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1 Introduction

In his seminal paper [Bei84], Beilinson has formulated his well-known conjec-
tures expressing values of L-functions up to a rational factor in terms of motivic
cohomology classes under the image of the regulator map to Deligne cohomol-
ogy. In order to study particular cases of these conjectures, it is indispensable
to construct cohomology classes in Deligne cohomology of motivic origin and
then relate them to L-values. The elliptic poylogarithm, defined by Beilinson
and Levin in [BL94], is a very important source of such cohomology classes.
For a p-adic variant of the Beilinson conjectures one needs a suitable p-adic
equivalent of Deligne cohomology. It turns out that syntomic cohomology can
be seen as a p-adic substitute for Deligne cohomology. In the case of good
reduction Bannai has proven that syntomic cohomology can be seen as abso-
lute p-adic Hodge cohomology [Ban02]. Thus, for studying particular cases of
p-adic versions of the Beilinson conjectures, like the Perrin-Riou conjecture, we
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wish to have a good understanding of polylogarithmic cohomology classes in
syntomic cohomology.
The syntomic Eisenstein classes are the cohomology classes obtained by re-
stricting the elliptic polylogarithm along torsion sections. This describes only
a shadow of the elliptic polylogarithm, but the syntomic Eisenstein classes
and related cohomology classes play an important role in recent research:
Bertolini, Darmon and Rotger initiated a program for systematically study-
ing Rankin-Selberg convolutions in p-adic families [BDR15a], [BDR15b]. This
has been continued by work of Kings, Loeffler and Zerbes. Eisenstein classes
are the key in the construction of the Rankin-Eisenstein classes considered by
Kings–Loeffler–Zerbes in [KLZ17a]. They have related the syntomic Rankin-
Eisenstein classes to p-adic Rankin L-functions. Relating the etale Rankin-
Eisenstein classes to the syntomic ones allows them to prove an explicit reci-
procity law proving the non-triviality of the Euler system of Rankin-Eisenstein
classes [KLZ17b].
While we have a good understanding of the Deligne realization of the ellip-
tic polylogarithm from Beilinson–Levin, there are only two partial results on
its syntomic realization: In [BKT10] Bannai–Kobayashi–Tsuji have given an
explicit description of the syntomic realization for a single elliptic curve with
complex multiplication defined over a subfield of C. Unfortunately, this method
does not immediately generalize to more general elliptic curves, since it builds
on explicit calculations involving the analytically defined Kronecker theta func-
tion. Complex multiplication is needed to guarantee the algebraicity of the
involved theta function. On the other hand, according to work of Bannai and
Kings, we have a good understanding of the syntomic Eisenstein classes on the
ordinary locus of the modular curve in terms of p-adic Eisenstein series. While
the result of Bannai–Kobayashi–Tsuji only covers the case of single CM elliptic
curves, the result of Bannai–Kings is limited to the Eisenstein classes on the
ordinary locus of the modular curve. In this paper, we give a common general-
ization to both results: We give an explicit description of the syntomic elliptic
polylogarithm on the universal elliptic curve over the ordinary locus of the
modular curve in terms of certain p-adic analytic moment functions associated
to Katz’ two-variable p-adic Eisenstein measure.

Theorem (cf. Theorem1 9.1). There is a compatible system of overconvergent

sections in the syntomic logarithm sheaves ρn ∈ Γ
(
ĒK , j†

D(Logn
dR)

)
describ-

ing the D-variant of the syntomic polylogarithm on the ordinary locus of the

modular curve

pol
D,syn

= ([ρn])n≥0 ∈ lim
←−

n

H1
syn

(
UD, Log n

syn
(1)

)
.

In tubular neighbourhoods ]t̃[ of torsion sections we have the following explicit

description of these overconvergent sections in terms of moment functions of

1 for a more precise version of the theorem, see the main body of the text
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Katz’ two-variable p-adic Eisenstein measure

ρn|]t̃[(s) =
∑

k+l≤n

(−1)ll!
∫

Z×
p ×Zp

ykx−(l+1)(1 + s)xdµEis
D,(a,b)(x, y) · ω̂[k,l]

with values in p-adic modular forms.

Although the complex analytic Kronecker theta function is not applicable in
our setup, we essentially follow the strategy of Bannai–Kobayashi–Tsuji. The
geometry of the Poincaré bundle serves as a substitute for the Kronecker theta
function. More precisely, we make use of the purely algebraically defined Kro-

necker section of the Poincaré bundle, which has been fruitfully applied in
[Spr18a] to study algebraic and p-adic properties of Eisenstein–Kronecker se-
ries. Since the syntomic realization refines the algebraic de Rham realization,
we need a good understanding of the latter. This has been established in our
earlier work [Spr18b]. Building on previous work of Scheider, we have given
there an explicit description of the algebraic de Rham realization for arbitrary
families of elliptic curves via the Poincaré bundle. It is again the Poincaré
bundle which allows us to relate the syntomic realization to Katz’ two variable
p-adic Eisenstein measure: Here we build on [Spr18a], where we have con-
structed Katz’ Eisenstein measure using p-adic theta functions associated to
the Poincaré bundle.
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2 Rigid syntomic cohomology

Syntomic cohomology can be seen as the p-adic analogue of Deligne–Beilinson
cohomology. Indeed, in the case of good reduction Bannai has proven that syn-
tomic cohomology can be seen as absolute p-adic Hodge cohomology [Ban02].
The work of Deglise and Nizioł generalizes this to arbitrary smooth proper
schemes over a discretely valued field of mixed characteristic[DN15]. The ap-
proach of Deglise–Nizioł allows further the construction of a ring spectrum
in the motivic homotopy category of Morel–Voevodsky representing syntomic
cohomology. In their approach coefficients for syntomic cohomology can be de-
fined abstractly as modules over this ring spectrum. Nevertheless, we will use
rigid syntomic cohomology as developed by Bannai for describing the syntomic
realization of the elliptic polylogarithm. Indeed, since we want an explicit
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description of the polylogarithm class, we need explicit complexes computing
syntomic cohomology.
In this section we briefly recall the definition and basic properties of rigid syn-
tomic cohomology. We follow closely the appendix of [BK10a]. In particular,
we use their modification of the definition of smooth pair allowing overconver-
gent Frobenii which are not globally defined. Let K/Qp be a finite unramified
extension with ring of integers OK , residue field k and Frobenius morphism
σ : K → K.
A smooth pair is a tuple X = (X, X̄) consisting of a smooth scheme X of
finite type over OK together with a smooth compactification X̄ of X with
complement D := X̄ \ X a simple normal crossing divisor relative SpecOK .
We denote the formal completion of X w.r.t Xk := X×Spec OK

Spec k by X and
the formal completion of X̄ w.r.t X̄k by X̄ . The rigid analytic spaces associated
with X resp. X̄ will be denoted by XK resp. X̄K . An overconvergent Frobenius

φX = (φ, φV ) on a smooth pair X = (X, X̄) consists of: A morphism of
OK-formal schemes

φ : X → X

lifting the absolute Frobenius on Xk and an extension of φ to a morphism of
rigid analytic spaces

φV : V → X̄K

to some strict neighbourhood V of XK in X̄K . A smooth pair together with an
overconvergent Frobenius X = (X, X̄, φ, φV ) will be called syntomic datum.
For a smooth pair X = (X, X̄) let us write XK and X̄K for the generic fibers
and Xan

K resp. X̄an for the associated rigid analytic spaces. Then, Xan
K is a

strict neighbourhood of j : XK →֒ X̄K . A coherent module M on X̄K with
integrable connection

∇ : M →M ⊗ Ω1
X̄K

(log D)

and logarithmic poles along D induces an overconvergent connection
(M rig,∇rig) on M rig := j†(M |Xan

K
). The category of filtered overconver-

gent F -isocrystals on X serves as coefficients for rigid syntomic cohomology
and may be realized as follows.

Definition 2.1. Let the category S(X ) of filtered overconvergent F -isocrystals

on X = (X, X̄) be the category consisting of 4-tuples

M = (M,∇, F •, ΦM )

with: M a coherent OX̄K
-module with integrable connection

∇ : M →M ⊗ Ω1
X̄K

(log D)

with logarithmic poles along D = X̄K \XK . F • a descending exhaustive and
separating filtration on M satisfying Griffith transversality:

∇(F •M) ⊆ F •−1(M)⊗ Ω1
X̄K

(log D)
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and a horizontal isomorphism

ΦM : F ∗
σ M rig →M rig.

where Fσ is the Frobenius endofunctor on the category of overconvergent
isocrystals defined in [Ber97]. ΦM will be called a Frobenius structure. Mor-
phisms in this category are morphisms of OX̄K

-modules respecting the addi-
tional structure.

If one has a fixed overconvergent Frobenius on the smooth pair X = (X̄, X),
one can realize a Frobenius structure more concretely as a horizontal isomor-
phism

φ∗
V M rig →M rig.

A morphism of pairs X = (X, x̄) → Y = (Y, Ȳ ) is a morphism f : X̄ → Ȳ
such that f(X) ⊆ Y . A morphism of pairs is called smooth, proper, etc, if
f |X is smooth, proper, etc. For smooth morphisms of smooth pairs we define
the higher direct image of filtered overconvergent F -isocrystals as follows. Let
D′ := Ȳ \ Y . The sheaf of relative logarithmic differentials is defined as the
cokernel in the following short exact sequence:

0 f∗Ω1
ȲK

(log D′) Ω1
X̄K

(log D) Ω1
X̄K /ȲK ,log

0

and Ωp

X̄K/ȲK ,log
:= ΛpΩ1

X̄K/ȲK ,log
. For M = (M,∇, F •, ΦM ) ∈ S(X ) we can

define the following algebraic and rigid relative de Rham complexes

DR•
X/Y (M) := M ⊗OX̄

Ω•
X̄K /ȲK ,log

and
DR•

X/Y (M rig) := M rig ⊗j†OX̄K
j†Ω•

X̄K/ȲK

and their higher direct images

Rpf∗DR•
X/Y (M), Rpfrig,∗DR•

X/Y (M rig).

In the special case X
f
−→ V := (OK ,OK) both

Hp
dR (XK , M) : = Rpf∗DR•

X/K(M),

Hp
rig

(
Xk, M rig

)
: = Rpfrig,∗DR•

X/K(M rig)

are K-vector spaces.
While Rpf∗DR•

X/Y (M) is equipped with the Hodge-Filtration F • and the
Gauss–Manin connection ∇GM, the rigid cohomology Rfrig,∗DR•

X/Y (M rig) is
equipped with a Frobenius structure Φ. If we write jY : YK →֒ ȲK for the
inclusion, we have a comparison map

ΘX /Y : j†
Y

(
Rpf∗DR•

X/Y (M)|Y an
K

)
→ Rpfrig,∗DR•

X/Y (M rig).
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Thus, whenever ΘX /Y is an isomorphism, we obtain a structure of a filtered
overconvergent F -isocrystal over Y :

Hp
syn (X /Y ,M) :=

(
Rf∗DR•

X/Y (M),∇GM, F •, Φ
)
∈ S(Y ).

It is known that for proper maps π : X → Y the comparison map ΘX /Y is
always an isomorphism [BK10a, Prop. A.7.].

Definition 2.2. A filtered overconvergent F -isocrystal M =
(M,∇, F •, ΦM ) ∈ S(X ) is called admissible if:

1. The Hodge to de Rham spectral sequence

Ep,q
1 = Hp(X̄K , grq

F DR•
X/K(M)) =⇒ Hp+q

dR (XK , M)

degenerates at E1.

2. ΘX /(OK ,OK) : Hp
dR (XK , M)→ Hp

rig

(
Xk, M rig

)
is an isomorphism.

3. The K-vector space Hp
dR (XK , M) ∼

→ Hp
rig

(
Xk, M rig

)
with Hodge fil-

tration coming from Hp
dR and Frobenius structure coming from Hp

rig is
weakly admissible in the sense of Fontaine.

Let us write S(X )adm for the full subcategory of admissible objects.

We will also need the following relative version of ‘admissible’ from [Sol08, Def.
5.8.12]:

Definition 2.3. Let π : X → Y be a smooth morphism of smooth pairs.
A filtered overconvergent F -isocrystal M = (M,∇, F •, ΦM ) ∈ S(X ) is called
π-admissible if:

1. ΘX /Y is an isomorphism.

2. The obtained filtered overconvergent F -isocrystals over Y

Hp
syn (X /Y ,M) :=

(
Rpf∗DR•

X/Y (M),∇GM, F •, Φ
)
∈ S(Y ).

are admissible.

Let us write S(X )π−adm for the full subcategory of π-admissible objects.

For π : X → Y a smooth morphism of smooth pairs we obtain functors

Hp
syn (X /Y , ·) : S(X )π−adm → S(Y )adm.

Let us briefly recall the definition of rigid-syntomic cohomology as given by
Bannai. We follow the exposition in [BK10a]: Let X = (X, X̄, φ, φV ) be a
syntomic datum and M = (M,∇, F •, ΦM ) be a filtered overconvergent F -
isocrystal. For a finite Zariski covering U = (Ūi)i∈I of X̄ set Ūi0,...,in,K :=

Documenta Mathematica 24 (2019) 1099–1134



The Syntomic Realization 1105

⋂
0≤j≤n Ūij ,K . U induces a covering (Ui,K)i∈I of XK obtained via the comple-

tion of Ui ∩X along its special fiber. Let us write

ji0,...,in
: Ui0,...,in,K :=

⋂

0≤j≤n

Uij ,K →֒ X̄K

for the inclusion. The total complex associated with the Čech complex
∏

i

Γ
(
Ūi,K , DR•

dR(M)
)
→

∏

i0,i1

Γ
(
Ūi0,i1,K , DR•

dR(M)
)
→ ...

will be denoted by R•
dR(U,M). Similarly, let us define R•

rig(U,M) as the total
complex associated with:

∏

i

Γ
(
X̄K , j†

i DR•
rig(M rig)

)
→

∏

i0,i1

Γ
(
X̄K , j†

i0,i1
DR•

rig(M rig)
)
→ ...

The Frobenius structure ΦM together with the overconvergent Frobenius φX =
(φ, φV ) induce

φU : K ⊗σ,K R•
rig(U,M)→ R•

rig(U,M)

and the comparison map ΘX/K induces

ΘU : R•
dR(U,M)→ R•

rig(U,M).

Let

R•
syn(U,M) := Cone

(
F 0R•

dR(U,M)
(1−φU)◦ΘU

−−−−−−−→ R•
rig(U,M)

)
[1]

where F • is the filtration induced by the Hodge filtration.

Definition 2.4. The rigid syntomic cohomology of X with coefficients in M
is defined by

Hn
syn (X ,M) := lim

−→
U

Hn
(
R•

syn(U,M)
)

where the limit is taken over all finite Zariski coverings.

By its very definition we have a long exact sequence

...→ F 0Hm
dR (XK , M)

1−φ
−−−→ Hm

rig

(
Xk, M rig

)
→ Hm+1

syn (X ,M)→ ... (1)

Above we have defined functors

Hp
syn (X /Y , ·) : S(X )π−adm → S(Y )adm.

The reason for the chosen notation for this functor is the following spectral
sequence [Sol08, Theorem 5.9.1]. ForM = (M,∇, F •, ΦM ) ∈ S(X )π−adm and
π : X → Y a smooth morphism of smooth pairs there is a Leray spectral
sequence:

Ep,q
2 = Hp

syn

(
Y , Hp

syn (X /Y ,M)
)

=⇒ Ep+q = Hp+q
syn (X ,M) .

Either by this spectral sequence or directly by the above long exact sequence,
we deduce the following:
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1106 Johannes Sprang

Corollary 2.5. For V := (OK ,OK) we have the short exact sequence:

H1
syn

(
V , Hm

syn (X ,M)
)
→֒ Hm+1

syn (X ,M) ։ H0
syn

(
V , Hm+1

syn (X ,M)
)

Definition 2.6. The boundary map

δ : Hm
syn (X ,M)→ Hm

dR (XK , M)

is defined as the composition of

Hm
syn (X ,M)→ H0

syn

(
V , Hm

syn (X ,M)
)

with the identification

H0
syn

(
V , Hm

syn (X ,M)
)

= ker
(

F 0Hm
dR (XK , M)

1−φ
−−−→ Hm

rig

(
Xk, M rig

))

and the inclusion

ker
(

F 0Hm
dR (XK , M)

1−φ
−−−→ Hm

rig

(
Xk, M rig

))
⊆ Hm

dR (XK , M) .

In general, the category of filtered overconvergent F -isocrystals S(X ) is not
Abelian. As in [Ban00, Rem 1.15] we will regard the category S(X ) as an
exact category with the class of exact sequences given by

0→M ′ →M →M ′′ → 0

such that the underlying sequence of OX̄K
-modules is exact and the morphisms

in the sequence are strictly compatible with the filtrations. The Tate objects
K(n) ∈ S(X ) are defined as

K(n) = (OX̄K
, d: OX̄K

→ Ω1
X̄K

, F •, Φ)

with F −jOX̄K
= OX̄K

⊆ F −j+1OX̄K
= 0 and Φ(1) = p−j . Let us write

VIC (XK/K) for the category of vector bundles on KK with an integrable
K-connection.

Proposition 2.7 ([Ban00, Proposition 4.4]). For i = 0, 1 there is a canonical

isomorphism

Exti
S(X )(K(0),M) ∼

→ Hi
syn (X ,M)

fitting into the commutative diagram

Exti
S(X )(K(0),M) Exti

VIC(XK /K)(K(0), M)

Hi
syn (X ,M) Hi

dR (XK , M)

ν

∼= ∼=

δ

where ν is the map forgetting the Hodge filtration and the Frobenius structure.
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For an admissible filtered overconvergent F -isocrystalM = (M,∇, F •, ΦM ) on
(X, X̄) let us write

Φ: Γ(X̄K , M rig)→ Γ(X̄K , M rig), α 7→ ΦM (φ∗α)

for the map induced by the Frobenius structure. Last but not least, let us
recall the following useful description of classes in H1

syn (X ,M) if F 0M = 0:

Proposition 2.8 ([BK10a, Proposition A.16]). Let M = (M,∇, F, Φ) be an

admissible filtered overconvergent F -isocrystal with F 0M = 0. A cohomology

class

[α] ∈ H1
syn (X ,M)

is given uniquely by a pair (α, ξ) with

α ∈ Γ(X̄K , M rig), ξ ∈ Γ(X̄K , F −1M ⊗ Ω1
X̄K

(log D))

satisfying the conditions:

∇(α) = (1 − Φ)(ξ), ∇(ξ) = 0

In particular, this result will apply to the polylogarithm class. Indeed, we
will see that the differential equation of overconvergent functions describing
the rigid syntomic polylogarithm class is just a restatement of the abstract
differential equation

∇(α) = (1− Φ)(ξ).

Corollary 2.9 ([BK10a, Corollary A.17]). Suppose (α, ξ) = [α, ξ] ∈
H1

syn (X ,M) is as in the previous proposition. Then, the image of [α, ξ] under

H1
syn (X ,M)→ H1

dR (X , M)

is given by [ξ].

3 The syntomic polylogarithm class

The syntomic elliptic polylogarithm is a pro-system of cohomology classes in
syntomic cohomology with coefficients in certain filtered overconvergent F -
isocrystals, called the syntomic logarithm sheaves. The aim of this section
is to introduce the syntomic logarithm sheaves and to define the syntomic
polylogarithm class. Let us start with the definition of the syntomic logarithm
sheaves. As before, let K/Qp be a finite unramified extension. Let π : E =
(E, Ē, φE)→ S = (S, S̄, φS) be a morphism of syntomic data with π : E → S
an elliptic curve over some affine scheme S.
Since π is proper, H := H1

syn (E /S , K(1)) ∈ S(S )ad and H∨ ∈ S(S )ad

are well defined admissible filtered overconvergent F -isocrystals. Let us define
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1108 Johannes Sprang

HE := π∗H. Applying the Leray spectral sequence for syntomic cohomology
gives a split short exact sequence:

Ext1
S(S )(K(0),H) Ext1

S(E )(K(0),HE) HomS(S )(H,H)π∗

e∗

δ̃

Let [Log1
syn

] ∈ Ext1
S(E )(K(0),HE) be the unique extension class satisfying

e∗[Log 1
syn

] = 0 and δ̃[Log 1
syn

] = idH. A representative of this extension class
does not have any non-trivial automorphisms, thus it is uniquely determined by
its extension class up to unique isomorphism. An overconvergent F -isocrystal

Log1
syn

= (Log1
dR,∇, F •

Log
syn

, ΦLog
syn

)

representing the extension class [Log 1
syn

] will be called the first syntomic loga-

rithm sheaf. The higher logarithm sheaves are defined by taking tensor sym-
metric powers

Log n
syn

:= TSymn Log 1
syn

.

Here, recall that the n-th tensor symmetric power TSymn Log1
dR is defined by

TSymn Log1
dR :=

(
Log1

dR ⊗ ...⊗ Log1
dR

)Sn

where the symmetric group Sn acts by permutation. The connection, the
filtration and the Frobenius structure on Log1

dR induce an overconvergent F -
isocrystal structure on Logn

dR := TSymn Log1
dR.

The canonical map Log 1
syn

։ K(0) induces transition maps Logn+1
syn

։ Log n
syn

.
Since the extension class of the first logarithm sheaf pulls back to zero along e,
we get a canonical isomorphism

e∗Log1
syn

∼
→ K(0)⊕H.

By passing to tensor symmetric powers, we obtain

e∗Logn
syn

∼
→

n⊕

k=0

TSymkH.

In particular, 1 ∈ K(0) = TSym0H gives us a canonical horizontal section 1
(n)

in e∗Logn
syn

. Although the section 1
(n) ∈ Γ(S, Log1

dR) is uniquely determined
by the datum of the logarithm sheaves it will be convenient to include it into
the structure defining the n-th syntomic logarithm sheaf. So sometimes we will
write

Logn
syn

= (Logn
dR,∇, F •

Log
syn

, ΦLog
syn

,1(n)).
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The Syntomic Realization 1109

Since π is proper, we have

Hi
syn

(
E /S , Logn

syn

)
∈ S(S ).

One can compute the syntomic cohomology of the logarithm sheaves along the
same lines as in the de Rham realization [Sch14, §1.2]:

Proposition 3.1. Let π : E → S be as before. The transition maps

Hi
syn

(
E /S , Log n+1

syn

)
→ Hi

syn

(
E /S , Log n

syn

)

are zero for i = 0, 1 and are isomorphisms for i = 2. In particular, the trace

isomorphism for i = 2 gives canonical isomorphisms

H2
syn

(
E /S , Logn

syn

)
∼
→ ...

∼
→ H2

syn

(
E /S , Log0

syn

)
∼
→ K(0)

Proof. Since the underlying F -isocrystals are the relative de Rham cohomology
sheaves plus extra structure, the result follows from the corresponding result
for de Rham cohomology [Spr18b, Proposition 2.2].

For the definition of the (D-variant) of the elliptic polylogarithm in rigid syn-
tomic cohomology consider the following diagram of smooth pairs: For D > 1
define UD := E \ E[D].

UD := (UD, Ē) E := (E, Ē) E [D] := (E[D], E[D])

S = (M, M̄)

jD

πUD

πE

iD

πE [D]

Combining the localization sequence with the vanishing results from proposi-
tion 3.1 gives the exact sequence:

0→ lim
←−

n

H1
syn

(
UD, Logn

syn
(1)

)
Res
−−→ lim

←−
n

H0
syn

(
E [D], Log n

syn
(1)|E [D]

)
aug
−−→ K.

Let us write 1e ∈ Γ(E[D],OE[D]) for the horizontal section supported on [e]
and 1E[D] := 1 ∈ Γ(E[D],OE[D]) for the section corresponding to the identity
element of the ring Γ(E[D],OE[D]). Since both sections are horizontal, we will
view them as elements of H0

dR (E[D]). (1) gives us the exact sequence

0→ lim
←−

n

H0
syn

(
E [D], Log n

syn

)
→ lim
←−

n

F 0H0
dR (E[D]K , Logn

dR)
1−φ
−−−→

1−φ
−−−→ lim

←−
n

H0
rig

(
Ek[D], (Logn

dR)rig
)

.

This sequence allows us to view D21e − 1E[D] ∈ ker(1 − φ) as element of

lim
←−n

H0
syn

(
E [D], Logn

syn

)
.
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Definition 3.2. The D-variant of the syntomic polylogarithm is the unique
pro-system

pol
D,syn

∈ lim
←−

n

H1
syn

(
UD, Logn

syn
(1)

)

mapping to D21e − 1E[D] under the residue map in the localization sequence.

4 The de Rham realization of the elliptic polylogarithm

By forgetting the filtration and the Frobenius structure of the syntomic loga-
rithm class [Log 1

syn
] we obtain an extension class in the category VIC (E/K)

of vector bundles with integrable K-connections

[Log1
dR,∇] ∈ Ext1

VIC(E/K)(OE ,HE).

The extension class [Log1
dR,∇] maps to zero under e∗ respectively to the iden-

tity in the split short exact sequence

Ext1
VIC(S/K)(OS ,H) Ext1

VIC(E/K)(OE ,HE) HomVIC(S/K)(H,H).
π∗

e∗

Contrary to the syntomic realization, an extension representing the first de
Rham logarithm class might have non-trivial automorphisms but the additional
datum of the section 1

(1) distinguishes a splitting of e∗Log1
dR and thereby

rigidifies the situation. The triple (Log1
dR,∇Log1

dR
,1(1)) is called the first de

Rham logarithm sheaf. For more details on the de Rham logarithm sheaves
we refer the reader to [Spr18b, §2,§3]. The triple (Logn

dR,∇,1(n)) obtained by
taking n-th tensor symmetric powers will be called n-th de Rham logarithm

sheaves. The elliptic polylogarithm in algebraic de Rham cohomology

polD,dR ∈ lim
n

H1
dR (UD/K, Logn

dR)

is then defined in complete analogy using the localization sequence in de Rham
cohomology, i.e. polD,dR is the unique pro-system mapping to the horizontal
section D21e − 1E[D] under the residue map in the exact sequence

lim
←−n

H1
dR (UD/K, Logn

dR)
∏∞

k=0 H0
dR

(
E[D]/K, SymkHE[D]

)
KRes σ

According to a theorem of R. Scheider, the de Rham logarithm sheaves of an
elliptic curve are given by restricting the Poincaré bundle on the universal
vectorial extension to infinitesimal neighbourhoods of the elliptic curve. Let
us briefly recall his construction here and let us refer to [Sch14] or [Spr18b,
§4] for details. Let P be the Poincaré bundle on E ×S E∨ and let E† → E∨

be the universal vectorial extension of E∨. There is a universal integrable
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E†-connection ∇† on the pullback P† of P along E ×S E† → E ×S E∨. The
connection ∇† induces an integrable S-connection ∇L†

n
on

L†
n := (prE)∗

(
P†

∣∣∣
E×SInfn

e E†

)
.

Further, the canonical rigidification of the Poincaré bundle induces an isomor-
phism of OS-modules

e∗L†
n

∼
→ OInfn

e E† .

In particular, there is a distinguished section 1 ∈ Γ(S, e∗L†
n). The following

Theorem is due to Scheider. For a much shorter proof we refer to [Spr18b,
Corollary 4.9].

Theorem 4.1 (Scheider, [Sch14]). There is a unique prolongation ∇abs
L†

n

of the

S-connection ∇L†
n

to a K-connection such that

(L†
n,∇abs

L†
n

, 1)

is an explicit model for the n-th de Rham logarithm sheaf.

By its very definition Log1
dR is an extension ofOE byHE . ViewingOE as sitting

in filtration step 0, there is a unique Hodge filtration F • of Log1
dR compatible

with the Hodge filtrations of HE and OE . The filtration on Logn
dR is defined

by passing to symmetric powers. Let us write Logn
dR(1) for Logn

dR with shifted
filtration F •+1. Building on the result of Scheider, we have constructed in
[Spr18b, §5] 1-forms with values in the logarithm sheaves

LD
n ∈ Γ(E, Ω1

E/S(E[D]) ⊗OE
F 0L†

n(1)).

Let us briefly indicate the construction of LD
n and let us refer to [Spr18b, §5] for

details: The starting point of our construction is the Kronecker section, which
is defined as follows: The autoduality isomorphism

λ : E Pic0
E/S =: E∨

P [OE([−P ]− [e])]

(2)

gives an explicit model for the rigidified Poincaré bundle

(P , r0) : =
(

pr∗
1OE([e])⊗−1 ⊗ pr∗

2OE([e])⊗−1 ⊗ µ∗OE([e]) ⊗ π∗
E×Eω⊗−1

E/S , r0

)
.

Here, ∆ = ker (µ : E × E∨ → E) is the anti-diagonal and r0 is the rigidification
(e× id)∗P ∼= OE∨ induced by the canonical isomorphism

e∗OE(−[e]) ∼
→ ωE/S := e∗Ω1

E/S .
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This description of the Poincaré bundle gives the following isomorphism of
locally free OE×E-modules, i. e. all tensor products are taken over OE×E :

P ⊗ P⊗−1 ∼= P ⊗ Ω1
E×E/E([e× E] + [E × e])⊗OE×E(−∆) (3)

The line bundle OE×E(−∆) can be identified with the ideal sheaf J∆ of the
anti-diagonal ∆ in E ×S E in a canonical way. If we combine the inclusion

OE×E(−∆) ∼= J∆ →֒ OE×E

with (3), we get a morphism of OE×E-modules

P ⊗ P⊗−1 →֒ P ⊗ Ω1
E×E/E([e× E] + [E × e]). (4)

The Kronecker section

scan ∈ Γ
(

E ×S E∨,P ⊗OE×E∨ Ω1
E×E∨/E∨ ([e× E∨] + [E × e])

)

is then defined as the image of the identity section idP ∈ Γ(E ×E,P ⊗P⊗−1)
under (4).
The universal property of the Poincaré bundle gives us a canonical isomor-
phisms for D > 1:

γ1,D : (id× [D])∗P
∼
→ ([D]× id)∗P

Let us define the D-variant of the Kronecker section by

sD
can := D2 · γ1,D ((id× [D])∗(scan))− ([D]× id)∗(scan).

The restriction of sD
can along E ×S Infn

e E∨ →֒ E ×S E∨ induces a section

lD
n ∈ Γ

(
E,L†

n ⊗E Ω1
E/S(E[D])

)
.

This almost yields the desired 1-forms LD
n except, that lD

n are only 1-forms
relative S. But it is possible to lift these 1-forms in a canonical way to the
absolute 1-forms

LD
n ∈ Γ

(
E,L†

n ⊗E Ω1
E/K(E[D])

)
.

Theorem 4.2 ([Spr18b, Theorem 5.8]). The system of 1-forms (LD
n )n≥0 rep-

resents the polylogarithm in algebraic de Rham cohomology

([LD
n ])n≥0 = polD,dR ∈ lim

n
H1

dR (UD/S, Logn
dR(1)) .

Combining this with proposition 2.8, has the following immediate consequence
for the syntomic realization:
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Corollary 4.3. Let π : E → S be a morphism of syntomic data of el-

liptic curves. There is a unique system of overconvergent sections ρn ∈
Γ(ĒK , j†

D(L†
n)) satisfying the differential equation

∇Log n
syn

(ρn) = (1− Φ)(LD
n ).

The pair (ρn, LD
n ) is the unique pair representing the syntomic realization of

the polylogarithm:

([ρn, LD
n ])n≥0 = pol

D,syn
∈ lim
←−

n

H1
syn

(
UD, Log n

syn

)
.

In the following we would like to give an explicit description of the overconver-
gent sections ρn which describe the Frobenius structure on the polylogarithmic
extension in syntomic cohomology.

5 The ordinary locus of the modular curve

Let p be a prime and N > 3 be an integer prime to p. Let K = Qp and denote by
V the smooth pair V = (SpecZp, SpecZp). For the modular curve M = MN,Zp

with Γ(N)-level structure over Zp choose a smooth compactification M̄ and let
(E = EN , αN ) be the universal elliptic curve with level N -structure over M .
Let Ē be the Neron model of E over M̄ . Then

(E, Ē) π
−→ (M, M̄)

is a smooth proper morphism of smooth pairs. If we restrict to the ordinary
locus Eord ⊆ E, we obtain a smooth proper morphism of smooth pairs:

(Eord, Ē)→ (Mord, M̄)

Let Eord, Ē resp. Mord,M̄ be the formal completion of Eord, Ē resp. Mord, M̄
with respect to the special fiber. Then, Mord classifies ordinary elliptic curves
with level N -structure over p-adic rings. If we divide an ordinary elliptic curve
with level N -structure (E, α) by its canonical subgroup, we obtain another
ordinary elliptic curve (E′ = E/C, α′) with level N -structure. In particular,
the map (E, α) 7→ (E/C, α′) induces a map

Frob :Mord →Mord

lifting the Frobenius morphism on the special fiber. By [Kat73, Chapter 3] the
induced Frobenius Mord

Qp
→Mord

Qp
on the associated rigid analytic space Mord

Qp

is overconvergent. In particular, we have a canonical overconvergent Frobenius
φM on the smooth pair (Mord, M̄). The associated syntomic datum will be
denoted by

M
ord := (Mord, M̄ , φM ).
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For the moment let us write Eord|Mord for the pullback of the ordinary elliptic
curve to the formal completion. Then, Eord|Mord is the universal ordinary
elliptic curve with level structure over p-adic rings. The commutative diagram

Eord|Mord E′|Mord := (Eord/C)|Mord Eord|Mord

Mord Mord

π

ϕ

y

F̃rob

π

Frob

induces a Frobenius lift Eord|Mord → Eord|Mord on Eord|Mord which gives us
a canonical overconvergent Frobenius φE on the smooth pair (Eord, Ē). The
associated syntomic datum is

E := (Eord, Ē, φE).

Let us write π : E →M for the corresponding morphism of syntomic data.
Let us now turn our attention to the moduli space of trivialized elliptic curves
as defined by Katz [Kat76]. Let E/S = Spec R be an elliptic curve over a
p-adic ring R. A trivialization of E is an isomorphism

β : Ê
∼
→ Ĝm,S

of formal groups over R. For N ≥ 1 a natural number coprime to p, a trivialized
elliptic curve with Γ(N)-level structure is a triple (E, β, αN ) consisting of an
elliptic curve E/S a rigidification β and a level structure αN : (Z/NZ)2

S
∼
→

E[N ]. Let (Etriv, β, αN ) be the universal trivialized elliptic curve with Γ(N)-
level structure over M triv = Spec V (Zp, Γ(N)). For more details we refer to
[Kat76, Ch. V]. The ring V (Zp, Γ(N)) will be called ring of generalized p-
adic modular forms. Let us write Mtriv = Spf V (Zp, Γ(N)) for the formal
completion of the moduli space M triv = Spec V (Zp, Γ(N)) along its special
fiber. The existence of a trivialization on an elliptic curve already implies that
the curve is ordinary. Thus, the forgetful map

(E, α, β) 7→ (E, α)

induces a map Mtriv →Mord. The induced map on rigid analytic spaces sits
in the following Cartesian diagram

Etriv
Qp

Eord
Qp

Mtriv
Qp

Mord
Qp

.

p̃

For (a, b) ∈ (Z/NZ)2 let t = ta,b respectively t̃ = t̃a,b be the associated torsion
sections on Eord respectively Etriv. Let us furthermore write ]t̃[ for the tubular
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neighbourhood of the reduction of t̃ in Etriv
Qp

. Pullback along the covering map
p̃ induces an injection

Γ(]t[, (L†
n,Eord )rig) →֒ Γ(]t̃[, (L†

n,Etriv )rig), σ 7→ p̃∗σ.

The main goal of the rest of the paper is to give an explicit description of
the overconvergent sections ρn appearing in the description of the syntomic
polylogarithm in corollary 4.3. The advantage of describing p̃∗(ρn) instead of
ρn is that we will construct a canonical basis ω̂[k,l] of (L†

n,Etriv )rig in section 8.
This basis allows us to describe sections of L†

n on tubular neighbourhoods of
torsion sections explicitly.

6 An explicit model for the syntomic logarithm sheaves for or-
dinary elliptic curves

As before let E ord →M ord be the syntomic datum associated to the ordinary
part of the modular curve of level Γ(N). First let us give a complete description
of the syntomic logarithm sheaves in terms of the Poincaré bundle. Recall, that
the tuple

(L†
n,∇abs

L†
n

, F •, 1)

provides an explicit model for the de Rham part of the syntomic logarithm
sheaves in terms of the Poincaré bundle. It remains to give an explicit de-
scription of the Frobenius structure.Let us write ϕ : Eord

։ E′ = Eord/C for
the isogeny given by the quotient of Eord by its canonical subgroup. Recall,
that the universal vectorial extension Eord,† of Eord,∨ classifies line bundles of
degree zero with an integrable connection. In particular, there is a unique map
ϕ† : E′† → Eord,† together with a unique horizontal isomorphism

(idEord × ϕ†)∗P† ∼
→ (ϕ× idE′† )∗P ′†. (5)

classifying the line bundle (ϕ × idE′†)∗P ′† with its pullback connection. The
restriction of ϕ† : E′† → Eord,† to the n-th infinitesimal neighbourhood of the
identity induces an isomorphism:

ϕ†|Infn
e E′†

K

: Infn
e E′†

K
∼
→ Infn

e Eord,†
K .

Restricting the map (5) along EK × Infn
e E†

K gives an horizontal isomorphism

L†
n,EK

∼
→ ϕ∗L†

n,E′
K

. (6)

The reader familiar with the properties of the logarithm sheaves might have
noticed, that this isomorphism is nothing than the observation that the loga-
rithm sheaves are invariant under isogenies. Now, let us once again consider
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the diagram

Eord|Mord E′|Mord := (Eord/C)|Mord Eord|Mord

Mord Mord

π

ϕ

y

F̃rob

π

Frob

Recall, that the composition φE := F̃rob◦ϕ provides a canonical Frobenius lift
on Eord. Since the Poincaré bundle is compatible with base change we have an
horizontal isomorphism

F̃rob
∗
L†

n
∼
→ L†

n,E′ . (7)

Thus, combining (6) and (7) gives an horizontal isomorphism

L†

n,Eord
K

∼
→ φ∗

EL
†

n,Eord
K

.

The inverse of this map induces the desired Frobenius structure

ΦL†
n

: φ∗
E(L†

n)rig ∼
→ (L†

n)rig.

This completes our full description of the syntomic logarithm sheaves in terms
of the Poincaré bundle:

Proposition 6.1. The filtered overconvergent F -isocrystal

(L†
n,∇abs

L†
n

, F •, ΦL†
n
, 1)

is an explicit model for the syntomic logarithm sheaf.

Proof. It only remains to prove that the constructed Frobenius structure co-
incides with the abstractly defined Frobenius structure of the syntomic log-
arithm sheaves. But it follows immediately from the definition of ΦL†

n
that

e∗ΦL†
n
(1) = 1 where 1 ∈ Γ(S, e∗L†

n) is the fixed section in the above datum.
Since there is only one horizontal morphism with this property, we see that
ΦL†

n
coincides with the abstractly defined Frobenius structure on the syntomic

logarithm sheaf.

7 p-adic theta functions and the p-adic Eisenstein measure

In this section we recall our approach towards p-adic interpolation of
Eisenstein–Kronecker series via p-adic theta functions, see [Spr18a, Part II].

7.1 p-adic Eisenstein–Kronecker series

Let us first recall Norman’s definition of the p-adic Eisenstein–Kronecker series.
Classical modular forms of weight k and level Γ(N), can be seen more geomet-
rically as sections of the k-th tensor power of the cotangent-sheaf ω⊗k

E(C)/M(C) of
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the complex universal elliptic curve of level Γ(N). This leads in a natural way
to the definition of geometric modular forms and allows to study modular forms
from an algebraic perspective. More generally, a certain class of C∞-modular
forms, the quasi-holomorphic modular forms allows a similar interpretation.
For more on quasi-holomorphic modular forms and there geometric interpreta-
tion let us refer to [Urb14, §2]. It is possible to see quasi-holomorphic modular
forms (of level Γ(N), weight k and order r) as sections

F k−r SymkH1
dR

sitting in a certain filtration step of the Hodge filtration of symmetric powers
of the relative de Rham cohomology H1

dR := R1π∗Ω•
E/M . The link back to the

associated C∞-modular forms comes from the Hodge decomposition

H1
dR(C∞) ∼

→ ω(C∞)⊕ ω̄(C∞)

which is non-holomorphic. Eisenstein–Kronecker series provide a particular
class of nearly-holomorphic modular forms of number theoretic interest. For a
given lattice Γ = Z + τZ ⊆ C and t ∈ 1

N Γ, t′ ∈ 1
D Γ let us consider the series

ẽa,b(t, t′; τ) :=
(−1)a+b−1(b − 1)!

A(Γ)a

∑

γ∈Γ\{−t}

(t̄ + γ̄)a

(t + γ)b
〈γ, t′〉

with 〈z, w〉 := exp
(

zw̄−wz̄
A(Γ)

)
and A(Γ) = τ−τ̄

2πi . This series converges abso-
lutely for b > a + 2; for arbitrary integers a, b it can be defined by analytic
continuation, c.f. [BK10b]. The above mentioned geometric interpretation of
nearly-holomorphic modular forms is very useful for studying algebraic and
p-adic properties of Eisenstein-Kronecker series. Indeed, it is possible to asso-
ciate in a functorial way to every test object (E/S, t, t′) with E/S an elliptic
curve and t ∈ E[N ](S), t′ ∈ E[D](S) torsion sections certain elements

Ea,b
t,t′ ∈ Γ(S, Symk+r H1

dR (E/S))

which correspond to the classical analytic Eisenstein–Kronecker series ẽa,b(t, t′)
via the Hodge decomposition on the universal elliptic curve. This purely alge-
braic interpretation of real analytic Eisenstein series goes back to a construction
of Katz involving the Gauss-Manin connection on the modular curve. An al-
ternative construction can be given using the Poincaré bundle on the universal
vectorial extension of an elliptic curve, cf. [Spr18a, §4]. For the construction of
Ea,b

t,t′ and for the discussion of their properties we refer to [Spr18a, §4]. While
studying the syntomic realization of the elliptic polylogarithm, the following
variant of the geometric Eisenstein–Kronecker series will appear naturally: For
a test object (E/S, t ∈ E[N ](S)) and a fixed integer D > 1 let us consider

DEk,r+1
t :=

∑

06=t′∈E[D](S)

Ek,r+1
t,t′ ∈ Γ(S, Symk+r+1 H1

dR (E/S)).
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Once the algebraic sections DEk,r+1
t are defined, it is straightforward to de-

fine Eisenstein–Kronecker series p-adically. Instead of applying the Hodge
decomposition one can use the unit root decomposition on the universal
trivialized elliptic curve to construct generalized p-adic modular forms: Let
Etriv/M triv be the universal trivialized elliptic curve and for (a, b) ∈ (Z/NZ)2

let t = ta,b ∈ Etriv[N ](M triv) be the associated N -torsion section. Applying
the unit root decomposition

Symk+r+1 H1
dR

(
Etriv/M triv

)
։ Symk+r+1 ωEtriv/Mtriv

∼
→ OMtriv

followed by the trivialization ωEtriv/Mtriv = β∗
(

dT
1+T

)
· OMtriv to the sections

DEk,r+1
t yields generalized p-adic modular forms

DE
k,r+1
(a,b) ∈ V (Zp, Γ(N)) = Γ(M triv,OMtriv ).

Let us call these p-adic modular forms p-adic Eisenstein–Kronecker series.

7.2 p-adic theta functions of the Poincaré bundle

Let us briefly recall the construction of p-adic theta functions for sections of the
Poincaré bundle. For details we refer to [Spr18a, §6]. Let E/S be an elliptic
curve over a p-adic ring S = Spec R with fiberwise ordinary reduction. Let us
write

in : Cn := E[pn]0 →֒ E, jn : Dn := E∨[pn]0 →֒ E∨

for the inclusion of the connected components of the pn-torsion groups. We
define

ϕn : E ։ E/Cn =: E′

and write D′
n := (E′)∨[pn]0 for the connected of the pn-torsion of (E′)∨. Since

ϕ∨
n : (E′)∨ → E∨ is étale, it induces an isomorphism D′

n
∼
→ Dn. Let us write

P for the Poincaré bundle on E ×S E∨ and P ′ for the Poincaré bundle on
E′ ×S (E′)∨. By pullback of the Poincaré bundle P along the commutative
diagram

D′
n (E′)∨

Dn E∨

j′
n

∼= ϕ∨
n

jn

and using the isomorphism (id× ϕ∨
n)∗P

∼
→ (ϕn × id)∗P ′ we obtain an isomor-

phism

(in × jn)∗P
∼
→ (in × j′

n)∗(id× ϕ∨
n)∗P

∼
→ (in × j′

n)∗(ϕn × id)∗P ′.

On the other hand, ϕn ◦ in factors through the zero section and we can use the
canonical rigidification of the Poincaré bundle (e × id)P ′ ∼

→ O(E′)∨ to deduce
the isomorphism of OS-modules

(in × jn)∗P
∼
→ (ϕn ◦ in × j′

n)∗P ′ ∼
→ OCn

⊗OS
ODn

.
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By passing to the limit, we obtain the desired isomorphism

P|Ê×SÊ∨

∼
→ OÊ×SÊ∨ .

Slightly more generally, we can define a trivialization at every N -torsion section
t ∈ E[N ](S) for N coprime to p as follows: The canonical isomorphism

([N ]× id)∗P
∼
→ (id× [N ])∗P

induces an isomorphism

(Tt × [N ])∗P
∼
→ (Tt × id)∗([N ]× id)∗P = ([N ]× id)∗P

∼
→ (id× [N ]∗P). (8)

Since N is coprime to p, the map [N ] : Ê∨ → Ê∨ is an isomorphism. Restricting
(8) along Ê ×S Ê∨ allows us to define a trivialization of the Poincaré bundle
infinitesimally around torsion sections:

P|Êt×SÊ∨

∼
→ P|Ê×SÊ∨

∼
→ OÊ×SÊ∨ . (9)

This trivialization allows us to define p-adic theta functions for sections of
the Poincaré bundle. Let us apply this to the universal trivialized elliptic
curve Etriv/M triv of level Γ(N) with N co-prime to p. Let us recall that
V (Zp, Γ(N)) := Γ(M triv,OMtriv ) is the ring of generalized p-adic modular

forms. For (a, b) ∈ (Z/NZ)2 let us write t̃ := t̃(a,b) for the associated N -torsion
section. The trivialization gives us an isomorphism

Γ(Êtriv
t ×Mtriv Êtriv,∨,P|Êtriv×Êtriv,∨) ∼

→ V (Zp, Γ(N)) JS, T K.

If U ⊆ Etriv×Mtriv Êtriv is an open neighbourhood of the torsion section t̃ and
σ ∈ Γ(U,P), let us write

θt̃(σ) ∈ V (Zp, Γ(N)) JS, T K

for the image of σ|Êtriv
t̃

×Êtriv,∨ under the above isomorphism. We call θ(a,b)(σ)

the p-adic theta function associated to the section σ at t̃. Of particular interest
for us is the p-adic theta function associated to the Kronecker section sD

can. Let
us write

Dϑt̃ := Dϑ(a,b) := θt̃(s
D
can) (10)

for the p-adic theta function associated to the Kronecker section at t̃ = t̃(a,b).
In the next section, we will see that the p-adic theta function Dϑ(a,b) is closely
related to p-adic Eisenstein–Kronecker series.

7.3 p-adic theta functions and p-adic Eisenstein–Kronecker series

Let us now turn our attention to the p-adic interpolation of the p-adic
Eisenstein–Kronecker series. Let us refer to [Spr18a, §8] for details: For a
p-adic ring R the Amice transform is an isomorphism of R-algebras

RJS1, ..., SnK
∼
→ Meas(Zn

p , R), f 7→ µf
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between the ring of power series over R and the ring of p-adic measures with
values in R. It is uniquely characterized by the property

∫

Zn
p

xk1
1 · ...x

kn
n dµf (x1, ..., xn) = ∂◦k1

1 ...∂◦kn
n f |S1=...=Sn=0

where ∂i := (1 + Si) ∂
∂Si

is the invariant derivation associated to the coordinate

Si on Ĝn
m,R. It turns out that the Amice transform of the p-adic theta function

Dϑ(a,b) ∈ V (Zp, Γ(N)) JS, T K provides a measure µEis
D,(a,b) which interpolates

the Eisenstein–Kronecker series p-adically:

Theorem 7.1 ([Spr18a, Cor. 8.2]).

DE
k,r+1
(a,b) =

∫

Z2
p

xkyrdµEis
D,(a,b).

Let us view the restricted measure µEis
D,(a,b)

∣∣∣
Z×

p ×Zp

again as a measure on Zp×Zp

and define Dϑ
(p)
(a,b) as the power series corresponding to it under the Amice

transform. As above, let us write Frob: M triv → M triv for the Frobenius lift
on the moduli space of trivialized elliptic curves induced by taking the quotient
by the canonical subgroup Etriv

։ Etriv/C. By abuse of notation, let us also
write Frob∗ for the map

Frob∗ : V (Zp, Γ(N)) JS, T K→ V (Zp, Γ(N)) JS, T K

obtained by base change, i.e. Frob∗ acts coefficient-wise on a power-series. We
can give the following explicit description of Dϑ

(p)
(a,b)(S, T ):

Proposition 7.2. The Amice transform of the restricted measure

µEis
D,(a,b)

∣∣∣
Z×

p ×Zp

is given by the formula

Dϑ
(p)
(a,b)(S, T ) = Dϑ(a,b)(S, T )− Frob∗

Dϑ(a,b)([p](S), T ).

where [p](S) denotes the [p]-series of the formal multiplicative group.

Proof. In [Spr18a, Thm 11.1] we have proven the formula
∫

Z×
p ×Zp

f(x, y)dµEis
D,(a,b)

=
∫

Zp×Zp

f(x, y)dµEis
D,(a,b) − Frob∗

∫

Zp×Zp

f(p · x, y)dµEis
D,(a,b).

By passing to the Amice transform, we get the desired equality.
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8 The infinitesimal splitting

Recall that the logarithm sheaves can be obtained by taking successive exten-
sions of symmetric powers of HE . These extensions split after pullback along
e, i.e.

e∗L†
n

∼
→

n⊕

k=0

SymkH.

In this section we will extend this splitting to some infinitesimal neighbourhood
of torsion sections. On the universal trivialized elliptic curve we have further
a canonical basis of H. This together with the splitting will provide us with a
canonical basis of (L†

n)rig in tubular neighbourhoods of torsion sections.

8.1 Basic properties

Let E/S be an elliptic curve over a p-adic ring S = Spec R with fiber-wise
ordinary reduction. Let us first recall that L†

n was defined by restriction of the
Poincaré bundle P† to an infinitessimal thickening of E:

L†
n := (prE)∗

(
P†

∣∣∣
E×SInfn

e E†

)
.

Similarly, let us define Ln as the restriction of the classical Poincaré bundle on
E ×S E∨ to an infinitessimal thickening of E, i.e.

Ln := (prE)∗

(
P|E×SInfn

e E∨

)
.

Let us write
L̂n := Ln|Ê , L̂†

n := L†
n|Ê

for the restriction of Ln and L†
n to Ê. The canonical projection of the universal

vectorial extension to the dual elliptic curve E† → E∨ induces an inclusion
Ln →֒ L

†
n which allows us to view Ln as a sub-bundle of L†

n. Note, that the
connection on L†

n does not restrict to a connection on Ln. The Gm-biextension
structure of the Poincaré bundle allows us to construct co-multiplication maps

L̂n → TSymn L̂1, L̂†
n → TSymn L̂†

1

let us refer to [Spr18a, §9.2] for their definition. We have the following:

Lemma 8.1 ([Spr18a, Lemma 9.1]). The co-multiplication maps

L̂n → TSymn L̂1, L̂†
n → TSymn L̂†

1

are injective and isomorphisms on the generic fiber

L̂n,EQp

∼
→ TSymn L̂1,EQp

, L̂†
n,EQp

∼
→ TSymn L̂†

1,EQp
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The construction of section 7.2 provides an isomorphism

P̂ := P
∣∣∣
Ê×SÊ∨

∼
→ OÊ×SÊ∨ = OÊ⊗̂OS

OÊ∨ .

The restriction of this trivialization along Ê ×S Inf1
e E∨ provides the splitting

L̂1 = OÊ ⊗OS
OInf1

e E∨ = OÊ ⊗OS
(OS ⊕ ωE∨/S). (11)

Applying TSymn to the isomorphism L̂1
∼= OÊ ⊗OS

(OS ⊕ ωE∨/S) gives

L̂n,EQp

∼
→

n⊕

k=0

TSymk ωÊQp

where we write ωÊQp
:= OÊQp

⊗OS
ωE∨/S .

8.2 The infinitesimal splitting on the universal trivialized ellip-
tic curve

If we apply this to the universal trivialized elliptic curve Etriv/M triv of level
Γ(N), we obtain

L̂n,Etriv
Qp

∼
→

n⊕

k=0

TSymk ωÊtriv
Qp

.

The isomorphism Êtriv,∨ ∼
→ Êtriv ∼

→ Ĝm,Mtriv provides us with a generator

ω := β∗
(

dT
1+T

)
∈ Γ(Êtriv, ωÊtriv) corresponding to the invariant differential

dT/(1 + T ) on Ĝm. The tensor symmetric algebra carries a canonical divided
power structure x 7→ x[k] := x ⊗ ... ⊗ x on TSym>0 ωÊtriv . This allows us to
define

ω̂[k] := ω[k].

Similarly, the inclusion ωEtriv,∨/Mtriv →֒ H gives us a section [ω] ∈ Γ(M triv,H).
Let [u] ∈ Γ(M triv,H) be the unique section in the unit root subspace of H with
〈[u], [w]〉 = 1. The pair ([u], [ω]) generates H as OMtriv -module and induces
sections

ω̂[k],[l] := [ω][k] · [u][l] ∈ Γ(Êtriv, TSymk+lHÊtriv).

Lemma 8.2 ([Spr18a, Lemma 9.2.]). We have canonical OÊtriv -linear decompo-

sitions:

L̂n,Etriv
Qp

∼
→

n⊕

k=0

ω̂[k] · OÊtriv
Qp

, L̂†
n,Etriv

Qp

∼
→

⊕

k+l≤n

ω̂[k,l] · OÊtriv
Qp

.

These decompositions are compatible with the transition maps

L̂n,Etriv
Qp

։ L̂n−1,Etriv
Qp

, L̂†
n,Etriv

Qp

։ L̂†
n−1,Etriv

Qp

and the inclusion L̂n,Etriv
Qp
→֒ L̂†

n,Etriv
Qp

.
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Let us write Etriv
Qp

for the rigidification of Etriv and ]t̃[⊆ Etriv
Qp

for the tubular
neighbourhood in Etriv

Qp
of the reduction of the torsion section t̃. Let us write

Êtriv
t̃

for the formal completion of Êtriv along t̃. Now,

Êtriv
t̃

∼
→ Êtriv ∼

→ Ĝm,Mtriv

yields an isomorphism of rigid analytic spaces:

]t̃[ ∼
→ B−(0, 1)×Mtriv

Qp

The isomorphism (9) induces

Ln|Êtriv
t̃

∼
→ Ln|Êtriv = L̂n.

Combining this with the decomposition

L̂n,Etriv
Qp

∼
→

n⊕

k=0

TSymk ωÊtriv
Qp

and passing to the associated rigid analytic space, we obtain the following:

Corollary 8.3. There is a natural isomorphism of Oan
B−(0,1)×Mtriv

Qp

-modules

(
L†

n,Etriv
K

)rig ∣∣∣
]t̃[

∼
→

⊕

k+l≤n

ω̂[k,l]Oan
B−(0,1)×Mtriv

Qp

.

The basis (ω̂[k,l])0≤k+l≤n is compatible with the transition maps of the logarithm

sheaves.

We can now express the connection on L̂n
†

explicitly:

Lemma 8.4. The connection ∇L†
n

on L̂n
†

is explicitly given under the decom-

position

L̂†
n,Etriv

Qp

∼
→

⊕

k+l≤n

ω̂[k,l] · OÊtriv
Qp

.

by the formula

∇L†
n
(ω̂[k,l]) = (l + 1)ω̂[k,l+1] ⊗ ω.

Proof. We have proven in [Spr18a, Lemma 9.4] that

∇L†
n
(ω̂[k,l]) = c · (l + 1)ω̂[k,l+1] ⊗ ω

for some c ∈ Zp. With slightly more effort, we can refine this and prove c = 1.
By definition, the basis ω̂[k,l] is compatible with the co-multiplication maps

L̂†
n,EQp

∼
→ TSymn L̂†

1,EQp
.
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Further these co-multiplication maps are horizontal, thus it is enough to prove
the case n = 1. For simplicity let us write M := M triv and E = Etriv.
As in [Kat81, §5.1] let us write H•

dR

(
Ê/M

)
for the relative cohomology of

the separated completion Ω̂1
Ê/M

of the classical de Rham complex. Let us

write VIC
(

Ê/M
)

for the category of locally free OÊ-modules of finite rank

equipped with an (integrable) M -connection, i.e. modules F with anOM -linear
derivative

F → Ω̂1
Ê/M

⊗O
Ê
F .

Similarly, let us write VIC (E/M) for the category of locally free OE-modules
of finite rank equipped with an (integrable) M -connection. Let us consider OE

and HE as objects of VIC (E/M) equipped with the trivial connection. To an
extension

0→ HE → F → OE → 0

we can associate a section Γ(M, H1
dR (E/S,HE)) as the image of 1 ∈

Γ(S,OS) = Γ(S, H0
dR (E/S)) under the connecting homomorphism

0→ H0
dR (E/S,HE)→ H0

dR (E/S,F)→ H0
dR (E/S)→ H1

dR (E/S,HE) .

This gives us a map

δ : Ext1
VIC(E/M) → Γ(M, H1

dR (E/S,HE)) = Γ(M,H⊗H1
dR (E/M)).

By the defining property of the logarithm sheaves, we know that δ([L†
1]) cor-

responds to the identity section of H∨ ⊗ H using the canonical isomorphism
H1

dR (E/M) ∼= H∨. Similarly, we have a connecting homomorphism

δ̂ : Ext1
VIC(Ê/M) → Γ(M, H1

dR

(
Ê/S,HE

)
) = Γ(M,H⊗H1

dR

(
Ê/M

)
).

By restriction along Ê →֒ E we get a commutative diagram

Ext1
VIC(E/M)(OE ,HE) Γ(M,H⊗H1

dR (E/M))

Ext1
VIC(Ê/M)(OÊ ,HÊ) Γ(M,H⊗H1

dR

(
Ê/M

)
).

δ

δ̂

It is straight-forward to check, that δ̂([L̂†
1]) is contained in Γ(M,H⊗D(Ê/M))

where D(Ê/M) ⊆ H1
dR

(
Ê/S

)
is the submodule of primitive elements [Kat81,

§5.1]. There is a natural inclusion ωE/M →֒ D(Ê/M) which is in our case an
isomorphism since the co-kernel is the co-Lie algebra of the dual p-divisible
group of Ê over R [Kat81, (5.3.2)]. In particular, we can identify the inclusion

D(Ê/M) ⊆ H1
dR

(
Ê/M

)
with the natural inclusion ωE/M ⊆ H1

dR

(
Ê/M

)
.
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Using this identification, the above commutative diagram and δ([L†
1]) = idH

implies
δ̂([L̂†

1]) = u⊗ [ω] ∈ Γ(M,H⊗H1
dR

(
Ê/M

)
).

Indeed, under the canonical projection H ։ ω∨
E/M the unit root space is

mapped isomorphically onto ω∨
E/M and the generator u maps onto the dual

ω∨ of ω. On the other hand, since the basis ω̂[0,0], ω̂[0,1], ω̂[1,0] splits the exten-
sion

0→ HÊ → L̂
†
1 → OÊ → 0

we can compute the boundary map explicitly by the formula [∇L†
1
(ω̂[0,0])] ∈

Γ(M, H1
dR

(
Ê/M

)
⊗H) where

[·] : Ω̂1
Ê/M

→ H1
dR

(
Ê/M

)

maps a form to its associated cohomology class. Since we already know
∇L†

1
(ω̂[0,0]) = c · ω̂[0,1] ⊗ ω and since ω̂[0,1] := u, we get

δ̂([L̂†
1]) = [∇L†

1
(ω̂[0,0])] = c · u⊗ [ω].

We conclude c = 1.

The Frobenius structure

ΦL†
n

: φ∗
E(L†

n)rig ∼
→ (L†

n)rig

induces a map on global sections

Φ: Γ(ĒK , j†
D(L†

n))→ Γ(ĒK , j†
D(L†

n)), α 7→ ΦL†
n
(φ∗

Eα).

Here, note that j†
D denotes the overconvergent sections functor j†

D :=
lim jV ∗j−1

V where V runs over all strict neighbourhoods of UK in ĒK . The
Frobenius structure can be expressed in terms of the basis as follows:

Lemma 8.5. The Frobenius structure is given by the following formula:

Φ(ω̂[k],[l]) = p−lω̂[k],[l].

In particular, Φ acts trivially on L̂n.

Proof. From [Spr18a, Lemma 9.3] we have the formula

L†
n → φ∗

EL
†
n, ω̂[k],[l] 7→ pl · φ∗ω̂[k],[l].

The result follows, since the Frobenius structure is by definition the inverse of
this map.
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Proposition 8.6. Let us choose some natural number D > 1 co-prime to N .

The analytification of the section (1 − Φ)(lD
n ) is given by the explicit formula:

(
(1 − Φ)(lD

n )
)rig

∣∣∣
]t̃[

=
n∑

k=0

(
(1 + s′)

∂

∂s′

)◦k

Dϑ
(p)

t̃
(s, s′)

∣∣∣∣∣
s′=0

ω̂[k,0] ⊗ ω (12)

Here, Dϑ
(p)

t̃
is the p-adic theta function defined in (10) and s and s′ are the

coordinates corresponding to the variables S and T in V (Zp, Γ(N)) JS, T K.

Proof. Since lD
n is obtained by restriction of sD

can to Etriv×Mtriv Infn
e Etriv,∨ and

since Dϑt̃ is the p-adic theta function associated to sD
can at t̃, we deduce from

[Spr18a, Lemma 9.6] the formula

(
(lD

n )
)rig

∣∣∣
]t̃[

=
n∑

k=0

(
(1 + s′)

∂

∂s′

)◦k

Dϑt̃(s, s′)

∣∣∣∣∣
s′=0

ω̂[k,0] ⊗ ω.

Recall from proposition 7.2 the identity

Dϑ
(p)
(a,b)(S, T ) := Dϑ(a,b)(S, T )− Frob∗

Dϑ(a,b)([p](S), T ).

Let us denote by φ∗ : OÊtriv → OÊtriv the map induced by φ : Êtriv → Êtriv on
structure sheaves. lemma 8.5 shows the commutativity of the diagram

Γ(Ê, L̂n)
⊕n

k=0 Γ(OÊ , ω̂[k] · OÊ)

Γ(Ê, L̂n)
⊕n

k=0 Γ(OÊ , ω̂[k] · OÊ).

≃

Φ φ∗

≃

In terms of the explicit coordinates on Êtriv coming from the trivialization
Êtriv ∼

→ Ĝm,Mtriv we can describe the Frobenius lift φ# explicitly as

V (Zp, Γ(N)) JSK→ V (Zp, Γ(N)) JSK, f(S) 7→ Frob∗f([p](S)).

Thus, we obtain

(
(1− Φ)(lD

n )
)rig

∣∣∣
]t̃[

=

n∑

k=0

(
(1 + s′)

∂

∂s′

)◦k (
Dϑt(s, s′)− Frob∗

Dϑ(a,b)([p](s), s′)
)
∣∣∣∣∣
s′=0

ω̂[k,0] ⊗ ω =

n∑

k=0

(
(1 + s′)

∂

∂s′

)◦k

Dϑ
(p)
t (s, s′)

∣∣∣∣∣
s′=0

ω̂[k,0] ⊗ ω.
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9 The syntomic realization and moment functions of the Eisen-
stein measure

In the following, we would like to give a more explicit description of the syn-
tomic realization of the polylogarithm for elliptic curves with ordinary reduc-
tion. Let us consider the universal situation. Let E ord and M ord be the syn-
tomic data associated to the ordinary locus of the modular curve of level Γ(N).
According to corollary 4.3 we already know that the syntomic polylogarithm is
uniquely represented by the pair

([(LD
n , ρn)])n≥0 = pol

D,syn

satisfying
∇L(ρ̃n) = (1− Φ)(lD

n )

The sections LD
n are constructed in a natural way out of the Poincaré bundle

and appear in the de Rham realization of the elliptic polylogarithm. Our aim
is to give a more explicit description of the overconvergent sections ρn. Let
(0, 0) 6= (a, b) ∈ (Z/NZ)2 and t ∈ Eord[N ](Mord) resp. t̃ ∈ Etriv[N ](M triv) be
the associated N -torsion sections. Recall that we obtain an inclusion

Γ(]t[, (L†
n,Eord )rig) →֒ Γ(]t̃[, (L†

n,Etriv )rig).

by pullback along the canonical projection map. Let us write ρ̃n for the pullback
of ρn. The infinitesimal splitting allows us to decompose ρn as

ρ̃n|]t̃[ =
∑

k+l≤n

êt̃,(k,l)ω̂
[k,l]

with êt̃,(k,l) ∈ Γ
(

B−(0, 1)×Mtriv,Oan
B−(0,1)×Mtriv

Qp

)
. It will be convenient to

view êt̃,(k,l) as analytic functions on the open unit disc with values in the ring
of generalized p-adic modular forms:

B−(0, 1)→ V (Zp, Γ(N))⊗Zp
Qp, x 7→ êt̃,(k,l)(x)

The syntomic polylogarithm admits the following explicit description:

Theorem 9.1. The elliptic polylogarithm in syntomic cohomology on the ordi-

nary locus of the modular curve is given by the pair

[(ρn, LD
n )] = pol

D,syn
.

Here, (LD
n )n≥0 is the compatible system of 1-forms with values in the logarithm

sheaves describing the de Rham part. We have the following explicit description

of ρ̃n in terms of moment functions of the p-adic Eisenstein measure: For
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(a, b) 6= (0, 0) let t = ta,b be the associated N -torsion section on the universal

elliptic curve Eord with Γ(N)-level structure. We have the decomposition

ρ̃n|]t̃[ =
∑

k+l≤n

êt̃,(k,l)ω̂
[k,l]

with rigid analytic functions (s 7→ êt̃,(k,l)(s))k,l≥0 on the open unit disc with

values in the ring of generalized p-adic modular forms which are explicitly given

by:

êt̃,(k,l)(s) = (−1)ll!
∫

Z×
p ×Zp

ykx−(l+1)(1 + s)xdµ
Eis,(p)
D,(a,b)(x, y)

In the proof, we will use the differential equation

∇L(ρ̃n) = (1− Φ)(lD
n )

to characterize the functions êt̃,(k,l). While this differential equation determines
ρn globally, it turns out that the local differential equation on tubular neigh-
bourhoods of torsion sections does not have a unique solution. In [BKT10,
Lem. 3.9] this problem is solved by imposing a trace-zero condition making
the solution unique. We follow this strategy and prove in a first step that
x 7→ êt̃,(k,l)(x) satisfies a trace-zero condition. The trace-zero condition is an
immediate consequence of the distribution relation of the Kronecker section
scan:

Lemma 9.2. The functions s 7→ êt̃,(k,l)(s) satisfy:

∑

ζ∈Ĝm[p](Cp)

êt̃,(k,l)

(
s +

Ĝm
ζ
)

= 0, ∀s ∈ B−(0, 1)(Cp)

Proof. Let us write ϕ : Etriv
։ E′ := Etriv/C for the quotient by the canonical

subgroup and P ′ for the Poincaré bundle of E′. The universal property of the
Poincaré bundle gives an isomorphism

γϕ,id : (ϕ× id)∗P ′ ∼
→ (id× ϕ∨)∗P .

For τ ∈ ker ϕ we obtain

(Tτ × ϕ∨)∗P
∼
→ (Tτ ◦ ϕ× id)∗P ′ = (ϕ× id)∗P ′ ∼

→ (id× ϕ∨)∗P . (13)

We have studied such translation operators in more generality in [Spr18a, §3.3,
Appendix A]. To be consistent with the notation of [Spr18a], let us write

Uϕ,id
τ,e : (Tτ × ϕ∨)∗P

∼
→ (id× ϕ∨)∗P

for the map in (13). We have proven in [Spr18a, Corollary A.4] the following
formula

∑

τ∈ker ϕ(S)

([D]× id)∗Uϕ,id
τ,e

(
(Tτ × ϕ∨)∗sD

can

)
= (14)

=([D] × id)∗γϕ,id

(
(ϕ× id)∗(sD

can,E′)
)

.
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On the other hand, restricting (13) along E × Infn
e E∨ gives the isomorphism

Ũτ : T ∗
τ Ln

∼
→ Ln.

Since lD
n is obtained by restriction of sD

can along E × Infn
e E∨, we can deduce

from (14) the formula
∑

τ∈Êtriv[p]

Ũτ (T ∗
τ lD

n ) = pΦ(lD
n ).

Since τ ∈ ker(ϕ) we have Ũτ (T ∗
τ Φ(lD

n ))) = Φ(lD
n ), which allows us to reformu-

late the above formula as
∑

τ∈Êtriv[p]

Ũτ (T ∗
τ (1− Φ)(lD

n )) = 0. (15)

Again, by the universal property of the Poincaré bundle (P†,∇†) with inte-
grable connection, we obtain an horizontal isomorphism

(Tτ × ϕ†)∗P† ∼
→ (Tτ ◦ ϕ× id)∗(P ′)† = (ϕ× id)∗(P ′)† ∼

→ (id× ϕ∨)∗P†. (16)

Restricting this along E × Infn
e E∨ gives us an horizontal isomorphism

Ũ†
τ : T ∗

τ L
†
n

∼
→ L†

n.

Both translation isomorphisms are compatible with the inclusion Ln ⊆ L
†
n, i.e.

we have a commutative diagram

T ∗
τ Ln T ∗

τ L
†
n

Ln L†
n.

Ũτ Ũ†
τ

In particular, we obtain from ∇(ρn) = (1−Φ)(lD
n ) and the horizontality of Ũ †

τ

the formula

∇L†
n


 ∑

τ∈Êtriv[p]

Ũ†
τ (T ∗

τ ρ̃n)


 =

∑

τ∈Êtriv[p]

Ũ†
τ (T ∗

τ

[
(1 − Φ)lD

n

]
).

Using (15) we get

∇L†
n


 ∑

τ∈Êtriv[p]

Ũτ (T ∗
τ ρ̃n)


 = 0. (17)

But the only overconvergent section s ∈ Γ(ĒK , j†
D(Logn

syn
)) satisfying the dif-

ferential equation
∇L†

n
(s) = 0
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is the zero section. We conclude
∑

τ∈Êtriv[p]

Ũτ (T ∗
τ ρ̃n) = 0

Recall, that ρ̃n|]t̃[ =
∑

k+l≤n êt,(k,l)ω̂
[k,l], so passing to the tubular neighbour-

hood ]t̃[ proves the claimed equality

∑

ζ∈Ĝm[p](Cp)

êt̃,(k,l)

(
s +

Ĝm
ζ
)

= 0, ∀s ∈ B−(0, 1)(Cp).

Proof of theorem 9.1. In the following let us consider the elliptic curve Etriv,
i. e. lD

n refers to the section lD
n,Etriv on Etriv. Recall from corollary 8.3 that(

(1− Φ)(lD
n )

)
n≥0

is mapped to

n∑

k=0

(
(1 + s′)

∂

∂s′

)◦k

Dϑ
(p)

t̃
(s, s′)

∣∣∣∣∣
s′=0

ω̂[k,0] ⊗ ω

under (
L†

n,Etriv
K

)rig ∣∣∣
]t̃[

∼
→

⊕

k+l≤n

ω̂[k,l]Oan
B−(0,1)×Mtriv

Qp

.

Thus, the differential equation

∇L†
n
(ρ̃n) = (1− Φ)(lD

n )

can be rewritten using the infinitesimal splitting as

∇L†
n


 ∑

k+l≤n

êt̃,(k,l)(s)ω̂[k,l]


 =

n∑

k=0

(
(1 + s′)

∂

∂s′

)◦k

Dϑ
(p)

t̃
(s, s′)

∣∣∣∣∣
s′=0

ω̂[k,0]⊗ω,

for n ≥ 0. Recall, that Dϑ
(p)
t (s, s′) is the Amice transform of the p-adic measure

µEis
D,(a,b)

∣∣∣
Z×

p ×Zp

. This implies the formula

(
(1 + s′)

∂

∂s′

)◦k

Dϑ
(p)
t (s, s′)

∣∣∣
s′=0

=
∫

Z×
p ×Zp

yk(1 + s)xdµEis
D,(a,b).

From corollary 8.3 we know that the connection ∇L†
n

expresses via the infinites-

imal splitting on
⊕

k≥0OĜ
m,Mtriv

ω[k,0] as

∇L†
n
(ω̂[k,l]) = (l + 1)ω̂[k,l+1] ⊗ ω.
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Thus, we obtain the following explicit system of differential equations satisfied
by êt̃,(k,l)(s):

(1 + s)
∂

∂s
êt̃,(k,0)(s) =

∫

Z×
p ×Zp

yk(1 + s)xdµ
Eis,(p)
D,(a,b)(x, y), k ≥ 0

(1 + s)
∂

∂s
êt̃,(k,l)(s) = −lêt,(k,l−1)(s), l > 0, k ≥ 0.

Here, we have used the fact that Dϑ
(p)

t̃
is the Amice transform of the measure

µ
Eis,(p)
D,(a,b). Further, by lemma 9.2 the functions êt̃,(k,l)(s) satisfy the following

trace-zero condition:
∑

ζ∈Ĝm[p](Cp)

êt̃,(k,l)(s +
Ĝm

ζ) = 0, ∀s ∈ B−(0, 1)(Cp)

Claim: The system
(
êt̃,(k,l)(s)

)
k,l≥0

is the only system of analytic functions on

B−(0, 1) with values in V (Zp, Γ(N))⊗Qp satisfying:

1. (1 + s) ∂
∂s êt̃,(k,0)(s) =

∫
Z×

p ×Zp
yk(1 + s)xdµ

Eis,(p)
D,(a,b)(x, y), k ≥ 0

2. (1 + s) ∂
∂s êt̃,(k,l)(s) = −lêt,(k,l−1)(s), l > 0, k ≥ 0

3.
∑

ζ∈Ĝm[p](Cp)
êt̃,(k,l)(s +

Ĝm
ζ) = 0, ∀s ∈ B−(0, 1)(Cp).

Pf. of the claim: The functions êt̃,(k,l)(s) satisfy the above conditions. For
uniqueness let k, l ≥ 0. By induction on k it is enough to show that any
analytic function F on B−(0, 1) with values in V (Zp, Γ(N))⊗Qp satisfying

(A) (1 + s) ∂
∂s F =

{∫
Z×

p ×Zp
yk(1 + s)xdµ

Eis,(p)
D,(a,b)(x, y) if l = 0

−lêt̃,(k,l−1)(s) if l > 0

(B)
∑

ζ∈Ĝm[p](Cp)
F (s +

Ĝm
ζ) = 0, ∀s ∈ B−(0, 1)(Cp)

satisfies F = êt̃,(k,l). Indeed, since any analytic function is given by a power
series, one deduces from (A) that the difference of two solutions is a constant
c ∈ V (Zp, Γ(N)) ⊗ Qp. By (B) we conclude p · c =

∑
ζ∈Ĝm[p](Cp)

c = 0 which
implies c = 0 and proves the claim.
Now, the theorem follows from the following observation: The sequence
(e′

k,l)k,l≥0 defined by

e′
k,l(s) := (−1)ll!

∫

Z×
p ×Zp

ykx−(l+1)(1 + s)xdµ
Eis,(p)
D,(a,b)(x, y)

satisfies:

1. (1 + s) ∂
∂s e′

k,0(s) =
∫
Z×

p ×Zp
yk(1 + s)xdµ

Eis,(p)
D,(a,b)(x, y), k ≥ 0
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2. (1 + s) ∂
∂s e′

k,l(s) = −l · e′
k,l−1(s), k ≥ 0, l > 0

3.
∑

ζ∈Ĝm[p](Cp)
e′

k,l(s +
Ĝm

ζ) = 0, ∀s ∈ B−(0, 1)(Cp), k, l ≥ 0.

Indeed, (a) and (b) are obvious and (c) follows since e′
k,l is the Amice transform

of a p-adic measure which is supported on Z×
p . From the above claim we deduce

e′
k,l(s) = êt̃,(k,l)(s) which proves the theorem.
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[BL94] A. Bĕılinson and A. Levin, The elliptic polylogarithm, Motives (Seat-
tle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math.
Soc., Providence, RI, 1994, pp. 123–190. MR 1265553

[DN15] F. Déglise and W. Nizioł, On p-adic absolute Hodge cohomology and

syntomic coefficients, I, Comment. Math. Helv. 93 (2018), no. 1,
71–131.

[Kat73] N. M. Katz, p-adic properties of modular schemes and modular

forms, Modular functions of one variable, III (Proc. Internat. Sum-
mer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973,
pp. 69–190. Lecture Notes in Mathematics, Vol. 350. MR 0447119

[Kat76] N. M. Katz, p-adic interpolation of real analytic Eisenstein series,
Ann. of Math. (2) 104 (1976), no. 3, 459–571. MR 0506271

[Kat81] N. M. Katz, Crystalline cohomology, Dieudonné modules, and Ja-

cobi sums, Automorphic forms, representation theory and arith-
metic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math.,
vol. 10, Tata Inst. Fundamental Res., Bombay, 1981, pp. 165–246.
MR 633662

[KLZ17a] G. Kings, D. Loeffler, and S. L. Zerbes, Rankin-Einstein classes for

modular forms, American Journal of Mathematics (2017).

[KLZ17b] G. Kings, D. Loeffler, and S. L. Zerbes, Rankin-Eisenstein classes

and explicit reciprocity laws, Cambridge Journal of Mathematics 5
(2017), no. 1, 1–122.

[Sch14] R. Scheider, The de Rham realization of the elliptic polylogarithm

in families, Ph.D. thesis, Universität Regensburg, January 2014.

[Sol08] N. Solomon, P-adic elliptic polylogarithms and arithmetic applica-

tions, Ph.D. thesis, Ben-Gurion University, 2008, 241 p.

[Spr17] J. Sprang, Eisenstein series via the Poincaré bundle and applica-

tions, Ph.D. thesis, Universität Regensburg, January 2017.

[Spr18a] J. Sprang, Real-analytic Eisenstein series via the Poincarè bundle,
available at https://arxiv.org/abs/1801.05677v2.

[Spr18b] J. Sprang, The algebraic de Rham realization of the el-

liptic polylogarithm via the Poincarè bundle, available at
https://arxiv.org/abs/1802.04996, 2018.

[Urb14] E. Urban, Nearly overconvergent modular forms, Iwasawa theory
2012, Contrib. Math. Comput. Sci., vol. 7, Springer, Heidelberg,
2014, pp. 401–441. MR 3586822

Documenta Mathematica 24 (2019) 1099–1134

https://arxiv.org/abs/1801.05677v2
https://arxiv.org/abs/1802.04996


1134 Johannes Sprang

Johannes Sprang
Universität Regensburg
Fakultät für Mathematik
93040 Regensburg
Germany

Documenta Mathematica 24 (2019) 1099–1134


