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the average size of the 2-Selmer groups of these curves exists, in a
natural sense, and equals 12. Along the way, we consider a map
from these 2-Selmer groups to the moduli space of G-torsors over
an algebraic curve, where G is isogenous to SL4

2, and show that the
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1 Introduction

Let K be a global field. To any elliptic curve E/K and integer n ≥ 1 not
dividing the characteristic of K, one can attach the n-Selmer group

Seln(E) = ker(H1(K,E[n]) →
∏

v

H1(Kv, E)).

The cohomology groups here are Galois cohomology, and the product is over
the set of all places v of the global field K. The n-Selmer group then fits into
a short exact sequence of finite abelian groups

0 //E(K)/nE(K) //Seln(E) //TS(K,E)[n] //0 .

Since it is often easier to compute Seln(E) than the group E(K)/nE(K), this
provides a useful tool for studying the group of rational points E(K). How-
ever, computing Seln(E) for reasonably complicated curves E, even when an
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algorithm is known, can require a large amount of effort. For these reasons, it
is of interest to understand the behaviour of the groups Seln(E) on average.
Recent years have seen striking progress in problems of this type; for some work
of particular relevance to this paper, we refer the reader to any of the papers
[dJ02, BS15, HLHN14].
In this paper, we prove new results about the average size of the 2-Selmer group
of elliptic curves over global fields of positive characteristic. Such a field is, by
definition, the function field K = Fq(X) of an algebraic curve over a finite field.
We will consider the universal family of elliptic curves with two marked rational
points and calculate the average size of the 2-Selmer groups of the curves in
this family satisfying certain conditions. We will accomplish this by relating
these 2-Selmer groups to the invariant theory of a representation constructed
and studied in [Tho13], and then counting sections of certain associated vector
bundles on X .
In order to state our main theorems precisely, we must introduce some notation.
If E/K is an elliptic curve, we can associate its relatively minimal regular model
pE : E → X with identity section O : X → E . The isomorphism class of the line
bundle LE = (R1pE,∗OE)

⊗−1 is an invariant of E, and there are only finitely
many elliptic curves over K up to isomorphism with a given LE , this number
tending to infinity as degLE → ∞. This means we can use the invariant degLE

to order elliptic curves over K, for example in order to define the average size
of the 2-Selmer group. (To further motivate this, recall that if X = P1

Fq
and

K = Fq(t), then degLE = N if and only if E can be described by a minimal
Weierstrass equation

y2 = x3 + a(t)x+ b(t),

where a(t), b(t) ∈ Fq[t], deg a(t) ≤ 4N , and deg b(t) ≤ 6N ; see [Mir81, Corollary
2.5].)
If L is a line bundle on X , then we write XL for the finite set of isomorphism
classes of triples (E,P,Q) as follows:

1. E/K is an elliptic curve such that LE
∼= L⊗2 and the fibres of pE are all

of type I0 or I1.

2. P,Q ∈ E(K) are distinct non-trivial rational points such that sections
O,P ,Q : X → E associated to the origin of E and the points P,Q,
respectively, do not intersect.

Provided that the characteristic of K does not divide 6, an elliptic curve E
with two non-trivial marked points can be represented by an equation

Y (XY + 2q4Z
2) = X3 + p2X

2Z + p4XZ2 + p6Z
3, (1.1)

which sends the marked points, together with the origin, to the line at infinity.
The curves in XL are exactly those for which the discriminant ∆(p2, . . . , p6) of
this equation vanishes to order at most 1 everywhere, when viewed as a section
of H0(X,L⊗24); see §2 below.
We can now state our first main theorem.
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Theorem 1.1. Suppose that charK > 19. The limit

lim
degL→∞

∑

(E,P,Q)∈XL

| Sel2(E)| × |Aut(E,P,Q)|−1 × |E(K)[2]|−1

|XL|

exists and equals 12.

Remark 1.2. 1. This result is what one might expect given known results
about the 2-Selmer groups of elliptic curves without marked points: for
the curves in our family, there is a ‘trivial subgroup’ A(E,P,Q) ⊂ Sel2(E),
generated by the classes of the points P , Q, and which generically has
size 4. It follows that the remainder Sel2(E)/A(E,P,Q) should have average
size 3. For those who prefer an additive decomposition, we find that the
(weighted) average size of Sel2(E) equals the average size of the trivial
subgroup plus the Tamagawa number τ(G) of the reductive group G
defined below.

2. We believe that the weighting of Selmer elements by automorphisms is
natural; similarly for the weighting by K-rational 2-torsion points (which
can be thought of as K-rational automorphisms of the trivial 2-covering
[2] : E → E). In fact, the contribution of E(K)[2] can be suppressed: for
the curves we consider, the groups E(K)[tors] are trivial (because they
inject into the product of fibral component groups, which our hypotheses
imply are trivial; see [Shi91]).

3. The restriction on the characteristic arises because we need to apply
Jacobson–Morozov style results to the Lie algebra over Fq of type D4, for
example in the construction of the Kostant section (see Proposition 3.3
below). It may be possible to relax this restriction slightly.

Let G = (SO4 × SO4)/∆(µ2), where SO4 is the split special orthogonal group
over Fq, and µ2 is its centre. A key role in our proof of Theorem 1.1 is played
by a family of canonically defined maps

inv = inv(E,P,Q) : Sel2(E) → G(K)\G(AK)/
∏

v

G(OKv
), (1.2)

that we call ‘invariant’ maps. In fact, our consideration of these maps leads to
the following generalization of Theorem 1.1, which is a kind of equidistribution
result:

Theorem 1.3. Suppose that charK > 19. Let

f : G(K)\G(AK)/
∏

v

G(OKv
) → R

be a bounded function, and let τG denote the Tamagawa measure on
G(K)\G(AK)/

∏
v G(OKv

). Then the limit

lim
degL→∞

∑

(E,P,Q)∈XL

∑

x∈
Sel2(E)−A(E,P,Q)

f(inv x) × |Aut(E,P,Q)|−1 × |E(K)[2]|−1

|XL|
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exists and equals
∫
g∈G(K)\G(AK)/

∏
v G(OKv )

f(g) dτG.

Taking f = 1 to be the constant function, we recover Theorem 1.1 (after
accounting for the average number of elements in the group A(E,P,Q), which
is a simple task). In general, Theorem 1.3 can be interpreted as saying that
the invariants of non-trivial Selmer elements of elliptic curves in XL become
equidistributed in G(K)\G(AK)/

∏
v G(OKv

) as degL → ∞. It would be very
interesting to get a better understanding of this phenomenon, which persists in
other situations (for example, in the case of 2-Selmer groups of elliptic curves
without marked points, in which caseG should be replaced by the group PGL2).
Can one relate Theorem 1.3 to existing conjectures about statistics of ranks of
2-Selmer groups, as in [PR12]?

The proofs of Theorem 1.1 and Theorem 1.3 rely on a connection between
the universal family of elliptic curves (E,P,Q) with two marked points and
a certain representation (G, V ) which was analyzed in [Tho13] from the point
of view of Vinberg theory, and which is constructed using the adjoint group
over Fq of type D4. The link here exists because the family of curves (1.1)
is a miniversal deformation of the simple curve singularity of type D4. This
connection reduces the problem of counting elements of Selmer groups to that
of counting orbits in certain representations of V . Using the map inv described
above, we reduce this to a problem of counting sections of certain vector bundles
over X .

An interesting point in our proof is the calculation of the image under (1.2)
of the trivial elements of the 2-Selmer group. We can describe these images
explicitly using the principal cocharacter of the ambient group H of type D4

(inside which the pair (G, V ) is constructed); see Lemma 5.7. This gives a
quantitative version of the intuitive statement that ‘trivial elements appear far
into the cusp of V ’.

Aside from the intrinsic interest of results like Theorem 1.1, one of our motiva-
tions was to understand how the techniques of Bhargava–Shankar for counting
integral orbits in coregular representations (see e.g. [BS15]) can be transferred
to this function field setting. Instead of reduction theory we use the Harder–
Narasimhan (or Shatz) stratification of the space G(K)\G(AK)/

∏
v G(OKv

)
by the canonical reduction of G-torsors (an idea implicit in [HLHN14]). After
some reinterpretation, we find that the methods of Bhargava–Shankar are still
very effective. In particular, the technique of ‘cutting off the cusp’ works in
a very similar way (compare e.g. [Tho15, §5] and the proof of Theorem 5.9
below).

We have restricted ourselves to pointed curves (E,P,Q) satisfying conditions 1.
and 2. above, since this simplifies our analysis of the invariant map (1.2). From
the point of view of the invariant theory of (G, V ), it corresponds to restricting
to orbits with square-free discriminant ∆. It would be possible to remove
this restriction, at the cost of a more detailed analysis of integral orbits. For
example, the invariant map would become multi-valued, since the uniqueness of
integral representatives (see Theorem 5.5) does not hold in general. Compare
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[BS15, §3.2] for the kinds of problems that arise.

The preprint [BH], made available after this paper was written, treats the
average sizes of Selmer groups of a number of families of elliptic curves with
marked rational points, considered over the rational numbers. The F2 family
studied there is the same (up to a change of variable) as the one studied here,
and indeed the coregular representation used to study it is also the same. We
note that in op. cit. the authors obtain only an upper bound of 12 for the
average size of the Selmer group. In the function field setting, we are able
to sidestep all difficulties involved in sieving to Selmer elements by using the
results of [Poo03] (a tactic also used in the paper [HLHN14]), which is why we
are able to obtain an exact average.

We now describe the structure of this paper. In §2, we introduce the universal
family of elliptic curves with two marked points, and study their projective
embeddings and integral models. In §3, we introduce the representation (G, V )
and describe its invariant theory. We also introduce the discriminant ∆ and
the important notion of trivial orbits in G(K)\V (K); these are the orbits that
will eventually correspond to elements of the trivial subgroup A(E,P,Q) of the 2-
Selmer group. We also give some useful criteria for elements in V (K) either to
have vanishing discriminant, or to lie in a trivial orbit. In §4, we describe the
Harder–Narasimhan stratification of G(K)\G(AK)/

∏
v G(OKv

) (at the level
of points only) and the relation between summing over strata and integrating
over the adelic points of parabolic subgroups of G. Finally, in §5, we describe
the relation between the pair (G, V ) and the family of curves (1.1), and exploit
this to prove our main theorems Theorem 5.9 and Theorem 5.11.
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1.2 Notation

In this paper, we will generally use the letter K to denote a global field of
positive characteristic, therefore the function field Fq(X) of a smooth, projec-
tive, geometrically connected curve X over Fq. If v is a place of K, then we
will write Kv for the completion of K at v, OKv

for the ring of integers of v,
and ̟v ∈ OKv

for a choice of uniformizer. We will write ordKv
: K×

v → Z

for the corresponding normalized discrete valuation, k(v) = OKv
/(̟v) for the

residue field, and qv = |k(v)| for the cardinality of the residue field. We will
generally fix a separable closure Ks/K and separable closuresKs

v/Kv, together
with compatible embeddings Ks →֒ Ks

v . We then define ΓK = Gal(Ks/K) and
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ΓKv
= Gal(Ks

v/Kv). There are canonical maps ΓKv
→ ΓK . We let κ(v) de-

note the residue field of Ks
v , which is an algebraic closure of k(v). We write

IKv
⊂ ΓKv

for the inertia group.

We write ÔK =
∏

v OKv
for the maximal compact subring of the adele ring

AK =
∏′

v Kv. We will write | · |v : K×
v → R>0 for the valuation satisfying

|̟v| = q−1
v , and ‖ ·‖ =

∏
v | · |v : A×

K → R>0 for the adelic norm, which satisfies
the product formula ‖γ‖ = 1 for all γ ∈ K×. If Y is a integral smooth scheme
over Kv, and ωY is a non-vanishing differential form of top degree on Y , then
we write |ωY |v for the corresponding measure on Y (Kv).

If S is a scheme, a reductive group over S is a smooth group schemeG → S with
geometric fibres which are (connected and) reductive. If G is a group scheme
over S which acts on another schemeX → S, then for x ∈ X(S) we write ZG(x)
for the scheme-theoretic stabilizer of x. If Z ⊂ X is a closed subscheme, then we
write ZG(Z) and NG(Z) for the scheme-theoretic centralizers and normalizers
of Z. If G is a reductive group over a field then we write Z0(G) for the identity
component of the centre ZG of G. Lie algebras will be denoted using gothic
letters (e.g. LieG = g).

If G is a smooth group scheme over Fq, and K = Fq(X), then we write µG for
the right-invariant Haar measure on G(AK) which gives measure 1 to the open

compact subgroup G(ÔK) ⊂ G(AK). If G is semisimple, then we will write τG
for the Tamagawa measure on G(AK). These two measures are related by the
formula (see [Wei95]):

τG = qdimG(1−gX )

[
∏

v

∫

G(OKv )

|ωG|v

]
µG,

where ωG is a non-vanishing invariant differential form of top degree on G
(hence defined over Fq) and gX denotes the genus of X .

If Y is any Fq-scheme and k/Fq is a field extension, then we write Yk =
Y ×SpecFq

Spec k for the base extension and Y (k) for the set of k-points.

2 Elliptic curves with two marked points

Let k be a field of characteristic not dividing 6. We consider tuples (E,P,Q),
whereE is an elliptic curve over k (with origin pointO ∈ E(k)) and P,Q ∈ E(k)
are distinct, non-trivial marked points.

Such pointed curves have a distinguished class of plane embeddings which are
different to the usual Weierstrass embeddings, being defined by the linear sys-
tem associated to the degree 3 divisor O + P + Q. Indeed, this linear system
is very ample, so embeds E into the projective plane P2

k in such a way that
the points O, P , Q are collinear. If X,Y, Z are the co-ordinates on P2

k then
we can assume, after a projective transformation, that O, P , Q are given re-
spectively by [0 : 1 : 0], [1 : 1 : 0], and [−1 : 1 : 0]. The co-ordinate system is
then uniquely determined up to substitutions of the form X ❀ aX + bZ and
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Y ❀ aY + cZ with a ∈ k×, b, c ∈ k. It is easy to check that there is a unique
such substitution with a = 1 leading to an equation of the form

Y (XY + 2q4Z
2) = X3 + p2X

2Z + p4XZ2 + p6Z
3. (2.1)

We define the associated polynomial f(x) = x4 + p2x
3 + p4x

2 + p6x+ q24 , and
∆(p2, p4, q4, p6) = disc f ∈ Z[p2, . . . , p6]. The following is elementary:

Lemma 2.1. Let p2, p4, q4, p6 ∈ k, and let E be the plane curve over k defined
by the equation (2.1). Then E is smooth if and only if ∆(p2, p4, q4, p6) 6= 0.
The assignment (E,P,Q, t) 7→ (p2, p4, q4, p6) defines a bijection between the
following two sets:

• The set of tuples (E,P,Q, t), where E is an elliptic curve over k and
P,Q ∈ E(k) are distinct non-trivial rational points, and t is a basis for
H0(E,OE(O)/OE). These tuples are considered up to isomorphism (i.e.
isomorphisms ϕ : E → E′ of elliptic curves which preserve the other
data).

• The set of tuples (p2, p4, q4, p6) ∈ k4 such that ∆(p2, p4, q4, p6) 6= 0.

Under this bijection, a tuple (E,P,Q, λt) (λ ∈ k×) corresponds to
(λp2, λ

2p4, λ
2q4, λ

3p6).

Proof. The only thing to note is that the bijection is normalized by the re-
quirement that Y/Z ∈ H0(E,OE(O + P +Q)) has image in OE(O)/OE equal
to t.

A similar story works over a more general base:

Proposition 2.2. Let S be a Z[1/6]-scheme, and let p : E → S be a (smooth,
proper) family of elliptic curves equipped with identity section O ∈ E(S) and
sections P,Q ∈ E(S) such that on every fibre, the associated points are distinct
and non-trivial. Let L = (p∗[OE(O)/OE ])

⊗−1. Then L is an invertible OS-
module, and there are canonically determined sections p2 ∈ H0(S,L), p4, q4 ∈
H0(S,L⊗2), and p6 ∈ H0(S,L⊗3), such that E is isomorphic to the subscheme
of P(L ⊕ L⊕OS) defined by the equation

Y (XY + 2q4Z
2) = X3 + p2X

2Z + p4XZ2 + p6Z
3, (2.2)

where (X,Y, Z) is the co-ordinate system relative to the decomposition L⊕L⊕
OS. Moreover, ∆(p2, . . . p6) ∈ H0(S,L⊗12) is an everywhere non-vanishing
section.
Conversely, suppose given an invertible OS-module L, together with sections
p2, . . . , p6 as above such that ∆(p2, p4, q4, p6) is a non-vanishing section of L⊗12.
Then the relative curve defined by the equation (2.2) is an elliptic curve with
marked points at infinity that are distinct and non-trivial in each fibre.
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Proof. The direct image p∗(Ω
1
E/S) is locally free of rank 1. By Grothendieck–

Serre duality, there is a canonical isomorphism R1p∗OE
∼= p∗(Ω

1
E/S)

⊗−1. If

R ∈ E(S), then there is a short exact sequence

0 //OE
//OE(R) //OE(R)/OE

//0, (2.3)

which leads to an isomorphism p∗[OE(R)/OE ] ∼= R1p∗OE . The pairing
p∗[OE(R)/OE ] × p∗(Ω

1
E/S) → OS can be described as follows: it sends a pair

(g, ω) to the residue of the meromorphic differential gω along R.
We are free to localize, so we can assume that S = SpecA is affine and
that p∗(Ω

1
E/S) is a free A-module of rank 1. Let ω be a basis element;

by the above this determines, for any R ∈ E(S), a dual basis element
fR ∈ H0(E,OE(R)/OE), and hence an isomorphism H0(E,OE(R)/OE) ∼= A.
It follows that the short exact sequence

0 //OE
//OE(O + P +Q) //OE(O + P +Q)/OE

//0 (2.4)

gives rise to a long exact sequence of finite A-modules

0 //A //H0(E,OE(O + P +Q)) //A3 η
//A //0, (2.5)

where the map η is summing co-ordinates. We choose functions x, y ∈
H0(E,OE(O + P +Q)) to map to (0, 1,−1) and (−2, 1, 1) in A3, respectively.
Then x, y are uniquely determined up to addition of constants. We have 10
elements

1, x, y, x2, xy, y2, x3, x2y, xy2, y3 ∈ H0(E,OE(3(O + P +Q))).

Note that x3 and xy2 have polar divisors 3P+3Q and 2O+3P+3Q, respectively,
and that x3 − xy2 ∈ H0(E,OE(2O + 2P + 2Q)). Continuing in this fashion,
we see that there is a unique A-linear relation of the form

xy2 + a1y
2 + a2xy + a3y = x3 + a4x

2 + a5x+ a6 (2.6)

for constants a1, . . . , a6 ∈ A. We are free to add constants to x, y, and there is
a unique way to do this in order to get a1 = a2 = 0, giving an equation

y(xy + 2q4) = x3 + p2x
2 + p4x+ p6 (2.7)

which is uniquely determined by (E,P,Q) and our chosen basis element ω ∈
p∗(Ω

1
E/S). The proposition now follows from this and the observation that

the affine curve defined by the equation (2.7) is smooth if and only if the
discriminant of the polynomial f(x) = x4 + p2x

3 + p4x
2 + p6x + q24 is non-

zero.

We can use this theory to describe integral models of such triples (E,P,Q)
over a Dedekind scheme. Let S be a Dedekind scheme on which 6 is a unit,
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let K = K(S), and let L be an invertible OS-module. Suppose given sec-
tions p2 ∈ H0(S,L), p4, q4 ∈ H0(S,L⊗2), and p6 ∈ H0(S,L⊗3) such that
∆(p2, p4, q4, p6) ∈ H0(S,L12) is non-zero. Then the equation (2.2) defines a
proper flat morphism p : E → S with smooth generic fibre (and indeed, singu-
lar fibres exactly above those points of S where ∆ vanishes).
We call the data of (L, p2, . . . , p6) minimal if we cannot find an invertible sub-
sheaf M ⊂ L such that the sections p2, . . . , p6 all come from M. The minimal
data is uniquely determined by the triple (E,P,Q) over K, in the following
sense: if (L, p2, . . . , p6) and (M, p′2, . . . , p

′
6) are two sets of minimal data as-

sociated to E, then we can find an isomorphism α : L → M of invertible
OS-modules such that α(p2, . . . , p6) = (p′2, . . . , p

′
6). Indeed, it follows from

Lemma 2.1 that we can find an isomorphism αη : Lη → Mη over the generic
point η of S such that α(p2, . . . , p6) = (p′2, . . . , p

′
6). Choosing an isomorphism

Lη
∼= K, we see that both L and M can be characterized as the smallest in-

vertible subsheaves of K containing the sections p2, . . . , p6 in their respective
tensor powers.
We refer to the morphism p : E → S associated to minimal data (L, p2, . . . , p6)
as a minimal integral model of the triple (E,P,Q). By the above discussion, it
is also uniquely determined up to isomorphism by (E,P,Q). We can describe
this minimal model in elementary terms in case K = Fq(X) is the function
field of a smooth, projective, geometrically connected algebraic curve over Fq.
Let (E,P,Q) be an elliptic curve over K with two distinct non-trivial marked
rational points, and choose an arbitrary equation of type (2.2) with p2, . . . , p6 ∈
K. Then for each place v of K there is a unique integer nv satisfying the
following conditions:

1. The tuple (̟nv
v p2, ̟

2nv
v p4, ̟

2nv
v q4, ̟

3nv
v p6) has co-ordinates in OKv

.

2. The integer nv is minimal with respect to this property.

We then define L ⊂ K to be the invertible subsheaf whose sections over a
Zariski open U ⊂ X are given by the formula

L(U) = K ∩

[
∏

v∈U

̟−nv
v OKv

]
.

Then p2, . . . , p6 are sections of the tensor powers of L, and the tuple
(L, p2, . . . , p6) is minimal.
In this paper we will ultimately only be interested in those curves (E,P,Q)
for which the associated minimal data (L, p2, . . . , p6) satisfies the following two
conditions:

1. The line bundle L is a square: L ∼= M⊗2.

2. The discriminant ∆(p2, . . . , p6) ∈ H0(S,L12) ∼= H0(S,M24) is square-
free, in the sense that its zeroes are multiplicity free.

Documenta Mathematica 24 (2019) 1179–1223



1188 Jack A. Thorne

The reason for this restriction is that these are exactly the curves which are
related to orbits of squarefree discriminant in a certain representation, to be
considered in the next section. We now give a geometric characterization of
curves of square-free discriminant.

Lemma 2.3. Let R be a DVR in which 6 is a unit, let K = FracR, and let
S = SpecR. Let (E,P,Q) be an elliptic curve over K together with distinct
non-trivial marked points P,Q ∈ E(K). Let ∆ ∈ R denote the discriminant
of a minimal integral model of (E,P,Q) over S, therefore determined up to
R×-multiple. Then ordK ∆ ≤ 1 if and only if the following conditions are
satisfied:

1. The minimal regular model of E over S has special fibre of type I0 or I1
(in Kodaira’s notation, see for example [Tat75]).

2. The reductions modulo mR in the minimal regular model of E of the points
P,Q ∈ E(K) are distinct and non-trivial.

Proof. We begin with some general remarks. A cubic equation of the form
(2.2) with coefficients in R defines a genus one model of degree 3, in the sense
of [CFS10]. Moreover, an easy computation shows that the discriminant ∆ =
∆(p2, . . . , p6) defined above coincides with the discriminant of a genus one
model of degree 3 defined in [CFS10]. It then follows from [CFS10, Lemma
3.2] that we have ordK ∆ = ordK ∆E + 12ℓ, where ∆E is the usual minimal
Weierstrass discriminant of the curve E and ℓ ≥ 0 is an integer called the
level of the genus one model. In particular, if ordK ∆ ≤ 1, then we must have
ordK ∆ = ordK ∆E ∈ {0, 1}, showing that E has reduction of type I0 or I1. If
Z is a minimal integral model of (E,P,Q) and E is the minimal regular model
of E, then [Sad12, Theorem 4.1] shows that there is an isomorphism E ∼= Z,
hence the points O,P,Q have distinct images under the map E(R) → E(R/mR).
Now let us assume that E has reduction of type I0 or I1, with the points O,P,Q
remaining distinct in the special fibre of the minimal regular model. We are
going to do an integral version of the proof of Proposition 2.2. Let E denote
the minimal regular model of E. Then (by cohomology and base change and
[Liu02, Ch. 9, Lemma 4.28]) H1(E ,OE ) is a free R-module of rank 1. We
choose an isomorphism H1(E ,OE) ∼= R. For any point A ∈ E(R), the short
exact sequence

0 //OE
//OE(A) //OE(A)/OE

//0

gives rise to an isomorphism H0(E ,OE(A)/OE) ∼= H1(E ,OE) ∼= R. Therefore
the short exact sequence of sheaves

0 //OE
//OE(O + P +Q) //OE(O + P +Q)/OE

//0

gives rise to a long exact sequence

0 //R //H0(E ,OE (O + P +Q)) //R3 //R //0,
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where the map R3 → R is summing co-ordinates. We can therefore choose
x, y ∈ H0(E ,OE(O+P+Q)) which map to (0, 1,−1) and (−2, 1, 1), respectively,
in R3; then the elements 1, x, y ∈ H0(E ,OE (O + P + Q)) span this free R-
module. The elements

1, x, y, x2, xy, y2, x3, x2y, xy2, y3 ∈ H0(E ,OE(3(O + P +Q)))

generate this free rank 9 R-module. Considering once more their images in
H0(E ,OE (3O+3P +3Q)/OE), we see that they must satisfy a unique R-linear
relation of the form

xy2 + a1y
2 + a2xy + a3y = x3 + a4x

2 + a5x+ a6 (2.8)

for constants a1, . . . , a6 ∈ R. We are again free to add constants to x, y, and
there is a unique way to do this in order to get a1 = a2 = 0, giving an equation

y(xy + 2q4) = x3 + p2x
2 + p4x+ p6. (2.9)

Let Z ⊂ P2
R denote the closed subscheme defined by the homogenization of the

equation (2.9). Then Z is normal and R-flat, and we get a morphism E → Z.
Since E has irreducible special fibre, Zariski’s main theorem (see [BLR90, Ch.
2, Theorem 2’]) shows that this morphism is in fact an isomorphism. It is now a
very special case of [Sad12, Theorem 4.1] that ordK ∆(p2, p4, q4, p6) equals the
valuation of the minimal discriminant of E, which is at most 1. This concludes
the proof.

If D is a divisor on X , then we will write XD for the set of isomorphism classes
of triples (E,P,Q) of elliptic curves over K with two marked points such that
the minimal data (L, p2, . . . , p6) satisfies L ∼= OX(2D), and the discriminant
∆(p2, . . . , p6) ∈ H0(X,L⊗12) ∼= H0(X,OX(24D)) is square-free. Lemma 2.3
shows that this is the same as the set XOX (D) defined in §1.

We also write BD = OX(2D) ⊕ OX(4D) ⊕ OX(4D) ⊕ OX(6D), a vector
bundle over X , and write H0(X,BD)sf ⊂ H0(X,BD) for the set of sec-
tions (p2, p4, q4, p6) ∈ H0(X,BD) for which the discriminant ∆(p2, . . . , p6) ∈
H0(X,OX(24D)) is square-free. We can summarize the results of this section
as follows:

Corollary 2.4. The map ι : H0(X,BD)sf → XD, (p2, . . . , p6) 7→ (E,P,Q)
which sends sections of H0(X,BD)sf to the curve given by the equation (2.2) is
surjective, each fibre having finite cardinality equal to |F×

q | · |Aut(E,P,Q)|−1.

Proof. The only thing left to check is the cardinality of the fibres. Let F×
q

act on H0(X,BD) by the formula λ · (p2, p4, q4, p6) = (λp2, λ
2p4, λ

2q4, λ
3p6).

Lemma 2.1 shows that F×
q acts transitively on the fibres of ι, and that the

stabilizer of any point is Aut(E,P,Q). The result follows.
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3 Invariant theory

In this section, we introduce the semisimple group G and its representation V ,
the orbits of which will eventually be interpreted as elements of the 2-Selmer
groups of elliptic curves of the type considered in §2. For the moment, Fq

denotes a finite field of characteristic prime to 6. We will soon impose more
severe restrictions on the characteristic.

3.1 Preliminaries

Let J denote the 4× 4 matrix with 1’s on the anti-diagonal and 0’s elsewhere,
and define a block matrix

Ψ =

(
J 0
0 J

)
∈ M8×8(Z). (3.1)

We write SO8 for the special orthogonal group over Fq defined by Ψ, H =
SO8/µ2 for its adjoint group, and Hsc = Spin8 for its simply connected double
cover. We write h = LieH . We write θ for the inner involution of H given by
conjugation by the element

s = diag(1,−1,−1, 1, 1,−1,−1, 1). (3.2)

We define G = (Hθ)◦ (i.e. the identity component of the θ-fixed subgroup of
H), and V = hdθ=−1. There is an isomorphism G ∼= (SO4×SO4)/∆(µ2), where
SO4 is a split special orthogonal group and ∆(µ2) is the diagonally embedded
centre.
We write T ′ for the (split) diagonal maximal torus of SO8. We can identify
T ′ = G4

m via the formula

(a, b, c, d) ∈ G4
m 7→ diag(a, b, b−1, a−1, c, d, d−1, c−1) ∈ T ′.

We write T for the image of T ′ in H . We observe that T is also a maximal
torus of G. The group Hθ is disconnected. Its component group Hθ/G can
be computed as follows: let WH = NH(T )/T denote the Weyl group of of H ,
WG = NG(T )/T the Weyl group of G. Then the map ZWH

(s) → Hθ/G is sur-
jective, with kernel equal to ZWG

(s) (see [Hum95, §2.2]). A calculation shows
that the component group is therefore isomorphic to Z/2Z × Z/2Z. Explicit
representatives can be given by the elements σ, τ ∈ WH satisfying

σ(a, b, c, d) = (a, b, c−1, d−1), τ(a, b, c, d) = (b, a, d, c), (3.3)

which generate a subgroup W0 ⊂ WH which projects isomorphically to Hθ/G.
We introduce sets of simple roots as follows. A set RH ⊂ X∗(T ) of simple
roots for H consists of the characters

α1 = a/b, α2 = b/c, α3 = c/d, α4 = cd. (3.4)

Documenta Mathematica 24 (2019) 1179–1223



2-Selmer Elements of Elliptic Curves over Fq(X) 1191

We let α0 = ab, the highest root of H . A set R ⊂ X∗(T ) of simple roots for G
consists of the characters

a1 = ac, a2 = a/c, a3 = bd, a4 = b/d. (3.5)

The group G is isogenous to SL4
2, and the group W0 ⊂ WH normalizes

the action of WG on X∗(T ) and leaves invariant the set {a1, . . . , a4}. Its
action on this set is faithful, and identifies W0 with the Klein 4-group
{e, (12)(34), (13)(24), (14)(23)}. The characters of T appearing in the repre-
sentation V are exactly the combinations

1

2
(±a1 ± a2 ± a3 ± a4),

and can thus be thought of as the vertices of a hypercube. Each weight space
is 1-dimensional and we thus have dimFq

V = 16. We write ΦV ⊂ X∗(T ) for
the set of weights appearing in V . Any vector v ∈ V admits a decomposition
v =

∑
a∈ΦV

va. There is a decomposition ΦV = Φ+
V ⊔ Φ−

V coming from the
decomposition of the roots of H into positive and negative roots. We write
n1, . . . , n4 for the basis of X∗(T )Q dual to a1, . . . , a4. We define a partial order
on ΦV by setting a ≥ b if ni(a) ≥ ni(b) for each i = 1, . . . 4. We label these
weights in ΦV as follows:

# 2n1 2n2 2n3 2n4

1 1 1 1 1
2 -1 1 1 1
3 1 -1 1 1
4 1 1 -1 1
5 1 1 1 -1
6 -1 -1 1 1
7 -1 1 -1 1
8 -1 1 1 -1
9 1 -1 -1 1
10 1 -1 1 -1
11 1 1 -1 -1
12 -1 -1 -1 1
13 -1 -1 1 -1
14 -1 1 -1 -1
15 1 -1 -1 -1
16 -1 -1 -1 -1

12

16

6

13
9

15

7

14

3

10

2

8
4

11

1

5

The figure above shows the Hasse diagram of ΦV with respect to this partial
order. The weight labelled 1 is α0. If M ⊂ ΦV is a subset, we will write
λ(M) ⊂ ΦV −M for the set of maximal elements of ΦV −M , i.e. the set

{a ∈ ΦV −M | ∀b ∈ ΦV −M,a ≤ b ⇒ a = b}.
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It is useful to note that the action of W0 preserves the partial order on ΦV ,
and consequently commutes with application of the function λ.
In the paper [Tho13], we recalled part of the invariant theory of the pair (G, V )
over a field of characteristic 0. In this case, the most important results were
established by Kostant–Rallis [KR71]. They have been extended to positive
characteristic in many cases by Levy [Lev07]. We now summarise this. We
particularly draw the reader’s attention to the notions of semisimple and regular
element, and to the notion of the little Weyl group – they play an important
role throughout this paper.

Proposition 3.1. Let k/Fq be a field, and let ks/k be a separable closure.

1. The natural maps Fq[V ]G → Fq[V ]H
θ

and Fq[h]
H → Fq[V ]G are isomor-

phisms, and all of these rings are isomorphic to polynomial algebras over
Fq on four homogeneous generators of degrees 2, 4, 4, and 6, respectively.
We write ∆ ∈ Fq[V ]G for the restriction of the standard discriminant
polynomial ∆h of the Lie algebra h. (By definition, ∆h(X) ∈ Fq[h]

H is
the first non-zero coefficient of the characteristic polynomial of adX.) It
is non-zero.

2. Let B = SpecFq[V ]G, and let π : V → B denote the natural map. Then
π has reduced, Hθ-invariant fibres.

3. Let v ∈ Vk. Then ZGk
(v) and ZHk

(v) are smooth over k.

4. Let c ⊂ Vk be a k-vector subspace. We call c a Cartan subspace if there
exists a maximal torus C ⊂ Hk such that θ(t) = t−1 for all t ∈ C and
LieC = c. All such subspaces are conjugate under the action of G(ks).

5. Let c ⊂ Vk be a Cartan subspace. Then the map NGk
(c) → W (Hk, c) =

NHk
(c)/ZHk

(c) is surjective, and the natural restriction map k[V ]G →
k[c]W (Hk,c) is an isomorphism. In this case we call the group W (Gk, c) =
NGk

(c)/ZGk
(c) ∼= W (Hk, c) the little Weyl group of c.

6. Let v ∈ Vk. Then the following are equivalent:

(a) v is semisimple as an element of hk.

(b) Gk · v ⊂ Vk is closed.

(c) v is contained in a Cartan subspace of Vk.

Any such element is called a semisimple element of Vk.

7. Let v ∈ Vk. Then the following are equivalent:

(a) dimZHk
(v) = dimT .

(b) dimZGk
(v) = 0.
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Any such element is called a regular element of Vk. The condition of
being regular is open, and we write V reg ⊂ V for the open subscheme of
regular elements.

8. Let b ∈ B(k), and let Vb = π−1(b) ⊂ Vk. Then Vb(k
s) contains regular

semisimple elements if and only if ∆(b) 6= 0. In this case, G(ks) acts
transitively on Vb(k

s) and for any v ∈ Vb(k
s), zhk

(v) = LieZHk
(v) is the

unique Cartan subspace of Vk containing v.

Proof. Rather than give detailed references to [Lev07], we simply refer the
reader to the introduction of that paper, which features a thorough summary
of the results therein.

The group Gm acts on V by scalar multiplication, and there is an induced
Gm-action on the quotient B which makes the morphism π : V → B equiv-
ariant. We write Brs ⊂ B for the open subscheme where ∆ is non-zero. By
the proposition, π−1(Brs) = V rs is the open subscheme of regular semisimple
elements of V .

3.2 Singular and trivial orbits

Let k/Fq be a field. We are now going to give simple criteria in terms of
vanishing of certain matrix entries for elements v ∈ Vk either to satisfy ∆(v) =
0, or to be trivial in a sense we will soon define.

Lemma 3.2. Let k/Fq be a field, and let v =
∑

a∈ΦV
va ∈ Vk.

1. Let S ⊂ {1, 2, 3, 4} be a two-element subset, and suppose that va = 0 if
ni(a) > 0 for each i ∈ S. Then ∆(v) = 0.

2. Suppose that va = 0 if ni(a) < 0 for at most one i ∈ {1, 2, 3, 4}. Then
∆(v) = 0.

Proof. We will use the following criterion: let p ⊂ h be a parabolic subalgebra
which contains t = LieT , and let v ∈ pdθ=−1

k . Then ∆(v) = 0. Indeed,
if ∆(v) 6= 0 then v is regular semisimple, hence its centralizer c = zhk

(v)
is a Cartan subalgebra of hk which is contained in Vk. We have dimk c ≤
dimk zpk

(v) ≤ dimk c, hence c = zpk
(v) and c ⊂ pdθ=−1

k . Let C ⊂ Hk denote
the unique maximal torus with LieC = c. We have dimZPk

(v) ≥ dimC, hence
ZPk

(v) = C is smooth and C ⊂ Pk. There is a unique Levi subgroup L ⊂ Pk

containing C, which is necessarily stable under the action of θ. The centre
ZL is contained in C, on which θ acts by t 7→ t−1. On the other hand, L
projects isomorphically and θ-equivariantly to the Levi quotient of Pk, and θ
acts on the centre of this quotient trivially (because it acts trivially on T ). This
contradiction implies that we must have ∆(v) = 0.
If S ⊂ ΦV is a subset, we write VS ⊂ V for the subspace given by the equa-
tions va = 0 (a ∈ S). The four maximal proper parabolic subalgebras p ⊂ h
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which contain the Borel subalgebra corresponding to the root basis −RH have
pdθ=−1 = VS for the following sets of weights:

S ={
1

2
(a1 + a2 ± a3 ± a4)}, {

1

2
(a1 ± a2 ± a3 + a4)}, {

1

2
(a1 ± a2 + a3 ± a4)},

{
1

2
(a1 + a2 + a3 + a4),

1

2
(−a1 + a2 + a3 + a4),

1

2
(a1 − a2 + a3 + a4),

1

2
(a1 + a2 − a3 + a4),

1

2
(a1 + a2 + a3 − a4)}.

(3.6)
The last of these gives the subspace appearing in the second part of the lemma.
On the other hand, each of the subspaces appearing in the first part of the
lemma is W0-conjugate to one of the first three appearing in (3.6). The action
of W0 leaves ∆ invariant, so this implies the first part of the lemma.

We now introduce the Kostant section. This is a section κ : B → V of the
morphism π : V → B, which has image consisting of regular elements of V .
We will follow Slodowy [Slo80] in constructing κ using a fixed choice of regular
sl2-triple and we must therefore impose the restriction that the characteristic
of Fq exceeds 4h − 2, where h is the Coxeter number of H , namely 6. We
therefore now make the following assumption, which holds for the remainder
of §3:

• The characteristic of Fq is at least 23.

This being the case, we define

E =




0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 −1
0 0 −1 0 0 0 0 0




.

and ρ̌ : Gm → T by the formula

ρ̌(t) = diag(t3, t2, t−2, t−3, t, 1, 1, t−1).

(Thus in fact ρ̌, which is the sum of the fundamental coweights, lifts to X∗(T
′).)

We have the formula Ad ρ̌(t)(E) = tE, and we can decompose E = Xα1+Xα2+
Xα3 +Xα4 as a sum of T -eigenvectors corresponding to the simple roots RH .

Proposition 3.3. 1. There exists a unique element F ∈ V such that
Ad ρ̌(t)(F ) = t−1F and [E,F ] = dρ̌(2).

2. Let κ = E + zh(F ), an affine linear subspace of h. Then κ ⊂ V and the
restriction π|κ : κ → B is an isomorphism.

Documenta Mathematica 24 (2019) 1179–1223



2-Selmer Elements of Elliptic Curves over Fq(X) 1195

Proof. The first part is a standard property of sl2-triples; we could also exhibit
F directly. See for example [SS70, III, 4.10]. The second part is [Slo80, §7.4,
Corollary 2]. An essential role in the proof is played by the fact that for t ∈ Gm,
v ∈ κ, we have tAd ρ̌(t−1)(v) ∈ κ, and this Gm-action contracts to the central
point E ∈ κ. The morphism π|κ is also clearly equivariant with respect to this
Gm-action. These properties of the Kostant section will appear again in §5.3
below.

Corollary 3.4. Let k/Fq be a field, and let b ∈ B(k), and suppose that
∆(b) 6= 0. Then there is a canonical bijection

G(k)\V (k) ∼= ker(H1(k, ZG(κb)) → H1(k,G)),

sending κb to the zero element of H1(k, ZG(κb)).

Proof. This follows because Vb(k
s) is a single G(ks)-orbit, and because of the

existence of the marked base point κb ∈ Vb(k).

In the situation of the corollary, we refer to the G(k)-orbits of the elements
w · κb (w ∈ W0) as the trivial orbits. We call elements of Vk = V (k) which
lie in a trivial orbit trivial elements. Note that this notion depends on k (and
indeed, all regular semisimple elements in V (ks) are trivial over ks).

Lemma 3.5. Let k/Fq be a field, and let v =
∑

a∈ΦV
va ∈ Vk. Suppose that

va = 0 for all a ∈ S and va 6= 0 for all a ∈ λ(S), where S is one of the following
sets:

{a1 + a2 + a3 + a4, a1 − a2 + a3 + a4, a1 + a2 − a3 + a4, a1 + a2 + a3 − a4},

{a1 + a2 + a3 + a4,−a1 + a2 + a3 + a4, a1 − a2 + a3 + a4, a1 + a2 + a3 − a4},

{a1 + a2 + a3 + a4,−a1 + a2 + a3 + a4, a1 + a2 − a3 + a4, a1 + a2 + a3 − a4},

{a1 + a2 + a3 + a4,−a1 + a2 + a3 + a4, a1 − a2 + a3 + a4, a1 + a2 − a3 + a4}.
(3.7)

Then if ∆(v) 6= 0 then v belongs to a trivial orbit of G(k).

Proof. These sets S form a single W0-orbit, so it suffices to treat one of them,
say

S = {a1 + a2 + a3 + a4, a1 − a2 + a3 + a4, a1 + a2 − a3 + a4, a1 + a2 + a3 − a4}.

In this case, we find λ(S) equals

{−a1 + a2 + a3 + a4, a1 + a2 − a3 − a4, a1 − a2 − a3 + a4, a1 − a2 + a3 − a4}

= {α1, α2, α3, α4}.

Thus if v ∈ V (k) is as in the statement of the lemma, we can write

v =

4∑

i=1

λiXαi
+

∑

a∈Φ−

V

va,
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where each λi ∈ k×. Since the group H is adjoint, we can find t ∈ T (k) such
that αi(t) = λi for each i = 1, . . . , 4. Replacing v by t−1 · v, we can assume
that λi = 1 for each i.
We claim that this implies that v is Uθ

0 (k)-conjugate to κ(k), where U0 ⊂ H
is the unipotent radical of the Borel subgroup Q0 ⊂ H corresponding to the
set −RH ⊂ Φ(H,T ) of simple roots. One can show that the natural product
map U0 × κ → E + LieU0 ⊂ h is an isomorphism. (The analogous fact in
characteristic 0 is employed for a very similar purpose in the proof of [Tho15,
Lemma 2.6]. One can easily check that it is true here as well, under our
restrictions on the characteristic.) Since v lies in E + LieU0,k, we find that
there is a unique pair (u, b) ∈ U0(k) × κ(k) such that u · b = v, and then u
necessarily satisfies θ(u) = u, hence u ∈ G(k), as required.

Corollary 3.6. Let k/Fq be a field, and let v =
∑

a∈ΦV
va ∈ Vk. Suppose

that va = 0 for all a ∈ S, where S is one of the following subsets (labelling as
in the figure preceding Proposition 3.1):

{1, 2, 3, 4, 5}, {1, 4, 5, 11}, {1, 3, 4, 9}, {1, 3, 5, 10},

{1, 3, 4, 5}, {1, 2, 3, 5}, {1, 2, 4, 5}, (3.8)

{1, 2, 3, 4}, {1, 2, 3, 6}, {1, 2, 4, 7}, {1, 2, 5, 8}. (3.9)

Then if ∆(v) 6= 0 then v belongs to a trivial orbit of G(k).

Proof. This follows from combining Lemma 3.2 and Lemma 3.5, as we now
show. Let v ∈ V (k). The sets S appearing in (3.8) are exactly those appearing
in the statement of Lemma 3.2, so the result follows immediately in this case
(and indeed we have ∆(v) = 0). The sets S appearing in (3.9) are exactly those
appearing in the statement of Lemma 3.5. If S is one of these and va = 0 for
all a ∈ S, then there are two possibilities: either va 6= 0 for all a ∈ λ(S), or
there exists b ∈ λ(S) such that va = 0 for all a ∈ S′ = S ∪ {b}. In the first
case, Lemma 3.5 shows that ∆(v) = 0 or v belongs to a trivial orbit. In the
second case, we see by inspection that S′ is one of the sets appearing in (3.8),
hence ∆(v) = 0.

4 Interlude on G-bundles, semi-stability, and integration

In this section, we review the parameterization of G-torsors on curves by adeles
and its relation to integration. We also recall the theory of Harder–Narasimhan
filtrations and canonical reductions for G-torsors, which will be our substitute
for reduction theory when it comes to counting points later on.
Let Fq be a finite field, and let M be a smooth affine group scheme over
Fq. By definition, an M -torsor over a scheme S/Fq is a scheme F → S,
equipped with a right action of MS, and locally on S (in the étale topology)
isomorphic to the trivial torsor MS . A morphism F → F ′ of M -torsors over
S is a morphism F → F ′ respecting the M -action. A torsor F → S is trivial
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(i.e. isomorphic to the trivial torsor MS) if and only if it admits a section.
The set of isomorphism classes of torsors over S is in bijection with H1(S,M)
(non-abelian étale cohomology).
IfM ′ ⊂ M is a closed subgroup, still smooth over Fq, then a reduction of F → S
to M ′ is a pair (F ′, ϕ), where F ′ → S is an M ′-torsor and ϕ : F ′ ×M ′ M → F
is an isomorphism. Giving a reduction of F to M ′ is then equivalent to giving
a section of the sheaf quotient F/M ′.
Let X be a smooth, projective, geometrically connected curve over Fq, and let
K = Fq(X). Suppose that M is connected. We say that an M -torsor F → X
is rationally trivial if FK = F ×X SpecK is a trivial M -torsor. This will always
be the case if M satisfies the Hasse principle over K. Indeed, each pointed set
H1(OKv

,M) is trivial (by Lang’s theorem and Hensel’s lemma). It is useful to
note that if M is split reductive, and P ⊂ M is a parabolic subgroup, then for
any rationally trivial M -torsor F → X with a reduction FP → X to P , FP is
also rationally trivial. Indeed, the morphism M → M/P admits Zariski local
sections, and FP /P defines a K-point of F/P .
For any connected smooth affine group M , the rationally trivial torsors over
X can be parameterized using adeles. Indeed, if YM denotes the set of isomor-
phism classes of such torsors, then there is a canonical bijection

YM
∼= M(K)\M(AK)/M(ÔK). (4.1)

See [BLR90, Ch. 6, Proposition D.4]. We can describe the bijection explicitly as
follows: given such a torsor F → X , choose sections x0 ∈ F (K), xv ∈ F (OKv

)
for each place v. Then for each v there is a unique element mv ∈ M(Kv) such
that x0mv = xv, and we assign to F the element mF = (mv)v ∈ M(AK).

The class [(mv)v] ∈ M(K)\M(AK)/M(ÔK) is then clearly well-defined. If
m ∈ M(AK), we will write Fm for the corresponding M -torsor over X . We
can describe the group of automorphisms of Fm → X in these terms: we
have an isomorphism Aut(Fm) ∼= M(K) ∩mM(ÔK)m−1. It follows that the
bijection (4.1) can instead be thought of as an equivalence of groupoids. Note
that if M ′ ⊂ M is a smooth closed subgroup, then the map YM ′ → YM

given by pushout of torsors is the same as the map induced by the inclusion
M ′(AK) ⊂ M(AK).
We will henceforth identify YM with this adelic double quotient. We endow
YM with its counting measure νM , each point F ∈ YM being weighted by
|Aut(F )|−1. If µM is the (right-invariant) Haar measure on M(AK) which

gives M(ÔK) volume 1, and with modulus ∆l : M(AK) → R>0 defined by the
formula (f : M(AK) → R any compactly supported function):

∫

m′∈M(AK)

f(m−1m′) dµM = ∆l(m)

∫

m′∈M(AK)

f(m′) dµM ,

then we have the formula (f : YM → R any compactly supported function):
∫

F∈YM

f(F ) dνM =

∫

m∈M(K)\M(AK)

f(Fm)∆l(m)−1 dµM . (4.2)
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An important special case arises when M is a split reductive group and P ⊂ M
is a parabolic subgroup with Levi decomposition P = LPNP . In this case we
define a character δP ∈ X∗(P ) by δP (p) = detAd(p)|LieNP

. A right-invariant
Haar measure is given by the formula

∫

p∈P (AK)

f(p) dµP =

∫

l∈LP (AK)

∫

n∈NP (AK)

f(nl) dµNP
dµLP

, (4.3)

and the modulus character of P (AK) is ∆l(p) = ‖δP (p)‖, where ‖ · ‖ is the
adele norm. In this case (4.2) becomes

∫

F∈YP

f(F ) dνP =

∫

p∈P (K)\P (AK)

f(Fp)‖δP (p)‖
−1 dµP . (4.4)

Now suppose that G is a reductive group over Fq with split maximal torus and
Borel subgroup T ⊂ B ⊂ G. Let P ⊂ G be a standard parabolic subgroup,
i.e. one containing B, and let P = LPNP be its standard Levi decomposition.
Thus LP is the unique Levi subgroup of P containing T . If FP → X is a
P -torsor, we can associate to it an element σFP

∈ X∗(Z0(LP ))Q ⊂ X∗(T )Q,
uniquely characterized by the requirement that for any χ ∈ X∗(P ), the line
bundle Lχ = FP ×P,χ A1

Fq
has degree degLχ = 〈σFP

, χ〉 (where 〈·, ·〉 is the

usual pairing between cocharacters and characters).
We call σFP

the slope of FP . If σ, τ ∈ X∗(T )Q, then we write σ ≤ τ if
〈τ − σ, α〉 ≥ 0 for all B-positive roots α ∈ Φ(G, T ). The following formulations
are taken from [Sch15].

Definition 4.1. Let G be a split reductive group over Fq, with split maximal
torus and Borel subgroup T ⊂ B ⊂ G. Let R ⊂ Φ(G, T ) denote the set of
simple roots corresponding to B. Let F → X be an G-torsor.

1. We say that F is semi-stable if for any standard parabolic subgroup P ⊂ G
and any reduction FP → X of F , we have σFP

≤ σF .

2. Let P be a standard parabolic subgroup with Levi quotient LP , and let
FP → X be a reduction of F to P . We say that FP is canonical if
FP ×P LP is semi-stable and if for any simple root α ∈ R − Φ(LP , T ),
we have 〈σFP

, α〉 > 0.

The following result justifies the use of the word ‘canonical’:

Theorem 4.2. Let F → X be a G-torsor. Then there exists exactly one pair
(P, FP ) consisting of a standard parabolic subgroup P ⊂ G and a reduction
FP → X of F which is canonical.

Proof. See [Sch15, Theorem 2.1] and the remarks following.

This theorem allows us to decompose

YG = ⊔PYG,P (4.5)
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where YG,P denotes the set of G-torsors on X which admit a canonical reduc-
tion to the standard parabolic subgroup P . We then have an identification

YG,P
∼= P (K)\P (AK)pos, ss/P (ÔK), (4.6)

where we define

P (AK)pos = {p ∈ P (AK) | ∀α ∈ R− Φ(LP , T ), 〈mP (p), α〉 > 0},

P (AK)ss = {p ∈ P (AK) | Fp ×P LP semi-stable},

and

P (AK)pos, ss = P (AK)pos ∩ P (AK)ss.

Here we write

mP : P (AK) → Hom(X∗(LP ),Q) ∼= X∗(Z0(LP ))Q ⊂ X∗(T )Q,

p 7→ (χ 7→ logq ‖χ(p)‖).

We observe the formulae

mP (p) = σFp
and ∆l(p) = ‖δP (p)‖ = q〈mP (p),δP 〉. (4.7)

We define Λpos
P = mP (P (AK)pos) ⊂ X∗(T )Q. Theorem 4.2 implies that

(4.6) is an equivalence of groupoids: if p ∈ P (AK)pos, ss, then the inclusion

P (K) ∩ pP (ÔK)p−1 → G(K) ∩ pG(ÔK)p−1 is an isomorphism (because any
automorphism of a G-torsor must preserve its canonical reduction). This leads
to the following lemma.

Lemma 4.3. There exists a constant C > 0 depending only on X such that for
any standard parabolic subgroup P ⊂ G and function f : X∗(Z0(LP ))Q → R≥0,
we have ∫

F∈YG,P

f(σFP
) dνG ≤ C

∑

σ∈Λpos
P

q−〈σ,δP 〉f(σ).

Proof. Let P (AK)0 = kermP . Then P (K) ⊂ P (AK)0 and the quotient
P (K)\P (AK)0 has finite µP -volume. We choose the constant C to exceed
the volume of P (K)\P (AK)0 for all standard parabolic subgroups of G. Then
(4.4) and (4.7) give

∫

F∈YG,P

f(σFP
) dνP ≤

∫

p∈P (K)\P (AK)pos

f(mP (p))‖δP (p)‖
−1 dµP

≤ C
∑

σ∈Λpos
P

q−〈σ,δP 〉f(σ),

as required.
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We need to discuss the behaviour of the canonical reduction under certain
functorialities. For this it is useful to recall that giving a GLn-torsor over X is
equivalent to giving a vector bundle over X of rank n, via F 7→ F ×GLn

An
Fq
. If

E → X is a vector bundle, then its slope is defined to be µ(E) = deg E/ rank E .
A vector bundle is said to be semi-stable if for any vector subbundle F ⊂ E , we
have µ(F) ≤ µ(E). This is equivalent to the semi-stability of the corresponding
GLn-torsor, and Theorem 4.2 is equivalent to the following statement: given a
vector bundle E → X of rank n, there is a unique filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Em = E (4.8)

by vector subbundles such that each subquotient Ei+1/Ei is (non-zero and)
semi-stable, and we have the chain of inequalities

µ(E1) > µ(E2/E1) > · · · > µ(Em/Em−1). (4.9)

This is the Harder–Narasimhan filtration of E . It will play a key role for us
because of the following lemma.

Lemma 4.4. Let E be a semi-stable vector bundle over X of rank n. Let gX
denote the genus of X.

1. If µ(E) < 0, then h0(X, E) = 0.

2. If 0 ≤ µ(E) ≤ 2gX − 2, then h0(X, E) ≤ n(1 + µ(E)/2).

3. If µ(E) > 2gX − 2, then h0(X, E) = n(1− gX + µ(E)) and h1(X, E) = 0.

Proof. The first and third points are well-known properties of semi-stable bun-
dles and follow easily from the definition, together with the Riemann–Roch
theorem. The second point is a generalization of Clifford’s theorem for line
bundles, see [BPGN97, Theorem 2.1].

Corollary 4.5. Let E → X be a vector bundle of rank n and slope µ(E) = 0,
and let its Harder–Narasimhan filtration be as in (4.8). Let 0 ≤ k ≤ m+ 1 be
such that we have

µ(E1) > µ(E2/E1) > · · · > µ(Ek/Ek−1) > 0 > µ(Ek+1/Ek) > · · · > µ(Em/Em−1),

and let q0 = µ(Em/Em−1). Let D be a divisor on X such that degD > 0.

1. If degD + q0 < 0, then h0(X, (Em/Ek)(D)) = 0 and h0(X, E(D)) ≤
n(1 + degD)− (rank Em/Ek) · (1 + µ(Em/Ek) + degD).

2. If degD + q0 > 2gX − 2, then h0(X, E(D)) = n(1− gX + degD).

3. If 0 ≤ degD + q0 ≤ 2gX − 2, then h0(X, E(D)) ≤ n(1 + degD).
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Proof. We prove the second part first. There are exact sequences for each i ≥ 1:

0 //Em−i/Em−(i+1)(D) //Em/Em−(i+1)(D) //Em/Em−i(D) //0.

We have µ(Em−i/Em−(i+1)(D)) > 2gX − 2 for each i ≥ 1,
hence h1(Em−i/Em−(i+1)(D)) = 0. It follows that h0(E(D)) =∑

i≥0 h
0(Em−i/Em−(i+1)(D)) = n(1 − gX + µ(E(D))) = n(1 − gX + degD).

The first and third parts can be proved using the same exact sequences, except
that we no longer need to calculate any H1 (since we are only looking for
upper bounds).

Consider again a reductive group G over Fq with split maximal torus and Borel
subgroup T ⊂ B ⊂ G. Let V be a finite-dimensional representation of G. If
F → X is a G-torsor, then V = F ×G V is a vector bundle over X . If F = Fg

for some g ∈ G(AK), then we write Vg = Fg×GV . For any Zariski open subset
U ⊂ X , we can identify

H0(U,Vg) = V (K) ∩
∏

v∈U

gvV (OKv
). (4.10)

If V has ‘small height’, then we can describe the Harder–Narasimhan filtration
of V explicitly in terms of the canonical reduction of F . Let FP → X denote
the canonical reduction of F . For each rational number q, we define

Vq =
⊕

λ∈X∗(T )
〈σFP

,λ〉≥q

Vλ ⊂ V, (4.11)

Vλ ⊂ V denoting the λ-weight space. This defines a decreasing filtration V• of
V . The subspaces are P -invariant, and the action of P on the graded pieces
factors through the Levi quotient LP (see [Sch15, Lemma 5.1]). By pushout,
we get a filtration V• = FP ×P Vq of V by subbundles indexed by rational
numbers q. We then have the following result.

Theorem 4.6. Let V be a finite-dimensional representation of G, and let ρ̌ ∈
X∗(T )Q denote the sum of the fundamental coweights. Suppose that V has
small height, i.e. that for all weights λ ∈ X∗(T ) such that Vλ 6= 0, we have
2〈ρ̌, λ〉 < charFq. (This condition depends only on the pair (G, V ) and not on
the choice of T or B.) Then:

1. Each associated bundle grq V•
∼= FP ×P grq V• is (either zero or) semi-

stable of slope q.

2. The subbundles Vq = FP ×P Vq of V are the constituents of the Harder–
Narasimhan filtration of V = F ×G V .

Proof. The calculation of [Sch15, Proposition 5.1] goes over verbatim to show
that the associated bundles of the graded pieces have the claimed slopes. What
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we need to justify here is that they are semi-stable. In loc. cit. this is justified
by appeal to the results of [RR84], which apply when the ground field has
characteristic 0. In the present case we can use the assumption that V small
height to appeal instead to the main theorem of [IMP03], which is extended to
reductive groups G as [BH04, Proposition 4.9].

We conclude this section by applying the preceding results to the pair (G, V )
constructed in §3. We therefore assume now that charFq > 3. We recall that
G has the root basis R = {a1, a2, a3, a4}. We write R− = −R for the negative
of this root basis, and P0 ⊂ G for the Borel subgroup corresponding to R−.
We call a parabolic subgroup P ⊂ G containing P0 a standard parabolic; any
such parabolic has a canonical Levi decomposition P = LPNP , where LP is
the unique Levi subgroup of P which contains the maximal torus T .
If P ⊂ G is a standard parabolic subgroup, and D is a divisor on X , then we
define a further decomposition of YG,P ⊂ YG as follows:

YG,P = YG,P (D)<0 ⊔ YG,P (D)sp ⊔ YG,P (D)>2gX−2. (4.12)

where YG,P (D)<0 denotes the set of G-torsors F → X for which the lowest
slope piece of the Harder–Narasimhan filtration of F ×GV has slope q0 satisfy-
ing degD+ q0 < 0; YG,P (D)sp the set for which 0 ≤ degD+ q0 ≤ 2gX − 2; and
YG,P (D)>2gX−2 the set for which degD + q0 > 2gX − 2. (Thus these subsets
of YG,P only depend on degD.) We can reformulate Corollary 4.5 as follows:

Corollary 4.7. Let g = [(gv)v] ∈ YG,P , and let FP → X denote the canonical
reduction of Fg. Suppose that degD > 0, and let M ⊂ ΦV denote the set of
weights a ∈ ΦV such that 〈σFP

, a〉+ degD < 0. Then:

1. If g ∈ YG,P (D)<0 (i.e. M is non-empty), then |H0(X,Vg(D))| ≤
qdimV (1+degD)−|M|(1+degD+

∑
a∈M 〈σFP

,a〉).

2. If g ∈ YG,P (D)sp, then |H0(X,Vg(D))| ≤ qdimV (1+degD).

3. If g ∈ YG,P (D)>2gX−2, then |H0(X,Vg(D))| = qdimV (1−gX+degD).

We can combine these ideas with Lemma 3.2 to obtain the following useful
principle:

Corollary 4.8. Let P ⊂ G be a standard parabolic subgroup, and suppose
that dimZ0(LP ) ≤ 2. Let D be a divisor on X, and let g ∈ YG,P (D)<0.
Then for all v ∈ H0(X,Vg(D)) ⊂ V (K), we have ∆(v) = 0 (as a section of
H0(X,OX(24D)) ⊂ K).

Proof. Let D =
∑

v nv · v. If P ⊂ G satisfies dimZ0(LP ) ≤ 2, then the lowest
slope piece of the Harder–Narasimhan filtration of Vg has dimension at least 4.
(It’s helpful to recall here that G is isogenous to SL4

2, and V is then identified
with the tensor product of the four 2-dimensional standard representations.)
Under the identification

H0(X,Vg(D)) = V (K) ∩
∏

v

̟−nv
v gvV (OKv

) ⊂ V (K),
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we see that any v ∈ H0(X,Vg(D)) must satisfy the condition of the first part
of Lemma 3.2, and therefore satisfy ∆(v) = 0.

5 Counting 2-Selmer elements

In this section, we describe the relation between the representation (G, V ) of §3
and the family of pointed elliptic curves (E,P,Q) described in §2. We proceed
from the rational theory, to the integral theory, and finally combine this with
the other results established so far to prove our main theorems (Theorem 5.9
and Theorem 5.11 below).
We assume throughout §5 that Fq is a finite field of characteristic > 19, and
let (G, V ) denote the representation considered in §3.

5.1 (G, V ) and 2-descent

Theorem 5.1. We can find homogeneous generators p2, p4, q4, p6 ∈ Fq[V ]G (of
degrees 2, 4, 4, and 6, respectively) and a 5-dimensional affine linear subspace
Σ ⊂ V together with functions x, y ∈ Fq[Σ] such that:

1. The functions p2, p4, q4, x, y ∈ Fq[Σ] generate Fq[Σ].

2. The relation y(xy + 2q4) = x3 + p2x
2 + p4x+ p6 holds on Σ.

Proof. This theorem follows from [Tho13, Theorem 3.8] when Fq is replaced by
a field of characteristic 0. The same proof works over Fq, with our restrictions
on the characteristic. This is unsurprising, given that the results of Slodowy
[Slo80] are proved in positive characteristic with the same restrictions. We
explain the construction. Define a matrix

e =




0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 2
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 −2 0 0 0 1 0
0 0 0 0 1 0 0 −1
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 −1 0




and a cocharacter λ̌ ∈ X∗(T
′)

λ̌(t) = diag(t2, t, t−1, t−2, 1, t, t−1, 1).

Then Ad λ̌(t)(e) = te and e ∈ V is a subregular nilpotent element. Therefore we
can find a unique subregular nilpotent f ∈ V such that the triple (e, dλ̌(2), f)
is a normal sl2-triple. We define Σ = e+ zh(f)

dθ=−1.
If t ∈ Gm, then the action t · v = tAd λ̌(t−1)(v) leaves Σ invariant and con-
tracts Σ to the fixed base point e. Moreover, the morphism π|Σ is then Gm-
equivariant. The functions x, y ∈ Fq[Σ] are chosen to have weight 2 with respect
to this action.
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At this point there are two natural discriminant polynomials ∆ in Fq[V ]G that
one might consider: the one arising from the usual Lie algebra discriminant in
h, and the discriminant of the polynomial f(t) = t4 + p2t

3 + p4t
2 + p6t + q24 ,

which is used in §2. In fact, these two functions are equal up to F×
q -multiple,

because they both cut out the same irreducible divisor in B = SpecFq[V ]G.
Since the precise value of ∆ will not be important for us, but rather only its
order of vanishing, we will use the symbol ∆ to denote either one of these
polynomials in Fq[V ]G = Fq[p2, p4, q4, p6]. We recall that we write Brs ⊂ B for
the open subscheme which is the complement of the zero locus of ∆.
We write S → B for the natural compactification of Σ as a family of projective
plane curves given by the equation

Y (XY + 2q4Z
2) = X3 + p2X

2Z + p4XZ2 + p6Z
3. (5.1)

We writeO, P , andQ for the three sections of S−Σ at infinity given respectively
by [0 : 1 : 0], [1 : 1 : 0] and [−1 : 1 : 0]. We write Srs for the restriction of
this family to Brs. The fundamental relation between the pair (G, V ) and this
family of curves is as follows:

Theorem 5.2. 1. The morphism S → B is smooth exactly above Brs. Con-
sequently, Srs → Brs is a family of smooth, projective, geometrically con-
nected curves.

2. Let JSrs = Pic0Srs/Brs denote the (relative) Jacobian of this family, and let
Zrs denote the equalizer of the diagram

G× κrs
(g,x) 7→g·x

//

(g,x) 7→x
// V rs

viewed as a finite étale group scheme over κrs ∼= Brs. Then there is a
canonical isomorphism JSrs [2] ∼= Zrs of finite étale group schemes over
Brs.

3. Let k/Fq be a field, and let b ∈ Brs(k). Let Jb denote the pullback of JSrs

along b : Spec k → Brs. Consider the diagram

Σb(k) //

��

G(k)\Vb(k)

��

Jb(k) // H1(k, Jb[2]),

where the top arrow is induced by the inclusion Σb ⊂ Vb; the left arrow
is the map R 7→ [(R) − (O)], induced by an open immersion Σb ⊂ Jb;
the right arrow is the injection of Corollary 3.4, composed with the iso-
morphism H1(k, ZG(κb)) ∼= H1(k, Jb[2]); and the bottom arrow is the
connecting homomorphism associated to the multiplication-by-2 Kummer
exact sequence for Jb. Then there exists a class xb ∈ H1(k, Jb[2]) arising
from a trivial orbit such that this diagram commutes up to addition of xb.
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Proof. The first part is established over a field of characteristic 0 in [Tho13,
Corollary 3.16], using a reduction to [Slo80], and again the same proof works
in our positive characteristic setting. This is not the case for the second part,
where the corresponding fact is established in [Tho13, Corollary 4.12] using
analytic techniques. However, the same construction works to show that there
is a map β : H1(Σ

rs/Brs,F2) → Zrs of local systems of F2-vector spaces on
Brs, arising from the inclusion Σrs ⊂ V rs. Here H1(Σ

rs/Brs,F2) is the local
system of étale homology groups of the curves Σb (b ∈ B). There is a canonical
surjective map γ : H1(Σ

rs/Brs,F2) → JSrs [2]. We want to show that β factors
through γ to give an isomorphism JSrs [2] ∼= Zrs.
To check this statement about morphisms of local systems of F2-vector spaces,
it suffices to check that it holds on single stalk, and this can be accomplished
by lifting to characteristic 0 and applying [Tho13, Corollary 4.12].
The third part has been established in characteristic 0 in [Tho13, Theorem
4.15], which also shows how to calculate the element xb using the geometry of
the curve S. We describe the recipe, although it is not strictly necessary for
what we do here. Let 0 ∈ B(Fq) be the central point. Then the curve S0 is
a union of three lines. Let S′

0 ⊂ S0 be the branch containing the section O
at infinity, and let E′ ∈ S′

0(Fq) − {e} be a rational point. Then there exists
a unique w ∈ W0 such that wE′ is conjugate by G(Fq) to κ0, and for any
b ∈ B(k) we can then take xb to be the class corresponding to the orbit of
wκb ∈ V (k).
We still need to extend this result to positive characteristic. However, this is
an essentially formal consequence of the first two parts of the theorem, and
follows in exactly the same way as in [Tho13, §4].

Theorem 5.3. Let k/Fq be a field, and let b ∈ Brs(k).

1. The image of the injective map η : G(k)\Vb(k) → H1(k, Jb[2]) appear-
ing in Theorem 5.2 contains the image of the Kummer homomorphism
Jb(k)/2Jb(k) → H1(k, Jb[2]).

2. Inside the image of η, the trivial orbits of G(k)\Vb(k) correspond to the
subgroup of Jb(k)/2Jb(k) generated by the divisor classes [(P )− (O)] and
[(Q)− (O)].

Proof. By Theorem 5.2, it is enough to prove the second part of the theo-
rem. By definition, the identity of H1(k, Jb[2]) corresponds to the orbit of the
Kostant section κb ∈ Vb(k). We have a short exact sequence of étale homology
groups (where overline denotes base change to a separable closure ks/k):

0 //µ3
2/∆(µ2) //H1(Σb,F2) //H1(Sb,F2) //0. (5.2)

Here ∆(µ2) ⊂ µ3
2 denotes diagonal µ2. There is a natural symplectic duality

〈·, ·〉 on H1(Σb,F2) with radical µ3
2/∆(µ2), which descends to the Poincaré du-

ality pairing on H1(Sb,F2). Identifying Jb[2] = H1(Sb,F2), this allows us to de-
scribe the subgroup ofH1(k, Jb[2]) generated by the images of the divisor classes
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[(P ) − (O)], [(Q) − (O)] as follows: it is the image of [µ3
2/∆(µ2)]

∨ = (µ3
2)Σ=0

under the connecting homomorphism attached to the dual exact sequence of
F2[Γk]-modules (with Γk = Gal(ks/k)):

0 //H1(Sb,F2) //H1(Σb,F2)
∨ //(µ3

2)Σ=0
//0, (5.3)

where we use the aforementioned pairing to identify H1(Sb,F2)
∨ ∼= H1(Sb,F2).

We now identify these exact sequences using the representation theory of
the pair (G, V ). Let Hsc denote the simply connected cover of H , and let
Gsc = (Hsc)θ. Then Gsc is a connected subgroup of Hsc. Let Csc denote
the centralizer of κb in Hsc, and C its image in H . Then we can identify
ZGsc(κb) = Csc[2], ZHθ (κb) = C[2], and ZG(κb) = im(Csc[2] → C[2]) (see
[Tho13, Corollary 2.9]). The short exact sequence (5.2) is identified with the
sequence

0 //ker(Gsc → G) //Csc[2] // im(Csc[2] → C[2]) //0 (5.4)

(compare [Tho13, Theorem 4.10] and the proof of Theorem 5.2). Its dual is
identified with the sequence

0 //ZG(κb) //C[2] //π0(H
θ) //0, (5.5)

using the Weyl-invariant bilinear form onX∗(C) (cf. [Tho13, Lemma 2.11]) and
the canonical isomorphism C[2]/ZG(κb) ∼= π0(H

θ). The map W0 → π0(H
θ)

is an isomorphism, and the composite W0 → π0(H
θ) → H1(k, ZG(κb)) sends

an element w ∈ W0 to the class corresponding to the orbit G(k) · wκb. This
concludes the proof.

The proof of the second part of Theorem 5.3 has a useful corollary: it gives
a criterion to tell when the trivial orbits generate a subgroup of Jb(k)/2Jb(k)
of order 4 (which one expects to be the case generically). Indeed, taking in
mind the identification of the exact sequence (5.3) with the sequence (5.5), one
sees that this should be the case exactly when H0(k, ZG(κb)) = H0(k, C[2]).
The action of the Galois group Γk on C[2] arises from a homomorphism Γk →
W (H,C) ∼= WH giving the action on the torus C, and this condition can
be described in terms of the image of this homomorphism inside WH . In
particular, in the ‘generic’ case where this image is the whole Weyl group, we
have H0(k, ZG(κb)) = H0(k, C[2]) = 0, and consequently 4 trivial orbits in
G(k)\Vb(k).

Corollary 5.4. Let X be a smooth, projective, geometrically connected curve
over Fq, and let K = Fq(X). Let b ∈ Brs(K). Then the subset G(K)\Vb(K) ⊂
H1(K, Jb[2]) appearing in Corollary 3.4 (with k = K) contains the 2-Selmer
group Sel2(Jb).

Proof. This follows from the fact that the Hasse principle holds for G, i.e. that
the map H1(K,G) →

∏
v H

1(Kv, G) is injective.
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5.2 (G, V ) and local integral orbits

In the previous section, we have studied rational orbits. We now look at the
integral situation. Let X be a smooth, projective, geometrically connected
curve over Fq, and let K = Fq(X). Let v be a place of K, and let (E,P,Q)
be tuple consisting of an elliptic curve E over Kv with two distinct, non-trivial
marked rational points P,Q ∈ E(Kv). We assume that the minimal model (as
in §2) of (E,P,Q) has squarefree discriminant, and let b = (p2, p4, q4, p6) ∈
B(OKv

) denote the associated set of invariants. We write Jb for the Jacobian
of E, which we identify with E via the map E → Jb, R 7→ [(R)− (O)].

Theorem 5.5. With assumptions as above, let Jb denote the Néron model of
E over OKv

. Then:

1. The map H1(OKv
,Jb[2]) → H1(Kv, Jb[2]) in étale cohomology is injec-

tive.

2. An orbit in G(Kv)\Vb(Kv) admits an integral representative (i.e. in-
tersects Vb(OKv

)) if and only if it corresponds to an element of
Jb(Kv)/2Jb(Kv).

3. Suppose that x, y ∈ Vb(OKv
) and γ ∈ G(Kv) satisfy γx = y. Then

γ ∈ G(OKv
).

Proof. Lemma 2.3 shows that E has reduction of type I0 or I1. In particular, Jb

has connected special fibre. We have H1(OKv
,Jb[2]) = H1(k(v),Jb[2](κ(v)))

and Jb[2](κ(v)) = Jb[2](K
s
v)

IKv , so the injectivity of the first part is a conse-
quence of the inflation-restriction exact sequence.
For the ‘if’ of the second part, we use the existence of the section Σ ⊂ V ,
which shows (together with the commutative diagram of Theorem 5.2) that any
element of Jb(Kv)/2Jb(Kv) which can be represented by a divisor (R) − (O),
where R ∈ Σb(OKv

), is represented by an element of V (OKv
). Since the trivial

orbits have integral representatives, essentially by definition, this reduces us to
showing that any non-trivial orbit in Jb(Kv)/2Jb(Kv) is represented by such a
divisor (R)− (O). We have a short exact sequence (which defines Jb(OKv

)0)

0 //Jb(OKv
)0 //Jb(Kv) //Jb(k(v)) //0,

where the kernel is a pro-p-group (p = charFq), hence an isomorphism

Jb(OKv
)/2Jb(OKv

) ∼= Jb(k(v))/2Jb(k(v)) ∼= H1(OKv
,Jb[2]).

If [x] ∈ Jb(k(v))/2Jb(k(v)) is a non-trivial class (i.e. not in the subgroup gen-
erated by the 3 marked points of E at infinity), we can choose a representative
x ∈ Jb(k(v)) of the form (R) − (O), where R ∈ Σb(k(v)). Lifting R to a
point R ∈ Σb(OKv

) via Hensel’s lemma then shows the existence of the desired
integral representative in Vb(OKv

).
We now turn to the ‘only if’ of the second part. We first note that any element
x ∈ Vb(OKv

) in fact lies in V reg
b (OKv

), i.e. x = x mod (̟v) is regular in Vk(v).
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This is clear if ∆(x) is a unit inOKv
, as then x is regular semisimple. Otherwise,

we note that x is regular in Vk(v) if and only if it is regular in hk(v); and if it is
not regular in hk(v), then its centralizer has dimension at least dimT + 2 (see
[SS70, III, 3.25]). Let c = zhKv

(x), c0 = c ∩ hOKv
. Let f : hOKv

/c0 → hOKv
/c0

denote the map of finite free OKv
-modules induced by adx after passage to

quotient. We have the relation det f = ∆(x), up to units in O×
Kv

. If x is

not regular, then f = f mod (̟v) has kernel of dimension at least 2, hence
ordKv

det f ≥ 2, a contradiction.
We next observe that the map GOKv

→ V reg
b , g 7→ g · κb, is étale, and a torsor

over its image V reg, 0
b ⊂ V reg

b for the étale group scheme ZGOKv
(κb) over OKv

.

Moreover, we have V reg
b = ∪w∈W0w · V reg, 0

b (by [Lev07, Theorem 0.17]). It
follows that there is a bijection

G(OKv
)\V reg, 0

b (OKv
) ∼= H1(OKv

, ZGOKv
(κb)). (5.6)

The isomorphism ZGKv
(κb) ∼= Jb[2] extends uniquely to an isomorphism

ZGOKv
(κb) ∼= Jb[2]. If ∆ is a unit, then this is immediate from Theorem 5.2. If

∆ is not a unit, then it suffices to show that the isomorphism ZGKv
(κb) ∼= Jb[2]

identifies ZG(κb)(κ(v)) ⊂ ZG(κb)(K
s
v)

Iv with Jb[2](κ(v)) ⊂ Jb[2](K
s
v)

Iv . Since
Jb(κ(v)) has order 2, it is enough to show that ZG(κb)(κ(v)) is non-trivial.
This follows from the fact that Σb has a unique singularity of type A1, as we

now show. Let b = b mod (̟v). The element κb ∈ V (k(v)) has a Jordan
decomposition κb = vs + vn as a sum of commuting semisimple and nilpotent
parts, and we can compute (using the same technique as in [Tho13, Proposition
2.8])

ZG(κb) = ZZGsc(vs)[2]/ ker(G
sc → G). (5.7)

(We remind the reader of that ZGsc(vs) denotes the stabilizer of vs in Gsc, and
so ZZGsc (vs) denotes the centre of this connected reductive group.) The fact
that Σb has a singularity of type A1 implies ([Tho13, Corollary 3.16], the proof
of which goes over without change in our setting) that ZGsc(vs) has derived
group of type A1. In particular, its centre contains a torus of rank 3. We have
ker(Gsc → G) ∼= µ2

2, so the group appearing in (5.7) must be non-trivial.
We can thus enlarge (5.6) to a commutative diagram

G(OKv
)\V reg, 0

b (OKv
) //

��

H1(OKv
,Jb[2])

��

G(Kv)\Vb(Kv) // H1(Kv, Jb[2]).

(5.8)

This shows that any element of G(Kv)\Vb(Kv) which is in the image of the left-
hand vertical arrow lies in the image of H1(OKv

,Jb[2]) ∼= Jb(Kv)/2Jb(Kv) ⊂
H1(Kv, Jb[2]). Since we have V reg

b = ∪w∈W0wV
reg, 0
b , and W0 acts on

H1(Kv, Jb[2]) as translation by trivial orbits, we finally see that any element
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of G(Kv)\Vb(Kv) which admits an integral representative corresponds to an
element of Jb(Kv)/2Jb(Kv).
Finally, we come to the third part of the theorem. The integrality is insensitive
to passage to unramified extensions of Kv. After possibly replacing Kv by an
unramified extension, we can therefore assume that x = y = κb, and reduce to
showing the statement that the étale group scheme ZG(κb) satisfies the Néron
mapping property, i.e. its Kv-points all extend to OKv

-points. We have shown
that ZG(κb) ∼= Jb[2], so this follows from the Néron mapping property for
Jb.

5.3 (G, V ) and global integral orbits

We can now discuss the global picture. Let X be a smooth, projective, geo-
metrically connected curve over Fq, and let K = Fq(X). Let D =

∑
v mv · v

be a divisor on X , and let (E,P,Q) ∈ XD. We recall (see §2) that this means
that E is an elliptic curve over K with two distinct non-trivial marked rational
points P,Q ∈ E(K), and which can be represented by an equation

y(xy + 2q4) = x3 + p2x
2 + p4x+ p6 (5.9)

with

b = (p2, p4, q4, p6) ∈ H0(X,OX(2D)⊕OX(4D)⊕OX(4D)⊕OX(6D))

= H0(X,BD) ⊂ B(K)

(5.10)

of square-free discriminant in H0(X,OX(24D)). (The reason for restricting
to curves with LE a square is that the invariant degrees of the representation
(G, V ) then agree with the weights of the equation (5.9) defining the curve E.)
Let x ∈ Vb(K) be an element corresponding to an element of the group Sel2(E)
(see Corollary 5.4). Then for every place v of K, ̟mv

v x has minimal, integral
invariants π(̟mv

v x) = ̟mv
v · b ∈ O4

Kv
of squarefree discriminant, and Theorem

5.5 implies that we can find gv ∈ G(Kv) such that ̟mv
v x ∈ gvV (OKv

). For all
but finitely many places v, we have mv = 0 and can choose gv = 1. Moreover,
gv is defined up to right multiplication byG(OKv

), by the third part of Theorem
5.5. If we replace x by γx for some γ ∈ G(K), then gv can be replaced by γgv.
We have therefore defined a map

inv : Sel2(E) → G(K)\G(AK)/G(ÔK). (5.11)

It is clear that this map depends only on (E,P,Q) and not on the choice of
equation b ∈ H0(X,OX(D)) representing (E,P,Q) (since all choices differ by
the action of F×

q ).
To any g ∈ G(AK), we associate the G-torsor Fg and the vector bundle Vg =
Fg ×G V , which has sections described by (4.10). The above discussion shows
that if [g] = inv(x), then x naturally defines an element of

V (K) ∩
∏

v

gv̟
−mv
v V (OKv

) = H0(X,Vg(D)),
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and the image of x under the map π : H0(X,Vg(D)) → H0(X,BD) equals b.
This leads to the following result.

Theorem 5.6. Let (E,P,Q) ∈ XD be represented by b ∈ H0(X,BD). Let
g = (gv)v ∈ G(AK). Then the following two sets are in canonical bijection:

1. The set of elements x ∈ Sel2(E) such that inv(x) = [(gv)v].

2. The set of sections s ∈ H0(X,Vg(D)) such that π(s) = b, taken up to the
action of the group Aut(Fg).

Proof. We have constructed the map from the first set to the second set. We
now construct its inverse. Let s be a global section in

H0(X,Vg(D)) = V (K) ∩
∏

v

gv̟
−mv
v V (OKv

)

such that π(s) = b. Writing x for the image of s in V (K) under the canonical
inclusion, we obtain an orbit in G(K)\Vb(K). This orbit is independent of the
choice of representative in the Aut(Fg)-orbit of s; indeed, we have Aut(Fg) =

G(K) ∩ gG(ÔK)g−1, so replacing s by γs for γ ∈ Aut(Fg) would just replace
x by γx, leaving the G(K)-orbit of x unchanged.
We need to show that x lies in the subset of G(K)\Vb(K) corresponding to the
2-Selmer group. However, this follows from the second part of Theorem 5.5 and
the fact that s has square-free discriminant. It is clear from the construction
that this map is inverse to the other, so this completes the proof.

To illustrate the construction of this invariant map, we calculate its image
when applied to the trivial elements in Jb(K)/2Jb(K) ⊂ Sel2(Jb). Recall that
we have defined κ = E + zh(F ), where (E, dρ̌(2), F ) is a regular normal sl2-
triple in h. The action t · x = tAd ρ̌(t−1)(x) leaves κ invariant and contracts
to the unique fixed point E (see Proposition 3.3). In particular, if v is a place
of K, b ∈ B(Kv), and λ ∈ K×

v , then we have the following formula giving the
behaviour of the Kostant section under scaling:

κλb = ρ̌(λ−1)λκb. (5.12)

If b ∈ B(OKv
), then κb ∈ V (OKv

) is an integral representative of the orbit in
Vb(K) corresponding to the identity element of Sel2(Jb). If b ∈ H0(X,BD) ⊂
B(K) is associated to a pointed curve as above, then we find ̟mv

v b ∈ B(OKv
)

is the minimal integral representative, hence

κ̟mv
v b = ρ̌(̟−mv

v )̟mv
v b ∈ ̟mv

v V (OKv
). (5.13)

It then follows from the definition that we have inv(κb) = [(ρ̌(̟mv
v ))v]. The

same formalism applies to the other trivial orbits: if w ∈ W0, then the repre-
sentative of the corresponding trivial orbit in V (K) is wκb. For each place v
of K, we have

wρ̌(̟−mv
v )w−1̟mv

v wκb = wρ̌(̟−mv
v )̟mv

v κb ∈ ̟mv
v V (OKv

), (5.14)
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so it follows from the definition that we have inv(wκb) = [(wρ̌(̟mv
v )w−1)v].

This implies in particular:

Lemma 5.7. Let (E,P,Q) ∈ XD be represented by b ∈ H0(X,BD), and let
x ∈ Sel2(Jb) be a trivial element. Suppose that degD > 0. Then inv(x) ∈
YG,P0(D)<0. (We recall that P0 ⊂ G is the Borel subgroup corresponding to
the set −R = {−a1,−a2,−a3,−a4} of simple roots of G.)

Proof. We need to check that for each g ∈ {(wρ̌(̟mv
v )w−1)v | w ∈ W0}, we

have g ∈ P0(AK)pos, ss and the ‘lowest slope’ part of Vg(D) has strictly negative
slope. Representatives for the elements of W0 are given in (3.3). Using the
formulae

ρ̌(t) = (t3, t2, t−2, t−3, t, 1, 1, t−1),

α0(a, b, b
−1, a−1, c, d, d−1, c−1) = ab,

we see that 〈wρ̌w−1, α0〉 = 5 for all w ∈ W0.
Since the Levi quotient of P0 is a torus, the semi-stability condition is vacuous,
so to show g ∈ P0(AK)pos, ss, we need to show that for all a ∈ R−, we have
logq ‖a((wρ̌(̟

mv
v )w−1)v)‖ > 0. We compute

logq ‖a(w(ρ̌(̟
mv
v )w−1)v)‖ = −〈wρ̌w−1, a〉 · degD.

Using the explicit expression (3.5) for R, we see that this is positive for all
w ∈ W0, a ∈ R−. On the other hand, the lowest slope part of Vg(D) has slope

logq ‖α0((wρ̌(̟
mv
v )w−1)v)‖ = −〈wρ̌w−1, α0〉 · degD + degD = −4 degD < 0,

as required.

5.4 The main theorem

We once again suppose that X is a smooth, projective, geometrically con-
nected curve over Fq, and let K = Fq(X). If D is a divisor on X , then we
write H0(X,BD)sf ⊂ H0(X,BD) for the set of elements of square-free dis-
criminant ∆ ∈ H0(X,OX(24D)). Then (Corollary 2.4) there is a surjection
H0(X,BD)sf → XD, the fibre above a given isomorphism class [(E,P,Q)] hav-
ing cardinality equal to (q − 1) · |Aut(E,P,Q)|−1. If g = [(gv)v] ∈ YG, then
we write H0(X,Vg(D))sf ⊂ H0(X,Vg(D)) for the pre-image of H0(X,BD)sf.
We also write H0(X,Vg(D))sf,nt ⊂ H0(Vg(D))sf for the set of elements of
H0(Vg(D))sf which are non-trivial when viewed inside V (K) (that is, they
are not G(K)-conjugate to a point of a W0-translate of κ; see Lemma 3.5).

Proposition 5.8. Let g = (gv)v ∈ G(AK).

1. The limit

δB = lim
degD→∞

|H0(X,BD)sf|

|H0(X,BD)|

exists and is strictly positive.
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2. The limit

δV = lim
degD→∞

|H0(X,Vg(D))sf|

|H0(X,Vg(D))|

exists and is strictly positive, and does not depend on g.

3. We have
∫
g∈G(ÔK) dτGδB = q12(gX−1)δV , where τG denotes the Tama-

gawa measure on G(AK).

Proof. If v is a place of K, define

αv =
|{x ∈ B(OKv

/(̟2
v)) | ∆(x) ≡ 0 mod ̟2

v}|

q8v

and

βv =
|{x ∈ V (OKv

/(̟2
v)) | ∆(x) ≡ 0 mod ̟2

v}|

q32v
.

In [HLHN14, §5.1] it is proved using results of Poonen [Poo03] that the limit δV
exists and equals

∏
v(1− βv). A similar argument using the results of [Poo03]

shows that the limit δB exists and equals
∏

v(1−αv). It is easy to see that both
of these products are strictly positive. To finish the proof of the proposition, we
need to show that

∫
g∈G(ÔK)

dτGδB = q12(gX−1)δV , or even (using the definition

of the Tamagawa measure) that
∫
g∈G(OKv )

|ωG|v(1 − αv) = (1 − βv) for each

place v of K, ωG being an invariant differential form of top degree on G (over
Fq). We will establish this using an integral formula.
Let ωV and ωG be invariant differential forms of top degree on V and G,
respectively. Let ωB = dp2 ∧ dp4 ∧ dq4 ∧ dp6, a differential form of top degree
on B. Let ϕ : B(Kv) → R denote the characteristic function of the open
subset of b ∈ B(OKv

) where ordKv
∆(b) ≤ 1. Let f : V (Kv) → R denote the

characteristic function of the open subset of x ∈ V (OKv
) where ordKv

∆(x) ≤
1. Then we must show the identity

∫

g∈G(OKv )

|ωG|v

∫

b∈B(Kv)

ϕ(b) |ωB |v =

∫

x∈V (Kv)

f(x) |ωV |v.

If c ⊂ VKv
is a Cartan subspace, we write µc : GKv

× c → VKv
for the action

map. Exactly the same argument as in [Tho15, Proposition 2.13] shows that
for any Cartan subspace c ⊂ VKv

, we have an identity

µ∗
cωV = λωG ∧ π|∗cωB

for some scalar λ ∈ F×
q which is independent of the choice of Cartan subspace.

Let c1, . . . , cs ⊂ VKv
denote representatives for the distinct G(Kv)-conjugacy

classes of Cartan subspaces. If b ∈ B(Kv) then we will write, as usual, ci,b for
the fibre of the quotient morphism ci → B above the point b. Each element
v ∈ V rs(Kv) is contained in a unique Cartan subspace, so we obtain an identity

∫

x∈V (OKv )

f(x) |ωV |v =
s∑

i=1

∫

(g,ci)∈G(Kv)×ci

f(gci)

|NG(ci)(Kv)|
|ωG ∧ π|∗cωB|v.
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Let c0i = ci ∩ [G(Kv) · V (OKv
)], an open subset of ci. It follows from Theorem

5.5 and the invariance of the measure |ωG|v that this last integral is equal to

s∑

i=1

∫

g∈G(OKv )

|ωG|v

∫

ci∈ci

ϕ(π(ci))

|NG(ci)(Kv)|
|π|∗cωB|v

=
s∑

i=1

∫

g∈G(OKv )

|ωG|v|NG(ci)(Kv)|
−1

∫

b∈B(Kv)

ϕ(b)|ci,b(Kv) ∩ c0i ||ωB|v.

To finish the proof, we therefore just need to show that if b ∈ B(OKv
) satisfies

ordK ∆(b) ≤ 1, then

s∑

i=1

|ci,b(Kv) ∩ c0i | × |NG(ci)(Kv)|
−1 = 1.

The left-hand side counts the number of G(Kv)-orbits in Vb(Kv) which have
an integral representative, each orbit being weighted by |ZG(κb)(Kv)|

−1. The
total number of orbits equals |Jb(Kv)/2Jb(Kv)| = |Jb(Kv)[2]|, by Theorem 5.5.
This quantity in turn is equal to |ZG(κb)(Kv)|, by Theorem 5.2. This completes
the proof.

We now come to the first main theorem of this paper. If D is a divisor on
X and (E,P,Q) ∈ XD, we write A(E,P,Q) ⊂ Sel2(E) for the ‘trivial subgroup’
which is generated by the points P and Q, and Sel2(E)nt = Sel2(E)−A(E,P,Q)

for its complement.

Theorem 5.9. The limit

lim
degD→∞

∑

(E,P,Q)∈XD

| Sel2(E)nt| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|

exists and equals 8.

In the following proof, we write χ = 2 − 2gX in order to avoid a proliferation
of subscripts.

Proof. Corollary 2.4 shows that we have

|H0(X,BD)sf| =
∑

(E,P,Q)∈XD

q − 1

|Aut(E,P,Q)|

= (q − 1)|XD| − (q − 1)
∑

(E,P,Q)∈XD

(
1− |Aut(E,P,Q)|−1

)
.

It also shows that if (E,P,Q) ∈ XD and the group Aut(E,P,Q) is non-trivial,
then p2(b) = 0 for any pre-image b ∈ H0(X,BD)sf. Thus the number of such
curves is O(q14 degD). Using Proposition 5.8, we see that

lim
degD→∞

|XD|

|H0(X,BD)sf|
= (q − 1)−1.
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Similarly, if b ∈ H0(X,BD)sf corresponds to (E,P,Q) ∈ XD, then Theorem 5.6
shows that

| Sel2(E)| =
∑

g∈YG

|H0(X,Vg)b/Aut(Fg)|.

(Here the subscript b again denotes fibre over b.) By the third part of Theo-
rem 5.5, the stabilizer in Aut(Fg) of any point in H0(X,Vg)b is isomorphic to
E(K)[2]. Weighting for this, we obtain

| Sel2(E)|

|E(K)[2]|
=

∑

g∈YG

|H0(X,Vg)b|

|Aut(Fg)|
=

∫

g∈YG

|H0(X,Vg)b|.

(In fact, in our case the groups E(K)[2] are all trivial, cf. Remark 1.2, but
we don’t need this.) Summing over all b ∈ H0(X,BD)sf and restricting to
non-trivial elements of the 2-Selmer group, we obtain the identity

(q − 1)
∑

(E,P,Q)∈XD

| Sel2(E)nt| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|H0(X,BD)sf|

=

∫

g∈YG

|H0(X,Vg(D))sf, nt|

|H0(X,BD)sf|
dνG

=

∫

YG

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
×

|H0(X,BD)|

|H0(X,BD)sf|
dνG,

hence

lim
degD→∞

∑

(E,P,Q)∈XD

| Sel2(E)nt| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|

= δ−1
B × lim

degD→∞

∫

YG

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG.

We would like to compute the pointwise limit of the integrand and then inter-
change the order of the integral and the limit. This can be justified only after a
process of ‘cutting off the cusp’. Applying the decompositions (4.5) and (4.12),
we get

∫

YG

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG =

∑

P

∫

YG,P

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG

=
∑

P

[∫

YG,P (D)>−χ

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG

+

∫

YG,P (D)sp

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG

+

∫

YG,P (D)<0

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG

]
,
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where the sums are over the set of standard parabolic subgroups of G. (We
recall that these are the parabolics containing the Borel subgroup P0 ⊂ G
corresponding to the set R− = {−a1,−a2,−a3,−a4} of simple roots of G.)
Applying Lemma 5.7, we see that when degD > 0, this equals

∑

P

[∫

YG,P (D)>−χ

|H0(X,Vg(D))sf|

|H0(X,BD)|
dνG

+

∫

YG,P (D)sp

|H0(X,Vg(D))sf|

|H0(X,BD)|
dνG

+

∫

YG,P (D)<0

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG

]
.

We will see that the terms corresponding to YG,P (D)>−χ dominate, while
the others vanish in the limit. Note that for any g ∈ YG,P , we have g ∈
YG,P (D)>−χ for all divisors D of sufficiently large degree (depending on g).
For divisors of degree greater than −χ we have |H0(X,BD)| = q2χ+16 degD,
and Corollary 4.7 shows that for such D we have

∫

YG,P (D)>−χ

|H0(X,Vg(D))sf|

|H0(X,BD)|
dνG

=

∫

YG,P (D)>−χ

|H0(X,Vg(D))|

|H0(X,BD)|

|H0(X,Vg(D))sf|

|H0(X,Vg(D))|
dνG

= q6χ
∫

YG,P (D)>−χ

|H0(X,Vg(D))sf|

|H0(X,Vg(D))|
dνG.

The integrand in this expression is bounded by 1, and as degD → ∞ its value
tends to a limit δV which is independent of the choice of g, by Proposition 5.8.
Applying the dominated convergence theorem, we find that

lim
degD→∞

∫

YG,P (D)>−χ

|H0(X,Vg(D))sf|

|H0(X,BD)|
dνG = q6χδV

∫

YG,P

dνG.

To take care of the contribution in the special range, we calculate using Corol-
lary 4.7 and Lemma 4.3:

∫

YG,P (D)sp

|H0(X,Vg(D))sf|

|H0(X,BD)|
dνG ≤

∫

YG,P (D)sp

|H0(X,Vg(D))|

|H0(X,BD)|
dνG

= O




∑

σ∈Λpos
P

degD+〈σ,α0〉∈[0,−χ]

q−〈σ,δP 〉


 ,

where the implied constant depends only on X . This tends to 0 as degD → ∞.
To take care of the remaining contributions, we note that Corollary 4.8 implies
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that ∫

YG,P (D)<0

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG = 0

unless P = P0 or the Levi quotient of P has semisimple rank 1. In these cases
we will show that

lim
degD→∞

∫

YG,P (D)<0

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG = 0. (5.15)

Let us first treat the (harder) case of P = P0. Let C denote the set of non-
empty subsets M ⊂ ΦV which are closed under the relation ≥: i.e. if a ∈ ΦV ,
b ∈ M , and a ≥ b, then a ∈ M . Note that α0 ∈ M for all M ∈ C. Then we
have YG,P0(D)<0 = ⊔M∈CYG,P0(D)<0,M , where we define YG,P0(D)<0,M to be
the set of G-torsors F ∈ YG,P0(D)<0 such that for a ∈ ΦV , the slope σFP0

of
the canonical reduction FP0 satisfies 〈σFP0

, a〉+degD < 0 if and only if a ∈ M .
This allows us to decompose

∫

YG,P0 (D)<0

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG

=
∑

M∈C

∫

YG,P0 (D)<0,M

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG. (5.16)

Let C0 ⊂ C denote the set of subsets M ∈ C0 not containing any of the sets
S appearing in the statement of Corollary 3.6. The summand in (5.16) corre-
sponding to M ∈ C can be non-zero only if M ∈ C0. To show (5.15) in case
P = P0, it is therefore enough to show that the equality

lim
degD→∞

∫

YG,P0 (D)<0,M

|H0(X,Vg(D))|

|H0(X,BD)|
dνG = 0. (5.17)

holds for each M ∈ C0. If M ∈ C and YG,P0(D)<0,M , then Corollary 4.7 implies
that we have

|H0(X,Vg(D))|

|H0(X,BD)|
= O(q−|M| degD−〈σ,

∑
a∈M

a〉),

where the implied constant depends only on X . Combining this with Lemma
4.3, we get for any M ∈ C:

∫

YG,P0 (D)<0,M

|H0(X,Vg(D))|

|H0(X,BD)|
dνG

= O




∑

σ∈Λpos
P0

∀a∈M,〈σ,a〉+degD<0
∀a∈ΦV −M,〈σ,a〉+degD≥0

q−|M| degD−〈σ,δP0+
∑

a∈M
a〉




, (5.18)

Documenta Mathematica 24 (2019) 1179–1223



2-Selmer Elements of Elliptic Curves over Fq(X) 1217

where the implied constant again depends only on X .
At this point, we recall the function λ(M) defined in §3.1: if M ∈ C, then
λ(M) ⊂ ΦV −M is the set of maximal elements of ΦV −M . In particular, if
M ∈ C and a ∈ λ(M), then q〈σ,a〉+degD ≥ 1 for any σ appearing in the sum
(5.18). It follows that for any function p : λ(M) → R≥0, (5.18) is bounded
above by a constant multiple of

∑

σ∈Λpos
P0

∀a∈M,〈σ,a〉+degD<0
∀a∈ΦV −M,〈σ,a〉+degD≥0

qdegD(
∑

a∈λ(M) p(a)−|M|)+〈σ,
∑

a∈λ(M) p(a)a−
∑

a∈M
a−δP0 〉

≤ qdegD(
∑

a∈λ(M) p(a)−|M|)
∑

σ∈Λpos
P0

q〈σ,
∑

a∈λ(M) p(a)a−
∑

a∈M
a−δP0〉.

This last expression tends to 0 as degD tends to infinity provided the function
p is chosen so that the following conditions are satisfied:

• |M | >
∑

a∈λ(M) p(a).

• Define w(M) = −
∑

a∈M a − δP0 and w(M,p) =
∑

a∈λ(M) p(a)a −∑
a∈M a− δP0 ∈ X∗(T )R. Then ni(w(M,p)) > 0 for each i = 1, . . . , 4.

We show that we can find such a function p simply by exhibiting one for each
possible choice of M ∈ C0 in the following table (the weights being labelled as
in §3.1):

M λ(M) |M | 2w(M) p 2w(M,p)
1 2, 3, 4, 5 1 1 1 1 1 (0, 0, 0, 0) 1 1 1 1
1,2 3,4,5 2 2 0 0 0 (0.5, 0.5, 0.5) 3.5 0.5 0.5 0.5
1,3 2,4,5 2 0 2 0 0 (0.5, 0.5, 0.5) 0.5 3.5 0.5 0.5
1,4 2,3,5 2 0 0 2 0 (0.5, 0.5, 0.5) 0.5 0.5 3.5 0.5
1,5 2,3,4 2 0 0 0 2 (0.5, 0.5, 0.5) 0.5 0.5 0.5 3.5
1,2,3 4,5,6 3 1 1 −1 −1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,2,4 3,5,7 3 1 −1 1 −1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,2,5 3,4,8 3 1 −1 −1 1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,3,4 2,5,9 3 −1 1 1 −1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,3,5 2,4,10 3 −1 1 −1 1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5
1,4,5 2,3,11 3 −1 −1 1 1 (0.5, 0.5, 1.5) 0.5 0.5 0.5 0.5

This shows that the equality (5.15) holds in case P = P0. We now treat the
four remaining cases. By symmetry, we can assume that P is the standard
parabolic subgroup of G generated by P0 and the root subgroup corresponding
to the root a1. Then the Levi quotient LP of P is isogenous to SL2, and the
same argument as above shows that we need to show that

lim
degD→∞

∫

YG,P (D)<0,M

|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG = 0 (5.19)
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for each M ∈ C0. We observe that YG,P (D)<0,M is non-empty only when
M satisfies the condition a ∈ M ⇒ a′ ∈ M , where a′ ∈ ΦV is defined by
n1(a

′) = −n1(a), ni(a
′) = ni(a) for i = 2, 3, 4. The only set M ∈ C0 which

satisfies this condition is M = {1, 2}, so we are reduced finally to showing that
the equality (5.19) holds in the single case M = {1, 2}. This can be proved
using exactly the same trick as before.
Putting everything back together and applying Proposition 5.8, we find

lim
degD→∞

∑

(E,P,Q)∈XD

| Sel2(E)nt| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|

= δ−1
B ×

∑

P

q6χδV

∫

YG,P

dνG

=

∫

G(ÔK)

dτG

∫

G(K)\G(AK)

dµG =

∫

G(K)\G(AK)

dτG = τ(G),

the Tamagawa number of G. Since the fundamental group of G is isomorphic
to µ3

2 and the universal cover of G is SL4
2, we have τ(G) = 8 (apply [BD09,

Theorem 6.1]). This completes the proof.

Corollary 5.10. The limit

lim
degD→∞

∑

(E,P,Q)∈XD

| Sel2(E)| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|

exists and equals 12.

Proof. In view of Theorem 5.9, we just need to show that

lim
degD→∞

∑

(E,P,Q)∈XD

|AE,P,Q| · |Aut(E,P,Q)|−1 · |E(K)[2]|−1

|XD|

exists and equals 4. We recall from the proof of Theorem 5.3 that if k/Fq is
a field extension and b ∈ Brs(k), then |AE,P,Q| = 4 if and only if in the short
exact sequence

0 //ZG(κb) //C[2] //π0(H
θ) //0 , (5.20)

we have H0(k, ZG(κb)) = H0(k, C[2]). This property can be detected at the
level of the image Wb of the map Γk → W (G, zh(κb)) ∼= WH into the little Weyl
group of the Cartan subspace zh(κb) ⊂ Vk. We see that the corollary would
follow from a quantitative Hilbert irreducibility theorem, which does not seem
to exist in the literature at the moment (but see [BS]).
Instead, we will give a direct proof of the corollary. For any of R ∈ {P,Q, P ⊕
Q}, let XD(R) denote the set of (E,P,Q) ∈ XD such that the image of R in
E(K)/2E(K) is trivial. To show the corollary, it is enough to show that

lim
degD→∞

|XD(R)|

|XD|
= 0 (5.21)
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for each possible choice of R. According to the proof of Theorem 5.3, the
element R determines a class vR ∈ π0(H

θ), and a triple (E,P,Q) ∈ XD lies
in XD(R) if and only if the image of this class in H1(K,ZG(κb)) under the
connecting homomorphism is trivial. Let {w} ⊂ W (G, zh(κb)) ∼= WH be a
conjugacy class of elements such that (w − 1)wR 6∈ (w − 1)ZG(κb), for any lift
wR ∈ C[2] of vR. (This condition depends only on the conjugacy class of w, so
makes sense independent of the choice of b. We can choose either w = s2s3 and
w = s1s2s4, where s1, . . . , s4 are the simple reflections of H corresponding to
the simple roots α1, . . . , α4 listed in §3.1.) Then if (E,P,Q) ∈ XD corresponds
to b ∈ Brs(K) and {w} ∩ Wb 6= ∅, then (E,P,Q) 6∈ XD(R). Equivalently, if
(E,P,Q) ∈ XD(R), then {w} ∩Wb = ∅.
To prove the corollary, it is therefore enough to show that for any conjugacy
class {w} of the little Weyl group, we have

lim
degD→∞

|{b ∈ H0(X,BD) ∩Brs(K)|{w} ∩Wb = ∅}|

|H0(X,BD)|
= 0.

Let B∆=0 ⊂ B denote the vanishing locus of the discriminant ∆. The Cheb-
otarev density theorem (see [Cha97, Theorem 4.1]) states that for each place v
of K we have

|{bv ∈ Brs(k(v)) | {w} ∩Wbv = ∅}| =

(
1−

|{w}|

|WH |

)
q4v +O(q

4− 1
2

v ),

where the implicit constant is independent of the choice of v. Let M > 0. If D
is a divisor on X of sufficiently large degree, then the map

H0(X,BD) →
∏

Nv<M

H0(k(v), BD)

is surjective. If v is a place of K, then the image of the set

{b ∈ H0(X,BD) ∩Brs(K)|{w} ∩Wb = ∅}

in H0(k(v), BD) is contained inside

B∆=0(k(v)) ∪ {bv ∈ Brs(k(v)) | {w} ∩Wbv = ∅}.

We find that for degD sufficiently large, we have

|{b ∈ H0(X,BD) ∩Brs(K)|{w} ∩Wb = ∅}|

|H0(X,BD)|

≤
∏

Nv<M

((
1−

|{w}|

|WH |

)
+O(q−1/2

v )

)
.

This product converges to 0 as M → ∞, and this concludes the proof.

Finally, we prove the promised generalization of Theorem 5.9.
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Theorem 5.11. Let f : YG → R be a bounded function. Then we have

lim
degD→∞

∑

(E,P,Q)∈XD

|Aut(E,P,Q)|−1 · |E(K)[2]|−1
∑

x∈Sel2(E)nt f(inv x)

|XD|

=

∫

F∈YG

f(F ) dτG.

Proof. Arguing as in the proof of Theorem 5.9, we get

(q − 1)
∑

(E,P,Q)∈XD

|Aut(E,P,Q)|−1 · |E(K)[2]|−1
∑

x∈Sel2(E)nt f(inv x)

|H0(X,BD)sf|

=

∫

g∈YG

|H0(X,Vg(D))sf, nt|

|H0(X,BD)sf|
f(Fg) dνG

=
∑

P

[∫

YG,P (D)>−χ

f(Fg)
|H0(X,Vg(D))sf|

|H0(X,BD)|
dνG

+

∫

YG,P (D)sp
f(Fg)

|H0(X,Vg(D))sf|

|H0(X,BD)|
dνG

+

∫

YG,P (D)<0

f(Fg)
|H0(X,Vg(D))sf, nt|

|H0(X,BD)|
dνG

]
.

Since f is bounded, the same arguments as before show that the boundary
terms vanish in the limit. On the other hand, the boundedness of f means we
can again apply the dominated convergence theorem to deduce that

lim
degD→∞

∫

YG,P (D)>−χ

f(Fg)
|H0(X,Vg(D))sf|

|H0(X , BD)|
dνG = q6χδV

∫

YG,P

f(Fg) dνG,

and these terms can then be regrouped to obtain the statement of the theorem.
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