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Abstra
t. For an ordinary K3 surfa
e over an algebrai
ally 
losed

�eld of positive 
hara
teristi
 we show that every automorphism lifts

to 
hara
teristi
 zero. Moreover, we show that the Fourier-Mukai

partners of an ordinary K3 surfa
e are in one-to-one 
orresponden
e

with the Fourier-Mukai partners of the geometri
 generi
 �ber of its


anoni
al lift. We also prove that the expli
it 
ounting formula for

Fourier-Mukai partners of the K3 surfa
es with Pi
ard rank two and

with dis
riminant equal to minus of a prime number, in terms of the


lass number of the prime, holds over a �eld of positive 
hara
teris-

ti
 as well. We show that the image of the derived autoequivalen
e

group of a K3 surfa
e of �nite height in the group of isometries of its


rystalline 
ohomology has index at least two. Moreover, we provide

a 
onditional upper bound on the kernel of this natural 
ohomologi
al

des
ent map. Further, we give an extended remark in the appendix

on the possibility of an F-
rystal stru
ture on the 
rystalline 
oho-

mology of a K3 surfa
e over an algebrai
ally 
losed �eld of positive


hara
teristi
 and show that the naive F-
rystal stru
ture fails in be-

ing 
ompatible with inner produ
t.
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1 Introdu
tion

The derived 
ategory of 
oherent sheaves on a smooth proje
tive variety was

�rst studied as a geometri
al invariant by Mukai in the early 1980's. In 
ase

the smooth proje
tive variety has an ample 
anoni
al or anti-
anoni
al bundle,

Bondal-Orlov [12℄ proved that, if two su
h varieties have equivalent bounded

derived 
ategories of 
oherent sheaves, then they are isomorphi
. However, in

general this is not true. The bounded derived 
ategory of 
oherent sheaves is

not an isomorphism invariant. Mukai [52℄ showed that for an Abelian variety

over C, its dual has equivalent bounded derived 
ategory. Moreover, in many


ases it 
an be shown that the dual of an Abelian variety is not birational to

it, whi
h implies that derived 
ategories are not even birational invariants, see

[30, Chapter 9℄. Similarly, Mukai showed in [53℄ that for K3 surfa
es over C,
there are non-isomorphi
 K3 surfa
es with equivalent derived 
ategories. This

led to the natural question of 
lassifying all derived equivalent varieties.

For K3 surfa
es, the 
ase of interest to us, this was 
ompleted over C in late

1990's by Mukai and Orlov ([53, Theorem 1.4℄, [59, Theorem 1.5℄) using Hodge

theory along with the Global Torelli Theorem (see [4, VIII Corollary 11.2℄,

[36, Theorem 7.5.3℄). As a 
onsequen
e, it was shown that there are only

�nitely many non-isomorphi
 K3 surfa
es with equivalent bounded derived


ategories (see Proposition 2.28) and a 
ounting formula was also proved by

Hosono et. al in [29℄. On the other hand, for K3 surfa
es over a �eld of

positive 
hara
teristi
, a partial answer to the 
lassi�
ation question was �rst

given by Liebli
h-Olsson [45℄ (see Theorem 2.37) in early 2010's. They showed

that there are only �nitely many non-isomorphi
 K3 surfa
es with equivalent

bounded derived 
ategories. We remark here that due to unavailability of a

positive 
hara
teristi
 version of the global Torelli Theorem for K3 surfa
es

of �nite height, it is 
urrently not feasible to give a 
omplete 
ohomologi
al

des
ription of derived equivalent K3 surfa
es. However, a des
ription in terms

of moduli spa
es was given by Liebli
h-Olsson. We also point out here that

the proofs of these results go via lifting to 
hara
teristi
 zero and thus use

the Hodge theoreti
 des
ription given by Mukai and Orlov. Furthermore,
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Liebli
h-Olsson [46℄ also proved the derived version of the Torelli theorem

using the Crystalline Torelli theorem for supersingular K3 surfa
es.

In this arti
le, we study the above question in more details for the 
ase of

K3 surfa
es over an algebrai
ally 
losed �eld of positive 
hara
teristi
. We

show that the number of isomorphism 
lasses of ordinary K3 surfa
es whi
h are

derived equivalent to a 
hosen ordinary K3 surfa
e is the same as the number of

isomorphism 
lasses of K3 surfa
es in 
hara
teristi
 0 derived equivalent to the


anoni
al lift of our 
hosen ordinary K3 (Theorem 4.11). This result should

be seen as an eviden
e to the long held belief that the number of Fourier-

Mukai partners behaves well with respe
t to deformation to 
hara
teristi
 zero.

Moreover, we show that the geometri
 reformulations [29, Question I' and II'℄

of questions of Gauss on the behavior of 
lass numbers 
an be extended to

in
lude K3 surfa
es over algebrai
ally 
losed �elds of 
hara
teristi
 p (Theorem
4.14). This, we hope, will provide with more ways to answer the questions of

Gauss posed in 1801 [29, Question I and II℄ on the 
lass number h(p) of the
real quadrati
 �eld Q(

√
p) for a prime number p ≡ 1 mod 4:

Question I: Are there in�nitely many primes p su
h that the 
lass number

h(p) is 1?
Re
all that for imaginary quadrati
 �elds there are only �nitely many primes

with 
lass number 1, namely −1, −2, −3, −7, −11, −19, −43, −67, −163
(see [55, Chapter 1 page 37℄).

Question II: Is there a sequen
e of primes p1, p2, . . . su
h that h(pk)→∞?

Using the 
ounting formula for derived equivalent K3 surfa
es, we 
an refor-

mulate the above questions as:

Question I': Are there in�nitely many isomorphism 
lasses of K3 surfa
es over

an algebrai
ally 
losed �eld of positive 
hara
teristi
 or over C with Pi
ard rank

2 and dis
riminant −q for distin
t primes q, su
h that it has no non-isomorphi


K3 surfa
es derived equivalent to it?

Question II': Is there a sequen
e of K3 surfa
es over an algebrai
ally 
losed

�eld of positive 
hara
teristi
 or over C with Pi
ard rank 2 and dis
riminant

−q for distin
t primes q su
h that the number of K3 surfa
es derived equivalent

to it tends to in�nity ?

Meanwhile in 1990's another s
hool of thought inspired by string theory

in physi
s led Kontsevi
h [41℄ to propose the homologi
al mirror symmetry


onje
ture whi
h states that the bounded derived 
ategory Db(X) of 
oherent
sheaves of a proje
tive variety X is equivalent (as a triangulated 
ategory) to

the bounded derived 
ategory DbFuk(X̌, β) of the Fukaya 
ategory Fuk(X̌, β)
of a mirror X̌ with its symple
ti
 stru
ture β. Moreover, the symple
ti


automorphisms of X̌ indu
e derived autoequivalen
es of Db(X). This provided
a natural motivation for the study of the derived autoequivalen
e group.

For K3 surfa
esX overC, the stru
ture of the group of derived autoequivalen
es
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was analyzed by Ploog in [63℄, Hosono et al. in [28℄ and Huybre
hts, et al. in

[32℄. They showed that the image of Aut(Db(X)) under the homomorphism

Aut(Db(X))→ OHodge(H̃(X,Z)),

where OHodge(H̃(X,Z)) is the group of Hodge isometries of the Mukai latti
e

of X , has index 2. However, the kernel of this map has a des
ription only in

the spe
ial 
ase when the Pi
ard rank of X is 1, given by [6℄.

In the spirit of the question on the stru
ture of derived autoequivalen
e group

of K3 surfa
es, we show that this group for K3 surfa
es over algebrai
ally 
losed

�elds of positive 
hara
teristi
 displays similar behavior as a K3 surfa
e over

C. More pre
isely, let X be a K3 surfa
e of �nite height over an algebrai
ally


losed �eld k of 
hara
teristi
 p > 3 and let W (k) be the Witt ring with K
its �eld of fra
tion. Then any derived autoequivalen
e indu
es naturally an

automorphism of F-iso
rystals on H∗
crys(X/K).

Theorem 1.1 (
f. Theorem 3.18) The image of Auteq(Db(X)) in

Aut(H∗
crys(X/K)) has index at least 2.

This is exa
tly similar to the behavior of K3 surfa
es over C as remarked above.

Moreover, for general K3 surfa
es we expe
t that the kernel of the natural map

Auteq(Db(X))→ Aut(H∗
crys(X/K)) will embed in the kernel of a Pi
ard rank

1 lift of it (see Proposition 3.21). This provides us with a possible approa
h to

proof of Bridgeland's 
onje
ture ([14, Conje
ture 1.2℄) for K3 surfa
es over C,
by �rst spe
ializing any K3 surfa
e over C with good redu
tion to 
hara
teristi


p and then embedding ba
k the kernel in a Pi
ard rank 1 lift to 
hara
teristi


zero. This will be undertaken in future work.

As a 
onsequen
e of studying derived autoequivalen
es, we prove that for

ordinary K3 surfa
es every automorphism lifts to 
hara
teristi
 zero, whi
h

should be seen as adhering to the general philosophy that ordinary K3 surfa
es

behave just like 
omplex K3 surfa
es.

Here is a brief outline of the arti
le. In Se
tion 2 we re
all the notion of height

of a K3 surfa
e over a �eld of positive 
hara
teristi
, the results on lifting K3

surfa
es from 
hara
teristi
 p to 
hara
teristi
 0, the moduli spa
es of stable

sheaves on a K3 surfa
e and derived equivalen
es on K3 surfa
es. We end

this se
tion by proving that height of a K3 surfa
e remains invariant under

derived equivalen
es (Lemma 2.39). In Se
tion 3, we address the question on

the group of derived autoequivalen
es for K3 surfa
es of �nite height. We show

that the image of the derived autoequivalen
e group of a K3 surfa
e of �nite

height in the group of isometries of its 
rystalline 
ohomology has index at

least two (Theorem 3.18). Moreover, we provide a 
onditional upper bound

on the kernel of this natural 
ohomologi
al des
ent map (Proposition 3.21). In

Se
tion 4, we 
ount the number of Fourier-Mukai partner for an ordinary K3

surfa
e (Theorem 4.11) along with showing that the automorphism group lifts
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to 
hara
teristi
 0 (Theorem 4.5). We also prove that the expli
it 
ounting

formula for Fourier-Mukai partners of the K3 surfa
es with Pi
ard rank two

and with dis
riminant equal to minus of a prime number, in terms of the


lass number of the prime, holds over a �eld of positive 
hara
teristi
 as well

(Theorem 4.14). In Appendix A, we de�ne an F-
rystal stru
ture and show that

this integral stru
ture is preserved by derived equivalen
es but its 
ompatibility

with interse
tion pairing fails.

1.1 Conventions and Notations

For a perfe
t �eld k of positive 
hara
teristi
 p, W (k) will be its ring of Witt

ve
tors. For any 
ohomology theory H∗
...(...), we will denote the dimension of

the 
ohomology groups Hi
...(. . .) as h

i
...(. . .). We will impli
itly assume that the


ardinality ofK := Frac(W (k)) and its algebrai
 
losure K̄ are not bigger than

that of C, this will allow us to 
hoose an embedding K̄ →֒ C whi
h we will use

in our arguments to transfer results from 
hara
teristi
 0 to 
hara
teristi
 p.
See also Remarks 2.35 and 2.29. Moreover at times, we will put the 
ondition

of 
hara
teristi
 p > 3 as at many pla
es we may have denominators in fa
tors

of 2 and 3, like in the de�nition of Chern 
hara
ters for K3 surfa
es, and these

will be
ome invertible in W (k) due to our assumption on the 
hara
teristi
.

2 Preliminaries on K3 Surfa
es and Derived Equivalen
es

We re
all the notion height of a K3 surfa
e over a �eld of positive 
hara
teristi


through its F-
rystal, whi
h gives a sub
lass of K3 surfa
es with �nite height or

in�nite height 
alled supersingular K3 surfa
es. For an introdu
tion to Brauer

group of K3 surfa
es and the de�nition of height via the Brauer groups see

[36℄ and [49℄. Both de�nitions turn out to be equivalent (see, for example, [49,

Prop. 6.17℄).

Let k be an algebrai
ally 
losed �eld of positive 
hara
teristi
, W (k) its ring
of Witt ve
tors and FrobW the Frobenius morphism of W (k) indu
ed by the

Frobenius automorphism of k. Note that FrobW is a ring homomorphism and

indu
es an automorphism of the fra
tion �elds K := Frac(W (k)), denoted as

FrobK . We begin by re
alling the notion of F-iso
rystal and F-
rystals whi
h

we will use later to stratify the moduli of K3 surfa
es.

Definition 2.1 [F-(iso)
rystal℄ An F-
rystal (M,φM ) over k is a free W -

module M of �nite rank together with an inje
tive FrobW -linear map φM :
M →M , that is, φM is additive, inje
tive and satis�es

φM (r ·m) = FrobW (r) · φM (m) for all r ∈W (k),m ∈M.

An F-iso
rystal (V, φV ) is a �nite dimensional K-ve
tor spa
e V together with

an inje
tive FrobK -linear map φV : V → V .

A morphism u : (M,φM ) → (N,φN ) of F-
rystals (resp. F-iso
rystals) is a

W (k)-linear (resp. K-linear) map M → N su
h that φN ◦ u = u ◦ φM . An
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isogeny of F-
rystals is a morphism u : (M,φM )→ (N,φN ) of F-
rystals, su
h
that the indu
ed map u⊗ IdK : M ⊗W (k) K → N ⊗W (k) K is an isomorphism

of F-iso
rystals.

Examples:

1. The trivial 
rystal: (W,FrobW ).

2. This is the 
ase whi
h will be of most interest to us:

Let X be a smooth and proper variety over k. For any n, take the free

W (k) module M to be Hn := Hn
crys(X/W (k))/torsion and φM to be the

Frobenius F ∗
. The Poin
aré duality indu
es a perfe
t pairing

〈−,−〉 : Hn ×H2dim(X)−n → H2dim(X) ∼= W

whi
h satis�es the following 
ompatibility with Frobenius

〈F ∗(x), F ∗(y)〉 = pdim(X)FrobW (〈x, y〉),

where x ∈ Hn
and y ∈ H2dim(X)−n

. As FrobW is inje
tive, we have

that F ∗
is inje
tive. Thus, (Hn, F ∗) is an F-
rystal. We will denote the

F-iso
rystal Hn
crys(X/W )⊗K by Hn

crys(X/K).

3. The F-iso
rystal K(1) := (K,FrobK/p). Similarly, one has the F-

iso
rystal K(n) := (K,FrobK/pn) for all n ∈ Z. Moreover, for any

F-iso
rystal V and n ∈ Z, we denote by V (n) the F-iso
rystal V ⊗K(n).

Re
all that the 
ategory of F-
rystals over k up to isogeny is semi-simple and

the simple obje
ts are the F-
rystals:

Mα = ((Zp[T ])/(T
s − pr))⊗Zp

W (k), (mult. by T )⊗ FrobW ),

for α = r/s ∈ Q≥0 and r, s non-negative 
oprime integers. This is a theorem

of Dieudonné�Manin [18℄, [50℄. Note that the rank of the F-
rystal Mα is s.
We 
all α the slope of the F-
rystal Mα.

Definition 2.2 Let (M,φ) be an F-
rystal over k and let

(M,φ) ∼isogeny ⊕α∈Q≥0
Mnα

α

be its de
omposition up to isogeny. Then the elements of the set

{α ∈ Q≥0|nα 6= 0}

are 
alled the slopes of (M,φ). For every slope α of (M,φ), the integer λα :=
nα · rankWMα is 
alled the multipli
ity of the slope α.

Remark 2.3 In 
ase (M,φ) is an F-
rystal over a perfe
t �eld k (rather than

being algebrai
ally 
losed as assumed above), we de�ne its slope and multipli
-

ities to be that of the F-
rystal (M,φ) ⊗W (k) W (k̄), where k̄ is an algebrai



losure of k.
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We still keep our assumption of k being an algebrai
ally 
losed �eld of positive


hara
teristi
.

The above 
lassi�
ation result of Dieudonné-Manin is more general. Any F-

iso
rystal V with bije
tive φV is isomorphi
 to a dire
t sum of F-iso
rystals

(Vα := K[T ]/(T s − pr), (mult. by T )⊗ FrobK),

for α = r/s ∈ Q. The dimension of Vα is s and we 
all α the slope of Vα.

Definition 2.4 [Height℄ The height of a K3 surfa
e X over k is the sum of

multipli
ities of slope stri
tly less than 1 part of the F-
rystal H2
crys(X/W ).

In other words, the dimension of the subspa
e of slope stri
tly less than one of

the F-iso
rystal H2
crys(X/K), whi
h is dim(H2

crys(X/K)[0,1) := ⊕αi<1V
nαi
αi ).

If for a K3 surfa
e X the dim(H2
crys(X/K)[0,1)) = 0, then we say that the

height of X is in�nite. Supersingular K3 surfa
es (i.e., K3 surfa
es with in�nite

height) also have an equivalent des
ription that their Pi
ard rank is 22 (see [49,

Theorem 4.8℄). We will be dis
ussing more about F-
rystals later in Appendix

A. On the other hand, we have ordinary K3 surfa
es.

Definition 2.5 [Ordinary K3 surfa
e℄ A K3 surfa
e X over a perfe
t �eld k
of positive 
hara
teristi
 is 
alled ordinary if the height of X is 1.

They also have equivalent des
ription via height of Brauer group, see [57,

Lemma 1.3℄.

2.1 Lifting K3 Surfa
es

We state the theorem by Deligne about lifting K3 surfa
es whi
h will be used

a lot in the theorems that follow. Let X0 be a K3 surfa
e over a �eld k of


hara
teristi
 p > 0.

Definition 2.6 [Lift of a K3 surfa
e℄ A lift of a K3 surfa
eX0 to 
hara
teristi


0 is a smooth proje
tive s
heme X over R, where R is a dis
rete valuation ring

su
h that R/m = k, K := Fra
(R) is a �eld of 
hara
teristi
 zero, the generi


�ber of X , denoted XK , is a K3 surfa
e and the spe
ial �ber is X0.

Theorem 2.7 (Deligne [16℄ Theorem 1.6, 
orollary 1.7, 1.8) Let X0

be a K3 surfa
e over a �eld k algebrai
ally 
losed of 
hara
teristi
 p > 0. Let

L0 be an ample line bundle on X0. Then there exists a �nite extension T
of W (k), the Witt ring of k, su
h that there exists a deformation of X0 to

a smooth proper s
heme X over T and an extension of L0 to an ample line

bundle L on X.

Consider the situation where we have a lift of a K3 surfa
e, i.e., let X0 be a

K3 surfa
e over a �eld of 
hara
teristi
 p > 0 and X a lift over S = Spec(R)
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as de�ned above. The de Rham 
ohomology of X/S, H∗
DR(X/S) is equipped

with a �ltration indu
ed from the Hodge to de Rham spe
tral sequen
e:

Ei,j
1 = Hj(X,Ωi

X/S)⇒ H∗
DR(X/S)

For a 
onstru
tion of this spe
tral sequen
e, see [21, III-0 11.2℄. We 
all this

�ltration on H2
DR(X/S) the Hodge �ltration. Using the 
omparison isomor-

phism between the 
rystalline 
ohomology of the spe
ial �ber and the de Rham


ohomology of X [9, 7.26.3℄,

Hi
crys(X0/W (k))⊗R ∼= Hi

DR(X/S),

we get a �ltration on the 
rystalline 
ohomology, also 
alled the Hodge �ltration.

This Hodge �ltration on the 
rystalline 
ohomology depends on the 
hoi
e of

a lift of X0.

In 
ase X is an ordinary K3 surfa
e, it admits a spe
ial lift to 
hara
teristi


zero 
alled 
anani
al lift and it has the following Pi
ard preserving property:

Proposition 2.8 ([57℄, Proposition 1.8) For X an ordinary K3 surfa
e,

there exists a 
anoni
al lift Xcan with the property that any line bundle on X
lifts uniquely to Xcan.

Moreover, in [68, Theorem C℄, Taelman proved a 
riterion to determine when

a lift of an ordinary K3 surfa
e is going to a be a 
anani
al lift. We will be

using this 
riterion.

2.2 Moduli Spa
e of Sheaves

Next we dis
uss about the Moduli spa
e of sheaves on a K3 surfa
e as these

spa
es turn out to play a very important role in the theory of derived equiva-

len
es of K3 surfa
es. We introdu
e the moduli sta
k of sheaves on a K3 surfa
e

and show that it's a µr−Gerbe under some numeri
al 
onditions. We will try

to keep the exposition here 
hara
teristi
 independent and in 
ase of 
hara
ter-

isti
 restri
tions we will mention them as ne
essary. Moreover, in the 
ase of a

K3 surfa
e de�ned over a �eld we will not assume the �eld to be algebrai
ally


losed and in general, for a relative K3 surfa
e, we will work with a spe
trum

of a mixed 
hara
teristi
 dis
rete valuation ring as the base s
heme. The main

referen
es for this se
tion are [44, Se
tion 2.3.3℄ and [45, Se
tion 3.15℄. We refer

the reader to [24℄, for a 
omparison between the moduli sta
k point of view

and that of more 
lassi
al moduli fun
tors. For an introdu
tion to theory of

gerbes we refer the reader to [58℄.

Before pro
eeding to the de�nition of moduli sta
ks of sheaves that we will

be working with, let us also re
all the notion of (Gieseker) semistability for


oherent sheaves (for details see [31, Se
tion 1.2℄): Let X be a proje
tive

s
heme over a �eld k. The Euler 
hara
teristi
 of a 
oherent sheaf F is

χ(F) =
∑

(−1)ihi(X,F). If we �x an ample line bundle O(1) on X , then
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the Hilbert polynomial P (F) given by n 7→ χ(F ⊗ O(n)) 
an be uniquely

written in the form

P (F , n) =
dim(F)
∑

i=0

αi(F)mi/i!,

with integral 
oe�
ients αi(F). We denote by p(F , n) := P (F , n)/αdim(F)(F),
the redu
ed Hilbert polynomial of F .

Definition 2.9 [Semistability℄ A 
oherent sheaf F of dimension d is semistable

if F has no nontrivial proper subsheaves of stri
tly smaller dimension and for

any subsheaf E ⊂ F , one has p(E) ≤ p(F). It is 
alled stable if for any proper

subsheaf the inequality is stri
t.

Remark 2.10 The ordering on polynomials is the ordering on the 
oe�
ients.

Definition 2.11 [Mukai ve
tor℄ For a smooth proje
tive X over k, given a

perfe
t 
omplex E ∈ D(X), where D(X) is the derived 
ategory of 
oherent

sheaves on X , we de�ne the Mukai ve
tor of E to be

v(E) := ch(E)
√

tdX ∈ A∗(X)num,Q.

Here, ch(−) denotes the Chern 
lass map, tdX is the Todd genus and

A∗(X)num,Q is the numeri
al Chow group of X with rational 
oe�
ients.

For X a K3 surfa
e over k, the Mukai ve
tor of a 
omplex is given by (see [30,

Chapter 10℄):

v(E) = (rank(E), c1(E), rank(E) + c1(E)2/2− c2(E)).

Let X be a proje
tive s
heme over k and h an ample line bundle.

Definition 2.12 [Moduli Sta
k℄ The moduli sta
k of semistable sheaves, de-

noted M
ss
h , is de�ned as follows:

M
ss
h :(Sch/k)→ (groupoids)

S 7→ {F|F an S-�at 
oherent sheaf on X × S with semistable �bers.}

Similarly, the moduli sta
k of stable sheaves 
an be de�ned by repla
ing

semistable above with stable and we denote it by M
s
h.

If we �x a ve
tor v ∈ A∗(X)num,Q, we get an open and 
losed substa
k M
ss
h (v)


lassifying semistable sheaves on X with Mukai ve
tor v.
The following result has been proved by Liebli
h [44℄, for the more general


ase of moduli of twisted sheaves. Restri
ting to the 
ase of semistable sheaves

without any twisting a simpler argument is given in [67, Theorem 2.30℄.

Theorem 2.13 The sta
k M
ss
h is an algebrai
 sta
k and the sta
k M

ss(v) is

an algebrai
 substa
k of �nite type over k.
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Remark 2.14 Re
all that the Mukai ve
tor v for a sheaf on a K3 surfa
e

determines its Hilbert polynomial and its rank as well.

Moreover, the sta
k M
ss
h (v) 
ontains an open substa
k of geometri
ally stable

points (see Footnote 3) denoted M
s
h(v).

Theorem 2.15 The algebrai
 sta
k M
s
h(v) admits a 
oarse moduli spa
e.

For a proof see [44, Lemma 2.3.3.3, Prop. 2.3.3.4℄ or [67, Theorem 2.34℄.

Theorem 2.16 (Mukai-Orlov) Let X be a K3 surfa
e over a �eld k.

1. Let v ∈ A∗(X)num,Q be a primitive element with v2 = 0 (with respe
t

to the Mukai pairing

1

) and positive degree 0 part

2

. Then M
ss
h (v)is non-

empty.

2. If, in addition, there is a 
omplex P ∈ D(X) with Mukai ve
tor v′ su
h
that < v, v′ >= 1, then every semistable sheaf with Mukai ve
tor v is lo-


ally free and geometri
ally stable

3

, in whi
h 
ase M
ss
h (v) is a µr-gerbe for

some r, over a smooth proje
tive surfa
e Mh(v) su
h that the asso
iated

Gm-gerbe is trivial

4

.

Remark 2.17 1. Note that the triviality of the Gm-gerbe is equivalent to

the existen
e of a universal bundle over X ×Mh(v), also see [45, Remark

3.19℄.

2. See [31, Remark 6.1.9℄ for a proof that under the assumption of the above

Theorem part (2), any semistable sheaf is lo
ally free and geometri
ally

stable.

Proof: The non-emptiness follows from [36, Chapter 10 Theorem 2.7℄ and

[45, Remark 3.17℄. For the 
onstru
tion of the universal bundle, one has to ,in

the end, a
tually use GIT again. For a proof see [36, Chapter 10 Proposition

3.4℄ and [31, Theorem 4.6.5℄ (this is from where we have the numeri
al 
riteria,

in parti
ular, also see [31, Corollary 4.6.7℄). �

We generalize our moduli sta
k to the relative setting. Let XS be a �at pro-

je
tive s
heme over S with an ample line bundle h. (The 
ase of S = Spec(R)
for R a dis
rete valuation ring of mixed 
hara
teristi
, will be of most interest

to us.)

1

The Mukai pairing is just an extension of the interse
tion pairing, de�ned as follows:

let (a1, b1, c1) ∈ A∗(X)num,Q and (a2, b2, c2) ∈ A∗(X)num,Q, then the Mukai pairing is

< (a1, b1, c1), (a2, b2, c2) >= b2 · b1 − a1 · c2 − a2 · c1 ∈ A2(X)num,Q .
2

The degree zero part just means the A0(X)num,Q term in the representation of the Mukai

ve
tor in A∗(X)num,Q .
3

A 
oherent sheaf F is geometri
ally stable if for any base �eld extension l/k, the pullba
k
F ⊗k l along Xl = X ×k Spec(l) → X is stable.

4

We will denote this moduli spa
e later as MX(v) to lay emphasis that it is the moduli

spa
e of stable sheaves over X.
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Definition 2.18 [Relative Moduli Sta
k℄ The relative moduli sta
k of semi-

stable sheaves, denoted M
ss
h , is de�ned as follows:

M
ss
h :(Sch/S)→ (groupoids)

T 7→ {F|F T -�at 
oherent sheaf on X ×S T with semistable �bers}.
The relative moduli sta
k of stable sheaves 
an be de�ned similarly and we

denoted it by M
s
h.

The following theorem shows the existen
e of the �ne moduli spa
e for the

relative moduli sta
k, when XR is a relative K3 surfa
e over a mixed 
hara
-

teristi
 dis
rete valuation ring, under some numeri
al 
onditions. Re
all that

the 
ondition of �atness is going to be always satis�ed in our relative K3's 
ase

by de�nition as they are smooth. The relative sta
k 
an be provided to be an

algebrai
 sta
k using arguments similar to the ones used for proving Theorem

2.13. Moreover, all the results above about the moduli sta
k hold also for the

relative sta
k. So, there exists a 
oarse moduli spa
e (Compare from footnote

1 in [36, Chapter 10℄ or [31, Theorem 4.3.7℄ , the statement there is a
tually

weaker as we do not ask for morphism of k-s
hemes, whi
h is not going to be

possible for mixed 
hara
teristi
 
ase. So, for the mixed 
hara
teristi
 
ase one

repla
es, in the GIT part of the proof, the quot fun
tor by its relative fun
tor,

whi
h is representable in this 
ase as well [56, Theorem 5.1℄). Moreover, the

non-emptiness results also remain valid in mixed 
hara
teristi
 setting and we

have:

Theorem 2.19 (Fine relative Moduli Spa
e) Let XV be a relative K3

surfa
e over a mixed 
hara
teristi
 dis
rete valuation ring V with X as a spe
ial

�ber over Spec(k)

1. Let v ∈ A∗(X)num,Q be a primitive element with v2 = 0 (with respe
t to

the Mukai pairing) and positive degree 0 part. Then, M
ss
h (v), the sub-

moduli sta
k of M
ss
h with �xed Mukai ve
tor v, is non-empty.

2. If, in addition, there is a 
omplex P ∈ D(XV ) with Mukai ve
tor v′

su
h that < v, v′ >= 1, then every semistable sheaf with Mukai ve
tor v
is lo
ally free and stable, in whi
h 
ase M

ss
h (v) is a µr-gerbe for some r,

over a smooth proje
tive surfa
e Mh(v) su
h that the asso
iated Gm-gerbe

is trivial.

Note that in the mixed 
hara
teristi
 setting, for any 
omplex EV ∈ Db(XV )
we de�ne its Mukai ve
tor to be just the Mukai ve
tor of E := EV ⊗V k in

A∗(X)num,Q. This de�nition makes sense as XV → V is �at.

With this we 
on
lude our exposition on moduli sta
ks and spa
es of sheaves.

2.3 Derived Equivalen
es of K3 Surfa
es

We now give a summary of sele
ted results on derived equivalen
es of a K3

surfa
es for both positive 
hara
teristi
 and 
hara
teristi
 zero. We begin by
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a general dis
ussion on derived equivalen
es and then spe
ialize to di�erent


hara
teristi
s. Let X be a K3 surfa
e over a �eld k and let Db(X) be the

bounded derived 
ategory of 
oherent sheaves of X . We refer the reader to [30℄

for a qui
k introdu
tion to derived 
ategories and the textbooks [20℄, [39℄ for

details.

Definition 2.20 Two K3 surfa
es X and Y over k are said to be derived

equivalent if there exists an exa
t equivalen
e Db(X) ≃ Db(Y ) of the derived


ategories as triangulated 
ategories

5

.

Definition 2.21 [Fourier-Mukai Transform℄ For a perfe
t 
omplex P ∈
Db(X×Y ), the Fourier-Mukai transform is a fun
tor of the derived 
ategories

whi
h is de�ned as follows:

ΦP : Db(X)→ Db(Y )

E 7→ RpY ∗((p
∗
XE)⊗L P),

where pX , pY are the proje
tions from X × Y to the respe
tive X and Y .

For details on the properties of Fourier-Mukai transform see [30, Chapter 5℄.

Note that not every Fourier-Mukai transform indu
es an equivalen
e. The only

general enough 
riteria available to 
he
k whether the Fourier Mukai transform

indu
es a derived equivalen
e is by Bondol-Orlov, see for example, [36, Chapter

16 Lemma 1.4, Proposition 1.6 and Lemma 1.7℄. In 
ase the Fourier-Mukai

transform is an equivalen
e, we have the following de�nition:

Definition 2.22 A K3 surfa
e Y is said to be a Fourier Mukai partner of X if

there exists a Fourier-Mukai transform between Db(X) and Db(Y ) whi
h is an

equivalen
e. We denote by FM(X) the set of isomorphism 
lasses of Fourier

Mukai Partners of X and by |FM(X)| the 
ardinality of the set, whi
h is 
alled

the Fourier Mukai number of X .

We state here the most important result in the theory of Fourier-Mukai trans-

forms and derived equivalen
es.

Theorem 2.23 (Orlov, [30℄ Theorem 5.14) Every equivalen
e of derived


ategories for smooth proje
tive varieties is given by a Fourier Mukai transform.

More pre
isely, let X and Y be two smooth proje
tive varieties and let

F : Db(X)→ Db(Y )

be a fully faithful exa
t fun
tor. If F admits right and left adjoint fun
tors,

then there exists an obje
t P ∈ Db(X×Y ) unique up to isomorphism su
h that

F is isomorphi
 to ΦP .

5

We don't need to start with Y being a K3 surfa
e, this 
an be dedu
ed as a 
onsequen
e

by the existen
e of an equivalen
e on the level of derived 
ategories of varieties, see [30,

Chapter 4, 6 and 10℄ and [5, Chapter 2℄ for the properties preserved by derived equivalen
es.

However, note that Orlov's Representability Theorem 2.23 is used in some proofs.
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Remark 2.24 This theorem allows us to restri
t the 
olle
tion of derived

equivalen
es to a smaller and more manageable 
olle
tion of Fourier-Mukai

transforms, whi
h will be studied via 
ohomologi
al des
ent.

Any Fourier Mukai transform, ΦP , des
ends from the level of the derived 
at-

egories to various 
ohomologi
al theories (H∗
...( )), as

Db(X)
E 7→ RpY ∗((Lp

∗
XE) ⊗L P )−−−−−−−−−−−−−−−−→ Db(Y )





y
ch( )

√
tdX





y
ch( )

√
tdY

H∗(X)
α 7→ pY ∗

(

(p∗
Xα) · ch(P )

√

tdX×Y

)

−−−−−−−−−−−−−−−−−−−−−−→ H∗(Y ),

where ch( ) is the total Chern 
hara
ter and tdX is the Todd genus of X .

This des
ent provides a way to study the Fourier Mukai partners of X us-

ing 
ohomologi
al methods. For details see [30, Se
tion 5.2℄ and [45, Se
tion 2℄.

In 
hara
teristi
 0 (mostly over C, see remark 2.35 below), we will use the sin-

gular 
ohomology along with p/l-adi
/étale 
ohomology and in 
hara
teristi


p > 0, we will use 
rystalline 
ohomology or l-adi
 etale 
ohomology. In the

mixed 
hara
teristi
 setting, we will be frequently using a di�erent 
ombina-

tion of 
ohomologies along with their 
omparison theorems from p-adi
 Hodge
theory.

Remark 2.25 The Orlov Representability Theorem 2.23 works only for

smooth proje
tive varieties, so when we work with relative s
hemes we will

restri
t from the 
olle
tion of derived equivalen
es and work only with the

sub
olle
tion of Fourier-Mukai transforms.

Over the �eld of 
omplex numbers, Mukai and Orlov provide the full des
ription

of the set FM(X) as:

Theorem 2.26 (Mukai [53℄, Theorem 1.4 and Theorem 1.5, [59℄) Let

X be a K3 surfa
e over C. Then the following are equivalent:

1. There exists a Fourier-Mukai transform Φ : Db(X) ∼= Db(Y ) with kernel

P.

2. There exists a Hodge isometry f : H̃∗(X,Z)→ H̃∗(Y,Z), where H̃∗( ,Z)
is the singular 
ohomology of the 
orresponding analyti
 spa
e and is 
om-

pared with the de Rham 
ohomology of the algebrai
 variety X whi
h


omes with a Hodge �ltrations and Mukai pairing

6

.

3. There exists a Hodge isometry f : T (X) ≃ T (Y ) between their trans
en-

dental latti
es.

6

The Mukai pairing is just an extension of the interse
tion pairing, de�ned as fol-

lows: let (a1, b1, c1) ∈ H̃∗(X,Z) and (a2, b2, c2) ∈ H̃∗(X,Z), then the Mukai pairing is

< (a1, b1, c1), (a2, b2, c2) >= b2 · b1 − a1 · c2 − a2 · c1 ∈ H4(X,Z).

Do
umenta Mathemati
a 24 (2019) 1135�1177



1148 Tanya Kaushal Srivastava

4. Y is a two dimensional �ne 
ompa
t moduli spa
e of stable sheaves on X
with respe
t to some polarization on X, i.e., Y ∼= MX(v) for some Mukai

ve
tor v ∈ A∗(X)num,Q (
f. De�nition 2.11).

5. There is an isomorphism of Hodge stru
tures between H2(MX(v),Z) and
v⊥/Zv whi
h is 
ompatible with the 
up produ
t pairing on H2(MX(v),Z)
and the bilinear form on v⊥/Zv indu
ed by that on the Mukai latti
e

H̃∗(X,Z).

The following result is the étale version of the Mukai-Orlov 
ohomologi
al ver-

sion of de
ription of derived equivalen
es of K3 surfa
es over C.

Proposition 2.27 (p-adi
 étale 
ohomology version) If X and Y
are derived equivalent K3 surfa
es, then there is an isomorphism between

H2
ét(MX(v),Zp) and v⊥/Zpv, (see footnote

7

), whi
h is 
ompatible with the


up produ
t pairing on H2
ét(MX(v),Zp) and the bilinear form on v⊥/Zpv

indu
ed by that on the Mukai latti
e H̃∗(X,Zp), where p is a prime number

and Zp is the ring of p-adi
 integers.

Proof: This follows from Artin's Comparison Theorem [22, Tome III, Exposé

11, Théorème 4.4℄ between étale and singular 
ohomology and the theorem

above. �

Proposition 2.28 ([36℄ Proposition 3.10) Let X be a 
omplex proje
tive

K3 surfa
e, then X has only �nitely many Fourier-Mukai partners, i.e.,

|FM(X)| <∞.

Remark 2.29 The above result is also true for any algebrai
ally 
losed �eld

of 
hara
teristi
 0. Indeed, if X and Y are two K3 surfa
es over a �eld K
algebrai
ally 
losed and 
hara
teristi
 0, we have X ∼= Y ⇔ XC

∼= YC. One

way is obvious via base 
hange and for the other dire
tion we just need to

show that every isomorphism XC
∼= YC 
omes from an isomorphism X ∼=

Y . To de�ne an isomorphism only �nitely many equations are needed, so we


an assume that the isomorphism is de�ned over A, a �nitely generated K-

algebra (take A to be the ring K[a1, . . . , an], where ai are the �nitely many


oe�
ients of the �nitely many equations de�ning our isomorphism). Thus,

we have have our isomorphism de�ned over an a�ne s
heme, XA
∼= YA, where

XA := X ×K Spec(A) (resp. YA := Y ×K Spec(A)). As K is algebrai
ally


losed, any 
losed point t ∈ Spec(A) has residue �eld K. Now taking a K-

rational point will give us our required isomorphism.

7

We are abusing the notation here: The Mukai ve
tor is now 
onsidered as an element of

H∗

ét(X, Zp) and v⊥ is the orthogonal 
omplement of v in H∗

ét(X,Zp) with respe
t to Mukai

pairing. Thus, v⊥ is a Zp latti
e. Then we mod out this latti
e by the Zp module generated

by v.
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This gives us a natural inje
tion:

FM(X) →֒ FM(XC)

Y 7→ YC.

Hen
e, we have |FM(X)| ≤ |FM(XC)| <∞.

Let S = NS(X) be the Néron-Severi latti
e of X . The following theorem gives

us the 
omplete 
ounting formula for Fourier-Mukai partners of a K3 surfa
e.

Theorem 2.30 (Counting formula [29℄) Let G(S) = {S1 = S, S2, . . . Sm}
be the set of isomorphism 
lasses of latti
es with same signature and dis
rimi-

nant as S. Then

|FM(X)| =
m
∑

j=1

|Aut(Sj)\Aut(S∗
j /Sj)/OHdg(T (X))| <∞.

The relation with the 
lass number h(p) of Q(
√−p), for a prime p, is:

Theorem 2.31 ([29℄ Theorem 3.3) Let the rank NS(X) = 2 for X, a K3

surfa
e, then detNS(X) = −p for some prime p, and |FM(X)| = (h(p)+1)/2.

Remark 2.32 The surje
tivity of period map [36, Theorem 6.3.1℄ along with

[36, Corollary 14.3.1℄ implies that there exists a K3 with Pi
ard rank 2 and

dis
riminant −p, for ea
h prime p (see [29, Remark after Theorem 3.3℄ ).

We now des
ribe the known results about the derived autoequivalen
e group

Aut(Db(X)) for a K3 surfa
e over C. Observe that Theorem 2.26 implies that

we have the following natural map of groups:

Aut(X) →֒ Aut(Db(X))→ OHdg(H̃
∗(X,Z)).

The following theorem gives a des
ription of the se
ond map:

Theorem 2.33 ([29℄, [63℄) Let ϕ be a Hodge isometry of the Mukai latti
e

H̃∗(X,Z) of a K3 surfa
e X, i.e. ϕ ∈ OHdg(H̃
∗(X,Z)). Then there exists an

autoequivalen
e

ΦE : Db(X)→ Db(X) (1)

with ΦH
E = ϕ ◦ (±idH2) : H̃∗(X,Z) → H̃∗(X,Z). In parti
ular, the index of

image

Aut(Db(X))→ OHdg(H̃
∗(X,Z)) (2)

is at most 2.

On the other hand, it has been shown that
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Theorem 2.34 ([32℄) The 
one-inversion Hodge isometry idH0⊕H4 ⊕ −idH2

on H̃∗(X,Z) is not indu
ed by any derived auto-equivalen
e. In parti
ular, the

index of image

Aut(Db(X))→ OHdg(H̃
∗(X,Z)) (3)

is exa
tly 2.

Remark 2.35 [36, 16.4.2℄ The above results have been shown for K3 surfa
es

over C only but the results are valid for K3 surfa
es over any algebrai
ally


losed �eld of 
hara
teristi
 0, in the sense made pre
ise below. The argument

goes as follows: We redu
e the 
ase of char(k) = 0 to the 
ase of C. We begin

by making the observation that every K3 surfa
e X over a �eld k is de�ned

over a �nitely generated sub�eld k0, i.e., there exists a K3 surfa
e X0 over k0
su
h that X := X0×k0 k. Similarly, if ΦP : Db(X)→ Db(Y ) is a Fourier Mukai

equivalen
e, then there exists a �nitely generated �eld k0 su
h that X,Y and P
are de�ned over k0. Moreover, the k0- linear Fourier-Mukai transform indu
ed

by P0, ΦP0 : Db(X0) → Db(Y0) will again be a derived equivalen
e (use, for

example, the 
riteria [30, Proposition 7.1℄ to 
he
k this.).

Now assume that k0 is algebrai
ally 
losed. Note that any Fourier-Mukai

kernel whi
h indu
es an equivalen
e ΦP0 : Db(X0)
∼−→ Db(X0) is rigid, i.e.

Ext

1(P0, P0) = 0 (see [36, Proposition 16.2.1℄), thus any Fourier-Mukai equiv-

alen
e

ΦP : Db(X0 ×k0 k)
∼−→ Db(X0 ×k0 k)

des
ends to k0 (see for example [36, Lemma 17.2.2℄ for the 
ase of line bundles,

the general 
ase follows similarly

8

). Hen
e, for a K3 surfa
e X0 over the alge-

brai
 
losure k0 of a �nitely generated �eld extension of Q and for any 
hoi
e

of an embedding k0 →֒ C, whi
h always exists, one has

Aut(Db(X0 ×k0 k))
∼= Aut(Db(X0)) ∼= Aut(Db(X0 ×k0 C)).

In this sense, for K3 surfa
es over algebrai
ally 
losed �elds k with char(k) = 0,
the situation is identi
al to the 
ase of 
omplex K3 surfa
es.

We 
an now write down the following exa
t sequen
e: For X a proje
tive


omplex K3 surfa
e one has

0→ Ker→ Aut(Db(X))→ O

Hdg

(H̃∗(X,Z))/{i} → 0, (4)

8

In the general 
ase we sket
h the proof: Use the moduli sta
k of simple universally

gluable perfe
t 
omplexes over X0 ×X0/k0, denoted sDX0×X0/k0
, as de�ned in [45, Se
tion

5℄. From the arguments following the de�nition, it is an algebrai
 sta
k whi
h admits a


oarse moduli algebrai
 spa
e sDX0×X0/k0
. Note that for any k0 point P0 whi
h indu
es

an equivalen
e, the lo
al dimension of the 
oarse moduli spa
e is zero as the tangent spa
e

is a subspa
e of Ext

1(P0, P0) = 0 (see, for example, [43, 3.1.1℄ or proof of [45, Lemma 5.2℄)

and the 
oarse moduli spa
e is also smooth. The smoothness follows from the fa
t that the

deformation of the 
omplex is unobstru
ted (see, for example, [1, Tag 03ZB and Tag 02HX℄)

in equi-
hara
teristi
 
ase as one always has a trivial deformation. Indeed, let A be any

Artinian lo
al k-algebra, then pullba
k along the stru
ture morphism Spec(A) → Spec(k)
gives a trivial deformation of X×X and also a trivial deformation of any 
omplex on X×X.

Thus, we 
an repeat the argument as in [36, Lemma 17.2.2℄ as now the image of the 
lassifying

map f : Spec(A) → sDX0×X0/k0
is 
onstant (In the notation of [36, Lemma 17.2.2℄).

Do
umenta Mathemati
a 24 (2019) 1135�1177



Derived Equivalen
es in Positive Chara
teristi
 1151

where H̃∗(X,Z) is the 
ohomology latti
e with Mukai pairing and extended

Hodge stru
ture, and O

Hdg

(−) is the group of Hodge isometries, i is the 
one

inversion isometry IdH0⊕H4 ⊕−IdH2
.

Remark 2.36 The stru
ture of the kernel of this map has been des
ribed

only in the spe
ial 
ase of a proje
tive 
omplex K3 surfa
e with Pi
(X) = 1
in [6℄. (For a dis
ussion about the results in non-proje
tive 
ase see [33℄.)

However, Bridgeland in [14, Conje
ture 1.2℄ has 
onje
tured that this kernel


an be des
ribed as the fundamental group of an open subset of H1,1 ⊗ C.
Equivalently, the 
onje
ture says that the 
onne
ted 
omponent of the stability

manifold (see [13℄, [14℄ for the de�nitions) asso
iated to the 
olle
tion of the

stability 
onditions on Db(X) 
overing an open subset of H1,1 ⊗ C is simply


onne
ted. The equivalen
e of the two formulations follows from a result of

Bridgeland ([14, Theorem 1.1℄), whi
h states that the kernel a
ts as the group

of de
k transformations of the 
overing of an open subset of H1,1 ⊗ C by a


onne
ted 
omponent of the stability manifold. Bayer and Bridgeland [6℄ have

veri�ed the 
onje
ture in the spe
ial 
ases of Pi
(X) = 1 (see [33℄ for the

non-proje
tive 
ase).

Lastly, we state the main results on derived equivalen
es of K3 surfa
es over an

algebrai
ally 
losed �eld of positive 
hara
teristi
 known so far. For generaliza-

tions of some results to non-algebrai
ally 
losed �elds of positive 
hara
teristi


see [69℄.

In 
ase, char(k) = p > 2, Liebli
h-Olsson [45℄, proved the following:

Theorem 2.37 ([45℄, Theorem 1.1) Let X be a K3 surfa
e over an alge-

brai
ally 
losed �eld k of positive 
hara
teristi
 6= 2.

1. If Y is a smooth proje
tive k-s
heme with Db(X) ∼= Db(Y ), then Y is a

K3 surfa
e isomorphi
 to a �ne moduli spa
e of stable sheaves.

2. There exists only �nitely many smooth proje
tive k-s
hemes Y with

Db(X) ∼= Db(Y ). If X has rank NS(X) ≥ 12, then Db(X) ∼= Db(Y )
implies that X ∼= Y . In parti
ular, any supersingular K3 surfa
e is de-

termined up to isomorphism by its derived 
ategory.

Remark 2.38 One of the open questions is to have a 
ohomologi
al 
riteria for

derived equivalent K3 surfa
es over a �eld of positive 
hara
teristi
 like we have

in 
hara
teristi
 0 where Hodge theory and Torelli Theorems were available.

However, as there is no 
rystalline Torelli Theorem for non-supersingular K3

surfa
es over a �eld of positive 
hara
teristi
 and the naive F-
rystal (see Ap-

pendix) fails to be 
ompatible with inner produ
t, the des
ription in terms of

F-
rystals is not yet possible. Even though one has 
rystalline Torelli Theorem

for supersingular K3 surfa
es, it is essentially not providing any more informa-

tion as there are no non-trivial Fourier-Mukai partners of a supersingular K3

surfa
e. However, Liebli
h-Olsson proved a derived Torelli Theorem using the

Ogus Crystalline Torelli Theorem [62℄, see [46, Theorem 1.2℄.
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2.4 Height is a Derived Invariant

Let us already show here that height of a K3 surfa
e is a derived invariant. This

will allow us to stay within a sub
lass of K3 surfa
es while 
he
king derived

equivalen
es.

Lemma 2.39 Height of a K3 surfa
e X over an algebrai
ally 
losed �eld of


hara
teristi
 p > 3 is a derived invariant.

Proof: Re
all that the height of a K3 surfa
e X is given by the dimension of

the subspa
e H2
crys(X/K)[0,1) of the F-iso
rystal H

2
crys(X/K). Now note that

the Frobenius a
ts on the one dimensional iso
rystals H0
crys(X/K)(−1) and

H4
crys(X/K)(1) (Tate twisted) as multipli
ation by p (see Appendix below for

this 
omputation). This implies that the slope of these F-iso
rystals is exa
tly

one. Thus, the F-iso
rystal

H∗
crys(X/K) := H0

crys(X/K)(−1)⊕H2
crys(X/K)⊕H4

crys(X/K)(1)

has the same subspa
e of slope of dimension stri
tly less than one as that of

the F-iso
rystal H2
crys(X/K), i.e., H∗

crys(X/K)[0,1) = H2
crys(X/K)[0,1).

Note that any derived equivalen
e of X and Y preserves the F-iso
rystal

H∗
crys(−/K), i.e., if ΦP : Db(X) ≃ Db(Y ) is a derived equivalen
e of two

K3 surfa
es X and Y , then the indu
ed map on the F-iso
rystals

Φ∗
P : H∗

crys(X/K)→ H∗
crys(Y/K)

is an isometry. Thus, for the height of Y given by dim(H2
crys(Y/K)[0,1)) we

have

dim(H2
crys(Y/K)[0,1)) = dim(H∗

crys(Y/K)[0,1))

= dim(H∗
crys(X/K)[0,1))

= dim(H2
crys(X/K)[0,1)) = height of X

Hen
e the result. �

Remark 2.40 1. In 
hara
teristi
 0, there is no notion of height but in this


ase the Brauer group itself is a derived invariant of a K3 surfa
e, as

Br(X) ∼= Hom(T (X),Q/Z), where T (X) is the trans
endental latti
e.

2. On the other hand, the Pi
ard latti
e is not a derived invariant in any


hara
teristi
, though it trivially remains invariant in the 
ase of K3

surfa
es whi
h do not have non-trivial Fourier-Mukai partners.

3 Derived Autoequivalen
es of K3 Surfa
es in Positive Chara
-

teristi


In this se
tion, we 
ompare the deformation of an automorphism as a morphism

and as a derived autoequivalen
e and show that for K3 surfa
es these defor-

mations are in one-to-one 
orresponden
e. Then we dis
uss Liebli
h-Olsson's
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results on lifting derived autoequivalen
es. Then we use these lifting results to

prove results on the stru
ture of the group of derived autoequivalen
es of a K3

surfa
e of �nite height over a �eld of positive 
hara
teristi
.

3.1 Obstru
tion to Lifting Derived Autoequivalen
es

Let X be a proje
tive variety over an algebrai
ally 
losed �eld k of positive


hara
teristi
 p,W (k) its ring of Witt ve
tors and σ : X → X an automorphism

of X . Then this automorphism will indu
e an equivalen
e of derived 
ategories

σ∗ : Db(X)
∼=−→ Db(X)

and it is easy to 
he
k that derived equivalen
e σ∗
is also represented by the

Fourier-Mukai transform ΦOΓ(σ)
, where OΓ(σ) is the pushforward of the stru
-

ture sheaf of the graph of σ to X × X and is 
onsidered as a 
oherent sheaf

in Db(X ×X). This representation of σ provides us with another way of de-

forming it as a perfe
t 
omplex in Db(X ×X), other than just as a morphism.

A priori these two ways of deformations are not equivalent but for K3 surfa
es

they turn out to be so and we will exploit this equivalen
e of deformations later

to prove that every automorphism of ordinary K3 surfa
es lift.

We begin by re
alling the 
lassi
al result that for a variety the in�nitesimal

deformation of a 
losed sub-variety with a vanishing H1(X,OX) as a 
losed

subs
heme is determined by the deformation of its (pushforward of) stru
ture

sheaf as a 
oherent sheaf on X ×X . We then use this result to show that on

a K3 surfa
e we 
an lift an automorphism as a automorphism if and only if we


an lift it as a perfe
t 
omplex in the derived 
ategory.

Remark 3.1 For a K3 surfa
e this result 
an also be seen using [45, Proposi-

tion 7.1℄ and the p-adi
 
riterion of lifting automorphisms on K3 surfa
es [19,

Remark 6.5℄.

Let X and σ be as above.

Definition 3.2 For any Artin lo
al W (k)-algebra A with residue �eld k, an
in�nitesimal deformation of X over A is a proper and �at s
heme XA over A
su
h that the following square is 
artesian:

X //

��

XA

��

Spec(k) // Spec(A).

In 
ase X is smooth, we ask XA to be smooth over A as well. In this 
ase, XA

is automati
ally �at over A.
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Consider the following two deformation fun
tors:

Faut :(Artin lo
al W (k)-algebras with residue �eld k)→ (Sets)

A 7→ {Lifts of automorphism σ to A}, (5)

where by lifting of automorphism σ over A we mean that there exists an in-

�nitesimal deformation XA of X and an automorphism σA : XA → XA whi
h

redu
es to σ, i.e., we have the following 
ommutative diagram:

XA
σA

// XA

X

OO

σ
// X.

OO

This is the deformation fun
tor of an automorphism as a morphism. Now 
on-

sider the deformation fun
tor of an automorphism as a 
oherent sheaf de�ned

as follows:

Fcoh :(Artin lo
al W (k)-algebras with residue �eld k)→ (Sets)

A 7→ {Deformations of OΓ(σ) to A}/iso, (6)

where by deformations of OΓ(σ) to A we mean that there exists an in�nitesimal

deformation YA of Y := X × X over A and a 
oherent sheaf FA, whi
h is a

deformation of the 
oherent sheaf OΓ(σ) and OΓ(σ) is 
onsidered as a 
oherent

sheaf on X ×X via the 
losed embedding Γ(σ) →֒ X ×X . Isomorphisms are

de�ned in the obvious way.

Remark 3.3 Note that there are more deformations of X ×X than the ones

of the shape XA ×A X ′
A, where XA and X ′

A are deformations of X over A.
From now we make a 
hoi
e of this deformation (YA) to be XA×XA. Also see

Remark [3.14℄ and 
ompare from Theorem [3.7℄ and Remark [3.15℄ below.

Let X be a smooth proje
tive s
heme over k and for A an Artin lo
al W (k)-
algebra assume that there exists an in�nitesimal lift of X to XA. Note that

su
h a lift may not always exist but for the 
ase of K3 surfa
es of �nite height

it does, see [47, Corollary 4.2℄ and Theorem 2.7. However, for supersingular

K3 surfa
es, the lift does not exists over all Artin lo
al rings but in some 
ases

it does exist by Theorem 2.7. Observe that there is a natural transformation

η : Faut → Fcoh given by

ηA : Faut(A) −→ Fcoh(A)

(σA : XA → XA) 7→ OΓ(σA)/XA ×XA.
(7)

Theorem 3.4 The natural transformation η : Faut → Fcoh between the defor-

mation fun
tors is an isomorphism for varieties with H1(X,OX) = 0.
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We provide an algebrai
 proof by 
onstru
ting a deformation-obstru
tion long

exa
t sequen
e 
onne
ting the two fun
tors. The proof follows from the fol-

lowing more general proposition 3.6, substituting X ×X for Y and taking the

embedding i to be the graph of the automorphism σ. To use proposition 3.6

we need the following lemma.

Lemma 3.5 (Cf. [27℄ Lemma 24.8) To give an in�nitesimal deformation of

an automorphism f : X → X over XA it is equivalent to give an in�nitesimal

deformation of the graph Γf as a 
losed subs
heme of X ×X.

Proof: To any deformation fA of f we asso
iate its graph ΓfA , whi
h gives

a 
losed subs
heme of XA × XA. It is an in�nitesimal deformation of Γf .

Conversely, given a deformation Z of Γf over A, the proje
tion p1 : Z →֒
XA ×A XA → XA gives an isomorphism after tensoring with k. From �atness

(see, for example, EGA IV, Corollary 17.9.5) of Z over A it follows that p1 is

an isomorphism, and so Z is the graph of fA = p2 ◦ p−1
1 . �

The following proposition is 
ertainly known to the experts but we were unable

to �nd a proof in literature, so we wrote one for reader's 
onvenien
e.

Proposition 3.6 (Cf. [27, Ex 19.1℄) Let i : X →֒ Y be a 
losed embedding

with X integral and proje
tive s
heme of �nite type over k. Then there exists

a long exa
t sequen
e

0→ H0(NX)→Ext

1
Y (OX ,OX)→ H1(OX)→

H1(NX)→ Ext

2
Y (OX ,OX)→ . . . ,

(8)

where NX is the normal bundle of X.

Proof: Consider the short exa
t sequen
e given by the 
losed embedding i

0→ I → OY → i∗OX → 0. (9)

Apply the global Hom 
ontravariant fun
tor HomY (−, i∗OX) to the above short
exa
t sequen
e and we get the following long exa
t sequen
e from [26, III

Proposition 6.4℄,

0→ HomY (i∗OX , i∗OX)→ HomY (OY , i∗OX)→ HomY (I, i∗OX)→
Ext

1
Y (i∗OX , i∗OX)→ Ext

1
Y (OY , i∗OX)→ Ext

1
Y (I, i∗OX)→

Ext

2
Y (i∗OX , i∗OX)→ . . . .

Now note that we 
an make the following identi�
ations

1. HomY (i∗OX , i∗OX) ∼= k as X is integral and proje
tive.

2. HomY (OY , i∗OX) = H0(OX) = k using [26, III Propostion 6.3 (iii),

Lemma 2.10℄ and the fa
t that X is 
onne
ted.
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3. As any inje
tive endomorphism of a �eld is an automorphism, we 
an

modify the long exa
t sequen
e as follows:

0→ HomY (I, i∗OX)→ Ext

1
Y (i∗OX , i∗OX)→ Ext

1
Y (OY , i∗OX)→ . . . .

4. HomY (I, i∗OX) ∼= HomX(i∗I,OX) using ajun
tion formula on page 110

of [26℄. Moreover, using [26, III, Proposition 6.9℄, we have

HomX(i∗I,OX) = HomX(OX ,HomX(i∗I,OX)),

and using the dis
ussion in [1, Tag 01R1℄, we haveHomX(i∗I,OX) = NX .

Thus, putting this together with [26, III Proposition 6.3 (iii) and Lemma

2.10℄, we get

HomY (I, i∗OX) ∼= H0(NX).

5. Note that again using [26, III Proposition 6.3 (iii) and Lemma 2.10℄, we

get

Ext

1
Y (OY , i∗OX) ∼= H1(OX).

6. Note that using the adjun
tion for Hom sheaves we have:

i∗NX = i∗HomX(i∗I,OX) ∼= HomY (I, i∗OX).

Thus, H1(NX) := H1(X,NX) = H1(Y, i∗NX) using [26, III Lemma

2.10℄. To 
ompute H1(Y, i∗NX), we 
hoose an inje
tive resolution of

i∗OX as an OY -module 0→ OX → J •
. From [23, Proposition 4.1.3℄, we

know that HomY (I,J i) are �asque sheaves and so we 
an 
ompute the


ohomology group using this �asque resolution. Hen
e,

Hi =
Ker(HomY (I,J i)→ HomY (I,J i+1))

Im(HomY (I,J i−1)→ HomY (I,J i))
= Ext

i
Y (I, i∗OX).

Thus, putting all of the above observations together, we get our required long

exa
t sequen
e. �

Proof: [Proof of Theorem 3.4:℄ Note that the obstru
tion spa
es for the

fun
tors Faut and Fcoh are H1(NX) and Ext

2
Y (OX ,OX) respe
tively. See, for

example, [27, Theorem 6.2, Theorem 7.3℄ and Lemma 3.5 above. The same

results give us the tangent spa
es for the fun
tors Faut and Fcoh and they

are H0(NX) and Ext

1
Y (OX ,OX). Now using Proposition 3.6 along with our

assumption of vanishing H1(X,OX) one has that the obstru
tion spa
e of Faut

is a subspa
e of the obstru
tion of Fcoh and this in
lusion sends one obstru
tion


lass to the other one. Therefore, the obstru
tion to lifting the automorphism as

a morphism vanishes if and only if the obstru
tion to lifting the automorphism

as a sheaf vanishes. Moreover, the isomorphism of tangent spa
es implies that

the number of lifts in both 
ases is same. �
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This shows that for proje
tive varieties with vanishing H1(X,OX), one doesn't
have extra deformations of automorphisms as a sheaf. Note that we 
ould still

ask for deformations as a perfe
t 
omplex but sin
e the perfe
t 
omplex we

start with is a 
oherent sheaf any deformation of it as a perfe
t 
omplex will

also have only one non-zero 
oherent 
ohomology sheaf. Indeed, this follows

from the fa
t that deformations 
annot grow 
ohomology sheaves ,as if F •
A is

the deformation of OX over A su
h that H1(F •
A) 6= 0 (to simplify our argument

we are assuming F •
A is bounded above at level 1, i.e., F i

A = 0 ∀i > 1), then we


an repla
e this 
omplex in the derived 
ategory by a 
omplex like

. . .→ F−1
A → Ker(F 0

A → F 1
A)

0−→ H1(F •
A)→ 0.

Then redu
ing to spe
ial �ber gives that H1(F •
A)⊗A k = 0, but this will only

happen ifHi(F •
A) = 0. Moreover, as we are in the derived 
ategory, we 
an show

that the deformed perfe
t 
omplex is then quasi isomorphi
 to a 
oherent sheaf.

Indeed, the quotient map to the non-zero 
oherent 
ohomology sheaf provides

the quasi-isomorphism. This shows that there are no extra deformations as a

perfe
t 
omplex as well. Hen
e, an automorphism σ on a proje
tive variety X
with vanishing H1(X,OX) lifts if and only if the derived equivalen
e it indu
es,
ΦOΓ(σ)

: Db(X)→ Db(X), lifts as a Fourier-Mukai transform.

Now we state the two theorems proved by Liebli
h-Olsson whi
h give a 
riteria

to lifting perfe
t 
omplexes.

Theorem 3.7 ([45℄ Theorem 6.3) Let X and Y be two K3 surfa
es over an

algebrai
ally 
losed �eld k, and P ∈ Db(Y ×X) be a perfe
t 
omplex indu
ing

an equivalen
e Φ : Db(Y )→ Db(X) on the derived 
ategories. Assume that the

indu
ed map on 
ohomology (see below) satis�es:

1. Φ(1, 0, 0) = (1, 0, 0),

2. the indu
ed isometry κ : Pic(Y )→ Pic(X) sends CY , the ample 
one of

Y, isomorphi
ally to either CX or −CX , the (−)ample 
one of X.

Then there exists an isomorphism of in�nitesimal deformation fun
tors δ :
DefX → DefY su
h that

1. δ−1(Def(Y,L)) = Def(X,Φ(L));

2. for ea
h augmented Artinian W -algebra W → A and ea
h (XA → A) ∈
DefX(A), there is an obje
t PA ∈ Db(δ(XA) ×A XA) redu
ing to P on

Y ×X.

Theorem 3.8 ([45℄, Theorem 7.1) Let k be a perfe
t �eld of 
hara
teristi


p > 0, W be the ring of Witt ve
tors of k, and K be the �eld of fra
tions of W .

Fix K3 surfa
es X and Y over k with lifts XW /W and YW /W . These lifts in-

du
e 
orresponding Hodge �ltrations via de Rham 
ohomology on the 
rystalline


ohomology of the spe
ial �bers. Denote by F 1
Hdg(X) ⊂ H2(X/K) ⊂ H∗(X/K)
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and F 1
Hdg(Y ) ⊂ H2(Y/K) ⊂ H∗(Y/K) (similarly for F 2

Hdg(−)), where

H∗(X/K) and H∗(Y/K) are the 
orresponding Mukai F-iso
rystals. Suppose

that P ∈ Db(X × Y ) is a kernel whose asso
iated fun
tor Φ : Db(X)→ Db(Y )
is fully faithful. If

Φ : H∗(X/K)→ H∗(Y/K)

sends F 1
Hdg(X) to F 1

Hdg(Y ) and F 2
Hdg(X) to F 2

Hdg(Y ), then P lifts to a perfe
t


omplex PW ∈ Db(XW ×W YW ).

Remark 3.9 Note that however, in�nitesimally the hodge �ltration is not pre-

served. We have the same 
ounterexamples as in the 
ase of in�nitesimal in-

tegral variational Hodge 
onje
ture: take a line bundle su
h that L⊗p 6= OX ,

then we have the Chern 
hara
ter of L⊗p
is 0 as p.ch(L) = 0, so it lies in the


orre
t Hodge level, but it need not lift. For example: see [10, Lemma 3.10℄.

Remark 3.10 Note that the lifted kernel also indu
es an equivalen
e. Indeed,

for a K3 surfa
e fully faithful Fourier-Mukai fun
tor of derived 
ategories is an

equivalen
e (see [30, Proposition 7.6℄) and so we 
an also lift the Fourier-Mukai

kernel of the inverse equivalen
e. Then the 
omposition of the equivalen
e we

started with and its inverse will give us a lift of the identity as an derived

autoequivalen
e. But using the fa
t that the Ext

1
X×X(P, P ) = 0 (see [46,

Lemma 3.7 (ii)℄) for any kernel indu
ing an equivalen
e, we get that the lift of

the identity is unique and is the identity itself. Thus, the lifted Fourier-Mukai

fun
tor is an equivalen
e.

Corollary 3.11 Take P to be OΓ(σ), where σ : X → X is an automorphism

of a K3 surfa
e X over k. Then the following are equivalent

1. P lifts to an autoequivalen
e of Db(XW )

2. σ lifts to an automorphism of XW

3. ΦP : H∗(X/K)→ H∗(X/K) preserves the Hodge �ltration.

However, we see that we 
an still lift it as an isomorphism as follows:

Theorem 3.12 (Weak Lifting of Automorphisms) Let σ : X → X be

an automorphism of a K3 surfa
e X de�ned over an algebrai
ally 
losed �eld k
of 
hara
teristi
 p. There exists a smooth proje
tive model XR/R, where R is a

dis
rete valuation ring that is a �nite extension of W (k), with XK its generi


�ber su
h that there is a PR, a perfe
t 
omplex in Db(XR × YR), redu
ing

to OΓ(σ) on X × X, where YR is another smooth proje
tive model abstra
tly

isomorphi
 to XR (see Remark [3.13℄ below).

Proof: We divide the proof into 3 steps:
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1. Lifting Kernels In�nitesimally: Note that ΦOΓ(σ)
is a strongly �ltered

derived equivalen
e, i.e.,

Φ∗
OΓ(σ)

= σ∗ : Hi
crys(X/W )

∼−→ Hi
crys(X/W )

is an isomorphism whi
h preserves the gradation of 
rystalline 
ohomol-

ogy. Choose a proje
tive lift of X to 
hara
teristi
 zero along with a lift

of HX . It always exists as proved by Deligne [16℄, i.e., a proje
tive lift

(XV , HXV
) of (X,HX) over V a dis
rete valuation ring, whi
h is a �nite

extension of W (k), the Witt ring over k. Let Vn := V/mn
for n ≥ 1, m

the maximal ideal of V and let K denote the fra
tion �eld of V . Then,

for ea
h n, using the lifting 
riterion above, there exists a polarized lift

(X ′
n, HX′

n
) over Vn and a 
omplex Pn ∈ DPerf (Xn ×X ′

n) lifting OΓ(σ).

2. Applying the Grothendie
k Existen
e Theorem for perfe
t 
omplexes: By

the 
lassi
al Grothendie
k Existen
e Ttheorem [26, II.9.6℄, the polarized

formal s
heme (lim←−X ′
n, lim←−HX′

n
) is algebraizable. So, there exists a pro-

je
tive lift (X ′, HX′) over V that is the formal 
ompletion of (X ′
n, HX′

n
).

Now using the Grothendie
k Existen
e Theorem for perfe
t 
omplexes

(see [43, Proposition 3.6.1℄) the formal limit of (Pn) is algebraizable and
gives a 
omplex PV ∈ DPerf (XV × X ′

V ). In parti
ular, PV lifts OΓ(σ)

and using Nakayama's lemma, PV indu
es an equivalen
e.

3. Now apply the global Torelli Theorem to show that the two models

are isomorphi
: For any �eld extension K ′
over K, the generi
 �ber


omplex PK′ ∈ Db(XK′ × X ′
K′) indu
es a Fourier-Mukai equivalen
e

ΦPK′ : D(XK′) → D(X ′
K′). Using Bertholet-Ogus isomorphisms [10℄,

we see that ΦK′
preserves the gradation on de Rham 
ohomology of XK′

.

Fix an embedding ofK ′ →֒ C gives us a �ltered Fourier Mukai equivalen
e

ΦPC
: Db(XK′ × C)→ Db(X ′

K′ × C),

whi
h in turn indu
es an Hodge isometry of integral latti
es:

H2(XK′ × C,Z)
∼−→ H2(X ′

K′ × C,Z),

using Theorem 2.26 and the fa
t that a �ltered equivalen
e preserves the

grading. This implies that XK′×C ∼= X ′
K′×C, whi
h after taking a �nite

extension V ′
of V gives that the generi
 �ber are isomorphi
 XK′ ∼= X ′

K′

(we abuse notation to still denote the fra
tion �eld of V ′
by K ′

). And

sin
e the polarization was lifted along, this gives a
tually a map of

polarized K3 surfa
es denoted by fK′ : (XK′ , HXK′ )
∼−→ (X ′

K′ , HX′
K′
).

Now we 
an 
on
lude that the the generi
 �bers are isomorphi
 as well by

forgetting the polarization. So now we need to show that the models are iso-

morphi
, i.e., XV ′ ∼= X ′
V ′ , whi
h will follow from [54, Theorem 2℄. �
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Remark 3.13 Note that even though the generi
 �bers are isomorphi
 whi
h

indeed implies that the models are abstra
tly isomorphi
 (via the Matsusaka-

Mumford Theorem) but not as models of the spe
ial �ber as the isomorphism

will not be the identity on the spe
ial �ber, just for the simple reason that we

started with di�erent polarizations on the spe
ial �bers.

Remark 3.14 This dependen
e on the 
hoi
e of the lift XA of X and the

ability to �nd another lift YA 
an be seen as a reformulation of the formula

stated in [35, Theorem on Page 2℄.

Remark 3.15 The above results 
an be rephrased to say that in the moduli

spa
e of lifts of X × X we 
annot always deform the automorphism in the

dire
tion of XA ×XA but 
an do so always in the dire
tion of some XA × YA,

where XA and the automorphism determine YA uniquely.

Next, we dis
uss the stru
ture of the derived autoequivalen
e group of a K3

surfa
e of �nite height.

3.2 The Cone Inversion Map

Let X be a K3 surfa
e over k of �nite height with char(k) = p > 3.

Definition 3.16 The positive 
one CX ⊂ NS(X)R is the 
onne
ted 
ompo-

nent of the set {α ∈ NS(X)|(α)2 > 0} that 
ontains one ample 
lass (or

equivalently, all of them).

Definition 3.17 [Cone Inversion map℄ Let CX be the positive 
one, the 
one

inversion map on the 
ohomology is the map that sends the positive 
one CX
to −CX .
Expli
itly, in 
hara
teristi
 0, we de�ne the map to be (−idH2) ⊕ idH0⊕H4 :
H̃∗(X,Z)→ H̃∗(X,Z), where H̃∗(X,Z) is the Mukai latti
e ([30, Se
tion 10.1℄).

Note that the 
one inversion map is a Hodge isometry. In 
hara
teristi
 p > 3,
we de�ne the map to be (−idH2 ) ⊕ idH0⊕H4 : H∗

crys(X/K) → H∗
crys(X/K),

where H∗
crys(X/K) is the Mukai F-iso
rystal (see appendix A). Note that the


one inversion map preserves the Hodge Filtration on H2
crys(X/K).

(In 
hara
teristi
 0, the following proposition is proved in [32℄ with the Mukai

F-
rystal repla
ed with Mukai latti
e.).

Theorem 3.18 The image of Aut(Db(X)) in Aut(H∗
crys(X/K)) has index at

least 2, where H∗
crys(X/K) is the Mukai F-iso
rystal.

We prove the above proposition by showing that the 
one inversion map on

the 
ohomology does not 
ome from any derived auto-equivalen
e. The proof

is done by 
ontradi
tion, we assume that su
h an auto-equivalen
e exists, then

lift the kernel of the derived auto-equivalen
e to 
har 0, and then we use the

results of [32℄, to get a 
ontradi
tion that this does not happen.

Re
all that we have the following diagram of des
end to 
ohomology of a

Fourier-Mukai transform ΦP , for P ∈ Db(X × Y ):
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Db(X)
E 7→ RpY ∗(p

∗
XE) ⊗L P )−−−−−−−−−−−−−−−→ Db(X)





y

ch( )





y

ch( )

CH∗(X) −−−−→ CH∗(X)




y
◦
√
tdX





y
◦
√
tdY

H∗(X)
α 7→ pY ∗

(

(p∗
Xα) · ch(P )

√

tdX×Y

)

−−−−−−−−−−−−−−−−−−−−−−→ H∗(X),

where ch(−) is the Chern 
hara
ter and td− is the Todd genus.

Proof: [Proof of Theorem 3.18℄ Assume that the 
one inversion map is in-

du
ed by a derived auto-equivalen
e. Then using Orlov's representability Theo-

rem ([59℄, [60℄), we know that this derived auto-equivalen
e is a Fourier-Mukai

transform and we denote the kernel of the transform by E . Sin
e E indu
es

the 
one inversion map and this map preserves the Hodge �ltration on the


rystalline 
ohomology, using Theorem 3.8, we know that we 
an lift the per-

fe
t 
omplex E to a perfe
t 
omplex EW in Db(XW × XW ), where XW is

the lift of X as in [47, Corollary 4.2℄. Note that the lifted 
omplex also in-

du
es a derived equivalen
e. Indeed, using Nakayama's lemma we see that the

adjun
tion maps ∆∗OXW
→ EW ◦ E∨W and EW ◦ E∨W → ∆∗OYW

are quasi-

isomorphisms. Moreover, sin
e we have H∗
crys(X/W ) ∼= H∗

DR(XW /W ), we
know that the lifted 
omplex indu
es again the 
one inversion map on the


ohomology. It also follows that for any �eld extension K ′/K, the generi


�ber 
omplex EK′ ∈ Db(XK′ ×K′ XK′) indu
es a Fourier Mukai equivalen
e

Φ : Db(XK′) → Db(XK′). Choosing an embedding K →֒ C (see our 
onven-

tions [1.1℄) yields a Fourier-Mukai equivalen
e Db(XK ⊗ C) → Db(XK ⊗ C)
whi
h indu
es the 
one inversion map on H̃∗(X,Z). This is a 
ontradi
tion as

in 
hara
teristi
 zero this does not happen, see [32℄ for a proof. �

We now make an interesting observation about the kernel of the map:

Corollary 3.19 Let X be a K3 surfa
e over k, an algebrai
ally 
losed �eld

of positive 
hara
teristi
. Then the kernel of the natural map

0→ Ker→ Aut(Db(X))→ Aut(H∗
crys(X/K))

lifts. More pre
isely, assume that XV be a lift of X over V , a mixed 
hara
ter-

isti
 dis
rete valuation ring with residue �eld k, then every derived autoequiv-

alen
e in the kernel of the map above lifts as an autoequivalen
e of the derived


ategory of XV .

Proof: This is 
lear as any autoequivalen
e in the kernel indu
es the iden-

tity automorphism on the 
ohomology whi
h is bound to respe
t every Hodge

�ltration on the F-iso
rystal and then we use Theorem 3.8. �

This allows us to give at least an upper bound on the kernel as follows: Let

X be a K3 surfa
e over an algebrai
ally 
losed �eld of 
hara
teristi
 p > 2.

Do
umenta Mathemati
a 24 (2019) 1135�1177



1162 Tanya Kaushal Srivastava

Choose a lift of X , denoted as XR, su
h that the Pi
ard rank of the geometri


generi
 �ber is 1. There always exists su
h a lift as shown by Esnault-Oguiso

in [19, Theorem 4.1℄.

Let ΦP : Db(X) → Db(X) be a Fourier-Mukai autoequivalen
e indu
ed by

P ∈ Db(X ×X) that belong to the kernel of the natural map

Aut(Db(X))→ Aut(H∗
crys(X/K)).

We will denote the kernel of this map as KerX . Now using [46, Lemma 3.7 (ii)℄

we see that the set of in�nitesimal deformations of the kernel P is a singleton

set, whi
h in turn implies that the lift of P to XR × XR (this was just the


orollary 3.19) is unique.

Next, note that the �ber of the lift of P over the geometri
 generi
 point of

R, denoted as PK̄ , also belongs to the kernel of the natural map (again base


hanged to C using the embedding K̄ ⊂ C)

Aut(Db(XC))→ OHdg(H̃
∗(XC,Z)),

denoted as KerXC
. Indeed, this follows from the base 
hange on 
ohomology

and Berthelot-Ogus's isomorphism [10℄. Let us assume that ΦPC
does not

indu
es the identity on the singular 
ohomology of XC and hen
e, using the

following natural 
ommutative diagram

H∗(XC,C) //

∼=
��

H∗(XC,C)

∼=
��

H∗
DR(XC) // H∗

DR(XC),

ΦPC
also does not indu
es the identity on the de Rham 
ohomology of XC.

As the autoequivalen
e ΦPC
is just the base 
hange of ΦPK̄

we see that the

map indu
ed by ΦPK̄
on the de Rham 
ohomology of XK̄ is not the identity.

Now again ΦPK̄

omes via base 
hange from ΦPK

so it is not the identity on

de Rham 
ohomology of XK , now using the Berthelot-Ogus's isomorphism it

does not indu
e the identity on the 
rystalline 
ohomology of X but this is not

possible as it is a lift of an autoequivalen
e whi
h indu
es the identity on the


rystalline 
ohomology.

This gives us the following map

KerX → KerXC

ΦP 7→ ΦPC

with the kernel 
onsisting of those autoequivalen
es whi
h lift to the identity

on the geometri
 generi
 �ber.

Remark 3.20 We expe
t that in the 
ase of a general polarized K3 surfa
e,

the set of autoequivalen
es whi
h lift to the identity on the geometri
 generi


�ber will 
ontain only the identity itself.
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Now, using the Pi
ard rank 1 lift of Esnault-Oguiso, we see that there is a

subgroup of KerX inside KerXC
. And the kernel KerXC

has been des
ribed in

[6, Theorem 1.4℄. Thus, we have shown that

Proposition 3.21 Let X be a K3 surfa
e over k, an algebrai
ally 
losed �eld

of 
hara
teristi
 p > 3, and XR → Spec(R) be a Pi
ard rank one lift of X with

XC the base 
hange to C of the geometri
 generi
 �ber of XR. Here, R is mixed


hara
teristi
 dis
rete valuation ring with residue �eld k. Then KerXC

ontains

a subgroup of KerX . Moreover, in the 
ase the set of autoequivalen
es whi
h lift

to the identity on the geometri
 generi
 �ber 
ontains only the identity itself,

then KerX ⊂ KerXC
.

4 Counting Fourier-Mukai Partners in Positive Chara
teristi


In this last se
tion, we 
ount the number of Fourier-Mukai partners of an or-

dinary K3 surfa
e, in terms of the Fourier-Mukai partners of the geometri


generi
 �ber of its 
anoni
al lift. Moreover, we prove that any automorphism

of ordinary K3 surfa
es lifts to its 
anoni
al lift. We start with 
omparing

the Fourier-Mukai partners of a K3 surfa
e over a �eld of positive 
hara
ter-

isti
 with that of the geometri
 generi
 �ber of its lift to 
hara
teristi
 zero.

Then we restri
t to ordinary K3 surfa
es and give a few 
onsequen
es to lifting

automorphisms of ordinary K3 surfa
es. Moreover, we give a su�
ient 
on-

dition on derived autoequivalen
es of an ordinary K3 surfa
e so that they lift

to the 
anoni
al lift. Lastly, we show that the 
lass number 
ounting formula

(
ompare from Theorem 2.31) also holds for K3 surfa
es over a 
hara
teristi


p �eld.

Let X (resp. Y ) be a regular proper s
heme with Db(X) (resp. Db(Y )) its
bounded derived 
ategory. Re
all that we say that Y is a Fourier-Mukai partner

of X if there exists a perfe
t 
omplex P ∈ Db(X × Y ) su
h that the following

map is an equivalen
e of derived 
ategories:

ΦP : Db(X)
∼=−→ Db(Y )

Q 7→ RpY ∗((p
∗
XQ)⊗L P),

(10)

where pX (resp. pY ) is the proje
tion from X × Y to X (resp. Y ).

We want to 
ount the number of Fourier-Mukai partners of a K3 surfa
e in

positive 
hara
teristi
. We will do this by lifting the K3 surfa
e to 
hara
teristi


0 and then 
ounting the Fourier-Mukai partners of the geometri
 generi
 �bers.

For this we will show that the spe
ialization map for Fourier-Mukai partners

de�ned below is inje
tive and surje
tive:

{FM partners of XK̄} →{FM partners of X}
MXK̄

(v) 7→MX(v).
(11)

Here, X is a K3 surfa
e of �nite height over k an algebrai
ally 
losed �eld of


hara
teristi
 p > 3, XK̄ is the geometri
 generi
 �ber of XW , whi
h is a Pi
ard
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preserving lift of X , and MX(v) (resp. MXK̄
(v), MXW

(v)) is the (�ne) moduli

spa
e of stable sheaves with Mukai ve
tor v on X (resp. XK̄ , XW ). Note that

from now on we will �x one su
h lift of X . Su
h a lift always exists by [47,

Corollary 4.2℄ for K3 surfa
es of �nite height. On the other hand, Theorem

2.37 shows that supersingular K3 surfa
es have no nontrivial Fourier-Mukai

partners, so from now we restri
t to the 
ase of K3 surfa
es of �nite height.

To show that the map (11) is well de�ned, we need the following lemma:

Lemma 4.1 ((Potentially) Good redu
tion) ([46, Theorem 5.3℄) Let V
be a dis
rete valuation ring with a fra
tion �eld K, a �eld of 
hara
teristi
 0,
and residue �eld k of 
hara
teristi
 p su
h that there is a K3 surfa
e XK over

K with good redu
tion, then all the Fourier-Mukai partners of XK̄ have good

redu
tion possibly after a �nite extension of K.

Thus for any Fourier-Mukai partner of XK̄ whi
h is of the form MXK̄
(v) is a

geometri
 generi
 �ber of MXV
(v)/V , where V is a �nite (algebrai
) extension

of W (k). Note that the residue �eld of V is still k as k is algebrai
ally 
losed.

Now using fun
toriality of the moduli fun
tor we note that the spe
ial �ber

of MXV
(v) is MX(v). This is a Fourier-Mukai partner of X (see, for example,

2.37). Thus, the map (11) is well-de�ned.

Proposition 4.2 (Liebli
h-Olsson [45℄) The spe
ialization map (11)

above is surje
tive.

Proof: From [45, Theorem 3.16℄, note that all Fourier-Mukai partners of X
are of the form MX(v). Moreover, one 
an always assume v to be of the form

(r, l, s) where l is the Chern 
lass of a line bundle and r is prime to p (see

[45, Lemma 8.1℄). (Note that we take the Mukai ve
tor here in the respe
tive

Chow groups rather than 
ohomology groups). Then sin
e we have 
hosen our

lift XW of X to be Pi
ard preserving, we 
an also lift the Mukai ve
tor to

(rW , lW , sW ), again denoted by v, and this gives a FM partner of XW , namely

MXW
(v), and taking the geometri
 generi
 �ber of it gives a Fourier-Mukai

partner of XK̄ . �

Remark 4.3 Note that the Pic(XK̄) ∼= Pic(X), i.e., the spe
ialization map is

an isomorphism. This is essentially due to the fa
t that k is algebrai
ally 
losed

and every line bundle onX lifts uniquely toXW as Ext1(L,L) = H1(X,OX) =
0 for L ∈ Pic(X), under whi
h the set of in�nitesimal deformations of the line

bundle L is a torsor.

Remark 4.4 Note that the argument above already implies that the number

of Fourier-Mukai partners of a K3 surfa
e over an algebrai
ally 
losed �eld of


hara
teristi
 p > 3 is �nite. This argument was given by Liebli
h-Olsson in

[45℄.
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Inje
tivity : We need to show that if MX(v) ∼= X , then MXW
(v) ∼= XW . For

this statement we will restri
t to the 
ase of ordinary K3 surfa
es.

Before proving inje
tivity we prove that the automorphisms of an ordinary K3

surfa
e lift always to 
hara
teristi
 zero.

Theorem 4.5 Every isomorphism ϕ : X → Y of ordinary K3 surfa
es over

an algebrai
ally 
losed �eld of 
hara
teristi
 p lifts to an isomorphism of the


anoni
al lift of the ordinary K3's ϕW : Xcan → Ycan. In parti
ular, every

automorphism of X lifts to an automorphism of Xcan.

Remark 4.6 Note that the above statement is stronger than the tautologi
al

statement: If X and X ′
are two isomorphi
 ordinaryK3 surfa
es over a perfe
t

�eld k, then their 
anoni
al lifts are isomorphi
.

Remark 4.7 This statement should be 
ompared with the results of Esnault-

Oguiso [19, Theorems 5.1, 6.4 and 7.5℄, who 
onstru
ted automorphisms whi
h

do not lift to 
hara
teristi
 0.

Proof: [Proof of Theorem 4.5℄ Let ϕ : X → Y be an isomorphism of or-

dinary K3 surfa
es. Consider the graph of this isomorphism as a 
oherent

sheaf (or even as a perfe
t 
omplex) on the produ
t X × Y , then from The-

orem 3.4 the deformation of isomorphism as a morphism and as a sheaf are

equivalent so we use Theorem 3.7 to 
onstru
t a lifting of the isomorphism

for the 
anoni
al lift Xcan of X . As isomorphisms preserve the ample 
one,

the indu
ed Fourier-Mukai transform satis�es the assumptions of Theorem 3.7.

Note that the Liebli
h-Olsson lifting of perfe
t 
omplexes allows us to be only

able to 
hoose the lifting of X and then it 
onstru
ts a unique lifting Y ′
of

Y to whi
h the perfe
t 
omplex lifts. So, now the only remaining statement

to show is that Y ′
is the 
anoni
al lift of Y . This follows from the 
riteria

of 
anoni
al lift [68, Theorem C℄ and the observation that the isomorphism

between ϕK̄ : Xcan,K̄ → Y ′
K̄

indu
es an isomorphism of Galois module on the

se
ond p-adi
 étale 
ohomology. This isomorphism of Galois modules provides

us with the required de
omposition of H2
et(Y

′
K̄
,Zp), whi
h shows that Y ′

is the


anoni
al lift of Y . �

Remark 4.8 This gives a �xed point of the δ fun
tor 
onstru
ted by [45℄ (see

Theorem 3.7).

Corollary 4.9 Every isomorphism of ordinary K3 surfa
es over an alge-

brai
ally 
losed �eld of 
hara
teristi
 p preserves the Hodge �ltration indu
ed

by the 
anoni
al lift. In parti
ular, every automorphism of an ordinary K3

surfa
e over an algebrai
ally 
losed �eld of 
hara
teristi
 p preserves the Hodge

�ltration indu
ed by the 
anoni
al lift.
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Proof: This follows from 4.5 and [19, Remark 6.5℄. �

Theorem 4.10 Let X be an ordinary K3 surfa
e, then the 
anoni
al lift of the

moduli spa
e of stable sheaves with a �xed Mukai ve
tor is the moduli spa
e of

stable sheaves with the same Mukai ve
tor on the 
anoni
al lift:

(MX(v))can ∼= MXcan
(v). (12)

Proof: We use the 
riteria for 
anoni
al lift [68, Theorem C℄ to show that

MXcan
(v) is indeed the 
anoni
al lift of MX(v). To use the 
riteria, we note

that

H2
ét(MXcan

(v)K̄ ,Zp) = v⊥/vZp

⊂ H0
ét(Xcan,K̄ ,Zp)⊕H2

ét(Xcan,K̄ ,Zp)⊕H4
ét(Xcan,K̄ ,Zp),

where the orthogonal 
omplement is taken with respe
t to the extended pairing

on the étale Mukai latti
e. As Xcan is the 
anoni
al lift of X, we have the

following de
omposition of

H2
ét(Xcan,K̄ ,Zp) = M0

X ⊕M1
X(−1)⊕M2

X(−2)

as Galois modules. We de�ne the de
omposition of H2
ét(MXcan

(v)K̄ ,Zp) =
M0 ⊕M1(−1)⊕M2(−2) as Galois modules, where

M0 = M0
X

M2 = M2
X

M1 = H0
ét(Xcan,K̄ ,Zp)⊕H4

ét(Xcan,K̄ ,Zp)⊕ (v⊥/vZp ∩M1
X).

(13)

The last relation above holds using Proposition 2.27 and the fa
t that

H0
ét(Xcan,K̄ ,Zp) and H4

ét(Xcan,K̄ ,Zp) are orthogonal to M1
X . �

Now, we �nally prove the inje
tivity.

Theorem 4.11 If X is an ordinary K3 surfa
e over an algebrai
ally 
losed

�eld of 
har p, then the number of FM partners of X are the same as the number

of Fourier-Mukai partners of the geometri
 generi
 �ber of the 
anoni
al lift of

X over W .

Proof: From the dis
ussion in the Chapter 4 Se
tion 4.2, we see that all

that is left to show is the inje
tivity of the spe
ialization map on the set of

Fourier-Mukai partners. That is, we need to show that if MX(v) is isomorphi


to X , then the lifts of both of them are also isomorphi
 Xcan
∼= MXcan

(v). This
follows from the de�nition of 
anoni
al lifts and Theorem 4.10 that MXcan

(v)
is the 
anoni
al lift of MX(v). �

Corollary 4.12 Let X be an ordinary K3 surfa
e over k, then the derived

autoequivalen
es satisfying the assumptions of Theorem 3.7 lift uniquely to a

derived autoequivalen
e of Xcan.
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Proof: The argument is going to be similar to the one used to show that

every automorphism lifts, but now we will use the proof of Theorem 4.10. Let

P ∈ Db(X ×X) indu
e a derived autoequivalen
e on X , then, using Theorem

3.7, there exists an X ′/W su
h that we 
an lift P to a kernel PW ∈ Db(Xcan×
X ′). Now we need to show that X ′

is just Xcan. Note that (PW )K̄ gives

a derived equivalen
e between Db(Xcan,K̄) ∼= Db(X ′
K̄
), this implies that X ′

is isomorphi
 to some moduli spa
e of stable sheaves with Mukai ve
tor v,
MXcan,K̄

(v). Now by fun
toriality of the moduli spa
es, we have MXcan,K̄
(v) ∼=

MXcan
(v)K̄ and by Theorem 4.10, we have MXcan

(v)K̄
∼= MX(v)can,K̄ . This

implies that we get the required de
omposition of the se
ond p-adi
 integral

étale 
ohomology of X ′
K̄
, whi
h using [68, Theorem C℄ gives us the result. �

Corollary 4.13 Every autoequivalen
e of an ordinary K3 surfa
e that satis-

�es the assumptions of Theorem 3.7 preserves the Hodge �ltration indu
ed by

the 
anoni
al lift.

Proof: Follows from the 
orollary above and Theorem 3.8. �

4.1 The Class Number Formula

Lastly, we give the 
orresponding 
lass number formula in 
hara
teristi
 p to


orollary 2.31.

Theorem 4.14 Let X be a K3 surfa
e of �nite height over an algebrai
ally

�eld of positive 
hara
teristi
 (say q > 3). If the Néron-Severi latti
e of X has

rank 2 and determinant −p (p and q 
an also be same), then the number of

Fourier-Mukai partners of X is (h(p) + 1)/2.

Proof: We lift X to 
hara
teristi
 0 using the Liebli
h-Maulik Pi
ard pre-

serving lift and then base 
hanging to the geometri
 generi
 �ber to get XK̄ .

Choose an embedding of K̄ to C (
omplex numbers) and base 
hange to C, to
get XC. Now, from Proposition 4.2, we get that every Fourier-Mukai partner

of X lifts to a Fourier-Mukai partner of XC. So, we just need to show that if

any Fourier-Mukai partner, say YC, of XC redu
es mod q to an isomorphi


K3 surfa
e, say Y , to X , then it is isomorphi
 to XC. This follows from noting

that if YC be
omes isomorphi
 mod q, then the Pi
ard latti
es of XC and YC

are isomorphi
. The number of Fourier Mukai partners of XC with isomorphi


Pi
ard latti
es is given by the order of the quotient of the orthogonal group

of dis
riminant group of NS(XC) by the Hodge isometries of the trans
en-

dental latti
e (
f. Theorem 2.30), but in this 
ase the dis
riminant group of

NS(XC) = Z/p so the orthogonal group is just ±id and there is always ±id in

the hodge isometries, so we get the quotient to be a group of order 1. Thus the
result. �

Remark 4.15 Note that the Pi
ard latti
e Pic(XK) and Pic(XK̄) are indeed
isomorphi
 as after redu
tion we are over an algebrai
ally 
losed �eld and the

line bundles lift uniquely as Pic0X is trivial for a K3 surfa
e.
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A F-
rystal on Crystalline Cohomology

In this appendix, we analyze the possibility of having a �naive" F-
rystal stru
-

ture on the Mukai iso
rystal of a K3 surfa
e. We begin by re
alling a few results

about 
rystalline 
ohomology and the a
tion of Frobenius on it, for details we

refer to [1, Tag 07GI and Tag 07N0℄, [8℄, [10℄, [49, Se
tion 1.5℄.

Let X be a smooth and proper variety over a perfe
t �eld k of positive 
hara
-

teristi
 p. Let W (k) (resp. Wm(k)) be the asso
iated ring of (resp. trun
ated)

Witt ve
tors with the �eld of fra
tion K. Let us denote by Frobk : k → k;
x 7→ xp

, the Frobenius morphism of k, whi
h indu
es a ring homomorphism

FrobW : W (k) → W (k), by fun
toriality, and there exists an additive map

V : W (k) → W (k) su
h that p = V ◦ FrobW = FrobW ◦ V . Thus, FrobW
is inje
tive. For any m > 0, we have 
ohomology groups H∗

crys(X/Wm(k)).
These are �nitely generated Wm(k)-modules. Taking the inverse limit of these

groups gives us the 
rystalline 
ohomology:

Hn
crys(X/W (k)) := lim←−Hn

crys(X/Wm(k)).

It has the following properties as a Weil 
ohomology theory:

1. Hn
crys(X/W (k)) is a 
ontravariant fun
tor inX and the groups are �nitely

generated as W (k)-modules. Moreover, Hn
crys(X/W (k)) is 0 if n < 0 or

n > 2dim(X).

2. Poin
aré Duality: The 
up-produ
t indu
es a perfe
t pairing:

Hn
crys(X/W (k))

torsion
× H

2dim(X)−n
crys (X/W (k))

torsion
→ H2dim(X)

crys (X/W (k))

∼= W (k).

(14)

3. Hn
crys(X/W (k)) de�nes an integral stru
ture onHn

crys(X/W (k))⊗W (k)K.

4. If there exists a proper lift of X to W (k), that is, a smooth and proper

s
heme XW → Spec(W (k)) su
h that its spe
ial �ber is isomorphi
 to X .

Then we have, for ea
h n,

Hn
DR(XW /W (k)) ∼= Hn

crys(X/W (k)).

5. Consider the 
ommutative square given by absolute Frobenius:

X

��

F
// X

��

k
Frobk

// k.

This, by the fun
toriality of the 
rystalline 
ohomology, gives us a FrobW -

linear endomorphism on Hi(X/W ) of W (k)-modules, denoted by F ∗
.

Moreover, F ∗
is inje
tive modulo the torsion, i.e.,

F ∗ : Hi(X/W )/torsion→ Hi(X/W )/torsion
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is inje
tive.

Theorem A.1 (Crystalline Riemann-Ro
h) Let X and Y be smooth va-

rieties over k, a �eld of 
hara
teristi
 p, and f : X → Y be a proper map.

Then the following diagram 
ommutes:

K0(X)

ch( ).tdX

��

f∗
// K0(Y )

ch( ).tdY

��

⊕iH
2i
crys(X/K)

f∗
// ⊕iH

2i
crys(Y/K),

i.e., ch(f∗α).tdY = f∗(ch(α).tdX ) ∈ ⊕iH
i
crys(Y/K) for all α ∈ K0(X), where

K0(X) is the Grothendie
k group of 
oherent sheaves on X.

Remark A.2 The map f∗ does not preserve the 
ohomologi
al grading but

does preserve the homologi
al grading, i.e., if the dimensions of X and Y are

n and m respe
tively, then we have the following 
ommutative square:

K0(X)

ch( ).tdX

��

f∗
// K0(Y )

ch( ).tdY

��

⊕iH
2i
crys(X/K)

f∗
// ⊕iH

2i+(n−m)
crys (Y/K),

and here the grading is respe
ted. If X and Y are K3 surfa
es, then n = m = 2
and we do not have to worry about this remark, as then the usual 
ohomologi
al

grading is preserved.

Next we state a few main results about the 
ompatibility of the Frobenius

a
tion with the various relations :

Proposition A.3 (Crystalline Künneth Formula) Let X,Y be proper

and smooth varieties over k. Then there is a 
anoni
al isomorphism in D(W ),
the derived 
ategory of W modules, given as follows:

RΓ(X/W )⊗L
W RΓ(Y/W ) ∼= RΓ(X ×k Y/W ),

yielding exa
t sequen
es

0→ ⊕p+q=n(H
p(X/W )⊗Hq(Y/W ))→ Hn(X × Y/W )→

→ ⊕p+q=n+1Tor
W
1 (Hp(X/W ), Hq(Y/W ))→ 0.

For a proof see [8, Chapitre 5, Théorème 4.2.1℄ C and [37, Se
tion 3.3℄.

Remark A.4 Note that in the 
ase of K3 surfa
es the torsion is zero, so we

have the following isomorphism:

⊕p+q=n(H
p(X/W )⊗Hq(Y/W ))

∼−→ Hn(X × Y/W ).
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The a
tion of Frobenius gives the following map:

F ∗Hn(X × Y/W )

∼=
��

�

�

// Hn(X × Y/W )

∼=
��

⊕(F ∗Hp(X/W )⊗ F ∗Hq(Y/W )) �
�

// ⊕(Hp(X/W )⊗Hq(Y/W )),

where the dire
t sum is over all p+ q = n.

Proposition A.5 The Künneth formula is 
ompatible with the Frobenius a
-

tion in the following way:

Let γ ∈ Hn(X × Y/W ) be written (uniquely) as γ =
∑

αp ⊗ βq, then

F ∗γ = F ∗αp ⊗ F ∗βq,

where αp ∈ Hp(X/W ) and βq ∈ Hq(Y/W ).

Let pX(resp. pY ) denote the proje
tion X × Y → X (resp. X × Y → Y ).

Proposition A.6 The Frobenius has the following 
ompatibility with the pro-

je
tion morphism:

p∗X(F ∗(α)) = F ∗(p∗Xα).

Similarly, for the other proje
tion pY .

Let the denote the 
up-produ
t as follows:

Hi(X/W )×Hj(X/W )→ Hi+j(X/W )

given by

(α, β) 7→ α ∪ β.

Proposition A.7 The Frobenius a
tion is 
ompatible with the 
up-produ
t in

the following way:

F ∗(α ∪ β) = F ∗(α) ∪ F ∗(β).

Moreover, the Poin
aré duality indu
es a perfe
t pairing as in relation [14℄

< −,− >:
Hn

torsion
× H2dim(X)−n

torsion
→ H2dim(X) ∼= W (k)

whi
h satis�es the following 
ompatibility with Frobenius:

< F ∗(x), F ∗(y) >= pdim(X)FrobW (< x, y >), (15)

where n ∈ [0, 2dim(X)].
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Now we de�ne an F-
rystal (see De�nition 2.1) stru
ture on the Mukai F-

iso
rystal of 
rystalline 
ohomology for a K3 surfa
e.

LetX be a K3 surfa
e over an algebrai
ally 
losed �eld k of 
hara
teristi
 p > 3.
Let ch = chcris : K(X) → H2∗(X/K) be the 
rystalline Chern 
hara
ter and

chi
the 2i− th 
omponent of ch. Redu
ing to the 
ase of a line bundle via the

splitting prin
iple, we see that the Frobenius ϕX a
ts in the following manner

on the Chern 
hara
ter of a line bundle E:

ϕX(chi(E)) = pichi(E). (16)

We normalize the Frobenius a
tion on the F-iso
rystal H∗(X/K) using the

Tate twist to get the Mukai F-iso
rystal ⊕iH
i(X/K)(i− 1).

We make the following observation, whi
h shows that how the Frobenius a
tion

works on H4
crys(X/W ), i.e., we will 
ompute ϕX([1]). Note that for a perfe
t

�eld k of 
hara
teristi
 p, Serre [65, Theorem 8 on page 43℄ showed that the

Witt ring W(k) has p as its uniformizer. Now for H4
crys(X/K)(1) the a
tion

of Frobenius is given by ϕX/p. But note that ch2(E) = 1/2(c21(E) − 2c2(E)),
for E ∈ K(X), where ci(E) are the Chern 
lasses of E, and as the interse
tion

paring is even for a K3 surfa
e, this is integral, i.e., ch2(E) ∈ H4(X/W ). This
along with the fa
t that rankW (H4(X/W )) = 1 implies that ch2(E) = upn[1],
where u ∈ W×, p is the 
hara
teristi
 of k and [1] is the generator of H4(X/W )
as a W−module. Hen
e, we have

ϕX(ch2(E)) = ϕX(upn[1]) = σ(upn)ϕX([1]) (via semi-linearity)

= σ(u)pnϕX([1]) (as σ is a ring map)

= p2 · ch2(E) = p2upn[1].

On the other hand, from the equation 16 above, we have ϕX(ch2(E)) =
p2upn[1]. This gives us that

ϕX([1]) = u(σ(u))−1p2[1],

where u(σ(u))−1 ∈ W×
as σ is a ring map. Therefore, we have the Frobenius

a
tion on H4(X/W )⊗K(1) given by ϕ′
X([1]) = u(σ(u))−1p[1]. Thus, it indeed

has a F-
rystal indu
ing this F-iso
rystal given by (H4(X/W ), ϕ′
X). We remark

that we are impli
itly using the fa
t that A⊗K K ∼= A, for any K-module A.
Note that the Mukai ve
tor of a sheaf P in Db(X) for a K3 surfa
e X is by

de�nition the 
lass

v(P ) = ch(P )
√

td(X) = (v0(P ), v1(P ), v2(P )) ∈ H∗
crys(X/W ).

Indeed, we have c1(X) = 0 and 2 = χ(X,OX) = td2,X , whi
h gives us that the

Todd genus tdX = (1, 0, 2) and thus

√
tdX = (1, 0, 1). This then implies that

v(P ) = (rk(P ), c1(P ), rk(P ) + c21(P )/2− c2(P )).
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Note that the interse
tion pairing on H2
crys(X/W ) is even, whi
h gives us the

above 
on
lusion as ci(P ) ∈ H2i
crys(X/W ) (see [11℄).

Lemma A.8 The Mukai ve
tor of any obje
t P ∈ Db(X × Y ) is a F-
rystal


ohomology 
lass.

Proof: (
f. [53℄) Note that from the de�nition of the F-
rystal stru
ture we

just need to show that ch(P ) ∈ H∗
crys(X × Y/W ) as the square root of the

Todd genus for a K3 surfa
e is 
omputed as follows:

√

tdX×Y = p∗1
√

tdXp∗2
√

tdY = p∗1(1, 0, 1).p
∗
2(1, 0, 1).

We write the exponential 
hern 
hara
ter as follows:

ch(P ) = (rk(P ), c1(P ), 1/2(c21(P )− 2c2(P )), ch3(P ), ch4(P ))

where

ch3(P ) = 1/6(c31(P )− 3c1c2 + 3c3(P ))

and

ch4(P ) = 1/24(c41 − 4c21c2 + 4c1c3 + 2c22 − 4c4).

Note that if char(k) 6= 2, 3, then 2, 3 are invertible in W (k), so ch(P ) ∈
H∗

crys(X × Y/W ) as again we know ci(P ) ∈ H2i
crys(X × Y/W ) . �

Remark A.9 Thus, it makes sense to talk about the des
ent of a Fourier-

Mukai transform to the F-
rystal level but note that the new Frobenius stru
-

ture on H4(X/W )(1) fails to be 
ompatible with the interse
tion pairing as

de�ned in Theorem A.7. This 
auses the failure of existen
e of an F-
rystal

stru
ture on the Mukai-iso
rystal and also the failure to have a 
ohomologi
al


riteria of derived equivalen
es of K3 surfa
es with 
rystalline 
ohomology.
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