ¢) @y (1) W (k), where k is an algebraic
closure of k.
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We still keep our assumption of k being an algebraically closed field of positive
characteristic.

The above classification result of Dieudonné-Manin is more general. Any F-
isocrystal V' with bijective ¢y is isomorphic to a direct sum of F-isocrystals

(Vo := K[T)/(T? — p"), (mult. by T) @ Frobg),
for « =r/s € Q. The dimension of V,, is s and we call « the slope of V,.

DEFINITION 2.4 [Height] The height of a K3 surface X over k is the sum of
multiplicities of slope strictly less than 1 part of the F-crystal HZ.,  (X/W).
In other words, the dimension of the subspace of slope strictly less than one of
the F-isocrystal H2.,,(X/K), which is dim(H2.,(X/K)(o.1) := Ga,<1Va,").

crys

If for a K3 surface X the dim(HZ,, (X/K)q,1)) = 0, then we say that the
height of X is infinite. Supersingular K3 surfaces (i.e., K3 surfaces with infinite
height) also have an equivalent description that their Picard rank is 22 (see [49,
Theorem 4.8]). We will be discussing more about F-crystals later in Appendix

A. On the other hand, we have ordinary K3 surfaces.

DEFINITION 2.5 [Ordinary K3 surface] A K3 surface X over a perfect field k
of positive characteristic is called ordinary if the height of X is 1.

They also have equivalent description via height of Brauer group, see [57,
Lemma 1.3].

2.1 LIFTING K3 SURFACES

We state the theorem by Deligne about lifting K3 surfaces which will be used
a lot in the theorems that follow. Let Xy be a K3 surface over a field k of
characteristic p > 0.

DEFINITION 2.6 [Lift of a K3 surface] A lift of a K3 surface X to characteristic
0 is a smooth projective scheme X over R, where R is a discrete valuation ring
such that R/m = k, K := Frac(R) is a field of characteristic zero, the generic
fiber of X, denoted X, is a K3 surface and the special fiber is Xj.

THEOREM 2.7 (DELIGNE [16] THEOREM 1.6, COROLLARY 1.7, 1.8) Let X
be a K3 surface over a field k algebraically closed of characteristic p > 0. Let
Lo be an ample line bundle on Xo. Then there exists a finite extension T
of W(k), the Witt ring of k, such that there exists a deformation of Xy to
a smooth proper scheme X over T and an extension of Lo to an ample line
bundle L on X.

Consider the situation where we have a lift of a K3 surface, i.e., let Xy be a
K3 surface over a field of characteristic p > 0 and X a lift over S = Spec(R)
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as defined above. The de Rham cohomology of X/S, H},5(X/S) is equipped
with a filtration induced from the Hodge to de Rham spectral sequence:

Ey = HI(X,Q%,s) = Hpp(X/5)

For a construction of this spectral sequence, see [21, TIT-0 11.2]. We call this
filtration on H% (X/S) the Hodge filtration. Using the comparison isomor-
phism between the crystalline cohomology of the special fiber and the de Rham
cohomology of X [9, 7.26.3],

we get a filtration on the crystalline cohomology, also called the Hodge filtration.
This Hodge filtration on the crystalline cohomology depends on the choice of
a lift of Xg.

In case X is an ordinary K3 surface, it admits a special lift to characteristic
zero called cananical lift and it has the following Picard preserving property:

PROPOSITION 2.8 ([57], PROPOSITION 1.8) For X an ordinary K3 surface,
there exists a canonical lift X qn with the property that any line bundle on X
lifts uniquely to Xeqn-

Moreover, in [68, Theorem C], Taelman proved a criterion to determine when
a lift of an ordinary K3 surface is going to a be a cananical lift. We will be
using this criterion.

2.2 MODULI SPACE OF SHEAVES

Next we discuss about the Moduli space of sheaves on a K3 surface as these
spaces turn out to play a very important role in the theory of derived equiva-
lences of K3 surfaces. We introduce the moduli stack of sheaves on a K3 surface
and show that it’s a p,—Gerbe under some numerical conditions. We will try
to keep the exposition here characteristic independent and in case of character-
istic restrictions we will mention them as necessary. Moreover, in the case of a
K3 surface defined over a field we will not assume the field to be algebraically
closed and in general, for a relative K3 surface, we will work with a spectrum
of a mixed characteristic discrete valuation ring as the base scheme. The main
references for this section are [44, Section 2.3.3] and [45, Section 3.15]. We refer
the reader to [24], for a comparison between the moduli stack point of view
and that of more classical moduli functors. For an introduction to theory of
gerbes we refer the reader to [58].

Before proceeding to the definition of moduli stacks of sheaves that we will
be working with, let us also recall the notion of (Gieseker) semistability for
coherent sheaves (for details see [31, Section 1.2]): Let X be a projective
scheme over a field k. The Euler characteristic of a coherent sheaf F is
X(F) = S (=1)'hi(X,F). If we fix an ample line bundle O(1) on X, then
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the Hilbert polynomial P(F) given by n — x(F ® O(n)) can be uniquely

written in the form
dim/(F)

P(Fon)= Y ai(F)m'/i,

i=0
with integral coefficients o;(F). We denote by p(F,n) := P(F,n)/gimr)(F),
the reduced Hilbert polynomial of F.

DEFINITION 2.9 [Semistability] A coherent sheaf F of dimension d is semistable
if F has no nontrivial proper subsheaves of strictly smaller dimension and for
any subsheaf & C F, one has p(€) < p(F). It is called stable if for any proper
subsheaf the inequality is strict.

REMARK 2.10 The ordering on polynomials is the ordering on the coefficients.

DEFINITION 2.11 [Mukai vector| For a smooth projective X over k, given a
perfect complex E € D(X), where D(X) is the derived category of coherent
sheaves on X, we define the Mukai vector of E to be

v(E) := ch(E)\tdx € A*(X)num,0-

Here, ch(—) denotes the Chern class map, tdx is the Todd genus and
A*(X)num,o is the numerical Chow group of X with rational coefficients.

For X a K3 surface over k, the Mukai vector of a complex is given by (see [30,
Chapter 10]):

v(E) = (rank(FE), ¢;(E),rank(E) + ¢1(E)?/2 — co(E)).
Let X be a projective scheme over k and h an ample line bundle.

DEFINITION 2.12 [Moduli Stack] The moduli stack of semistable sheaves, de-
noted 9M7%, is defined as follows:

M;? :(Sch/k) — (groupoids)
S — {F|F an S-flat coherent sheaf on X x S with semistable fibers.}

Similarly, the moduli stack of stable sheaves can be defined by replacing
semistable above with stable and we denote it by 917 .

If we fix a vector v € A*(X)pum,0, We get an open and closed substack 913 (v)
classifying semistable sheaves on X with Mukai vector v.

The following result has been proved by Lieblich [44], for the more general
case of moduli of twisted sheaves. Restricting to the case of semistable sheaves
without any twisting a simpler argument is given in [67, Theorem 2.30].

THEOREM 2.13 The stack 9;° is an algebraic stack and the stack MM (v) is
an algebraic substack of finite type over k.
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REMARK 2.14 Recall that the Mukai vector v for a sheaf on a K3 surface
determines its Hilbert polynomial and its rank as well.

Moreover, the stack 915°(v) contains an open substack of geometrically stable
points (see Footnote 3) denoted 97 (v).

THEOREM 2.15 The algebraic stack 9 (v) admits a coarse moduli space.
For a proof see [44, Lemma 2.3.3.3, Prop. 2.3.3.4] or [67, Theorem 2.34].

THEOREM 2.16 (MUKAI-ORLOV) Let X be a K3 surface over a field k.

1. Let v € A*(X)num,g be a primitive element with v> = 0 (with respect
to the Mukai pairing') and positive degree O part>. Then M3* (v)is non-
empty.

2. If, in addition, there is a complex P € D(X) with Mukai vector v' such
that < v,v' >=1, then every semistable sheaf with Mukai vector v is lo-
cally free and geometrically stable®, in which case M;* (v) is a pu,-gerbe for
some r, over a smooth projective surface My(v) such that the associated
G, -gerbe is trivial*.

REMARK 2.17 1. Note that the triviality of the G,,-gerbe is equivalent to
the existence of a universal bundle over X x M}, (v), also see [15, Remark
3.19].

2. See [31, Remark 6.1.9] for a proof that under the assumption of the above
Theorem part (2), any semistable sheaf is locally free and geometrically
stable.

PROOF: The non-emptiness follows from [36, Chapter 10 Theorem 2.7] and
[15, Remark 3.17]. For the construction of the universal bundle, one has to ,in
the end, actually use GIT again. For a proof see [36, Chapter 10 Proposition
3.4] and [31, Theorem 4.6.5] (this is from where we have the numerical criteria,
in particular, also see [31, Corollary 4.6.7]). |
We generalize our moduli stack to the relative setting. Let Xg be a flat pro-
jective scheme over S with an ample line bundle h. (The case of S = Spec(R)
for R a discrete valuation ring of mixed characteristic, will be of most interest
to us.)

!The Mukai pairing is just an extension of the intersection pairing, defined as follows:
let (a1,b1,c1) € A*(X)pum,q and (az,b2,c2) € A*(X)num,q, then the Mukai pairing is
< (a1,b1,¢1), (azg, b2, c2) >=ba - by — a1 -ca — az - 1 € A%(X)num,q-

2The degree zero part just means the AO(X),wm,@ term in the representation of the Mukai
vector in A*(X)pnum,Q-

3A coherent sheaf F is geometrically stable if for any base field extension [/k, the pullback
F ®p L along X; = X Xy, Spec(l) — X is stable.

4We will denote this moduli space later as Mx (v) to lay emphasis that it is the moduli
space of stable sheaves over X.
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DEFINITION 2.18 [Relative Moduli Stack| The relative moduli stack of semi-
stable sheaves, denoted 7%, is defined as follows:

M;? :(Sch/S) — (groupoids)
T — {F|F T-flat coherent sheaf on X x g T with semistable fibers}.

The relative moduli stack of stable sheaves can be defined similarly and we
denoted it by 915 .

The following theorem shows the existence of the fine moduli space for the
relative moduli stack, when Xp is a relative K3 surface over a mixed charac-
teristic discrete valuation ring, under some numerical conditions. Recall that
the condition of flatness is going to be always satisfied in our relative K3’s case
by definition as they are smooth. The relative stack can be provided to be an
algebraic stack using arguments similar to the ones used for proving Theorem
2.13. Moreover, all the results above about the moduli stack hold also for the
relative stack. So, there exists a coarse moduli space (Compare from footnote
1 in [36, Chapter 10] or [31, Theorem 4.3.7] , the statement there is actually
weaker as we do not ask for morphism of k-schemes, which is not going to be
possible for mixed characteristic case. So, for the mixed characteristic case one
replaces, in the GIT part of the proof, the quot functor by its relative functor,
which is representable in this case as well [56, Theorem 5.1]). Moreover, the
non-emptiness results also remain valid in mixed characteristic setting and we
have:

THEOREM 2.19 (FINE RELATIVE MODULI SPACE) Let Xy be a relative K3

surface over a mized characteristic discrete valuation ring V with X as a special
fiber over Spec(k)

1. Let v € A*(X)num,q be a primitive element with v?> = 0 (with respect to
the Mukai pairing) and positive degree 0 part. Then, IM3(v), the sub-
moduli stack of IM7® with fived Mukai vector v, is non-empty.

2. If, in addition, there is a complex P € D(Xy) with Mukai vector v’
such that < v,v' >=1, then every semistable sheaf with Mukai vector v
is locally free and stable, in which case M;®(v) is a pr-gerbe for some r,
over a smooth projective surface My (v) such that the associated G,,-gerbe
is trivial.

Note that in the mixed characteristic setting, for any complex Ey € D(Xy)
we define its Mukai vector to be just the Mukai vector of F := Fy ®y k in
A*(X)num.o- This definition makes sense as Xy — V is flat.

With this we conclude our exposition on moduli stacks and spaces of sheaves.

2.3 DERIVED EQUIVALENCES OF K3 SURFACES

We now give a summary of selected results on derived equivalences of a K3
surfaces for both positive characteristic and characteristic zero. We begin by
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a general discussion on derived equivalences and then specialize to different
characteristics. Let X be a K3 surface over a field & and let D?(X) be the
bounded derived category of coherent sheaves of X. We refer the reader to [30]
for a quick introduction to derived categories and the textbooks [20], [39] for
details.

DEFINITION 2.20 Two K3 surfaces X and Y over k are said to be derived
equivalent if there exists an exact equivalence D°(X) ~ D°(Y) of the derived
categories as triangulated categories®.

DEFINITION 2.21 [Fourier-Mukai Transform| For a perfect complex P €
DY(X xY), the Fourier-Mukai transform is a functor of the derived categories
which is defined as follows:

®p: DY(X) — DY)
& = Rpy.((px€) @ P),

where px,py are the projections from X x Y to the respective X and Y.

For details on the properties of Fourier-Mukai transform see [30, Chapter 5].
Note that not every Fourier-Mukai transform induces an equivalence. The only
general enough criteria available to check whether the Fourier Mukai transform
induces a derived equivalence is by Bondol-Orlov, see for example, [36, Chapter
16 Lemma 1.4, Proposition 1.6 and Lemma 1.7]. In case the Fourier-Mukai
transform is an equivalence, we have the following definition:

DEFINITION 2.22 A K3 surface Y is said to be a Fourier Mukai partner of X if
there exists a Fourier-Mukai transform between D°(X) and D®(Y’) which is an
equivalence. We denote by FM (X) the set of isomorphism classes of Fourier
Mukai Partners of X and by |F'M (X)]| the cardinality of the set, which is called
the Fourier Mukai number of X.

We state here the most important result in the theory of Fourier-Mukai trans-
forms and derived equivalences.

THEOREM 2.23 (ORLOV, [30] THEOREM 5.14) Every equivalence of derived
categories for smooth projective varieties is given by a Fourier Mukai transform.
More precisely, let X and Y be two smooth projective varieties and let

F:DYX) — DY)

be a fully faithful exact functor. If F admits right and left adjoint functors,
then there exists an object P € D*(X xY) unique up to isomorphism such that
F' is isomorphic to ®p.

5We don’t need to start with Y being a K3 surface, this can be deduced as a consequence
by the existence of an equivalence on the level of derived categories of varieties, see [30,
Chapter 4, 6 and 10] and [5, Chapter 2| for the properties preserved by derived equivalences.
However, note that Orlov’s Representability Theorem 2.23 is used in some proofs.
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REMARK 2.24 This theorem allows us to restrict the collection of derived
equivalences to a smaller and more manageable collection of Fourier-Mukai
transforms, which will be studied via cohomological descent.

Any Fourier Mukai transform, ®p, descends from the level of the derived cat-
egories to various cohomological theories (H* ( )), as

& = Rpy. (Lpk &) ®" P)

D*(X) DY)
lch( )\/tdx lch( )\/tdy
He(x) 2npre@xe) MOVIT)

where ch( ) is the total Chern character and ¢dx is the Todd genus of X.
This descent provides a way to study the Fourier Mukai partners of X us-
ing cohomological methods. For details see [30, Section 5.2] and [45, Section 2].

In characteristic 0 (mostly over C, see remark 2.35 below), we will use the sin-
gular cohomology along with p/l-adic/étale cohomology and in characteristic
p > 0, we will use crystalline cohomology or [-adic etale cohomology. In the
mixed characteristic setting, we will be frequently using a different combina-
tion of cohomologies along with their comparison theorems from p-adic Hodge
theory.

REMARK 2.25 The Orlov Representability Theorem 2.23 works only for
smooth projective varieties, so when we work with relative schemes we will
restrict from the collection of derived equivalences and work only with the
subcollection of Fourier-Mukai transforms.

Over the field of complex numbers, Mukai and Orlov provide the full description
of the set FM(X) as:

THEOREM 2.26 (MUKATI [53], THEOREM 1.4 AND THEOREM 1.5, [59]) Let
X be a K3 surface over C. Then the following are equivalent:

1. There exists a Fourier-Mukai transform ® : D*(X) = D*(Y') with kernel
P.

2. There exists a Hodge isometry f : H*(X,Z) — H*(Y,Z), where H*( ,7)
is the singular cohomology of the corresponding analytic space and is com-
pared with the de Rham cohomology of the algebraic variety X which
comes with a Hodge filtrations and Mukai pairing ©.

3. There exists a Hodge isometry f : T(X) ~ T(Y) between their transcen-
dental lattices.

6The Mukai pairing is just an extension of the intersection pairing, defined as fol-
lows: let (a1,b1,¢1) € H*(X,Z) and (a2,b2,c2) € H*(X,Z), then the Mukai pairing is
< (a1,b1,c1), (a2,b2,c2) >=ba-b1 —a1-c2 —az-c1 € H4(X,Z).
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4. Y is a two dimensional fine compact moduli space of stable sheaves on X
with respect to some polarization on X, i.e., Y = Mx (v) for some Mukai
vector v € A*(X)num,q (cf. Definition 2.11).

5. There is an isomorphism of Hodge structures between H*(Mx (v),Z) and
vt /Zw which is compatible with the cup product pairing on H*(Mx (v),Z)
and the bilinear form on v /Zv induced by that on the Mukai lattice
H*(X,7Z).

The following result is the étale version of the Mukai-Orlov cohomological ver-
sion of decription of derived equivalences of K3 surfaces over C.

PROPOSITION 2.27 (P-ADIC ETALE COHOMOLOGY VERSION) If X and Y
are derived equivalent K3 surfaces, then there is an isomorphism between
HZ%(Mx (v),Z,) and vt /Zyv, (see footnote 7), which is compatible with the
cup product pairing on HZ2,(Mx(v),Z,) and the bilinear form on v*/Zyv
induced by that on the Mukai lattice ﬁ*(X, Zy), where p is a prime number
and Z,, is the ring of p-adic integers.

PROOF: This follows from Artin’s Comparison Theorem [22, Tome ITI, Exposé
11, Théoréme 4.4] between étale and singular cohomology and the theorem
above. O

PROPOSITION 2.28 ([36] PROPOSITION 3.10) Let X be a complex projective
K3 surface, then X has only finitely many Fourier-Mukai partners, i.e.,

|[FM(X)| < occ.

REMARK 2.29 The above result is also true for any algebraically closed field
of characteristic 0. Indeed, if X and Y are two K3 surfaces over a field K
algebraically closed and characteristic 0, we have X 2 Y < X¢ & Yr. One
way is obvious via base change and for the other direction we just need to
show that every isomorphism X¢ = Y¢ comes from an isomorphism X =2
Y. To define an isomorphism only finitely many equations are needed, so we
can assume that the isomorphism is defined over A, a finitely generated K-
algebra (take A to be the ring Kla,...,ay], where a; are the finitely many
coefficients of the finitely many equations defining our isomorphism). Thus,
we have have our isomorphism defined over an affine scheme, X 4 = Y4, where
Xa = X X Spec(A) (resp. Ya :=Y xg Spec(A)). As K is algebraically
closed, any closed point ¢ € Spec(A) has residue field K. Now taking a K-
rational point will give us our required isomorphism.

"We are abusing the notation here: The Mukai vector is now considered as an element of
H%,(X,Zp) and vt is the orthogonal complement of v in HZ,(X,Zp) with respect to Mukai
pairing. Thus, vl is a Zp lattice. Then we mod out this lattice by the Z;, module generated
by wv.
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This gives us a natural injection:

FM(X) < FM(Xc)
Y — Y.

Hence, we have |[FM(X)| < |[FM(X¢)| < oo.

Let S = NS(X) be the Néron-Severi lattice of X. The following theorem gives
us the complete counting formula for Fourier-Mukai partners of a K3 surface.

THEOREM 2.30 (COUNTING FORMULA [29]) Let G(S) = {S1 = S5, 52,...5n}
be the set of isomorphism classes of lattices with same signature and discrimi-
nant as S. Then

[FM(X)| = [Aut(S;)\Aut(S] /S;)/Otraq (T(X))] < co.

j=1
The relation with the class number h(p) of Q(/—p), for a prime p, is:

THEOREM 2.31 ([29] THEOREM 3.3) Let the rank NS(X) = 2 for X, a K3
surface, then det NS(X) = —p for some prime p, and |FM(X)| = (h(p)+1)/2.

REMARK 2.32 The surjectivity of period map [36, Theorem 6.3.1] along with
[36, Corollary 14.3.1] implies that there exists a K3 with Picard rank 2 and
discriminant —p, for each prime p (see [29, Remark after Theorem 3.3] ).

We now describe the known results about the derived autoequivalence group
Aut(D®(X)) for a K3 surface over C. Observe that Theorem 2.26 implies that
we have the following natural map of groups:

Aut(X) < Aut(D*(X)) — Oprag(H*(X,7)).
The following theorem gives a description of the second map:

THEOREM 2.33 ([29], [63]) Let ¢ be a Hodge isometry of the Mukai lattice
H*(X,Z) of a K3 surface X, i.e. ¢ € Opay(H*(X,Z)). Then there exists an
autoequivalence

dp: D’(X) — DY(X) (1)

with ® = ¢ o (+idy2) : H*(X,Z) — H*(X,Z). In particular, the index of
1mage .
Aut(D"(X)) = Onag(H* (X, 2)) (2)

is at most 2.

On the other hand, it has been shown that
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THEOREM 2.34 ([32]) The cone-inversion Hodge isometry idgogps © —idy2
on H*(X,Z) is not induced by any derived auto-equivalence. In particular, the
index of image }

Aut(D"(X)) = Oprag(H*(X,Z)) (3)
15 exactly 2.

REMARK 2.35 [36, 16.4.2] The above results have been shown for K3 surfaces
over C only but the results are valid for K3 surfaces over any algebraically
closed field of characteristic 0, in the sense made precise below. The argument
goes as follows: We reduce the case of char(k) = 0 to the case of C. We begin
by making the observation that every K3 surface X over a field k is defined
over a finitely generated subfield ko, i.e., there exists a K3 surface X, over kg
such that X := X X, k. Similarly, if ®p : D*(X) — D°(Y) is a Fourier Mukai
equivalence, then there exists a finitely generated field ko such that X,Y and P
are defined over kg. Moreover, the kg- linear Fourier-Mukai transform induced
by Py, ®p, : D*(Xo) — D®(Yp) will again be a derived equivalence (use, for
example, the criteria [30, Proposition 7.1] to check this.).
Now assume that ky is algebraically closed. Note that any Fourier-Mukai
kernel which induces an equivalence ®p, : D*(X,) = D(Xy) is rigid, i.e.
Ext'(Py, Py) = 0 (see [36, Proposition 16.2.1]), thus any Fourier-Mukai equiv-
alence

®p: DY (X Xk k) = DY(Xo Xy k)
descends to kg (see for example [36, Lemma 17.2.2] for the case of line bundles,
the general case follows similarly®). Hence, for a K3 surface Xy over the alge-
braic closure kg of a finitely generated field extension of @Q and for any choice
of an embedding kg < C, which always exists, one has

Aut(D®(Xo X, k)) = Aut(D°(X0)) = Aut(D*(Xg x, C)).

In this sense, for K3 surfaces over algebraically closed fields k with char(k) = 0,
the situation is identical to the case of complex K3 surfaces.

We can now write down the following exact sequence: For X a projective
complex K3 surface one has

0 — Ker — Aut(D*(X)) — Omag(H*(X,2))/{i} — 0, (4)

8Tn the general case we sketch the proof: Use the moduli stack of simple universally
gluable perfect complexes over Xo x Xo/ko, denoted sDx x x, /i, @ defined in [15, Section
5]. From the arguments following the definition, it is an algebraic stack which admits a
coarse moduli algebraic space sDxxx,/k,- Note that for any ko point Py which induces
an equivalence, the local dimension of the coarse moduli space is zero as the tangent space
is a subspace of Ext!(Py, Py) = 0 (see, for example, [13, 3.1.1] or proof of [15, Lemma 5.2])
and the coarse moduli space is also smooth. The smoothness follows from the fact that the
deformation of the complex is unobstructed (see, for example, [1, Tag 03ZB and Tag 02HX])
in equi-characteristic case as one always has a trivial deformation. Indeed, let A be any
Artinian local k-algebra, then pullback along the structure morphism Spec(A) — Spec(k)
gives a trivial deformation of X x X and also a trivial deformation of any complex on X x X.
Thus, we can repeat the argument as in [36, Lemma 17.2.2] as now the image of the classifying
map f :Spec(A) = sDx,xx,/k, i constant (In the notation of [36, Lemma 17.2.2]).
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where H *(X,Z) is the cohomology lattice with Mukai pairing and extended
Hodge structure, and Onag(—) is the group of Hodge isometries, i is the cone
inversion isometry Idgoq s @ —Idge.

REMARK 2.36 The structure of the kernel of this map has been described
only in the special case of a projective complex K3 surface with Pic(X) =1
in [6]. (For a discussion about the results in non-projective case see [33].)
However, Bridgeland in [14, Conjecture 1.2] has conjectured that this kernel
can be described as the fundamental group of an open subset of H'!' ® C.
Equivalently, the conjecture says that the connected component of the stability
manifold (see [13], [14] for the definitions) associated to the collection of the
stability conditions on DY(X) covering an open subset of H'! @ C is simply
connected. The equivalence of the two formulations follows from a result of
Bridgeland ([14, Theorem 1.1]), which states that the kernel acts as the group
of deck transformations of the covering of an open subset of H'! ® C by a
connected component of the stability manifold. Bayer and Bridgeland [6] have
verified the conjecture in the special cases of Pic(X) = 1 (see [33] for the
non-projective case).

Lastly, we state the main results on derived equivalences of K3 surfaces over an
algebraically closed field of positive characteristic known so far. For generaliza-
tions of some results to non-algebraically closed fields of positive characteristic
see [69].

In case, char(k) = p > 2, Lieblich-Olsson [45], proved the following:

THEOREM 2.37 ([45], THEOREM 1.1) Let X be a K3 surface over an alge-
braically closed field k of positive characteristic # 2.

1. If Y is a smooth projective k-scheme with D*(X) = D®(Y), then Y is a
K3 surface isomorphic to a fine moduli space of stable sheaves.

2. There exists only finitely many smooth projective k-schemes Y with
DY(X) = D%Y). If X has rank NS(X) > 12, then D*(X) = Db(Y)
implies that X =Y. In particular, any supersingular K8 surface is de-
termined up to isomorphism by its derived category.

REMARK 2.38 One of the open questions is to have a cohomological criteria for
derived equivalent K3 surfaces over a field of positive characteristic like we have
in characteristic 0 where Hodge theory and Torelli Theorems were available.
However, as there is no crystalline Torelli Theorem for non-supersingular K3
surfaces over a field of positive characteristic and the naive F-crystal (see Ap-
pendix) fails to be compatible with inner product, the description in terms of
F-crystals is not yet possible. Even though one has crystalline Torelli Theorem
for supersingular K3 surfaces, it is essentially not providing any more informa-
tion as there are no non-trivial Fourier-Mukai partners of a supersingular K3
surface. However, Lieblich-Olsson proved a derived Torelli Theorem using the
Ogus Crystalline Torelli Theorem [62], see [46, Theorem 1.2].
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2.4 HEIGHT IS A DERIVED INVARIANT

Let us already show here that height of a K3 surface is a derived invariant. This
will allow us to stay within a subclass of K3 surfaces while checking derived
equivalences.

LEMMA 2.39 Height of a K3 surface X over an algebraically closed field of
characteristic p > 3 is a derived invariant.

ProOOF: Recall that the height of a K3 surface X is given by the dimension of
the subspace HZ,, (X/K)o1) of the F-isocrystal H,, (X/K). Now note that

the Frobenius acts on the one dimensional isocrystals H2. .(X/K)(—1) and

crys

H..,.(X/K)(1) (Tate twisted) as multiplication by p (see Appendix below for

this computation). This implies that the slope of these F-isocrystals is exactly
one. Thus, the F-isocrystal

H: (X/K):=H (X/K)(—1)® H?

crys crys crys

(X/K)® H?

crys

(X/K)(1)

has the same subspace of slope of dimension strictly less than one as that of
the F-isocrystal HCQTyS(X/K), ie., Hi., o (X/K)jo1) = ngys(X/K)[o,m-

Note that any derived equivalence of X and Y preserves the F-isocrystal
H(=/K), ie., if ®p : DY(X) ~ DY) is a derived equivalence of two

K3 surfaces X and Y, then the induced map on the F-isocrystals
oL H:, (X/K)— H., (Y/K)

crys crys

is an isometry. Thus, for the height of ¥ given by dim(HZ,, (Y/K)p.1)) we
have

dim(ngys(Y/K)[O,l)) = dim(H, (Y/K)[o,l))

crys

= dim(H,,,(X/K)p.1))

crys

= dim(HZ,,(X/K)[p,1)) = height of X

crys

Hence the result. O

REMARK 2.40 1. In characteristic 0, there is no notion of height but in this
case the Brauer group itself is a derived invariant of a K3 surface, as
Br(X) =2 Hom(T(X),Q/Z), where T'(X) is the transcendental lattice.

2. On the other hand, the Picard lattice is not a derived invariant in any
characteristic, though it trivially remains invariant in the case of K3
surfaces which do not have non-trivial Fourier-Mukai partners.

3 DERIVED AUTOEQUIVALENCES OF K3 SURFACES IN POSITIVE CHARAC-
TERISTIC

In this section, we compare the deformation of an automorphism as a morphism
and as a derived autoequivalence and show that for K3 surfaces these defor-
mations are in one-to-one correspondence. Then we discuss Lieblich-Olsson’s
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results on lifting derived autoequivalences. Then we use these lifting results to
prove results on the structure of the group of derived autoequivalences of a K3
surface of finite height over a field of positive characteristic.

3.1 OBSTRUCTION TO LIFTING DERIVED AUTOEQUIVALENCES

Let X be a projective variety over an algebraically closed field k of positive
characteristic p, W (k) its ring of Witt vectors and o : X — X an automorphism
of X. Then this automorphism will induce an equivalence of derived categories

o* : D'(X) = DV(X)

and it is easy to check that derived equivalence o* is also represented by the
Fourier-Mukai transform ®o,.,,, where Or(,) is the pushforward of the struc-
ture sheaf of the graph of o to X x X and is considered as a coherent sheaf
in D’(X x X). This representation of o provides us with another way of de-
forming it as a perfect complex in D’(X x X), other than just as a morphism.
A priori these two ways of deformations are not equivalent but for K3 surfaces
they turn out to be so and we will exploit this equivalence of deformations later
to prove that every automorphism of ordinary K3 surfaces lift.

We begin by recalling the classical result that for a variety the infinitesimal
deformation of a closed sub-variety with a vanishing H'(X,Ox) as a closed
subscheme is determined by the deformation of its (pushforward of) structure
sheaf as a coherent sheaf on X x X. We then use this result to show that on
a K3 surface we can lift an automorphism as a automorphism if and only if we
can lift it as a perfect complex in the derived category.

REMARK 3.1 For a K3 surface this result can also be seen using [45, Proposi-
tion 7.1] and the p-adic criterion of lifting automorphisms on K3 surfaces [19,
Remark 6.5].

Let X and o be as above.

DEFINITION 3.2 For any Artin local W (k)-algebra A with residue field k, an
infinitesimal deformation of X over A is a proper and flat scheme X 4 over A
such that the following square is cartesian:

X—— Xy

| ]

Spec(k) —— Spec(A).

In case X is smooth, we ask X 4 to be smooth over A as well. In this case, X o
is automatically flat over A.
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Consider the following two deformation functors:

Fout :(Artin local W (k)-algebras with residue field k) — (Sets)
A — {Lifts of automorphism o to A},

(5)
where by lifting of automorphism ¢ over A we mean that there exists an in-
finitesimal deformation X 4 of X and an automorphism o4 : X4 — X4 which
reduces to o, i.e., we have the following commutative diagram:

XAL)XA

|, ]

X —25X.

This is the deformation functor of an automorphism as a morphism. Now con-
sider the deformation functor of an automorphism as a coherent sheaf defined
as follows:

Feon :(Artin local W (k)-algebras with residue field k) — (Sets)
A {Deformations of Op(, to A}/iso,

(6)
where by deformations of Op(,) to A we mean that there exists an infinitesimal
deformation Y4 of Y := X x X over A and a coherent sheaf F,4, which is a
deformation of the coherent sheaf Or(;) and Or() is considered as a coherent
sheaf on X x X via the closed embedding I'(0) < X x X. Isomorphisms are
defined in the obvious way.

REMARK 3.3 Note that there are more deformations of X x X than the ones
of the shape X4 x4 Xy, where X4 and X'y are deformations of X over A.
From now we make a choice of this deformation (Y4) to be X4 x X4. Also see
Remark [3.14] and compare from Theorem [3.7] and Remark [3.15] below.

Let X be a smooth projective scheme over k and for A an Artin local W (k)-
algebra assume that there exists an infinitesimal lift of X to X 4. Note that
such a lift may not always exist but for the case of K3 surfaces of finite height
it does, see [47, Corollary 4.2] and Theorem 2.7. However, for supersingular
K3 surfaces, the lift does not exists over all Artin local rings but in some cases
it does exist by Theorem 2.7. Observe that there is a natural transformation
n: Fout = Feon given by

na: Faut (A) — Fcoh (A)

7
(UA:XA%XA)HOF(GA)/XAXXA. ()

THEOREM 3.4 The natural transformation n : Fyy — Feon between the defor-
mation functors is an isomorphism for varieties with H*(X,0x) = 0.
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We provide an algebraic proof by constructing a deformation-obstruction long
exact sequence connecting the two functors. The proof follows from the fol-
lowing more general proposition 3.6, substituting X x X for Y and taking the
embedding i to be the graph of the automorphism o. To use proposition 3.6
we need the following lemma.

LeEMMA 3.5 (CF. [27] LEMMA 24.8) To give an infinitesimal deformation of
an automorphism [ : X — X over X4 it is equivalent to give an infinitesimal
deformation of the graph I'y as a closed subscheme of X x X.

Proor: To any deformation f4 of f we associate its graph I'¢,, which gives
a closed subscheme of X4 x X4. It is an infinitesimal deformation of I'y.
Conversely, given a deformation Z of I'y over A, the projection p; : Z —
XA X4 Xg — X4 gives an isomorphism after tensoring with k. From flatness
(see, for example, EGA TV, Corollary 17.9.5) of Z over A it follows that p; is
an isomorphism, and so Z is the graph of f4 = py o py . O
The following proposition is certainly known to the experts but we were unable
to find a proof in literature, so we wrote one for reader’s convenience.

PROPOSITION 3.6 (Cf. [27, Ex 19.1]) Let i : X — Y be a closed embedding
with X integral and projective scheme of finite type over k. Then there exists
a long ezact sequence

0 — H°(Nx) =Bzt (Ox,0x) — H (Ox) —

HY(Nx) — Bt (Ox,0x) — ..., ®)

where Nx is the normal bundle of X.

Proor: Consider the short exact sequence given by the closed embedding i
0—1—0y —i.0x —0. (9)

Apply the global Hom contravariant functor Homy (—, 7.Ox) to the above short
exact sequence and we get the following long exact sequence from [26, III
Proposition 6.4],

0 — Homy (i.Ox,i.0x) — Homy (Oy,i,.O0x) — Homy (I,i,0x) —
Exty (i,Ox,i.Ox) — Exty (Oy,i,0x) — Bxty (I,i,0x) —
Ext} (i,Ox,ix0x) — ....
Now note that we can make the following identifications
1. Homy (1. Ox,4.0x) = k as X is integral and projective.
2. Homy (Oy,i.0x) = H°(Ox) = k using [26, III Propostion 6.3 (iii),
Lemma 2.10] and the fact that X is connected.
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3. As any injective endomorphism of a field is an automorphism, we can
modify the long exact sequence as follows:

0— HOmy(I,’i*Ox) — EXt%/(i*Ox,i*Ox) — EXt%/(Oy,i*Ox) — ...

4. Homy (1,i.0x) =2 Homy (i*I, Ox) using ajunction formula on page 110
of [26]. Moreover, using [26, III, Proposition 6.9], we have

Homx (i*1,0x) = Homx (Ox, Homx (i*I, Ox)),

and using the discussion in [1, Tag 01R 1], we have Homx (i*I, Ox) = Nx.
Thus, putting this together with [26, III Proposition 6.3 (iii) and Lemma
2.10], we get

Homy (I,i,0x) = H°(Ny).

5. Note that again using [26, III Proposition 6.3 (iii) and Lemma 2.10], we
get
Exty (Oy,i.0x) = HY(Ox).

6. Note that using the adjunction for Hom sheaves we have:
i.Nx =i, Homx (i*I,0x) = Homy (1,i.Ox).

Thus, H*(Nx) := HY(X,Nx) = H(Y,i.Nx) using |26, III Lemma
2.10]. To compute H(Y,i,Nx), we choose an injective resolution of
i+Ox as an Oy-module 0 — Ox — J°. From [23, Proposition 4.1.3], we
know that Homy (I, J?) are flasque sheaves and so we can compute the
cohomology group using this flasque resolution. Hence,

70— Ker(Homy (I, J") — Homy (I, 7))
~ Im(Homy (I, Ji~1) — Homy (I, J))

= Ext} (I,i.0x).

Thus, putting all of the above observations together, we get our required long
exact sequence. O

PRrROOF: [Proof of Theorem 3.4:] Note that the obstruction spaces for the
functors Fy,; and F..p, are H'(Nx) and Ext%((’)x, Ox) respectively. See, for
example, [27, Theorem 6.2, Theorem 7.3] and Lemma 3.5 above. The same
results give us the tangent spaces for the functors Fy,; and F.,, and they
are H°(Nyx) and Ext; (Ox,Ox). Now using Proposition 3.6 along with our
assumption of vanishing H'(X, Ox) one has that the obstruction space of F;
is a subspace of the obstruction of F,,; and this inclusion sends one obstruction
class to the other one. Therefore, the obstruction to lifting the automorphism as
a morphism vanishes if and only if the obstruction to lifting the automorphism
as a sheaf vanishes. Moreover, the isomorphism of tangent spaces implies that
the number of lifts in both cases is same. O
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This shows that for projective varieties with vanishing H'(X, Ox), one doesn’t
have extra deformations of automorphisms as a sheaf. Note that we could still
ask for deformations as a perfect complex but since the perfect complex we
start with is a coherent sheaf any deformation of it as a perfect complex will
also have only one non-zero coherent cohomology sheaf. Indeed, this follows
from the fact that deformations cannot grow cohomology sheaves ,as if F'§ is
the deformation of Ox over A such that H'(F%) # 0 (to simplify our argument
we are assuming F'§ is bounded above at level 1, i.e., F = 0 Vi > 1), then we
can replace this complex in the derived category by a complex like

o it Ker(FS — FY) % HY(FS) — 0.

Then reducing to special fiber gives that H'(F%) ®4 k = 0, but this will only
happen if H*(F§) = 0. Moreover, as we are in the derived category, we can show
that the deformed perfect complex is then quasi isomorphic to a coherent sheaf.
Indeed, the quotient map to the non-zero coherent, cohomology sheaf provides
the quasi-isomorphism. This shows that there are no extra deformations as a
perfect complex as well. Hence, an automorphism ¢ on a projective variety X
with vanishing H'(X, Ox) lifts if and only if the derived equivalence it induces,
Do, D*(X) — DY(X), lifts as a Fourier-Mukai transform.

Now we state the two theorems proved by Lieblich-Olsson which give a criteria
to lifting perfect complexes.

THEOREM 3.7 ([45] THEOREM 6.3) Let X and Y be two K3 surfaces over an
algebraically closed field k, and P € D*(Y x X) be a perfect complex inducing
an equivalence ® : D*(Y) — DY(X) on the derived categories. Assume that the
induced map on cohomology (see below) satisfies:

1. ®(1,0,0) = (1,0,0),

2. the induced isometry k : Pic(Y) — Pic(X) sends Cy, the ample cone of
Y, isomorphically to either Cx or —Cx, the (—)ample cone of X.

Then there exists an isomorphism of infinitesimal deformation functors § :
Defx — Defy such that

1. 67X (Def(v,L)) = Def(x o))

2. for each augmented Artinian W-algebra W — A and each (X4 — A) €
Defx(A), there is an object Py € D®(6(X4) x4 Xa) reducing to P on
Y x X.

THEOREM 3.8 ([15], THEOREM 7.1) Let k be a perfect field of characteristic
p >0, W be the ring of Witt vectors of k, and K be the field of fractions of W.
Fiz K3 surfaces X and'Y over k with lifts Xy /W and Yy /W . These lifts in-
duce corresponding Hodge filtrations via de Rham cohomology on the crystalline
cohomology of the special fibers. Denote by Fy, (X) C H*(X/K) C H*(X/K)
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and Fp, (Y) C H*(Y/K) C H*(Y/K) (similarly for Fi,, (—)), where
H*(X/K) and H*(Y/K) are the corresponding Mukai F-isocrystals. Suppose
that P € D*(X x Y) is a kernel whose associated functor ® : D*(X) — D*(Y)
is fully faithful. If

& H*(X/K) — H (Y/K)

sends Fip,,(X) to Fp,,(Y) and F7, (X) to iy (Y), then P lifts to a perfect
complex Py € D*(Xw xw Yw).

REMARK 3.9 Note that however, infinitesimally the hodge filtration is not pre-
served. We have the same counterexamples as in the case of infinitesimal in-
tegral variational Hodge conjecture: take a line bundle such that L% # O,
then we have the Chern character of L%? is 0 as p.ch(L) = 0, so it lies in the
correct Hodge level, but it need not lift. For example: see [10, Lemma 3.10].

REMARK 3.10 Note that the lifted kernel also induces an equivalence. Indeed,
for a K3 surface fully faithful Fourier-Mukai functor of derived categories is an
equivalence (see [30, Proposition 7.6]) and so we can also lift the Fourier-Mukai
kernel of the inverse equivalence. Then the composition of the equivalence we
started with and its inverse will give us a lift of the identity as an derived
autoequivalence. But using the fact that the Exty, v (P,P) = 0 (see [46,
Lemma 3.7 (ii)]) for any kernel inducing an equivalence, we get that the lift of
the identity is unique and is the identity itself. Thus, the lifted Fourier-Mukai
functor is an equivalence.

COROLLARY 3.11 Take P to be Or(,), where o : X — X is an automorphism
of a K3 surface X over k. Then the following are equivalent

1. P lifts to an autoequivalence of D*(Xw)
2. o lifts to an automorphism of Xw

3. ®p: H(X/K) — H*(X/K) preserves the Hodge filtration.
However, we see that we can still lift it as an isomorphism as follows:

THEOREM 3.12 (WEAK LIFTING OF AUTOMORPHISMS) Let 0 : X — X be
an automorphism of a K3 surface X defined over an algebraically closed field k
of characteristic p. There exists a smooth projective model X /R, where R is a
discrete valuation ring that is a finite extension of W (k), with Xy its generic
fiber such that there is a Pr, a perfect complex in D*(Xp x Yg), reducing
to Ops) on X x X, where Yg is another smooth projective model abstractly
isomorphic to X (see Remark [3.13] below).

Proor: We divide the proof into 3 steps:
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1. Lifting Kernels Infinitesimally: Note that ®o, ., is a strongly filtered

derived equivalence, i.e.,
Oy, =0 Heyy f(X/W) = Hep, (X/W)

is an isomorphism which preserves the gradation of crystalline cohomol-
ogy. Choose a projective lift of X to characteristic zero along with a lift
of Hx. It always exists as proved by Deligne [16], i.e., a projective lift
(Xv,Hx, ) of (X,Hx) over V a discrete valuation ring, which is a finite
extension of W (k), the Witt ring over k. Let V;, := V/m™ forn > 1, m
the maximal ideal of V and let K denote the fraction field of V. Then,
for each n, using the lifting criterion above, there exists a polarized lift
(X,,, Hx) over V;, and a complex P, € Dpef(X, x X)) lifting Or(4).

2. Applying the Grothendieck Existence Theorem for perfect complexes: By
the classical Grothendieck Existence Ttheorem [26, I1.9.6], the polarized
formal scheme (lim X, lim Hy ) is algebraizable. So, there exists a pro-
jective lift (X', Hx) over V that is the formal completion of (X, Hx ).
Now using the Grothendieck Existence Theorem for perfect complexes
(see [43, Proposition 3.6.1]) the formal limit of (P,) is algebraizable and
gives a complex Py € Dpery(Xv x Xi,). In particular, Py lifts Op(,)
and using Nakayama’s lemma, Py induces an equivalence.

3. Now apply the global Torelli Theorem to show that the two models
are isomorphic: For any field extension K’ over K, the generic fiber
complex Pxr € DY(Xk: x X}.,) induces a Fourier-Mukai equivalence
®p., : D(Xkr) = D(XJ/). Using Bertholet-Ogus isomorphisms [10],
we see that @ preserves the gradation on de Rham cohomology of X k.
Fix an embedding of K’ < C gives us a filtered Fourier Mukai equivalence

®p. : D’ ( Xk x C) = D(X}, x C),
which in turn induces an Hodge isometry of integral lattices:
H*(Xgr x C,Z) = H*(X} x C,7Z),

using Theorem 2.26 and the fact that a filtered equivalence preserves the
grading. This implies that Xz x C = X7, x C, which after taking a finite
extension V' of V' gives that the generic fiber are isomorphic X+ = X7,
(we abuse notation to still denote the fraction field of V' by K’). And
since the polarization was lifted along, this gives actually a map of
polarized K3 surfaces denoted by fx+ : (Xx+, Hx,.,) = (Xj/, Hx; ).

Now we can conclude that the the generic fibers are isomorphic as well by
forgetting the polarization. So now we need to show that the models are iso-
morphic, i.e., Xv+ = X{,, which will follow from [54, Theorem 2]. O
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REMARK 3.13 Note that even though the generic fibers are isomorphic which
indeed implies that the models are abstractly isomorphic (via the Matsusaka-
Mumford Theorem) but not as models of the special fiber as the isomorphism
will not be the identity on the special fiber, just for the simple reason that we
started with different polarizations on the special fibers.

REMARK 3.14 This dependence on the choice of the lift X4 of X and the
ability to find another lift Y4 can be seen as a reformulation of the formula
stated in [35, Theorem on Page 2].

REMARK 3.15 The above results can be rephrased to say that in the moduli
space of lifts of X x X we cannot always deform the automorphism in the
direction of X4 x X4 but can do so always in the direction of some X4 x Yy,
where X 4 and the automorphism determine Y4 uniquely.

Next, we discuss the structure of the derived autoequivalence group of a K3
surface of finite height.

3.2 THE CONE INVERSION MAP
Let X be a K3 surface over k of finite height with char(k) =p > 3.

DEFINITION 3.16 The positive cone Cx C NS(X)g is the connected compo-
nent of the set {a € NS(X)|(a)? > 0} that contains one ample class (or
equivalently, all of them).

DEFINITION 3.17 [Cone Inversion map| Let Cx be the positive cone, the cone
inversion map on the cohomology is the map that sends the positive cone Cx
to —-C)(.

Explicitly, in characteristic 0, we define the map to be (—idg2) ® idgogya :
H*(X,7) — H*(X,7Z), where H*(X,Z) is the Mukai lattice ([30, Section 10.1]).
Note that the cone inversion map is a Hodge isometry. In characteristic p > 3,
we define the map to be (—idy2) © idgogps : H\o(X/K) — HZ o (X/K),

crys

where Hp,.,  (X/K) is the Mukai F-isocrystal (see appendix A). Note that the
cone inversion map preserves the Hodge Filtration on HZ,, (X/K).

(In characteristic 0, the following proposition is proved in [32] with the Mukai
F-crystal replaced with Mukai lattice.).

THEOREM 3.18 The image of Aut(D"(X)) in Aut(H},,,
least 2, where HY,., (X/K) is the Mukai F-isocrystal.

crys

(X/K)) has indez at

We prove the above proposition by showing that the cone inversion map on
the cohomology does not come from any derived auto-equivalence. The proof
is done by contradiction, we assume that such an auto-equivalence exists, then
lift the kernel of the derived auto-equivalence to char 0, and then we use the
results of [32], to get a contradiction that this does not happen.

Recall that we have the following diagram of descend to cohomology of a
Fourier-Mukai transform ®p, for P € D¥(X x Y):
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£+ Rpy.(pk &) ®" P)

Db(X) D"(X)
lch( ) lch( )
CH*(X) R CH*(X)
o o
L0 ¢ asaal GOk ch(P)v/tdxxy ) H*(X),

where ch(—) is the Chern character and td_ is the Todd genus.

PrOOF: [Proof of Theorem 3.18] Assume that the cone inversion map is in-
duced by a derived auto-equivalence. Then using Orlov’s representability Theo-
rem ([59], [60]), we know that this derived auto-equivalence is a Fourier-Mukai
transform and we denote the kernel of the transform by £. Since £ induces
the cone inversion map and this map preserves the Hodge filtration on the
crystalline cohomology, using Theorem 3.8, we know that we can lift the per-
fect complex £ to a perfect complex &y in D°(Xw x Xy ), where Xy is
the lift of X as in [47, Corollary 4.2]. Note that the lifted complex also in-
duces a derived equivalence. Indeed, using Nakayama’s lemma we see that the
adjunction maps A,Ox,, — Ew o &y and Ew o &), — A,Oy,, are quasi-
isomorphisms. Moreover, since we have Hp,.,  (X/W) = Hj)p(Xw /W), we
know that the lifted complex induces again the cone inversion map on the
cohomology. It also follows that for any field extension K'/K, the generic
fiber complex £k € Db(X k' Xk Xg) induces a Fourier Mukai equivalence
® : D*(Xg/) — D*(Xk+). Choosing an embedding K — C (see our conven-
tions [1.1]) yields a Fourier-Mukai equivalence D*(Xyx ® C) — D*(Xx @ C)
which induces the cone inversion map on H*(X,Z). This is a contradiction as
in characteristic zero this does not happen, see [32] for a proof. g
We now make an interesting observation about the kernel of the map:

COROLLARY 3.19 Let X be a K3 surface over k, an algebraically closed field
of positive characteristic. Then the kernel of the natural map

0 — Ker — Aut(D*(X)) — Aut(H,. (X/K))

crys

lifts. More precisely, assume that Xy be a lift of X over V', a mized character-
istic discrete valuation ring with residue field k, then every derived autoequiv-
alence in the kernel of the map above lifts as an autoequivalence of the derived
category of Xy .

ProoF: This is clear as any autoequivalence in the kernel induces the iden-
tity automorphism on the cohomology which is bound to respect every Hodge
filtration on the F-isocrystal and then we use Theorem 3.8. g
This allows us to give at least an upper bound on the kernel as follows: Let
X be a K3 surface over an algebraically closed field of characteristic p > 2.
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Choose a lift of X, denoted as X, such that the Picard rank of the geometric
generic fiber is 1. There always exists such a lift as shown by Esnault-Oguiso
in [19, Theorem 4.1].
Let ®p : D’(X) — D’(X) be a Fourier-Mukai autoequivalence induced by
P € D*(X x X) that belong to the kernel of the natural map

Aut(D"(X)) — Aut(H},,,(X/K)).

crys

We will denote the kernel of this map as Kery. Now using [16, Lemma 3.7 (ii)]
we see that the set of infinitesimal deformations of the kernel P is a singleton
set, which in turn implies that the lift of P to X x Xp (this was just the
corollary 3.19) is unique.

Next, note that the fiber of the lift of P over the geometric generic point of
R, denoted as Py, also belongs to the kernel of the natural map (again base
changed to C using the embedding K C C)

Aut(D®(X¢)) — Oprag(H* (Xc, Z)),

denoted as Kerx.. Indeed, this follows from the base change on cohomology
and Berthelot-Ogus’s isomorphism [10]. Let us assume that ®p. does not
induces the identity on the singular cohomology of X¢ and hence, using the
following natural commutative diagram

H*(X¢,C) —— H*(X¢,C)

F )

HBR(X(C) — HBR(X(C)’

®p. also does not induces the identity on the de Rham cohomology of Xc.
As the autoequivalence ®p. is just the base change of ®p_. we see that the
map induced by ®p. on the de Rham cohomology of Xz is not the identity.
Now again ®p. comes via base change from ®p, so it is not the identity on
de Rham cohomology of X, now using the Berthelot-Ogus’s isomorphism it
does not induce the identity on the crystalline cohomology of X but this is not
possible as it is a lift of an autoequivalence which induces the identity on the
crystalline cohomology.

This gives us the following map

Kerx — Kerx,
Q@p F%‘P}%

with the kernel consisting of those autoequivalences which lift to the identity
on the geometric generic fiber.

REMARK 3.20 We expect that in the case of a general polarized K3 surface,
the set of autoequivalences which lift to the identity on the geometric generic
fiber will contain only the identity itself.
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Now, using the Picard rank 1 lift of Esnault-Oguiso, we see that there is a
subgroup of Kery inside Kerx.. And the kernel Kerx. has been described in
[6, Theorem 1.4]. Thus, we have shown that

PROPOSITION 3.21 Let X be a K3 surface over k, an algebraically closed field
of characteristic p > 3, and X — Spec(R) be a Picard rank one lift of X with
X the base change to C of the geometric generic fiber of Xr. Here, R is mized
characteristic discrete valuation ring with residue field k. Then Kerx,. contains
a subgroup of Kerx. Moreover, in the case the set of autoequivalences which lift
to the identity on the geometric gemeric fiber contains only the identity itself,
then Kerx C Kerx,.

4 COUNTING FOURIER-MUKAI PARTNERS IN POSITIVE CHARACTERISTIC

In this last section, we count the number of Fourier-Mukai partners of an or-
dinary K3 surface, in terms of the Fourier-Mukai partners of the geometric
generic fiber of its canonical lift. Moreover, we prove that any automorphism
of ordinary K3 surfaces lifts to its canonical lift. We start with comparing
the Fourier-Mukai partners of a K3 surface over a field of positive character-
istic with that of the geometric generic fiber of its lift to characteristic zero.
Then we restrict to ordinary K3 surfaces and give a few consequences to lifting
automorphisms of ordinary K3 surfaces. Moreover, we give a sufficient con-
dition on derived autoequivalences of an ordinary K3 surface so that they lift
to the canonical lift. Lastly, we show that the class number counting formula
(compare from Theorem 2.31) also holds for K3 surfaces over a characteristic
p field.

Let X (resp. Y) be a regular proper scheme with D(X) (resp. D®(Y)) its
bounded derived category. Recall that we say that Y is a Fourier- Mukai partner
of X if there exists a perfect complex P € D?(X x Y) such that the following
map is an equivalence of derived categories:

dp: DV'(X) = DY)

(10)
Q — Rpy.((px Q) & P),

where px (resp. py) is the projection from X x Y to X (resp. Y).

We want to count the number of Fourier-Mukai partners of a K3 surface in
positive characteristic. We will do this by lifting the K3 surface to characteristic
0 and then counting the Fourier-Mukai partners of the geometric generic fibers.
For this we will show that the specialization map for Fourier-Mukai partners
defined below is injective and surjective:

{FM partners of Xz} —{FM partners of X}

MXR('U) I—>Mx(’U). (11)

Here, X is a K3 surface of finite height over £ an algebraically closed field of
characteristic p > 3, X is the geometric generic fiber of Xy, which is a Picard
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preserving lift of X, and Mx (v) (resp. Mx, (v), Mx,, (v)) is the (fine) moduli
space of stable sheaves with Mukai vector v on X (resp. Xz, Xw). Note that
from now on we will fix one such lift of X. Such a lift always exists by [417,
Corollary 4.2] for K3 surfaces of finite height. On the other hand, Theorem
2.37 shows that supersingular K3 surfaces have no nontrivial Fourier-Mukai
partners, so from now we restrict to the case of K3 surfaces of finite height.
To show that the map (11) is well defined, we need the following lemma:

LEMMA 4.1 ((POTENTIALLY) GOOD REDUCTION) ([/6, Theorem 5.3]) Let V
be a discrete valuation ring with a fraction field K, a field of characteristic 0,
and residue field k of characteristic p such that there is a K8 surface Xk over
K with good reduction, then all the Fourier-Mukai partners of Xz have good
reduction possibly after a finite extension of K.

Thus for any Fourier-Mukai partner of Xz which is of the form Mx . (v) is a
geometric generic fiber of Mx,, (v)/V, where V is a finite (algebraic) extension
of W (k). Note that the residue field of V is still £ as k is algebraically closed.
Now using functoriality of the moduli functor we note that the special fiber
of Mx, (v) is Mx(v). This is a Fourier-Mukai partner of X (see, for example,
2.37). Thus, the map (11) is well-defined.

PROPOSITION 4.2 (LIEBLICH-OLSSON [45]) The specialization map (11)
above is surjective.

Proor: From [45, Theorem 3.16], note that all Fourier-Mukai partners of X
are of the form Mx (v). Moreover, one can always assume v to be of the form
(r,l,s) where [ is the Chern class of a line bundle and r is prime to p (see
[45, Lemma 8.1]). (Note that we take the Mukai vector here in the respective
Chow groups rather than cohomology groups). Then since we have chosen our
lift Xy of X to be Picard preserving, we can also lift the Mukai vector to
(rw,lw, sw), again denoted by v, and this gives a FM partner of Xy, namely
Mx,, (v), and taking the geometric generic fiber of it gives a Fourier-Mukai
partner of X . O

REMARK 4.3 Note that the Pic(Xg) = Pic(X), i.e., the specialization map is
an isomorphism. This is essentially due to the fact that k is algebraically closed
and every line bundle on X lifts uniquely to Xy as Ext'(L, L) = H(X,0x) =
0 for L € Pic(X), under which the set of infinitesimal deformations of the line
bundle L is a torsor.

REMARK 4.4 Note that the argument above already implies that the number
of Fourier-Mukai partners of a K3 surface over an algebraically closed field of
characteristic p > 3 is finite. This argument was given by Lieblich-Olsson in

[45].
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Injectivity: We need to show that if Mx(v) = X, then My, (v) = Xw. For
this statement we will restrict to the case of ordinary K3 surfaces.

Before proving injectivity we prove that the automorphisms of an ordinary K3
surface lift always to characteristic zero.

THEOREM 4.5 FEvery isomorphism ¢ : X — Y of ordinary K3 surfaces over
an algebraically closed field of characteristic p lifts to an isomorphism of the
canonical lift of the ordinary K3’s pw : Xecan — Yean- In particular, every
automorphism of X lifts to an automorphism of X qn.

REMARK 4.6 Note that the above statement is stronger than the tautological
statement: If X and X’ are two isomorphic ordinary K3 surfaces over a perfect
field k, then their canonical lifts are isomorphic.

REMARK 4.7 This statement should be compared with the results of Esnault-
Oguiso [19, Theorems 5.1, 6.4 and 7.5], who constructed automorphisms which
do not lift to characteristic 0.

PrOOF: [Proof of Theorem 4.5] Let ¢ : X — Y be an isomorphism of or-
dinary K3 surfaces. Consider the graph of this isomorphism as a coherent
sheaf (or even as a perfect complex) on the product X x Y, then from The-
orem 3.4 the deformation of isomorphism as a morphism and as a sheaf are
equivalent so we use Theorem 3.7 to construct a lifting of the isomorphism
for the canonical lift X4, of X. As isomorphisms preserve the ample cone,
the induced Fourier-Mukai transform satisfies the assumptions of Theorem 3.7.
Note that the Lieblich-Olsson lifting of perfect complexes allows us to be only
able to choose the lifting of X and then it constructs a unique lifting Y of
Y to which the perfect complex lifts. So, now the only remaining statement
to show is that Y’ is the canonical lift of Y. This follows from the criteria
of canonical lift [68, Theorem C] and the observation that the isomorphism
between g @ X4, g — Yj induces an isomorphism of Galois module on the
second p-adic étale cohomology. This isomorphism of Galois modules provides
us with the required decomposition of HZ,(Y%,Z,), which shows that Y’ is the
canonical lift of Y. |

REMARK 4.8 This gives a fixed point of the ¢ functor constructed by [45] (see
Theorem 3.7).

COROLLARY 4.9 FEvery isomorphism of ordinary K3 surfaces over an alge-
braically closed field of characteristic p preserves the Hodge filtration induced
by the canonical lift. In particular, every automorphism of an ordinary K3
surface over an algebraically closed field of characteristic p preserves the Hodge
filtration induced by the canonical lift.
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ProOF: This follows from 4.5 and [19, Remark 6.5]. O

THEOREM 4.10 Let X be an ordinary K3 surface, then the canonical lift of the
moduli space of stable sheaves with a fized Mukai vector is the moduli space of
stable sheaves with the same Mukai vector on the canonical lift:

(Mx (v))ecan = Mx.,, (v). (12)

PROOF: We use the criteria for canonical lift [68, Theorem C] to show that
Mx.,, (v) is indeed the canonical lift of Mx (v). To use the criteria, we note
that

Hegt(MXcan (V)i Zp) = UL/UZP
C Hgt(Xcan,f(ﬂ ZP) S5 He?t(Xcan,f(v Zp) S Hét (Xcan,f(a Zp)a
where the orthogonal complement is taken with respect to the extended pairing

on the étale Mukai lattice. As X, is the canonical lift of X, we have the
following decomposition of

HZ (X Zy) = My & Mx(—1) & Mx(—2)

can,K»

as Galois modules. We define the decomposition of H% (Mx.,, (v)z,Zy) =
M® @ M*(—1) & M?(—2) as Galois modules, where

MY =M%
M? =M% (13)
M' = Hgt(Xcan,f(ﬂ Zp) D Hélt(Xcan,f(’ Zp) & (UL/UZP n M)l()
The last relation above holds using Proposition 2.27 and the fact that
HY(X o ic> Zp) and H2, (X o &5 Zp) are orthogonal to M. O

Now, we finally prove the injectivity.

THEOREM 4.11 If X is an ordinary K3 surface over an algebraically closed
field of char p, then the number of FM partners of X are the same as the number
of Fourier-Mukai partners of the geometric generic fiber of the canonical lift of
X over W.

ProOOF: From the discussion in the Chapter 4 Section 4.2, we see that all
that is left to show is the injectivity of the specialization map on the set of
Fourier-Mukai partners. That is, we need to show that if Mx (v) is isomorphic
to X, then the lifts of both of them are also isomorphic X4, = Mx.,. (v). This
follows from the definition of canonical lifts and Theorem 4.10 that Mx_,, (v)
is the canonical lift of Mx (v). O

COROLLARY 4.12 Let X be an ordinary K3 surface over k, then the derived
autoequivalences satisfying the assumptions of Theorem 3.7 lift uniquely to a
derived autoequivalence of Xcap-
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ProoOF: The argument is going to be similar to the one used to show that
every automorphism lifts, but now we will use the proof of Theorem 4.10. Let
P € D’(X x X) induce a derived autoequivalence on X, then, using Theorem
3.7, there exists an X'/W such that we can lift P to a kernel Py € D®(Xcqn X
X’). Now we need to show that X’ is just X..,. Note that (Pw)i gives
a derived equivalence between D(X,,, z) = D°(X}), this implies that X’
is isomorphic to some moduli space of stable sheaves with Mukai vector v,
Mx_,, (v). Now by functoriality of the moduli spaces, we have Mx_ . (v) =
Mx.,,, (v)g and by Theorem 4.10, we have Mx.,, (v)g = Mx(v).qn - This
implies that we get the required decomposition of the second p-adic integral
étale cohomology of X', which using [68, Theorem C] gives us the result. [

COROLLARY 4.13 Every autoequivalence of an ordinary K3 surface that satis-
fies the assumptions of Theorem 3.7 preserves the Hodge filtration induced by
the canonical lift.

ProoOF: Follows from the corollary above and Theorem 3.8. g

4.1 THE CLASS NUMBER FORMULA

Lastly, we give the corresponding class number formula in characteristic p to
corollary 2.31.

THEOREM 4.14 Let X be a K3 surface of finite height over an algebraically
field of positive characteristic (say q > 3). If the Néron-Severi lattice of X has
rank 2 and determinant —p (p and q can also be same), then the number of
Fourier-Mukai partners of X is (h(p) +1)/2.

Proor: We lift X to characteristic 0 using the Lieblich-Maulik Picard pre-
serving lift and then base changing to the geometric generic fiber to get X .
Choose an embedding of K to C (complex numbers) and base change to C, to
get Xc. Now, from Proposition 4.2, we get that every Fourier-Mukai partner
of X lifts to a Fourier-Mukai partner of X¢. So, we just need to show that if
any Fourier-Mukai partner, say Y¢, of X¢ reduces mod ¢ to an isomorphic
K3 surface, say Y, to X, then it is isomorphic to X¢. This follows from noting
that if Y¢ becomes isomorphic mod ¢, then the Picard lattices of X¢ and Y
are isomorphic. The number of Fourier Mukai partners of X¢ with isomorphic
Picard lattices is given by the order of the quotient of the orthogonal group
of discriminant group of NS(X¢) by the Hodge isometries of the transcen-
dental lattice (cf. Theorem 2.30), but in this case the discriminant group of
NS(X¢) =7Z/p so the orthogonal group is just +id and there is always +id in
the hodge isometries, so we get the quotient to be a group of order 1. Thus the
result. O

REMARK 4.15 Note that the Picard lattice Pic(X k) and Pic(X ) are indeed
isomorphic as after reduction we are over an algebraically closed field and the
line bundles lift uniquely as Pic is trivial for a K3 surface.
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A F-cRYSTAL ON CRYSTALLINE COHOMOLOGY

In this appendix, we analyze the possibility of having a “naive" F-crystal struc-
ture on the Mukai isocrystal of a K3 surface. We begin by recalling a few results
about crystalline cohomology and the action of Frobenius on it, for details we
refer to [1, Tag 07GI and Tag 07NO], [&], [10], [49, Section 1.5].

Let X be a smooth and proper variety over a perfect field k of positive charac-
teristic p. Let W (k) (resp. Wy, (k)) be the associated ring of (resp. truncated)
Witt vectors with the field of fraction K. Let us denote by Froby : k — k;
x +— xP, the Frobenius morphism of %k, which induces a ring homomorphism
Froby : W(k) — W (k), by functoriality, and there exists an additive map
V . W(k) — W(k) such that p = V o Froby = Froby o V. Thus, Froby
is injective. For any m > 0, we have cohomology groups H,.,  (X/Wy,(k)).
These are finitely generated W, (k)-modules. Taking the inverse limit of these
groups gives us the crystalline cohomology:

HE (X)W (R)) = Yim HEy (X Wi ().

crys crys
It has the following properties as a Weil cohomology theory:
1. HZ (X/W (k))is a contravariant functor in X and the groups are finitely

crys
generated as W (k)-modules. Moreover, H, (X/W(k))is 0 if n <0 or
n > 2dim(X).

2. Poincaré Duality: The cup-product induces a perfect pairing:

n 2dim(X)—n
HE o (X/WR) - Heyd ™7 (X/W (k) 2O (X/W ) (1

= W(k).

torsion torsion

3. H., (X/W(k)) defines an integral structure on HZ., .(X/W (k))@w ) K.

crys crys

4. If there exists a proper lift of X to W(k), that is, a smooth and proper
scheme Xy — Spec(W (k)) such that its special fiber is isomorphic to X.
Then we have, for each n,

Hpp(Xw /W (k) = HE, o (X/W(K)).

crys

5. Consider the commutative square given by absolute Frobenius:
x Lt x
‘IL Froby I;’[

This, by the functoriality of the crystalline cohomology, gives us a Frobyy -
linear endomorphism on H*(X/W) of W (k)-modules, denoted by F*.
Moreover, F* is injective modulo the torsion, i.e.,

F*: H'(X/W)/torsion — H'(X/W)/torsion
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is injective.
THEOREM A.1 (CRYSTALLINE RIEMANN-ROCH) Let X and Y be smooth va-
rieties over k, a field of characteristic p, and f : X — Y be a proper map.
Then the following diagram commutes:

Ko(X) — L koY)

lch( ).tdx J/Ch( ).tdy

(X/K) —L @12 (V/K),

crys

EBi}{2i

crys

i.e., ch(f.).tdy = fi(ch(a).tdx) € ®;H.,,(Y/K) for all a € Ko(X), where

K (X) is the Grothendieck group of coherent sheaves on X .

REMARK A.2 The map f. does not preserve the cohomological grading but
does preserve the homological grading, i.e., if the dimensions of X and Y are
n and m respectively, then we have the following commutative square:

Ko(X) ! Ko(Y)

J/Ch( ).tdx lch( ).tdy

(X/K) —5 @, B2 (v K),

EBi}{2i

crys

and here the grading is respected. If X and Y are K3 surfaces, then n = m = 2
and we do not have to worry about this remark, as then the usual cohomological
grading is preserved.

Next we state a few main results about the compatibility of the Frobenius
action with the various relations :

PROPOSITION A.3 (CRYSTALLINE KUNNETH FORMULA) Let X,Y be proper
and smooth varieties over k. Then there is a canonical isomorphism in D(W),
the derived category of W modules, given as follows:

RI(X/W) @% RT(Y/W) = RI(X x; Y/W),
yielding exact sequences

0 = Bprgen(HP(X/W) @ HYY/W)) = H*(X x Y/W) —
= ©p+qn+1Tory” (HP (X/W), HI(Y/W)) = 0.

For a proof see [8, Chapitre 5, Théoréme 4.2.1] C and [37, Section 3.3].

REMARK A.4 Note that in the case of K3 surfaces the torsion is zero, so we
have the following isomorphism:

Dpg=n(H"(X/W) @ HI(Y/W)) = H"(X x Y/W).
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The action of Frobenius gives the following map:

F*H"(X x Y/W)C H(X xY/W)
G(F*HP(X/W) @ F*HUY/W))— &(HP(X/W) © HI(Y/W)),

where the direct sum is over all p + ¢ = n.

PRrROPOSITION A.5 The Kiinneth formula is compatible with the Frobenius ac-

tion in the following way:

Let v € H"(X x Y/W) be written (uniquely) as v =" a, @ B4, then
F*v=F"a,® F*f,,

where o, € HP(X/W) and B, € HY(Y/W).

Let px (resp. py) denote the projection X x Y — X (resp. X xY —Y).

PROPOSITION A.6 The Frobenius has the following compatibility with the pro-
jection morphism:

px(F*(a)) = F"(pxa).

Similarly, for the other projection py .
Let the denote the cup-product as follows:
HY (X/W) x H(X/W) — HY(X/W)

given by
(o, B) — aUB.

PROPOSITION A.7 The Frobenius action is compatible with the cup-product in
the following way:
F*(a U B) = F*(a) U F*(8).

Moreover, the Poincaré duality induces a perfect pairing as in relation [14]

H"™ H2dim(X)—n

< - > — H2mX) >~y (k)

: torsion 8 torsion
which satisfies the following compatibility with Frobenius:

< F*(z), F*(y) >= p™CO Froby (< ,y >), (15)
where n € [0, 2dim(X)].
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Now we define an F-crystal (see Definition 2.1) structure on the Mukai F-
isocrystal of crystalline cohomology for a K3 surface.

Let X be a K3 surface over an algebraically closed field k of characteristic p > 3.
Let ch = cheris : K(X) — H**(X/K) be the crystalline Chern character and
ch® the 2i — th component of ch. Reducing to the case of a line bundle via the
splitting principle, we see that the Frobenius ¢x acts in the following manner
on the Chern character of a line bundle E:

px(ch'(E)) = p'ch'(E). (16)

We normalize the Frobenius action on the F-isocrystal H*(X/K) using the
Tate twist to get the Mukai F-isocrystal ®;H (X/K)(i — 1).

We make the following observation, which shows that how the Frobenius action
works on H2,, (X/W), ie., we will compute ¢x ([1]). Note that for a perfect
field & of characteristic p, Serre [65, Theorem 8 on page 43| showed that the
Witt ring W(k) has p as its uniformizer. Now for H7. (X/K)(1) the action
of Frobenius is given by ¢x /p. But note that ch?(E) = 1/2(c3(E) — 2¢2(E)),
for E € K(X), where ¢;(E) are the Chern classes of E, and as the intersection
paring is even for a K3 surface, this is integral, i.e., ch?(E) € H*(X/W). This
along with the fact that ranky (H*(X/W)) = 1 implies that ch?(E) = up™[1],
where u € WX, p is the characteristic of k and [1] is the generator of H*(X /W)
as a W—module. Hence, we have

ox(ch®(E)) = ox(up™[1]) = o(up™)px([1]) (via semi-linearity)
= o(u)p"px([1]) (as o is a ring map)
= p*-ch®(E) = pPup"[1].

On the other hand, from the equation 16 above, we have ¢x(ch?(E)) =
p?up™[1]. This gives us that

px([1]) = u(o(uw) " p*[1],

where u(o(u))™t € W* as o is a ring map. Therefore, we have the Frobenius
action on H*(X/W)® K (1) given by ¢’y ([1]) = u(o(u))~'p[1]. Thus, it indeed
has a F-crystal inducing this F-isocrystal given by (H*(X/W), ¢’y ). We remark
that we are implicitly using the fact that A ® x K = A, for any K-module A.
Note that the Mukai vector of a sheaf P in Db(X) for a K3 surface X is by
definition the class

v(P) = ch(P)\/td(X) = (vo(P),v1(P),v2(P)) € Hpys(X/W).

Indeed, we have ¢1(X) = 0 and 2 = x(X, Ox) = tds, x, which gives us that the
Todd genus tdx = (1,0,2) and thus v/tdx = (1,0,1). This then implies that

v(P) = (rk(P),c1(P),rk(P) 4+ ¢3(P)/2 — c2(P)).
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Note that the intersection pairing on HZ2, .(X/W) is even, which gives us the

crys

above conclusion as ¢;(P) € HZ (X/W) (see [11]).

crys

LEMMA A.8 The Mukai vector of any object P € D*(X x Y) is a F-crystal
cohomology class.

PrOOF: (cf. [53]) Note that from the definition of the F-crystal structure we
just need to show that ch(P) € H7., (X x Y/W) as the square root of the
Todd genus for a K3 surface is computed as follows:

\/thXy = ps{ tdxp§ tdy = psf(l, O, 1).]);(1, O, 1).
We write the exponential chern character as follows:
ch(P) = (rk(P), c1(P), 1/2(c}(P) — 2¢2(P)), chs(P), cha(P))

where
ch®(P) = 1/6(c}(P) — 3cica + 3c3(P))

and
ch*(P) = 1/24(c} — 4ctca + deieg + 263 — 4ey).

Note that if char(k) # 2,3, then 2,3 are invertible in W(k), so ch(P) €
H},. (X x Y/W) as again we know ¢;(P) € H% (X xY/W) . O

crys crys

REMARK A.9 Thus, it makes sense to talk about the descent of a Fourier-
Mukai transform to the F-crystal level but note that the new Frobenius struc-
ture on H*(X/W)(1) fails to be compatible with the intersection pairing as
defined in Theorem A.7. This causes the failure of existence of an F-crystal
structure on the Mukai-isocrystal and also the failure to have a cohomological
criteria of derived equivalences of K3 surfaces with crystalline cohomology.
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