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Abstract. We explore methods for constructing normal forms of in-
decomposable quiver representations. The first part of the paper de-
velops homological tools for recursively constructing families of inde-
composable representations from indecomposables of smaller dimen-
sion vector. This is then specialized to the situation of tree modules,
where the existence of a special basis simplifies computations and gives
nicer normal forms. Motivated by a conjecture of Kac, we use this
to construct cells of indecomposable representations as deformations
of tree modules. The second part of the paper develops geometric
tools for constructing cells of indecomposable representations from
torus actions on moduli spaces of representations. As an application,
we combine these methods to construct families of indecomposables
grouped into cells. These actually give a normal form for all indecom-
posables of certain roots.
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1 Introduction

1.1 Background and Motivation

A central problem in the theory of finite-dimensional algebras is not only to
determine all indecomposable representations of an algebra, but also to give
normal forms, grouped into meaningful families when possible. Of course one
does not hope to accomplish this uniformly for all algebras, but rather to de-
velop techniques that can be applied to certain classes of quivers and dimension
vectors.
This article contributes to this program by constructing families of indecompos-
able representations which can be thought of as deformations of a given quiver
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representation M . Under suitable conditions, these deformations are given by
an affine space (i.e. cell), and distinct points correspond to nonisomorphic in-
decomposable representations. If M has a nice structure, for example if it is a
tree module, we moreover get a normal form for the deformed representations.

A main theme of our work is that we should not expect a single most general
method to construct indecomposables, but many techniques with incomparable
assumptions which can be used in parallel. Thus the methods and results of
this paper come in two distinct flavors: homological and geometric, which can
be combined to construct different kinds of indecomposable representations and
normal forms. For certain dimension vectors, we even obtain a full classification
of indecomposables. In several of our applications, we show that the set of
isomorphism classes of indecomposables produced by our methods has a cellular
decomposition into affine spaces.

The cell decompositions that we produce are particularly motivated by a con-
jecture of V. Kac from the early 1980s. Fixing a quiver Q and a dimension
vector α, define aα(q) as the number of absolutely indecomposable represen-
tations over Fq of dimension α (i.e. those which remain indecomposable after
extension of scalars to an algebraic closure of Fq). Kac proved that the function
aα(q) is polynomial in q with integer coefficients, aα(q) =

∑n
i=0 ciq

i for some
ci ∈ Z, and conjectured [Kac83, Conjecture 2] that each ci ≥ 0. Only recently
did Hausel, Letellier and Rodriguez-Villegas prove Conjecture 2 [HLRV13] in
full generality (an important special case was proven in [CBVdB04]). Kac’s
next conjecture is significantly more far reaching.

Conjecture. [Kac83, Conjecture 3] The set of isomorphism classes of inde-
composable representations of Q of dimension vector α admits a cellular de-
composition by locally closed subvarieties isomorphic to affine spaces, with each
ci being the number of cells of dimension i.

It should be noted that the conjecture is more inspirational than literal, since
the set of indecomposable isomorphism classes of a fixed dimension vector
does not have a canonical structure of a variety, and generally depends on
the underlying field k. We note that for this conjecture to be true, it requires
aα(1) =

∑

i ci to be the total number of cells of this cell decomposition.

We take Kac’s Conjecture 3 as a major motivation for developing methods
to construct cells of indecomposable representations, with aim at bringing new
ideas to the classification problem of indecomposable representations. It should
be noted from the start that cell decompositions of varieties are generally far
from unique and usually involve making some choices, for example of a torus
action on the variety. Thus we should not expect cell decompositions of spaces
of representations to canonically arise from the algebra. Rather, we aim to de-
velop practical methods for producing cell decompositions in as wide generality
as possible.
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1.2 Results

In Section 3 we develop recursive methods to construct cells of indecomposables
in a given dimension vector from cells of indecomposables in smaller dimen-
sion vectors. The main idea here is to fix a representation M and consider
the space of self-extensions Ext(M,M) as a parameter space for deformations
of M . In general, this will produce representations which are decomposable,
and furthermore there will be distinct parameters which yield isomorphic rep-
resentations, see [Wei15]. We introduce the notions of strong and separating
parameter spaces (Definition 2.2) for those which yield indecomposable and
pairwise nonisomorphic representations, respectively. Our first main results
are Theorems 3.5 and 3.6, which give recursive constructions of strong and
separating parameter spaces under suitable conditions.

In Section 4 we recall the notion of tree modules, which are quiver repre-
sentations with a particularly nice basis. When M above is a tree module,
we build on the results of Section 3 to derive nice normal forms for the
deformed representations. Tree modules are known to exist in abundance
[Kra91, Rin98, Wei10, Kin10, Wei12, Rin13], and it has been conjectured in
[Kin13] that there are sufficiently many tree modules to have one in each cell
in the setting of Kac’s Conjecture 3. We make this more precise in Definition
4.9 and Conjecture 4.11, supported by an example in Section 4.4. A method
for recursively constructing cells of indecomposables as deformations of tree
modules is given in Theorem 4.12.

In Section 5 we utilize a natural torus action on moduli spaces of representations
to construct cells of pairwise nonisomorphic indecomposables, when the ground
field is C. We first consider a torus (C∗)|Q1| of rank equal to the number of
arrows of Q, acting in the natural way with each copy of C∗ scaling the matrices
over the corresponding arrow. This action, also described in [Wei13], commutes
with the action of the base change group on quiver representations and thus
descends to the corresponding moduli spaceMΘ−st

α (Q) of stable representations
(for any weight Θ). We then fix a one-dimensional subtorus C∗ ⊂ (C∗)|Q1|

and investigate the corresponding Bia lynicki-Birula decomposition [BB73] of
MΘ−st
α (Q).

Each fixed point of the C∗-action gives a cell of pairwise nonisomorphic in-
decomposables (even the dimension of which depends on the choice of C∗ ⊂
(C∗)|Q1|). Stopping here, however, yields no concrete understanding of this
cell of indecomposables, such as a normal form. The aim of this section is
to lift the cell in MΘ−st

α (Q) to the corresponding representation variety, thus
producing (matrix) normal forms of the indecomposables in this cell. As with
the homological methods, the points of the lifted cell can again be understood
as deformations of the lifted fixed point. The major advantage of this approach
is that the deformation space is automatically strong and separating.

Finally, in Section 6 we demonstrate how to combine these methods in various
applications, such as for isotropic Schur roots. As a starting point for future
considerations, we also introduce certain invariants which can be attached to
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any root of a quiver. Actually, together with the Euler form of a root, these
invariants seem to measure the complexity of the classification problem for
indecomposables having this root as dimension vector.

2 Definitions and notation

2.1 Quiver representations

Here we briefly recall our definitions on quiver representations to establish no-
tation. More detailed background is available in many excellent textbooks,
including [ARS97, ASS06, Sch14, DW17]. Let k be a field and Q be a quiver
with vertices Q0 and arrows Q1. Functions s, t : Q1 → Q0 give source and
target of an arrow s(a)

a
−→ t(a). A representation of Q over k is denoted by

M = ((Mq)q∈Q0 , (Ma)a∈Q1) where Mq is a finite-dimensional k-vector space
for each q ∈ Q0, and Ma : Ms(a) →Mt(a) is a k-linear map for each a ∈ Q1. A
morphism between representations φ : M → N is a collection of k-linear maps
φ = (φq : Mq → Nq)q∈Q0 satisfying φt(a)Ma = Naφs(a) for every a ∈ Q1. We
write HomQ(M,N) or just Hom(M,N) for the k-vector space of morphisms
between two representations. We denote by repk(Q) the abelian, k-linear cat-
egory of finite-dimensional k-representations of Q, or simply rep(Q) when k
is understood. We write Ext(M,N) for Ext1rep(Q)(M,N). The dimension vec-

tor of M ∈ rep(Q) is dimM = (dimkMq)q∈Q0 ∈ ZQ0

≥0. We sometimes write

α =
∑

q∈Q0
αqq for a dimension vector α ∈ ZQ0

≥0. On ZQ0 we have a non-
symmetric bilinear form, called Euler form, defined by

〈α, β〉 =
∑

q∈Q0

αqβq −
∑

a∈Q1

αs(a)βt(a). (2.1)

By Ind(Q,α) we denote the set of indecomposable representations with dimen-
sion vector α.

2.2 Parametrizing extensions

For M = (Mq)q∈Q0 and N = (Nq)q∈Q0 two collections of finite-dimensional
k-vector spaces, we write

R(N,M) :=
⊕

a∈Q1

Homk(Ns(a),Mt(a)). (2.2)

Note that when M,N ∈ rep(Q), this does not depend on the maps Ma, Na.
Now consider the linear map

dN,M :
⊕

q∈Q0

Homk(Nq,Mq)→ R(N,M),

(fq)q∈Q0 7→ (ft(a)Na −Ma fs(a))a∈Q1 .

(2.3)
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It is well known (e.g. [DW17, Proposition 2.4.2]) that ker(dN,M ) = Hom(N,M)
and coker(dN,M ) ∼= Ext(N,M). Thus we have

〈N,M〉 := 〈dimN, dimM〉 = dim Hom(N,M)− dim Ext(N,M). (2.4)

Let

πN,M : R(N,M)→ Ext(N,M) (2.5)

be the natural projection. Concretely, an element f = (fa)a∈Q1 ∈ R(N,M)

determines the short exact sequence πN,M (f) : 0 → M
ι
−→ B(f)

π
−→ N → 0,

where the middle term is defined by the vector spaces B(f)q = Mq⊕Nq for all

q ∈ Q0 and linear maps B(f)a =

(

Ma fa
0 Na

)

for all a ∈ Q1.

Definition 2.1. We say a subset U ⊂ R(N,M) represents a subset E ⊆
Ext(N,M) if the restriction of πN,M to U gives a bijection of U with E. If E
is a basis of Ext(N,M), we say that U represents a basis of Ext(N,M).

Given a dimension vector α for Q, the associated representation variety is

Rα(Q) :=
⊕

a∈Q1

Homk(k
αs(a) , kαt(a)). (2.6)

IfM ∈ rep(Q) withMq = kαq is of dimension vector α, the spacesR(M,M) and
Rα(Q) are by definition the same. We regard Rα(Q) both as vector space and
as an affine variety, depending on the context. We use R(M,M) to emphasize
that its points are thought of as self-extensions or deformations (as defined in
Section 2.3) of M , and Rα(Q) to emphasize its points are thought of as all
representations of dimension vector α.

2.3 Deformations of representations

Fix a point M ∈ Rα(Q). Each λ ∈ R(M,M) defines a representation

M(λ) := M + λ (2.7)

of the same dimension vector, with the sum taken in the vector space R(M,M).
This notation emphasizes that we think of M(λ) as a deformation of M by the
parameter λ.

Definition 2.2. Let M ∈ rep(Q) and U ⊂ R(M,M) a subset.

(1) We call U strong if M(λ) is indecomposable for every λ ∈ U .

(2) We call U separating if M(λ) ≇M(µ) for every λ, µ ∈ U with λ 6= µ.

Example 2.3. Consider the modules of dimension vector (1, 1) for the (gen-
eralized) Kronecker quiver K(n) = ({0, 1}, {a1, . . . , an}) with s(ai) = 0 and
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t(ai) = 1 for i = 1, . . . , n. This very simple example serves to illustrate the
notation and terminology.
Starting with the two simple modules S0 and S1 of dimension (1, 0) and (0, 1)
respectively, we have

R(S0, S1) ∼= kQ1 ∼= Ext(S0, S1). (2.8)

We denote by 0
ai−→ 1 the vector of R(S0, S1) which is 1 in coordinate ai and 0

elsewhere. The set

RS0,S1 = {0
ai−→ 1 | i = 1, . . . , n} (2.9)

represents a basis of Ext(S0, S1). The corresponding exact sequence has middle
term Ti of dimension (1, 1) which is the representation visualized in the same

way: Ti := 0
ai−→ 1. For each i, the subset

RTi
= {0

aj
−→ 1 | j 6= i} (2.10)

represents basis of Ext(Ti, Ti) such that 〈RTi
〉 ⊂ R(Ti, Ti) is strong and sepa-

rating.
Each λ ∈ 〈RTi

〉 defines a deformation Ti(λ) of Ti = Ti(0) by

Ti(λ) = ((k, k), ([λ1], . . . , [λi−1], [1], [λi+1], . . . , [λn]), (2.11)

thus 〈RTi
〉 ⊂ R(1,1)(K(n)) is an (n−1)-dimensional affine cell of nonisomorphic

indecomposables of dimension vector (1, 1).
Note that by elementary considerations one can see that the isomorphism
classes of K(n) of dimension vector (1, 1) are parametrized by Pn−1. Each
of them can be constructed as a deformation in our language above, and we
can make it so that each isomorphism class appears in exactly one of our cells
by shrinking Ti(λ) to the (n− i)-dimensional cell with λ1 = . . . = λi−1 = 0.

Let M ∈ Rα(Q) and N ∈ Rβ(Q) be representations of Q. As λ ∈ R(M,M) and
µ ∈ R(N,N) vary, we cannot naturally identify the spaces Ext(N(µ),M(λ))
(their dimension may vary even). However, we have for each (µ, λ) the surjec-
tive map

πµ,λ := πN(µ),M(λ) : R(N,M) ։ Ext(N(µ),M(λ)), (2.12)

defined in (2.5) which we can use to compare these spaces by working with
representatives in R(N,M).
Each triple (τ, λ, µ) ∈ R(N,M) × R(M,M) × R(N,N) defines a short exact
sequence πµ,λ(τ) ∈ Ext(N(µ),M(λ)) with middle term B(τ, λ, µ) given by

B(τ, λ, µ)q := Mq ⊕Nq, B(τ, λ, µ)a :=

(

M(λ)a τa
0 N(µ)a

)

(2.13)

for every q ∈ Q0 and a ∈ Q1 respectively.
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Definition 2.4. Let U ⊆ R(M,M) and V ⊆ R(N,N) be subsets.

(1) A subset W ⊆ R(N,M) is called universal for the pair (U, V ) if W repre-
sents a subset of Ext(N(µ),M(λ)) for all (λ, µ) ∈ U × V .

(2) If R ⊂ R(N,M) represents a basis of Ext(N(µ),M(λ)) for all (λ, µ) ∈
U × V , we say that R is a universal basis for (U, V ).

For instance, if image dN,M = image dN(µ),M(λ) for all (λ, µ) ∈ U × V , every
R ⊂ R(N,M) representing a basis of Ext(N,M), is already a universal basis
for (U, V ). A special case where this occurs is supp(M) ∩ supp(N) = ∅, since
both images are 0.

3 Homological construction of families of indecomposables

Throughout this section we fix a quiver Q and a field k.

3.1 Extensions of indecomposables

We start with a criterion for an extension of indecomposables to be indecom-
posable.

Lemma 3.1. Let M,N,M ′, N ′ ∈ rep(Q). Consider a pair of short exact se-
quences

0→M
ι
−→ B

π
−→ N → 0 and 0→M ′ ι′

−→ B′ π′

−→ N ′ → 0. (3.1)

If the induced map Hom(B,B′) → Hom(M,N ′) given by φ 7→ π′ ◦ φ ◦ ι is the
zero map, then each φ ∈ Hom(B,B′) induces the following morphism of short
exact sequences.

0 M B N 0

0 M ′ B′ N ′ 0

ι

φ|M

π

φ φ̄

ι′ π′

Proof. Since π′ ◦φ ◦ ι = 0 by assumption, the universal property of kerπ′ gives
a factorization of φ ◦ ι through M ′, inducing the commutative square at left.
Furthermore, π′ ◦ φ vanishes on the image of ι, so it factors through top π by
the universal property of the cokernel of ι, inducing the commutative square
at right.

Recall that a finite-dimensional quiver representation M is indecomposable if
and only if its endomorphism ring is local ; two equivalent characterizations
of this property in our setting are that every element of End(M) is either an
isomorphism or nilpotent, and that the only idempotents of End(M) are 0 and
1. See [LW12, Ch.1§1] for an exposition in sufficient generality (in particular,
no hypotheses on k or Q are necessary).
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Lemma 3.2. Let M,N ∈ rep(Q) be indecomposable and let

0→M
ι
−→ B

π
−→ N → 0 (3.2)

be a nonsplit short exact sequence. If the induced map End(B)→ Hom(M,N)
sending φ 7→ π ◦ φ ◦ ι is the zero map, then B is indecomposable.

Proof. We will show that End(B) is local. By Lemma 3.1, every φ ∈ End(B)
induces a morphism of short exact sequences; in particular, we have a k-algebra
homomorphism Ψ : End(B) → End(M) where Ψ(φ) = φ|M . We show that
every element of ker Ψ is nilpotent. If φ ∈ ker Ψ, we obtain a commutative
diagram

0 // M

0

��

ι // B
π //

φ

��

N

τ

~~⑦⑦
⑦
⑦
⑦
⑦
⑦
⑦

φ̄

��

// 0

0 // M
ι // B

π // N // 0

(3.3)

where the factorization φ = τ ◦π arises from φ◦ ι = 0 by the universal property
of coker ι. This universal property also gives that φ̄ is unique with φ̄◦π = π◦φ.
It follows that φ = τ ◦ π already gives φ̄ = π ◦ τ in the ring End(N), which is
local since N is indecomposable. If φ̄ were a unit, the sequence would split as
π ◦ (τ ◦ φ̄−1) = idN in this case, contradicting our assumption. Therefore, φ̄ is
nilpotent and there exists a positive integer n such that φ̄n = 0. Then

φn+1 = (τ ◦ π)n+1 = τ ◦ φ̄n ◦ π = 0, (3.4)

showing that φ is nilpotent as well. Thus every element in ker Ψ is nilpotent.
Now take an arbitrary idempotent e ∈ End(B) and the associated morphism
of short exact sequences.

0 M B N 0

0 M B N 0

ι

e|M

π

e ē

ι π

Since Ψ is an algebra homomorphism, it preserves idempotents. Thus since
End(M) is local, we have e|M = 0 or e|M = 1. If e|M = Ψ(e) = 0, then e
is idempotent and nilpotent by the previous paragraph, so e = 0. So we can
assume e|M = 1. Similarly, either ē = 0 or ē = 1. If ē = 0, then e would be an
idempotent of End(B) with image M , thus M would be a direct summand of
B, contradicting our assumption that the sequence does not split. So we can
assume ē = 1. But then e is an invertible idempotent, so e = 1. We have shown
that the only idempotents of End(B) are 0 and 1, so End(B) is local.

3.2 Families of indecomposable extensions

Below, we will frequently use that for an extension B of a representation N
by M , a vector space decomposition Bq = Mq ⊕ Nq at each q ∈ Q0 induces a
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decomposition

R(B,B) ∼= R(N,N)⊕R(N,M)⊕R(M,N)⊕R(M,M). (3.5)

With this, we can naturally associate to any f ∈ R(X,Y ) and X,Y ∈ {M,N}
a self-extension πB,B(ιX,Y (f)) of B, where ιX,Y : R(X,Y ) → R(B,B) is the
embedding corresponding to the decomposition (3.5).

Notation 3.3. For the remainder of the section, including the statements of
the theorems, we fix the following notation associated to fixed M,N ∈ rep(Q):

• nonzero e ∈ R(N,M) determining an extension 0→M → B → N → 0;

• for each pair X,Y ∈ {M,N}, a subset UX,Y ⊂ R(X,Y ), writing UX :=
UX,X for short.

Recall from Section 2.3 that every triple (τ, λ, µ) ∈ UN,M ×UM ×UN gives rise
to a short exact sequence

0→M(λ)→ B(e+ τ, λ, µ)→ N(µ)→ 0. (3.6)

The sequence is nonsplit if and only if πµ,λ(e+ τ) 6= 0.

As in Lemma 3.1, for all pairs (τ, λ, µ), (τ ′, λ′, µ′) ∈ UN,M ×UM ×UN , we have
a linear map

Θe+τ ′,λ′,µ′

e+τ,λ,µ : Hom(B(e+ τ, λ, µ), B(e+ τ ′, λ′, µ′))→ Hom(M(λ), N(µ′)) (3.7)

given by precomposition with the inclusion M(λ) →֒ B(e+ τ, λ, µ) followed by
postcomposition with the surjection B(e + τ ′, λ′, µ′) ։ N(µ′).

Remark 3.4. While the condition that Θe+τ ′,λ′,µ′

e+τ,λ,µ = 0 below looks somewhat
technical, it is often easy to verify in practice. For example, it obviously holds
if Hom(M(λ), N(µ′)) = 0, which happens for all (λ, µ′) ∈ UM × UN when M
and N have disjoint support.

In the theorems below, we use the following notation. If V is a vector space,
v ∈ V , and V ′ ⊂ V a subset, we write v+V ′ = {v + v′ | v′ ∈ V ′}. We now apply
Lemmas 3.1 and 3.2 to build families of indecomposables with nice properties.

Theorem 3.5. Assume that both UM and UN are both strong, and that W ⊆
UN,M × UM × UN is a subset such that:

• πµ,λ(e+ τ) 6= 0 for all (τ, λ, µ) ∈ W ;

• Θe+τ,λ,µ
e+τ,λ,µ = 0 for all (τ, λ, µ) ∈ W .

Then under the identification (3.5), the subset (e, 0, 0)+W ⊂ R(B,B) is strong.
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Proof. Each element (τ, λ, µ) ∈ UN,M × UM × UN determines a short exact
sequence

πµ,λ(e+ τ) : 0→M(λ)→ B(e+ τ, λ, µ)→ N(µ)→ 0. (3.8)

Since UM and UN are each assumed to be strong, both M(λ) and N(µ) are
indecomposable. As each πµ,λ(e + τ) 6= 0, each sequence (3.8) does not split.

From the assumption that Θe+τ,λ,µ
e+τ,λ,µ = 0 for all (τ, λ, µ) ∈ W , Lemma 3.2 implies

that each B(e+ τ, λ, µ) is indecomposable and thus (e, 0, 0) +W is strong.

Theorem 3.6. Assume the following:

• UM and UN are both separating;

• Θe+τ ′,λ′,µ′

e+τ,λ,µ = 0 for all (τ, λ, µ), (τ ′, λ′, µ′) ∈ UN,M × UM × UN .

Then we have:

(a) Under the identification (3.5), the set {e}×UM ×UN ⊂ R(B,B) is always
separating.

(b) If furthermore End(M(λ)) = End(N(µ)) = k, the element e is not in the
subspace of R(N,M) generated by UN,M , and the set e+UN,M is universal
for (UM , UN ), then (e+ UN,M)× UM × UN ⊂ R(B,B) is separating.

Proof. Given (τ, λ, µ), (τ ′, λ′, µ′) ∈ UN,M × UM × UN , Lemma 3.1 shows that

any isomorphism φ : B(e+ τ, λ, µ)
∼
−→ B(e+ τ ′, λ′, µ′) induces the morphism of

exact sequences below.

0 // M(λ)

φ|M(λ)

��

ι // B(e+ τ, λ, µ)
π //

φ

��

N(µ)

φ̄

��

// 0

0 // M(λ′)
ι′ // B(e + τ ′, λ′, µ′)

π′

// N(µ′) // 0

(3.9)

By dimension count we have that both φ|M(λ) and φ̄ are isomorphisms, which
yields λ = λ′ and µ = µ′ because UM and UN are assumed to be separating.
Taking τ = 0, this proves (a).
For part (b), it remains to show that the additional assumptions imply τ = τ ′.
Consider the structure of the morphism φ with respect to the vector space
decomposition B = M ⊕N , i.e.

φ =

(

φ1,1 φ1,2
φ2,1 φ2,2

)

. (3.10)

The commutativity of the diagram yields φ2,1 = 0. Together with our assump-
tion on triviality of endomorphism rings this gives φ1,1 = φ|M(λ) = c · idM(λ)

and φ2,2 = φ̄ = d · idN(µ) for certain c, d ∈ k∗.
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In turn, φt(a) ◦B(e+ τ, λ, µ)a = B(e+ τ ′, λ′, µ′)a ◦ φs(a) for

B(e + τ, λ, µ)a =

(

M(λ)a ea + τa
0 N(µ)a

)

and

B(e + τ ′, λ′, µ′)a =

(

M(λ′)a ea + τ ′a
0 N(µ′)a

)

, (3.11)

gives

(ea + τ ′a) · d+M(λ′)a ◦ (φ1,2)s(a) = c · (ea + τa) + (φ1,2)t(a) ◦N(µ)a (3.12)

for all a ∈ Q1 and thus

dN(µ),M(λ′) ((φ1,2)a) = (ea(d− c) + τ ′a · d− τac)a . (3.13)

Now recall that the image of dN(µ),M(λ′) is exactly the kernel of πµ,λ′ defined in
(2.12), so we have πµ,λ′((ea(d− c) + τ ′a · d− τac)a) = 0. On the other hand, we
assumed that e+UN,M represents a subset of Ext(N(µ),M(λ′)), meaning that
πµ,λ′ is injective on e + UN,M , so we find that (ea(d− c) + τ ′a · d− τac)a = 0
in R(N,M). But we also assumed that e is not in the subspace of R(N,M)
generated by UN,M , so we must have d = c and τ = τ ′.

Remark 3.7. The assumption on M(λ) and N(µ) to have trivial endomor-
phism ring is necessary in (b) because otherwise there are cases where two
middle terms B(τ, λ, µ) and B(τ ′, λ, µ) for τ 6= τ ′ are isomorphic.

3.3 Affine cells of indecomposable representations

Relevant to the conjecture of Kac discussed in the introduction is the following
definition, where we have the deformation parameter varying over a linear
subspace of R(M,M). Recall that a representation M is called Schurian if
End(M) = k.

Definition 3.8. Consider a representation M of Q and a subspace U ⊆
R(M,M) which represents a strong and separating subset of Ext(M,M). We
call the pair (M,U) a cell of indecomposable representations. If all representa-
tions M(λ) for λ ∈ U are Schurian, we call (M,U) a cell of Schurian represen-
tations.

Let M1, . . . ,Mn ∈ rep(Q) with the same dimension vector and fix Ui ⊂
R(Mi,Mi) for i = 1, . . . , n. If each (Mi, Ui) is a cell of indecomposable repre-
sentations such that Mi(λi) ∼= Mj(λj) only when i = j, we call the collection
{(Mi, Ui) | i = 1, . . . , n} a mosaic of indecomposable representations.

Note that in a mosaic of indecomposable representations, Mi(λi) ∼= Mi(λj)
already implies λi = λj as each Ui is separating.
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Example 3.9. Choosing a basis, a representation of dimension (1, d) of K(n)
is given by a matrix A ∈ kd×n. Moreover, A is indecomposable if and only
if rank(A) = d, and A ∼= A′ if and only if there exists a g ∈ GLd such that
gA = A′. This shows that the isomorphism classes of indecomposable represen-
tations are in one-to-one correspondence with points of the usual Grassmannian
Grd(kn). So the Schubert decomposition induces a mosaic of indecomposable
representations for (1, d).
More precisely, recall that for every sequence I = (i1, . . . , id) with 1 ≤ i1 <
. . . < id ≤ n there exists a Schubert cell

AI :=

















∗ · · · ∗ 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 1 0 · · · 0 0 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · 0 0 0 · · · 0
∗ · · · ∗ 0 ∗ · · · ∗ 0 ∗ · · · ∗ 1 0 · · · 0

















⊂ kd×n

(3.14)
where the unit vectors are in the columns i1, . . . , id. Then we have

Grd(k
n) ∼=

∐

I⊂{1,...,n},
|I|=d

AI . (3.15)

Then AI defines an affine space of Schurian representations of dimension (1, d).
Furthermore, taking BI as the representation with (BI)ail = eil and (BI)ai = 0
if i /∈ I, every point of AI can be understood as a deformation of BI , giving a
cell of Schurian representations.
We also note that the standard way of obtaining the Schubert decomposition
via a torus action is a special case of our geometric methods presented in Section
5.

The following proposition uses the notation for generalized Kronecker quivers
of Example 2.3.

Proposition 3.10. Let M,N be Schurian representations with Hom(M,N) =
0 and assume that {e1, . . . , en} ⊂ R(N,M) represents a basis of Ext(N,M).
Let UN,M = 〈e1, . . . , en〉. For any 1 ≤ d ≤ n we have a linear map

Γ: R(1,d)(K(n))→ UN,M ⊗ kd, (vai)
n
i=1 7→

n
∑

i=1

ei ⊗ vai (3.16)

which determines for each A = (vai)
n
i=1 ∈ R(1,d)(K(n)) an extension of N by

M ⊗ kd ∼= Md with middle term denoted by F (A).
Then Γ(A),Γ(A′) ∈ UN,M ⊗ kd give isomorphic middle terms if and only if
there exists a g ∈ GLd such that A = gA′, i.e. if A ∼= A′ as representations of
K(n). Furthermore, F (A) is indecomposable if and only if rank(A) = d, i.e.
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if A ∈ R(1,d)(K(n)) is indecomposable. The analogous statement also holds for

the map Γ′ : R(d,1)(K(n)) → UN,M ⊗ kd defined in the natural way, i.e. when

considering extensions of Nd by M .

Proof. Fix A,A′ ∈ kd×n and let φ ∈ HomQ(B,B′) with B = F (A) and B′ =

F (A′). We write φ =

(

φ1,1 φ1,2
φ2,1 φ2,2

)

with linear maps φi,j determined by the

vector space decomposition B = N ⊕M ⊗ kd and similarly for B′. Making
φt(a) ◦ Ba = B′

a ◦ φs(a) for every a ∈ Q1 explicit, we obtain φ2,1 = 0 using

Hom(M ⊗ kd, N) = 0, then φ2,2 = µidN for some µ ∈ k using End(N) = k,
and then φ1,1 = idM ⊗ g ∈ End(M ⊗ kd) ∼= End(M) ⊗ Homk(kd, kd) using
End(M) = k, where g ∈ Homk(kd, kd).
Using the natural isomorphism UN,M⊗kd

∼= UN,M ⊗ kd, we furthermore obtain
for every a ∈ Q1 that

(φ1,1)t(a) ◦Γ(A)a + (φ1,2)t(a) ◦Na = (Ma⊗ idkd)◦ (φ1,2)s(a) + Γ(A′)a ◦ (φ2,2)s(a)
(3.17)

which yields the following after substitution, rearranging, and collecting terms
over all a ∈ Q1:

dN,M⊗kd(φ1,2) = µΓ(A′)− Γ(g · A) ∈ UN,M⊗kd . (3.18)

As UN,M represents a subspace of Ext(N,M), it follows that UN,M ⊗ kd

represents a subspace of Ext(N,M ⊗ kd). Thus image dN,M⊗kd = 0 in
Ext(N,M ⊗ kd) ∼= Ext(N,M)⊗ kd gives µΓ(A′) = Γ(g · A).
Since {e1, . . . , en} is linearly independent, writing A = (vai)

n
i=1 and A′ =

(v′ai)
n
i=1, we get

n
∑

i=1

ei ⊗ µv
′
ai

=

n
∑

i=1

ei ⊗ g vai ⇒ µv′ai = g vai 1 ≤ i ≤ n, (3.19)

which is exactly the condition that (µ, g) ∈ HomK(n)(A,A
′). It is immediate

from the triangular form of φ and descriptions of φ1,1, φ2,2 above that φ is an
isomorphism if and only if (µ, g) is an isomorphism. Since we started with an
arbitrary φ ∈ HomQ(B,B′), we see that B ∼= B′ implies A ∼= A′. On the other
hand, every (µ, g) ∈ HomK(n)(A,A

′) gives a morphism φ with φ1,2 = φ2,1 = 0
in the above notation. So A ∼= A′ implies B ∼= B′ as well.
Now we see that A is indecomposable if and only if B is indecomposable. If
A is decomposable and (g, µ) a nontrivial idempotent, then φ as above with
φ1,2 = 0 defines a nontrivial idempotent of B. Conversely, let φ ∈ End(B) as
above an idempotent and A be indecomposable. The triangular form of φ gives

g2 = g, µ2 = µ, (idM ⊗ g)q ◦ (φ1,2)q + µ(φ1,2)q = (φ1,2)q (3.20)

for every q ∈ Q0. Thus (g, µ) is an idempotent of EndK(n)(A) and it follows
that (g, µ) = (0, 0) or (g, µ) = (idkd , 1). In the first case it follows that φ1,2 = 0
and thus φ = 0. In the second case, we get φ1,2 + φ1,2 = φ1,2 and thus again
φ1,2 = 0 which gives φ = idB. This shows that φ = 0 or φ = idB.
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Remark 3.11. Note that if Hom(N,M) 6= 0, the representations F (A) are not
Schurian. This can be checked straightforwardly, but it is also revealed by the
proof as it shows that φ1,2 ∈ HomQ(N,M ⊗ kd) for φ ∈ End(B).
Actually, F can be extended to a faithful functor F : rep(K(n)) → rep(Q)
which is full if Hom(N,M) = 0. In this case, it automatically reflects inde-
composables and isomorphisms. For exceptional representations M and N ,
this follows directly from Schofield induction [Sch91]. Moreover, the results of
[Wei15, Section 3.2] apply in the situation of Proposition 3.10. We include our
easier proof in this special case to make the paper self-contained.

Remark 3.12. Now Proposition 3.10 gives a parametrization of isomorphism
classes of extensions of certain Schurian representations by the variety Grd(kn).
In particular, the Schubert decomposition into affine spaces can be carried over
to construct a mosaic of indecomposables of Q of dimension dimN +d ·dimM.
More explicitly, let {e1, . . . , en} ⊂ UN,M represent a basis of Ext(N,M). Each
of the

(

n
d

)

strictly increasing sequences I = (i1, . . . , id) gives an indecomposable

representationBI as the middle term of the exact sequence πN,M⊗kd(
∑d

j=1 eij⊗

fj), where (f1, . . . , fd) is the standard basis of kd. The corresponding cell of
indecomposables is then given by

CI =



BI ,







d
∑

j=1

ij−1
∑

k=1

aj,kek ⊗ fj | aj,k ∈ k, al,ik = 0 for k, l = 1, . . . , d









 .

(3.21)
Thus we obtain a natural embedding ιI : AI →֒ UN,M⊗kd →֒ R(BI , BI) in such
a way that AI represents a strong and separating subspace of Ext(BI , BI).
Furthermore, the collection of cells {CI | I = (i1, . . . , id), 1 ≤ i1 < . . . < id ≤
n} is a mosaic of indecomposables.

The preceding remark can be generalized when allowing the outer terms of
the extension to vary within cells of indecomposables. If M ∈ rep(Q), we can
identify R(M ⊗kd,M ⊗kd) ∼= R(M,M)⊗Hom(kd, kd), and if UM ⊂ R(M,M)
represents a subspace of Ext(M,M), then for λ ∈ UM we have (M ⊗ kd)(λ ⊗
idkd) = M(λ)⊗ kd.

Theorem 3.13. Let (M,UM ) and (N,UN ) be cells of Schurian representa-
tions such that we have Hom(M(λ), N(µ)) = 0 for all (λ, µ) ∈ UM × UN
and let UN,M ⊂ R(N,M) be a subspace which is universal for (UN , UM ). Let
n = dimUN,M and assume that RN,M = {e1, . . . , en} is a basis of UN,M . Then
there exists a (Grd(kn) × UM × UN)-family of pairwise nonisomorphic inde-
composable representations of dimension d · dimM + dimN such that, under
the identification (3.5),

CI = (BI , {(τ, λ⊗ idkd , µ) | τ ∈ ιI(AI), λ ∈ UM , µ ∈ UN}) (3.22)

is a cell of indecomposables with dimCI = dimUM +dimUN +dimAI for every
strictly increasing I = (i1, . . . , id). Moreover, {CI}I is a mosaic of indecom-
posables.
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Proof. As (M,UM ) and (N,UN ) are cells of Schurian representations with
Hom(M(λ), N(µ)) = 0 for (λ, µ) ∈ UM × UN and as UN,M is universal for
(UN , UM ), we can apply Proposition 3.10 to every pair M(λ), N(µ) which
shows that every representation BI(τ, λ⊗ idkd , µ) with τ ∈ ιI(AI) is indecom-
posable.
Furthermore, if BI(τ, λ ⊗ idkd , µ) ∼= BI′(τ

′, λ′ ⊗ idkd , µ
′), analogously to the

proof of Theorem 3.6, we obtain λ = λ′ and µ = µ′. But then again Proposition
3.10 together with Remark 3.12 shows that τ = τ ′ and I = I ′.

Example 3.14. A situation where Theorem 3.13 turns out to be very useful is
the case of roots α such that α′ := α−αq0q0 is a Schur root and q0 is a sink or
source of Q. Let Q′ be the full subquiver of Q with vertices Q0\{q0} and let
M ∈ rep(Q′). Then we have Hom(Sq0 ,M) = Hom(M,Sq0) = 0 and assuming
that q0 is a source, we have have Ext(M,Sq0) = 0 and n := dim Ext(Sq0 ,M) =
∑

a:q0→q αq.
If (M,UM ) is a cell of Schurian representation of dimension α′, Theorem 3.13
gives a
(Grαq0

(kn) × UM )-parameter family of indecomposables of dimension α and
thus a mosaic of indecomposables.

4 Tree modules and tree normal forms

In this section, we apply the results of the previous section to representations
which admit a particularly nice basis. Again the quiver Q and field k are fixed
but arbitrary.

4.1 Tree modules

Tree modules are quiver representations whose structure can be encoded by a
directed graph. We use the term “tree modules” in the more general sense of
Ringel [Rin98], which is less restrictive than the usage elsewhere [CB89, Kra91].

A morphism of quivers, written Q̃
f
−→ Q, consists of two maps f0 : Q̃0 → Q0

and f1 : Q̃1 → Q1 satisfying s(f1(a)) = f0(s(a)) and t(f1(a)) = f0(t(a)) for all
a ∈ Q̃0 (we use s, t for source and target maps of both Q̃ and Q since context
makes it clear).

Definition 4.1. Fix a quiver Q. A quiver labeled by (or colored by) Q is a

pair (Q̃, f) consisting of a quiver Q̃ and a morphism of quivers Q̃
f
−→ Q, called

the structure map. For each x ∈ Q0, we refer to f−1(x) as the set of vertices
labeled by x, and similarly for a ∈ Q1.

We will specify f in examples by drawing Q̃ and labeling its arrows with names
of arrows of Q, because the compatibility condition determines the labels of the
vertices. We will assume that for each pair of vertices y, z in Q̃, there are never
two arrows with the same label from y to z. Since we rarely deal with more
than one structure map for the same Q̃, we usually omit f from the notation.
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We are particularly interested in the case that the underlying graph of Q̃ is a
tree, meaning that it is connected and has exactly one fewer edge than it has
vertices. In this case we usually use the notation T instead of Q̃ and, Q being
fixed, say T is a labeled tree.

We call a k-basis B of M ∈ rep(Q) homogeneous if Bq := B ∩Mq is a basis of
Mq for each q ∈ Q0. Given M ∈ rep(Q) and a homogeneous basis B of M , we
define a quiver ΓB labeled by Q, with structure map FB : ΓB → Q, known as
the coefficient quiver of M with respect to B. We take B as the set of vertices
of ΓB, with each subset Bq lying over q (i.e. FB(Bq) = q). For each a ∈ Q1

and b′ ∈ Bs(a), we take the unique expression

Ma(b
′) =

∑

b∈Bt(a)

cab,b′b, cab,b′ ∈ k, (4.1)

and draw a labeled arrow b′
a
−→ b if and only if cab,b′ 6= 0.

Definition 4.2. An indecomposable representation M of Q is said to be a tree
module if there exists a homogeneous basis B of M such that the underlying
graph of the coefficient quiver ΓB is a tree. In this case we refer to B as a tree
basis of M .

We emphasize that a tree module is indecomposable by definition in this paper.
A given module can be a tree module with respect to several different bases,
yielding different coefficient quivers. If we work with a fixed but arbitrary
tree basis for a given tree module M , we omit the basis from the notation
and instead denote the coefficient quiver together with its structure map by
FM : ΓM → Q.

An equivalent definition is that an indecomposable representation M is a tree
module if and only if it admits a matrix presentation consisting of 1s and 0s,
with precisely dimkM−1 nonzero entries (which is the minimum possible for M
indecomposable). So we can think of tree modules as indecomposables which
can be presented as sparsely as possible.

4.2 Tree-shaped extensions

In this section we consider extensions of a nice form with respect to a given
basis, for example if the representations in question are tree modules. We
present some tools for recursively constructing such extensions. These tools will
help later in various applications, for instance when constructing tree normal
forms for quiver representations.

Let M,N ∈ rep(Q) be representations with homogeneous bases BM ,BN . These
bases induce a standard basis of R(N,M) whose elements f = (fa)a∈Q1 are
matrix tuples with exactly one entry of one matrix equal to 1, and the rest
equal to 0 which we call standard basis vectors (with respect to BM and BN )
in the following.
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Definition 4.3. Let M,N ∈ rep(Q) be representations with homogeneous
bases BM ,BN . A subset RN,M ⊂ R(N,M) of standard basis vectors represents
a tree-shaped basis of Ext(N,M) if it represents a basis of Ext(N,M) in the
sense of Definition 2.1. We call the corresponding basis EN,M := πN,M (RN,M )
of Ext(N,M) a tree-shaped basis of Ext(N,M).

The following is straightforward:

Lemma 4.4. Let M,N ∈ rep(Q) be representations with homogeneous bases
BM ,BN , and f ∈ R(N,M) be a standard basis vector such that fa0(q) = q′

where q ∈ (BN )s(a0), q
′ ∈ (BM )t(a0). Then the coefficient quiver of B(f) ∈

rep(Q) with respect to BN
∐

BM is obtained by adding a labeled arrow q
a0−→ q′

to ΓBN
∐

ΓBM .

In the following, we will often denote the tree-shaped basis element f ∈
R(N,M) as in the Lemma just by q

a0−→ q′.

Let M,N ∈ rep(Q). For a fixed a short exact sequence 0→M → B → N → 0
and given an additional representation L, we can apply the functor Hom(L,−)
to obtain a long exact sequence

0 Hom(L,M) Hom(L,B) Hom(L,N)

Ext(L,M) Ext(L,B) Ext(L,N) 0

δL

Lemma 4.5. Fix a short exact sequence 0 → M → B → N → 0, where B
is given by a tuple f = (fa)a∈Q1 ∈ R(N,M). For an arbitrary L ∈ rep(Q),
the connecting homomorphism δL : Hom(L,N) → Ext(L,M) is given by the
composition

Hom(L,N)→ R(L,M)
πL,M

−−−→ Ext(L,M) (4.2)

where the first map is postcomposition with f , that is, (gq)q∈Q0 7→ (fa ◦
gs(a))a∈Q1 .

A completely analogous description is obtained for the connecting homomor-
phism induced by the functor Hom(−, L), where precomposition replaces post-
composition.

Proof. The connecting homomorphism δL sends g ∈ Hom(L,N) to the exten-
sion of L by M obtained by pulling back along g, represented by the commu-
tative diagram

0 // M // B
πN // N // 0

0 // M // C
πL //

u

OO

L //

g

OO

0

. (4.3)
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If we write u =

(

u1,1 u1,2
u2,1 u2,2

)

with obvious linear maps ui,j and if we write the

linear maps Ca as

Ca =

(

Ma ha
0 La

)

(4.4)

for some h ∈ R(L,M), the commutativity of the right square yields u2,1 = 0
and u2,2 = g. The description of the pullback C as a submodule of B⊕L gives
u1,1 = idM and 0 = u1,2 : L → M . As furthermore u : C → B is a morphism
of quiver representations, we obtain

ut(a) ◦ Ca =

(

Ma ha
0 gt(a) ◦ La

)

=

(

Ma fa ◦ gs(a)
0 Na ◦ gs(a)

)

= Ba ◦ us(a) (4.5)

for every a ∈ Q1 which yields the claim.

Now we see how bases of various Ext-spaces associated to M,N can be used
to obtain a basis of Ext(B,B).

Lemma 4.6. Let M and N be two representations and let RX,Y ⊂ R(X,Y )
represent bases of Ext(X,Y ) for X,Y ∈ {M,N}, in the sense of Definition
2.1. Write RX := RX,X for short.
For each e ∈ R(N,M) and corresponding πN,M (e) : 0 → M → B → N → 0,
there exist subsets R′

M ⊂ RM , R′
N ⊂ RN and R′

N,M ⊂ RN,M such that, under
the identification (3.5), R′

M ∪R
′
N ∪R

′
N,M ∪RM,N ⊂ R(B,B) represents a basis

of Ext(B,B).

Proof. The induced long exact sequence

Hom(B,N)
δB−−→ Ext(B,M)→ Ext(B,B)→ Ext(B,N)→ 0 (4.6)

identifies Ext(B,B) ∼= Ext(B,M)/ image δB⊕Ext(B,N). We proceed by find-
ing a basis of each direct summand.
The exact sequence

Hom(M,N)
δN−−→ Ext(N,N)→ Ext(B,N)→ Ext(M,N)→ 0 (4.7)

further decomposes the second summand as

Ext(B,N) ∼= Ext(N,N)/ image δN ⊕ Ext(M,N). (4.8)

Since the residue classes of πN,N(RN )∪πM,N (RM,N ) span the right hand side,
we can choose a subset R′

N ∪RM,N ⊆ RN ∪RM,N which represents a basis of
Ext(B,N).
Similarly, we can use the exact sequence

Hom(M,M)
δM−−→ Ext(N,M)→ Ext(B,M)→ Ext(M,M)→ 0 (4.9)
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to decompose Ext(B,M) and find

Ext(B,M)/ image δB ∼= (Ext(N,M)/ image δM ⊕ Ext(M,M)) / image δB.
(4.10)

As above, we first choose a subset R′′
N,M ∪ RM ⊆ RN,M ∪ RM representing a

basis of the space Ext(N,M)/ image δM ⊕ Ext(M,M), then in a second step,
we choose R′

N,M ∪R
′
M ⊆ R

′′
N,M ∪RM representing a basis of the quotient on

the right hand side of (4.10). Combining this with the previous paragraph, we
get a subset of R(B,B) representing a basis of Ext(B,B).

Corollary 4.7. LetM and N be Schurian representations with Hom(M,N) =
0 and let RX,Y ⊂ R(X,Y ) represent bases of Ext(X,Y ) for X,Y ∈ {M,N}.
If e ∈ RN,M , the set

RB = RN,M\{e} ∪RM ∪RN ∪RM,N (4.11)

represents a basis of Ext(B,B).

Proof. We go through the proof of Lemma 4.6 in this special case. As we
have End(N) = k and Hom(M,N) = 0, it follows that Hom(B,N) = k.
Thus Hom(B,B) → Hom(B,N) is surjective because the image of idB is π.
Thus Ext(B,B) ∼= Ext(B,M) ⊕ Ext(B,N). Again Hom(M,N) = 0 yields
Ext(B,N) ∼= Ext(N,N)⊕ Ext(M,N).
Finally, we have δM (idM ) = πN,M (e) by the standard interpretation of
the connecting homomorphism (see Lemma 4.5). Then End(M) = k gives
that image δM = 〈πN,M (e)〉. Thus Ext(B,M) ∼= Ext(N,M)/〈πN,M (e)〉 ⊕
Ext(M,M) yields the claim.

Example 4.8. We give an example to illustrate the definitions and to show how
Lemma 4.6 can be applied to construct tree-shaped bases recursively. Denote
the arrows for the generalized Kronecker quiver K(3) by a, b, c. Consider the
tree modules T1 and T2 defined by the coefficient quivers

1 2 1′

2′

3′

a
b

a

The following sets represent tree-shaped bases of the respective Ext-spaces:

RT1 = {1
b
−→ 2, 1

c
−→ 2}, RT2,T2 = {1′

c
−→ 2′, 1′

c
−→ 3′},

RT1,T2 = {1
c
−→ 2′, 1

c
−→ 3′, 1

b
−→ 3′}, RT2,T1 = {1′

c
−→ 2}.

Consider the tree module T defined as the middle term of the short exact
sequence πT1,T2(1

c
−→ 2′). From Lemma 4.4, its coefficient quiver is below.
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1

2

1′

2′

3′

a

b

a

c

We apply Lemma 4.6 to decompose Ext(T, T ) as

Ext(T1, T1)/ image δT1 ⊕ Ext(T2, T1)

⊕ (Ext(T1, T2)/ image δT2 ⊕ Ext(T2, T2)) / image δT ,
(4.12)

where

Hom(T2, T1)
δT1−−→ Ext(T1, T1), Hom(T2, T2)

δT2−−→ Ext(T1, T2),

Hom(T, T1)
δT−→ Ext(T, T2)

(4.13)

are the respective connecting homomorphisms. A tree-shaped basis of
Ext(T, T ) can then be obtained using Lemma 4.5 to explicitly determine the
images of the connecting maps. A basis of Hom(T2, T1) is given by the map f
such that f(1′) = 1, f(3′) = 2, and f is zero on the rest of the tree basis. As
f(2′) = 0, we have δT1(f) = 0 which implies image δT1 = 0 ⊆ Ext(T1, T1). As

T2 is Schurian, δT2(idT2) = πT1,T2(1
c
−→ 2′) yields image δT2 = 〈πT1,T2(1

c
−→ 2′)〉.

Finally, we have image δT ∼= 〈πT,T2(1′
c
−→ 2′)〉 ⊆ Ext(T, T2). Therefore, we

obtain our subset representing a tree-shaped basis of Ext(T, T ):

RT = {1
b
−→ 2, 1

c
−→ 2, 1′

c
−→ 2, 1

c
−→ 3′, 1

b
−→ 3′, 1′

c
−→ 3′}. (4.14)

4.3 Tree normal forms

Let α ∈ ZQ0

≥0. If we refer to a tree module T ∈ Rα(Q), we already assume that
the number of nonzero entries of the matrix tuple (Ta)a∈Q1 is dimk T−1, i.e. the
coefficient quiver of the given matrix form is a tree. Kac’s conjecture [Kac83,
Conjecture 3] discussed in Section 1.1 motivates the following definition.

Definition 4.9. Let α ∈ ZQ0

≥0 be a root.

1. Let T ∈ Rα(Q) be a tree module and U ⊆ R(T, T ) represent a subset of
Ext(T, T ). We say that M ∈ Rα(Q) has a (T, U)-normal form if there
exists a λ ∈ U such that M ∼= T (λ).

2. We say that a subset U ⊂ Ind(Q,α) admits a tree normal form if there
exists a collection of tree modules {Ti}ri=1 ⊂ Rα(Q) and subsets {Ui ⊂
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R(Ti, Ti)}ri=1, with Ui representing a subset of Ext(Ti, Ti), such that every
indecomposable representation M ∈ U has a (Ti, Ui)-normal form for
some 1 ≤ i ≤ r.

3. We say that a subset U ⊂ Ind(Q,α) admits a cellular tree normal form if
it admits a tree normal form as in (2) such that {(Ti, Ui) | i = 1, . . . , r}
is a mosaic of indecomposable representations.

4. We say that α admits a (cellular) tree normal form if Ind(Q,α) admits a
(cellular) tree normal form.

Example 4.10. This example is well-known but serves to illustrate the defi-
nitions. Consider the Kronecker quiver K(2) with arrows a, b. Furthermore,
consider the tree module T of K(2) of dimension (2, 2) defined by the matrices

Ta =

(

1 0
0 1

)

and Tb =

(

0 1
0 0

)

and

f = (fa, fb) =

((

0 0
0 0

)

,

(

1 0
0 1

))

∈ R(T, T ). (4.15)

Then UT = 〈f〉 is strong and separating, and {f} represents a basis of
Ext(T, T ). The associated cell of indecomposables is of the form

{T + λf | λ ∈ k} =

{((

1 0
0 1

)

,

(

λ 1
0 λ

))

| λ ∈ k

}

. (4.16)

But note that {f} is not a tree-shaped basis.
Taking also the tree module and subspace

S =

((

0 1
0 0

)

,

(

1 0
0 1

))

, US = {0} ⊂ R(S, S) (4.17)

we get that {(S,US), (T, UT )} is a mosaic of indecomposable representations
which gives a cellular tree normal form for the root (2, 2).
Note that an analogous decomposition into affine cells is present for the dimen-
sion vector (d, d) for d ≥ 2. Furthermore, this shows that Kac’s Conjecture 3
is true in this case as we have a(d,d)(q) = a(2,2)(q) = q + 1.

This motivates the following conjecture. It is a generalization of Kac’s Conjec-
ture 3 where a mechanism for constructing the cells is proposed. We note that
it is likely quite difficult.

Conjecture 4.11. Let Q be a quiver and α a root for Q. Then α admits a
cellular tree normal form, with ci cells of dimension i in the notation of Section
1.1.

Often it is possible to construct mosaics of indecomposables or even (cellular)
tree normal forms recursively. In order to give an idea how to apply the results
of Section 3 in the setup of tree modules, we restrict to one special case which
is the d = 1 case of Theorem 3.13 for tree modules.
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Theorem 4.12. Let S and T be tree modules and (S,US) and (T, UT ) be
cells of Schurian representations. Suppose that Hom(T (µ), S(λ)) = 0 for all
(λ, µ) ∈ US × UT and assume that RS,T = {e1, . . . , en} is a universal tree-
shaped basis for (UT , US). Then there exist tree modules B1, . . . , Bn, which
are the middle terms of the short exact sequences πS,T (ei), and affine spaces
Ai ⊂ R(Bi, Bi) of dimension i − 1 such that {(Bi, Ai) | i = 1, . . . , n} is a mo-
saic of indecomposables. In particular, each representation Bi(ν) with ν ∈ Ai
has a (Bi, Ai)-normal form.

Remark 4.13. A tree module T is clearly defined over Z. In this remark let us
consider the situation where R(T, T )Z is the corresponding product of matrix
spaces over Z, and we have UZ ⊆ R(T, T )Z defined over Z. For example, if
U is spanned by some standard basis vectors of the matrix space, the family
T (UZ) := {T (λ) | λ ∈ UZ} is represented in matrix form by replacing some 0s
with ∗s of variable entries in the matrix form of T . We can then base change to
any field k and ask whether the resulting space Uk is strong and separating, or
what is the largest subset which has these properties. It would be particularly
interesting to compare the results for UC and UFq

, but this seems to be a hard
problem.

4.4 Subspace quiver: an example

We consider the n-subspace quiver S(n) with vertices q0, q1, . . . , qn and arrows
ai : qi → q0 for i = 1, . . . , n. We consider the root α(n) = 2q0 +

∑n
i=1 qi. Write

an(q) := aα(n)(q) for the Kac polynomial.

Theorem 4.14. Let n ≥ 3. The root α(n) admits a cellular tree normal form
over any field k. Moreover, a3(q) = 1 and for n ≥ 4, we have

an(q) = (q + 1)an−1(q) + 2n−2 − 1. (4.18)

Proof. We first give a cellular tree normal form for α(n) by induction on n,
then compute the Kac polynomial by specializing to k = Fq and using the
dimensions of the cells. If n = 3, the root α(3) is exceptional which means that
there exists precisely one indecomposable T 3

1 up to isomorphism. It is given by
the matrices

((T 3
1 )a1 , (T

3
1 )a2 , (T

3
1 )a3) =

((

1
0

)

,

(

0
1

)

,

(

1
1

))

. (4.19)

Thus a3(q) = 1 and α(3) admits a cellular tree normal form with a single cell
of dimension 0.
Let us assume that we constructed a cellular tree normal form for α(n). Thus
there exist tree modules T n1 , . . . , T

n
an(1)

and affine subspaces Uni ⊂ R(T ni , T
n
i )

representing subspaces of Ext(T ni , T
n
i ) such that {(T ni , U

n
i ) | i = 1, . . . , an(1)}

is a mosaic of indecomposable representations giving a cellular tree normal form
for α(n).
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Now let Sn+1 be the simple representation corresponding to qn+1. For all i, we
have that

R =

{

e1 =

(

1
0

)

, e2 =

(

0
1

)}

⊂ Homk((Sn+1)qn+1 , (T
n
i )q0 ) = R(Sn+1, T

n
i )

(4.20)
represents a tree-shaped basis of Ext(Sn+1, T

n
i ). This basis is clearly universal

for ({0}, Uni ). Let T n+1
i,1 and T n+1

i,2 be the middle terms of the short exact
sequences represented by e1, e2 ∈ R(Sn+1, T

n
i ) respectively.

It is straightforward to check that the hypotheses of Theorem 3.5 and 3.6 hold
where we take M = T ni and N = Sn+1 (the Θ maps are all zero since T ni and
Sn+1 have disjoint support).
This yields two strong and separating cells Un+1

i,1 = {0} × Uni ⊂ R(T ni,1, T
n
i,1)

and Un+1
i,2 = 〈e1〉 ×Uni

∼= Uni ⊂ R(T ni,2, T
n
i,2), see also Theorem 3.13. This gives

two cells of indecomposables whose points have a (T n+1
i,j , Un+1

i,j )-normal form
for j = 1, 2. By induction assumption, every indecomposable representation of
S(n+ 1) of dimension vector α(n+ 1) which restricts to an indecomposable of
S(n) arises in this way.
In the case k = Fq, as α(n) is coprime, the absolutely indecomposable repre-
sentations coincide with the indecomposable representations. This follows from
[Kac83, Section 1.14] as an indecomposable representation over FqQ which is
not absolutely indecomposable decomposes into a direct sum of absolutely inde-
composable representations with the same dimension vector over FqQ. There-
fore our considerations show that there exist (q + 1)an(q) absolutely indecom-
posable representations of dimension α(n + 1) over Fq which restrict to an
indecomposable representation of dimension α(n), in other words those kind of
representations contribute (q + 1)an(q) to the Kac polynomial an+1(q).
For the remaining indecomposable representations of dimension α(n + 1) of
S(n + 1), the restriction M |S(n) to S(n) is decomposable. Let M be such
an indecomposable. As at least three of the subspaces Mai(Mqi) ⊂ Mq0

for i = 1, . . . , n + 1 need to be different, there exists a nontrivial partition
I
∐

J = {1, . . . , n} such that M |S(n) has the following matrix presentation (up
to isomorphism)

Mai =

(

1
0

)

for all i ∈ I, Maj =

(

0
1

)

for all j ∈ J. (4.21)

As M is indecomposable, this gives (again up to isomorphism)

Man+1 =

(

1
1

)

. (4.22)

As the number of such partitions is 2n−1−1 and as every such indecomposable
representation gives an affine cell of dimension zero, this gives the contribution
2n−1 − 1 to an+1(q), completing the induction for this formula. Moreover, the
coefficient quiver of M in this basis is a tree. Thus we obtain a cellular tree
normal form for α(n+ 1), completing the induction for that claim.
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The case n = 4 is treated in Example 6.13. We also note that computation
of the Kac polynomial for this example is considered as an example of general
methods unrelated to ours in [GLV18]. Cell decompositions and normal forms
are not considered there.

5 Construction of families of indecomposables via geometric

methods

In this section, we assume that Q is an acyclic quiver and k = C. We consider
moduli spaces of stable representations together with a torus action. The re-
sulting Biay lnicki-Birula decomposition can be used to associate an affine space
in the moduli space with every torus fixed point. We lift this cell to the repre-
sentation variety, which then can be understood as a subspace of deformations
of the torus fixed point. We show that a subgroup of the general linear group
acts on the lifted attracting cell. As this action is much easier to handle as the
action of the general linear group, this can often be used to construct a cell of
stable representations around each torus fixed point.

5.1 Moduli spaces

For an introduction to the theory of moduli spaces of quiver representations we
refer to [Kin94, Rei08]. We choose a vector Θ ∈ ZQ0 and define a linear form
Θ ∈ Hom(ZQ0 ,Z) by Θ(α) =

∑

q∈Q0
Θqαq. This gives rise to a slope function

µ : ZQ0

≥0\{0} → Q by

µ(α) =
Θ(α)

dim(α)
(5.1)

where dim(α) =
∑

q∈Q0
αq. For a representation M of the quiver Q, we define

µ(M) := µ(dimM). The representation M is called (semi-)stable if the slope
(weakly) decreases on proper nonzero subrepresentations. For a fixed slope
function as above, we denote by RΘ−sst

α (Q) the set of semistable points and by
RΘ−st
α (Q) the set of stable points in Rα(Q). We call M properly semistable if

it is semistable but not stable, and unstable if it is not semistable.
Following [Kin94], there exist moduli spaces MΘ−st

α (Q) (resp. MΘ−sst
α (Q)) of

stable (resp. semistable) representations parametrizing isomorphism classes of
stable (resp. polystable) representations. If Q is acyclic and MΘ−st

α (Q) 6= ∅,
it is a smooth irreducible variety of dimension 1 − 〈α, α〉. Moreover, it is
projective if semistability and stability coincide. Recall that this is the case if
α is Θ-coprime, i.e. if we have µ(β) 6= µ(α) for all dimension vectors 0 6= β < α.
In the following, we denote the quotient morphism by πΘ

α : RΘ−st
α (Q) →

MΘ−st
α (Q) or just by π if we fixed a dimension vector and a stability.

5.2 Universal abelian covering quiver

For an introduction to covering theory we refer to [Gab81, Gre83]. Let AQ be
the free abelian group generated by Q1, writing ea for the basis vector of AQ
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corresponding to an arrow a ∈ Q1.

Definition 5.1. The universal abelian covering quiver Q̂ of Q has vertex set
Q̂0 = Q0 × AQ and arrow set Q̂1 = Q1 × AQ. The source and target of an

arrow in Q̂ are (s(a), χ)
(a,χ)
−−−→ (t(a), χ+ ea).

We say that a representation M ∈ rep(Q) can be lifted to Q̂ if there exists
a representation M̂ ∈ rep(Q̂) such that FQM̂ = M where FQ is the natural
pushdown functor.

Note that in our definition every connected component of Q̂ is a covering in

the sense of [Gab81]. The functor FQ induces a map FQ : ZQ̂0

≥0 → ZQ0

≥0. We
say that a dimension vector α̂ is compatible with α if FQ(α̂) = α. The group

AQ acts on Q̂ via translation inducing an action on rep(Q̂) and on ZQ̂0

≥0. We
say two representations are equivalent if they lie in the same orbit under this
action. If M is a representation of Q̂, we denote the representation obtained
by translation by χ ∈ AQ by Mχ. The following is straightforward:

Lemma 5.2. Every tree module can be lifted to the universal abelian covering
quiver.

The following result uses that FQ is a covering functor when restricting to one

of the connected components of Q̂.

Theorem 5.3. The functor FQ preserves indecomposability. Moreover, for all

representations M̂, N̂ ∈ rep(Q̂), we have

HomQ(FQM̂, FQN̂) ∼=
⊕

χ∈AQ

Hom
Q̂

(M̂χ, N̂) ∼=
⊕

χ∈AQ

Hom
Q̂

(M̂, N̂χ). (5.2)

The analogous statement is true when replacing Hom by Ext.

5.3 Torus action on moduli spaces

Let the torus T := (C∗)|Q1| act on Rα(Q) by

t.M = (ta)a∈Q1 .(Ma)a∈Q1 := (taMa)a∈Q1 . (5.3)

This action commutes with the base change action of GLα :=
∏

q∈Q0
Glαq

(C)
on Rα(Q) given by

g ∗M := (gt(a)Mag
−1
s(a))a∈Q1 . (5.4)

As the T-action preserves the submodule lattice, it also preserves stability, so
this induces a T-action on the moduli space MΘ−st

α (Q).
We recall some results from [Wei13, Section 3] which are important for our
purposes. Let PGlα = Glα/C∗, where C∗

⊳ GLα is the normal subgroup
{(λidαq

)q∈Q0 | λ ∈ C∗}. For every T-fixed point T ∈MΘ−st
α (Q), we can choose

a representative T ∈ RΘ−st
α (Q), also called a lift in what follows. Every such
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lift gives rise to a unique homomorphism of algebraic groups φ : T → PGlα
such that

φ(t) ∗ T = t.T. (5.5)

For φ we can choose a lift ψ : T → GLα which is unique up to a character
χ : T → C∗. Every such lift ψ can be decomposed as ψ = (ψq)q∈Q0 and gives
rise to a weight space decomposition

Tq =
⊕

χ∈X(T)

(Tq)χ (5.6)

for every q ∈ Q0. Here X(T) ∼= ZQ1 denotes the character group. Furthermore,
we have Ta(Ts(a),χ) ⊆ Tt(a),χ+ea for each a ∈ Q1. Thus, T defines a Θ̂-stable

representation of the universal abelian covering quiver Q̂ as defined in Section
5.2. Here the linear form Θ̂ ∈ Hom(ZQ0 ,Z) is defined by Θ̂(q,χ) = Θq for
all q ∈ Q0, χ ∈ AQ. Note that a change of the lift ψ by χ corresponds to a
translation of the representation in the universal abelian covering quiver.
The other way around, every Θ̂-stable representation T ∈ Rα̂(Q̂) defines a
torus fixed point of MΘ−st

α (Q) if α̂ is compatible with α. Following [Wei13,
Section 3.2], for ψT : T→ GLα defined by

(ψT )q(t)(x(q,χ)) = χ(t)x(q,χ) (5.7)

for each t ∈ T and x(q,χ) ∈ T(q,χ), we have ψT (t) ∗ T = t.T . Thus T is indeed
a fixed point. In [Wei13, Theorem 3.8] it is shown:

Theorem 5.4. The set of torus fixed points MΘ−st
α (Q)T is isomorphic to the

disjoint union of moduli spaces

∐

α̂

M Θ̂−st
α̂ (Q̂) (5.8)

where α̂ ranges over all equivalence classes of dimension vectors compatible
with α.

5.4 Bia lynicki-Birula decomposition for moduli spaces

We fix the following assumption for the remainder of this section.

Assumption 5.5. Assume that α ∈ ZQ0

≥0 is Θ-coprime so that the moduli space

MΘ−st
α (Q) is smooth and projective, as discussed in Section 5.1.

Let Z be a smooth projective variety with a C∗-action. For a connected com-
ponent of the fixed point set C ⊂ ZC

∗

, we define its attracting set as

Att(C) := {y ∈ Z | lim
t→0

t.y ∈ C} (5.9)

Then we have the following statement [BB73, Section 4]:
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Theorem 5.6. Let
∐r
i=1 Ci = ZC

∗

be the decomposition into connected com-
ponents. Then Att(Ci) is a locally closed smooth C∗-invariant subvariety of Z
whence Ci is a subvariety of Att(Ci). Moreover, we have Z =

∐r
i=1 Att(Ci)

and the natural map γi : Att(Ci)→ Ci is an affine bundle.

In order to apply Theorem 5.6 to the torus action defined in Section 5.3, we
can define a C∗-action on MΘ−st

α (Q) with the same fixed point set. Once we do
this, it follows directly that the moduli space of stable representations admits
a cell decomposition into affine spaces if the fixed point set is finite. To do
so, we fix a one-parameter subgroup γ = (γa)a∈Q1 : C∗ → (C∗)|Q1| which is
sufficiently general and consider the induced C∗-action on RΘ−st

α (Q), i.e.

t.(Ma)a∈Q1 := (γa(t)Ma)a∈Q1 . (5.10)

Recall that such a one-parameter subgroup is given by a vector (γa)a ∈ ZQ1 . In
[Pet07, Chapter 2.4], it is worked out how the attractor sets can be determined
for a torus action on a geometric quotient coming from an action of a linear
algebraic group on a vector space. We transfer and extend the results to adjust
them to our situation including the proofs for completeness.
Thereby, our main interest is in lifting the attracting set

Att(T̄ ) = {M̄ ∈MΘ−st
α (Q) | lim

t→0
t.M̄ = T̄} (5.11)

of a torus fixed point T̄ ∈MΘ−st
α (Q) to RΘ−st

α (Q), i.e. we investigate the sets

Att(T ) = {M ∈ RΘ−st
α (Q) | lim

t→0
(ψT (t), t).M = T } (5.12)

for a lift T ∈ RΘ−st
α (Q). Then the next step is to deduce cells (T, U) of inde-

composable representations from Att(T ) where U is in bijection with Att(T̄ ).
If T is a tree module - which is for instance the case if it is exceptional as a
representation of Q̂ - this gives a (T, U)-normal form for the lifted representa-
tions.

Remark 5.7. With a tree module T ∈ Rα(Q) with homogeneous basis BT , we
can associate a subquiver and a dimension vector α̂T of the universal abelian
covering quiver. Both are unique up to translation by χ ∈ AQ. In this way, we
can associate a vertex (q, χ) with every b ∈ BT .
Consider the group homomorphism dγ : AQ → Z by dγ(ea) = γa. If T is stable,
i.e. T is a torus fixed point, (5.7) shows that the corresponding one-parameter
subgroup ψT : C∗ → GLα is given by diagonal matrices with diagonal entries
(ψT (t)q)b,b = tdγ(χ) where b ∈ BT is supported at (q, χ). In particular, ψT only

depends on the dimension vector α̂T ∈ ZQ̂0

≥0.
In the following, we call a one-parameter subgroup ψ : C∗ → GLα in standard
form if every ψq is given by a diagonal matrix.

We define the group Ĝα = GLα × C∗. It acts on RΘ−st
α (Q) via

(g, t).M = t−1.(g ∗M) = g ∗ (t−1.M). (5.13)

Documenta Mathematica 24 (2019) 1245–1294



1272 Ryan Kinser and Thorsten Weist

Recall that a one-parameter subgroup ψ of GLα consists of a collection (ψq)q∈Q0

of one-parameter subgroups ψq : C∗ → GLαq
. In turn a one-parameter sub-

group of Ĝα is obtained by adding a character χ ∈ X(C∗), i.e. we have χ(t) = tn

for some n ∈ Z. The group GLα acts on the set of one-parameter subgroups of
GLα via conjugation, i.e. we have

(g.ψ)(t) := (gqψq(t)g
−1
q )q∈Q0 (5.14)

for ψ : C∗ → GLα. This induces an action on the set of one-parameter sub-
groups of Ĝα via g.(ψ(t), tn) := ((g.ψ)(t), tn).
We start by proving some technical results which are needed for lifting the
attracting cells. A similar result is proved in [Pet07, Proposition 2.26]:

Lemma 5.8. Let T̄ ∈ MΘ−st
α (Q) be a torus fixed point and let M̄ ∈ Att(T̄ ).

Moreover, let T ∈ RΘ−st
α (Q) be a lift of T̄ and M ∈ RΘ−st

α (Q) be a lift of M̄ .

Then there exists a one-parameter subgroup ψ̂ : C∗ → Ĝα such that

lim
t→0

ψ̂(t).M ∈ ĜαT = GLαT. (5.15)

Proof. The aim is to apply the Hilbert criteria in the form of [Kra84, Theorem
2.4], see also [Bir71, Theorem 4.2], which states that, for any closed Ĝα-stable

subset of the orbit closure ĜαM , there exists such a one-parameter subgroup.

Therefore, we need to show that ĜαT is a closed subset of ĜαM .
As T̄ is a fixed point under the C∗-action, we have ĜαT = GLαT . If π is the
quotient map for the GLα-action, we have

π(ĜαM) = {t.M̄ | t ∈ C∗}. (5.16)

Thus we have T̄ = limt→0 t.M̄ ∈ π(ĜαM) which shows

ĜαT = π−1(T̄ ) ⊆ π−1(π(ĜαM)) ⊆ π−1(π(ĜαM)) = ĜαM (5.17)

where we use that π(ĜαM) is closed because π : RΘ−st
α (Q) → MΘ−st

α (Q) is a
geometric quotient. As ĜαT = π−1(T̄ ) is closed in RΘ−st

α (Q) and contained in

ĜαM , it is also closed in ĜαM .

The following lemma explains the compatibility of the different actions of GLα.

Lemma 5.9. Let T̄ ∈ MΘ−st
α (Q) be a torus fixed point and let M̄ ∈ Att(T̄ ).

Moreover, let T be a lift of T̄ , M be a lift of M̄ and ψ̂ : C∗ → Ĝα be a
one-parameter subgroup such that

lim
t→0

ψ̂(t).M = T. (5.18)

For every g ∈ GLα, we have

lim
t→0

(g.ψ̂)(t).(g ∗M) = g ∗ T. (5.19)
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Proof. We assume that ψ̂ = ((ψq)q, χ) with χ(t) = tn. Let a ∈ Q1. Then we
have

(

lim
t→0

(g.ψ̂)(t).(g ∗M)
)

a

= lim
t→0

t−nγa .gt(a)ψt(a)(t)g
−1
t(a)gt(a)Mag

−1
s(a)gs(a)ψ

−1
s(a)(t)g

−1
s(a)

= lim
t→0

t−nγa .gt(a)ψt(a)(t)Maψ
−1
s(a)(t)g

−1
s(a)

= gt(a)

(

lim
t→0

t−nγaψt(a)(t)Maψ
−1
s(a)(t)

)

g−1
s(a)

= gt(a)

(

lim
t→0

ψ̂(t).M
)

a
g−1
s(a)

= (g ∗ T )a

where we use that the limit limt→0 ψ̂(t).M exists.

Lemma 5.10. Let T̄ ∈ MΘ−st
α (Q) be a torus fixed point and let M̄ ∈ Att(T̄ ).

Moreover, let T be a lift of T̄ , M be a lift of M̄ and ψ̂ : C∗ → Ĝα be a one-
parameter subgroup. Then limt→0 ψ̂(t).M = T if and only if limt→0 ψ̂

m(t).M =
T for a nonzero integer m.

Proof. One direction is obvious. Thus assume that limt→0 ψ̂
m(t).M = T . As

before, we decompose ψ̂ into one-parameter subgroups ψq : C∗ → GLαq
and a

character χ ∈ X(T) with χ(t) = tn for some n ∈ Z. For every q ∈ Q0, there
exists gq ∈ GLαq

and ai,q ∈ Z for i = 1, . . . , αq such that

ψq(t) = gq · diag(ta1,q , . . . , taαq,q ) · g−1
q . (5.20)

Let g = (gq)q∈Q0 and νq(t) := diag(ta1,q , . . . , taαq,q ), i.e. ψ̂ = g.(ν, χ). Combin-
ing Lemma 5.9 with the assumption, we have

lim
t→0

(νm(t), tnm).(g−1 ∗M) = g−1 ∗ T. (5.21)

Let M ′ = g−1 ∗M and T ′ = g−1 ∗ T . For an arrow a ∈ Q1, we have

((νm(t), tnm).M ′)a =

t−nmγadiag(ta1,t(a) , . . . , t
aαt(a),t(a))m ·M ′

a · diag(t−a1,s(a) , . . . , t
−aαs(a),s(a))m.

(5.22)

Thus we have ((ν(t)m, tmn).M ′)a)i,j = tm(ai,t(a)−aj,s(a)−nγa)(M ′
a)i,j . This

shows that the existence of the limit is independent of m and it follows that

lim
t→0

(ν(t), tn).(g−1 ∗M) = g−1 ∗ T. (5.23)

This gives the claim when applying Lemma 5.9 again.

Documenta Mathematica 24 (2019) 1245–1294



1274 Ryan Kinser and Thorsten Weist

The considerations of Section 5.3 show that for a given lift T of a torus fixed
point T̄ , there exists a one-parameter subgroup ψT : C∗ → GLα, unique up to
some χ ∈ X(T), such that ψT (t) ∗T = t.T . We can use this to adopt the proof
of [Pet07, Proposition 2.27] for our purposes:

Proposition 5.11. Fix a lift T ∈ RΘ−st
α (Q) of a fixed point T̄ ∈ MΘ−st

α (Q).
For every M̄ ∈ Att(T̄ ) there exists a lift M such that

lim
t→0

(ψT (t), t).M = T. (5.24)

Proof. By [Wei13, Section 3.1], the one-parameter subgroup corresponding to
g ∗ T where g ∈ GLα is ψg∗T = g.ψT . Fix any lift M of M̄ . By Lemma 5.8,

there exists a one-parameter subgroup ψ̂ = (ψ, χ) : C∗ → Ĝα with χ(t) = tn

for some integer n and a g ∈ GLα such that

lim
t→0

ψ̂(t).M = g ∗ T. (5.25)

For each t0 ∈ C∗, the existence of the limit can be used to show

(ψ(t0), tn0 ).(g ∗ T ) = ((ψ(t0), tn0 ).((lim
t→0

(ψ(t), tn).M)

= (lim
t→0

(ψ(t0t), (t0t)
n)).M) = g ∗ T. (5.26)

As ψg∗T (t) ∗ (g ∗ T ) = t.(g ∗ T ) if and only if ψg∗T (t)n ∗ (g ∗ T ) = tn.(g ∗ T ),

the uniqueness of ψg∗T gives ψ = χ · (ψg∗T )n and ψ̂(t) = (χ · ψg∗T (t)n, tn) for
some character χ ∈ X(T). As the scalars act trivially on RΘ−st

α (Q), and thus
χ does as well, we can apply Lemma 5.10 to obtain

lim
t→0

(ψg∗T (t), t).M = g ∗ T. (5.27)

As we have ψg∗T = g.ψT , we can apply Lemma 5.9 and get
limt→0(ψT (t), t).(g−1 ∗M) = T.

Thus we have shown that every M̄ ∈ Att(T̄ ) has a representative in the lifted
attracting cell

Att(T ) = {M ∈ RΘ−st
α (Q) | lim

t→0
(ψT (t), t).M = T }. (5.28)

We will see that we have an action of a subgroup of a parabolic subgroup of
GLα on Att(T ) whose orbit space can be identified with Att(T̄ ). For a one-
parameter subgroup ψ : C∗ → GLα we define

Pψ = {g ∈ GLα | lim
t→0

ψq(t)gqψq(t)
−1 exists for all q ∈ Q0} (5.29)

and consider the subgroup

Uψ = {g ∈ GLα | ∃µ ∈ C∗ : lim
t→0

ψq(t)gqψq(t)
−1 = µEαq

for all q ∈ Q0}.

(5.30)
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Remark 5.12. If ψq(t) = diag(ta1,q , . . . , taαq,q ) for all q ∈ Q0, it is easy to
determine the corresponding subgroup Uψ. This occurs, for example, if the lift

of a torus fixed point is given as a representation of Q̂. More precisely, for each
g ∈ Uψ, there exists µ ∈ C∗ such that (gq)i,i = µ for all i and all q ∈ Q0, and
for i 6= j we have that (gq)i,j is arbitrary if ai,q − aj,q > 0 and (gq)i,j = 0 if
ai,q − aj,q ≤ 0.

We need another technical lemma:

Lemma 5.13. Let T be a lift of a torus fixed point, let M ∈ Att(T ) and let
g ∈ UψT

.

1. Then we have g ∗M ∈ Att(T ).

2. We have g ∗ T ∈ Att(T ) if and only if g ∈ UψT
.

3. If ψT is in standard form, for all arrows a ∈ Q1, we have (Ma)i,j = (Ta)i,j
whenever (Ta)i,j 6= 0.

Proof. Let ψ = ψT . Let g ∈ Pψ and M ∈ Att(T ). Then we have

lim
t→0

(ψ(t), t).(g ∗M) = lim
t→0

((ψq(t)gqψq(t)
−1)q∈Q0 , t).(ψ(t) ∗M)

= (lim
t→0

(ψq(t)gqψq(t)
−1)q∈Q0 ) ∗ (lim

t→0
(ψ(t), t).M)

= (lim
t→0

(ψq(t)gqψq(t)
−1)q∈Q0 ) ∗ T

where the equations hold because the respective limits exist.
Now the endomorphism ring of T is trivial, which means that we additionally
have g ∈ Uψ if and only if

lim
t→0

(ψ(t), t).(g ∗M) = T. (5.31)

This shows the first claim.
For the second claim, assume that g ∈ GLα and consider

lim
t→0

(ψ(t), t).(g ∗ T ) = lim
t→0

(ψq(t)gqψq(t)
−1)q∈Q0 ) ∗ ((ψ(t), t).T )

= lim
t→0

(ψq(t)gqψq(t)
−1)q∈Q0 ∗ T

where we use that T is a fixed point. Now the same argument applies.
If ψ is in standard from and M ∈ Att(T ), for a ∈ Q1, we have

lim
t→0

((ψ(t), t).Ma)i,j = lim
t→0

t−γa+ai,t(a)−aj,s(a)(Ma)i,j = (Ta)i,j . (5.32)

If (Ta)i,j 6= 0, it follows that −γa + ai,t(a) − aj,s(a) = 0 and thus (Ta)i,j =
(Ma)i,j .

The following result shows that the second part of the lemma holds for arbitrary
M ∈ Att(T ). A similar result is proved in [Pet07, Lemma 2.32]:
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Proposition 5.14. Let T be a lift of a torus fixed point. Then there exists
an action of UψT

on Att(T ) such that for all M ∈ Att(T ) we have GLα ∗
M ∩ Att(T ) = UψT

∗M . In particular, the affine space π(Att(T )) = Att(T̄ )
is the orbit space for the UψT

-action on Att(T ) which we sometimes write as
Att(T )/Uψ.

Proof. Write ψ = ψT . The exisitence of the Uψ-action is a consequence of
Lemma 5.13. It remains to show that g ∈ Uψ if g∗M ∈ Att(T ) andM ∈ Att(T ).
Lemma 5.9 implies that we can assume that each ψq is in standard form, i.e.
we assume that ψq(t) = diag(ta1,q , . . . , taαq,q ) for integers ai,q. Then we have

(((ψ(t), t).(g ∗M))a)k,l =

αt(a)
∑

i=1

αs(a)
∑

j=1

t−γa+ak,t(a)−al,s(a)(gt(a))k,i(Ma)i,j(g
−1
s(a))j,l.

(5.33)
As we have (Ma)i,j = (Ta)i,j if (Ta)i,j 6= 0, this shows that limt→0(ψ(t), t).(g ∗
T ) exists whenever limt→0(ψ(t), t).(g∗M)) exists. Indeed, for the limit to exist,
the limit of every single summand needs to exist. But now the second part of
Lemma 5.13 shows that g ∈ Uψ.

The following result translates the results of this section into the language of
Section 3.

Theorem 5.15. Let T̄ ∈ MΘ−st
α (Q) be a torus fixed point and T ∈ Rα(Q) be

a lift. Then there exists a subspace VT ⊂ R(T, T ) such that Att(T ) = T + VT ,
i.e. for all M ∈ Att(T ) we have M ∼= T (λ) with λ ∈ VT .
If we choose UT ⊂ VT such that |(UψT

∗ T (λ))∩Att(T )| = 1 for every λ ∈ UT ,
then UT represents a strong and separating subset of Ext(T, T ).

Proof. We first choose the lift T of T̄ such that ψT is in standard form. This
is the case if T itself can be lifted to the universal abelian covering quiver, see
Section 5.3. Thus, by Lemma 5.13, we have (Ma)i,j = (Ta)i,j if (Ta)i,j 6= 0.
Note that we also have −γa + ai,t(a) − aj,s(a) = 0 in this case. Moreover, if
(Ta)i,j = 0, we have

lim
t→0

((ψ(t), t).Ma)i,j = lim
t→0

t−γa+ai,t(a)−aj,s(a)(Ma)i,j = 0 (5.34)

whenever −γa + ai,t(a) − aj,s(a) > 0 or (Ma)i,j = 0. This shows

Att(T ) = {M ∈ Rα(Q) | (Ma)i,j = (Ta)i,j if (Ta)i,j 6= 0,

(Ma)i,j = 0 if ai,t(a) − aj,s(a) < γa}

= T + {λ ∈ R(T, T ) | (λa)i,j = 0 if ai,t(a) − aj,s(a) ≤ γa}.

Thus the right hand summand defines a subspace VT of Rα(Q) = R(T, T ) such
that T (λ) is stable for all λ ∈ VT .
The second part of the statement is clear since every representation T (λ) is
stable and thus indecomposable. Moreover, Proposition 5.14 shows that the
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orbits with respect to the UψT
-action are in one-to-one correspondence with

the isomorphism classes of representations contained in Att(T ).
Finally, for another lift T ′ = g ∗ T with one-parameter subgroup ψg∗T , by
Lemma 5.9, we have that g ∗ VT and g ∗ UT satisfy the conditions.

Remark 5.16. Actually, the UψT
-action is much easier to handle than the GLα-

action as we can mostly choose representatives of Att(T )/UψT
in the lifted affine

cell Att(T ) in a canonical way, i.e. we can choose UT ⊂ VT as a subspace. In this
case (T, UT ) defines a cell of stable, and thus indecomposable, representations.
The results show UψT

acts freely on the affine space Att(T ) and that we
have Att(T )/UψT

= π(Att(T )) for the orbit space. Furthermore, the fibres
of π|Att(T ) : Att(T )→ π(Att(T )) are affine spaces of dimension dimUψT

. Nev-
ertheless, it seems to be not clear that this map is an affine bundle. If it were
an affine bundle, it would be trivial by the Quillen-Suslin theorem because
π(Att(T )) is also an affine space. In particular, there would exist an affine
isomorphism ϕ : Att(T )→ π(Att(T ))×UψT

such that pr1 ◦ϕ = π|Att(T ). If we
choose an affine global section σ : π(Att(T ))→ π(Att(T ))×UψT

, then ϕ−1 ◦ σ
is an affine global section of π|Att(T ) which means that ϕ−1 ◦ σ(π(Att(T ))) de-
fines an affine subspace of Att(T ) of dimension dimUψT

. This gives a strong
and separating subspace UT ⊂ R(T, T ) with T + UT = (ϕ−1 ◦ σ)(π(Att(T )) in
a natural way.

If α̂ is an exceptional root of Q̂, we denote the unique indecomposable repre-
sentation (up to isomorphism) of dimension α̂ by Tα̂. Recall that Tα̂ is a tree
module by [Rin98].

Corollary 5.17. Let α be a root such that MΘ−st
α (Q) is not empty. As-

sume that every root α̂ of Q̂ which is compatible with α and which satisfies

M Θ̂−st
α̂ (Q̂) 6= ∅ is exceptional. For every such α̂, assume that π|Att(Tα̂) :

Att(Tα̂)→ π(Att(Tα̂)) is an affine bundle.
Then there exists a mosaic of stable representations {(Tα̂, UTα̂

)}α̂ where α̂
runs through all equivalence classes which are compatible with α and satisfy

M Θ̂−st
α̂ (Q̂) = {pt}. In particular, every stable representation has a (Tα̂, UTα̂

)α̂-
normal form for some α̂.

Proof. The assumptions assure that there exist only finitely many fixed points
which are represented by stable representations Tα̂ of Q̂ such that α̂ is com-
patible with α. As α̂ is exceptional, Tα̂ is a tree module of Q̂ and thus of Q.
Then Theorem 5.6 together with Theorem 5.15 gives the claim.

Example 5.18. We state a first easy example which shows in detail how a
lifted attractor cell is obtained starting with a fixed point which is given as
a representation of the universal abelian covering quiver. In this case this
produces also a cell of stable representations.
We consider K(3), the root (d, e) = (2, 3) and the stability induced by Θ =
(1, 0). We denote the arrows by a, b and c and consider the torus action induced
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by choosing γ = (1, 3, 5). Then the following tree module T ∈ rep(Q̂) (with
weight space decomposition as indicated) is a torus fixed point:

−1

0

1

4

6

a

b

c

c

Then we have ψT (t) = (diag(t−1, t), diag(1, t4, t6)). Furthermore, it is straight-
forward that we have

Att(T ) =









1 0
∗ ∗
∗ ∗



 ,





0 0
∗ 1
∗ ∗



 ,





0 0
1 0
∗ 1







 , UψT
=





(

1 0
∗ 1

)

,





1 0 0
∗ 1 0
∗ ∗ 1







 ,

(5.35)

Att(T )/Uψ ∼= T +









0 0
0 ∗
0 ∗



 ,





0 0
0 0
∗ ∗



 ,





0 0
0 0
0 0







 ⊂ R(2,3)(K(3)). (5.36)

Writing UT for the right hand summand, (T, UT ) gives a four-dimensional affine
cell of stable representations of dimension (2, 3).

Actually the moduli spaces M
(1,0)−st
(d,d+1) (K(m)) all have cell decompositions into

affine spaces as there are only finitely many fixed points, see [Wei13, Section
6.2]. Now the results of this section can be used to obtain a cellular tree normal

form for R
(1,0)−st
(d,d+1) (K(m)), see also [Rei08, Proposition 7.3] where the dimension

vector (2, 3) for K(3) is treated.

5.5 Extended Kronecker quiver: an example

We consider the quiver

0 1 2

a

b
c

which we denote by K(2, 1) in what follows. We consider the stability induced
by Θ = (1, 0, 1) and the torus action induced by γ = (γa, γb, γc) = (1, 3, 1).
Moreover, we consider the dimension vector (n, n, 1). The moduli space of sta-
ble representations has dimension 1− 〈(n, n), (n, n)〉 = n and n+ 1 torus fixed
points T n1 , . . . , T

n
n+1 which are defined by the indicated exceptional roots of the

following subquivers of the universal abelian cover K̂(2, 1) where the bullets
stand for one-dimensional vector spaces - for the purpose of exhibition we dis-
play the case n = 4, the other cases are obtained by the obvious generalization.
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• • ••

• • • •

•

c

b a b a b a b

2 • •

• • • •

•

c

a b a b a b
• 2 •

• • • •

•

c

a b a b a b

• • 2

• • • •

•

c

a b a b a b

• • • •

• • • •

•

c

a b a b a b a

Note that the dimension vectors are exceptional roots and thus there exists a
unique representation attached to each. Moreover, the weights of the weight
spaces can be obtained easily. For n = 1 there exists a P1-family of indecom-
posable representations, all of which are stable. The groups Uψ

T1
1

and Uψ
T1
2

are

trivial and thus (1, 1, 1) admits a cellular tree normal form given by the lifted
attracting sets

Att(T 1
1 ) = ((∗), (1), (1)), Att(T 1

2 ) = ((1), (0), (1)). (5.37)

For n = 2, the attracting sets can be computed as

Att(T 2
1 )/Uψ

T2
1

∼=

((

0 ∗
1 ∗

)

,

(

1 0
0 1

)

,

(

1
0

))

, (5.38)

Att(T 2
2 )/Uψ

T2
2

∼=

((

1 0
0 ∗

)

,

(

0 0
0 1

)

,

(

1
1

))

, (5.39)

Att(T 2
3 )/Uψ

T2
3

∼=

((

1 0
0 1

)

,

(

0 1
0 0

)

,

(

0
1

))

. (5.40)

Thus we again get a cellular tree normal form for the stable representations.
This is also true for general n as the following recursive construction shows.
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Write En for the identity matrix of size n and Jk(0) for the Jordan block of
size k with eigenvalue 0. Moreover, write Cnk = Att(T nk )/UψTn

k
. For n ≥ 2, we

have

Att(T n1 )/UψTn
1

=






Jn(0)T +







∗

0 ...
∗






, En, e1






, (5.41)

Att(T nk )/Uψ
T2
1

=





















1 0 . . . 0
0
... (Cn−1

k−1 )a
0











,

(

Jk−1(0) 0
0 En−k+1

)

, ek−1 + ek











(5.42)
for k = 2, . . . , n+ 1 where we set en+1 := 0. In total, we obtain

Lemma 5.19. The set of stable representations RΘ−st
(n,n,1)(K(2, 1)) admits a cellu-

lar tree normal form. Furthermore, the moduli space MΘ−st
(n,n,1)(K(2, 1)) admits

a cell decomposition into affine spaces with n+ 1 cells in total. Since there ex-
ists precisely one cell of each dimension, the Poincaré polynomial (in singular
cohomology) is given by

PΘ−st
(n,n,1)(q) =

n
∑

i=0

q2i. (5.43)

6 Applications, examples and discussion

We give several examples of roots for which our methods can be used to classify
all indecomposables up to isomorphism by constructing a cellular tree normal
form. It seems that our methods are particularly useful to classify Schurian
representations of a fixed root. Thus the next step could be to consider those
roots, for which every indecomposable representation is already Schurian.

6.1 Complexity of classification: Harder-Narasimhan length and

Schur level

Let Θ ∈ ZQ0 be a linear form defining a stability and let M ∈ rep(Q). Re-
call that M ∈ rep(Q) admits a unique subrepresentation scssM which is of
maximal dimension under those subrepresentations with maximal slope, see
[Rei08, Section 4]. These subrepresentations can successively be used to build
the so-called Harder-Narasimhan filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Ms = M (6.1)

with Θ-semistable subquotients Mi/Mi−1 satisfying µ(Mi/Mi−1) >
µ(Mi+1/Mi) for i = 0, . . . , s− 1, which is also unique.
During this section, we frequently use the following lemma.
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Lemma 6.1. Let M ∈ rep(Q). Then we have Hom(scssM,M/scssM) = 0.

Proof. If M and N are two semistable representations such that µ(M) > µ(N),
then we have Hom(M,N) = 0, see [Rei08, Lemma 4.2]. Assume that

0 = M0 ⊂M1 ⊂ . . . ⊂Ms−1 ⊂Ms = M (6.2)

is the HN-filtration of M .

Then we have M1 = scssM . Moreover, the subquotients Mi/Mi−1 are
semistable such that µ(Mi/Mi−1) > µ(Mi+1/Mi) for i = 1, . . . , s − 1. Con-
sider the induced chain of epimorphisms

M/M1
π1−→M/M2

π2−→ . . .
πs−2
−−−→M/Ms−1 (6.3)

with ker(πi) = Mi+1/Mi. Assume that 0 6= f ∈ Hom(M1,M/M1).

Following the introductory remark, we have Hom(M1, ker(πi)) = 0 which, using
the universal property of the kernel, inductively yields that πi◦. . .◦π1◦f 6= 0 and
thus a nonzero homomorphism πs−2◦ . . .◦π1◦f : M1 →M/Ms−1. As M/Ms−1

is semistable with µ(M1) > µ(M/Ms−1), this yields a contradiction.

Definition 6.2. Let Θ be a linear form and α ∈ ZQ0

≥0 be a root. Let M ∈
rep(Q) with HN-filtration as above.

1. We write hnΘ(M) = s for the length of the Harder-Narasimhan filtration
of M and call it HN-length of M in the following.

2. We define the HN-length of α by

hnΘ(α) := max{hnΘ(M) |M ∈ Rep(Q) indecomposable, dimM = α}.
(6.4)

3. We define the Schur level of α by

sl(α) := max{dim End(M) |M ∈ Rep(Q) indecomposable, dimM = α}.
(6.5)

We often suppress Θ in hnΘ if it is fixed. The following examples suggest
that both hn(α) and sl(α) give an additional measure for the complexity of the
classification problem for indecomposables of dimension vector α, in addition to
the Euler form 〈α, α〉. For instance, if α is Θ-coprime and if we have hn(α) = 1,
every representation is stable. Thus all indecomposables are parametrized by
a smooth projective variety and we also have sl(α) = 1. If, moreover, there
exists a torus action with finitely many torus fixed points, the moduli space of
stables admits a cell decomposition inducing a tree normal form for α. Note
that this is clearly true for exceptional representations. Another example is the
following.
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Example 6.3. We extend Example 3.9 and consider the dimension vector (1, d)
of K(m). For Θ = (1, 0), we have hn((1, d)) = sl((1, d)) = 1. Actually, the
description of the indecomposables in Example 3.9 yields that every indecom-
posable representation is stable with respect to this stability. Thus we have

M
(1,0)−st
(1,d) (K(m)) ∼= Grd(k

m). (6.6)

On this moduli space we can choose a torus action as defined in Section 5.3
such that the torus fixed points are precisely the

(

m
d

)

tree modules of dimen-
sion (1, d). More precisely, these tree modules are obtained when colouring
the arrows of the bipartite graph with one source and d sinks in the colours
{a1, . . . , am} in such a way that the colours of the arrows are pairwise disjoint.

The corresponding Bia lynicki-Birula decomposition of the moduli space with
(

m
d

)

cells can be identified with the Schubert decomposition of the Grassman-
nian. This gives a cellular tree normal form for the indecomposable represen-
tations of dimension (1, d).

In general, it would be interesting to investigate the following question as it
seems that hnΘ(α) limits the possible values for sl(α) if Θ defines a nontrivial
stability condition.

Question 6.4. Is there a connection between sl(α) and hnΘ(α)?

Also the following lemma suggests that the invariants sl(α) and hn(α) measure
how difficult the classification problem is.

Lemma 6.5. Fix a linear form Θ and let α be a root such that MΘ−st
α (Q) 6=

∅. Assume furthermore that all roots β < α are Θ-coprime. Let
M ∈ Rα(Q) be a Schurian representation with hn(M) = 2. Then
dim End(scssM) = dim End(M/scssM) = 1, 〈dim scssM, dim scssM〉 <
〈α, α〉 and 〈dimM/scssM,M/ dim scssM〉 < 〈α, α〉 hold.

Proof. Write U := scssM , V = M/scssM and consider the short exact se-
quence 0 → U → M → V → 0. By Lemma 6.1, we have Hom(U, V ) = 0. As
M is Schurian, it follows that Hom(V,M) = Hom(M,U) = 0. As dimU and
dimV are Θ-coprime by assumption, stability and semi-stability coincide for
the dimension vectors dimU and dimV . Thus hn(α) = 2 gives that U and V
are Schurian. Applying the respective Hom-functors, these observations can be
used to obtain the following diagram:
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Hom(U,U) = k
� _

��

Hom(U,M) = k

0

��

0

��
Hom(V, V ) = k �

� // Ext(V, U)

��

// Ext(V,M)

��

// Ext(V, V )

��

// 0

Hom(M,V ) = k
0 // Ext(M,U)

��

// Ext(M,M)

��

// Ext(M,V )

��

// 0

0 // Ext(U,U)

��

// Ext(U,M)

��

// Ext(U, V )

��

// 0

0 0 0
(6.7)

In particular, we have dim Ext(U,U) ≤ dim Ext(M,M) and dim Ext(V, V ) ≤
dim Ext(M,M). If dim Ext(U,U) = dim Ext(M,M), we have Ext(U, V ) = 0.
As dim Ext is upper-semicontinuous, [Sch92, Theorem 3.3] then shows that a
general and thus every representation of dimension dimM has a subrepresen-
tation of dimension dimU . But then µ(U) ≥ µ(M) contradicts the existence
of stable representations.
Thus we have dim Ext(U,U) < dim Ext(M,M) and by duality dim Ext(V, V ) <
dim Ext(M,M). We get

〈U,U〉 = dim Hom(U,U)− dim Ext(U,U) = 1− dim Ext(U,U)

< 1− dim Ext(M,M) = 〈α, α〉
(6.8)

and the same for 〈V, V 〉.

Remark 6.6. If α is a root as in Lemma 6.5 with sl(α) = 1 and hn(α) ≤ 2,
then every indecomposable representation of dimension α is either stable or it
can be written as a middle term of a short exact of stable representations U
and V with Hom(U, V ) = 0.
The other way around, every pair of stable representations (U, V ) with µ(U) >
µ(V ), i.e. Hom(U, V ) = 0, and dimU + dimV = α can be used to construct
indecomposable representations of dimension α using the methods of Section
3. Thus the classification problem of indecomposables (which is a priori purely
algebraic) translates into a geometric problem of classifying stable representa-
tions of dimension α and of dimension β < α. In Section 6.2, we apply this to
isotropic Schur roots δ with sl(δ) = 1. In Section 6.3, we give another example
of a class of roots where this lemma applies. In these cases, also a cellular tree
normal form is derived.
For roots with sl(α) = 1 and hn(α) ≤ 2, it seems likely that we always get a
cellular tree normal form with our methods rather directly even if a proof is
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missing. For general roots α, we can at least construct mosaics of indecom-
posable representations with them. In any case, our investigations should help
organizing indecomposable representations of a fixed root α.

6.2 Isotropic Schur roots

We consider isotropic Schur roots δ which, moreover, satisfy sl(δ) = 1 and con-
struct a cellular tree normal form for δ. For a root α, define Θα ∈ Hom(ZQ0 ,Z)
by

Θα = 〈−, α〉 − 〈α,−〉. (6.9)

This linear form defines a stability condition in the sense of King [Kin94, Def-
inition 1.1]. Recall that this stability condition is equivalent to a stability
condition in our sense when defining a linear form Θ̂α by Θ̂α = µ · dim−Θα

for arbitrary µ ∈ Z.
Also recall that a representation M is (semi)-stable with respect to Θα if
Θα(M) = 0 and if Θα(U) > 0 (resp. Θα(U) ≥ 0) for all proper nonzero
subrepresentations U ⊂M .

Lemma 6.7. Let δ be an isotropic Schur root such that sl(δ) = 1 and let M be
an indecomposable representation of dimension δ.

1. The representation M is semistable with respect to Θδ. In particular, we
have hn(δ) = 1.

2. The representation M is properly semistable if and only if there exist a
nonsplit exact sequence 0 → U → M → V → 0 where U and V are
two exceptional representations with Hom(U, V ) = Hom(V, U) = 0 and
Ext(U, V ) = Ext(V, U) = k.

Proof. (1) Let U = scssM and write V = M/U . If we suppose for contradiction
that M is not semistable, we would have U 6= M and Θα(U) < 0. Using (2.4),
we can write this as

Θα(U) = dim Hom(U,M)−dim Ext(U,M)−dim Hom(M,U)+dim Ext(M,U).
(6.10)

As End(M) = k by assumption, we have Hom(M,U) = 0. Moreover, we have
dim Ext(U,M) ≤ dim Ext(M,M) = 1. As Hom(U, V ) = 0 by Lemma 6.1, it
follows that 1 ≤ dim Hom(U,U) = dim Hom(U,M). This contradicts (6.10), so
M must be Θδ-semistable.
(2) If M is properly semistable, there exists a proper subrepresentation U (M
with Θδ(U) = 0. The considerations of the first part show that equality
Θα(U) = 0 can only hold if dim Hom(U,M) = dim Ext(U,M) = 1 and
dim Ext(M,U) = 0. Then we may consider a diagram as the one obtained
in (6.7) where we again write V = M/U . It follows that Ext(U,U) = 0,
Ext(U, V ) = k and thus Ext(M,V ) = k which yields Ext(V, V ) = 0. We also
get Ext(V, U) = k. Thus U, V is a pair of exceptional representations satisfying
the claimed conditions.
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The other way around this setup of U and V yields an indecomposable rep-
resentation M of dimension δ as the middle term of any nonsplit sequence
0→ U →M → V → 0, see Lemma 3.1, which is unique as Ext(V, U) = k. As
Θα(U) = 0, the representation is not stable. But it is semistable by the first
part of the lemma.

For an exceptional root β, we write Mβ for the unique indecomposable rep-
resentation (up to isomorphism) of dimension β. For two dimension vectors
α and β, recall that the maps dim Hom(−,−) : Rα(Q) × Rβ(Q) → Z≥0 and
dim Ext(−,−) : Rα(Q) × Rβ(Q) → Z≥0 are upper-semicontinuous, see e.g.
[Sch92]. Its minimal (and thus general) value is denoted by hom(α, β) and
ext(α, β) respectively.

Proposition 6.8. Let δ be an isotropic Schur root with sl(δ) = 1. Then there
exist two exceptional roots β1 and β2 with dim Ext(Mβ2 ,Mβ1) = 2, Mβ2 ∈
M⊥
β1

and Hom(Mβ2 ,Mβ1) = 0. Moreover, every stable representation M of
dimension δ can be written as the middle term of a short exact sequence of the
form

0→Mβ1 →M →Mβ2 → 0. (6.11)

Proof. The first part is [PW18, Proposition 4.1].
Thus assume that M is stable of dimension δ. As ext(β1, β2) = 0, by [Sch92,
Theorem 3.3], every representation of dimension δ has a subrepresentation of
dimension β1. So we may assume that W ⊂ M is a subrepresentation with
dimW = β1. Assume for contradiction that W ≇ Mβ1 , which implies that
W is decomposable since β1 is a real root. Since M is stable, for every direct
summand Wi of W , we have Θδ(Wi) > 0. Since we have

Θδ(W1 ⊕W2) = Θδ(W ) = Θδ(β1) = 〈β1, δ〉 − 〈δ, β1〉 = 1− (−1) = 2, (6.12)

we conclude that W ∼= W1 ⊕W2 for indecomposable representations Wi with
Θδ(Wi) = 1. Write γi = dimWi. As End(M) = k, we have Hom(M,W ) = 0 =
Hom(M,Wi) for i = 1, 2 and thus 〈δ, γi〉 ≤ 0. Now

Θδ(γi) = 〈γi, δ〉 − 〈δ, γi〉 = 1 (6.13)

together with (6.12), i.e. 〈γ1, δ〉+ 〈γ2, δ〉 = 1 and 〈δ, γ1〉+ 〈δ, γ2〉 = −1, we can
conclude that

− 〈M,Wi〉 = 〈Wj ,M〉 = 1, 〈M,Wj〉 = 〈Wi,M〉 = 0 (6.14)

with {i, j} = {1, 2}. We assume that i = 1 and j = 2. Thus we can deduce from
the equations (6.14) and (2.4) that Ext(M,W1) = k and Ext(M,W2) = 0. This
already shows that W2 is exceptional by applying Hom(−,W2) to W2 ⊂ M .
Moreover, it shows that Ext(W1,W2) = 0 by applying Hom(−,W2) to W1 ⊂M .
This yields

〈β1, γ2〉 = 〈dimW, dimW2〉 = 〈dimW1 + dimW2, dimW2〉 ≥ 1. (6.15)
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On the other hand, as Hom(M,W2) = Ext(M,W2) = 0, we have δ ∈ ⊥γ2.
By [Sch92, Theorem 4.1], it follows that ext(γ2, δ) = 0 or hom(γ2, δ) = 0.
As the considerations from above show that there exists W2 of dimension γ2
with Hom(W2,M) 6= 0, it follows that ext(γ2, δ) = 0 which in turn gives
hom(γ2, δ) = 1 from (6.14). As ext(δ, γ2) = 0 and γ2 < δ, the Happel-Ringel
lemma [HR82, Lemma 4.1] implies that a general representation of dimension
δ has a subrepresentation of dimension γ2.

Let Mδ be a general representation of dimension δ. As hom(β1, δ) = 1 and
γ2 < β1, it follows that hom(β1, γ2) = 0. Indeed, otherwise there would be a
non-injective morphism Mβ1 →Mδ factoring throughW2 which contradicts the
fact that the unique (up to scalars) nonzero morphism Mβ1 →Mδ is injective.

Since a general representation of dimension δ has a subrepresentation of dimen-
sion β1, using ext(δ, γ2) = 0, we get ext(β1, γ2) = 0. In summary, this yields
〈β1, γ2〉 = 0 which yields a contradiction to inequality (6.15). In particular,
such a subrepresentation W cannot exist and every subrepresentation of M of
dimension β1 is isomorphic to Mβ1 .

By duality, every quotient of dimension β2 of a stable representation of dimen-
sion δ is forced to be isomorphic to Mβ2 . As every stable representation has
a subrepresentation of dimension β1 and thus a quotient of dimension β2, the
claim follows.

Remark 6.9. The considerations of [PW18] give a way to determine the desired
decomposition of an isotropic root into a pair of exceptional roots.

Actually, the first part also seems to follow inductively by the algorithm of
Derksen and Weyman [DW02], see also [Wei12, Proposition 3.15] for possible
decompositions of isotropic roots.

Theorem 6.10. Let δ be an isotropic Schur root with sl(δ) = 1. Then δ admits
a cellular tree normal form.

Proof. Proposition 6.8 together with Theorem 3.13 shows that there exists a
P1-family of nonisomorphic indecomposables which can be written as middle
terms of short exact sequences

0→Mβ1 →M →Mβ2 → 0. (6.16)

This gives a mosaic {(Mi, Ui)}i=1,2 of indecomposables of dimension vector δ.
As Mβ1 and Mβ2 are exceptional, they are tree modules by [Rin98]. Thus we
can actually choose a tree-shaped basis of Ext(Mβ2 ,Mβ1) which is compati-
ble with a choice of coefficient quivers for Mβ1 and Mβ2, and apply Theorem
4.12. It follows that we can choose Mi as tree modules, implying that every
representation Mi(λ) with λ ∈ Ui has a (Mi, Ui)-normal form.

As all stable representations are covered by this, it remains to consider the prop-
erly semistable indecomposable representations. They are covered by Lemma
6.7 and the same argument shows that they are actually tree modules.
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Remark 6.11. For isotropic Schur roots δ with sl(δ) ≥ 2, the proofs show that
there exists a mosaic of indecomposable representations which gives a cellular
tree normal form for Schurian representations of dimension δ. As these repre-
sentations form a dense subset of all indecomposables, it remains to investigate
the finitely many non-Schurian indecomposables in this case.

Remark 6.12. If δ is an isotropic Schur root with sl(δ) = 1, each Schurian rep-
resentation M1 of dimension δ gives rise to an indecomposable representation
Mn of dimension nδ for n ≥ 1. They can be successively found as the middle
terms of the unique nonsplit short exact sequences

0→M1 →Mn →Mn−1 → 0. (6.17)

So we can use the cellular tree normal form for δ to construct mo-
saics of indecomposables of dimension nδ. Note that we inductively get
Hom(Mn,M1) ∼= Hom(Mn−1,M1) = k, Hom(M1,M1) ∼= Ext(Mn−1,M1) = k
and Ext(Mn,M1) ∼= Ext(M1,M1) = k.
In the case of extended Dynkin quivers, all indecomposables of dimension nδ
can be constructed in this way. For general multiples of isotropic Schur roots,
this does not seem to follow from the general theory.

Example 6.13. The case of the dimension vector (1, 1) of K(2) was treated in
Example 2.3.
Let us consider the imaginary Schur root δ = (2, 1, 1, 1, 1) of S(4) as defined in
Section 4.4. Then δ decomposes into δ = β1 + β2 = (1, 1, 0, 0, 0) + (1, 0, 1, 1, 1).
The representations Mβ1 and Mβ2 are given by the coefficient quivers

0

1

0′

2′ 3′ 4′

a1 a2 a3 a4

A tree-shaped basis of Ext(Mβ2 ,Mβ1) is represented by {2′
a2−→ 0, 3′

a3−→ 0}.
According to Theorem 4.12, we obtain a mosaic of indecomposables consisting
of a one- and a zero-dimensional cell
{(

(k2, k, k, k, k), (

(

1
0

)

,

(

1
1

)

,

(

∗
1

)

,

(

0
1

)

)

)

,

(

(k2, k, k, k, k), (

(

1
0

)

,

(

0
1

)

,

(

1
1

)

,

(

0
1

)

)

)}

. (6.18)

The remaining indecomposables can be found as described in the second part of
Lemma 6.7 when considering the following decompositions of δ into exceptional
roots:

δ = (1, 1, 1, 0, 0) + (1, 0, 0, 1, 1)

= (1, 1, 0, 1, 0) + (1, 0, 1, 0, 1) = (1, 1, 0, 0, 1) + (1, 0, 1, 1, 0).
(6.19)
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Note that we only get three new indecomposables as the other three indecom-
posables arising from similar decompositions are covered by the first mosaic.
More precisely, the remaining indecomposables are given by the three tree
modules defined by the coefficient quivers

0

1

0′

i j k

a1 ai aj aj ak

with {i, j, k} = {2, 3, 4}.

Example 6.14. If we add a vertex q5 and an arrow a5 : q5 → q1 to S(4), the
isotropic Schur root

δ = 3q0 + 2q1 + 2q2 + q3 + q4 + q5 (6.20)

satisfies sl(δ) ≥ 2. In this case

δ = (2q0 + q1 + q2 + q3 + q5) + (q0 + q1 + q2 + q4) (6.21)

is a decomposition into exceptional roots as in Proposition 6.8 giving a P1-
family of nonisomorphic Schurian indecomposables. But there also exists a
decomposition

δ = 2 · β1 + β2 + β3 = 2 · (q0 + q1 + q2 + 0 + 0) + (q0 + q3 + q4) + (q5). (6.22)

As we have hom(βi, βj) = 0 for i 6= j, [Wei15, Theorem 3.3] shows that every
indecomposable of dimension (1, 2, 1) of the quiver

β2 β1 β3

a

b

c

gives an indecomposable of dimension δ with the same endomorphism ring. As
the tree module defined by the coefficient quiver

β1
1
b
−→ β2

a
−→ β2

1
c
←− β3 (6.23)

has a two-dimensional endomorphism ring, we indeed get sl(δ) ≥ 2.
In this case, it is still doable, but more difficult, to classify all indecomposable
representations. But, this example seems to be a good starting point to analyze
isotropic Schur roots with sl(α) ≥ 2 in general. Actually, the methods of the
paper should also be applicable in these cases.
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6.3 Extended subspace quiver: an example

We consider the quiver

T (n) = ({q0, q1, . . . , qn+1}, {a1, a2 : q1 → q0} ∪ {bi : qi+1 → q0 | i = 1, . . . , n})
(6.24)

q0

q1 q2 q3 · · · qn qn+1

and the root α(n) = nq0 +
∑n+1

i=1 qi. In this case, we can classify the inde-
composables as described in Remark 6.6. We choose the stability defined by
the linear form Θ = (0, 1, . . . , 1) so that the stable and semistable points of
dimension α(n) coincide. Let M be a representation of dimension α(n). Each
I ⊂ {1, . . . , n + 1} naturally defines a subrepresentation MI of M . Define
d(M)I = dim(MI)0. A representation M is stable if and only if

d(M)I >
n

n+ 1
|I| for all ∅ 6= I ( {1, . . . , n+ 1} (6.25)

if and only if

d(M)I ∈ {|I|, |I|+ 1} for all ∅ 6= I ( {1, . . . , n+ 1}. (6.26)

We choose a torus action on MΘ−st
α(n) (T (n)) by defining γ = (1, 2, 0, . . . , 0).

Then it is straightforward to check that the torus fixed points are given by the
exceptional representations of the indicated dimension which are supported at
the following subquiver of the universal abelian covering quiver

m l

1 . . . 1 1 1 . . . 1

bi1 bim a1 a2 bim+1
bin

Here {i1, . . . , in} = {1, . . . , n} and m + l = n. As all torus fixed points are

exceptional representations of T̂ (n), there exist precisely
(

n
m

)

fixed points of
this kind which we denote by T (i1, . . . , im). In the next step, we can ap-
ply Theorem 5.15 and find strong and separating subspaces UT (i1,...,im) ⊂
R(T (i1, . . . , im), T (i1, . . . , im)) of dimension m which are induced by the re-
spective attracting cells. For ij = j, they are given as follows and in general
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by the obvious modification:

T (1, . . . ,m) + UT (1,...,m) =





















m
∑

i=1

ei,





















∗
...
∗
1
...
1





















, e1 . . . , em, em+1, . . . , en





















. (6.27)

Note that we use this to determine the Poincaré polynomial: as there are
(

n
m

)

cells of dimension m, we obtain

PΘ−st
α(n) (q) =

n
∑

m=0

(

n

m

)

q2m = (1 + q2)n. (6.28)

To classify all indecomposables, it remains to investigate the unstable indecom-
posable representations. The next two lemmas are to describe these kind of
representations.

Lemma 6.15. Let M be a representation of T (n) with dimM = α(n). If M
is indecomposable, but unstable, there exists m ≥ 1 and I ⊂ {1, . . . , n} with
|I| = m + 1 and 1 /∈ I such that dim scssM = mq0 +

∑

i∈I qi. In particular,
scssM is exceptional. Finally, we have that M/scssM is indecomposable.

Proof. If M is unstable, there exists ∅ 6= I ( {1, . . . , n} such that d(M)I < |I|.
Let Î := {1, . . . , n + 1}\I. If we had d(M)I ≤ |I| − 2, from d(M)

Î
≤ |Î| + 1,

it can easily be seen that M were decomposable. Indeed, we either have M0
∼=

(MI)0 ⊕ (M
Î
)0 inducing a direct sum decomposition of M or even MI ∩MÎ

6=
{0} which makes the simple representation Sq0 a direct summand. Thus it
follows that d(M)I = |I| − 1.
If 1 ∈ I with d(M)I < |I|, we had d(M)

Î
≤ |Î| and thus the same argu-

ment shows that M were decomposable. Thus M has a subrepresentation of
the form as claimed. Now it can be shown inductively that scss(M) is the
subrepresentation of this form such that m is minimal.
Write U = scss(M). We have dimM/U = (n−m)q0+

∑

i∈Î qi with |Î| = n−m

and 1 ∈ Î. If M/U were decomposable, it is straightforward that M/U had a
direct summand V of dimension lq0+

∑

i∈I′ qi with |I ′| = l < n−m and 1 /∈ I ′.
But then we had Ext(V, U) = 0 contradicting the indecomposability of M .

We continue proceeding along Remark 6.6 and classify the possible quotients
M/scssM .

Lemma 6.16. Let β(n) = nq0 +
∑n
i=1 qi ∈ ZT (n)0

≥0 . Then the indecomposables

of dimension β(n) can be parametrized by P1. Furthermore, β(n) admits a
cellular tree normal form.
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Proof. First note that, applying the BGP-reflection [BGP73] functor to the sink
q0, the dimension vector β(n) becomes one at q0. For the reflected dimension
vector, Example 5.5 for the dimension vector (1, 1, 1) can be generalized in such
a way showing that the indecomposables are parametrized by P1.
To obtain a cellular tree normal form for β(n) itself, it is now convenient to
apply Theorem 5.15 because together with the previous observation it shows
that all representations are stable with respect to a certain stability. Actually,
there exists a torus action on the moduli space with two torus fixed points T1
and T2 inducing the following cells of indecomposables

U1 = Att(T1) =





























1
1
...
1
∗















, en, e1, . . . , en−1















,

U2 = Att(T2) =















en,















1
1
...
1
0















, e1, . . . , en−1















.

(6.29)

This gives a mosaic {(T1, T1−U1), (T2, {0})} parametrizing all indecomposables
and thus a cellular tree normal form for β(n).

Theorem 6.17. The dimension vectors α(n) admit a cellular tree normal form.

Proof. By Lemma 6.15 it follows that, for every unstable indecomposable M ,
there exists a short exact sequence of the form

0→ scss(M)→M →M/scss(M)→ 0 (6.30)

with stable kernel and indecomposable quotient. Moreover, we have γ(I) :=
dim scss(M) = mq0 +

∑

i∈I qi, |I| = m + 1 and 1 /∈ I for some 1 ≤ m ≤ n.
In particular, scss(M) is exceptional and thus a tree module. Furthermore,
M/scss(M) is indecomposable of dimension β(Î) := |Î|q0 +

∑

i∈Î qi with |Î| =
n−m.
The other way around, first note that dim Ext(N, scss(M)) = m for every inde-
composable N with dimN = β(Î). In particular, for each such I we can apply
Theorem 4.12 and Lemma 6.16 to the pairs of cells (Mγ(I), {0}), (T

I
1 , T

I
1 −U

I
1 ))

and (Mγ(I), {0}), (T
I
2 , {0})) to obtain a Pm−1 × (T I1 −U

I
1 )- and a Pm−1-family

of indecomposables respectively. Here Mγ(I) is the exceptional of dimension
γ(I) and (T I1 , T

I
1 −U

I
1 ) is the obvious modification of (T1, T1−U1) constructed

in Lemma 6.16.
As all representations in the cells from above have a tree normal form, every
unstable indecomposable is obtained in this way and as all constructed inde-
composables are nonisomorphic, this shows that α(n) admits a cellular tree
normal form.
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